Parcel.java revision a81b8c0932fa6a2198558b164a1aebdad0fcecc3
1/*
2 * Copyright (C) 2006 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17package android.os;
18
19import android.annotation.Nullable;
20import android.text.TextUtils;
21import android.util.ArrayMap;
22import android.util.ArraySet;
23import android.util.Log;
24import android.util.Size;
25import android.util.SizeF;
26import android.util.SparseArray;
27import android.util.SparseBooleanArray;
28import android.util.SparseIntArray;
29
30import dalvik.annotation.optimization.CriticalNative;
31import dalvik.annotation.optimization.FastNative;
32import dalvik.system.VMRuntime;
33
34import libcore.util.SneakyThrow;
35
36import java.io.ByteArrayInputStream;
37import java.io.ByteArrayOutputStream;
38import java.io.FileDescriptor;
39import java.io.FileNotFoundException;
40import java.io.IOException;
41import java.io.ObjectInputStream;
42import java.io.ObjectOutputStream;
43import java.io.ObjectStreamClass;
44import java.io.Serializable;
45import java.lang.reflect.Array;
46import java.lang.reflect.Field;
47import java.lang.reflect.Modifier;
48import java.util.ArrayList;
49import java.util.Arrays;
50import java.util.HashMap;
51import java.util.List;
52import java.util.Map;
53import java.util.Set;
54
55/**
56 * Container for a message (data and object references) that can
57 * be sent through an IBinder.  A Parcel can contain both flattened data
58 * that will be unflattened on the other side of the IPC (using the various
59 * methods here for writing specific types, or the general
60 * {@link Parcelable} interface), and references to live {@link IBinder}
61 * objects that will result in the other side receiving a proxy IBinder
62 * connected with the original IBinder in the Parcel.
63 *
64 * <p class="note">Parcel is <strong>not</strong> a general-purpose
65 * serialization mechanism.  This class (and the corresponding
66 * {@link Parcelable} API for placing arbitrary objects into a Parcel) is
67 * designed as a high-performance IPC transport.  As such, it is not
68 * appropriate to place any Parcel data in to persistent storage: changes
69 * in the underlying implementation of any of the data in the Parcel can
70 * render older data unreadable.</p>
71 *
72 * <p>The bulk of the Parcel API revolves around reading and writing data
73 * of various types.  There are six major classes of such functions available.</p>
74 *
75 * <h3>Primitives</h3>
76 *
77 * <p>The most basic data functions are for writing and reading primitive
78 * data types: {@link #writeByte}, {@link #readByte}, {@link #writeDouble},
79 * {@link #readDouble}, {@link #writeFloat}, {@link #readFloat}, {@link #writeInt},
80 * {@link #readInt}, {@link #writeLong}, {@link #readLong},
81 * {@link #writeString}, {@link #readString}.  Most other
82 * data operations are built on top of these.  The given data is written and
83 * read using the endianess of the host CPU.</p>
84 *
85 * <h3>Primitive Arrays</h3>
86 *
87 * <p>There are a variety of methods for reading and writing raw arrays
88 * of primitive objects, which generally result in writing a 4-byte length
89 * followed by the primitive data items.  The methods for reading can either
90 * read the data into an existing array, or create and return a new array.
91 * These available types are:</p>
92 *
93 * <ul>
94 * <li> {@link #writeBooleanArray(boolean[])},
95 * {@link #readBooleanArray(boolean[])}, {@link #createBooleanArray()}
96 * <li> {@link #writeByteArray(byte[])},
97 * {@link #writeByteArray(byte[], int, int)}, {@link #readByteArray(byte[])},
98 * {@link #createByteArray()}
99 * <li> {@link #writeCharArray(char[])}, {@link #readCharArray(char[])},
100 * {@link #createCharArray()}
101 * <li> {@link #writeDoubleArray(double[])}, {@link #readDoubleArray(double[])},
102 * {@link #createDoubleArray()}
103 * <li> {@link #writeFloatArray(float[])}, {@link #readFloatArray(float[])},
104 * {@link #createFloatArray()}
105 * <li> {@link #writeIntArray(int[])}, {@link #readIntArray(int[])},
106 * {@link #createIntArray()}
107 * <li> {@link #writeLongArray(long[])}, {@link #readLongArray(long[])},
108 * {@link #createLongArray()}
109 * <li> {@link #writeStringArray(String[])}, {@link #readStringArray(String[])},
110 * {@link #createStringArray()}.
111 * <li> {@link #writeSparseBooleanArray(SparseBooleanArray)},
112 * {@link #readSparseBooleanArray()}.
113 * </ul>
114 *
115 * <h3>Parcelables</h3>
116 *
117 * <p>The {@link Parcelable} protocol provides an extremely efficient (but
118 * low-level) protocol for objects to write and read themselves from Parcels.
119 * You can use the direct methods {@link #writeParcelable(Parcelable, int)}
120 * and {@link #readParcelable(ClassLoader)} or
121 * {@link #writeParcelableArray} and
122 * {@link #readParcelableArray(ClassLoader)} to write or read.  These
123 * methods write both the class type and its data to the Parcel, allowing
124 * that class to be reconstructed from the appropriate class loader when
125 * later reading.</p>
126 *
127 * <p>There are also some methods that provide a more efficient way to work
128 * with Parcelables: {@link #writeTypedObject}, {@link #writeTypedArray},
129 * {@link #writeTypedList}, {@link #readTypedObject},
130 * {@link #createTypedArray} and {@link #createTypedArrayList}.  These methods
131 * do not write the class information of the original object: instead, the
132 * caller of the read function must know what type to expect and pass in the
133 * appropriate {@link Parcelable.Creator Parcelable.Creator} instead to
134 * properly construct the new object and read its data.  (To more efficient
135 * write and read a single Parcelable object that is not null, you can directly
136 * call {@link Parcelable#writeToParcel Parcelable.writeToParcel} and
137 * {@link Parcelable.Creator#createFromParcel Parcelable.Creator.createFromParcel}
138 * yourself.)</p>
139 *
140 * <h3>Bundles</h3>
141 *
142 * <p>A special type-safe container, called {@link Bundle}, is available
143 * for key/value maps of heterogeneous values.  This has many optimizations
144 * for improved performance when reading and writing data, and its type-safe
145 * API avoids difficult to debug type errors when finally marshalling the
146 * data contents into a Parcel.  The methods to use are
147 * {@link #writeBundle(Bundle)}, {@link #readBundle()}, and
148 * {@link #readBundle(ClassLoader)}.
149 *
150 * <h3>Active Objects</h3>
151 *
152 * <p>An unusual feature of Parcel is the ability to read and write active
153 * objects.  For these objects the actual contents of the object is not
154 * written, rather a special token referencing the object is written.  When
155 * reading the object back from the Parcel, you do not get a new instance of
156 * the object, but rather a handle that operates on the exact same object that
157 * was originally written.  There are two forms of active objects available.</p>
158 *
159 * <p>{@link Binder} objects are a core facility of Android's general cross-process
160 * communication system.  The {@link IBinder} interface describes an abstract
161 * protocol with a Binder object.  Any such interface can be written in to
162 * a Parcel, and upon reading you will receive either the original object
163 * implementing that interface or a special proxy implementation
164 * that communicates calls back to the original object.  The methods to use are
165 * {@link #writeStrongBinder(IBinder)},
166 * {@link #writeStrongInterface(IInterface)}, {@link #readStrongBinder()},
167 * {@link #writeBinderArray(IBinder[])}, {@link #readBinderArray(IBinder[])},
168 * {@link #createBinderArray()},
169 * {@link #writeBinderList(List)}, {@link #readBinderList(List)},
170 * {@link #createBinderArrayList()}.</p>
171 *
172 * <p>FileDescriptor objects, representing raw Linux file descriptor identifiers,
173 * can be written and {@link ParcelFileDescriptor} objects returned to operate
174 * on the original file descriptor.  The returned file descriptor is a dup
175 * of the original file descriptor: the object and fd is different, but
176 * operating on the same underlying file stream, with the same position, etc.
177 * The methods to use are {@link #writeFileDescriptor(FileDescriptor)},
178 * {@link #readFileDescriptor()}.
179 *
180 * <h3>Untyped Containers</h3>
181 *
182 * <p>A final class of methods are for writing and reading standard Java
183 * containers of arbitrary types.  These all revolve around the
184 * {@link #writeValue(Object)} and {@link #readValue(ClassLoader)} methods
185 * which define the types of objects allowed.  The container methods are
186 * {@link #writeArray(Object[])}, {@link #readArray(ClassLoader)},
187 * {@link #writeList(List)}, {@link #readList(List, ClassLoader)},
188 * {@link #readArrayList(ClassLoader)},
189 * {@link #writeMap(Map)}, {@link #readMap(Map, ClassLoader)},
190 * {@link #writeSparseArray(SparseArray)},
191 * {@link #readSparseArray(ClassLoader)}.
192 */
193public final class Parcel {
194
195    private static final boolean DEBUG_RECYCLE = false;
196    private static final boolean DEBUG_ARRAY_MAP = false;
197    private static final String TAG = "Parcel";
198
199    @SuppressWarnings({"UnusedDeclaration"})
200    private long mNativePtr; // used by native code
201
202    /**
203     * Flag indicating if {@link #mNativePtr} was allocated by this object,
204     * indicating that we're responsible for its lifecycle.
205     */
206    private boolean mOwnsNativeParcelObject;
207    private long mNativeSize;
208
209    private ArrayMap<Class, Object> mClassCookies;
210
211    private RuntimeException mStack;
212
213    /**
214     * Whether or not to parcel the stack trace of an exception. This has a performance
215     * impact, so should only be included in specific processes and only on debug builds.
216     */
217    private static boolean sParcelExceptionStackTrace;
218
219    private static final int POOL_SIZE = 6;
220    private static final Parcel[] sOwnedPool = new Parcel[POOL_SIZE];
221    private static final Parcel[] sHolderPool = new Parcel[POOL_SIZE];
222
223    // Keep in sync with frameworks/native/include/private/binder/ParcelValTypes.h.
224    private static final int VAL_NULL = -1;
225    private static final int VAL_STRING = 0;
226    private static final int VAL_INTEGER = 1;
227    private static final int VAL_MAP = 2;
228    private static final int VAL_BUNDLE = 3;
229    private static final int VAL_PARCELABLE = 4;
230    private static final int VAL_SHORT = 5;
231    private static final int VAL_LONG = 6;
232    private static final int VAL_FLOAT = 7;
233    private static final int VAL_DOUBLE = 8;
234    private static final int VAL_BOOLEAN = 9;
235    private static final int VAL_CHARSEQUENCE = 10;
236    private static final int VAL_LIST  = 11;
237    private static final int VAL_SPARSEARRAY = 12;
238    private static final int VAL_BYTEARRAY = 13;
239    private static final int VAL_STRINGARRAY = 14;
240    private static final int VAL_IBINDER = 15;
241    private static final int VAL_PARCELABLEARRAY = 16;
242    private static final int VAL_OBJECTARRAY = 17;
243    private static final int VAL_INTARRAY = 18;
244    private static final int VAL_LONGARRAY = 19;
245    private static final int VAL_BYTE = 20;
246    private static final int VAL_SERIALIZABLE = 21;
247    private static final int VAL_SPARSEBOOLEANARRAY = 22;
248    private static final int VAL_BOOLEANARRAY = 23;
249    private static final int VAL_CHARSEQUENCEARRAY = 24;
250    private static final int VAL_PERSISTABLEBUNDLE = 25;
251    private static final int VAL_SIZE = 26;
252    private static final int VAL_SIZEF = 27;
253    private static final int VAL_DOUBLEARRAY = 28;
254
255    // The initial int32 in a Binder call's reply Parcel header:
256    // Keep these in sync with libbinder's binder/Status.h.
257    private static final int EX_SECURITY = -1;
258    private static final int EX_BAD_PARCELABLE = -2;
259    private static final int EX_ILLEGAL_ARGUMENT = -3;
260    private static final int EX_NULL_POINTER = -4;
261    private static final int EX_ILLEGAL_STATE = -5;
262    private static final int EX_NETWORK_MAIN_THREAD = -6;
263    private static final int EX_UNSUPPORTED_OPERATION = -7;
264    private static final int EX_SERVICE_SPECIFIC = -8;
265    private static final int EX_PARCELABLE = -9;
266    private static final int EX_HAS_REPLY_HEADER = -128;  // special; see below
267    // EX_TRANSACTION_FAILED is used exclusively in native code.
