BitcodeReader.cpp revision c2074caf075818abb6d3689ad924ca09f4a5ba1f
1//===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This header defines the BitcodeReader class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Bitcode/ReaderWriter.h"
15#include "BitcodeReader.h"
16#include "BitReader_2_7.h"
17#include "llvm/ADT/SmallString.h"
18#include "llvm/ADT/SmallVector.h"
19#include "llvm/IR/AutoUpgrade.h"
20#include "llvm/IR/Constants.h"
21#include "llvm/IR/DerivedTypes.h"
22#include "llvm/IR/InlineAsm.h"
23#include "llvm/IR/IntrinsicInst.h"
24#include "llvm/IR/Module.h"
25#include "llvm/IR/OperandTraits.h"
26#include "llvm/IR/Operator.h"
27#include "llvm/Support/MathExtras.h"
28#include "llvm/Support/MemoryBuffer.h"
29
30using namespace llvm;
31using namespace llvm_2_7;
32
33#define METADATA_NODE_2_7             2
34#define METADATA_FN_NODE_2_7          3
35#define METADATA_NAMED_NODE_2_7       5
36#define METADATA_ATTACHMENT_2_7       7
37#define FUNC_CODE_INST_UNWIND_2_7     14
38#define FUNC_CODE_INST_MALLOC_2_7     17
39#define FUNC_CODE_INST_FREE_2_7       18
40#define FUNC_CODE_INST_STORE_2_7      21
41#define FUNC_CODE_INST_CALL_2_7       22
42#define FUNC_CODE_INST_GETRESULT_2_7  25
43#define FUNC_CODE_DEBUG_LOC_2_7       32
44
45#define TYPE_BLOCK_ID_OLD_3_0         10
46#define TYPE_SYMTAB_BLOCK_ID_OLD_3_0  13
47#define TYPE_CODE_STRUCT_OLD_3_0      10
48
49namespace {
50
51  void StripDebugInfoOfFunction(Module* M, const char* name) {
52    if (Function* FuncStart = M->getFunction(name)) {
53      while (!FuncStart->use_empty()) {
54        cast<CallInst>(*FuncStart->use_begin())->eraseFromParent();
55      }
56      FuncStart->eraseFromParent();
57    }
58  }
59
60  /// This function strips all debug info intrinsics, except for llvm.dbg.declare.
61  /// If an llvm.dbg.declare intrinsic is invalid, then this function simply
62  /// strips that use.
63  void CheckDebugInfoIntrinsics(Module *M) {
64    StripDebugInfoOfFunction(M, "llvm.dbg.func.start");
65    StripDebugInfoOfFunction(M, "llvm.dbg.stoppoint");
66    StripDebugInfoOfFunction(M, "llvm.dbg.region.start");
67    StripDebugInfoOfFunction(M, "llvm.dbg.region.end");
68
69    if (Function *Declare = M->getFunction("llvm.dbg.declare")) {
70      if (!Declare->use_empty()) {
71        DbgDeclareInst *DDI = cast<DbgDeclareInst>(*Declare->use_begin());
72        if (!isa<MDNode>(DDI->getArgOperand(0)) ||
73            !isa<MDNode>(DDI->getArgOperand(1))) {
74          while (!Declare->use_empty()) {
75            CallInst *CI = cast<CallInst>(*Declare->use_begin());
76            CI->eraseFromParent();
77          }
78          Declare->eraseFromParent();
79        }
80      }
81    }
82  }
83} // end anonymous namespace
84
85void BitcodeReader::FreeState() {
86  if (BufferOwned)
87    delete Buffer;
88  Buffer = 0;
89  std::vector<Type*>().swap(TypeList);
90  ValueList.clear();
91  MDValueList.clear();
92
93  std::vector<AttributeSet>().swap(MAttributes);
94  std::vector<BasicBlock*>().swap(FunctionBBs);
95  std::vector<Function*>().swap(FunctionsWithBodies);
96  DeferredFunctionInfo.clear();
97  MDKindMap.clear();
98}
99
100//===----------------------------------------------------------------------===//
101//  Helper functions to implement forward reference resolution, etc.
102//===----------------------------------------------------------------------===//
103
104/// ConvertToString - Convert a string from a record into an std::string, return
105/// true on failure.
106template<typename StrTy>
107static bool ConvertToString(SmallVector<uint64_t, 64> &Record, unsigned Idx,
108                            StrTy &Result) {
109  if (Idx > Record.size())
110    return true;
111
112  for (unsigned i = Idx, e = Record.size(); i != e; ++i)
113    Result += (char)Record[i];
114  return false;
115}
116
117static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) {
118  switch (Val) {
119  default: // Map unknown/new linkages to external
120  case 0:  return GlobalValue::ExternalLinkage;
121  case 1:  return GlobalValue::WeakAnyLinkage;
122  case 2:  return GlobalValue::AppendingLinkage;
123  case 3:  return GlobalValue::InternalLinkage;
124  case 4:  return GlobalValue::LinkOnceAnyLinkage;
125  case 5:  return GlobalValue::ExternalLinkage; // Was DLLImportLinkage;
126  case 6:  return GlobalValue::ExternalLinkage; // Was DLLExportLinkage;
127  case 7:  return GlobalValue::ExternalWeakLinkage;
128  case 8:  return GlobalValue::CommonLinkage;
129  case 9:  return GlobalValue::PrivateLinkage;
130  case 10: return GlobalValue::WeakODRLinkage;
131  case 11: return GlobalValue::LinkOnceODRLinkage;
132  case 12: return GlobalValue::AvailableExternallyLinkage;
133  case 13: return GlobalValue::PrivateLinkage; // Was LinkerPrivateLinkage;
134  case 14: return GlobalValue::ExternalWeakLinkage; // Was LinkerPrivateWeakLinkage;
135  //ANDROID: convert LinkOnceODRAutoHideLinkage -> LinkOnceODRLinkage
136  case 15: return GlobalValue::LinkOnceODRLinkage;
137  }
138}
139
140static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) {
141  switch (Val) {
142  default: // Map unknown visibilities to default.
143  case 0: return GlobalValue::DefaultVisibility;
144  case 1: return GlobalValue::HiddenVisibility;
145  case 2: return GlobalValue::ProtectedVisibility;
146  }
147}
148
149static GlobalVariable::ThreadLocalMode GetDecodedThreadLocalMode(unsigned Val) {
150  switch (Val) {
151    case 0: return GlobalVariable::NotThreadLocal;
152    default: // Map unknown non-zero value to general dynamic.
153    case 1: return GlobalVariable::GeneralDynamicTLSModel;
154    case 2: return GlobalVariable::LocalDynamicTLSModel;
155    case 3: return GlobalVariable::InitialExecTLSModel;
156    case 4: return GlobalVariable::LocalExecTLSModel;
157  }
158}
159
160static int GetDecodedCastOpcode(unsigned Val) {
161  switch (Val) {
162  default: return -1;
163  case bitc::CAST_TRUNC   : return Instruction::Trunc;
164  case bitc::CAST_ZEXT    : return Instruction::ZExt;
165  case bitc::CAST_SEXT    : return Instruction::SExt;
166  case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
167  case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
168  case bitc::CAST_UITOFP  : return Instruction::UIToFP;
169  case bitc::CAST_SITOFP  : return Instruction::SIToFP;
170  case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
171  case bitc::CAST_FPEXT   : return Instruction::FPExt;
172  case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
173  case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
174  case bitc::CAST_BITCAST : return Instruction::BitCast;
175  }
176}
177static int GetDecodedBinaryOpcode(unsigned Val, Type *Ty) {
178  switch (Val) {
179  default: return -1;
180  case bitc::BINOP_ADD:
181    return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add;
182  case bitc::BINOP_SUB:
183    return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub;
184  case bitc::BINOP_MUL:
185    return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul;
186  case bitc::BINOP_UDIV: return Instruction::UDiv;
187  case bitc::BINOP_SDIV:
188    return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv;
189  case bitc::BINOP_UREM: return Instruction::URem;
190  case bitc::BINOP_SREM:
191    return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem;
192  case bitc::BINOP_SHL:  return Instruction::Shl;
193  case bitc::BINOP_LSHR: return Instruction::LShr;
194  case bitc::BINOP_ASHR: return Instruction::AShr;
195  case bitc::BINOP_AND:  return Instruction::And;
196  case bitc::BINOP_OR:   return Instruction::Or;
197  case bitc::BINOP_XOR:  return Instruction::Xor;
198  }
199}
200
201namespace llvm {
202namespace {
203  /// @brief A class for maintaining the slot number definition
204  /// as a placeholder for the actual definition for forward constants defs.
205  class ConstantPlaceHolder : public ConstantExpr {
206    void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT
207  public:
208    // allocate space for exactly one operand
209    void *operator new(size_t s) {
210      return User::operator new(s, 1);
211    }
212    explicit ConstantPlaceHolder(Type *Ty, LLVMContext& Context)
213      : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
214      Op<0>() = UndefValue::get(Type::getInt32Ty(Context));
215    }
216
217    /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
218    //static inline bool classof(const ConstantPlaceHolder *) { return true; }
219    static bool classof(const Value *V) {
220      return isa<ConstantExpr>(V) &&
221             cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
222    }
223
224
225    /// Provide fast operand accessors
226    //DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
227  };
228}
229
230// FIXME: can we inherit this from ConstantExpr?
