AudioResamplerFirGen.h revision 86eae0e5931103e040ac2cdd023ef5db252e09f6
186eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung/*
286eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * Copyright (C) 2013 The Android Open Source Project
386eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung *
486eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * Licensed under the Apache License, Version 2.0 (the "License");
586eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * you may not use this file except in compliance with the License.
686eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * You may obtain a copy of the License at
786eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung *
886eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung *      http://www.apache.org/licenses/LICENSE-2.0
986eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung *
1086eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * Unless required by applicable law or agreed to in writing, software
1186eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * distributed under the License is distributed on an "AS IS" BASIS,
1286eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
1386eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * See the License for the specific language governing permissions and
1486eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * limitations under the License.
1586eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung */
1686eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung
1786eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung#ifndef ANDROID_AUDIO_RESAMPLER_FIR_GEN_H
1886eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung#define ANDROID_AUDIO_RESAMPLER_FIR_GEN_H
1986eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung
2086eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hungnamespace android {
2186eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung
2286eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung/*
2386eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * Sinc function is the traditional variant.
2486eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung *
2586eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * TODO: Investigate optimizations (regular sampling grid, NEON vector accelerations)
2686eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * TODO: Remove comparison at 0 and trap at a higher level.
2786eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung *
2886eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung */
2986eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung
3086eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hungstatic inline double sinc(double x) {
3186eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    if (fabs(x) < FLT_MIN) {
3286eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung        return 1.;
3386eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    }
3486eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    return sin(x) / x;
3586eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung}
3686eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung
3786eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hungstatic inline double sqr(double x) {
3886eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    return x * x;
3986eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung}
4086eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung
4186eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung/*
4286eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * rounds a double to the nearest integer for FIR coefficients.
4386eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung *
4486eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * One variant uses noise shaping, which must keep error history
4586eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * to work (the err parameter, initialized to 0).
4686eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * The other variant is a non-noise shaped version for
4786eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * S32 coefficients (noise shaping doesn't gain much).
4886eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung *
4986eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * Caution: No bounds saturation is applied, but isn't needed in
5086eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * this case.
5186eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung *
5286eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * @param x is the value to round.
5386eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung *
5486eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * @param maxval is the maximum integer scale factor expressed as an int64 (for headroom).
5586eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * Typically this may be the maximum positive integer+1 (using the fact that double precision
5686eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * FIR coefficients generated here are never that close to 1.0 to pose an overflow condition).
5786eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung *
5886eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * @param err is the previous error (actual - rounded) for the previous rounding op.
5986eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung *
6086eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung */
6186eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung
6286eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hungstatic inline int64_t toint(double x, int64_t maxval, double& err) {
6386eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    double val = x * maxval;
6486eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    double ival = floor(val + 0.5 + err*0.17);
6586eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    err = val - ival;
6686eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    return static_cast<int64_t>(ival);
6786eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung}
6886eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung
6986eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hungstatic inline int64_t toint(double x, int64_t maxval) {
7086eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    return static_cast<int64_t>(floor(x * maxval + 0.5));
7186eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung}
7286eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung
7386eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung/*
7486eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * Modified Bessel function of the first kind
7586eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * http://en.wikipedia.org/wiki/Bessel_function
7686eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung *
7786eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * The formulas are taken from Abramowitz and Stegun:
7886eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung *
7986eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * http://people.math.sfu.ca/~cbm/aands/page_375.htm
8086eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * http://people.math.sfu.ca/~cbm/aands/page_378.htm
8186eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung *
8286eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * http://dlmf.nist.gov/10.25
8386eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * http://dlmf.nist.gov/10.40
8486eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung *
8586eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * Note we assume x is nonnegative (the function is symmetric,
8686eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * pass in the absolute value as needed).
8786eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung *
8886eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * Constants are compile time derived with templates I0Term<> and
8986eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * I0ATerm<> to the precision of the compiler.  The series can be expanded
9086eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * to any precision needed, but currently set around 24b precision.
9186eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung *
9286eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * We use a bit of template math here, constexpr would probably be
9386eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * more appropriate for a C++11 compiler.
9486eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung *
9586eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung */
9686eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung
9786eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hungtemplate <int N>
9886eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hungstruct I0Term {
9986eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    static const double value = I0Term<N-1>::value/ (4. * N * N);
10086eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung};
10186eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung
10286eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hungtemplate <>
10386eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hungstruct I0Term<0> {
10486eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    static const double value = 1.;
10586eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung};
10686eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung
10786eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hungtemplate <int N>
10886eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hungstruct I0ATerm {
10986eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    static const double value = I0ATerm<N-1>::value * (2.*N-1.) * (2.*N-1.) / (8. * N);
11086eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung};
11186eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung
11286eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hungtemplate <>
11386eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hungstruct I0ATerm<0> { // 1/sqrt(2*PI);
11486eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    static const double value = 0.398942280401432677939946059934381868475858631164934657665925;
11586eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung};
11686eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung
11786eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hungstatic inline double I0(double x) {
11886eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    if (x < 3.75) { // TODO: Estrin's method instead of Horner's method?