268    // see libbinder's binder/Status.h
269    private static final int EX_TRANSACTION_FAILED = -129;
270
271    @CriticalNative
272    private static native int nativeDataSize(long nativePtr);
273    @CriticalNative
274    private static native int nativeDataAvail(long nativePtr);
275    @CriticalNative
276    private static native int nativeDataPosition(long nativePtr);
277    @CriticalNative
278    private static native int nativeDataCapacity(long nativePtr);
279    @FastNative
280    private static native long nativeSetDataSize(long nativePtr, int size);
281    @CriticalNative
282    private static native void nativeSetDataPosition(long nativePtr, int pos);
283    @FastNative
284    private static native void nativeSetDataCapacity(long nativePtr, int size);
285
286    @CriticalNative
287    private static native boolean nativePushAllowFds(long nativePtr, boolean allowFds);
288    @CriticalNative
289    private static native void nativeRestoreAllowFds(long nativePtr, boolean lastValue);
290
291    private static native void nativeWriteByteArray(long nativePtr, byte[] b, int offset, int len);
292    private static native void nativeWriteBlob(long nativePtr, byte[] b, int offset, int len);
293    @FastNative
294    private static native void nativeWriteInt(long nativePtr, int val);
295    @FastNative
296    private static native void nativeWriteLong(long nativePtr, long val);
297    @FastNative
298    private static native void nativeWriteFloat(long nativePtr, float val);
299    @FastNative
300    private static native void nativeWriteDouble(long nativePtr, double val);
301    static native void nativeWriteString(long nativePtr, String val);
302    private static native void nativeWriteStrongBinder(long nativePtr, IBinder val);
303    private static native long nativeWriteFileDescriptor(long nativePtr, FileDescriptor val);
304
305    private static native byte[] nativeCreateByteArray(long nativePtr);
306    private static native boolean nativeReadByteArray(long nativePtr, byte[] dest, int destLen);
307    private static native byte[] nativeReadBlob(long nativePtr);
308    @CriticalNative
309    private static native int nativeReadInt(long nativePtr);
310    @CriticalNative
311    private static native long nativeReadLong(long nativePtr);
312    @CriticalNative
313    private static native float nativeReadFloat(long nativePtr);
314    @CriticalNative
315    private static native double nativeReadDouble(long nativePtr);
316    static native String nativeReadString(long nativePtr);
317    private static native IBinder nativeReadStrongBinder(long nativePtr);
318    private static native FileDescriptor nativeReadFileDescriptor(long nativePtr);
319
320    private static native long nativeCreate();
321    private static native long nativeFreeBuffer(long nativePtr);
322    private static native void nativeDestroy(long nativePtr);
323
324    private static native byte[] nativeMarshall(long nativePtr);
325    private static native long nativeUnmarshall(
326            long nativePtr, byte[] data, int offset, int length);
327    private static native int nativeCompareData(long thisNativePtr, long otherNativePtr);
328    private static native long nativeAppendFrom(
329            long thisNativePtr, long otherNativePtr, int offset, int length);
330    @CriticalNative
331    private static native boolean nativeHasFileDescriptors(long nativePtr);
332    private static native void nativeWriteInterfaceToken(long nativePtr, String interfaceName);
333    private static native void nativeEnforceInterface(long nativePtr, String interfaceName);
334
335    /** Last time exception with a stack trace was written */
336    private static volatile long sLastWriteExceptionStackTrace;
337    /** Used for throttling of writing stack trace, which is costly */
338    private static final int WRITE_EXCEPTION_STACK_TRACE_THRESHOLD_MS = 1000;
339
340    @CriticalNative
341    private static native long nativeGetBlobAshmemSize(long nativePtr);
342
343    public final static Parcelable.Creator<String> STRING_CREATOR
344             = new Parcelable.Creator<String>() {
345        public String createFromParcel(Parcel source) {
346            return source.readString();
347        }
348        public String[] newArray(int size) {
349            return new String[size];
350        }
351    };
352
353    /**
354     * @hide
355     */
356    public static class ReadWriteHelper {
357        public static final ReadWriteHelper DEFAULT = new ReadWriteHelper();
358
359        /**
360         * Called when writing a string to a parcel. Subclasses wanting to write a string
361         * must use {@link #writeStringNoHelper(String)} to avoid
362         * infinity recursive calls.
363         */
364        public void writeString(Parcel p, String s) {
365            nativeWriteString(p.mNativePtr, s);
366        }
367
368        /**
369         * Called when reading a string to a parcel. Subclasses wanting to read a string
370         * must use {@link #readStringNoHelper()} to avoid
371         * infinity recursive calls.
372         */
373        public String readString(Parcel p) {
374            return nativeReadString(p.mNativePtr);
375        }
376    }
377
378    private ReadWriteHelper mReadWriteHelper = ReadWriteHelper.DEFAULT;
379
380    /**
381     * Retrieve a new Parcel object from the pool.
382     */
383    public static Parcel obtain() {
384        final Parcel[] pool = sOwnedPool;
385        synchronized (pool) {
386            Parcel p;
387            for (int i=0; i<POOL_SIZE; i++) {
388                p = pool[i];
389                if (p != null) {
390                    pool[i] = null;
391                    if (DEBUG_RECYCLE) {
392                        p.mStack = new RuntimeException();
393                    }
394                    p.mReadWriteHelper = ReadWriteHelper.DEFAULT;
395                    return p;
396                }
397            }
398        }
399        return new Parcel(0);
400    }
401
402    /**
403     * Put a Parcel object back into the pool.  You must not touch
404     * the object after this call.
405     */
406    public final void recycle() {
407        if (DEBUG_RECYCLE) mStack = null;
408        freeBuffer();
409
410        final Parcel[] pool;
411        if (mOwnsNativeParcelObject) {
412            pool = sOwnedPool;
413        } else {
414            mNativePtr = 0;
415            pool = sHolderPool;
416        }
417
418        synchronized (pool) {
419            for (int i=0; i<POOL_SIZE; i++) {
420                if (pool[i] == null) {
421                    pool[i] = this;
422                    return;
423                }
424            }
425        }
426    }
427
428    /**
429     * Set a {@link ReadWriteHelper}, which can be used to avoid having duplicate strings, for
430     * example.
431     *
432     * @hide
433     */
434    public void setReadWriteHelper(ReadWriteHelper helper) {
435        mReadWriteHelper = helper != null ? helper : ReadWriteHelper.DEFAULT;
436    }
437
438    /**
439     * @return whether this parcel has a {@link ReadWriteHelper}.
440     *
441     * @hide
442     */
443    public boolean hasReadWriteHelper() {
444        return (mReadWriteHelper != null) && (mReadWriteHelper != ReadWriteHelper.DEFAULT);
445    }
446
447    /** @hide */
448    public static native long getGlobalAllocSize();
449
450    /** @hide */
451    public static native long getGlobalAllocCount();
452
453    /**
454     * Returns the total amount of data contained in the parcel.
455     */
456    public final int dataSize() {
457        return nativeDataSize(mNativePtr);
458    }
459
460    /**
461     * Returns the amount of data remaining to be read from the
462     * parcel.  That is, {@link #dataSize}-{@link #dataPosition}.
463     */
464    public final int dataAvail() {
465        return nativeDataAvail(mNativePtr);
466    }
467
468    /**
469     * Returns the current position in the parcel data.  Never
470     * more than {@link #dataSize}.
471     */
472    public final int dataPosition() {
473        return nativeDataPosition(mNativePtr);
474    }
475
476    /**
477     * Returns the total amount of space in the parcel.  This is always
478     * >= {@link #dataSize}.  The difference between it and dataSize() is the
479     * amount of room left until the parcel needs to re-allocate its
480     * data buffer.
481     */
482    public final int dataCapacity() {
483        return nativeDataCapacity(mNativePtr);
484    }
485
486    /**
487     * Change the amount of data in the parcel.  Can be either smaller or
488     * larger than the current size.  If larger than the current capacity,
489     * more memory will be allocated.
490     *
491     * @param size The new number of bytes in the Parcel.
492     */
493    public final void setDataSize(int size) {
494        updateNativeSize(nativeSetDataSize(mNativePtr, size));
495    }
496
497    /**
498     * Move the current read/write position in the parcel.
499     * @param pos New offset in the parcel; must be between 0 and
500     * {@link #dataSize}.
501     */
502    public final void setDataPosition(int pos) {
503        nativeSetDataPosition(mNativePtr, pos);
504    }
505
506    /**
507     * Change the capacity (current available space) of the parcel.
508     *
509     * @param size The new capacity of the parcel, in bytes.  Can not be
510     * less than {@link #dataSize} -- that is, you can not drop existing data
511     * with this method.
512     */
513    public final void setDataCapacity(int size) {
514        nativeSetDataCapacity(mNativePtr, size);
515    }
516
517    /** @hide */
518    public final boolean pushAllowFds(boolean allowFds) {
519        return nativePushAllowFds(mNativePtr, allowFds);
520    }
521
522    /** @hide */
523    public final void restoreAllowFds(boolean lastValue) {
524        nativeRestoreAllowFds(mNativePtr, lastValue);
525    }
526
527    /**
528     * Returns the raw bytes of the parcel.
529     *
530     * <p class="note">The data you retrieve here <strong>must not</strong>
531     * be placed in any kind of persistent storage (on local disk, across
532     * a network, etc).  For that, you should use standard serialization
533     * or another kind of general serialization mechanism.  The Parcel
534     * marshalled representation is highly optimized for local IPC, and as
535     * such does not attempt to maintain compatibility with data created
536     * in different versions of the platform.
537     */
538    public final byte[] marshall() {
539        return nativeMarshall(mNativePtr);
540    }
541
542    /**
543     * Set the bytes in data to be the raw bytes of this Parcel.
544     */
545    public final void unmarshall(byte[] data, int offset, int length) {
546        updateNativeSize(nativeUnmarshall(mNativePtr, data, offset, length));
547    }
548
549    public final void appendFrom(Parcel parcel, int offset, int length) {
550        updateNativeSize(nativeAppendFrom(mNativePtr, parcel.mNativePtr, offset, length));
551    }
552
553    /** @hide */
554    public final int compareData(Parcel other) {
555        return nativeCompareData(mNativePtr, other.mNativePtr);
556    }
557
558    /** @hide */
559    public final void setClassCookie(Class clz, Object cookie) {
560        if (mClassCookies == null) {
561            mClassCookies = new ArrayMap<>();
562        }
563        mClassCookies.put(clz, cookie);
564    }
565
566    /** @hide */
567    public final Object getClassCookie(Class clz) {
568        return mClassCookies != null ? mClassCookies.get(clz) : null;
569    }
570
571    /** @hide */
572    public final void adoptClassCookies(Parcel from) {
573        mClassCookies = from.mClassCookies;
574    }
575
576    /** @hide */
577    public Map<Class, Object> copyClassCookies() {
578        return new ArrayMap<>(mClassCookies);
579    }
580
581    /** @hide */
582    public void putClassCookies(Map<Class, Object> cookies) {
583        if (cookies == null) {
584            return;
585        }
586        if (mClassCookies == null) {
587            mClassCookies = new ArrayMap<>();
588        }
589        mClassCookies.putAll(cookies);
590    }
591
592    /**
593     * Report whether the parcel contains any marshalled file descriptors.
594     */
595    public final boolean hasFileDescriptors() {
596        return nativeHasFileDescriptors(mNativePtr);
597    }
598
599    /**
600     * Store or read an IBinder interface token in the parcel at the current
601     * {@link #dataPosition}.  This is used to validate that the marshalled
602     * transaction is intended for the target interface.
603     */
604    public final void writeInterfaceToken(String interfaceName) {
605        nativeWriteInterfaceToken(mNativePtr, interfaceName);
606    }
607
608    public final void enforceInterface(String interfaceName) {
609        nativeEnforceInterface(mNativePtr, interfaceName);
610    }
611
612    /**
613     * Write a byte array into the parcel at the current {@link #dataPosition},
614     * growing {@link #dataCapacity} if needed.
615     * @param b Bytes to place into the parcel.
616     */
617    public final void writeByteArray(byte[] b) {
618        writeByteArray(b, 0, (b != null) ? b.length : 0);
619    }
620
621    /**
622     * Write a byte array into the parcel at the current {@link #dataPosition},
623     * growing {@link #dataCapacity} if needed.
624     * @param b Bytes to place into the parcel.
625     * @param offset Index of first byte to be written.
626     * @param len Number of bytes to write.
627     */
628    public final void writeByteArray(byte[] b, int offset, int len) {
629        if (b == null) {
630            writeInt(-1);
631            return;
632        }
633        Arrays.checkOffsetAndCount(b.length, offset, len);
634        nativeWriteByteArray(mNativePtr, b, offset, len);
635    }
636
637    /**
638     * Write a blob of data into the parcel at the current {@link #dataPosition},
639     * growing {@link #dataCapacity} if needed.
640     * @param b Bytes to place into the parcel.
641     * {@hide}
642     * {@SystemApi}
643     */
644    public final void writeBlob(byte[] b) {
645        writeBlob(b, 0, (b != null) ? b.length : 0);
646    }
647
648    /**
649     * Write a blob of data into the parcel at the current {@link #dataPosition},
650     * growing {@link #dataCapacity} if needed.
651     * @param b Bytes to place into the parcel.
652     * @param offset Index of first byte to be written.
653     * @param len Number of bytes to write.
654     * {@hide}
655     * {@SystemApi}
656     */
657    public final void writeBlob(byte[] b, int offset, int len) {
658        if (b == null) {
659            writeInt(-1);
660            return;
661        }
662        Arrays.checkOffsetAndCount(b.length, offset, len);
663        nativeWriteBlob(mNativePtr, b, offset, len);
664    }
665
666    /**
667     * Write an integer value into the parcel at the current dataPosition(),
668     * growing dataCapacity() if needed.
669     */
670    public final void writeInt(int val) {
671        nativeWriteInt(mNativePtr, val);
672    }
673
674    /**
675     * Write a long integer value into the parcel at the current dataPosition(),
676     * growing dataCapacity() if needed.
677     */
678    public final void writeLong(long val) {
679        nativeWriteLong(mNativePtr, val);
680    }
681
682    /**
683     * Write a floating point value into the parcel at the current
684     * dataPosition(), growing dataCapacity() if needed.
685     */
686    public final void writeFloat(float val) {
687        nativeWriteFloat(mNativePtr, val);
688    }
689
690    /**
691     * Write a double precision floating point value into the parcel at the
692     * current dataPosition(), growing dataCapacity() if needed.