231template <>
232struct OperandTraits<ConstantPlaceHolder> :
233  public FixedNumOperandTraits<ConstantPlaceHolder, 1> {
234};
235}
236
237
238void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) {
239  if (Idx == size()) {
240    push_back(V);
241    return;
242  }
243
244  if (Idx >= size())
245    resize(Idx+1);
246
247  WeakVH &OldV = ValuePtrs[Idx];
248  if (OldV == 0) {
249    OldV = V;
250    return;
251  }
252
253  // Handle constants and non-constants (e.g. instrs) differently for
254  // efficiency.
255  if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
256    ResolveConstants.push_back(std::make_pair(PHC, Idx));
257    OldV = V;
258  } else {
259    // If there was a forward reference to this value, replace it.
260    Value *PrevVal = OldV;
261    OldV->replaceAllUsesWith(V);
262    delete PrevVal;
263  }
264}
265
266
267Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
268                                                    Type *Ty) {
269  if (Idx >= size())
270    resize(Idx + 1);
271
272  if (Value *V = ValuePtrs[Idx]) {
273    assert(Ty == V->getType() && "Type mismatch in constant table!");
274    return cast<Constant>(V);
275  }
276
277  // Create and return a placeholder, which will later be RAUW'd.
278  Constant *C = new ConstantPlaceHolder(Ty, Context);
279  ValuePtrs[Idx] = C;
280  return C;
281}
282
283Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) {
284  if (Idx >= size())
285    resize(Idx + 1);
286
287  if (Value *V = ValuePtrs[Idx]) {
288    assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!");
289    return V;
290  }
291
292  // No type specified, must be invalid reference.
293  if (Ty == 0) return 0;
294
295  // Create and return a placeholder, which will later be RAUW'd.
296  Value *V = new Argument(Ty);
297  ValuePtrs[Idx] = V;
298  return V;
299}
300
301/// ResolveConstantForwardRefs - Once all constants are read, this method bulk
302/// resolves any forward references.  The idea behind this is that we sometimes
303/// get constants (such as large arrays) which reference *many* forward ref
304/// constants.  Replacing each of these causes a lot of thrashing when
305/// building/reuniquing the constant.  Instead of doing this, we look at all the
306/// uses and rewrite all the place holders at once for any constant that uses
307/// a placeholder.
308void BitcodeReaderValueList::ResolveConstantForwardRefs() {
309  // Sort the values by-pointer so that they are efficient to look up with a
310  // binary search.
311  std::sort(ResolveConstants.begin(), ResolveConstants.end());
312
313  SmallVector<Constant*, 64> NewOps;
314
315  while (!ResolveConstants.empty()) {
316    Value *RealVal = operator[](ResolveConstants.back().second);
317    Constant *Placeholder = ResolveConstants.back().first;
318    ResolveConstants.pop_back();
319
320    // Loop over all users of the placeholder, updating them to reference the
321    // new value.  If they reference more than one placeholder, update them all
322    // at once.
323    while (!Placeholder->use_empty()) {
324      Value::use_iterator UI = Placeholder->use_begin();
325      Use &use = *UI;
326      User *U = use.getUser();
327
328      // If the using object isn't uniqued, just update the operands.  This
329      // handles instructions and initializers for global variables.
330      if (!isa<Constant>(U) || isa<GlobalValue>(U)) {
331        use.set(RealVal);
332        continue;
333      }
334
335      // Otherwise, we have a constant that uses the placeholder.  Replace that
336      // constant with a new constant that has *all* placeholder uses updated.
337      Constant *UserC = cast<Constant>(U);
338      for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
339           I != E; ++I) {
340        Value *NewOp;
341        if (!isa<ConstantPlaceHolder>(*I)) {
342          // Not a placeholder reference.
343          NewOp = *I;
344        } else if (*I == Placeholder) {
345          // Common case is that it just references this one placeholder.
346          NewOp = RealVal;
347        } else {
348          // Otherwise, look up the placeholder in ResolveConstants.
349          ResolveConstantsTy::iterator It =
350            std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
351                             std::pair<Constant*, unsigned>(cast<Constant>(*I),
352                                                            0));
353          assert(It != ResolveConstants.end() && It->first == *I);
354          NewOp = operator[](It->second);
355        }
356
357        NewOps.push_back(cast<Constant>(NewOp));
358      }
359
360      // Make the new constant.
361      Constant *NewC;
362      if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
363        NewC = ConstantArray::get(UserCA->getType(), NewOps);
364      } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
365        NewC = ConstantStruct::get(UserCS->getType(), NewOps);
366      } else if (isa<ConstantVector>(UserC)) {
367        NewC = ConstantVector::get(NewOps);
368      } else {
369        assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
370        NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps);
371      }
372
373      UserC->replaceAllUsesWith(NewC);
374      UserC->destroyConstant();
375      NewOps.clear();
376    }
377
378    // Update all ValueHandles, they should be the only users at this point.
379    Placeholder->replaceAllUsesWith(RealVal);
380    delete Placeholder;
381  }
382}
383
384void BitcodeReaderMDValueList::AssignValue(Value *V, unsigned Idx) {
385  if (Idx == size()) {
386    push_back(V);
387    return;
388  }
389
390  if (Idx >= size())
391    resize(Idx+1);
392
393  WeakVH &OldV = MDValuePtrs[Idx];
394  if (OldV == 0) {
395    OldV = V;
396    return;
397  }
398
399  // If there was a forward reference to this value, replace it.
400  MDNode *PrevVal = cast<MDNode>(OldV);
401  OldV->replaceAllUsesWith(V);
402  MDNode::deleteTemporary(PrevVal);
403  // Deleting PrevVal sets Idx value in MDValuePtrs to null. Set new
404  // value for Idx.
405  MDValuePtrs[Idx] = V;
406}
407
408Value *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) {
409  if (Idx >= size())
410    resize(Idx + 1);
411
412  if (Value *V = MDValuePtrs[Idx]) {
413    assert(V->getType()->isMetadataTy() && "Type mismatch in value table!");
414    return V;
415  }
416
417  // Create and return a placeholder, which will later be RAUW'd.
418  Value *V = MDNode::getTemporary(Context, ArrayRef<Value*>());
419  MDValuePtrs[Idx] = V;
420  return V;
421}
422
423Type *BitcodeReader::getTypeByID(unsigned ID) {
424  // The type table size is always specified correctly.
425  if (ID >= TypeList.size())
426    return 0;
427
428  if (Type *Ty = TypeList[ID])
429    return Ty;
430
431  // If we have a forward reference, the only possible case is when it is to a
432  // named struct.  Just create a placeholder for now.
433  return TypeList[ID] = StructType::create(Context);
434}
435
436/// FIXME: Remove in LLVM 3.1, only used by ParseOldTypeTable.
437Type *BitcodeReader::getTypeByIDOrNull(unsigned ID) {
438  if (ID >= TypeList.size())
439    TypeList.resize(ID+1);
440
441  return TypeList[ID];
442}
443
444
445//===----------------------------------------------------------------------===//
446//  Functions for parsing blocks from the bitcode file
447//===----------------------------------------------------------------------===//
448
449
450/// \brief This fills an AttrBuilder object with the LLVM attributes that have
451/// been decoded from the given integer. This function must stay in sync with
452/// 'encodeLLVMAttributesForBitcode'.
453static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
454                                           uint64_t EncodedAttrs) {
455  // FIXME: Remove in 4.0.
456
457  // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
458  // the bits above 31 down by 11 bits.
459  unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
460  assert((!Alignment || isPowerOf2_32(Alignment)) &&
461         "Alignment must be a power of two.");
462
463  if (Alignment)
464    B.addAlignmentAttr(Alignment);
465  B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
466                (EncodedAttrs & 0xffff));
467}
468
469error_code BitcodeReader::ParseAttributeBlock() {
470  if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
471    return Error(InvalidRecord);
472
473  if (!MAttributes.empty())
474    return Error(InvalidMultipleBlocks);
475
476  SmallVector<uint64_t, 64> Record;
477
478  SmallVector<AttributeSet, 8> Attrs;
479
480  // Read all the records.
481  while (1) {
482    BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
483
484    switch (Entry.Kind) {
485    case BitstreamEntry::SubBlock: // Handled for us already.
486    case BitstreamEntry::Error:
487      return Error(MalformedBlock);
488    case BitstreamEntry::EndBlock:
489      return error_code::success();
490    case BitstreamEntry::Record:
491      // The interesting case.
492      break;
493    }
494
495    // Read a record.
496    Record.clear();
497    switch (Stream.readRecord(Entry.ID, Record)) {
498    default:  // Default behavior: ignore.
499      break;
500    case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...]
501      if (Record.size() & 1)
502        return Error(InvalidRecord);
503
504      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
505        AttrBuilder B;
506        decodeLLVMAttributesForBitcode(B, Record[i+1]);
507        Attrs.push_back(AttributeSet::get(Context, Record[i], B));
508      }
509
510      MAttributes.push_back(AttributeSet::get(Context, Attrs));
511      Attrs.clear();
512      break;
513    }
514    case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...]
515      for (unsigned i = 0, e = Record.size(); i != e; ++i)
516        Attrs.push_back(MAttributeGroups[Record[i]]);
517
518      MAttributes.push_back(AttributeSet::get(Context, Attrs));
519      Attrs.clear();
520      break;
521    }
522    }
523  }
524}
525
526
527error_code BitcodeReader::ParseTypeTable() {
528  if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
529    return Error(InvalidRecord);
530
531  return ParseTypeTableBody();
532}
533
534error_code BitcodeReader::ParseTypeTableBody() {
535  if (!TypeList.empty())
536    return Error(InvalidMultipleBlocks);
537
538  SmallVector<uint64_t, 64> Record;
539  unsigned NumRecords = 0;
540
541  SmallString<64> TypeName;
542
543  // Read all the records for this type table.