11986eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung        x *= x;
12086eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung        return I0Term<0>::value + x*(
12186eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung                I0Term<1>::value + x*(
12286eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung                I0Term<2>::value + x*(
12386eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung                I0Term<3>::value + x*(
12486eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung                I0Term<4>::value + x*(
12586eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung                I0Term<5>::value + x*(
12686eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung                I0Term<6>::value)))))); // e < 1.6e-7
12786eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    }
12886eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    // a bit ugly here - perhaps we expand the top series
12986eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    // to permit computation to x < 20 (a reasonable range)
13086eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    double y = 1./x;
13186eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    return exp(x) * sqrt(y) * (
13286eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung            // note: reciprocal squareroot may be easier!
13386eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung            // http://en.wikipedia.org/wiki/Fast_inverse_square_root
13486eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung            I0ATerm<0>::value + y*(
13586eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung            I0ATerm<1>::value + y*(
13686eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung            I0ATerm<2>::value + y*(
13786eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung            I0ATerm<3>::value + y*(
13886eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung            I0ATerm<4>::value + y*(
13986eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung            I0ATerm<5>::value + y*(
14086eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung            I0ATerm<6>::value + y*(
14186eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung            I0ATerm<7>::value + y*(
14286eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung            I0ATerm<8>::value))))))))); // (... e) < 1.9e-7
14386eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung}
14486eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung
14586eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung/*
14686eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * calculates the transition bandwidth for a Kaiser filter
14786eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung *
14886eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * Formula 3.2.8, Multirate Systems and Filter Banks, PP Vaidyanathan, pg. 48
14986eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung *
15086eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * @param halfNumCoef is half the number of coefficients per filter phase.
15186eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * @param stopBandAtten is the stop band attenuation desired.
15286eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * @return the transition bandwidth in normalized frequency (0 <= f <= 0.5)
15386eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung */
15486eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hungstatic inline double firKaiserTbw(int halfNumCoef, double stopBandAtten) {
15586eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    return (stopBandAtten - 7.95)/(2.*14.36*halfNumCoef);
15686eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung}
15786eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung
15886eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung/*
15986eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * calculates the fir transfer response.
16086eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung *
16186eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * calculates the transfer coefficient H(w) for 0 <= w <= PI.
16286eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * Be careful be careful to consider the fact that this is an interpolated filter
16386eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * of length L, so normalizing H(w)/L is probably what you expect.
16486eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung */
16586eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hungtemplate <typename T>
16686eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hungstatic inline double firTransfer(const T* coef, int L, int halfNumCoef, double w) {
16786eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    double accum = static_cast<double>(coef[0])*0.5;
16886eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    coef += halfNumCoef;    // skip first row.
16986eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    for (int i=1 ; i<=L ; ++i) {
17086eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung        for (int j=0, ix=i ; j<halfNumCoef ; ++j, ix+=L) {
17186eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung            accum += cos(ix*w)*static_cast<double>(*coef++);
17286eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung        }
17386eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    }
17486eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    return accum*2.;
17586eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung}
17686eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung
17786eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung/*
17886eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * returns the minimum and maximum |H(f)| bounds
17986eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung *
18086eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * @param coef is the designed polyphase filter banks
18186eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung *
18286eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * @param L is the number of phases (for interpolation)
18386eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung *
18486eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * @param halfNumCoef should be half the number of coefficients for a single
18586eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * polyphase.
18686eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung *
18786eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * @param fstart is the normalized frequency start.
18886eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung *
18986eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * @param fend is the normalized frequency end.
19086eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung *
19186eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * @param steps is the number of steps to take (sampling) between frequency start and end
19286eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung *
19386eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * @param firMin returns the minimum transfer |H(f)| found
19486eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung *
19586eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * @param firMax returns the maximum transfer |H(f)| found
19686eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung *
19786eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * 0 <= f <= 0.5.
19886eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * This is used to test passband and stopband performance.