693     */
694    public final void writeDouble(double val) {
695        nativeWriteDouble(mNativePtr, val);
696    }
697
698    /**
699     * Write a string value into the parcel at the current dataPosition(),
700     * growing dataCapacity() if needed.
701     */
702    public final void writeString(String val) {
703        mReadWriteHelper.writeString(this, val);
704    }
705
706    /**
707     * Write a string without going though a {@link ReadWriteHelper}.  Subclasses of
708     * {@link ReadWriteHelper} must use this method instead of {@link #writeString} to avoid
709     * infinity recursive calls.
710     *
711     * @hide
712     */
713    public void writeStringNoHelper(String val) {
714        nativeWriteString(mNativePtr, val);
715    }
716
717    /** @hide */
718    public final void writeBoolean(boolean val) {
719        writeInt(val ? 1 : 0);
720    }
721
722    /**
723     * Write a CharSequence value into the parcel at the current dataPosition(),
724     * growing dataCapacity() if needed.
725     * @hide
726     */
727    public final void writeCharSequence(CharSequence val) {
728        TextUtils.writeToParcel(val, this, 0);
729    }
730
731    /**
732     * Write an object into the parcel at the current dataPosition(),
733     * growing dataCapacity() if needed.
734     */
735    public final void writeStrongBinder(IBinder val) {
736        nativeWriteStrongBinder(mNativePtr, val);
737    }
738
739    /**
740     * Write an object into the parcel at the current dataPosition(),
741     * growing dataCapacity() if needed.
742     */
743    public final void writeStrongInterface(IInterface val) {
744        writeStrongBinder(val == null ? null : val.asBinder());
745    }
746
747    /**
748     * Write a FileDescriptor into the parcel at the current dataPosition(),
749     * growing dataCapacity() if needed.
750     *
751     * <p class="caution">The file descriptor will not be closed, which may
752     * result in file descriptor leaks when objects are returned from Binder
753     * calls.  Use {@link ParcelFileDescriptor#writeToParcel} instead, which
754     * accepts contextual flags and will close the original file descriptor
755     * if {@link Parcelable#PARCELABLE_WRITE_RETURN_VALUE} is set.</p>
756     */
757    public final void writeFileDescriptor(FileDescriptor val) {
758        updateNativeSize(nativeWriteFileDescriptor(mNativePtr, val));
759    }
760
761    private void updateNativeSize(long newNativeSize) {
762        if (mOwnsNativeParcelObject) {
763            if (newNativeSize > Integer.MAX_VALUE) {
764                newNativeSize = Integer.MAX_VALUE;
765            }
766            if (newNativeSize != mNativeSize) {
767                int delta = (int) (newNativeSize - mNativeSize);
768                if (delta > 0) {
769                    VMRuntime.getRuntime().registerNativeAllocation(delta);
770                } else {
771                    VMRuntime.getRuntime().registerNativeFree(-delta);
772                }
773                mNativeSize = newNativeSize;
774            }
775        }
776    }
777
778    /**
779     * {@hide}
780     * This will be the new name for writeFileDescriptor, for consistency.
781     **/
782    public final void writeRawFileDescriptor(FileDescriptor val) {
783        nativeWriteFileDescriptor(mNativePtr, val);
784    }
785
786    /**
787     * {@hide}
788     * Write an array of FileDescriptor objects into the Parcel.
789     *
790     * @param value The array of objects to be written.
791     */
792    public final void writeRawFileDescriptorArray(FileDescriptor[] value) {
793        if (value != null) {
794            int N = value.length;
795            writeInt(N);
796            for (int i=0; i<N; i++) {
797                writeRawFileDescriptor(value[i]);
798            }
799        } else {
800            writeInt(-1);
801        }
802    }
803
804    /**
805     * Write a byte value into the parcel at the current dataPosition(),
806     * growing dataCapacity() if needed.
807     */
808    public final void writeByte(byte val) {
809        writeInt(val);
810    }
811
812    /**
813     * Please use {@link #writeBundle} instead.  Flattens a Map into the parcel
814     * at the current dataPosition(),
815     * growing dataCapacity() if needed.  The Map keys must be String objects.
816     * The Map values are written using {@link #writeValue} and must follow
817     * the specification there.
818     *
819     * <p>It is strongly recommended to use {@link #writeBundle} instead of
820     * this method, since the Bundle class provides a type-safe API that
821     * allows you to avoid mysterious type errors at the point of marshalling.
822     */
823    public final void writeMap(Map val) {
824        writeMapInternal((Map<String, Object>) val);
825    }
826
827    /**
828     * Flatten a Map into the parcel at the current dataPosition(),
829     * growing dataCapacity() if needed.  The Map keys must be String objects.
830     */
831    /* package */ void writeMapInternal(Map<String,Object> val) {
832        if (val == null) {
833            writeInt(-1);
834            return;
835        }
836        Set<Map.Entry<String,Object>> entries = val.entrySet();
837        writeInt(entries.size());
838        for (Map.Entry<String,Object> e : entries) {
839            writeValue(e.getKey());
840            writeValue(e.getValue());
841        }
842    }
843
844    /**
845     * Flatten an ArrayMap into the parcel at the current dataPosition(),
846     * growing dataCapacity() if needed.  The Map keys must be String objects.
847     */
848    /* package */ void writeArrayMapInternal(ArrayMap<String, Object> val) {
849        if (val == null) {
850            writeInt(-1);
851            return;
852        }
853        // Keep the format of this Parcel in sync with writeToParcelInner() in
854        // frameworks/native/libs/binder/PersistableBundle.cpp.
855        final int N = val.size();
856        writeInt(N);
857        if (DEBUG_ARRAY_MAP) {
858            RuntimeException here =  new RuntimeException("here");
859            here.fillInStackTrace();
860            Log.d(TAG, "Writing " + N + " ArrayMap entries", here);
861        }
862        int startPos;
863        for (int i=0; i<N; i++) {
864            if (DEBUG_ARRAY_MAP) startPos = dataPosition();
865            writeString(val.keyAt(i));
866            writeValue(val.valueAt(i));
867            if (DEBUG_ARRAY_MAP) Log.d(TAG, "  Write #" + i + " "
868                    + (dataPosition()-startPos) + " bytes: key=0x"
869                    + Integer.toHexString(val.keyAt(i) != null ? val.keyAt(i).hashCode() : 0)
870                    + " " + val.keyAt(i));
871        }
872    }
873
874    /**
875     * @hide For testing only.
876     */
877    public void writeArrayMap(ArrayMap<String, Object> val) {
878        writeArrayMapInternal(val);
879    }
880
881    /**
882     * Write an array set to the parcel.
883     *
884     * @param val The array set to write.
885     *
886     * @hide
887     */
888    public void writeArraySet(@Nullable ArraySet<? extends Object> val) {
889        final int size = (val != null) ? val.size() : -1;
890        writeInt(size);
891        for (int i = 0; i < size; i++) {
892            writeValue(val.valueAt(i));
893        }
894    }
895
896    /**
897     * Flatten a Bundle into the parcel at the current dataPosition(),
898     * growing dataCapacity() if needed.
899     */
900    public final void writeBundle(Bundle val) {
901        if (val == null) {
902            writeInt(-1);
903            return;
904        }
905
906        val.writeToParcel(this, 0);
907    }
908
909    /**
910     * Flatten a PersistableBundle into the parcel at the current dataPosition(),
911     * growing dataCapacity() if needed.
912     */
913    public final void writePersistableBundle(PersistableBundle val) {
914        if (val == null) {
915            writeInt(-1);
916            return;
917        }
918
919        val.writeToParcel(this, 0);
920    }
921
922    /**
923     * Flatten a Size into the parcel at the current dataPosition(),
924     * growing dataCapacity() if needed.
925     */
926    public final void writeSize(Size val) {
927        writeInt(val.getWidth());
928        writeInt(val.getHeight());
929    }
930
931    /**
932     * Flatten a SizeF into the parcel at the current dataPosition(),
933     * growing dataCapacity() if needed.
934     */
935    public final void writeSizeF(SizeF val) {
936        writeFloat(val.getWidth());
937        writeFloat(val.getHeight());
938    }
939
940    /**
941     * Flatten a List into the parcel at the current dataPosition(), growing
942     * dataCapacity() if needed.  The List values are written using
943     * {@link #writeValue} and must follow the specification there.
944     */
945    public final void writeList(List val) {
946        if (val == null) {
947            writeInt(-1);
948            return;
949        }
950        int N = val.size();
951        int i=0;
952        writeInt(N);
953        while (i < N) {
954            writeValue(val.get(i));
955            i++;
956        }
957    }
958
959    /**
960     * Flatten an Object array into the parcel at the current dataPosition(),
961     * growing dataCapacity() if needed.  The array values are written using
962     * {@link #writeValue} and must follow the specification there.
963     */
964    public final void writeArray(Object[] val) {
965        if (val == null) {
966            writeInt(-1);
967            return;
968        }
969        int N = val.length;
970        int i=0;
971        writeInt(N);
972        while (i < N) {
973            writeValue(val[i]);
974            i++;
975        }
976    }
977
978    /**
979     * Flatten a generic SparseArray into the parcel at the current
980     * dataPosition(), growing dataCapacity() if needed.  The SparseArray
981     * values are written using {@link #writeValue} and must follow the
982     * specification there.
983     */
984    public final void writeSparseArray(SparseArray<Object> val) {
985        if (val == null) {
986            writeInt(-1);
987            return;
988        }
989        int N = val.size();
990        writeInt(N);
991        int i=0;
992        while (i < N) {
993            writeInt(val.keyAt(i));
994            writeValue(val.valueAt(i));
995            i++;
996        }
997    }
998
999    public final void writeSparseBooleanArray(SparseBooleanArray val) {
1000        if (val == null) {
1001            writeInt(-1);
1002            return;
1003        }
1004        int N = val.size();
1005        writeInt(N);
1006        int i=0;
1007        while (i < N) {
1008            writeInt(val.keyAt(i));
1009            writeByte((byte)(val.valueAt(i) ? 1 : 0));
1010            i++;
1011        }
1012    }
1013
1014    /**
1015     * @hide
1016     */
1017    public final void writeSparseIntArray(SparseIntArray val) {
1018        if (val == null) {
1019            writeInt(-1);
1020            return;
1021        }
1022        int N = val.size();
1023        writeInt(N);
1024        int i=0;
1025        while (i < N) {
1026            writeInt(val.keyAt(i));
1027            writeInt(val.valueAt(i));
1028            i++;
1029        }
1030    }
1031
1032    public final void writeBooleanArray(boolean[] val) {
1033        if (val != null) {
1034            int N = val.length;
1035            writeInt(N);
1036            for (int i=0; i<N; i++) {
1037                writeInt(val[i] ? 1 : 0);
1038            }
1039        } else {
1040            writeInt(-1);
1041        }
1042    }
1043
1044    public final boolean[] createBooleanArray() {
1045        int N = readInt();
1046        // >>2 as a fast divide-by-4 works in the create*Array() functions
1047        // because dataAvail() will never return a negative number.  4 is
1048        // the size of a stored boolean in the stream.