544  while (1) {
545    BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
546
547    switch (Entry.Kind) {
548    case BitstreamEntry::SubBlock: // Handled for us already.
549    case BitstreamEntry::Error:
550      return Error(MalformedBlock);
551    case BitstreamEntry::EndBlock:
552      if (NumRecords != TypeList.size())
553        return Error(MalformedBlock);
554      return error_code::success();
555    case BitstreamEntry::Record:
556      // The interesting case.
557      break;
558    }
559
560    // Read a record.
561    Record.clear();
562    Type *ResultTy = 0;
563    switch (Stream.readRecord(Entry.ID, Record)) {
564    default:
565      return Error(InvalidValue);
566    case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
567      // TYPE_CODE_NUMENTRY contains a count of the number of types in the
568      // type list.  This allows us to reserve space.
569      if (Record.size() < 1)
570        return Error(InvalidRecord);
571      TypeList.resize(Record[0]);
572      continue;
573    case bitc::TYPE_CODE_VOID:      // VOID
574      ResultTy = Type::getVoidTy(Context);
575      break;
576    case bitc::TYPE_CODE_HALF:     // HALF
577      ResultTy = Type::getHalfTy(Context);
578      break;
579    case bitc::TYPE_CODE_FLOAT:     // FLOAT
580      ResultTy = Type::getFloatTy(Context);
581      break;
582    case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
583      ResultTy = Type::getDoubleTy(Context);
584      break;
585    case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
586      ResultTy = Type::getX86_FP80Ty(Context);
587      break;
588    case bitc::TYPE_CODE_FP128:     // FP128
589      ResultTy = Type::getFP128Ty(Context);
590      break;
591    case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
592      ResultTy = Type::getPPC_FP128Ty(Context);
593      break;
594    case bitc::TYPE_CODE_LABEL:     // LABEL
595      ResultTy = Type::getLabelTy(Context);
596      break;
597    case bitc::TYPE_CODE_METADATA:  // METADATA
598      ResultTy = Type::getMetadataTy(Context);
599      break;
600    case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
601      ResultTy = Type::getX86_MMXTy(Context);
602      break;
603    case bitc::TYPE_CODE_INTEGER:   // INTEGER: [width]
604      if (Record.size() < 1)
605        return Error(InvalidRecord);
606
607      ResultTy = IntegerType::get(Context, Record[0]);
608      break;
609    case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
610                                    //          [pointee type, address space]
611      if (Record.size() < 1)
612        return Error(InvalidRecord);
613      unsigned AddressSpace = 0;
614      if (Record.size() == 2)
615        AddressSpace = Record[1];
616      ResultTy = getTypeByID(Record[0]);
617      if (ResultTy == 0)
618        return Error(InvalidType);
619      ResultTy = PointerType::get(ResultTy, AddressSpace);
620      break;
621    }
622    case bitc::TYPE_CODE_FUNCTION_OLD: {
623      // FIXME: attrid is dead, remove it in LLVM 4.0
624      // FUNCTION: [vararg, attrid, retty, paramty x N]
625      if (Record.size() < 3)
626        return Error(InvalidRecord);
627      SmallVector<Type*, 8> ArgTys;
628      for (unsigned i = 3, e = Record.size(); i != e; ++i) {
629        if (Type *T = getTypeByID(Record[i]))
630          ArgTys.push_back(T);
631        else
632          break;
633      }
634
635      ResultTy = getTypeByID(Record[2]);
636      if (ResultTy == 0 || ArgTys.size() < Record.size()-3)
637        return Error(InvalidType);
638
639      ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
640      break;
641    }
642    case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
643      if (Record.size() < 1)
644        return Error(InvalidRecord);
645      SmallVector<Type*, 8> EltTys;
646      for (unsigned i = 1, e = Record.size(); i != e; ++i) {
647        if (Type *T = getTypeByID(Record[i]))
648          EltTys.push_back(T);
649        else
650          break;
651      }
652      if (EltTys.size() != Record.size()-1)
653        return Error(InvalidType);
654      ResultTy = StructType::get(Context, EltTys, Record[0]);
655      break;
656    }
657    case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
658      if (ConvertToString(Record, 0, TypeName))
659        return Error(InvalidRecord);
660      continue;
661
662    case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
663      if (Record.size() < 1)
664        return Error(InvalidRecord);
665
666      if (NumRecords >= TypeList.size())
667        return Error(InvalidTYPETable);
668
669      // Check to see if this was forward referenced, if so fill in the temp.
670      StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
671      if (Res) {
672        Res->setName(TypeName);
673        TypeList[NumRecords] = 0;
674      } else  // Otherwise, create a new struct.
675        Res = StructType::create(Context, TypeName);
676      TypeName.clear();
677
678      SmallVector<Type*, 8> EltTys;
679      for (unsigned i = 1, e = Record.size(); i != e; ++i) {
680        if (Type *T = getTypeByID(Record[i]))
681          EltTys.push_back(T);
682        else
683          break;
684      }
685      if (EltTys.size() != Record.size()-1)
686        return Error(InvalidRecord);
687      Res->setBody(EltTys, Record[0]);
688      ResultTy = Res;
689      break;
690    }
691    case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
692      if (Record.size() != 1)
693        return Error(InvalidRecord);
694
695      if (NumRecords >= TypeList.size())
696        return Error(InvalidTYPETable);
697
698      // Check to see if this was forward referenced, if so fill in the temp.
699      StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
700      if (Res) {
701        Res->setName(TypeName);
702        TypeList[NumRecords] = 0;
703      } else  // Otherwise, create a new struct with no body.
704        Res = StructType::create(Context, TypeName);
705      TypeName.clear();
706      ResultTy = Res;
707      break;
708    }
709    case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
710      if (Record.size() < 2)
711        return Error(InvalidRecord);
712      if ((ResultTy = getTypeByID(Record[1])))
713        ResultTy = ArrayType::get(ResultTy, Record[0]);
714      else
715        return Error(InvalidType);
716      break;
717    case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
718      if (Record.size() < 2)
719        return Error(InvalidRecord);
720      if ((ResultTy = getTypeByID(Record[1])))
721        ResultTy = VectorType::get(ResultTy, Record[0]);
722      else
723        return Error(InvalidType);
724      break;
725    }
726
727    if (NumRecords >= TypeList.size())
728      return Error(InvalidTYPETable);
729    assert(ResultTy && "Didn't read a type?");
730    assert(TypeList[NumRecords] == 0 && "Already read type?");
731    TypeList[NumRecords++] = ResultTy;
732  }
733}
734
735// FIXME: Remove in LLVM 3.1
736error_code BitcodeReader::ParseOldTypeTable() {
737  if (Stream.EnterSubBlock(TYPE_BLOCK_ID_OLD_3_0))
738    return Error(MalformedBlock);
739
740  if (!TypeList.empty())
741    return Error(InvalidTYPETable);
742
743
744  // While horrible, we have no good ordering of types in the bc file.  Just
745  // iteratively parse types out of the bc file in multiple passes until we get
746  // them all.  Do this by saving a cursor for the start of the type block.
747  BitstreamCursor StartOfTypeBlockCursor(Stream);
748
749  unsigned NumTypesRead = 0;
750
751  SmallVector<uint64_t, 64> Record;
752RestartScan:
753  unsigned NextTypeID = 0;
754  bool ReadAnyTypes = false;
755
756  // Read all the records for this type table.
757  while (1) {
758    unsigned Code = Stream.ReadCode();
759    if (Code == bitc::END_BLOCK) {
760      if (NextTypeID != TypeList.size())
761        return Error(InvalidTYPETable);
762
763      // If we haven't read all of the types yet, iterate again.
764      if (NumTypesRead != TypeList.size()) {
765        // If we didn't successfully read any types in this pass, then we must
766        // have an unhandled forward reference.
767        if (!ReadAnyTypes)
768          return Error(InvalidTYPETable);
769
770        Stream = StartOfTypeBlockCursor;
771        goto RestartScan;
772      }
773
774      if (Stream.ReadBlockEnd())
775        return Error(InvalidTYPETable);
776      return error_code::success();
777    }
778
779    if (Code == bitc::ENTER_SUBBLOCK) {
780      // No known subblocks, always skip them.
781      Stream.ReadSubBlockID();
782      if (Stream.SkipBlock())
783        return Error(MalformedBlock);
784      continue;
785    }
786
787    if (Code == bitc::DEFINE_ABBREV) {
788      Stream.ReadAbbrevRecord();
789      continue;
790    }
791
792    // Read a record.
793    Record.clear();
794    Type *ResultTy = 0;
795    switch (Stream.readRecord(Code, Record)) {
796    default: return Error(InvalidTYPETable);
797    case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
798      // TYPE_CODE_NUMENTRY contains a count of the number of types in the
799      // type list.  This allows us to reserve space.