19986eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung */
20086eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hungtemplate <typename T>
20186eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hungstatic void testFir(const T* coef, int L, int halfNumCoef,
20286eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung        double fstart, double fend, int steps, double &firMin, double &firMax) {
20386eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    double wstart = fstart*(2.*M_PI);
20486eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    double wend = fend*(2.*M_PI);
20586eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    double wstep = (wend - wstart)/steps;
20686eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    double fmax, fmin;
20786eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    double trf = firTransfer(coef, L, halfNumCoef, wstart);
20886eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    if (trf<0) {
20986eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung        trf = -trf;
21086eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    }
21186eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    fmin = fmax = trf;
21286eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    wstart += wstep;
21386eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    for (int i=1; i<steps; ++i) {
21486eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung        trf = firTransfer(coef, L, halfNumCoef, wstart);
21586eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung        if (trf<0) {
21686eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung            trf = -trf;
21786eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung        }
21886eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung        if (trf>fmax) {
21986eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung            fmax = trf;
22086eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung        }
22186eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung        else if (trf<fmin) {
22286eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung            fmin = trf;
22386eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung        }
22486eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung        wstart += wstep;
22586eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    }
22686eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    // renormalize - this is only needed for integer filter types
22786eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    double norm = 1./((1ULL<<(sizeof(T)*8-1))*L);
22886eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung
22986eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    firMin = fmin * norm;
23086eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    firMax = fmax * norm;
23186eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung}
23286eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung
23386eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung/*
23486eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * Calculates the polyphase filter banks based on a windowed sinc function.
23586eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung *
23686eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * The windowed sinc is an odd length symmetric filter of exactly L*halfNumCoef*2+1
23786eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * taps for the entire kernel.  This is then decomposed into L+1 polyphase filterbanks.
23886eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * The last filterbank is used for interpolation purposes (and is mostly composed
23986eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * of the first bank shifted by one sample), and is unnecessary if one does
24086eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * not do interpolation.
24186eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung *
24286eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * @param coef is the caller allocated space for coefficients.  This should be
24386eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * exactly (L+1)*halfNumCoef in size.
24486eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung *
24586eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * @param L is the number of phases (for interpolation)
24686eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung *
24786eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * @param halfNumCoef should be half the number of coefficients for a single
24886eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * polyphase.
24986eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung *
25086eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * @param stopBandAtten is the stopband value, should be >50dB.
25186eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung *
25286eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * @param fcr is cutoff frequency/sampling rate (<0.5).  At this point, the energy
25386eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * should be 6dB less. (fcr is where the amplitude drops by half).  Use the
25486eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * firKaiserTbw() to calculate the transition bandwidth.  fcr is the midpoint
25586eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * between the stop band and the pass band (fstop+fpass)/2.
25686eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung *
25786eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * @param atten is the attenuation (generally slightly less than 1).
25886eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung */
25986eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung
26086eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hungtemplate <typename T>
26186eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hungstatic inline void firKaiserGen(T* coef, int L, int halfNumCoef,
26286eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung        double stopBandAtten, double fcr, double atten) {
26386eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    //
26486eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    // Formula 3.2.5, 3.2.7, Multirate Systems and Filter Banks, PP Vaidyanathan, pg. 48
26586eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    //
26686eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    // See also: http://melodi.ee.washington.edu/courses/ee518/notes/lec17.pdf
26786eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    //
26886eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    // Kaiser window and beta parameter
26986eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    //
27086eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    //         | 0.1102*(A - 8.7)                         A > 50
27186eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    //  beta = | 0.5842*(A - 21)^0.4 + 0.07886*(A - 21)   21 <= A <= 50
27286eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    //         | 0.                                       A < 21
27386eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    //
27486eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    // with A is the desired stop-band attenuation in dBFS
27586eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    //
27686eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    //    30 dB    2.210
27786eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    //    40 dB    3.384
27886eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    //    50 dB    4.538
27986eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    //    60 dB    5.658
28086eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    //    70 dB    6.764
28186eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    //    80 dB    7.865
28286eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    //    90 dB    8.960
28386eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    //   100 dB   10.056
28486eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung
28586eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    const int N = L * halfNumCoef; // non-negative half
28686eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    const double beta = 0.1102 * (stopBandAtten - 8.7); // >= 50dB always
28786eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    const double yscale = 2. * atten * fcr / I0(beta);
28886eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    const double xstep = 2. * M_PI * fcr / L;
28986eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    const double xfrac = 1. / N;
29086eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    double err = 0; // for noise shaping on int16_t coefficients
29186eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    for (int i=0 ; i<=L ; ++i) { // generate an extra set of coefs for interpolation
29286eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung        for (int j=0, ix=i ; j<halfNumCoef ; ++j, ix+=L) {
29386eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung            double y = I0(beta * sqrt(1.0 - sqr(ix * xfrac))) * sinc(ix * xstep) * yscale;
29486eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung
29586eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung            // (caution!) float version does not need rounding
29686eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung            if (is_same<T, int16_t>::value) { // int16_t needs noise shaping
29786eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung                *coef++ = static_cast<T>(toint(y, 1ULL<<(sizeof(T)*8-1), err));
29886eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung            } else {
29986eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung                *coef++ = static_cast<T>(toint(y, 1ULL<<(sizeof(T)*8-1)));
30086eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung            }
30186eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung        }
30286eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    }
30386eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung}
30486eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung
30586eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung}; // namespace android
30686eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung
30786eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung#endif /*ANDROID_AUDIO_RESAMPLER_FIR_GEN_H*/
308