1049        if (N >= 0 && N <= (dataAvail() >> 2)) {
1050            boolean[] val = new boolean[N];
1051            for (int i=0; i<N; i++) {
1052                val[i] = readInt() != 0;
1053            }
1054            return val;
1055        } else {
1056            return null;
1057        }
1058    }
1059
1060    public final void readBooleanArray(boolean[] val) {
1061        int N = readInt();
1062        if (N == val.length) {
1063            for (int i=0; i<N; i++) {
1064                val[i] = readInt() != 0;
1065            }
1066        } else {
1067            throw new RuntimeException("bad array lengths");
1068        }
1069    }
1070
1071    public final void writeCharArray(char[] val) {
1072        if (val != null) {
1073            int N = val.length;
1074            writeInt(N);
1075            for (int i=0; i<N; i++) {
1076                writeInt((int)val[i]);
1077            }
1078        } else {
1079            writeInt(-1);
1080        }
1081    }
1082
1083    public final char[] createCharArray() {
1084        int N = readInt();
1085        if (N >= 0 && N <= (dataAvail() >> 2)) {
1086            char[] val = new char[N];
1087            for (int i=0; i<N; i++) {
1088                val[i] = (char)readInt();
1089            }
1090            return val;
1091        } else {
1092            return null;
1093        }
1094    }
1095
1096    public final void readCharArray(char[] val) {
1097        int N = readInt();
1098        if (N == val.length) {
1099            for (int i=0; i<N; i++) {
1100                val[i] = (char)readInt();
1101            }
1102        } else {
1103            throw new RuntimeException("bad array lengths");
1104        }
1105    }
1106
1107    public final void writeIntArray(int[] val) {
1108        if (val != null) {
1109            int N = val.length;
1110            writeInt(N);
1111            for (int i=0; i<N; i++) {
1112                writeInt(val[i]);
1113            }
1114        } else {
1115            writeInt(-1);
1116        }
1117    }
1118
1119    public final int[] createIntArray() {
1120        int N = readInt();
1121        if (N >= 0 && N <= (dataAvail() >> 2)) {
1122            int[] val = new int[N];
1123            for (int i=0; i<N; i++) {
1124                val[i] = readInt();
1125            }
1126            return val;
1127        } else {
1128            return null;
1129        }
1130    }
1131
1132    public final void readIntArray(int[] val) {
1133        int N = readInt();
1134        if (N == val.length) {
1135            for (int i=0; i<N; i++) {
1136                val[i] = readInt();
1137            }
1138        } else {
1139            throw new RuntimeException("bad array lengths");
1140        }
1141    }
1142
1143    public final void writeLongArray(long[] val) {
1144        if (val != null) {
1145            int N = val.length;
1146            writeInt(N);
1147            for (int i=0; i<N; i++) {
1148                writeLong(val[i]);
1149            }
1150        } else {
1151            writeInt(-1);
1152        }
1153    }
1154
1155    public final long[] createLongArray() {
1156        int N = readInt();
1157        // >>3 because stored longs are 64 bits
1158        if (N >= 0 && N <= (dataAvail() >> 3)) {
1159            long[] val = new long[N];
1160            for (int i=0; i<N; i++) {
1161                val[i] = readLong();
1162            }
1163            return val;
1164        } else {
1165            return null;
1166        }
1167    }
1168
1169    public final void readLongArray(long[] val) {
1170        int N = readInt();
1171        if (N == val.length) {
1172            for (int i=0; i<N; i++) {
1173                val[i] = readLong();
1174            }
1175        } else {
1176            throw new RuntimeException("bad array lengths");
1177        }
1178    }
1179
1180    public final void writeFloatArray(float[] val) {
1181        if (val != null) {
1182            int N = val.length;
1183            writeInt(N);
1184            for (int i=0; i<N; i++) {
1185                writeFloat(val[i]);
1186            }
1187        } else {
1188            writeInt(-1);
1189        }
1190    }
1191
1192    public final float[] createFloatArray() {
1193        int N = readInt();
1194        // >>2 because stored floats are 4 bytes
1195        if (N >= 0 && N <= (dataAvail() >> 2)) {
1196            float[] val = new float[N];
1197            for (int i=0; i<N; i++) {
1198                val[i] = readFloat();
1199            }
1200            return val;
1201        } else {
1202            return null;
1203        }
1204    }
1205
1206    public final void readFloatArray(float[] val) {
1207        int N = readInt();
1208        if (N == val.length) {
1209            for (int i=0; i<N; i++) {
1210                val[i] = readFloat();
1211            }
1212        } else {
1213            throw new RuntimeException("bad array lengths");
1214        }
1215    }
1216
1217    public final void writeDoubleArray(double[] val) {
1218        if (val != null) {
1219            int N = val.length;
1220            writeInt(N);
1221            for (int i=0; i<N; i++) {
1222                writeDouble(val[i]);
1223            }
1224        } else {
1225            writeInt(-1);
1226        }
1227    }
1228
1229    public final double[] createDoubleArray() {
1230        int N = readInt();
1231        // >>3 because stored doubles are 8 bytes
1232        if (N >= 0 && N <= (dataAvail() >> 3)) {
1233            double[] val = new double[N];
1234            for (int i=0; i<N; i++) {
1235                val[i] = readDouble();
1236            }
1237            return val;
1238        } else {
1239            return null;
1240        }
1241    }
1242
1243    public final void readDoubleArray(double[] val) {
1244        int N = readInt();
1245        if (N == val.length) {
1246            for (int i=0; i<N; i++) {
1247                val[i] = readDouble();
1248            }
1249        } else {
1250            throw new RuntimeException("bad array lengths");
1251        }
1252    }
1253
1254    public final void writeStringArray(String[] val) {
1255        if (val != null) {
1256            int N = val.length;
1257            writeInt(N);
1258            for (int i=0; i<N; i++) {
1259                writeString(val[i]);
1260            }
1261        } else {
1262            writeInt(-1);
1263        }
1264    }
1265
1266    public final String[] createStringArray() {
1267        int N = readInt();
1268        if (N >= 0) {
1269            String[] val = new String[N];
1270            for (int i=0; i<N; i++) {
1271                val[i] = readString();
1272            }
1273            return val;
1274        } else {
1275            return null;
1276        }
1277    }
1278
1279    public final void readStringArray(String[] val) {
1280        int N = readInt();
1281        if (N == val.length) {
1282            for (int i=0; i<N; i++) {
1283                val[i] = readString();
1284            }
1285        } else {
1286            throw new RuntimeException("bad array lengths");
1287        }
1288    }
1289
1290    public final void writeBinderArray(IBinder[] val) {
1291        if (val != null) {
1292            int N = val.length;
1293            writeInt(N);
1294            for (int i=0; i<N; i++) {
1295                writeStrongBinder(val[i]);
1296            }
1297        } else {
1298            writeInt(-1);
1299        }
1300    }
1301
1302    /**
1303     * @hide
1304     */
1305    public final void writeCharSequenceArray(CharSequence[] val) {
1306        if (val != null) {
1307            int N = val.length;
1308            writeInt(N);
1309            for (int i=0; i<N; i++) {
1310                writeCharSequence(val[i]);
1311            }
1312        } else {
1313            writeInt(-1);
1314        }
1315    }
1316
1317    /**
1318     * @hide
1319     */
1320    public final void writeCharSequenceList(ArrayList<CharSequence> val) {
1321        if (val != null) {
1322            int N = val.size();
1323            writeInt(N);
1324            for (int i=0; i<N; i++) {
1325                writeCharSequence(val.get(i));
1326            }
1327        } else {
1328            writeInt(-1);
1329        }
1330    }
1331
1332    public final IBinder[] createBinderArray() {
1333        int N = readInt();
1334        if (N >= 0) {
1335            IBinder[] val = new IBinder[N];
1336            for (int i=0; i<N; i++) {
1337                val[i] = readStrongBinder();
1338            }
1339            return val;
1340        } else {
1341            return null;
1342        }
1343    }
1344
1345    public final void readBinderArray(IBinder[] val) {
1346        int N = readInt();
1347        if (N == val.length) {
1348            for (int i=0; i<N; i++) {
1349                val[i] = readStrongBinder();
1350            }
1351        } else {
1352            throw new RuntimeException("bad array lengths");
1353        }
1354    }
1355
1356    /**
1357     * Flatten a List containing a particular object type into the parcel, at
1358     * the current dataPosition() and growing dataCapacity() if needed.  The
1359     * type of the objects in the list must be one that implements Parcelable.
1360     * Unlike the generic writeList() method, however, only the raw data of the
1361     * objects is written and not their type, so you must use the corresponding
1362     * readTypedList() to unmarshall them.
1363     *
1364     * @param val The list of objects to be written.
1365     *
1366     * @see #createTypedArrayList
1367     * @see #readTypedList
1368     * @see Parcelable
1369     */
1370    public final <T extends Parcelable> void writeTypedList(List<T> val) {
1371        writeTypedList(val, 0);
1372    }
1373
1374    /**
1375     * @hide
1376     */
1377    public <T extends Parcelable> void writeTypedList(List<T> val, int parcelableFlags) {
1378        if (val == null) {
1379            writeInt(-1);
1380            return;
1381        }
1382        int N = val.size();
1383        int i=0;
1384        writeInt(N);
1385        while (i < N) {
1386            writeTypedObject(val.get(i), parcelableFlags);
1387            i++;
1388        }
1389    }
1390
1391    /**
1392     * Flatten a List containing String objects into the parcel, at
1393     * the current dataPosition() and growing dataCapacity() if needed.  They
1394     * can later be retrieved with {@link #createStringArrayList} or
1395     * {@link #readStringList}.
1396     *
1397     * @param val The list of strings to be written.
1398     *
1399     * @see #createStringArrayList
1400     * @see #readStringList
1401     */
1402    public final void writeStringList(List<String> val) {
1403        if (val == null) {
1404            writeInt(-1);
1405            return;
1406        }
1407        int N = val.size();
1408        int i=0;
1409        writeInt(N);
1410        while (i < N) {
1411            writeString(val.get(i));
1412            i++;
1413        }
1414    }
1415
1416    /**
1417     * Flatten a List containing IBinder objects into the parcel, at
1418     * the current dataPosition() and growing dataCapacity() if needed.  They
1419     * can later be retrieved with {@link #createBinderArrayList} or
1420     * {@link #readBinderList}.
1421     *
1422     * @param val The list of strings to be written.
1423     *
1424     * @see #createBinderArrayList
1425     * @see #readBinderList
1426     */
1427    public final void writeBinderList(List<IBinder> val) {
1428        if (val == null) {
1429            writeInt(-1);
1430            return;
1431        }
1432        int N = val.size();
1433        int i=0;
1434        writeInt(N);
1435        while (i < N) {
1436            writeStrongBinder(val.get(i));
1437            i++;
1438        }
1439    }
1440
1441    /**
1442     * Flatten a {@code List} containing arbitrary {@code Parcelable} objects into this parcel
1443     * at the current position. They can later be retrieved using
1444     * {@link #readParcelableList(List, ClassLoader)} if required.
1445     *
1446     * @see #readParcelableList(List, ClassLoader)
1447     * @hide
1448     */
1449    public final <T extends Parcelable> void writeParcelableList(List<T> val, int flags) {
1450        if (val == null) {
1451            writeInt(-1);
1452            return;
1453        }
1454
1455        int N = val.size();
1456        int i=0;
1457        writeInt(N);
1458        while (i < N) {
1459            writeParcelable(val.get(i), flags);
1460            i++;
1461        }
1462    }
1463
1464    /**
1465     * Flatten a homogeneous array containing a particular object type into
1466     * the parcel, at
1467     * the current dataPosition() and growing dataCapacity() if needed.  The
1468     * type of the objects in the array must be one that implements Parcelable.
1469     * Unlike the {@link #writeParcelableArray} method, however, only the
1470     * raw data of the objects is written and not their type, so you must use
1471     * {@link #readTypedArray} with the correct corresponding
1472     * {@link Parcelable.Creator} implementation to unmarshall them.
1473     *
1474     * @param val The array of objects to be written.
1475     * @param parcelableFlags Contextual flags as per
1476     * {@link Parcelable#writeToParcel(Parcel, int) Parcelable.writeToParcel()}.
1477     *
1478     * @see #readTypedArray
1479     * @see #writeParcelableArray
1480     * @see Parcelable.Creator
1481     */
1482    public final <T extends Parcelable> void writeTypedArray(T[] val,
1483            int parcelableFlags) {
1484        if (val != null) {
1485            int N = val.length;
1486            writeInt(N);
1487            for (int i = 0; i < N; i++) {
1488                writeTypedObject(val[i], parcelableFlags);
1489            }
1490        } else {
1491            writeInt(-1);
1492        }
1493    }
1494
1495    /**
1496     * Flatten the Parcelable object into the parcel.
1497     *
1498     * @param val The Parcelable object to be written.
1499     * @param parcelableFlags Contextual flags as per
1500     * {@link Parcelable#writeToParcel(Parcel, int) Parcelable.writeToParcel()}.
1501     *
1502     * @see #readTypedObject
1503     */
1504    public final <T extends Parcelable> void writeTypedObject(T val, int parcelableFlags) {
1505        if (val != null) {
1506            writeInt(1);
1507            val.writeToParcel(this, parcelableFlags);
1508        } else {
1509            writeInt(0);
1510        }
1511    }
1512
1513    /**
1514     * Flatten a generic object in to a parcel.  The given Object value may
1515     * currently be one of the following types:
1516     *
1517     * <ul>
1518     * <li> null
1519     * <li> String
1520     * <li> Byte
1521     * <li> Short
1522     * <li> Integer
1523     * <li> Long
1524     * <li> Float
1525     * <li> Double
1526     * <li> Boolean
1527     * <li> String[]
1528     * <li> boolean[]
1529     * <li> byte[]
1530     * <li> int[]
1531     * <li> long[]
1532     * <li> Object[] (supporting objects of the same type defined here).
1533     * <li> {@link Bundle}
1534     * <li> Map (as supported by {@link #writeMap}).
1535     * <li> Any object that implements the {@link Parcelable} protocol.
1536     * <li> Parcelable[]
1537     * <li> CharSequence (as supported by {@link TextUtils#writeToParcel}).
1538     * <li> List (as supported by {@link #writeList}).
1539     * <li> {@link SparseArray} (as supported by {@link #writeSparseArray(SparseArray)}).
1540     * <li> {@link IBinder}
1541     * <li> Any object that implements Serializable (but see
1542     *      {@link #writeSerializable} for caveats).  Note that all of the
1543     *      previous types have relatively efficient implementations for
1544     *      writing to a Parcel; having to rely on the generic serialization
1545     *      approach is much less efficient and should be avoided whenever
1546     *      possible.
1547     * </ul>
1548     *
1549     * <p class="caution">{@link Parcelable} objects are written with
1550     * {@link Parcelable#writeToParcel} using contextual flags of 0.  When
1551     * serializing objects containing {@link ParcelFileDescriptor}s,
1552     * this may result in file descriptor leaks when they are returned from
1553     * Binder calls (where {@link Parcelable#PARCELABLE_WRITE_RETURN_VALUE}
1554     * should be used).</p>
1555     */
1556    public final void writeValue(Object v) {
1557        if (v == null) {
1558            writeInt(VAL_NULL);
1559        } else if (v instanceof String) {
1560            writeInt(VAL_STRING);
1561            writeString((String) v);
1562        } else if (v instanceof Integer) {
1563            writeInt(VAL_INTEGER);
1564            writeInt((Integer) v);
1565        } else if (v instanceof Map) {
1566            writeInt(VAL_MAP);
1567            writeMap((Map) v);
1568        } else if (v instanceof Bundle) {
1569            // Must be before Parcelable
1570            writeInt(VAL_BUNDLE);
1571            writeBundle((Bundle) v);
1572        } else if (v instanceof PersistableBundle) {
1573            writeInt(VAL_PERSISTABLEBUNDLE);
1574            writePersistableBundle((PersistableBundle) v);
1575        } else if (v instanceof Parcelable) {
1576            // IMPOTANT: cases for classes that implement Parcelable must
1577            // come before the Parcelable case, so that their specific VAL_*
1578            // types will be written.
