Parcel.java revision f5d2c7278e0b8745405d1dbbe4554c515ac215a3
1/*
2 * Copyright (C) 2006 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17package android.os;
18
19import android.annotation.IntegerRes;
20import android.annotation.Nullable;
21import android.text.TextUtils;
22import android.util.ArrayMap;
23import android.util.ArraySet;
24import android.util.Log;
25import android.util.Size;
26import android.util.SizeF;
27import android.util.SparseArray;
28import android.util.SparseBooleanArray;
29
30import libcore.util.SneakyThrow;
31
32import java.io.ByteArrayInputStream;
33import java.io.ByteArrayOutputStream;
34import java.io.FileDescriptor;
35import java.io.FileNotFoundException;
36import java.io.IOException;
37import java.io.ObjectInputStream;
38import java.io.ObjectOutputStream;
39import java.io.ObjectStreamClass;
40import java.io.Serializable;
41import java.lang.reflect.Array;
42import java.lang.reflect.Field;
43import java.lang.reflect.Modifier;
44import java.util.ArrayList;
45import java.util.Arrays;
46import java.util.HashMap;
47import java.util.List;
48import java.util.Map;
49import java.util.Set;
50
51import dalvik.annotation.optimization.FastNative;
52import dalvik.system.VMRuntime;
53
54/**
55 * Container for a message (data and object references) that can
56 * be sent through an IBinder.  A Parcel can contain both flattened data
57 * that will be unflattened on the other side of the IPC (using the various
58 * methods here for writing specific types, or the general
59 * {@link Parcelable} interface), and references to live {@link IBinder}
60 * objects that will result in the other side receiving a proxy IBinder
61 * connected with the original IBinder in the Parcel.
62 *
63 * <p class="note">Parcel is <strong>not</strong> a general-purpose
64 * serialization mechanism.  This class (and the corresponding
65 * {@link Parcelable} API for placing arbitrary objects into a Parcel) is
66 * designed as a high-performance IPC transport.  As such, it is not
67 * appropriate to place any Parcel data in to persistent storage: changes
68 * in the underlying implementation of any of the data in the Parcel can
69 * render older data unreadable.</p>
70 *
71 * <p>The bulk of the Parcel API revolves around reading and writing data
72 * of various types.  There are six major classes of such functions available.</p>
73 *
74 * <h3>Primitives</h3>
75 *
76 * <p>The most basic data functions are for writing and reading primitive
77 * data types: {@link #writeByte}, {@link #readByte}, {@link #writeDouble},
78 * {@link #readDouble}, {@link #writeFloat}, {@link #readFloat}, {@link #writeInt},
79 * {@link #readInt}, {@link #writeLong}, {@link #readLong},
80 * {@link #writeString}, {@link #readString}.  Most other
81 * data operations are built on top of these.  The given data is written and
82 * read using the endianess of the host CPU.</p>
83 *
84 * <h3>Primitive Arrays</h3>
85 *
86 * <p>There are a variety of methods for reading and writing raw arrays
87 * of primitive objects, which generally result in writing a 4-byte length
88 * followed by the primitive data items.  The methods for reading can either
89 * read the data into an existing array, or create and return a new array.
90 * These available types are:</p>
91 *
92 * <ul>
93 * <li> {@link #writeBooleanArray(boolean[])},
94 * {@link #readBooleanArray(boolean[])}, {@link #createBooleanArray()}
95 * <li> {@link #writeByteArray(byte[])},
96 * {@link #writeByteArray(byte[], int, int)}, {@link #readByteArray(byte[])},
97 * {@link #createByteArray()}
98 * <li> {@link #writeCharArray(char[])}, {@link #readCharArray(char[])},
99 * {@link #createCharArray()}
100 * <li> {@link #writeDoubleArray(double[])}, {@link #readDoubleArray(double[])},
101 * {@link #createDoubleArray()}
102 * <li> {@link #writeFloatArray(float[])}, {@link #readFloatArray(float[])},
103 * {@link #createFloatArray()}
104 * <li> {@link #writeIntArray(int[])}, {@link #readIntArray(int[])},
105 * {@link #createIntArray()}
106 * <li> {@link #writeLongArray(long[])}, {@link #readLongArray(long[])},
107 * {@link #createLongArray()}
108 * <li> {@link #writeStringArray(String[])}, {@link #readStringArray(String[])},
109 * {@link #createStringArray()}.
110 * <li> {@link #writeSparseBooleanArray(SparseBooleanArray)},
111 * {@link #readSparseBooleanArray()}.
112 * </ul>
113 *
114 * <h3>Parcelables</h3>
115 *
116 * <p>The {@link Parcelable} protocol provides an extremely efficient (but
117 * low-level) protocol for objects to write and read themselves from Parcels.
118 * You can use the direct methods {@link #writeParcelable(Parcelable, int)}
119 * and {@link #readParcelable(ClassLoader)} or
120 * {@link #writeParcelableArray} and
121 * {@link #readParcelableArray(ClassLoader)} to write or read.  These
122 * methods write both the class type and its data to the Parcel, allowing
123 * that class to be reconstructed from the appropriate class loader when
124 * later reading.</p>
125 *
126 * <p>There are also some methods that provide a more efficient way to work
127 * with Parcelables: {@link #writeTypedObject}, {@link #writeTypedArray},
128 * {@link #writeTypedList}, {@link #readTypedObject},
129 * {@link #createTypedArray} and {@link #createTypedArrayList}.  These methods
130 * do not write the class information of the original object: instead, the
131 * caller of the read function must know what type to expect and pass in the
132 * appropriate {@link Parcelable.Creator Parcelable.Creator} instead to
133 * properly construct the new object and read its data.  (To more efficient
134 * write and read a single Parceable object that is not null, you can directly
135 * call {@link Parcelable#writeToParcel Parcelable.writeToParcel} and
136 * {@link Parcelable.Creator#createFromParcel Parcelable.Creator.createFromParcel}
137 * yourself.)</p>
138 *
139 * <h3>Bundles</h3>
140 *
141 * <p>A special type-safe container, called {@link Bundle}, is available
142 * for key/value maps of heterogeneous values.  This has many optimizations
143 * for improved performance when reading and writing data, and its type-safe
144 * API avoids difficult to debug type errors when finally marshalling the
145 * data contents into a Parcel.  The methods to use are
146 * {@link #writeBundle(Bundle)}, {@link #readBundle()}, and
147 * {@link #readBundle(ClassLoader)}.
148 *
149 * <h3>Active Objects</h3>
150 *
151 * <p>An unusual feature of Parcel is the ability to read and write active
152 * objects.  For these objects the actual contents of the object is not
153 * written, rather a special token referencing the object is written.  When
154 * reading the object back from the Parcel, you do not get a new instance of
155 * the object, but rather a handle that operates on the exact same object that
156 * was originally written.  There are two forms of active objects available.</p>
157 *
158 * <p>{@link Binder} objects are a core facility of Android's general cross-process
159 * communication system.  The {@link IBinder} interface describes an abstract
160 * protocol with a Binder object.  Any such interface can be written in to
161 * a Parcel, and upon reading you will receive either the original object
162 * implementing that interface or a special proxy implementation
163 * that communicates calls back to the original object.  The methods to use are
164 * {@link #writeStrongBinder(IBinder)},
165 * {@link #writeStrongInterface(IInterface)}, {@link #readStrongBinder()},
166 * {@link #writeBinderArray(IBinder[])}, {@link #readBinderArray(IBinder[])},
167 * {@link #createBinderArray()},
168 * {@link #writeBinderList(List)}, {@link #readBinderList(List)},
169 * {@link #createBinderArrayList()}.</p>
170 *
171 * <p>FileDescriptor objects, representing raw Linux file descriptor identifiers,
172 * can be written and {@link ParcelFileDescriptor} objects returned to operate
173 * on the original file descriptor.  The returned file descriptor is a dup
174 * of the original file descriptor: the object and fd is different, but
175 * operating on the same underlying file stream, with the same position, etc.
176 * The methods to use are {@link #writeFileDescriptor(FileDescriptor)},
177 * {@link #readFileDescriptor()}.
178 *
179 * <h3>Untyped Containers</h3>
180 *
181 * <p>A final class of methods are for writing and reading standard Java
182 * containers of arbitrary types.  These all revolve around the
183 * {@link #writeValue(Object)} and {@link #readValue(ClassLoader)} methods
184 * which define the types of objects allowed.  The container methods are
185 * {@link #writeArray(Object[])}, {@link #readArray(ClassLoader)},
186 * {@link #writeList(List)}, {@link #readList(List, ClassLoader)},
187 * {@link #readArrayList(ClassLoader)},
188 * {@link #writeMap(Map)}, {@link #readMap(Map, ClassLoader)},
189 * {@link #writeSparseArray(SparseArray)},
190 * {@link #readSparseArray(ClassLoader)}.
191 */
192public final class Parcel {
193    private static final boolean DEBUG_RECYCLE = false;
194    private static final boolean DEBUG_ARRAY_MAP = false;
195    private static final String TAG = "Parcel";
196
197    @SuppressWarnings({"UnusedDeclaration"})
198    private long mNativePtr; // used by native code
199
200    /**
201     * Flag indicating if {@link #mNativePtr} was allocated by this object,
202     * indicating that we're responsible for its lifecycle.
203     */
204    private boolean mOwnsNativeParcelObject;
205    private long mNativeSize;
206
207    private RuntimeException mStack;
208
209    private static final int POOL_SIZE = 6;
210    private static final Parcel[] sOwnedPool = new Parcel[POOL_SIZE];
211    private static final Parcel[] sHolderPool = new Parcel[POOL_SIZE];
212
213    // Keep in sync with frameworks/native/libs/binder/PersistableBundle.cpp.
214    private static final int VAL_NULL = -1;
215    private static final int VAL_STRING = 0;
216    private static final int VAL_INTEGER = 1;
217    private static final int VAL_MAP = 2;
218    private static final int VAL_BUNDLE = 3;
219    private static final int VAL_PARCELABLE = 4;
220    private static final int VAL_SHORT = 5;
221    private static final int VAL_LONG = 6;
222    private static final int VAL_FLOAT = 7;
223    private static final int VAL_DOUBLE = 8;
224    private static final int VAL_BOOLEAN = 9;
225    private static final int VAL_CHARSEQUENCE = 10;
226    private static final int VAL_LIST  = 11;
227    private static final int VAL_SPARSEARRAY = 12;
228    private static final int VAL_BYTEARRAY = 13;
229    private static final int VAL_STRINGARRAY = 14;
230    private static final int VAL_IBINDER = 15;
231    private static final int VAL_PARCELABLEARRAY = 16;
232    private static final int VAL_OBJECTARRAY = 17;
233    private static final int VAL_INTARRAY = 18;
234    private static final int VAL_LONGARRAY = 19;
235    private static final int VAL_BYTE = 20;
236    private static final int VAL_SERIALIZABLE = 21;
237    private static final int VAL_SPARSEBOOLEANARRAY = 22;
238    private static final int VAL_BOOLEANARRAY = 23;
239    private static final int VAL_CHARSEQUENCEARRAY = 24;
240    private static final int VAL_PERSISTABLEBUNDLE = 25;
241    private static final int VAL_SIZE = 26;
242    private static final int VAL_SIZEF = 27;
243    private static final int VAL_DOUBLEARRAY = 28;
244
245    // The initial int32 in a Binder call's reply Parcel header:
246    // Keep these in sync with libbinder's binder/Status.h.
247    private static final int EX_SECURITY = -1;
248    private static final int EX_BAD_PARCELABLE = -2;
249    private static final int EX_ILLEGAL_ARGUMENT = -3;
250    private static final int EX_NULL_POINTER = -4;
251    private static final int EX_ILLEGAL_STATE = -5;
252    private static final int EX_NETWORK_MAIN_THREAD = -6;
253    private static final int EX_UNSUPPORTED_OPERATION = -7;
254    private static final int EX_SERVICE_SPECIFIC = -8;
255    private static final int EX_PARCELABLE = -9;
256    private static final int EX_HAS_REPLY_HEADER = -128;  // special; see below
257    // EX_TRANSACTION_FAILED is used exclusively in native code.