800      if (Record.size() < 1)
801        return Error(InvalidTYPETable);
802      TypeList.resize(Record[0]);
803      continue;
804    case bitc::TYPE_CODE_VOID:      // VOID
805      ResultTy = Type::getVoidTy(Context);
806      break;
807    case bitc::TYPE_CODE_FLOAT:     // FLOAT
808      ResultTy = Type::getFloatTy(Context);
809      break;
810    case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
811      ResultTy = Type::getDoubleTy(Context);
812      break;
813    case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
814      ResultTy = Type::getX86_FP80Ty(Context);
815      break;
816    case bitc::TYPE_CODE_FP128:     // FP128
817      ResultTy = Type::getFP128Ty(Context);
818      break;
819    case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
820      ResultTy = Type::getPPC_FP128Ty(Context);
821      break;
822    case bitc::TYPE_CODE_LABEL:     // LABEL
823      ResultTy = Type::getLabelTy(Context);
824      break;
825    case bitc::TYPE_CODE_METADATA:  // METADATA
826      ResultTy = Type::getMetadataTy(Context);
827      break;
828    case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
829      ResultTy = Type::getX86_MMXTy(Context);
830      break;
831    case bitc::TYPE_CODE_INTEGER:   // INTEGER: [width]
832      if (Record.size() < 1)
833        return Error(InvalidTYPETable);
834      ResultTy = IntegerType::get(Context, Record[0]);
835      break;
836    case bitc::TYPE_CODE_OPAQUE:    // OPAQUE
837      if (NextTypeID < TypeList.size() && TypeList[NextTypeID] == 0)
838        ResultTy = StructType::create(Context, "");
839      break;
840    case TYPE_CODE_STRUCT_OLD_3_0: {// STRUCT_OLD
841      if (NextTypeID >= TypeList.size()) break;
842      // If we already read it, don't reprocess.
843      if (TypeList[NextTypeID] &&
844          !cast<StructType>(TypeList[NextTypeID])->isOpaque())
845        break;
846
847      // Set a type.
848      if (TypeList[NextTypeID] == 0)
849        TypeList[NextTypeID] = StructType::create(Context, "");
850
851      std::vector<Type*> EltTys;
852      for (unsigned i = 1, e = Record.size(); i != e; ++i) {
853        if (Type *Elt = getTypeByIDOrNull(Record[i]))
854          EltTys.push_back(Elt);
855        else
856          break;
857      }
858
859      if (EltTys.size() != Record.size()-1)
860        break;      // Not all elements are ready.
861
862      cast<StructType>(TypeList[NextTypeID])->setBody(EltTys, Record[0]);
863      ResultTy = TypeList[NextTypeID];
864      TypeList[NextTypeID] = 0;
865      break;
866    }
867    case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
868      //          [pointee type, address space]
869      if (Record.size() < 1)
870        return Error(InvalidTYPETable);
871      unsigned AddressSpace = 0;
872      if (Record.size() == 2)
873        AddressSpace = Record[1];
874      if ((ResultTy = getTypeByIDOrNull(Record[0])))
875        ResultTy = PointerType::get(ResultTy, AddressSpace);
876      break;
877    }
878    case bitc::TYPE_CODE_FUNCTION_OLD: {
879      // FIXME: attrid is dead, remove it in LLVM 3.0
880      // FUNCTION: [vararg, attrid, retty, paramty x N]
881      if (Record.size() < 3)
882        return Error(InvalidTYPETable);
883      std::vector<Type*> ArgTys;
884      for (unsigned i = 3, e = Record.size(); i != e; ++i) {
885        if (Type *Elt = getTypeByIDOrNull(Record[i]))
886          ArgTys.push_back(Elt);
887        else
888          break;
889      }
890      if (ArgTys.size()+3 != Record.size())
891        break;  // Something was null.
892      if ((ResultTy = getTypeByIDOrNull(Record[2])))
893        ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
894      break;
895    }
896    case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
897      if (Record.size() < 2)
898        return Error(InvalidTYPETable);
899      if ((ResultTy = getTypeByIDOrNull(Record[1])))
900        ResultTy = ArrayType::get(ResultTy, Record[0]);
901      break;
902    case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
903      if (Record.size() < 2)
904        return Error(InvalidTYPETable);
905      if ((ResultTy = getTypeByIDOrNull(Record[1])))
906        ResultTy = VectorType::get(ResultTy, Record[0]);
907      break;
908    }
909
910    if (NextTypeID >= TypeList.size())
911      return Error(InvalidTYPETable);
912
913    if (ResultTy && TypeList[NextTypeID] == 0) {
914      ++NumTypesRead;
915      ReadAnyTypes = true;
916
917      TypeList[NextTypeID] = ResultTy;
918    }
919
920    ++NextTypeID;
921  }
922}
923
924
925error_code BitcodeReader::ParseOldTypeSymbolTable() {
926  if (Stream.EnterSubBlock(TYPE_SYMTAB_BLOCK_ID_OLD_3_0))
927    return Error(MalformedBlock);
928
929  SmallVector<uint64_t, 64> Record;
930
931  // Read all the records for this type table.
932  std::string TypeName;
933  while (1) {
934    unsigned Code = Stream.ReadCode();
935    if (Code == bitc::END_BLOCK) {
936      if (Stream.ReadBlockEnd())
937        return Error(MalformedBlock);
938      return error_code::success();
939    }
940
941    if (Code == bitc::ENTER_SUBBLOCK) {
942      // No known subblocks, always skip them.
943      Stream.ReadSubBlockID();
944      if (Stream.SkipBlock())
945        return Error(MalformedBlock);
946      continue;
947    }
948
949    if (Code == bitc::DEFINE_ABBREV) {
950      Stream.ReadAbbrevRecord();
951      continue;
952    }
953
954    // Read a record.
955    Record.clear();
956    switch (Stream.readRecord(Code, Record)) {
957    default:  // Default behavior: unknown type.
958      break;
959    case bitc::TST_CODE_ENTRY:    // TST_ENTRY: [typeid, namechar x N]
960      if (ConvertToString(Record, 1, TypeName))
961        return Error(InvalidRecord);
962      unsigned TypeID = Record[0];
963      if (TypeID >= TypeList.size())
964        return Error(InvalidRecord);
965
966      // Only apply the type name to a struct type with no name.
967      if (StructType *STy = dyn_cast<StructType>(TypeList[TypeID]))
968        if (!STy->isLiteral() && !STy->hasName())
969          STy->setName(TypeName);
970      TypeName.clear();
971      break;
972    }
973  }
974}
975
976error_code BitcodeReader::ParseValueSymbolTable() {
977  if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
978    return Error(InvalidRecord);
979
980  SmallVector<uint64_t, 64> Record;
981
982  // Read all the records for this value table.
983  SmallString<128> ValueName;
984  while (1) {
985    unsigned Code = Stream.ReadCode();
986    if (Code == bitc::END_BLOCK) {
987      if (Stream.ReadBlockEnd())
988        return Error(MalformedBlock);
989      return error_code::success();
990    }
991    if (Code == bitc::ENTER_SUBBLOCK) {
992      // No known subblocks, always skip them.
993      Stream.ReadSubBlockID();
994      if (Stream.SkipBlock())
995        return Error(MalformedBlock);
996      continue;
997    }
998
999    if (Code == bitc::DEFINE_ABBREV) {
1000      Stream.ReadAbbrevRecord();
1001      continue;
1002    }
1003
1004    // Read a record.
1005    Record.clear();
1006    switch (Stream.readRecord(Code, Record)) {
1007    default:  // Default behavior: unknown type.
1008      break;
1009    case bitc::VST_CODE_ENTRY: {  // VST_ENTRY: [valueid, namechar x N]
1010      if (ConvertToString(Record, 1, ValueName))
1011        return Error(InvalidRecord);
1012      unsigned ValueID = Record[0];
1013      if (ValueID >= ValueList.size())
1014        return Error(InvalidRecord);
1015      Value *V = ValueList[ValueID];
1016
1017      V->setName(StringRef(ValueName.data(), ValueName.size()));
1018      ValueName.clear();
1019      break;
1020    }
1021    case bitc::VST_CODE_BBENTRY: {
1022      if (ConvertToString(Record, 1, ValueName))
1023        return Error(InvalidRecord);
1024      BasicBlock *BB = getBasicBlock(Record[0]);
1025      if (BB == 0)
1026        return Error(InvalidRecord);
1027
1028      BB->setName(StringRef(ValueName.data(), ValueName.size()));
1029      ValueName.clear();
1030      break;
1031    }
1032    }
1033  }
1034}
1035
1036error_code BitcodeReader::ParseMetadata() {
1037  unsigned NextMDValueNo = MDValueList.size();
1038
1039  if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
1040    return Error(InvalidRecord);
1041
1042  SmallVector<uint64_t, 64> Record;
1043
1044  // Read all the records.
1045  while (1) {
1046    unsigned Code = Stream.ReadCode();
1047    if (Code == bitc::END_BLOCK) {
1048      if (Stream.ReadBlockEnd())
1049        return Error(MalformedBlock);
1050      return error_code::success();
1051    }
1052
1053    if (Code == bitc::ENTER_SUBBLOCK) {
1054      // No known subblocks, always skip them.
1055      Stream.ReadSubBlockID();
1056      if (Stream.SkipBlock())
1057        return Error(MalformedBlock);
1058      continue;
1059    }
1060
1061    if (Code == bitc::DEFINE_ABBREV) {
1062      Stream.ReadAbbrevRecord();
1063      continue;
1064    }
1065
1066    bool IsFunctionLocal = false;
1067    // Read a record.
1068    Record.clear();
1069    Code = Stream.readRecord(Code, Record);
1070    switch (Code) {
1071    default:  // Default behavior: ignore.
1072      break;
1073    case bitc::METADATA_NAME: {
1074      // Read named of the named metadata.
1075      unsigned NameLength = Record.size();
1076      SmallString<8> Name;
1077      Name.resize(NameLength);
1078      for (unsigned i = 0; i != NameLength; ++i)
1079        Name[i] = Record[i];
1080      Record.clear();
1081      Code = Stream.ReadCode();
1082
1083      // METADATA_NAME is always followed by METADATA_NAMED_NODE.