1579            writeInt(VAL_PARCELABLE);
1580            writeParcelable((Parcelable) v, 0);
1581        } else if (v instanceof Short) {
1582            writeInt(VAL_SHORT);
1583            writeInt(((Short) v).intValue());
1584        } else if (v instanceof Long) {
1585            writeInt(VAL_LONG);
1586            writeLong((Long) v);
1587        } else if (v instanceof Float) {
1588            writeInt(VAL_FLOAT);
1589            writeFloat((Float) v);
1590        } else if (v instanceof Double) {
1591            writeInt(VAL_DOUBLE);
1592            writeDouble((Double) v);
1593        } else if (v instanceof Boolean) {
1594            writeInt(VAL_BOOLEAN);
1595            writeInt((Boolean) v ? 1 : 0);
1596        } else if (v instanceof CharSequence) {
1597            // Must be after String
1598            writeInt(VAL_CHARSEQUENCE);
1599            writeCharSequence((CharSequence) v);
1600        } else if (v instanceof List) {
1601            writeInt(VAL_LIST);
1602            writeList((List) v);
1603        } else if (v instanceof SparseArray) {
1604            writeInt(VAL_SPARSEARRAY);
1605            writeSparseArray((SparseArray) v);
1606        } else if (v instanceof boolean[]) {
1607            writeInt(VAL_BOOLEANARRAY);
1608            writeBooleanArray((boolean[]) v);
1609        } else if (v instanceof byte[]) {
1610            writeInt(VAL_BYTEARRAY);
1611            writeByteArray((byte[]) v);
1612        } else if (v instanceof String[]) {
1613            writeInt(VAL_STRINGARRAY);
1614            writeStringArray((String[]) v);
1615        } else if (v instanceof CharSequence[]) {
1616            // Must be after String[] and before Object[]
1617            writeInt(VAL_CHARSEQUENCEARRAY);
1618            writeCharSequenceArray((CharSequence[]) v);
1619        } else if (v instanceof IBinder) {
1620            writeInt(VAL_IBINDER);
1621            writeStrongBinder((IBinder) v);
1622        } else if (v instanceof Parcelable[]) {
1623            writeInt(VAL_PARCELABLEARRAY);
1624            writeParcelableArray((Parcelable[]) v, 0);
1625        } else if (v instanceof int[]) {
1626            writeInt(VAL_INTARRAY);
1627            writeIntArray((int[]) v);
1628        } else if (v instanceof long[]) {
1629            writeInt(VAL_LONGARRAY);
1630            writeLongArray((long[]) v);
1631        } else if (v instanceof Byte) {
1632            writeInt(VAL_BYTE);
1633            writeInt((Byte) v);
1634        } else if (v instanceof Size) {
1635            writeInt(VAL_SIZE);
1636            writeSize((Size) v);
1637        } else if (v instanceof SizeF) {
1638            writeInt(VAL_SIZEF);
1639            writeSizeF((SizeF) v);
1640        } else if (v instanceof double[]) {
1641            writeInt(VAL_DOUBLEARRAY);
1642            writeDoubleArray((double[]) v);
1643        } else {
1644            Class<?> clazz = v.getClass();
1645            if (clazz.isArray() && clazz.getComponentType() == Object.class) {
1646                // Only pure Object[] are written here, Other arrays of non-primitive types are
1647                // handled by serialization as this does not record the component type.
1648                writeInt(VAL_OBJECTARRAY);
1649                writeArray((Object[]) v);
1650            } else if (v instanceof Serializable) {
1651                // Must be last
1652                writeInt(VAL_SERIALIZABLE);
1653                writeSerializable((Serializable) v);
1654            } else {
1655                throw new RuntimeException("Parcel: unable to marshal value " + v);
1656            }
1657        }
1658    }
1659
1660    /**
1661     * Flatten the name of the class of the Parcelable and its contents
1662     * into the parcel.
1663     *
1664     * @param p The Parcelable object to be written.
1665     * @param parcelableFlags Contextual flags as per
1666     * {@link Parcelable#writeToParcel(Parcel, int) Parcelable.writeToParcel()}.
1667     */
1668    public final void writeParcelable(Parcelable p, int parcelableFlags) {
1669        if (p == null) {
1670            writeString(null);
1671            return;
1672        }
1673        writeParcelableCreator(p);
1674        p.writeToParcel(this, parcelableFlags);
1675    }
1676
1677    /** @hide */
1678    public final void writeParcelableCreator(Parcelable p) {
1679        String name = p.getClass().getName();
1680        writeString(name);
1681    }
1682
1683    /**
1684     * Write a generic serializable object in to a Parcel.  It is strongly
1685     * recommended that this method be avoided, since the serialization
1686     * overhead is extremely large, and this approach will be much slower than
1687     * using the other approaches to writing data in to a Parcel.
1688     */
1689    public final void writeSerializable(Serializable s) {
1690        if (s == null) {
1691            writeString(null);
1692            return;
1693        }
1694        String name = s.getClass().getName();
1695        writeString(name);
1696
1697        ByteArrayOutputStream baos = new ByteArrayOutputStream();
1698        try {
1699            ObjectOutputStream oos = new ObjectOutputStream(baos);
1700            oos.writeObject(s);
1701            oos.close();
1702
1703            writeByteArray(baos.toByteArray());
1704        } catch (IOException ioe) {
1705            throw new RuntimeException("Parcelable encountered " +
1706                "IOException writing serializable object (name = " + name +
1707                ")", ioe);
1708        }
1709    }
1710
1711    /** @hide For debugging purposes */
1712    public static void setStackTraceParceling(boolean enabled) {
1713        sParcelExceptionStackTrace = enabled;
1714    }
1715
1716    /**
1717     * Special function for writing an exception result at the header of
1718     * a parcel, to be used when returning an exception from a transaction.
1719     * Note that this currently only supports a few exception types; any other
1720     * exception will be re-thrown by this function as a RuntimeException
1721     * (to be caught by the system's last-resort exception handling when
1722     * dispatching a transaction).
1723     *
1724     * <p>The supported exception types are:
1725     * <ul>
1726     * <li>{@link BadParcelableException}
1727     * <li>{@link IllegalArgumentException}
1728     * <li>{@link IllegalStateException}
1729     * <li>{@link NullPointerException}
1730     * <li>{@link SecurityException}
1731     * <li>{@link UnsupportedOperationException}
1732     * <li>{@link NetworkOnMainThreadException}
1733     * </ul>
1734     *
1735     * @param e The Exception to be written.
1736     *
1737     * @see #writeNoException
1738     * @see #readException
1739     */
1740    public final void writeException(Exception e) {
1741        int code = 0;
1742        if (e instanceof Parcelable
1743                && (e.getClass().getClassLoader() == Parcelable.class.getClassLoader())) {
1744            // We only send Parcelable exceptions that are in the
1745            // BootClassLoader to ensure that the receiver can unpack them
1746            code = EX_PARCELABLE;
1747        } else if (e instanceof SecurityException) {
1748            code = EX_SECURITY;
1749        } else if (e instanceof BadParcelableException) {
1750            code = EX_BAD_PARCELABLE;
1751        } else if (e instanceof IllegalArgumentException) {
1752            code = EX_ILLEGAL_ARGUMENT;
1753        } else if (e instanceof NullPointerException) {
1754            code = EX_NULL_POINTER;
1755        } else if (e instanceof IllegalStateException) {
1756            code = EX_ILLEGAL_STATE;
1757        } else if (e instanceof NetworkOnMainThreadException) {
1758            code = EX_NETWORK_MAIN_THREAD;
1759        } else if (e instanceof UnsupportedOperationException) {
1760            code = EX_UNSUPPORTED_OPERATION;
1761        } else if (e instanceof ServiceSpecificException) {
1762            code = EX_SERVICE_SPECIFIC;
1763        }
1764        writeInt(code);
1765        StrictMode.clearGatheredViolations();
1766        if (code == 0) {
1767            if (e instanceof RuntimeException) {
1768                throw (RuntimeException) e;
1769            }
1770            throw new RuntimeException(e);
1771        }
1772        writeString(e.getMessage());
1773        final long timeNow = sParcelExceptionStackTrace ? SystemClock.elapsedRealtime() : 0;
1774        if (sParcelExceptionStackTrace && (timeNow - sLastWriteExceptionStackTrace
1775                > WRITE_EXCEPTION_STACK_TRACE_THRESHOLD_MS)) {
1776            sLastWriteExceptionStackTrace = timeNow;
1777            final int sizePosition = dataPosition();
1778            writeInt(0); // Header size will be filled in later
1779            StackTraceElement[] stackTrace = e.getStackTrace();
1780            final int truncatedSize = Math.min(stackTrace.length, 5);
1781            StringBuilder sb = new StringBuilder();
1782            for (int i = 0; i < truncatedSize; i++) {
1783                sb.append("\tat ").append(stackTrace[i]);
1784            }
1785            writeString(sb.toString());
1786            final int payloadPosition = dataPosition();
1787            setDataPosition(sizePosition);
1788            // Write stack trace header size. Used in native side to skip the header
1789            writeInt(payloadPosition - sizePosition);
1790            setDataPosition(payloadPosition);
1791        } else {
1792            writeInt(0);
1793        }
1794        switch (code) {
1795            case EX_SERVICE_SPECIFIC:
1796                writeInt(((ServiceSpecificException) e).errorCode);
1797                break;
1798            case EX_PARCELABLE:
1799                // Write parceled exception prefixed by length
1800                final int sizePosition = dataPosition();
1801                writeInt(0);
1802                writeParcelable((Parcelable) e, Parcelable.PARCELABLE_WRITE_RETURN_VALUE);
1803                final int payloadPosition = dataPosition();
1804                setDataPosition(sizePosition);
1805                writeInt(payloadPosition - sizePosition);
1806                setDataPosition(payloadPosition);
1807                break;
1808        }
1809    }
1810
1811    /**
1812     * Special function for writing information at the front of the Parcel
1813     * indicating that no exception occurred.
1814     *
1815     * @see #writeException
1816     * @see #readException
1817     */
1818    public final void writeNoException() {
1819        // Despite the name of this function ("write no exception"),
1820        // it should instead be thought of as "write the RPC response
1821        // header", but because this function name is written out by
1822        // the AIDL compiler, we're not going to rename it.
1823        //
1824        // The response header, in the non-exception case (see also
1825        // writeException above, also called by the AIDL compiler), is
1826        // either a 0 (the default case), or EX_HAS_REPLY_HEADER if
1827        // StrictMode has gathered up violations that have occurred
1828        // during a Binder call, in which case we write out the number
1829        // of violations and their details, serialized, before the
1830        // actual RPC respons data.  The receiving end of this is
1831        // readException(), below.
1832        if (StrictMode.hasGatheredViolations()) {
1833            writeInt(EX_HAS_REPLY_HEADER);
1834            final int sizePosition = dataPosition();
1835            writeInt(0);  // total size of fat header, to be filled in later
1836            StrictMode.writeGatheredViolationsToParcel(this);
1837            final int payloadPosition = dataPosition();
1838            setDataPosition(sizePosition);
1839            writeInt(payloadPosition - sizePosition);  // header size
1840            setDataPosition(payloadPosition);
1841        } else {
1842            writeInt(0);
1843        }
1844    }
1845
1846    /**
1847     * Special function for reading an exception result from the header of
1848     * a parcel, to be used after receiving the result of a transaction.  This
1849     * will throw the exception for you if it had been written to the Parcel,
1850     * otherwise return and let you read the normal result data from the Parcel.
1851     *
1852     * @see #writeException
1853     * @see #writeNoException
1854     */
1855    public final void readException() {
1856        int code = readExceptionCode();
1857        if (code != 0) {
1858            String msg = readString();
1859            String remoteStackTrace = null;
1860            final int remoteStackPayloadSize = readInt();
1861            if (remoteStackPayloadSize > 0) {
1862                remoteStackTrace = readString();
1863            }
1864            Exception e = createException(code, msg);
1865            // Attach remote stack trace if availalble
1866            if (remoteStackTrace != null) {
1867                RemoteException cause = new RemoteException(
1868                        "Remote stack trace:\n" + remoteStackTrace, null, false, false);
1869                e.initCause(cause);
1870            }
1871            SneakyThrow.sneakyThrow(e);
1872        }
1873    }
1874
1875    /**
1876     * Parses the header of a Binder call's response Parcel and
1877     * returns the exception code.  Deals with lite or fat headers.
1878     * In the common successful case, this header is generally zero.
1879     * In less common cases, it's a small negative number and will be
1880     * followed by an error string.
1881     *
1882     * This exists purely for android.database.DatabaseUtils and
1883     * insulating it from having to handle fat headers as returned by
1884     * e.g. StrictMode-induced RPC responses.
1885     *
1886     * @hide
1887     */
1888    public final int readExceptionCode() {
1889        int code = readInt();
1890        if (code == EX_HAS_REPLY_HEADER) {
1891            int headerSize = readInt();
1892            if (headerSize == 0) {
1893                Log.e(TAG, "Unexpected zero-sized Parcel reply header.");
1894            } else {
1895                // Currently the only thing in the header is StrictMode stacks,
1896                // but discussions around event/RPC tracing suggest we might
1897                // put that here too.  If so, switch on sub-header tags here.
1898                // But for now, just parse out the StrictMode stuff.
1899                StrictMode.readAndHandleBinderCallViolations(this);
1900            }
1901            // And fat response headers are currently only used when
1902            // there are no exceptions, so return no error:
1903            return 0;
1904        }
1905        return code;
1906    }
1907
1908    /**
1909     * Throw an exception with the given message. Not intended for use
1910     * outside the Parcel class.