258    // see libbinder's binder/Status.h
259    private static final int EX_TRANSACTION_FAILED = -129;
260
261    @FastNative
262    private static native int nativeDataSize(long nativePtr);
263    @FastNative
264    private static native int nativeDataAvail(long nativePtr);
265    @FastNative
266    private static native int nativeDataPosition(long nativePtr);
267    @FastNative
268    private static native int nativeDataCapacity(long nativePtr);
269    @FastNative
270    private static native long nativeSetDataSize(long nativePtr, int size);
271    @FastNative
272    private static native void nativeSetDataPosition(long nativePtr, int pos);
273    @FastNative
274    private static native void nativeSetDataCapacity(long nativePtr, int size);
275
276    @FastNative
277    private static native boolean nativePushAllowFds(long nativePtr, boolean allowFds);
278    @FastNative
279    private static native void nativeRestoreAllowFds(long nativePtr, boolean lastValue);
280
281    private static native void nativeWriteByteArray(long nativePtr, byte[] b, int offset, int len);
282    private static native void nativeWriteBlob(long nativePtr, byte[] b, int offset, int len);
283    @FastNative
284    private static native void nativeWriteInt(long nativePtr, int val);
285    @FastNative
286    private static native void nativeWriteLong(long nativePtr, long val);
287    @FastNative
288    private static native void nativeWriteFloat(long nativePtr, float val);
289    @FastNative
290    private static native void nativeWriteDouble(long nativePtr, double val);
291    private static native void nativeWriteString(long nativePtr, String val);
292    private static native void nativeWriteStrongBinder(long nativePtr, IBinder val);
293    private static native long nativeWriteFileDescriptor(long nativePtr, FileDescriptor val);
294
295    private static native byte[] nativeCreateByteArray(long nativePtr);
296    private static native byte[] nativeReadBlob(long nativePtr);
297    @FastNative
298    private static native int nativeReadInt(long nativePtr);
299    @FastNative
300    private static native long nativeReadLong(long nativePtr);
301    @FastNative
302    private static native float nativeReadFloat(long nativePtr);
303    @FastNative
304    private static native double nativeReadDouble(long nativePtr);
305    private static native String nativeReadString(long nativePtr);
306    private static native IBinder nativeReadStrongBinder(long nativePtr);
307    private static native FileDescriptor nativeReadFileDescriptor(long nativePtr);
308
309    private static native long nativeCreate();
310    private static native long nativeFreeBuffer(long nativePtr);
311    private static native void nativeDestroy(long nativePtr);
312
313    private static native byte[] nativeMarshall(long nativePtr);
314    private static native long nativeUnmarshall(
315            long nativePtr, byte[] data, int offset, int length);
316    private static native long nativeAppendFrom(
317            long thisNativePtr, long otherNativePtr, int offset, int length);
318    @FastNative
319    private static native boolean nativeHasFileDescriptors(long nativePtr);
320    private static native void nativeWriteInterfaceToken(long nativePtr, String interfaceName);
321    private static native void nativeEnforceInterface(long nativePtr, String interfaceName);
322
323    private static native long nativeGetBlobAshmemSize(long nativePtr);
324
325    public final static Parcelable.Creator<String> STRING_CREATOR
326             = new Parcelable.Creator<String>() {
327        public String createFromParcel(Parcel source) {
328            return source.readString();
329        }
330        public String[] newArray(int size) {
331            return new String[size];
332        }
333    };
334
335    /**
336     * Retrieve a new Parcel object from the pool.
337     */
338    public static Parcel obtain() {
339        final Parcel[] pool = sOwnedPool;
340        synchronized (pool) {
341            Parcel p;
342            for (int i=0; i<POOL_SIZE; i++) {
343                p = pool[i];
344                if (p != null) {
345                    pool[i] = null;
346                    if (DEBUG_RECYCLE) {
347                        p.mStack = new RuntimeException();
348                    }
349                    return p;
350                }
351            }
352        }
353        return new Parcel(0);
354    }
355
356    /**
357     * Put a Parcel object back into the pool.  You must not touch
358     * the object after this call.
359     */
360    public final void recycle() {
361        if (DEBUG_RECYCLE) mStack = null;
362        freeBuffer();
363
364        final Parcel[] pool;
365        if (mOwnsNativeParcelObject) {
366            pool = sOwnedPool;
367        } else {
368            mNativePtr = 0;
369            pool = sHolderPool;
370        }
371
372        synchronized (pool) {
373            for (int i=0; i<POOL_SIZE; i++) {
374                if (pool[i] == null) {
375                    pool[i] = this;
376                    return;
377                }
378            }
379        }
380    }
381
382    /** @hide */
383    public static native long getGlobalAllocSize();
384
385    /** @hide */
386    public static native long getGlobalAllocCount();
387
388    /**
389     * Returns the total amount of data contained in the parcel.
390     */
391    public final int dataSize() {
392        return nativeDataSize(mNativePtr);
393    }
394
395    /**
396     * Returns the amount of data remaining to be read from the
397     * parcel.  That is, {@link #dataSize}-{@link #dataPosition}.
398     */
399    public final int dataAvail() {
400        return nativeDataAvail(mNativePtr);
401    }
402
403    /**
404     * Returns the current position in the parcel data.  Never
405     * more than {@link #dataSize}.
406     */
407    public final int dataPosition() {
408        return nativeDataPosition(mNativePtr);
409    }
410
411    /**
412     * Returns the total amount of space in the parcel.  This is always
413     * >= {@link #dataSize}.  The difference between it and dataSize() is the
414     * amount of room left until the parcel needs to re-allocate its
415     * data buffer.
416     */
417    public final int dataCapacity() {
418        return nativeDataCapacity(mNativePtr);
419    }
420
421    /**
422     * Change the amount of data in the parcel.  Can be either smaller or
423     * larger than the current size.  If larger than the current capacity,
424     * more memory will be allocated.
425     *
426     * @param size The new number of bytes in the Parcel.
427     */
428    public final void setDataSize(int size) {
429        updateNativeSize(nativeSetDataSize(mNativePtr, size));
430    }
431
432    /**
433     * Move the current read/write position in the parcel.
434     * @param pos New offset in the parcel; must be between 0 and
435     * {@link #dataSize}.
436     */
437    public final void setDataPosition(int pos) {
438        nativeSetDataPosition(mNativePtr, pos);
439    }
440
441    /**
442     * Change the capacity (current available space) of the parcel.
443     *
444     * @param size The new capacity of the parcel, in bytes.  Can not be
445     * less than {@link #dataSize} -- that is, you can not drop existing data
446     * with this method.
447     */
448    public final void setDataCapacity(int size) {
449        nativeSetDataCapacity(mNativePtr, size);
450    }
451
452    /** @hide */
453    public final boolean pushAllowFds(boolean allowFds) {
454        return nativePushAllowFds(mNativePtr, allowFds);
455    }
456
457    /** @hide */
458    public final void restoreAllowFds(boolean lastValue) {
459        nativeRestoreAllowFds(mNativePtr, lastValue);
460    }
461
462    /**
463     * Returns the raw bytes of the parcel.
464     *
465     * <p class="note">The data you retrieve here <strong>must not</strong>
466     * be placed in any kind of persistent storage (on local disk, across
467     * a network, etc).  For that, you should use standard serialization
468     * or another kind of general serialization mechanism.  The Parcel
469     * marshalled representation is highly optimized for local IPC, and as
470     * such does not attempt to maintain compatibility with data created
471     * in different versions of the platform.
472     */
473    public final byte[] marshall() {
474        return nativeMarshall(mNativePtr);
475    }
476
477    /**
478     * Set the bytes in data to be the raw bytes of this Parcel.
479     */
480    public final void unmarshall(byte[] data, int offset, int length) {
481        updateNativeSize(nativeUnmarshall(mNativePtr, data, offset, length));
482    }
483
484    public final void appendFrom(Parcel parcel, int offset, int length) {
485        updateNativeSize(nativeAppendFrom(mNativePtr, parcel.mNativePtr, offset, length));
486    }
487
488    /**
489     * Report whether the parcel contains any marshalled file descriptors.
490     */
491    public final boolean hasFileDescriptors() {
492        return nativeHasFileDescriptors(mNativePtr);
493    }
494
495    /**
496     * Store or read an IBinder interface token in the parcel at the current
497     * {@link #dataPosition}.  This is used to validate that the marshalled
498     * transaction is intended for the target interface.
499     */
500    public final void writeInterfaceToken(String interfaceName) {
501        nativeWriteInterfaceToken(mNativePtr, interfaceName);
502    }
503
504    public final void enforceInterface(String interfaceName) {
505        nativeEnforceInterface(mNativePtr, interfaceName);
506    }
507
508    /**
509     * Write a byte array into the parcel at the current {@link #dataPosition},
510     * growing {@link #dataCapacity} if needed.
511     * @param b Bytes to place into the parcel.
512     */
513    public final void writeByteArray(byte[] b) {
514        writeByteArray(b, 0, (b != null) ? b.length : 0);
515    }
516
517    /**
518     * Write a byte array into the parcel at the current {@link #dataPosition},
519     * growing {@link #dataCapacity} if needed.
520     * @param b Bytes to place into the parcel.
521     * @param offset Index of first byte to be written.
522     * @param len Number of bytes to write.
523     */
524    public final void writeByteArray(byte[] b, int offset, int len) {
525        if (b == null) {
526            writeInt(-1);
527            return;
528        }
529        Arrays.checkOffsetAndCount(b.length, offset, len);
530        nativeWriteByteArray(mNativePtr, b, offset, len);
531    }
532
533    /**
534     * Write a blob of data into the parcel at the current {@link #dataPosition},
535     * growing {@link #dataCapacity} if needed.
536     * @param b Bytes to place into the parcel.
537     * {@hide}
538     * {@SystemApi}
539     */
540    public final void writeBlob(byte[] b) {
541        writeBlob(b, 0, (b != null) ? b.length : 0);
542    }
543
544    /**
545     * Write a blob of data into the parcel at the current {@link #dataPosition},
546     * growing {@link #dataCapacity} if needed.
547     * @param b Bytes to place into the parcel.
548     * @param offset Index of first byte to be written.
549     * @param len Number of bytes to write.
550     * {@hide}
551     * {@SystemApi}
552     */
553    public final void writeBlob(byte[] b, int offset, int len) {
554        if (b == null) {
555            writeInt(-1);
556            return;
557        }
558        Arrays.checkOffsetAndCount(b.length, offset, len);
559        nativeWriteBlob(mNativePtr, b, offset, len);
560    }
561
562    /**
563     * Write an integer value into the parcel at the current dataPosition(),
564     * growing dataCapacity() if needed.
565     */
566    public final void writeInt(int val) {
567        nativeWriteInt(mNativePtr, val);
568    }
569
570    /**
571     * Write a long integer value into the parcel at the current dataPosition(),
572     * growing dataCapacity() if needed.
573     */
574    public final void writeLong(long val) {
575        nativeWriteLong(mNativePtr, val);
576    }
577
578    /**
579     * Write a floating point value into the parcel at the current
580     * dataPosition(), growing dataCapacity() if needed.
581     */
582    public final void writeFloat(float val) {
583        nativeWriteFloat(mNativePtr, val);
584    }
585
586    /**
587     * Write a double precision floating point value into the parcel at the
588     * current dataPosition(), growing dataCapacity() if needed.
589     */
590    public final void writeDouble(double val) {
591        nativeWriteDouble(mNativePtr, val);
592    }
593
594    /**
595     * Write a string value into the parcel at the current dataPosition(),
596     * growing dataCapacity() if needed.
597     */
598    public final void writeString(String val) {
599        nativeWriteString(mNativePtr, val);
600    }
601
602    /**
603     * Write a CharSequence value into the parcel at the current dataPosition(),
604     * growing dataCapacity() if needed.
605     * @hide
606     */
607    public final void writeCharSequence(CharSequence val) {
608        TextUtils.writeToParcel(val, this, 0);
609    }
610
611    /**
612     * Write an object into the parcel at the current dataPosition(),
613     * growing dataCapacity() if needed.
614     */
615    public final void writeStrongBinder(IBinder val) {
616        nativeWriteStrongBinder(mNativePtr, val);
617    }
618
619    /**
620     * Write an object into the parcel at the current dataPosition(),
621     * growing dataCapacity() if needed.
622     */
623    public final void writeStrongInterface(IInterface val) {
624        writeStrongBinder(val == null ? null : val.asBinder());
625    }
626
627    /**
628     * Write a FileDescriptor into the parcel at the current dataPosition(),
629     * growing dataCapacity() if needed.