1084      unsigned NextBitCode = Stream.readRecord(Code, Record);
1085      if (NextBitCode == METADATA_NAMED_NODE_2_7) {
1086        LLVM2_7MetadataDetected = true;
1087      } else if (NextBitCode != bitc::METADATA_NAMED_NODE) {
1088        assert(!"Invalid Named Metadata record.");  (void)NextBitCode;
1089      }
1090
1091      // Read named metadata elements.
1092      unsigned Size = Record.size();
1093      NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name);
1094      for (unsigned i = 0; i != Size; ++i) {
1095        MDNode *MD = dyn_cast<MDNode>(MDValueList.getValueFwdRef(Record[i]));
1096        if (MD == 0)
1097          return Error(InvalidRecord);
1098        NMD->addOperand(MD);
1099      }
1100
1101      if (LLVM2_7MetadataDetected) {
1102        MDValueList.AssignValue(0, NextMDValueNo++);
1103      }
1104      break;
1105    }
1106    case METADATA_FN_NODE_2_7:
1107    case bitc::METADATA_FN_NODE:
1108      IsFunctionLocal = true;
1109      // fall-through
1110    case METADATA_NODE_2_7:
1111    case bitc::METADATA_NODE: {
1112      if (Code == METADATA_FN_NODE_2_7 ||
1113          Code == METADATA_NODE_2_7) {
1114        LLVM2_7MetadataDetected = true;
1115      }
1116
1117      if (Record.size() % 2 == 1)
1118        return Error(InvalidRecord);
1119
1120      unsigned Size = Record.size();
1121      SmallVector<Value*, 8> Elts;
1122      for (unsigned i = 0; i != Size; i += 2) {
1123        Type *Ty = getTypeByID(Record[i]);
1124        if (!Ty)
1125          return Error(InvalidRecord);
1126        if (Ty->isMetadataTy())
1127          Elts.push_back(MDValueList.getValueFwdRef(Record[i+1]));
1128        else if (!Ty->isVoidTy())
1129          Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty));
1130        else
1131          Elts.push_back(NULL);
1132      }
1133      Value *V = MDNode::getWhenValsUnresolved(Context, Elts, IsFunctionLocal);
1134      IsFunctionLocal = false;
1135      MDValueList.AssignValue(V, NextMDValueNo++);
1136      break;
1137    }
1138    case bitc::METADATA_STRING: {
1139      unsigned MDStringLength = Record.size();
1140      SmallString<8> String;
1141      String.resize(MDStringLength);
1142      for (unsigned i = 0; i != MDStringLength; ++i)
1143        String[i] = Record[i];
1144      Value *V = MDString::get(Context,
1145                               StringRef(String.data(), String.size()));
1146      MDValueList.AssignValue(V, NextMDValueNo++);
1147      break;
1148    }
1149    case bitc::METADATA_KIND: {
1150      unsigned RecordLength = Record.size();
1151      if (Record.empty() || RecordLength < 2)
1152        return Error(InvalidRecord);
1153      SmallString<8> Name;
1154      Name.resize(RecordLength-1);
1155      unsigned Kind = Record[0];
1156      for (unsigned i = 1; i != RecordLength; ++i)
1157        Name[i-1] = Record[i];
1158
1159      unsigned NewKind = TheModule->getMDKindID(Name.str());
1160      if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second)
1161        return Error(ConflictingMETADATA_KINDRecords);
1162      break;
1163    }
1164    }
1165  }
1166}
1167
1168/// decodeSignRotatedValue - Decode a signed value stored with the sign bit in
1169/// the LSB for dense VBR encoding.
1170uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
1171  if ((V & 1) == 0)
1172    return V >> 1;
1173  if (V != 1)
1174    return -(V >> 1);
1175  // There is no such thing as -0 with integers.  "-0" really means MININT.
1176  return 1ULL << 63;
1177}
1178
1179/// ResolveGlobalAndAliasInits - Resolve all of the initializers for global
1180/// values and aliases that we can.
1181error_code BitcodeReader::ResolveGlobalAndAliasInits() {
1182  std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
1183  std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
1184
1185  GlobalInitWorklist.swap(GlobalInits);
1186  AliasInitWorklist.swap(AliasInits);
1187
1188  while (!GlobalInitWorklist.empty()) {
1189    unsigned ValID = GlobalInitWorklist.back().second;
1190    if (ValID >= ValueList.size()) {
1191      // Not ready to resolve this yet, it requires something later in the file.
1192      GlobalInits.push_back(GlobalInitWorklist.back());
1193    } else {
1194      if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
1195        GlobalInitWorklist.back().first->setInitializer(C);
1196      else
1197        return Error(ExpectedConstant);
1198    }
1199    GlobalInitWorklist.pop_back();
1200  }
1201
1202  while (!AliasInitWorklist.empty()) {
1203    unsigned ValID = AliasInitWorklist.back().second;
1204    if (ValID >= ValueList.size()) {
1205      AliasInits.push_back(AliasInitWorklist.back());
1206    } else {
1207      if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
1208        AliasInitWorklist.back().first->setAliasee(C);
1209      else
1210        return Error(ExpectedConstant);
1211    }
1212    AliasInitWorklist.pop_back();
1213  }
1214  return error_code::success();
1215}
1216
1217static APInt ReadWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
1218  SmallVector<uint64_t, 8> Words(Vals.size());
1219  std::transform(Vals.begin(), Vals.end(), Words.begin(),
1220                 BitcodeReader::decodeSignRotatedValue);
1221
1222  return APInt(TypeBits, Words);
1223}
1224
1225error_code BitcodeReader::ParseConstants() {
1226  if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
1227    return Error(InvalidRecord);
1228
1229  SmallVector<uint64_t, 64> Record;
1230
1231  // Read all the records for this value table.
1232  Type *CurTy = Type::getInt32Ty(Context);
1233  unsigned NextCstNo = ValueList.size();
1234  while (1) {
1235    BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1236
1237    switch (Entry.Kind) {
1238    case BitstreamEntry::SubBlock: // Handled for us already.
1239    case BitstreamEntry::Error:
1240      return Error(MalformedBlock);
1241    case BitstreamEntry::EndBlock:
1242      if (NextCstNo != ValueList.size())
1243        return Error(InvalidConstantReference);
1244
1245      // Once all the constants have been read, go through and resolve forward
1246      // references.
1247      ValueList.ResolveConstantForwardRefs();
1248      return error_code::success();
1249    case BitstreamEntry::Record:
1250      // The interesting case.
1251      break;
1252    }
1253
1254    // Read a record.
1255    Record.clear();
1256    Value *V = 0;
1257    unsigned BitCode = Stream.readRecord(Entry.ID, Record);
1258    switch (BitCode) {
1259    default:  // Default behavior: unknown constant
1260    case bitc::CST_CODE_UNDEF:     // UNDEF
1261      V = UndefValue::get(CurTy);
1262      break;
1263    case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
1264      if (Record.empty())
1265        return Error(InvalidRecord);
1266      if (Record[0] >= TypeList.size())
1267        return Error(InvalidRecord);
1268      CurTy = TypeList[Record[0]];
1269      continue;  // Skip the ValueList manipulation.
1270    case bitc::CST_CODE_NULL:      // NULL
1271      V = Constant::getNullValue(CurTy);
1272      break;
1273    case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
1274      if (!CurTy->isIntegerTy() || Record.empty())
1275        return Error(InvalidRecord);
1276      V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
1277      break;
1278    case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
1279      if (!CurTy->isIntegerTy() || Record.empty())
1280        return Error(InvalidRecord);
1281
1282      APInt VInt = ReadWideAPInt(Record,
1283                                 cast<IntegerType>(CurTy)->getBitWidth());
1284      V = ConstantInt::get(Context, VInt);
1285
1286      break;
1287    }
1288    case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
1289      if (Record.empty())
1290        return Error(InvalidRecord);
1291      if (CurTy->isHalfTy())
1292        V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf,
1293                                             APInt(16, (uint16_t)Record[0])));
1294      else if (CurTy->isFloatTy())
1295        V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle,
1296                                             APInt(32, (uint32_t)Record[0])));
1297      else if (CurTy->isDoubleTy())
1298        V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble,
1299                                             APInt(64, Record[0])));
1300      else if (CurTy->isX86_FP80Ty()) {
1301        // Bits are not stored the same way as a normal i80 APInt, compensate.