1911     *
1912     * @param code Used to determine which exception class to throw.
1913     * @param msg The exception message.
1914     */
1915    public final void readException(int code, String msg) {
1916        SneakyThrow.sneakyThrow(createException(code, msg));
1917    }
1918
1919    /**
1920     * Creates an exception with the given message.
1921     *
1922     * @param code Used to determine which exception class to throw.
1923     * @param msg The exception message.
1924     */
1925    private Exception createException(int code, String msg) {
1926        switch (code) {
1927            case EX_PARCELABLE:
1928                if (readInt() > 0) {
1929                    return (Exception) readParcelable(Parcelable.class.getClassLoader());
1930                } else {
1931                    return new RuntimeException(msg + " [missing Parcelable]");
1932                }
1933            case EX_SECURITY:
1934                return new SecurityException(msg);
1935            case EX_BAD_PARCELABLE:
1936                return new BadParcelableException(msg);
1937            case EX_ILLEGAL_ARGUMENT:
1938                return new IllegalArgumentException(msg);
1939            case EX_NULL_POINTER:
1940                return new NullPointerException(msg);
1941            case EX_ILLEGAL_STATE:
1942                return new IllegalStateException(msg);
1943            case EX_NETWORK_MAIN_THREAD:
1944                return new NetworkOnMainThreadException();
1945            case EX_UNSUPPORTED_OPERATION:
1946                return new UnsupportedOperationException(msg);
1947            case EX_SERVICE_SPECIFIC:
1948                return new ServiceSpecificException(readInt(), msg);
1949        }
1950        return new RuntimeException("Unknown exception code: " + code
1951                + " msg " + msg);
1952    }
1953
1954    /**
1955     * Read an integer value from the parcel at the current dataPosition().
1956     */
1957    public final int readInt() {
1958        return nativeReadInt(mNativePtr);
1959    }
1960
1961    /**
1962     * Read a long integer value from the parcel at the current dataPosition().
1963     */
1964    public final long readLong() {
1965        return nativeReadLong(mNativePtr);
1966    }
1967
1968    /**
1969     * Read a floating point value from the parcel at the current
1970     * dataPosition().
1971     */
1972    public final float readFloat() {
1973        return nativeReadFloat(mNativePtr);
1974    }
1975
1976    /**
1977     * Read a double precision floating point value from the parcel at the
1978     * current dataPosition().
1979     */
1980    public final double readDouble() {
1981        return nativeReadDouble(mNativePtr);
1982    }
1983
1984    /**
1985     * Read a string value from the parcel at the current dataPosition().
1986     */
1987    public final String readString() {
1988        return mReadWriteHelper.readString(this);
1989    }
1990
1991    /**
1992     * Read a string without going though a {@link ReadWriteHelper}.  Subclasses of
1993     * {@link ReadWriteHelper} must use this method instead of {@link #readString} to avoid
1994     * infinity recursive calls.
1995     *
1996     * @hide
1997     */
1998    public String readStringNoHelper() {
1999        return nativeReadString(mNativePtr);
2000    }
2001
2002    /** @hide */
2003    public final boolean readBoolean() {
2004        return readInt() != 0;
2005    }
2006
2007    /**
2008     * Read a CharSequence value from the parcel at the current dataPosition().
2009     * @hide
2010     */
2011    public final CharSequence readCharSequence() {
2012        return TextUtils.CHAR_SEQUENCE_CREATOR.createFromParcel(this);
2013    }
2014
2015    /**
2016     * Read an object from the parcel at the current dataPosition().
2017     */
2018    public final IBinder readStrongBinder() {
2019        return nativeReadStrongBinder(mNativePtr);
2020    }
2021
2022    /**
2023     * Read a FileDescriptor from the parcel at the current dataPosition().
2024     */
2025    public final ParcelFileDescriptor readFileDescriptor() {
2026        FileDescriptor fd = nativeReadFileDescriptor(mNativePtr);
2027        return fd != null ? new ParcelFileDescriptor(fd) : null;
2028    }
2029
2030    /** {@hide} */
2031    public final FileDescriptor readRawFileDescriptor() {
2032        return nativeReadFileDescriptor(mNativePtr);
2033    }
2034
2035    /**
2036     * {@hide}
2037     * Read and return a new array of FileDescriptors from the parcel.
2038     * @return the FileDescriptor array, or null if the array is null.
2039     **/
2040    public final FileDescriptor[] createRawFileDescriptorArray() {
2041        int N = readInt();
2042        if (N < 0) {
2043            return null;
2044        }
2045        FileDescriptor[] f = new FileDescriptor[N];
2046        for (int i = 0; i < N; i++) {
2047            f[i] = readRawFileDescriptor();
2048        }
2049        return f;
2050    }
2051
2052    /**
2053     * {@hide}
2054     * Read an array of FileDescriptors from a parcel.
2055     * The passed array must be exactly the length of the array in the parcel.
2056     * @return the FileDescriptor array, or null if the array is null.
2057     **/
2058    public final void readRawFileDescriptorArray(FileDescriptor[] val) {
2059        int N = readInt();
2060        if (N == val.length) {
2061            for (int i=0; i<N; i++) {
2062                val[i] = readRawFileDescriptor();
2063            }
2064        } else {
2065            throw new RuntimeException("bad array lengths");
2066        }
2067    }
2068
2069    /** @deprecated use {@link android.system.Os#open(String, int, int)} */
2070    @Deprecated
2071    static native FileDescriptor openFileDescriptor(String file, int mode)
2072            throws FileNotFoundException;
2073
2074    /** @deprecated use {@link android.system.Os#dup(FileDescriptor)} */
2075    @Deprecated
2076    static native FileDescriptor dupFileDescriptor(FileDescriptor orig) throws IOException;
2077
2078    /** @deprecated use {@link android.system.Os#close(FileDescriptor)} */
2079    @Deprecated
2080    static native void closeFileDescriptor(FileDescriptor desc) throws IOException;
2081
2082    /**
2083     * Read a byte value from the parcel at the current dataPosition().
2084     */
2085    public final byte readByte() {
2086        return (byte)(readInt() & 0xff);
2087    }
2088
2089    /**
2090     * Please use {@link #readBundle(ClassLoader)} instead (whose data must have
2091     * been written with {@link #writeBundle}.  Read into an existing Map object
2092     * from the parcel at the current dataPosition().
2093     */
2094    public final void readMap(Map outVal, ClassLoader loader) {
2095        int N = readInt();
2096        readMapInternal(outVal, N, loader);
2097    }
2098
2099    /**
2100     * Read into an existing List object from the parcel at the current
2101     * dataPosition(), using the given class loader to load any enclosed
2102     * Parcelables.  If it is null, the default class loader is used.
2103     */
2104    public final void readList(List outVal, ClassLoader loader) {
2105        int N = readInt();
2106        readListInternal(outVal, N, loader);
2107    }
2108
2109    /**
2110     * Please use {@link #readBundle(ClassLoader)} instead (whose data must have
2111     * been written with {@link #writeBundle}.  Read and return a new HashMap
2112     * object from the parcel at the current dataPosition(), using the given
2113     * class loader to load any enclosed Parcelables.  Returns null if
2114     * the previously written map object was null.
2115     */
2116    public final HashMap readHashMap(ClassLoader loader)
2117    {
2118        int N = readInt();
2119        if (N < 0) {
2120            return null;
2121        }
2122        HashMap m = new HashMap(N);
2123        readMapInternal(m, N, loader);
2124        return m;
2125    }
2126
2127    /**
2128     * Read and return a new Bundle object from the parcel at the current
2129     * dataPosition().  Returns null if the previously written Bundle object was
2130     * null.
2131     */
2132    public final Bundle readBundle() {
2133        return readBundle(null);
2134    }
2135
2136    /**
2137     * Read and return a new Bundle object from the parcel at the current
2138     * dataPosition(), using the given class loader to initialize the class
2139     * loader of the Bundle for later retrieval of Parcelable objects.
2140     * Returns null if the previously written Bundle object was null.
2141     */
2142    public final Bundle readBundle(ClassLoader loader) {
2143        int length = readInt();
2144        if (length < 0) {
2145            if (Bundle.DEBUG) Log.d(TAG, "null bundle: length=" + length);
2146            return null;
2147        }
2148
2149        final Bundle bundle = new Bundle(this, length);
2150        if (loader != null) {
2151            bundle.setClassLoader(loader);
2152        }
2153        return bundle;
2154    }
2155
2156    /**
2157     * Read and return a new Bundle object from the parcel at the current
2158     * dataPosition().  Returns null if the previously written Bundle object was
2159     * null.
2160     */
2161    public final PersistableBundle readPersistableBundle() {
2162        return readPersistableBundle(null);
2163    }
2164
2165    /**
2166     * Read and return a new Bundle object from the parcel at the current
2167     * dataPosition(), using the given class loader to initialize the class
2168     * loader of the Bundle for later retrieval of Parcelable objects.
2169     * Returns null if the previously written Bundle object was null.
2170     */
2171    public final PersistableBundle readPersistableBundle(ClassLoader loader) {
2172        int length = readInt();
2173        if (length < 0) {
2174            if (Bundle.DEBUG) Log.d(TAG, "null bundle: length=" + length);
2175            return null;
2176        }
2177
2178        final PersistableBundle bundle = new PersistableBundle(this, length);
2179        if (loader != null) {
2180            bundle.setClassLoader(loader);
2181        }
2182        return bundle;
2183    }
2184
2185    /**
2186     * Read a Size from the parcel at the current dataPosition().
2187     */
2188    public final Size readSize() {
2189        final int width = readInt();
2190        final int height = readInt();
2191        return new Size(width, height);
2192    }
2193
2194    /**
2195     * Read a SizeF from the parcel at the current dataPosition().
2196     */
2197    public final SizeF readSizeF() {
2198        final float width = readFloat();
2199        final float height = readFloat();
2200        return new SizeF(width, height);
2201    }
2202
2203    /**
2204     * Read and return a byte[] object from the parcel.
2205     */
2206    public final byte[] createByteArray() {
2207        return nativeCreateByteArray(mNativePtr);
2208    }
2209
2210    /**
2211     * Read a byte[] object from the parcel and copy it into the
2212     * given byte array.
2213     */
2214    public final void readByteArray(byte[] val) {
2215        boolean valid = nativeReadByteArray(mNativePtr, val, (val != null) ? val.length : 0);
2216        if (!valid) {
2217            throw new RuntimeException("bad array lengths");
2218        }
2219    }
2220
2221    /**
2222     * Read a blob of data from the parcel and return it as a byte array.
2223     * {@hide}
2224     * {@SystemApi}
2225     */
2226    public final byte[] readBlob() {
2227        return nativeReadBlob(mNativePtr);
2228    }
2229
2230    /**
2231     * Read and return a String[] object from the parcel.
2232     * {@hide}
2233     */
2234    public final String[] readStringArray() {
2235        String[] array = null;
2236
2237        int length = readInt();
2238        if (length >= 0)
2239        {
2240            array = new String[length];
2241
2242            for (int i = 0 ; i < length ; i++)
2243            {
2244                array[i] = readString();
2245            }
2246        }
2247
2248        return array;
2249    }
2250
2251    /**
2252     * Read and return a CharSequence[] object from the parcel.
2253     * {@hide}
2254     */
2255    public final CharSequence[] readCharSequenceArray() {
2256        CharSequence[] array = null;
2257
2258        int length = readInt();
2259        if (length >= 0)
2260        {
2261            array = new CharSequence[length];
2262
2263            for (int i = 0 ; i < length ; i++)
2264            {
2265                array[i] = readCharSequence();
2266            }
2267        }
2268
2269        return array;
2270    }
2271
2272    /**
2273     * Read and return an ArrayList&lt;CharSequence&gt; object from the parcel.
2274     * {@hide}
2275     */
2276    public final ArrayList<CharSequence> readCharSequenceList() {
2277        ArrayList<CharSequence> array = null;
2278
2279        int length = readInt();
2280        if (length >= 0) {
2281            array = new ArrayList<CharSequence>(length);
2282
2283            for (int i = 0 ; i < length ; i++) {
2284                array.add(readCharSequence());
2285            }
2286        }
2287
2288        return array;
2289    }
2290
2291    /**
2292     * Read and return a new ArrayList object from the parcel at the current
2293     * dataPosition().  Returns null if the previously written list object was
2294     * null.  The given class loader will be used to load any enclosed
2295     * Parcelables.
2296     */
2297    public final ArrayList readArrayList(ClassLoader loader) {
2298        int N = readInt();
2299        if (N < 0) {
2300            return null;
2301        }
2302        ArrayList l = new ArrayList(N);
2303        readListInternal(l, N, loader);
2304        return l;
2305    }
2306
2307    /**
2308     * Read and return a new Object array from the parcel at the current
2309     * dataPosition().  Returns null if the previously written array was
2310     * null.  The given class loader will be used to load any enclosed
2311     * Parcelables.
2312     */
2313    public final Object[] readArray(ClassLoader loader) {
2314        int N = readInt();
2315        if (N < 0) {
2316            return null;
2317        }
2318        Object[] l = new Object[N];
2319        readArrayInternal(l, N, loader);
2320        return l;
2321    }
2322
2323    /**
2324     * Read and return a new SparseArray object from the parcel at the current
2325     * dataPosition().  Returns null if the previously written list object was
2326     * null.  The given class loader will be used to load any enclosed
2327     * Parcelables.