630     *
631     * <p class="caution">The file descriptor will not be closed, which may
632     * result in file descriptor leaks when objects are returned from Binder
633     * calls.  Use {@link ParcelFileDescriptor#writeToParcel} instead, which
634     * accepts contextual flags and will close the original file descriptor
635     * if {@link Parcelable#PARCELABLE_WRITE_RETURN_VALUE} is set.</p>
636     */
637    public final void writeFileDescriptor(FileDescriptor val) {
638        updateNativeSize(nativeWriteFileDescriptor(mNativePtr, val));
639    }
640
641    private void updateNativeSize(long newNativeSize) {
642        if (mOwnsNativeParcelObject) {
643            if (newNativeSize > Integer.MAX_VALUE) {
644                newNativeSize = Integer.MAX_VALUE;
645            }
646            if (newNativeSize != mNativeSize) {
647                int delta = (int) (newNativeSize - mNativeSize);
648                if (delta > 0) {
649                    VMRuntime.getRuntime().registerNativeAllocation(delta);
650                } else {
651                    VMRuntime.getRuntime().registerNativeFree(-delta);
652                }
653                mNativeSize = newNativeSize;
654            }
655        }
656    }
657
658    /**
659     * {@hide}
660     * This will be the new name for writeFileDescriptor, for consistency.
661     **/
662    public final void writeRawFileDescriptor(FileDescriptor val) {
663        nativeWriteFileDescriptor(mNativePtr, val);
664    }
665
666    /**
667     * {@hide}
668     * Write an array of FileDescriptor objects into the Parcel.
669     *
670     * @param value The array of objects to be written.
671     */
672    public final void writeRawFileDescriptorArray(FileDescriptor[] value) {
673        if (value != null) {
674            int N = value.length;
675            writeInt(N);
676            for (int i=0; i<N; i++) {
677                writeRawFileDescriptor(value[i]);
678            }
679        } else {
680            writeInt(-1);
681        }
682    }
683
684    /**
685     * Write a byte value into the parcel at the current dataPosition(),
686     * growing dataCapacity() if needed.
687     */
688    public final void writeByte(byte val) {
689        writeInt(val);
690    }
691
692    /**
693     * Please use {@link #writeBundle} instead.  Flattens a Map into the parcel
694     * at the current dataPosition(),
695     * growing dataCapacity() if needed.  The Map keys must be String objects.
696     * The Map values are written using {@link #writeValue} and must follow
697     * the specification there.
698     *
699     * <p>It is strongly recommended to use {@link #writeBundle} instead of
700     * this method, since the Bundle class provides a type-safe API that
701     * allows you to avoid mysterious type errors at the point of marshalling.
702     */
703    public final void writeMap(Map val) {
704        writeMapInternal((Map<String, Object>) val);
705    }
706
707    /**
708     * Flatten a Map into the parcel at the current dataPosition(),
709     * growing dataCapacity() if needed.  The Map keys must be String objects.
710     */
711    /* package */ void writeMapInternal(Map<String,Object> val) {
712        if (val == null) {
713            writeInt(-1);
714            return;
715        }
716        Set<Map.Entry<String,Object>> entries = val.entrySet();
717        writeInt(entries.size());
718        for (Map.Entry<String,Object> e : entries) {
719            writeValue(e.getKey());
720            writeValue(e.getValue());
721        }
722    }
723
724    /**
725     * Flatten an ArrayMap into the parcel at the current dataPosition(),
726     * growing dataCapacity() if needed.  The Map keys must be String objects.
727     */
728    /* package */ void writeArrayMapInternal(ArrayMap<String, Object> val) {
729        if (val == null) {
730            writeInt(-1);
731            return;
732        }
733        // Keep the format of this Parcel in sync with writeToParcelInner() in
734        // frameworks/native/libs/binder/PersistableBundle.cpp.
735        final int N = val.size();
736        writeInt(N);
737        if (DEBUG_ARRAY_MAP) {
738            RuntimeException here =  new RuntimeException("here");
739            here.fillInStackTrace();
740            Log.d(TAG, "Writing " + N + " ArrayMap entries", here);
741        }
742        int startPos;
743        for (int i=0; i<N; i++) {
744            if (DEBUG_ARRAY_MAP) startPos = dataPosition();
745            writeString(val.keyAt(i));
746            writeValue(val.valueAt(i));
747            if (DEBUG_ARRAY_MAP) Log.d(TAG, "  Write #" + i + " "
748                    + (dataPosition()-startPos) + " bytes: key=0x"
749                    + Integer.toHexString(val.keyAt(i) != null ? val.keyAt(i).hashCode() : 0)
750                    + " " + val.keyAt(i));
751        }
752    }
753
754    /**
755     * @hide For testing only.
756     */
757    public void writeArrayMap(ArrayMap<String, Object> val) {
758        writeArrayMapInternal(val);
759    }
760
761    /**
762     * Write an array set to the parcel.
763     *
764     * @param val The array set to write.
765     *
766     * @hide
767     */
768    public void writeArraySet(@Nullable ArraySet<? extends Object> val) {
769        final int size = (val != null) ? val.size() : -1;
770        writeInt(size);
771        for (int i = 0; i < size; i++) {
772            writeValue(val.valueAt(i));
773        }
774    }
775
776    /**
777     * Flatten a Bundle into the parcel at the current dataPosition(),
778     * growing dataCapacity() if needed.
779     */
780    public final void writeBundle(Bundle val) {
781        if (val == null) {
782            writeInt(-1);
783            return;
784        }
785
786        val.writeToParcel(this, 0);
787    }
788
789    /**
790     * Flatten a PersistableBundle into the parcel at the current dataPosition(),
791     * growing dataCapacity() if needed.
792     */
793    public final void writePersistableBundle(PersistableBundle val) {
794        if (val == null) {
795            writeInt(-1);
796            return;
797        }
798
799        val.writeToParcel(this, 0);
800    }
801
802    /**
803     * Flatten a Size into the parcel at the current dataPosition(),
804     * growing dataCapacity() if needed.
805     */
806    public final void writeSize(Size val) {
807        writeInt(val.getWidth());
808        writeInt(val.getHeight());
809    }
810
811    /**
812     * Flatten a SizeF into the parcel at the current dataPosition(),
813     * growing dataCapacity() if needed.
814     */
815    public final void writeSizeF(SizeF val) {
816        writeFloat(val.getWidth());
817        writeFloat(val.getHeight());
818    }
819
820    /**
821     * Flatten a List into the parcel at the current dataPosition(), growing
822     * dataCapacity() if needed.  The List values are written using
823     * {@link #writeValue} and must follow the specification there.
824     */
825    public final void writeList(List val) {
826        if (val == null) {
827            writeInt(-1);
828            return;
829        }
830        int N = val.size();
831        int i=0;
832        writeInt(N);
833        while (i < N) {
834            writeValue(val.get(i));
835            i++;
836        }
837    }
838
839    /**
840     * Flatten an Object array into the parcel at the current dataPosition(),
841     * growing dataCapacity() if needed.  The array values are written using
842     * {@link #writeValue} and must follow the specification there.
843     */
844    public final void writeArray(Object[] val) {
845        if (val == null) {
846            writeInt(-1);
847            return;
848        }
849        int N = val.length;
850        int i=0;
851        writeInt(N);
852        while (i < N) {
853            writeValue(val[i]);
854            i++;
855        }
856    }
857
858    /**
859     * Flatten a generic SparseArray into the parcel at the current
860     * dataPosition(), growing dataCapacity() if needed.  The SparseArray
861     * values are written using {@link #writeValue} and must follow the
862     * specification there.
863     */
864    public final void writeSparseArray(SparseArray<Object> val) {
865        if (val == null) {
866            writeInt(-1);
867            return;
868        }
869        int N = val.size();
870        writeInt(N);
871        int i=0;
872        while (i < N) {
873            writeInt(val.keyAt(i));
874            writeValue(val.valueAt(i));
875            i++;
876        }
877    }
878
879    public final void writeSparseBooleanArray(SparseBooleanArray val) {
880        if (val == null) {
881            writeInt(-1);
882            return;
883        }
884        int N = val.size();
885        writeInt(N);
886        int i=0;
887        while (i < N) {
888            writeInt(val.keyAt(i));
889            writeByte((byte)(val.valueAt(i) ? 1 : 0));
890            i++;
891        }
892    }
893
894    public final void writeBooleanArray(boolean[] val) {
895        if (val != null) {
896            int N = val.length;
897            writeInt(N);
898            for (int i=0; i<N; i++) {
899                writeInt(val[i] ? 1 : 0);
900            }
901        } else {
902            writeInt(-1);
903        }
904    }
905
906    public final boolean[] createBooleanArray() {
907        int N = readInt();
908        // >>2 as a fast divide-by-4 works in the create*Array() functions
909        // because dataAvail() will never return a negative number.  4 is
910        // the size of a stored boolean in the stream.
911        if (N >= 0 && N <= (dataAvail() >> 2)) {
912            boolean[] val = new boolean[N];
913            for (int i=0; i<N; i++) {
914                val[i] = readInt() != 0;
915            }
916            return val;
917        } else {
918            return null;
919        }
920    }
921
922    public final void readBooleanArray(boolean[] val) {
923        int N = readInt();
924        if (N == val.length) {
925            for (int i=0; i<N; i++) {
926                val[i] = readInt() != 0;
927            }
928        } else {
929            throw new RuntimeException("bad array lengths");
930        }
931    }
932
933    public final void writeCharArray(char[] val) {
934        if (val != null) {
935            int N = val.length;
936            writeInt(N);
937            for (int i=0; i<N; i++) {
938                writeInt((int)val[i]);
939            }
940        } else {
941            writeInt(-1);
942        }
943    }
944
945    public final char[] createCharArray() {
946        int N = readInt();
947        if (N >= 0 && N <= (dataAvail() >> 2)) {
948            char[] val = new char[N];
949            for (int i=0; i<N; i++) {
950                val[i] = (char)readInt();
951            }
952            return val;
953        } else {
954            return null;
955        }
956    }
957
958    public final void readCharArray(char[] val) {
959        int N = readInt();
960        if (N == val.length) {
961            for (int i=0; i<N; i++) {
962                val[i] = (char)readInt();
963            }
964        } else {
965            throw new RuntimeException("bad array lengths");
966        }
967    }
968
969    public final void writeIntArray(int[] val) {
970        if (val != null) {
971            int N = val.length;
972            writeInt(N);
973            for (int i=0; i<N; i++) {
974                writeInt(val[i]);
975            }
976        } else {
977            writeInt(-1);
978        }
979    }
980
981    public final int[] createIntArray() {
982        int N = readInt();
983        if (N >= 0 && N <= (dataAvail() >> 2)) {
984            int[] val = new int[N];
985            for (int i=0; i<N; i++) {
986                val[i] = readInt();
987            }
988            return val;
989        } else {
990            return null;
991        }
992    }
993
994    public final void readIntArray(int[] val) {
995        int N = readInt();
996        if (N == val.length) {
997            for (int i=0; i<N; i++) {
998                val[i] = readInt();
999            }
1000        } else {
1001            throw new RuntimeException("bad array lengths");
1002        }
1003    }
1004
1005    public final void writeLongArray(long[] val) {
1006        if (val != null) {
1007            int N = val.length;
1008            writeInt(N);
1009            for (int i=0; i<N; i++) {
1010                writeLong(val[i]);
1011            }
1012        } else {
1013            writeInt(-1);
1014        }
1015    }
1016
1017    public final long[] createLongArray() {
1018        int N = readInt();
1019        // >>3 because stored longs are 64 bits
1020        if (N >= 0 && N <= (dataAvail() >> 3)) {
1021            long[] val = new long[N];
1022            for (int i=0; i<N; i++) {
1023                val[i] = readLong();
1024            }
1025            return val;
1026        } else {
1027            return null;
1028        }
1029    }
1030
1031    public final void readLongArray(long[] val) {
1032        int N = readInt();
1033        if (N == val.length) {
1034            for (int i=0; i<N; i++) {
1035                val[i] = readLong();
1036            }
1037        } else {
1038            throw new RuntimeException("bad array lengths");
1039        }
1040    }
1041
1042    public final void writeFloatArray(float[] val) {
1043        if (val != null) {
1044            int N = val.length;
1045            writeInt(N);
1046            for (int i=0; i<N; i++) {
1047                writeFloat(val[i]);