1302        uint64_t Rearrange[2];
1303        Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
1304        Rearrange[1] = Record[0] >> 48;
1305        V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended,
1306                                             APInt(80, Rearrange)));
1307      } else if (CurTy->isFP128Ty())
1308        V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad,
1309                                             APInt(128, Record)));
1310      else if (CurTy->isPPC_FP128Ty())
1311        V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble,
1312                                             APInt(128, Record)));
1313      else
1314        V = UndefValue::get(CurTy);
1315      break;
1316    }
1317
1318    case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
1319      if (Record.empty())
1320        return Error(InvalidRecord);
1321
1322      unsigned Size = Record.size();
1323      SmallVector<Constant*, 16> Elts;
1324
1325      if (StructType *STy = dyn_cast<StructType>(CurTy)) {
1326        for (unsigned i = 0; i != Size; ++i)
1327          Elts.push_back(ValueList.getConstantFwdRef(Record[i],
1328                                                     STy->getElementType(i)));
1329        V = ConstantStruct::get(STy, Elts);
1330      } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
1331        Type *EltTy = ATy->getElementType();
1332        for (unsigned i = 0; i != Size; ++i)
1333          Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1334        V = ConstantArray::get(ATy, Elts);
1335      } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
1336        Type *EltTy = VTy->getElementType();
1337        for (unsigned i = 0; i != Size; ++i)
1338          Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1339        V = ConstantVector::get(Elts);
1340      } else {
1341        V = UndefValue::get(CurTy);
1342      }
1343      break;
1344    }
1345    case bitc::CST_CODE_STRING: { // STRING: [values]
1346      if (Record.empty())
1347        return Error(InvalidRecord);
1348
1349      ArrayType *ATy = cast<ArrayType>(CurTy);
1350      Type *EltTy = ATy->getElementType();
1351
1352      unsigned Size = Record.size();
1353      std::vector<Constant*> Elts;
1354      for (unsigned i = 0; i != Size; ++i)
1355        Elts.push_back(ConstantInt::get(EltTy, Record[i]));
1356      V = ConstantArray::get(ATy, Elts);
1357      break;
1358    }
1359    case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
1360      if (Record.empty())
1361        return Error(InvalidRecord);
1362
1363      ArrayType *ATy = cast<ArrayType>(CurTy);
1364      Type *EltTy = ATy->getElementType();
1365
1366      unsigned Size = Record.size();
1367      std::vector<Constant*> Elts;
1368      for (unsigned i = 0; i != Size; ++i)
1369        Elts.push_back(ConstantInt::get(EltTy, Record[i]));
1370      Elts.push_back(Constant::getNullValue(EltTy));
1371      V = ConstantArray::get(ATy, Elts);
1372      break;
1373    }
1374    case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
1375      if (Record.size() < 3)
1376        return Error(InvalidRecord);
1377      int Opc = GetDecodedBinaryOpcode(Record[0], CurTy);
1378      if (Opc < 0) {
1379        V = UndefValue::get(CurTy);  // Unknown binop.
1380      } else {
1381        Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
1382        Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
1383        unsigned Flags = 0;
1384        if (Record.size() >= 4) {
1385          if (Opc == Instruction::Add ||
1386              Opc == Instruction::Sub ||
1387              Opc == Instruction::Mul ||
1388              Opc == Instruction::Shl) {
1389            if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
1390              Flags |= OverflowingBinaryOperator::NoSignedWrap;
1391            if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
1392              Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
1393          } else if (Opc == Instruction::SDiv ||
1394                     Opc == Instruction::UDiv ||
1395                     Opc == Instruction::LShr ||
1396                     Opc == Instruction::AShr) {
1397            if (Record[3] & (1 << bitc::PEO_EXACT))
1398              Flags |= SDivOperator::IsExact;
1399          }
1400        }
1401        V = ConstantExpr::get(Opc, LHS, RHS, Flags);
1402      }
1403      break;
1404    }
1405    case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
1406      if (Record.size() < 3)
1407        return Error(InvalidRecord);
1408      int Opc = GetDecodedCastOpcode(Record[0]);
1409      if (Opc < 0) {
1410        V = UndefValue::get(CurTy);  // Unknown cast.
1411      } else {
1412        Type *OpTy = getTypeByID(Record[1]);
1413        if (!OpTy)
1414          return Error(InvalidRecord);
1415        Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
1416        V = ConstantExpr::getCast(Opc, Op, CurTy);
1417      }
1418      break;
1419    }
1420    case bitc::CST_CODE_CE_INBOUNDS_GEP:
1421    case bitc::CST_CODE_CE_GEP: {  // CE_GEP:        [n x operands]
1422      if (Record.size() & 1)
1423        return Error(InvalidRecord);
1424      SmallVector<Constant*, 16> Elts;
1425      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1426        Type *ElTy = getTypeByID(Record[i]);
1427        if (!ElTy)
1428          return Error(InvalidRecord);
1429        Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy));
1430      }
1431      if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
1432        V = ConstantExpr::getInBoundsGetElementPtr(Elts[0],
1433          llvm::ArrayRef<llvm::Constant*>(&Elts[1], Elts.size() - 1));
1434      else
1435        V = ConstantExpr::getGetElementPtr(Elts[0],
1436          llvm::ArrayRef<llvm::Constant*>(&Elts[1], Elts.size() - 1));
1437      break;
1438    }
1439    case bitc::CST_CODE_CE_SELECT:  // CE_SELECT: [opval#, opval#, opval#]
1440      if (Record.size() < 3)
1441        return Error(InvalidRecord);
1442      V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
1443                                                              Type::getInt1Ty(Context)),
1444                                  ValueList.getConstantFwdRef(Record[1],CurTy),
1445                                  ValueList.getConstantFwdRef(Record[2],CurTy));
1446      break;
1447    case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval]
1448      if (Record.size() < 3)
1449        return Error(InvalidRecord);
1450      VectorType *OpTy =
1451        dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
1452      if (OpTy == 0)
1453        return Error(InvalidRecord);
1454      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1455      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
1456      V = ConstantExpr::getExtractElement(Op0, Op1);
1457      break;
1458    }
1459    case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval]
1460      VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1461      if (Record.size() < 3 || OpTy == 0)
1462        return Error(InvalidRecord);
1463      Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1464      Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
1465                                                  OpTy->getElementType());
1466      Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
1467      V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
1468      break;
1469    }
1470    case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
1471      VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1472      if (Record.size() < 3 || OpTy == 0)
1473        return Error(InvalidRecord);
1474      Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1475      Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
1476      Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1477                                                 OpTy->getNumElements());
1478      Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
1479      V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1480      break;
1481    }
1482    case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
1483      VectorType *RTy = dyn_cast<VectorType>(CurTy);
1484      VectorType *OpTy =
1485        dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
1486      if (Record.size() < 4 || RTy == 0 || OpTy == 0)
1487        return Error(InvalidRecord);
1488      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1489      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1490      Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1491                                                 RTy->getNumElements());
1492      Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
1493      V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1494      break;
1495    }
1496    case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
1497      if (Record.size() < 4)
1498        return Error(InvalidRecord);
1499      Type *OpTy = getTypeByID(Record[0]);
1500      if (OpTy == 0)
1501        return Error(InvalidRecord);
1502      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1503      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1504
1505      if (OpTy->isFPOrFPVectorTy())
1506        V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
1507      else
1508        V = ConstantExpr::getICmp(Record[3], Op0, Op1);
1509      break;
1510    }
1511    case bitc::CST_CODE_INLINEASM: {
1512      if (Record.size() < 2)
1513        return Error(InvalidRecord);
1514      std::string AsmStr, ConstrStr;
1515      bool HasSideEffects = Record[0] & 1;
1516      bool IsAlignStack = Record[0] >> 1;
1517      unsigned AsmStrSize = Record[1];
1518      if (2+AsmStrSize >= Record.size())
1519        return Error(InvalidRecord);
1520      unsigned ConstStrSize = Record[2+AsmStrSize];
1521      if (3+AsmStrSize+ConstStrSize > Record.size())
1522        return Error(InvalidRecord);
1523
1524      for (unsigned i = 0; i != AsmStrSize; ++i)
1525        AsmStr += (char)Record[2+i];
1526      for (unsigned i = 0; i != ConstStrSize; ++i)
1527        ConstrStr += (char)Record[3+AsmStrSize+i];
1528      PointerType *PTy = cast<PointerType>(CurTy);
1529      V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
1530                         AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
1531      break;
1532    }
1533    case bitc::CST_CODE_BLOCKADDRESS:{
1534      if (Record.size() < 3)
1535        return Error(InvalidRecord);
1536      Type *FnTy = getTypeByID(Record[0]);
1537      if (FnTy == 0)
1538        return Error(InvalidRecord);
1539      Function *Fn =
1540        dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
1541      if (Fn == 0)
1542        return Error(InvalidRecord);
1543
1544      GlobalVariable *FwdRef = new GlobalVariable(*Fn->getParent(),
1545                                                  Type::getInt8Ty(Context),
1546                                            false, GlobalValue::InternalLinkage,
1547                                                  0, "");
1548      BlockAddrFwdRefs[Fn].push_back(std::make_pair(Record[2], FwdRef));
1549      V = FwdRef;
1550      break;
1551    }
1552    }
1553
1554    ValueList.AssignValue(V, NextCstNo);
1555    ++NextCstNo;
1556  }
1557
1558  if (NextCstNo != ValueList.size())
1559    return Error(InvalidConstantReference);
1560
1561  if (Stream.ReadBlockEnd())
1562    return Error(ExpectedConstant);
1563
1564  // Once all the constants have been read, go through and resolve forward
1565  // references.
1566  ValueList.ResolveConstantForwardRefs();
1567  return error_code::success();
1568}
1569
1570/// RememberAndSkipFunctionBody - When we see the block for a function body,
1571/// remember where it is and then skip it.  This lets us lazily deserialize the
1572/// functions.
1573error_code BitcodeReader::RememberAndSkipFunctionBody() {
1574  // Get the function we are talking about.
1575  if (FunctionsWithBodies.empty())
1576    return Error(InsufficientFunctionProtos);
1577
1578  Function *Fn = FunctionsWithBodies.back();
1579  FunctionsWithBodies.pop_back();
1580
1581  // Save the current stream state.
1582  uint64_t CurBit = Stream.GetCurrentBitNo();
1583  DeferredFunctionInfo[Fn] = CurBit;
1584
1585  // Skip over the function block for now.
1586  if (Stream.SkipBlock())
1587    return Error(InvalidRecord);
1588  return error_code::success();
1589}
1590
1591error_code BitcodeReader::GlobalCleanup() {
1592  // Patch the initializers for globals and aliases up.
1593  ResolveGlobalAndAliasInits();
1594  if (!GlobalInits.empty() || !AliasInits.empty())
1595    return Error(MalformedGlobalInitializerSet);
1596
1597  // Look for intrinsic functions which need to be upgraded at some point
1598  for (Module::iterator FI = TheModule->begin(), FE = TheModule->end();
1599       FI != FE; ++FI) {
1600    Function *NewFn;
1601    if (UpgradeIntrinsicFunction(FI, NewFn))
1602      UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn));
1603  }
1604
1605  // Look for global variables which need to be renamed.