2328     */
2329    public final SparseArray readSparseArray(ClassLoader loader) {
2330        int N = readInt();
2331        if (N < 0) {
2332            return null;
2333        }
2334        SparseArray sa = new SparseArray(N);
2335        readSparseArrayInternal(sa, N, loader);
2336        return sa;
2337    }
2338
2339    /**
2340     * Read and return a new SparseBooleanArray object from the parcel at the current
2341     * dataPosition().  Returns null if the previously written list object was
2342     * null.
2343     */
2344    public final SparseBooleanArray readSparseBooleanArray() {
2345        int N = readInt();
2346        if (N < 0) {
2347            return null;
2348        }
2349        SparseBooleanArray sa = new SparseBooleanArray(N);
2350        readSparseBooleanArrayInternal(sa, N);
2351        return sa;
2352    }
2353
2354    /**
2355     * Read and return a new SparseIntArray object from the parcel at the current
2356     * dataPosition(). Returns null if the previously written array object was null.
2357     * @hide
2358     */
2359    public final SparseIntArray readSparseIntArray() {
2360        int N = readInt();
2361        if (N < 0) {
2362            return null;
2363        }
2364        SparseIntArray sa = new SparseIntArray(N);
2365        readSparseIntArrayInternal(sa, N);
2366        return sa;
2367    }
2368
2369    /**
2370     * Read and return a new ArrayList containing a particular object type from
2371     * the parcel that was written with {@link #writeTypedList} at the
2372     * current dataPosition().  Returns null if the
2373     * previously written list object was null.  The list <em>must</em> have
2374     * previously been written via {@link #writeTypedList} with the same object
2375     * type.
2376     *
2377     * @return A newly created ArrayList containing objects with the same data
2378     *         as those that were previously written.
2379     *
2380     * @see #writeTypedList
2381     */
2382    public final <T> ArrayList<T> createTypedArrayList(Parcelable.Creator<T> c) {
2383        int N = readInt();
2384        if (N < 0) {
2385            return null;
2386        }
2387        ArrayList<T> l = new ArrayList<T>(N);
2388        while (N > 0) {
2389            l.add(readTypedObject(c));
2390            N--;
2391        }
2392        return l;
2393    }
2394
2395    /**
2396     * Read into the given List items containing a particular object type
2397     * that were written with {@link #writeTypedList} at the
2398     * current dataPosition().  The list <em>must</em> have
2399     * previously been written via {@link #writeTypedList} with the same object
2400     * type.
2401     *
2402     * @return A newly created ArrayList containing objects with the same data
2403     *         as those that were previously written.
2404     *
2405     * @see #writeTypedList
2406     */
2407    public final <T> void readTypedList(List<T> list, Parcelable.Creator<T> c) {
2408        int M = list.size();
2409        int N = readInt();
2410        int i = 0;
2411        for (; i < M && i < N; i++) {
2412            list.set(i, readTypedObject(c));
2413        }
2414        for (; i<N; i++) {
2415            list.add(readTypedObject(c));
2416        }
2417        for (; i<M; i++) {
2418            list.remove(N);
2419        }
2420    }
2421
2422    /**
2423     * Read and return a new ArrayList containing String objects from
2424     * the parcel that was written with {@link #writeStringList} at the
2425     * current dataPosition().  Returns null if the
2426     * previously written list object was null.
2427     *
2428     * @return A newly created ArrayList containing strings with the same data
2429     *         as those that were previously written.
2430     *
2431     * @see #writeStringList
2432     */
2433    public final ArrayList<String> createStringArrayList() {
2434        int N = readInt();
2435        if (N < 0) {
2436            return null;
2437        }
2438        ArrayList<String> l = new ArrayList<String>(N);
2439        while (N > 0) {
2440            l.add(readString());
2441            N--;
2442        }
2443        return l;
2444    }
2445
2446    /**
2447     * Read and return a new ArrayList containing IBinder objects from
2448     * the parcel that was written with {@link #writeBinderList} at the
2449     * current dataPosition().  Returns null if the
2450     * previously written list object was null.
2451     *
2452     * @return A newly created ArrayList containing strings with the same data
2453     *         as those that were previously written.
2454     *
2455     * @see #writeBinderList
2456     */
2457    public final ArrayList<IBinder> createBinderArrayList() {
2458        int N = readInt();
2459        if (N < 0) {
2460            return null;
2461        }
2462        ArrayList<IBinder> l = new ArrayList<IBinder>(N);
2463        while (N > 0) {
2464            l.add(readStrongBinder());
2465            N--;
2466        }
2467        return l;
2468    }
2469
2470    /**
2471     * Read into the given List items String objects that were written with
2472     * {@link #writeStringList} at the current dataPosition().
2473     *
2474     * @see #writeStringList
2475     */
2476    public final void readStringList(List<String> list) {
2477        int M = list.size();
2478        int N = readInt();
2479        int i = 0;
2480        for (; i < M && i < N; i++) {
2481            list.set(i, readString());
2482        }
2483        for (; i<N; i++) {
2484            list.add(readString());
2485        }
2486        for (; i<M; i++) {
2487            list.remove(N);
2488        }
2489    }
2490
2491    /**
2492     * Read into the given List items IBinder objects that were written with
2493     * {@link #writeBinderList} at the current dataPosition().
2494     *
2495     * @see #writeBinderList
2496     */
2497    public final void readBinderList(List<IBinder> list) {
2498        int M = list.size();
2499        int N = readInt();
2500        int i = 0;
2501        for (; i < M && i < N; i++) {
2502            list.set(i, readStrongBinder());
2503        }
2504        for (; i<N; i++) {
2505            list.add(readStrongBinder());
2506        }
2507        for (; i<M; i++) {
2508            list.remove(N);
2509        }
2510    }
2511
2512    /**
2513     * Read the list of {@code Parcelable} objects at the current data position into the
2514     * given {@code list}. The contents of the {@code list} are replaced. If the serialized
2515     * list was {@code null}, {@code list} is cleared.
2516     *
2517     * @see #writeParcelableList(List, int)
2518     * @hide
2519     */
2520    public final <T extends Parcelable> List<T> readParcelableList(List<T> list, ClassLoader cl) {
2521        final int N = readInt();
2522        if (N == -1) {
2523            list.clear();
2524            return list;
2525        }
2526
2527        final int M = list.size();
2528        int i = 0;
2529        for (; i < M && i < N; i++) {
2530            list.set(i, (T) readParcelable(cl));
2531        }
2532        for (; i<N; i++) {
2533            list.add((T) readParcelable(cl));
2534        }
2535        for (; i<M; i++) {
2536            list.remove(N);
2537        }
2538        return list;
2539    }
2540
2541    /**
2542     * Read and return a new array containing a particular object type from
2543     * the parcel at the current dataPosition().  Returns null if the
2544     * previously written array was null.  The array <em>must</em> have
2545     * previously been written via {@link #writeTypedArray} with the same
2546     * object type.
2547     *
2548     * @return A newly created array containing objects with the same data
2549     *         as those that were previously written.
2550     *
2551     * @see #writeTypedArray
2552     */
2553    public final <T> T[] createTypedArray(Parcelable.Creator<T> c) {
2554        int N = readInt();
2555        if (N < 0) {
2556            return null;
2557        }
2558        T[] l = c.newArray(N);
2559        for (int i=0; i<N; i++) {
2560            l[i] = readTypedObject(c);
2561        }
2562        return l;
2563    }
2564
2565    public final <T> void readTypedArray(T[] val, Parcelable.Creator<T> c) {
2566        int N = readInt();
2567        if (N == val.length) {
2568            for (int i=0; i<N; i++) {
2569                val[i] = readTypedObject(c);
2570            }
2571        } else {
2572            throw new RuntimeException("bad array lengths");
2573        }
2574    }
2575
2576    /**
2577     * @deprecated
2578     * @hide
2579     */
2580    @Deprecated
2581    public final <T> T[] readTypedArray(Parcelable.Creator<T> c) {
2582        return createTypedArray(c);
2583    }
2584
2585    /**
2586     * Read and return a typed Parcelable object from a parcel.
2587     * Returns null if the previous written object was null.
2588     * The object <em>must</em> have previous been written via
2589     * {@link #writeTypedObject} with the same object type.
2590     *
2591     * @return A newly created object of the type that was previously
2592     *         written.
2593     *
2594     * @see #writeTypedObject
2595     */
2596    public final <T> T readTypedObject(Parcelable.Creator<T> c) {
2597        if (readInt() != 0) {
2598            return c.createFromParcel(this);
2599        } else {
2600            return null;
2601        }
2602    }
2603
2604    /**
2605     * Write a heterogeneous array of Parcelable objects into the Parcel.
2606     * Each object in the array is written along with its class name, so
2607     * that the correct class can later be instantiated.  As a result, this
2608     * has significantly more overhead than {@link #writeTypedArray}, but will
2609     * correctly handle an array containing more than one type of object.
2610     *
2611     * @param value The array of objects to be written.
2612     * @param parcelableFlags Contextual flags as per
2613     * {@link Parcelable#writeToParcel(Parcel, int) Parcelable.writeToParcel()}.
2614     *
2615     * @see #writeTypedArray
2616     */
2617    public final <T extends Parcelable> void writeParcelableArray(T[] value,
2618            int parcelableFlags) {
2619        if (value != null) {
2620            int N = value.length;
2621            writeInt(N);
2622            for (int i=0; i<N; i++) {
2623                writeParcelable(value[i], parcelableFlags);
2624            }
2625        } else {
2626            writeInt(-1);
2627        }
2628    }
2629
2630    /**
2631     * Read a typed object from a parcel.  The given class loader will be
2632     * used to load any enclosed Parcelables.  If it is null, the default class
2633     * loader will be used.
2634     */
2635    public final Object readValue(ClassLoader loader) {
2636        int type = readInt();
2637
2638        switch (type) {
2639        case VAL_NULL:
2640            return null;
2641
2642        case VAL_STRING:
2643            return readString();
2644
2645        case VAL_INTEGER:
2646            return readInt();
2647
2648        case VAL_MAP:
2649            return readHashMap(loader);
2650
2651        case VAL_PARCELABLE:
2652            return readParcelable(loader);
2653
2654        case VAL_SHORT:
2655            return (short) readInt();
2656
2657        case VAL_LONG:
2658            return readLong();
2659
2660        case VAL_FLOAT:
2661            return readFloat();
2662
2663        case VAL_DOUBLE:
2664            return readDouble();
2665
2666        case VAL_BOOLEAN:
2667            return readInt() == 1;
2668
2669        case VAL_CHARSEQUENCE:
2670            return readCharSequence();
2671
2672        case VAL_LIST:
2673            return readArrayList(loader);
2674
2675        case VAL_BOOLEANARRAY:
2676            return createBooleanArray();
2677
2678        case VAL_BYTEARRAY:
2679            return createByteArray();
2680
2681        case VAL_STRINGARRAY:
2682            return readStringArray();
2683
2684        case VAL_CHARSEQUENCEARRAY:
2685            return readCharSequenceArray();
2686
2687        case VAL_IBINDER:
2688            return readStrongBinder();
2689
2690        case VAL_OBJECTARRAY:
2691            return readArray(loader);
2692
2693        case VAL_INTARRAY:
2694            return createIntArray();
2695
2696        case VAL_LONGARRAY:
2697            return createLongArray();
2698
2699        case VAL_BYTE:
2700            return readByte();
2701
2702        case VAL_SERIALIZABLE:
2703            return readSerializable(loader);
2704
2705        case VAL_PARCELABLEARRAY:
2706            return readParcelableArray(loader);
2707
2708        case VAL_SPARSEARRAY:
2709            return readSparseArray(loader);
2710
2711        case VAL_SPARSEBOOLEANARRAY:
2712            return readSparseBooleanArray();
2713
2714        case VAL_BUNDLE:
2715            return readBundle(loader); // loading will be deferred
2716
2717        case VAL_PERSISTABLEBUNDLE:
2718            return readPersistableBundle(loader);
2719
2720        case VAL_SIZE:
2721            return readSize();
2722
2723        case VAL_SIZEF:
2724            return readSizeF();
2725
2726        case VAL_DOUBLEARRAY:
2727            return createDoubleArray();
2728
2729        default:
2730            int off = dataPosition() - 4;
2731            throw new RuntimeException(
2732                "Parcel " + this + ": Unmarshalling unknown type code " + type + " at offset " + off);
2733        }
2734    }
2735
2736    /**
2737     * Read and return a new Parcelable from the parcel.  The given class loader
2738     * will be used to load any enclosed Parcelables.  If it is null, the default
2739     * class loader will be used.
2740     * @param loader A ClassLoader from which to instantiate the Parcelable
2741     * object, or null for the default class loader.
2742     * @return Returns the newly created Parcelable, or null if a null
2743     * object has been written.
2744     * @throws BadParcelableException Throws BadParcelableException if there
2745     * was an error trying to instantiate the Parcelable.