1048            }
1049        } else {
1050            writeInt(-1);
1051        }
1052    }
1053
1054    public final float[] createFloatArray() {
1055        int N = readInt();
1056        // >>2 because stored floats are 4 bytes
1057        if (N >= 0 && N <= (dataAvail() >> 2)) {
1058            float[] val = new float[N];
1059            for (int i=0; i<N; i++) {
1060                val[i] = readFloat();
1061            }
1062            return val;
1063        } else {
1064            return null;
1065        }
1066    }
1067
1068    public final void readFloatArray(float[] val) {
1069        int N = readInt();
1070        if (N == val.length) {
1071            for (int i=0; i<N; i++) {
1072                val[i] = readFloat();
1073            }
1074        } else {
1075            throw new RuntimeException("bad array lengths");
1076        }
1077    }
1078
1079    public final void writeDoubleArray(double[] val) {
1080        if (val != null) {
1081            int N = val.length;
1082            writeInt(N);
1083            for (int i=0; i<N; i++) {
1084                writeDouble(val[i]);
1085            }
1086        } else {
1087            writeInt(-1);
1088        }
1089    }
1090
1091    public final double[] createDoubleArray() {
1092        int N = readInt();
1093        // >>3 because stored doubles are 8 bytes
1094        if (N >= 0 && N <= (dataAvail() >> 3)) {
1095            double[] val = new double[N];
1096            for (int i=0; i<N; i++) {
1097                val[i] = readDouble();
1098            }
1099            return val;
1100        } else {
1101            return null;
1102        }
1103    }
1104
1105    public final void readDoubleArray(double[] val) {
1106        int N = readInt();
1107        if (N == val.length) {
1108            for (int i=0; i<N; i++) {
1109                val[i] = readDouble();
1110            }
1111        } else {
1112            throw new RuntimeException("bad array lengths");
1113        }
1114    }
1115
1116    public final void writeStringArray(String[] val) {
1117        if (val != null) {
1118            int N = val.length;
1119            writeInt(N);
1120            for (int i=0; i<N; i++) {
1121                writeString(val[i]);
1122            }
1123        } else {
1124            writeInt(-1);
1125        }
1126    }
1127
1128    public final String[] createStringArray() {
1129        int N = readInt();
1130        if (N >= 0) {
1131            String[] val = new String[N];
1132            for (int i=0; i<N; i++) {
1133                val[i] = readString();
1134            }
1135            return val;
1136        } else {
1137            return null;
1138        }
1139    }
1140
1141    public final void readStringArray(String[] val) {
1142        int N = readInt();
1143        if (N == val.length) {
1144            for (int i=0; i<N; i++) {
1145                val[i] = readString();
1146            }
1147        } else {
1148            throw new RuntimeException("bad array lengths");
1149        }
1150    }
1151
1152    public final void writeBinderArray(IBinder[] val) {
1153        if (val != null) {
1154            int N = val.length;
1155            writeInt(N);
1156            for (int i=0; i<N; i++) {
1157                writeStrongBinder(val[i]);
1158            }
1159        } else {
1160            writeInt(-1);
1161        }
1162    }
1163
1164    /**
1165     * @hide
1166     */
1167    public final void writeCharSequenceArray(CharSequence[] val) {
1168        if (val != null) {
1169            int N = val.length;
1170            writeInt(N);
1171            for (int i=0; i<N; i++) {
1172                writeCharSequence(val[i]);
1173            }
1174        } else {
1175            writeInt(-1);
1176        }
1177    }
1178
1179    /**
1180     * @hide
1181     */
1182    public final void writeCharSequenceList(ArrayList<CharSequence> val) {
1183        if (val != null) {
1184            int N = val.size();
1185            writeInt(N);
1186            for (int i=0; i<N; i++) {
1187                writeCharSequence(val.get(i));
1188            }
1189        } else {
1190            writeInt(-1);
1191        }
1192    }
1193
1194    public final IBinder[] createBinderArray() {
1195        int N = readInt();
1196        if (N >= 0) {
1197            IBinder[] val = new IBinder[N];
1198            for (int i=0; i<N; i++) {
1199                val[i] = readStrongBinder();
1200            }
1201            return val;
1202        } else {
1203            return null;
1204        }
1205    }
1206
1207    public final void readBinderArray(IBinder[] val) {
1208        int N = readInt();
1209        if (N == val.length) {
1210            for (int i=0; i<N; i++) {
1211                val[i] = readStrongBinder();
1212            }
1213        } else {
1214            throw new RuntimeException("bad array lengths");
1215        }
1216    }
1217
1218    /**
1219     * Flatten a List containing a particular object type into the parcel, at
1220     * the current dataPosition() and growing dataCapacity() if needed.  The
1221     * type of the objects in the list must be one that implements Parcelable.
1222     * Unlike the generic writeList() method, however, only the raw data of the
1223     * objects is written and not their type, so you must use the corresponding
1224     * readTypedList() to unmarshall them.
1225     *
1226     * @param val The list of objects to be written.
1227     *
1228     * @see #createTypedArrayList
1229     * @see #readTypedList
1230     * @see Parcelable
1231     */
1232    public final <T extends Parcelable> void writeTypedList(List<T> val) {
1233        if (val == null) {
1234            writeInt(-1);
1235            return;
1236        }
1237        int N = val.size();
1238        int i=0;
1239        writeInt(N);
1240        while (i < N) {
1241            T item = val.get(i);
1242            if (item != null) {
1243                writeInt(1);
1244                item.writeToParcel(this, 0);
1245            } else {
1246                writeInt(0);
1247            }
1248            i++;
1249        }
1250    }
1251
1252    /**
1253     * Flatten a List containing String objects into the parcel, at
1254     * the current dataPosition() and growing dataCapacity() if needed.  They
1255     * can later be retrieved with {@link #createStringArrayList} or
1256     * {@link #readStringList}.
1257     *
1258     * @param val The list of strings to be written.
1259     *
1260     * @see #createStringArrayList
1261     * @see #readStringList
1262     */
1263    public final void writeStringList(List<String> val) {
1264        if (val == null) {
1265            writeInt(-1);
1266            return;
1267        }
1268        int N = val.size();
1269        int i=0;
1270        writeInt(N);
1271        while (i < N) {
1272            writeString(val.get(i));
1273            i++;
1274        }
1275    }
1276
1277    /**
1278     * Flatten a List containing IBinder objects into the parcel, at
1279     * the current dataPosition() and growing dataCapacity() if needed.  They
1280     * can later be retrieved with {@link #createBinderArrayList} or
1281     * {@link #readBinderList}.
1282     *
1283     * @param val The list of strings to be written.
1284     *
1285     * @see #createBinderArrayList
1286     * @see #readBinderList
1287     */
1288    public final void writeBinderList(List<IBinder> val) {
1289        if (val == null) {
1290            writeInt(-1);
1291            return;
1292        }
1293        int N = val.size();
1294        int i=0;
1295        writeInt(N);
1296        while (i < N) {
1297            writeStrongBinder(val.get(i));
1298            i++;
1299        }
1300    }
1301
1302    /**
1303     * Flatten a {@code List} containing arbitrary {@code Parcelable} objects into this parcel
1304     * at the current position. They can later be retrieved using
1305     * {@link #readParcelableList(List, ClassLoader)} if required.
1306     *
1307     * @see #readParcelableList(List, ClassLoader)
1308     * @hide
1309     */
1310    public final <T extends Parcelable> void writeParcelableList(List<T> val, int flags) {
1311        if (val == null) {
1312            writeInt(-1);
1313            return;
1314        }
1315
1316        int N = val.size();
1317        int i=0;
1318        writeInt(N);
1319        while (i < N) {
1320            writeParcelable(val.get(i), flags);
1321            i++;
1322        }
1323    }
1324
1325    /**
1326     * Flatten a heterogeneous array containing a particular object type into
1327     * the parcel, at
1328     * the current dataPosition() and growing dataCapacity() if needed.  The
1329     * type of the objects in the array must be one that implements Parcelable.
1330     * Unlike the {@link #writeParcelableArray} method, however, only the
1331     * raw data of the objects is written and not their type, so you must use
1332     * {@link #readTypedArray} with the correct corresponding
1333     * {@link Parcelable.Creator} implementation to unmarshall them.
1334     *
1335     * @param val The array of objects to be written.
1336     * @param parcelableFlags Contextual flags as per
1337     * {@link Parcelable#writeToParcel(Parcel, int) Parcelable.writeToParcel()}.
1338     *
1339     * @see #readTypedArray
1340     * @see #writeParcelableArray
1341     * @see Parcelable.Creator
1342     */
1343    public final <T extends Parcelable> void writeTypedArray(T[] val,
1344            int parcelableFlags) {
1345        if (val != null) {
1346            int N = val.length;
1347            writeInt(N);
1348            for (int i=0; i<N; i++) {
1349                T item = val[i];
1350                if (item != null) {
1351                    writeInt(1);
1352                    item.writeToParcel(this, parcelableFlags);
1353                } else {
1354                    writeInt(0);
1355                }
1356            }
1357        } else {
1358            writeInt(-1);
1359        }
1360    }
1361
1362    /**
1363     * Flatten the Parcelable object into the parcel.
1364     *
1365     * @param val The Parcelable object to be written.
1366     * @param parcelableFlags Contextual flags as per
1367     * {@link Parcelable#writeToParcel(Parcel, int) Parcelable.writeToParcel()}.
1368     *
1369     * @see #readTypedObject
1370     */
1371    public final <T extends Parcelable> void writeTypedObject(T val, int parcelableFlags) {
1372        if (val != null) {
1373            writeInt(1);
1374            val.writeToParcel(this, parcelableFlags);
1375        } else {
1376            writeInt(0);
1377        }
1378    }
1379
1380    /**
1381     * Flatten a generic object in to a parcel.  The given Object value may
1382     * currently be one of the following types:
1383     *
1384     * <ul>
1385     * <li> null
1386     * <li> String
1387     * <li> Byte
1388     * <li> Short
1389     * <li> Integer
1390     * <li> Long
1391     * <li> Float
1392     * <li> Double
1393     * <li> Boolean
1394     * <li> String[]
1395     * <li> boolean[]
1396     * <li> byte[]
1397     * <li> int[]
1398     * <li> long[]
1399     * <li> Object[] (supporting objects of the same type defined here).
1400     * <li> {@link Bundle}
1401     * <li> Map (as supported by {@link #writeMap}).
1402     * <li> Any object that implements the {@link Parcelable} protocol.
1403     * <li> Parcelable[]
1404     * <li> CharSequence (as supported by {@link TextUtils#writeToParcel}).
1405     * <li> List (as supported by {@link #writeList}).
1406     * <li> {@link SparseArray} (as supported by {@link #writeSparseArray(SparseArray)}).
1407     * <li> {@link IBinder}
1408     * <li> Any object that implements Serializable (but see
1409     *      {@link #writeSerializable} for caveats).  Note that all of the
1410     *      previous types have relatively efficient implementations for
1411     *      writing to a Parcel; having to rely on the generic serialization
1412     *      approach is much less efficient and should be avoided whenever
1413     *      possible.
1414     * </ul>
1415     *
1416     * <p class="caution">{@link Parcelable} objects are written with
1417     * {@link Parcelable#writeToParcel} using contextual flags of 0.  When
1418     * serializing objects containing {@link ParcelFileDescriptor}s,
1419     * this may result in file descriptor leaks when they are returned from
1420     * Binder calls (where {@link Parcelable#PARCELABLE_WRITE_RETURN_VALUE}
1421     * should be used).</p>
1422     */
1423    public final void writeValue(Object v) {
1424        if (v == null) {
1425            writeInt(VAL_NULL);
1426        } else if (v instanceof String) {
1427            writeInt(VAL_STRING);
1428            writeString((String) v);
1429        } else if (v instanceof Integer) {
1430            writeInt(VAL_INTEGER);
1431            writeInt((Integer) v);
1432        } else if (v instanceof Map) {
1433            writeInt(VAL_MAP);
1434            writeMap((Map) v);
1435        } else if (v instanceof Bundle) {
1436            // Must be before Parcelable
1437            writeInt(VAL_BUNDLE);
1438            writeBundle((Bundle) v);
1439        } else if (v instanceof PersistableBundle) {
1440            writeInt(VAL_PERSISTABLEBUNDLE);
1441            writePersistableBundle((PersistableBundle) v);
1442        } else if (v instanceof Parcelable) {
1443            // IMPOTANT: cases for classes that implement Parcelable must
1444            // come before the Parcelable case, so that their specific VAL_*
1445            // types will be written.