1606  for (Module::global_iterator
1607         GI = TheModule->global_begin(), GE = TheModule->global_end();
1608       GI != GE; ++GI)
1609    UpgradeGlobalVariable(GI);
1610  // Force deallocation of memory for these vectors to favor the client that
1611  // want lazy deserialization.
1612  std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
1613  std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
1614  return error_code::success();
1615}
1616
1617error_code BitcodeReader::ParseModule(bool Resume) {
1618  if (Resume)
1619    Stream.JumpToBit(NextUnreadBit);
1620  else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
1621    return Error(InvalidRecord);
1622
1623  SmallVector<uint64_t, 64> Record;
1624  std::vector<std::string> SectionTable;
1625  std::vector<std::string> GCTable;
1626
1627  // Read all the records for this module.
1628  while (!Stream.AtEndOfStream()) {
1629    unsigned Code = Stream.ReadCode();
1630    if (Code == bitc::END_BLOCK) {
1631      if (Stream.ReadBlockEnd())
1632        return Error(MalformedBlock);
1633
1634      // Patch the initializers for globals and aliases up.
1635      ResolveGlobalAndAliasInits();
1636      if (!GlobalInits.empty() || !AliasInits.empty())
1637        return Error(MalformedGlobalInitializerSet);
1638      if (!FunctionsWithBodies.empty())
1639        return Error(InsufficientFunctionProtos);
1640
1641      // Look for intrinsic functions which need to be upgraded at some point
1642      for (Module::iterator FI = TheModule->begin(), FE = TheModule->end();
1643           FI != FE; ++FI) {
1644        Function* NewFn;
1645        if (UpgradeIntrinsicFunction(FI, NewFn))
1646          UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn));
1647      }
1648
1649      // Look for global variables which need to be renamed.
1650      for (Module::global_iterator
1651             GI = TheModule->global_begin(), GE = TheModule->global_end();
1652           GI != GE; ++GI)
1653        UpgradeGlobalVariable(GI);
1654
1655      // Force deallocation of memory for these vectors to favor the client that
1656      // want lazy deserialization.
1657      std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
1658      std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
1659      std::vector<Function*>().swap(FunctionsWithBodies);
1660      return error_code::success();
1661    }
1662
1663    if (Code == bitc::ENTER_SUBBLOCK) {
1664      switch (Stream.ReadSubBlockID()) {
1665      default:  // Skip unknown content.
1666        if (Stream.SkipBlock())
1667          return Error(InvalidRecord);
1668        break;
1669      case bitc::BLOCKINFO_BLOCK_ID:
1670        if (Stream.ReadBlockInfoBlock())
1671          return Error(MalformedBlock);
1672        break;
1673      case bitc::PARAMATTR_BLOCK_ID:
1674        if (error_code EC = ParseAttributeBlock())
1675          return EC;
1676        break;
1677      case bitc::TYPE_BLOCK_ID_NEW:
1678        if (error_code EC = ParseTypeTable())
1679          return EC;
1680        break;
1681      case TYPE_BLOCK_ID_OLD_3_0:
1682        if (error_code EC = ParseOldTypeTable())
1683          return EC;
1684        break;
1685      case TYPE_SYMTAB_BLOCK_ID_OLD_3_0:
1686        if (error_code EC = ParseOldTypeSymbolTable())
1687          return EC;
1688        break;
1689      case bitc::VALUE_SYMTAB_BLOCK_ID:
1690        if (error_code EC = ParseValueSymbolTable())
1691          return EC;
1692        SeenValueSymbolTable = true;
1693        break;
1694      case bitc::CONSTANTS_BLOCK_ID:
1695        if (error_code EC = ParseConstants())
1696          return EC;
1697        if (error_code EC = ResolveGlobalAndAliasInits())
1698          return EC;
1699        break;
1700      case bitc::METADATA_BLOCK_ID:
1701        if (error_code EC = ParseMetadata())
1702          return EC;
1703        break;
1704      case bitc::FUNCTION_BLOCK_ID:
1705        // If this is the first function body we've seen, reverse the
1706        // FunctionsWithBodies list.
1707        if (!SeenFirstFunctionBody) {
1708          std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
1709          if (error_code EC = GlobalCleanup())
1710            return EC;
1711          SeenFirstFunctionBody = true;
1712        }
1713
1714        if (error_code EC = RememberAndSkipFunctionBody())
1715          return EC;
1716        // For streaming bitcode, suspend parsing when we reach the function
1717        // bodies. Subsequent materialization calls will resume it when
1718        // necessary. For streaming, the function bodies must be at the end of
1719        // the bitcode. If the bitcode file is old, the symbol table will be
1720        // at the end instead and will not have been seen yet. In this case,
1721        // just finish the parse now.
1722        if (LazyStreamer && SeenValueSymbolTable) {
1723          NextUnreadBit = Stream.GetCurrentBitNo();
1724          return error_code::success();
1725        }
1726        break;
1727        break;
1728      }
1729      continue;
1730    }
1731
1732    if (Code == bitc::DEFINE_ABBREV) {
1733      Stream.ReadAbbrevRecord();
1734      continue;
1735    }
1736
1737    // Read a record.
1738    switch (Stream.readRecord(Code, Record)) {
1739    default: break;  // Default behavior, ignore unknown content.
1740    case bitc::MODULE_CODE_VERSION: {  // VERSION: [version#]
1741      if (Record.size() < 1)
1742        return Error(InvalidRecord);
1743      // Only version #0 is supported so far.
1744      if (Record[0] != 0)
1745        return Error(InvalidValue);
1746      break;
1747    }
1748    case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
1749      std::string S;
1750      if (ConvertToString(Record, 0, S))
1751        return Error(InvalidRecord);
1752      TheModule->setTargetTriple(S);
1753      break;
1754    }
1755    case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
1756      std::string S;
1757      if (ConvertToString(Record, 0, S))
1758        return Error(InvalidRecord);
1759      TheModule->setDataLayout(S);
1760      break;
1761    }
1762    case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
1763      std::string S;
1764      if (ConvertToString(Record, 0, S))
1765        return Error(InvalidRecord);
1766      TheModule->setModuleInlineAsm(S);
1767      break;
1768    }
1769    case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
1770      std::string S;
1771      if (ConvertToString(Record, 0, S))
1772        return Error(InvalidRecord);
1773      // ANDROID: Ignore value, since we never used it anyways.
1774      // TheModule->addLibrary(S);
1775      break;
1776    }
1777    case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
1778      std::string S;
1779      if (ConvertToString(Record, 0, S))
1780        return Error(InvalidRecord);
1781      SectionTable.push_back(S);
1782      break;
1783    }
1784    case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
1785      std::string S;
1786      if (ConvertToString(Record, 0, S))
1787        return Error(InvalidRecord);
1788      GCTable.push_back(S);
1789      break;
1790    }
1791    // GLOBALVAR: [pointer type, isconst, initid,
1792    //             linkage, alignment, section, visibility, threadlocal,
1793    //             unnamed_addr]
1794    case bitc::MODULE_CODE_GLOBALVAR: {
1795      if (Record.size() < 6)
1796        return Error(InvalidRecord);
1797      Type *Ty = getTypeByID(Record[0]);
1798      if (!Ty)
1799        return Error(InvalidRecord);
1800      if (!Ty->isPointerTy())
1801        return Error(InvalidTypeForValue);
1802      unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
1803      Ty = cast<PointerType>(Ty)->getElementType();
1804
1805      bool isConstant = Record[1];
1806      GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]);
1807      unsigned Alignment = (1 << Record[4]) >> 1;
1808      std::string Section;
1809      if (Record[5]) {
1810        if (Record[5]-1 >= SectionTable.size())
1811          return Error(InvalidID);
1812        Section = SectionTable[Record[5]-1];
1813      }
1814      GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
1815      if (Record.size() > 6)
1816        Visibility = GetDecodedVisibility(Record[6]);
1817
1818      GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
1819      if (Record.size() > 7)
1820        TLM = GetDecodedThreadLocalMode(Record[7]);
1821
1822      bool UnnamedAddr = false;
1823      if (Record.size() > 8)
1824        UnnamedAddr = Record[8];
1825
1826      GlobalVariable *NewGV =
1827        new GlobalVariable(*TheModule, Ty, isConstant, Linkage, 0, "", 0,
1828                           TLM, AddressSpace);
1829      NewGV->setAlignment(Alignment);
1830      if (!Section.empty())
1831        NewGV->setSection(Section);
1832      NewGV->setVisibility(Visibility);
1833      NewGV->setUnnamedAddr(UnnamedAddr);
1834
1835      ValueList.push_back(NewGV);
1836
1837      // Remember which value to use for the global initializer.