2746     */
2747    @SuppressWarnings("unchecked")
2748    public final <T extends Parcelable> T readParcelable(ClassLoader loader) {
2749        Parcelable.Creator<?> creator = readParcelableCreator(loader);
2750        if (creator == null) {
2751            return null;
2752        }
2753        if (creator instanceof Parcelable.ClassLoaderCreator<?>) {
2754          Parcelable.ClassLoaderCreator<?> classLoaderCreator =
2755              (Parcelable.ClassLoaderCreator<?>) creator;
2756          return (T) classLoaderCreator.createFromParcel(this, loader);
2757        }
2758        return (T) creator.createFromParcel(this);
2759    }
2760
2761    /** @hide */
2762    @SuppressWarnings("unchecked")
2763    public final <T extends Parcelable> T readCreator(Parcelable.Creator<?> creator,
2764            ClassLoader loader) {
2765        if (creator instanceof Parcelable.ClassLoaderCreator<?>) {
2766          Parcelable.ClassLoaderCreator<?> classLoaderCreator =
2767              (Parcelable.ClassLoaderCreator<?>) creator;
2768          return (T) classLoaderCreator.createFromParcel(this, loader);
2769        }
2770        return (T) creator.createFromParcel(this);
2771    }
2772
2773    /** @hide */
2774    public final Parcelable.Creator<?> readParcelableCreator(ClassLoader loader) {
2775        String name = readString();
2776        if (name == null) {
2777            return null;
2778        }
2779        Parcelable.Creator<?> creator;
2780        synchronized (mCreators) {
2781            HashMap<String,Parcelable.Creator<?>> map = mCreators.get(loader);
2782            if (map == null) {
2783                map = new HashMap<>();
2784                mCreators.put(loader, map);
2785            }
2786            creator = map.get(name);
2787            if (creator == null) {
2788                try {
2789                    // If loader == null, explicitly emulate Class.forName(String) "caller
2790                    // classloader" behavior.
2791                    ClassLoader parcelableClassLoader =
2792                            (loader == null ? getClass().getClassLoader() : loader);
2793                    // Avoid initializing the Parcelable class until we know it implements
2794                    // Parcelable and has the necessary CREATOR field. http://b/1171613.
2795                    Class<?> parcelableClass = Class.forName(name, false /* initialize */,
2796                            parcelableClassLoader);
2797                    if (!Parcelable.class.isAssignableFrom(parcelableClass)) {
2798                        throw new BadParcelableException("Parcelable protocol requires that the "
2799                                + "class implements Parcelable");
2800                    }
2801                    Field f = parcelableClass.getField("CREATOR");
2802                    if ((f.getModifiers() & Modifier.STATIC) == 0) {
2803                        throw new BadParcelableException("Parcelable protocol requires "
2804                                + "the CREATOR object to be static on class " + name);
2805                    }
2806                    Class<?> creatorType = f.getType();
2807                    if (!Parcelable.Creator.class.isAssignableFrom(creatorType)) {
2808                        // Fail before calling Field.get(), not after, to avoid initializing
2809                        // parcelableClass unnecessarily.
2810                        throw new BadParcelableException("Parcelable protocol requires a "
2811                                + "Parcelable.Creator object called "
2812                                + "CREATOR on class " + name);
2813                    }
2814                    creator = (Parcelable.Creator<?>) f.get(null);
2815                }
2816                catch (IllegalAccessException e) {
2817                    Log.e(TAG, "Illegal access when unmarshalling: " + name, e);
2818                    throw new BadParcelableException(
2819                            "IllegalAccessException when unmarshalling: " + name);
2820                }
2821                catch (ClassNotFoundException e) {
2822                    Log.e(TAG, "Class not found when unmarshalling: " + name, e);
2823                    throw new BadParcelableException(
2824                            "ClassNotFoundException when unmarshalling: " + name);
2825                }
2826                catch (NoSuchFieldException e) {
2827                    throw new BadParcelableException("Parcelable protocol requires a "
2828                            + "Parcelable.Creator object called "
2829                            + "CREATOR on class " + name);
2830                }
2831                if (creator == null) {
2832                    throw new BadParcelableException("Parcelable protocol requires a "
2833                            + "non-null Parcelable.Creator object called "
2834                            + "CREATOR on class " + name);
2835                }
2836
2837                map.put(name, creator);
2838            }
2839        }
2840
2841        return creator;
2842    }
2843
2844    /**
2845     * Read and return a new Parcelable array from the parcel.
2846     * The given class loader will be used to load any enclosed
2847     * Parcelables.
2848     * @return the Parcelable array, or null if the array is null
2849     */
2850    public final Parcelable[] readParcelableArray(ClassLoader loader) {
2851        int N = readInt();
2852        if (N < 0) {
2853            return null;
2854        }
2855        Parcelable[] p = new Parcelable[N];
2856        for (int i = 0; i < N; i++) {
2857            p[i] = readParcelable(loader);
2858        }
2859        return p;
2860    }
2861
2862    /** @hide */
2863    public final <T extends Parcelable> T[] readParcelableArray(ClassLoader loader,
2864            Class<T> clazz) {
2865        int N = readInt();
2866        if (N < 0) {
2867            return null;
2868        }
2869        T[] p = (T[]) Array.newInstance(clazz, N);
2870        for (int i = 0; i < N; i++) {
2871            p[i] = readParcelable(loader);
2872        }
2873        return p;
2874    }
2875
2876    /**
2877     * Read and return a new Serializable object from the parcel.
2878     * @return the Serializable object, or null if the Serializable name
2879     * wasn't found in the parcel.
2880     */
2881    public final Serializable readSerializable() {
2882        return readSerializable(null);
2883    }
2884
2885    private final Serializable readSerializable(final ClassLoader loader) {
2886        String name = readString();
2887        if (name == null) {
2888            // For some reason we were unable to read the name of the Serializable (either there
2889            // is nothing left in the Parcel to read, or the next value wasn't a String), so
2890            // return null, which indicates that the name wasn't found in the parcel.
2891            return null;
2892        }
2893
2894        byte[] serializedData = createByteArray();
2895        ByteArrayInputStream bais = new ByteArrayInputStream(serializedData);
2896        try {
2897            ObjectInputStream ois = new ObjectInputStream(bais) {
2898                @Override
2899                protected Class<?> resolveClass(ObjectStreamClass osClass)
2900                        throws IOException, ClassNotFoundException {
2901                    // try the custom classloader if provided
2902                    if (loader != null) {
2903                        Class<?> c = Class.forName(osClass.getName(), false, loader);
2904                        if (c != null) {
2905                            return c;
2906                        }
2907                    }
2908                    return super.resolveClass(osClass);
2909                }
2910            };
2911            return (Serializable) ois.readObject();
2912        } catch (IOException ioe) {
2913            throw new RuntimeException("Parcelable encountered " +
2914                "IOException reading a Serializable object (name = " + name +
2915                ")", ioe);
2916        } catch (ClassNotFoundException cnfe) {
2917            throw new RuntimeException("Parcelable encountered " +
2918                "ClassNotFoundException reading a Serializable object (name = "
2919                + name + ")", cnfe);
2920        }
2921    }
2922
2923    // Cache of previously looked up CREATOR.createFromParcel() methods for
2924    // particular classes.  Keys are the names of the classes, values are
2925    // Method objects.
2926    private static final HashMap<ClassLoader,HashMap<String,Parcelable.Creator<?>>>
2927        mCreators = new HashMap<>();
2928
2929    /** @hide for internal use only. */
2930    static protected final Parcel obtain(int obj) {
2931        throw new UnsupportedOperationException();
2932    }
2933
2934    /** @hide */
2935    static protected final Parcel obtain(long obj) {
2936        final Parcel[] pool = sHolderPool;
2937        synchronized (pool) {
2938            Parcel p;
2939            for (int i=0; i<POOL_SIZE; i++) {
2940                p = pool[i];
2941                if (p != null) {
2942                    pool[i] = null;
2943                    if (DEBUG_RECYCLE) {
2944                        p.mStack = new RuntimeException();
2945                    }
2946                    p.init(obj);
2947                    return p;
2948                }
2949            }
2950        }
2951        return new Parcel(obj);
2952    }
2953
2954    private Parcel(long nativePtr) {
2955        if (DEBUG_RECYCLE) {
2956            mStack = new RuntimeException();
2957        }
2958        //Log.i(TAG, "Initializing obj=0x" + Integer.toHexString(obj), mStack);
2959        init(nativePtr);
2960    }
2961
2962    private void init(long nativePtr) {
2963        if (nativePtr != 0) {
2964            mNativePtr = nativePtr;
2965            mOwnsNativeParcelObject = false;
2966        } else {
2967            mNativePtr = nativeCreate();
2968            mOwnsNativeParcelObject = true;
2969        }
2970    }
2971
2972    private void freeBuffer() {
2973        if (mOwnsNativeParcelObject) {
2974            updateNativeSize(nativeFreeBuffer(mNativePtr));
2975        }
2976        mReadWriteHelper = ReadWriteHelper.DEFAULT;
2977    }
2978
2979    private void destroy() {
2980        if (mNativePtr != 0) {
2981            if (mOwnsNativeParcelObject) {
2982                nativeDestroy(mNativePtr);
2983                updateNativeSize(0);
2984            }
2985            mNativePtr = 0;
2986        }
2987        mReadWriteHelper = null;
2988    }
2989
2990    @Override
2991    protected void finalize() throws Throwable {
2992        if (DEBUG_RECYCLE) {
2993            if (mStack != null) {
2994                Log.w(TAG, "Client did not call Parcel.recycle()", mStack);
2995            }
2996        }
2997        destroy();
2998    }
2999
3000    /* package */ void readMapInternal(Map outVal, int N,
3001        ClassLoader loader) {
3002        while (N > 0) {
3003            Object key = readValue(loader);
3004            Object value = readValue(loader);
3005            outVal.put(key, value);
3006            N--;
3007        }
3008    }
3009
3010    /* package */ void readArrayMapInternal(ArrayMap outVal, int N,
3011        ClassLoader loader) {
3012        if (DEBUG_ARRAY_MAP) {
3013            RuntimeException here =  new RuntimeException("here");
3014            here.fillInStackTrace();
3015            Log.d(TAG, "Reading " + N + " ArrayMap entries", here);
3016        }
3017        int startPos;
3018        while (N > 0) {
3019            if (DEBUG_ARRAY_MAP) startPos = dataPosition();
3020            String key = readString();
3021            Object value = readValue(loader);
3022            if (DEBUG_ARRAY_MAP) Log.d(TAG, "  Read #" + (N-1) + " "
3023                    + (dataPosition()-startPos) + " bytes: key=0x"
3024                    + Integer.toHexString((key != null ? key.hashCode() : 0)) + " " + key);
3025            outVal.append(key, value);
3026            N--;
3027        }
3028        outVal.validate();
3029    }
3030
3031    /* package */ void readArrayMapSafelyInternal(ArrayMap outVal, int N,
3032        ClassLoader loader) {
3033        if (DEBUG_ARRAY_MAP) {
3034            RuntimeException here =  new RuntimeException("here");
3035            here.fillInStackTrace();
3036            Log.d(TAG, "Reading safely " + N + " ArrayMap entries", here);
3037        }
3038        while (N > 0) {
3039            String key = readString();
3040            if (DEBUG_ARRAY_MAP) Log.d(TAG, "  Read safe #" + (N-1) + ": key=0x"
3041                    + (key != null ? key.hashCode() : 0) + " " + key);
3042            Object value = readValue(loader);
3043            outVal.put(key, value);
3044            N--;
3045        }
3046    }
3047
3048    /**
3049     * @hide For testing only.
3050     */
3051    public void readArrayMap(ArrayMap outVal, ClassLoader loader) {
3052        final int N = readInt();
3053        if (N < 0) {
3054            return;
3055        }
3056        readArrayMapInternal(outVal, N, loader);
3057    }
3058
3059    /**
3060     * Reads an array set.
3061     *
3062     * @param loader The class loader to use.
3063     *
3064     * @hide
3065     */
3066    public @Nullable ArraySet<? extends Object> readArraySet(ClassLoader loader) {
3067        final int size = readInt();
3068        if (size < 0) {
3069            return null;
3070        }
3071        ArraySet<Object> result = new ArraySet<>(size);
3072        for (int i = 0; i < size; i++) {
3073            Object value = readValue(loader);
3074            result.append(value);
3075        }
3076        return result;
3077    }
3078
3079    private void readListInternal(List outVal, int N,
3080        ClassLoader loader) {
3081        while (N > 0) {
3082            Object value = readValue(loader);
3083            //Log.d(TAG, "Unmarshalling value=" + value);
3084            outVal.add(value);
3085            N--;
3086        }
3087    }
3088
3089    private void readArrayInternal(Object[] outVal, int N,
3090        ClassLoader loader) {
3091        for (int i = 0; i < N; i++) {
3092            Object value = readValue(loader);
3093            //Log.d(TAG, "Unmarshalling value=" + value);
3094            outVal[i] = value;
3095        }
3096    }
3097
3098    private void readSparseArrayInternal(SparseArray outVal, int N,
3099        ClassLoader loader) {
3100        while (N > 0) {
3101            int key = readInt();
3102            Object value = readValue(loader);
3103            //Log.i(TAG, "Unmarshalling key=" + key + " value=" + value);
3104            outVal.append(key, value);
3105            N--;
3106        }
3107    }
3108
3109
3110    private void readSparseBooleanArrayInternal(SparseBooleanArray outVal, int N) {
3111        while (N > 0) {
3112            int key = readInt();
3113            boolean value = this.readByte() == 1;
3114            //Log.i(TAG, "Unmarshalling key=" + key + " value=" + value);
3115            outVal.append(key, value);
3116            N--;
3117        }
3118    }
3119
3120    private void readSparseIntArrayInternal(SparseIntArray outVal, int N) {
3121        while (N > 0) {
3122            int key = readInt();
3123            int value = readInt();
3124            outVal.append(key, value);
3125            N--;
3126        }
3127    }
3128
3129    /**
3130     * @hide For testing
3131     */
3132    public long getBlobAshmemSize() {
3133        return nativeGetBlobAshmemSize(mNativePtr);
3134    }
3135}
3136