1446            writeInt(VAL_PARCELABLE);
1447            writeParcelable((Parcelable) v, 0);
1448        } else if (v instanceof Short) {
1449            writeInt(VAL_SHORT);
1450            writeInt(((Short) v).intValue());
1451        } else if (v instanceof Long) {
1452            writeInt(VAL_LONG);
1453            writeLong((Long) v);
1454        } else if (v instanceof Float) {
1455            writeInt(VAL_FLOAT);
1456            writeFloat((Float) v);
1457        } else if (v instanceof Double) {
1458            writeInt(VAL_DOUBLE);
1459            writeDouble((Double) v);
1460        } else if (v instanceof Boolean) {
1461            writeInt(VAL_BOOLEAN);
1462            writeInt((Boolean) v ? 1 : 0);
1463        } else if (v instanceof CharSequence) {
1464            // Must be after String
1465            writeInt(VAL_CHARSEQUENCE);
1466            writeCharSequence((CharSequence) v);
1467        } else if (v instanceof List) {
1468            writeInt(VAL_LIST);
1469            writeList((List) v);
1470        } else if (v instanceof SparseArray) {
1471            writeInt(VAL_SPARSEARRAY);
1472            writeSparseArray((SparseArray) v);
1473        } else if (v instanceof boolean[]) {
1474            writeInt(VAL_BOOLEANARRAY);
1475            writeBooleanArray((boolean[]) v);
1476        } else if (v instanceof byte[]) {
1477            writeInt(VAL_BYTEARRAY);
1478            writeByteArray((byte[]) v);
1479        } else if (v instanceof String[]) {
1480            writeInt(VAL_STRINGARRAY);
1481            writeStringArray((String[]) v);
1482        } else if (v instanceof CharSequence[]) {
1483            // Must be after String[] and before Object[]
1484            writeInt(VAL_CHARSEQUENCEARRAY);
1485            writeCharSequenceArray((CharSequence[]) v);
1486        } else if (v instanceof IBinder) {
1487            writeInt(VAL_IBINDER);
1488            writeStrongBinder((IBinder) v);
1489        } else if (v instanceof Parcelable[]) {
1490            writeInt(VAL_PARCELABLEARRAY);
1491            writeParcelableArray((Parcelable[]) v, 0);
1492        } else if (v instanceof int[]) {
1493            writeInt(VAL_INTARRAY);
1494            writeIntArray((int[]) v);
1495        } else if (v instanceof long[]) {
1496            writeInt(VAL_LONGARRAY);
1497            writeLongArray((long[]) v);
1498        } else if (v instanceof Byte) {
1499            writeInt(VAL_BYTE);
1500            writeInt((Byte) v);
1501        } else if (v instanceof Size) {
1502            writeInt(VAL_SIZE);
1503            writeSize((Size) v);
1504        } else if (v instanceof SizeF) {
1505            writeInt(VAL_SIZEF);
1506            writeSizeF((SizeF) v);
1507        } else if (v instanceof double[]) {
1508            writeInt(VAL_DOUBLEARRAY);
1509            writeDoubleArray((double[]) v);
1510        } else {
1511            Class<?> clazz = v.getClass();
1512            if (clazz.isArray() && clazz.getComponentType() == Object.class) {
1513                // Only pure Object[] are written here, Other arrays of non-primitive types are
1514                // handled by serialization as this does not record the component type.
1515                writeInt(VAL_OBJECTARRAY);
1516                writeArray((Object[]) v);
1517            } else if (v instanceof Serializable) {
1518                // Must be last
1519                writeInt(VAL_SERIALIZABLE);
1520                writeSerializable((Serializable) v);
1521            } else {
1522                throw new RuntimeException("Parcel: unable to marshal value " + v);
1523            }
1524        }
1525    }
1526
1527    /**
1528     * Flatten the name of the class of the Parcelable and its contents
1529     * into the parcel.
1530     *
1531     * @param p The Parcelable object to be written.
1532     * @param parcelableFlags Contextual flags as per
1533     * {@link Parcelable#writeToParcel(Parcel, int) Parcelable.writeToParcel()}.
1534     */
1535    public final void writeParcelable(Parcelable p, int parcelableFlags) {
1536        if (p == null) {
1537            writeString(null);
1538            return;
1539        }
1540        writeParcelableCreator(p);
1541        p.writeToParcel(this, parcelableFlags);
1542    }
1543
1544    /** @hide */
1545    public final void writeParcelableCreator(Parcelable p) {
1546        String name = p.getClass().getName();
1547        writeString(name);
1548    }
1549
1550    /**
1551     * Write a generic serializable object in to a Parcel.  It is strongly
1552     * recommended that this method be avoided, since the serialization
1553     * overhead is extremely large, and this approach will be much slower than
1554     * using the other approaches to writing data in to a Parcel.
1555     */
1556    public final void writeSerializable(Serializable s) {
1557        if (s == null) {
1558            writeString(null);
1559            return;
1560        }
1561        String name = s.getClass().getName();
1562        writeString(name);
1563
1564        ByteArrayOutputStream baos = new ByteArrayOutputStream();
1565        try {
1566            ObjectOutputStream oos = new ObjectOutputStream(baos);
1567            oos.writeObject(s);
1568            oos.close();
1569
1570            writeByteArray(baos.toByteArray());
1571        } catch (IOException ioe) {
1572            throw new RuntimeException("Parcelable encountered " +
1573                "IOException writing serializable object (name = " + name +
1574                ")", ioe);
1575        }
1576    }
1577
1578    /**
1579     * Special function for writing an exception result at the header of
1580     * a parcel, to be used when returning an exception from a transaction.
1581     * Note that this currently only supports a few exception types; any other
1582     * exception will be re-thrown by this function as a RuntimeException
1583     * (to be caught by the system's last-resort exception handling when
1584     * dispatching a transaction).
1585     *
1586     * <p>The supported exception types are:
1587     * <ul>
1588     * <li>{@link BadParcelableException}
1589     * <li>{@link IllegalArgumentException}
1590     * <li>{@link IllegalStateException}
1591     * <li>{@link NullPointerException}
1592     * <li>{@link SecurityException}
1593     * <li>{@link NetworkOnMainThreadException}
1594     * </ul>
1595     *
1596     * @param e The Exception to be written.
1597     *
1598     * @see #writeNoException
1599     * @see #readException
1600     */
1601    public final void writeException(Exception e) {
1602        int code = 0;
1603        if (e instanceof Parcelable
1604                && (e.getClass().getClassLoader() == Parcelable.class.getClassLoader())) {
1605            // We only send Parcelable exceptions that are in the
1606            // BootClassLoader to ensure that the receiver can unpack them
1607            code = EX_PARCELABLE;
1608        } else if (e instanceof SecurityException) {
1609            code = EX_SECURITY;
1610        } else if (e instanceof BadParcelableException) {
1611            code = EX_BAD_PARCELABLE;
1612        } else if (e instanceof IllegalArgumentException) {
1613            code = EX_ILLEGAL_ARGUMENT;
1614        } else if (e instanceof NullPointerException) {
1615            code = EX_NULL_POINTER;
1616        } else if (e instanceof IllegalStateException) {
1617            code = EX_ILLEGAL_STATE;
1618        } else if (e instanceof NetworkOnMainThreadException) {
1619            code = EX_NETWORK_MAIN_THREAD;
1620        } else if (e instanceof UnsupportedOperationException) {
1621            code = EX_UNSUPPORTED_OPERATION;
1622        } else if (e instanceof ServiceSpecificException) {
1623            code = EX_SERVICE_SPECIFIC;
1624        }
1625        writeInt(code);
1626        StrictMode.clearGatheredViolations();
1627        if (code == 0) {
1628            if (e instanceof RuntimeException) {
1629                throw (RuntimeException) e;
1630            }
1631            throw new RuntimeException(e);
1632        }
1633        writeString(e.getMessage());
1634        switch (code) {
1635            case EX_SERVICE_SPECIFIC:
1636                writeInt(((ServiceSpecificException) e).errorCode);
1637                break;
1638            case EX_PARCELABLE:
1639                // Write parceled exception prefixed by length
1640                final int sizePosition = dataPosition();
1641                writeInt(0);
1642                writeParcelable((Parcelable) e, Parcelable.PARCELABLE_WRITE_RETURN_VALUE);
1643                final int payloadPosition = dataPosition();
1644                setDataPosition(sizePosition);
1645                writeInt(payloadPosition - sizePosition);
1646                setDataPosition(payloadPosition);
1647                break;
1648        }
1649    }
1650
1651    /**
1652     * Special function for writing information at the front of the Parcel
1653     * indicating that no exception occurred.
1654     *
1655     * @see #writeException
1656     * @see #readException
1657     */
1658    public final void writeNoException() {
1659        // Despite the name of this function ("write no exception"),
1660        // it should instead be thought of as "write the RPC response
1661        // header", but because this function name is written out by
1662        // the AIDL compiler, we're not going to rename it.
1663        //
1664        // The response header, in the non-exception case (see also
1665        // writeException above, also called by the AIDL compiler), is
1666        // either a 0 (the default case), or EX_HAS_REPLY_HEADER if
1667        // StrictMode has gathered up violations that have occurred
1668        // during a Binder call, in which case we write out the number
1669        // of violations and their details, serialized, before the
1670        // actual RPC respons data.  The receiving end of this is
1671        // readException(), below.
1672        if (StrictMode.hasGatheredViolations()) {
1673            writeInt(EX_HAS_REPLY_HEADER);
1674            final int sizePosition = dataPosition();
1675            writeInt(0);  // total size of fat header, to be filled in later
1676            StrictMode.writeGatheredViolationsToParcel(this);
1677            final int payloadPosition = dataPosition();
1678            setDataPosition(sizePosition);
1679            writeInt(payloadPosition - sizePosition);  // header size
1680            setDataPosition(payloadPosition);
1681        } else {
1682            writeInt(0);
1683        }
1684    }
1685
1686    /**
1687     * Special function for reading an exception result from the header of
1688     * a parcel, to be used after receiving the result of a transaction.  This
1689     * will throw the exception for you if it had been written to the Parcel,
1690     * otherwise return and let you read the normal result data from the Parcel.
1691     *
1692     * @see #writeException
1693     * @see #writeNoException
1694     */
1695    public final void readException() {
1696        int code = readExceptionCode();
1697        if (code != 0) {
1698            String msg = readString();
1699            readException(code, msg);
1700        }
1701    }
1702
1703    /**
1704     * Parses the header of a Binder call's response Parcel and
1705     * returns the exception code.  Deals with lite or fat headers.
1706     * In the common successful case, this header is generally zero.
1707     * In less common cases, it's a small negative number and will be
1708     * followed by an error string.
1709     *
1710     * This exists purely for android.database.DatabaseUtils and
1711     * insulating it from having to handle fat headers as returned by
1712     * e.g. StrictMode-induced RPC responses.
1713     *
1714     * @hide
1715     */
1716    public final int readExceptionCode() {
1717        int code = readInt();
1718        if (code == EX_HAS_REPLY_HEADER) {
1719            int headerSize = readInt();
1720            if (headerSize == 0) {
1721                Log.e(TAG, "Unexpected zero-sized Parcel reply header.");
1722            } else {
1723                // Currently the only thing in the header is StrictMode stacks,
1724                // but discussions around event/RPC tracing suggest we might
1725                // put that here too.  If so, switch on sub-header tags here.
1726                // But for now, just parse out the StrictMode stuff.
1727                StrictMode.readAndHandleBinderCallViolations(this);
1728            }
1729            // And fat response headers are currently only used when
1730            // there are no exceptions, so return no error:
1731            return 0;
1732        }
1733        return code;
1734    }
1735
1736    /**
1737     * Throw an exception with the given message. Not intended for use
1738     * outside the Parcel class.
1739     *
1740     * @param code Used to determine which exception class to throw.
1741     * @param msg The exception message.
1742     */
1743    public final void readException(int code, String msg) {
1744        switch (code) {
1745            case EX_PARCELABLE:
1746                if (readInt() > 0) {
1747                    SneakyThrow.sneakyThrow(
1748                            (Exception) readParcelable(Parcelable.class.getClassLoader()));
1749                } else {
1750                    throw new RuntimeException(msg + " [missing Parcelable]");
1751                }
1752            case EX_SECURITY:
1753                throw new SecurityException(msg);
1754            case EX_BAD_PARCELABLE:
1755                throw new BadParcelableException(msg);
1756            case EX_ILLEGAL_ARGUMENT:
1757                throw new IllegalArgumentException(msg);
1758            case EX_NULL_POINTER:
1759                throw new NullPointerException(msg);
1760            case EX_ILLEGAL_STATE:
1761                throw new IllegalStateException(msg);
1762            case EX_NETWORK_MAIN_THREAD:
1763                throw new NetworkOnMainThreadException();
1764            case EX_UNSUPPORTED_OPERATION:
1765                throw new UnsupportedOperationException(msg);
1766            case EX_SERVICE_SPECIFIC:
1767                throw new ServiceSpecificException(readInt(), msg);
1768        }
1769        throw new RuntimeException("Unknown exception code: " + code
1770                + " msg " + msg);
1771    }
1772
1773    /**
1774     * Read an integer value from the parcel at the current dataPosition().
1775     */
1776    public final int readInt() {
1777        return nativeReadInt(mNativePtr);
1778    }
1779
1780    /**
1781     * Read a long integer value from the parcel at the current dataPosition().
1782     */
1783    public final long readLong() {
1784        return nativeReadLong(mNativePtr);
1785    }
1786
1787    /**
1788     * Read a floating point value from the parcel at the current
1789     * dataPosition().
1790     */
1791    public final float readFloat() {
1792        return nativeReadFloat(mNativePtr);
1793    }
1794
1795    /**
1796     * Read a double precision floating point value from the parcel at the
1797     * current dataPosition().
1798     */
1799    public final double readDouble() {
1800        return nativeReadDouble(mNativePtr);
1801    }
1802
1803    /**
1804     * Read a string value from the parcel at the current dataPosition().
1805     */
1806    public final String readString() {
1807        return nativeReadString(mNativePtr);
1808    }
1809
1810    /**
1811     * Read a CharSequence value from the parcel at the current dataPosition().
1812     * @hide
1813     */
1814    public final CharSequence readCharSequence() {
1815        return TextUtils.CHAR_SEQUENCE_CREATOR.createFromParcel(this);
1816    }
1817
1818    /**
1819     * Read an object from the parcel at the current dataPosition().
1820     */
1821    public final IBinder readStrongBinder() {
1822        return nativeReadStrongBinder(mNativePtr);
1823    }
1824
1825    /**
1826     * Read a FileDescriptor from the parcel at the current dataPosition().
1827     */
1828    public final ParcelFileDescriptor readFileDescriptor() {
1829        FileDescriptor fd = nativeReadFileDescriptor(mNativePtr);
1830        return fd != null ? new ParcelFileDescriptor(fd) : null;
1831    }
1832
1833    /** {@hide} */
1834    public final FileDescriptor readRawFileDescriptor() {
1835        return nativeReadFileDescriptor(mNativePtr);
1836    }
1837
1838    /**
1839     * {@hide}
1840     * Read and return a new array of FileDescriptors from the parcel.
1841     * @return the FileDescriptor array, or null if the array is null.
1842     **/
1843    public final FileDescriptor[] createRawFileDescriptorArray() {
1844        int N = readInt();
1845        if (N < 0) {
1846            return null;
1847        }
1848        FileDescriptor[] f = new FileDescriptor[N];
1849        for (int i = 0; i < N; i++) {
1850            f[i] = readRawFileDescriptor();
1851        }
1852        return f;
1853    }
1854
1855    /**
1856     * {@hide}
1857     * Read an array of FileDescriptors from a parcel.
1858     * The passed array must be exactly the length of the array in the parcel.
1859     * @return the FileDescriptor array, or null if the array is null.
1860     **/
1861    public final void readRawFileDescriptorArray(FileDescriptor[] val) {
1862        int N = readInt();
1863        if (N == val.length) {
1864            for (int i=0; i<N; i++) {
1865                val[i] = readRawFileDescriptor();
1866            }
1867        } else {
1868            throw new RuntimeException("bad array lengths");
1869        }
1870    }
1871
1872
1873    /*package*/ static native FileDescriptor openFileDescriptor(String file,
1874            int mode) throws FileNotFoundException;
1875    /*package*/ static native FileDescriptor dupFileDescriptor(FileDescriptor orig)
1876            throws IOException;
1877    /*package*/ static native void closeFileDescriptor(FileDescriptor desc)
1878            throws IOException;
1879    /*package*/ static native void clearFileDescriptor(FileDescriptor desc);
1880
1881    /**
1882     * Read a byte value from the parcel at the current dataPosition().
1883     */
1884    public final byte readByte() {
1885        return (byte)(readInt() & 0xff);
1886    }
1887
1888    /**
1889     * Please use {@link #readBundle(ClassLoader)} instead (whose data must have
1890     * been written with {@link #writeBundle}.  Read into an existing Map object
1891     * from the parcel at the current dataPosition().
1892     */
1893    public final void readMap(Map outVal, ClassLoader loader) {
1894        int N = readInt();
1895        readMapInternal(outVal, N, loader);
1896    }
1897
1898    /**
1899     * Read into an existing List object from the parcel at the current
1900     * dataPosition(), using the given class loader to load any enclosed
1901     * Parcelables.  If it is null, the default class loader is used.
1902     */
1903    public final void readList(List outVal, ClassLoader loader) {
1904        int N = readInt();
1905        readListInternal(outVal, N, loader);
1906    }
1907
1908    /**
1909     * Please use {@link #readBundle(ClassLoader)} instead (whose data must have
1910     * been written with {@link #writeBundle}.  Read and return a new HashMap
1911     * object from the parcel at the current dataPosition(), using the given
1912     * class loader to load any enclosed Parcelables.  Returns null if
1913     * the previously written map object was null.
1914     */
1915    public final HashMap readHashMap(ClassLoader loader)
1916    {
1917        int N = readInt();
1918        if (N < 0) {
1919            return null;
1920        }
1921        HashMap m = new HashMap(N);
1922        readMapInternal(m, N, loader);
1923        return m;
1924    }
1925
1926    /**
1927     * Read and return a new Bundle object from the parcel at the current
1928     * dataPosition().  Returns null if the previously written Bundle object was
1929     * null.
1930     */
1931    public final Bundle readBundle() {
1932        return readBundle(null);
1933    }
1934
1935    /**
1936     * Read and return a new Bundle object from the parcel at the current
1937     * dataPosition(), using the given class loader to initialize the class
1938     * loader of the Bundle for later retrieval of Parcelable objects.
1939     * Returns null if the previously written Bundle object was null.
1940     */
1941    public final Bundle readBundle(ClassLoader loader) {
1942        int length = readInt();
1943        if (length < 0) {
1944            if (Bundle.DEBUG) Log.d(TAG, "null bundle: length=" + length);
1945            return null;
1946        }
1947
1948        final Bundle bundle = new Bundle(this, length);
1949        if (loader != null) {
1950            bundle.setClassLoader(loader);
1951        }
1952        return bundle;
1953    }
1954
1955    /**
1956     * Read and return a new Bundle object from the parcel at the current
1957     * dataPosition().  Returns null if the previously written Bundle object was
1958     * null.
1959     */
1960    public final PersistableBundle readPersistableBundle() {
1961        return readPersistableBundle(null);
1962    }
1963
1964    /**
1965     * Read and return a new Bundle object from the parcel at the current
1966     * dataPosition(), using the given class loader to initialize the class
1967     * loader of the Bundle for later retrieval of Parcelable objects.
1968     * Returns null if the previously written Bundle object was null.
1969     */
1970    public final PersistableBundle readPersistableBundle(ClassLoader loader) {
1971        int length = readInt();
1972        if (length < 0) {
1973            if (Bundle.DEBUG) Log.d(TAG, "null bundle: length=" + length);
1974            return null;
1975        }
1976
1977        final PersistableBundle bundle = new PersistableBundle(this, length);
1978        if (loader != null) {
1979            bundle.setClassLoader(loader);
1980        }
1981        return bundle;
1982    }
1983
1984    /**
1985     * Read a Size from the parcel at the current dataPosition().
1986     */
1987    public final Size readSize() {
1988        final int width = readInt();
1989        final int height = readInt();
1990        return new Size(width, height);
1991    }
1992
1993    /**
1994     * Read a SizeF from the parcel at the current dataPosition().
1995     */
1996    public final SizeF readSizeF() {
1997        final float width = readFloat();
1998        final float height = readFloat();
1999        return new SizeF(width, height);
2000    }
2001
2002    /**
2003     * Read and return a byte[] object from the parcel.
2004     */
2005    public final byte[] createByteArray() {
2006        return nativeCreateByteArray(mNativePtr);
2007    }
2008
2009    /**
2010     * Read a byte[] object from the parcel and copy it into the
2011     * given byte array.
2012     */
2013    public final void readByteArray(byte[] val) {
2014        // TODO: make this a native method to avoid the extra copy.
2015        byte[] ba = createByteArray();
2016        if (ba.length == val.length) {
2017           System.arraycopy(ba, 0, val, 0, ba.length);
2018        } else {
2019            throw new RuntimeException("bad array lengths");
2020        }
2021    }
2022
2023    /**
2024     * Read a blob of data from the parcel and return it as a byte array.
2025     * {@hide}
2026     * {@SystemApi}
2027     */
2028    public final byte[] readBlob() {
2029        return nativeReadBlob(mNativePtr);
2030    }
2031
2032    /**
2033     * Read and return a String[] object from the parcel.
2034     * {@hide}
2035     */
2036    public final String[] readStringArray() {
2037        String[] array = null;
2038
2039        int length = readInt();
2040        if (length >= 0)
2041        {
2042            array = new String[length];
2043
2044            for (int i = 0 ; i < length ; i++)
2045            {
2046                array[i] = readString();
2047            }
2048        }
2049
2050        return array;
2051    }
2052
2053    /**
2054     * Read and return a CharSequence[] object from the parcel.
2055     * {@hide}
2056     */
2057    public final CharSequence[] readCharSequenceArray() {
2058        CharSequence[] array = null;
2059
2060        int length = readInt();
2061        if (length >= 0)
2062        {
2063            array = new CharSequence[length];
2064
2065            for (int i = 0 ; i < length ; i++)
2066            {
2067                array[i] = readCharSequence();
2068            }
2069        }
2070
2071        return array;
2072    }
2073
2074    /**
2075     * Read and return an ArrayList&lt;CharSequence&gt; object from the parcel.
2076     * {@hide}
2077     */
2078    public final ArrayList<CharSequence> readCharSequenceList() {
2079        ArrayList<CharSequence> array = null;
2080
2081        int length = readInt();
2082        if (length >= 0) {
2083            array = new ArrayList<CharSequence>(length);
2084
2085            for (int i = 0 ; i < length ; i++) {
2086                array.add(readCharSequence());
2087            }
2088        }
2089
2090        return array;
2091    }
2092
2093    /**
2094     * Read and return a new ArrayList object from the parcel at the current
2095     * dataPosition().  Returns null if the previously written list object was
2096     * null.  The given class loader will be used to load any enclosed
2097     * Parcelables.
2098     */
2099    public final ArrayList readArrayList(ClassLoader loader) {
2100        int N = readInt();
2101        if (N < 0) {
2102            return null;
2103        }
2104        ArrayList l = new ArrayList(N);
2105        readListInternal(l, N, loader);
2106        return l;
2107    }
2108
2109    /**
2110     * Read and return a new Object array from the parcel at the current
2111     * dataPosition().  Returns null if the previously written array was
2112     * null.  The given class loader will be used to load any enclosed
2113     * Parcelables.
2114     */
2115    public final Object[] readArray(ClassLoader loader) {
2116        int N = readInt();
2117        if (N < 0) {
2118            return null;
2119        }
2120        Object[] l = new Object[N];
2121        readArrayInternal(l, N, loader);
2122        return l;
2123    }
2124
2125    /**
2126     * Read and return a new SparseArray object from the parcel at the current
2127     * dataPosition().  Returns null if the previously written list object was
2128     * null.  The given class loader will be used to load any enclosed
2129     * Parcelables.
2130     */
2131    public final SparseArray readSparseArray(ClassLoader loader) {
2132        int N = readInt();
2133        if (N < 0) {
2134            return null;
2135        }
2136        SparseArray sa = new SparseArray(N);
2137        readSparseArrayInternal(sa, N, loader);
2138        return sa;
2139    }
2140
2141    /**
2142     * Read and return a new SparseBooleanArray object from the parcel at the current
2143     * dataPosition().  Returns null if the previously written list object was
2144     * null.
2145     */
2146    public final SparseBooleanArray readSparseBooleanArray() {
2147        int N = readInt();
2148        if (N < 0) {
2149            return null;
2150        }
2151        SparseBooleanArray sa = new SparseBooleanArray(N);
2152        readSparseBooleanArrayInternal(sa, N);
2153        return sa;
2154    }
2155
2156    /**
2157     * Read and return a new ArrayList containing a particular object type from
2158     * the parcel that was written with {@link #writeTypedList} at the
2159     * current dataPosition().  Returns null if the
2160     * previously written list object was null.  The list <em>must</em> have
2161     * previously been written via {@link #writeTypedList} with the same object
2162     * type.
2163     *
2164     * @return A newly created ArrayList containing objects with the same data
2165     *         as those that were previously written.
2166     *
2167     * @see #writeTypedList
2168     */
2169    public final <T> ArrayList<T> createTypedArrayList(Parcelable.Creator<T> c) {
2170        int N = readInt();
2171        if (N < 0) {
2172            return null;
2173        }
2174        ArrayList<T> l = new ArrayList<T>(N);
2175        while (N > 0) {
2176            if (readInt() != 0) {
2177                l.add(c.createFromParcel(this));
2178            } else {
2179                l.add(null);
2180            }
2181            N--;
2182        }
2183        return l;
2184    }
2185
2186    /**
2187     * Read into the given List items containing a particular object type
2188     * that were written with {@link #writeTypedList} at the
2189     * current dataPosition().  The list <em>must</em> have
2190     * previously been written via {@link #writeTypedList} with the same object
2191     * type.
2192     *
2193     * @return A newly created ArrayList containing objects with the same data
2194     *         as those that were previously written.
2195     *
2196     * @see #writeTypedList
2197     */
2198    public final <T> void readTypedList(List<T> list, Parcelable.Creator<T> c) {
2199        int M = list.size();
2200        int N = readInt();
2201        int i = 0;
2202        for (; i < M && i < N; i++) {
2203            if (readInt() != 0) {
2204                list.set(i, c.createFromParcel(this));
2205            } else {
2206                list.set(i, null);
2207            }
2208        }
2209        for (; i<N; i++) {
2210            if (readInt() != 0) {
2211                list.add(c.createFromParcel(this));
2212            } else {
2213                list.add(null);
2214            }
2215        }
2216        for (; i<M; i++) {
2217            list.remove(N);
2218        }
2219    }
2220
2221    /**
2222     * Read and return a new ArrayList containing String objects from
2223     * the parcel that was written with {@link #writeStringList} at the
2224     * current dataPosition().  Returns null if the
2225     * previously written list object was null.
2226     *
2227     * @return A newly created ArrayList containing strings with the same data
2228     *         as those that were previously written.
2229     *
2230     * @see #writeStringList
2231     */
2232    public final ArrayList<String> createStringArrayList() {
2233        int N = readInt();
2234        if (N < 0) {
2235            return null;
2236        }
2237        ArrayList<String> l = new ArrayList<String>(N);
2238        while (N > 0) {
2239            l.add(readString());
2240            N--;
2241        }
2242        return l;
2243    }
2244
2245    /**
2246     * Read and return a new ArrayList containing IBinder objects from
2247     * the parcel that was written with {@link #writeBinderList} at the
2248     * current dataPosition().  Returns null if the
2249     * previously written list object was null.
2250     *
2251     * @return A newly created ArrayList containing strings with the same data
2252     *         as those that were previously written.
2253     *
2254     * @see #writeBinderList
2255     */
2256    public final ArrayList<IBinder> createBinderArrayList() {
2257        int N = readInt();
2258        if (N < 0) {
2259            return null;
2260        }
2261        ArrayList<IBinder> l = new ArrayList<IBinder>(N);
2262        while (N > 0) {
2263            l.add(readStrongBinder());
2264            N--;
2265        }
2266        return l;
2267    }
2268
2269    /**
2270     * Read into the given List items String objects that were written with
2271     * {@link #writeStringList} at the current dataPosition().
2272     *
2273     * @return A newly created ArrayList containing strings with the same data
2274     *         as those that were previously written.
2275     *
2276     * @see #writeStringList
2277     */
2278    public final void readStringList(List<String> list) {
2279        int M = list.size();
2280        int N = readInt();
2281        int i = 0;
2282        for (; i < M && i < N; i++) {
2283            list.set(i, readString());
2284        }
2285        for (; i<N; i++) {
2286            list.add(readString());
2287        }
2288        for (; i<M; i++) {
2289            list.remove(N);
2290        }
2291    }
2292
2293    /**
2294     * Read into the given List items IBinder objects that were written with
2295     * {@link #writeBinderList} at the current dataPosition().
2296     *
2297     * @see #writeBinderList
2298     */
2299    public final void readBinderList(List<IBinder> list) {
2300        int M = list.size();
2301        int N = readInt();
2302        int i = 0;
2303        for (; i < M && i < N; i++) {
2304            list.set(i, readStrongBinder());
2305        }
2306        for (; i<N; i++) {
2307            list.add(readStrongBinder());
2308        }
2309        for (; i<M; i++) {
2310            list.remove(N);
2311        }
2312    }
2313
2314    /**
2315     * Read the list of {@code Parcelable} objects at the current data position into the
2316     * given {@code list}. The contents of the {@code list} are replaced. If the serialized
2317     * list was {@code null}, {@code list} is cleared.
2318     *
2319     * @see #writeParcelableList(List, int)
2320     * @hide
2321     */
2322    public final <T extends Parcelable> void readParcelableList(List<T> list, ClassLoader cl) {
2323        final int N = readInt();
2324        if (N == -1) {
2325            list.clear();
2326            return;
2327        }
2328
2329        final int M = list.size();
2330        int i = 0;
2331        for (; i < M && i < N; i++) {
2332            list.set(i, (T) readParcelable(cl));
2333        }
2334        for (; i<N; i++) {
2335            list.add((T) readParcelable(cl));
2336        }
2337        for (; i<M; i++) {
2338            list.remove(N);
2339        }
2340    }
2341
2342    /**
2343     * Read and return a new array containing a particular object type from
2344     * the parcel at the current dataPosition().  Returns null if the
2345     * previously written array was null.  The array <em>must</em> have
2346     * previously been written via {@link #writeTypedArray} with the same
2347     * object type.
2348     *
2349     * @return A newly created array containing objects with the same data
2350     *         as those that were previously written.
2351     *
2352     * @see #writeTypedArray
2353     */
2354    public final <T> T[] createTypedArray(Parcelable.Creator<T> c) {
2355        int N = readInt();
2356        if (N < 0) {
2357            return null;
2358        }
2359        T[] l = c.newArray(N);
2360        for (int i=0; i<N; i++) {
2361            if (readInt() != 0) {
2362                l[i] = c.createFromParcel(this);
2363            }
2364        }
2365        return l;
2366    }
2367
2368    public final <T> void readTypedArray(T[] val, Parcelable.Creator<T> c) {
2369        int N = readInt();
2370        if (N == val.length) {
2371            for (int i=0; i<N; i++) {
2372                if (readInt() != 0) {
2373                    val[i] = c.createFromParcel(this);
2374                } else {
2375                    val[i] = null;
2376                }
2377            }
2378        } else {
2379            throw new RuntimeException("bad array lengths");
2380        }
2381    }
2382
2383    /**
2384     * @deprecated
2385     * @hide
2386     */
2387    @Deprecated
2388    public final <T> T[] readTypedArray(Parcelable.Creator<T> c) {
2389        return createTypedArray(c);
2390    }
2391
2392    /**
2393     * Read and return a typed Parcelable object from a parcel.
2394     * Returns null if the previous written object was null.
2395     * The object <em>must</em> have previous been written via
2396     * {@link #writeTypedObject} with the same object type.
2397     *
2398     * @return A newly created object of the type that was previously
2399     *         written.
2400     *
2401     * @see #writeTypedObject
2402     */
2403    public final <T> T readTypedObject(Parcelable.Creator<T> c) {
2404        if (readInt() != 0) {
2405            return c.createFromParcel(this);
2406        } else {
2407            return null;
2408        }
2409    }
2410
2411    /**
2412     * Write a heterogeneous array of Parcelable objects into the Parcel.
2413     * Each object in the array is written along with its class name, so
2414     * that the correct class can later be instantiated.  As a result, this
2415     * has significantly more overhead than {@link #writeTypedArray}, but will
2416     * correctly handle an array containing more than one type of object.
2417     *
2418     * @param value The array of objects to be written.
2419     * @param parcelableFlags Contextual flags as per
2420     * {@link Parcelable#writeToParcel(Parcel, int) Parcelable.writeToParcel()}.
2421     *
2422     * @see #writeTypedArray
2423     */
2424    public final <T extends Parcelable> void writeParcelableArray(T[] value,
2425            int parcelableFlags) {
2426        if (value != null) {
2427            int N = value.length;
2428            writeInt(N);
2429            for (int i=0; i<N; i++) {
2430                writeParcelable(value[i], parcelableFlags);
2431            }
2432        } else {
2433            writeInt(-1);
2434        }
2435    }
2436
2437    /**
2438     * Read a typed object from a parcel.  The given class loader will be
2439     * used to load any enclosed Parcelables.  If it is null, the default class
2440     * loader will be used.
2441     */
2442    public final Object readValue(ClassLoader loader) {
2443        int type = readInt();
2444
2445        switch (type) {
2446        case VAL_NULL:
2447            return null;
2448
2449        case VAL_STRING:
2450            return readString();
2451
2452        case VAL_INTEGER:
2453            return readInt();
2454
2455        case VAL_MAP:
2456            return readHashMap(loader);
2457
2458        case VAL_PARCELABLE:
2459            return readParcelable(loader);
2460
2461        case VAL_SHORT:
2462            return (short) readInt();
2463
2464        case VAL_LONG:
2465            return readLong();
2466
2467        case VAL_FLOAT:
2468            return readFloat();
2469
2470        case VAL_DOUBLE:
2471            return readDouble();
2472
2473        case VAL_BOOLEAN:
2474            return readInt() == 1;
2475
2476        case VAL_CHARSEQUENCE:
2477            return readCharSequence();
2478
2479        case VAL_LIST:
2480            return readArrayList(loader);
2481
2482        case VAL_BOOLEANARRAY:
2483            return createBooleanArray();
2484
2485        case VAL_BYTEARRAY:
2486            return createByteArray();
2487
2488        case VAL_STRINGARRAY:
2489            return readStringArray();
2490
2491        case VAL_CHARSEQUENCEARRAY:
2492            return readCharSequenceArray();
2493
2494        case VAL_IBINDER:
2495            return readStrongBinder();
2496
2497        case VAL_OBJECTARRAY:
2498            return readArray(loader);
2499
2500        case VAL_INTARRAY:
2501            return createIntArray();
2502
2503        case VAL_LONGARRAY:
2504            return createLongArray();
2505
2506        case VAL_BYTE:
2507            return readByte();
2508
2509        case VAL_SERIALIZABLE:
2510            return readSerializable(loader);
2511
2512        case VAL_PARCELABLEARRAY:
2513            return readParcelableArray(loader);
2514
2515        case VAL_SPARSEARRAY:
2516            return readSparseArray(loader);
2517
2518        case VAL_SPARSEBOOLEANARRAY:
2519            return readSparseBooleanArray();
2520
2521        case VAL_BUNDLE:
2522            return readBundle(loader); // loading will be deferred
2523
2524        case VAL_PERSISTABLEBUNDLE:
2525            return readPersistableBundle(loader);
2526
2527        case VAL_SIZE:
2528            return readSize();
2529
2530        case VAL_SIZEF:
2531            return readSizeF();
2532
2533        case VAL_DOUBLEARRAY:
2534            return createDoubleArray();
2535
2536        default:
2537            int off = dataPosition() - 4;
2538            throw new RuntimeException(
2539                "Parcel " + this + ": Unmarshalling unknown type code " + type + " at offset " + off);
2540        }
2541    }
2542
2543    /**
2544     * Read and return a new Parcelable from the parcel.  The given class loader
2545     * will be used to load any enclosed Parcelables.  If it is null, the default
2546     * class loader will be used.
2547     * @param loader A ClassLoader from which to instantiate the Parcelable
2548     * object, or null for the default class loader.
2549     * @return Returns the newly created Parcelable, or null if a null
2550     * object has been written.
2551     * @throws BadParcelableException Throws BadParcelableException if there
2552     * was an error trying to instantiate the Parcelable.
2553     */
2554    @SuppressWarnings("unchecked")
2555    public final <T extends Parcelable> T readParcelable(ClassLoader loader) {
2556        Parcelable.Creator<?> creator = readParcelableCreator(loader);
2557        if (creator == null) {
2558            return null;
2559        }
2560        if (creator instanceof Parcelable.ClassLoaderCreator<?>) {
2561          Parcelable.ClassLoaderCreator<?> classLoaderCreator =
2562              (Parcelable.ClassLoaderCreator<?>) creator;
2563          return (T) classLoaderCreator.createFromParcel(this, loader);
2564        }
2565        return (T) creator.createFromParcel(this);
2566    }
2567
2568    /** @hide */
2569    @SuppressWarnings("unchecked")
2570    public final <T extends Parcelable> T readCreator(Parcelable.Creator<?> creator,
2571            ClassLoader loader) {
2572        if (creator instanceof Parcelable.ClassLoaderCreator<?>) {
2573          Parcelable.ClassLoaderCreator<?> classLoaderCreator =
2574              (Parcelable.ClassLoaderCreator<?>) creator;
2575          return (T) classLoaderCreator.createFromParcel(this, loader);
2576        }
2577        return (T) creator.createFromParcel(this);
2578    }
2579
2580    /** @hide */
2581    public final Parcelable.Creator<?> readParcelableCreator(ClassLoader loader) {
2582        String name = readString();
2583        if (name == null) {
2584            return null;
2585        }
2586        Parcelable.Creator<?> creator;
2587        synchronized (mCreators) {
2588            HashMap<String,Parcelable.Creator<?>> map = mCreators.get(loader);
2589            if (map == null) {
2590                map = new HashMap<>();
2591                mCreators.put(loader, map);
2592            }
2593            creator = map.get(name);
2594            if (creator == null) {
2595                try {
2596                    // If loader == null, explicitly emulate Class.forName(String) "caller
2597                    // classloader" behavior.
2598                    ClassLoader parcelableClassLoader =
2599                            (loader == null ? getClass().getClassLoader() : loader);
2600                    // Avoid initializing the Parcelable class until we know it implements
2601                    // Parcelable and has the necessary CREATOR field. http://b/1171613.
2602                    Class<?> parcelableClass = Class.forName(name, false /* initialize */,
2603                            parcelableClassLoader);
2604                    if (!Parcelable.class.isAssignableFrom(parcelableClass)) {
2605                        throw new BadParcelableException("Parcelable protocol requires that the "
2606                                + "class implements Parcelable");
2607                    }
2608                    Field f = parcelableClass.getField("CREATOR");
2609                    if ((f.getModifiers() & Modifier.STATIC) == 0) {
2610                        throw new BadParcelableException("Parcelable protocol requires "
2611                                + "the CREATOR object to be static on class " + name);
2612                    }
2613                    Class<?> creatorType = f.getType();
2614                    if (!Parcelable.Creator.class.isAssignableFrom(creatorType)) {
2615                        // Fail before calling Field.get(), not after, to avoid initializing
2616                        // parcelableClass unnecessarily.
2617                        throw new BadParcelableException("Parcelable protocol requires a "
2618                                + "Parcelable.Creator object called "
2619                                + "CREATOR on class " + name);
2620                    }
2621                    creator = (Parcelable.Creator<?>) f.get(null);
2622                }
2623                catch (IllegalAccessException e) {
2624                    Log.e(TAG, "Illegal access when unmarshalling: " + name, e);
2625                    throw new BadParcelableException(
2626                            "IllegalAccessException when unmarshalling: " + name);
2627                }
2628                catch (ClassNotFoundException e) {
2629                    Log.e(TAG, "Class not found when unmarshalling: " + name, e);
2630                    throw new BadParcelableException(
2631                            "ClassNotFoundException when unmarshalling: " + name);
2632                }
2633                catch (NoSuchFieldException e) {
2634                    throw new BadParcelableException("Parcelable protocol requires a "
2635                            + "Parcelable.Creator object called "
2636                            + "CREATOR on class " + name);
2637                }
2638                if (creator == null) {
2639                    throw new BadParcelableException("Parcelable protocol requires a "
2640                            + "non-null Parcelable.Creator object called "
2641                            + "CREATOR on class " + name);
2642                }
2643
2644                map.put(name, creator);
2645            }
2646        }
2647
2648        return creator;
2649    }
2650
2651    /**
2652     * Read and return a new Parcelable array from the parcel.
2653     * The given class loader will be used to load any enclosed
2654     * Parcelables.
2655     * @return the Parcelable array, or null if the array is null
2656     */
2657    public final Parcelable[] readParcelableArray(ClassLoader loader) {
2658        int N = readInt();
2659        if (N < 0) {
2660            return null;
2661        }
2662        Parcelable[] p = new Parcelable[N];
2663        for (int i = 0; i < N; i++) {
2664            p[i] = readParcelable(loader);
2665        }
2666        return p;
2667    }
2668
2669    /** @hide */
2670    public final <T extends Parcelable> T[] readParcelableArray(ClassLoader loader,
2671            Class<T> clazz) {
2672        int N = readInt();
2673        if (N < 0) {
2674            return null;
2675        }
2676        T[] p = (T[]) Array.newInstance(clazz, N);
2677        for (int i = 0; i < N; i++) {
2678            p[i] = readParcelable(loader);
2679        }
2680        return p;
2681    }
2682
2683    /**
2684     * Read and return a new Serializable object from the parcel.
2685     * @return the Serializable object, or null if the Serializable name
2686     * wasn't found in the parcel.
2687     */
2688    public final Serializable readSerializable() {
2689        return readSerializable(null);
2690    }
2691
2692    private final Serializable readSerializable(final ClassLoader loader) {
2693        String name = readString();
2694        if (name == null) {
2695            // For some reason we were unable to read the name of the Serializable (either there
2696            // is nothing left in the Parcel to read, or the next value wasn't a String), so
2697            // return null, which indicates that the name wasn't found in the parcel.
2698            return null;
2699        }
2700
2701        byte[] serializedData = createByteArray();
2702        ByteArrayInputStream bais = new ByteArrayInputStream(serializedData);
2703        try {
2704            ObjectInputStream ois = new ObjectInputStream(bais) {
2705                @Override
2706                protected Class<?> resolveClass(ObjectStreamClass osClass)
2707                        throws IOException, ClassNotFoundException {
2708                    // try the custom classloader if provided
2709                    if (loader != null) {
2710                        Class<?> c = Class.forName(osClass.getName(), false, loader);
2711                        if (c != null) {
2712                            return c;
2713                        }
2714                    }
2715                    return super.resolveClass(osClass);
2716                }
2717            };
2718            return (Serializable) ois.readObject();
2719        } catch (IOException ioe) {
2720            throw new RuntimeException("Parcelable encountered " +
2721                "IOException reading a Serializable object (name = " + name +
2722                ")", ioe);
2723        } catch (ClassNotFoundException cnfe) {
2724            throw new RuntimeException("Parcelable encountered " +
2725                "ClassNotFoundException reading a Serializable object (name = "
2726                + name + ")", cnfe);
2727        }
2728    }
2729
2730    // Cache of previously looked up CREATOR.createFromParcel() methods for
2731    // particular classes.  Keys are the names of the classes, values are
2732    // Method objects.
2733    private static final HashMap<ClassLoader,HashMap<String,Parcelable.Creator<?>>>
2734        mCreators = new HashMap<>();
2735
2736    /** @hide for internal use only. */
2737    static protected final Parcel obtain(int obj) {
2738        throw new UnsupportedOperationException();
2739    }
2740
2741    /** @hide */
2742    static protected final Parcel obtain(long obj) {
2743        final Parcel[] pool = sHolderPool;
2744        synchronized (pool) {
2745            Parcel p;
2746            for (int i=0; i<POOL_SIZE; i++) {
2747                p = pool[i];
2748                if (p != null) {
2749                    pool[i] = null;
2750                    if (DEBUG_RECYCLE) {
2751                        p.mStack = new RuntimeException();
2752                    }
2753                    p.init(obj);
2754                    return p;
2755                }
2756            }
2757        }
2758        return new Parcel(obj);
2759    }
2760
2761    private Parcel(long nativePtr) {
2762        if (DEBUG_RECYCLE) {
2763            mStack = new RuntimeException();
2764        }
2765        //Log.i(TAG, "Initializing obj=0x" + Integer.toHexString(obj), mStack);
2766        init(nativePtr);
2767    }
2768
2769    private void init(long nativePtr) {
2770        if (nativePtr != 0) {
2771            mNativePtr = nativePtr;
2772            mOwnsNativeParcelObject = false;
2773        } else {
2774            mNativePtr = nativeCreate();
2775            mOwnsNativeParcelObject = true;
2776        }
2777    }
2778
2779    private void freeBuffer() {
2780        if (mOwnsNativeParcelObject) {
2781            updateNativeSize(nativeFreeBuffer(mNativePtr));
2782        }
2783    }
2784
2785    private void destroy() {
2786        if (mNativePtr != 0) {
2787            if (mOwnsNativeParcelObject) {
2788                nativeDestroy(mNativePtr);
2789                updateNativeSize(0);
2790            }
2791            mNativePtr = 0;
2792        }
2793    }
2794
2795    @Override
2796    protected void finalize() throws Throwable {
2797        if (DEBUG_RECYCLE) {
2798            if (mStack != null) {
2799                Log.w(TAG, "Client did not call Parcel.recycle()", mStack);
2800            }
2801        }
2802        destroy();
2803    }
2804
2805    /* package */ void readMapInternal(Map outVal, int N,
2806        ClassLoader loader) {
2807        while (N > 0) {
2808            Object key = readValue(loader);
2809            Object value = readValue(loader);
2810            outVal.put(key, value);
2811            N--;
2812        }
2813    }
2814
2815    /* package */ void readArrayMapInternal(ArrayMap outVal, int N,
2816        ClassLoader loader) {
2817        if (DEBUG_ARRAY_MAP) {
2818            RuntimeException here =  new RuntimeException("here");
2819            here.fillInStackTrace();
2820            Log.d(TAG, "Reading " + N + " ArrayMap entries", here);
2821        }
2822        int startPos;
2823        while (N > 0) {
2824            if (DEBUG_ARRAY_MAP) startPos = dataPosition();
2825            String key = readString();
2826            Object value = readValue(loader);
2827            if (DEBUG_ARRAY_MAP) Log.d(TAG, "  Read #" + (N-1) + " "
2828                    + (dataPosition()-startPos) + " bytes: key=0x"
2829                    + Integer.toHexString((key != null ? key.hashCode() : 0)) + " " + key);
2830            outVal.append(key, value);
2831            N--;
2832        }
2833        outVal.validate();
2834    }
2835
2836    /* package */ void readArrayMapSafelyInternal(ArrayMap outVal, int N,
2837        ClassLoader loader) {
2838        if (DEBUG_ARRAY_MAP) {
2839            RuntimeException here =  new RuntimeException("here");
2840            here.fillInStackTrace();
2841            Log.d(TAG, "Reading safely " + N + " ArrayMap entries", here);
2842        }
2843        while (N > 0) {
2844            String key = readString();
2845            if (DEBUG_ARRAY_MAP) Log.d(TAG, "  Read safe #" + (N-1) + ": key=0x"
2846                    + (key != null ? key.hashCode() : 0) + " " + key);
2847            Object value = readValue(loader);
2848            outVal.put(key, value);
2849            N--;
2850        }
2851    }
2852
2853    /**
2854     * @hide For testing only.
2855     */
2856    public void readArrayMap(ArrayMap outVal, ClassLoader loader) {
2857        final int N = readInt();
2858        if (N < 0) {
2859            return;
2860        }
2861        readArrayMapInternal(outVal, N, loader);
2862    }
2863
2864    /**
2865     * Reads an array set.
2866     *
2867     * @param loader The class loader to use.
2868     *
2869     * @hide
2870     */
2871    public @Nullable ArraySet<? extends Object> readArraySet(ClassLoader loader) {
2872        final int size = readInt();
2873        if (size < 0) {
2874            return null;
2875        }
2876        ArraySet<Object> result = new ArraySet<>(size);
2877        for (int i = 0; i < size; i++) {
2878            Object value = readValue(loader);
2879            result.append(value);
2880        }
2881        return result;
2882    }
2883
2884    private void readListInternal(List outVal, int N,
2885        ClassLoader loader) {
2886        while (N > 0) {
2887            Object value = readValue(loader);
2888            //Log.d(TAG, "Unmarshalling value=" + value);
2889            outVal.add(value);
2890            N--;
2891        }
2892    }
2893
2894    private void readArrayInternal(Object[] outVal, int N,
2895        ClassLoader loader) {
2896        for (int i = 0; i < N; i++) {
2897            Object value = readValue(loader);
2898            //Log.d(TAG, "Unmarshalling value=" + value);
2899            outVal[i] = value;
2900        }
2901    }
2902
2903    private void readSparseArrayInternal(SparseArray outVal, int N,
2904        ClassLoader loader) {
2905        while (N > 0) {
2906            int key = readInt();
2907            Object value = readValue(loader);
2908            //Log.i(TAG, "Unmarshalling key=" + key + " value=" + value);
2909            outVal.append(key, value);
2910            N--;
2911        }
2912    }
2913
2914
2915    private void readSparseBooleanArrayInternal(SparseBooleanArray outVal, int N) {
2916        while (N > 0) {
2917            int key = readInt();
2918            boolean value = this.readByte() == 1;
2919            //Log.i(TAG, "Unmarshalling key=" + key + " value=" + value);
2920            outVal.append(key, value);
2921            N--;
2922        }
2923    }
2924
2925    /**
2926     * @hide For testing
2927     */
2928    public long getBlobAshmemSize() {
2929        return nativeGetBlobAshmemSize(mNativePtr);
2930    }
2931}
2932