1838      if (unsigned InitID = Record[2])
1839        GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
1840      break;
1841    }
1842    // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
1843    //             alignment, section, visibility, gc, unnamed_addr]
1844    case bitc::MODULE_CODE_FUNCTION: {
1845      if (Record.size() < 8)
1846        return Error(InvalidRecord);
1847      Type *Ty = getTypeByID(Record[0]);
1848      if (!Ty)
1849        return Error(InvalidRecord);
1850      if (!Ty->isPointerTy())
1851        return Error(InvalidTypeForValue);
1852      FunctionType *FTy =
1853        dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
1854      if (!FTy)
1855        return Error(InvalidTypeForValue);
1856
1857      Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
1858                                        "", TheModule);
1859
1860      Func->setCallingConv(static_cast<CallingConv::ID>(Record[1]));
1861      bool isProto = Record[2];
1862      Func->setLinkage(GetDecodedLinkage(Record[3]));
1863      Func->setAttributes(getAttributes(Record[4]));
1864
1865      Func->setAlignment((1 << Record[5]) >> 1);
1866      if (Record[6]) {
1867        if (Record[6]-1 >= SectionTable.size())
1868          return Error(InvalidID);
1869        Func->setSection(SectionTable[Record[6]-1]);
1870      }
1871      Func->setVisibility(GetDecodedVisibility(Record[7]));
1872      if (Record.size() > 8 && Record[8]) {
1873        if (Record[8]-1 > GCTable.size())
1874          return Error(InvalidID);
1875        Func->setGC(GCTable[Record[8]-1].c_str());
1876      }
1877      bool UnnamedAddr = false;
1878      if (Record.size() > 9)
1879        UnnamedAddr = Record[9];
1880      Func->setUnnamedAddr(UnnamedAddr);
1881      ValueList.push_back(Func);
1882
1883      // If this is a function with a body, remember the prototype we are
1884      // creating now, so that we can match up the body with them later.
1885      if (!isProto) {
1886        FunctionsWithBodies.push_back(Func);
1887        if (LazyStreamer) DeferredFunctionInfo[Func] = 0;
1888      }
1889      break;
1890    }
1891    // ALIAS: [alias type, aliasee val#, linkage]
1892    // ALIAS: [alias type, aliasee val#, linkage, visibility]
1893    case bitc::MODULE_CODE_ALIAS: {
1894      if (Record.size() < 3)
1895        return Error(InvalidRecord);
1896      Type *Ty = getTypeByID(Record[0]);
1897      if (!Ty)
1898        return Error(InvalidRecord);
1899      if (!Ty->isPointerTy())
1900        return Error(InvalidTypeForValue);
1901
1902      GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]),
1903                                           "", 0, TheModule);
1904      // Old bitcode files didn't have visibility field.
1905      if (Record.size() > 3)
1906        NewGA->setVisibility(GetDecodedVisibility(Record[3]));
1907      ValueList.push_back(NewGA);
1908      AliasInits.push_back(std::make_pair(NewGA, Record[1]));
1909      break;
1910    }
1911    /// MODULE_CODE_PURGEVALS: [numvals]
1912    case bitc::MODULE_CODE_PURGEVALS:
1913      // Trim down the value list to the specified size.
1914      if (Record.size() < 1 || Record[0] > ValueList.size())
1915        return Error(InvalidRecord);
1916      ValueList.shrinkTo(Record[0]);
1917      break;
1918    }
1919    Record.clear();
1920  }
1921
1922  return Error(BitcodeStreamInvalidSize);
1923}
1924
1925error_code BitcodeReader::ParseBitcodeInto(Module *M) {
1926  TheModule = 0;
1927
1928  if (error_code EC = InitStream())
1929    return EC;
1930
1931  // Sniff for the signature.
1932  if (Stream.Read(8) != 'B' ||
1933      Stream.Read(8) != 'C' ||
1934      Stream.Read(4) != 0x0 ||
1935      Stream.Read(4) != 0xC ||
1936      Stream.Read(4) != 0xE ||
1937      Stream.Read(4) != 0xD)
1938    return Error(InvalidBitcodeSignature);
1939
1940  // We expect a number of well-defined blocks, though we don't necessarily
1941  // need to understand them all.
1942  while (1) {
1943    if (Stream.AtEndOfStream())
1944      return error_code::success();
1945
1946    BitstreamEntry Entry =
1947      Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs);
1948
1949    switch (Entry.Kind) {
1950    case BitstreamEntry::Error:
1951      return Error(MalformedBlock);
1952    case BitstreamEntry::EndBlock:
1953      return error_code::success();
1954
1955    case BitstreamEntry::SubBlock:
1956      switch (Entry.ID) {
1957      case bitc::BLOCKINFO_BLOCK_ID:
1958        if (Stream.ReadBlockInfoBlock())
1959          return Error(MalformedBlock);
1960        break;
1961      case bitc::MODULE_BLOCK_ID:
1962        // Reject multiple MODULE_BLOCK's in a single bitstream.
1963        if (TheModule)
1964          return Error(InvalidMultipleBlocks);
1965        TheModule = M;
1966        if (error_code EC = ParseModule(false))
1967          return EC;
1968        if (LazyStreamer)
1969          return error_code::success();
1970        break;
1971      default:
1972        if (Stream.SkipBlock())
1973          return Error(InvalidRecord);
1974        break;
1975      }
1976      continue;
1977    case BitstreamEntry::Record:
1978      // There should be no records in the top-level of blocks.
1979
1980      // The ranlib in Xcode 4 will align archive members by appending newlines
1981      // to the end of them. If this file size is a multiple of 4 but not 8, we
1982      // have to read and ignore these final 4 bytes :-(
1983      if (Stream.getAbbrevIDWidth() == 2 && Entry.ID == 2 &&
1984          Stream.Read(6) == 2 && Stream.Read(24) == 0xa0a0a &&
1985          Stream.AtEndOfStream())
1986        return error_code::success();
1987
1988      return Error(InvalidRecord);
1989    }
1990  }
1991}
1992
1993error_code BitcodeReader::ParseModuleTriple(std::string &Triple) {
1994  if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
1995    return Error(InvalidRecord);
1996
1997  SmallVector<uint64_t, 64> Record;
1998
1999  // Read all the records for this module.
2000  while (1) {
2001    BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2002
2003    switch (Entry.Kind) {
2004    case BitstreamEntry::SubBlock: // Handled for us already.
2005    case BitstreamEntry::Error:
2006      return Error(MalformedBlock);
2007    case BitstreamEntry::EndBlock:
2008      return error_code::success();
2009    case BitstreamEntry::Record:
2010      // The interesting case.
2011      break;
2012    }
2013
2014    // Read a record.
2015    switch (Stream.readRecord(Entry.ID, Record)) {
2016    default: break;  // Default behavior, ignore unknown content.
2017    case bitc::MODULE_CODE_VERSION:  // VERSION: [version#]
2018      if (Record.size() < 1)
2019        return Error(InvalidRecord);
2020      // Only version #0 is supported so far.
2021      if (Record[0] != 0)
2022        return Error(InvalidRecord);
2023      break;
2024    case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
2025      std::string S;
2026      if (ConvertToString(Record, 0, S))
2027        return Error(InvalidRecord);
2028      Triple = S;
2029      break;
2030    }
2031    }
2032    Record.clear();
2033  }
2034
2035  return Error(BitcodeStreamInvalidSize);
2036}
2037
2038error_code BitcodeReader::ParseTriple(std::string &Triple) {
2039  if (error_code EC = InitStream())
2040    return EC;
2041
2042  // Sniff for the signature.
2043  if (Stream.Read(8) != 'B' ||
2044      Stream.Read(8) != 'C' ||
2045      Stream.Read(4) != 0x0 ||
2046      Stream.Read(4) != 0xC ||
2047      Stream.Read(4) != 0xE ||
2048      Stream.Read(4) != 0xD)
2049    return Error(InvalidBitcodeSignature);
2050
2051  // We expect a number of well-defined blocks, though we don't necessarily
2052  // need to understand them all.
2053  while (1) {
2054    BitstreamEntry Entry = Stream.advance();
2055
2056    switch (Entry.Kind) {
2057    case BitstreamEntry::Error:
2058      return Error(MalformedBlock);
2059    case BitstreamEntry::EndBlock:
2060      return error_code::success();
2061
2062    case BitstreamEntry::SubBlock:
2063      if (Entry.ID == bitc::MODULE_BLOCK_ID)
2064        return ParseModuleTriple(Triple);
2065
2066      // Ignore other sub-blocks.
2067      if (Stream.SkipBlock())
2068        return Error(MalformedBlock);
2069      continue;
2070
2071    case BitstreamEntry::Record:
2072      Stream.skipRecord(Entry.ID);
2073      continue;
2074    }
2075  }
2076}
2077
2078/// ParseMetadataAttachment - Parse metadata attachments.
2079error_code BitcodeReader::ParseMetadataAttachment() {
2080  if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID))
2081    return Error(InvalidRecord);
2082
2083  SmallVector<uint64_t, 64> Record;
2084  while (1) {
2085    BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2086
2087    switch (Entry.Kind) {
2088    case BitstreamEntry::SubBlock: // Handled for us already.
2089    case BitstreamEntry::Error:
2090      return Error(MalformedBlock);
2091    case BitstreamEntry::EndBlock:
2092      return error_code::success();
2093    case BitstreamEntry::Record:
2094      // The interesting case.
2095      break;
2096    }
2097
2098    // Read a metadata attachment record.
2099    Record.clear();
2100    switch (Stream.readRecord(Entry.ID, Record)) {
2101    default:  // Default behavior: ignore.
2102      break;
2103    case METADATA_ATTACHMENT_2_7:
2104      LLVM2_7MetadataDetected = true;
2105    case bitc::METADATA_ATTACHMENT: {
2106      unsigned RecordLength = Record.size();
2107      if (Record.empty() || (RecordLength - 1) % 2 == 1)
2108        return Error(InvalidRecord);
2109      Instruction *Inst = InstructionList[Record[0]];
2110      for (unsigned i = 1; i != RecordLength; i = i+2) {
2111        unsigned Kind = Record[i];
2112        DenseMap<unsigned, unsigned>::iterator I =
2113          MDKindMap.find(Kind);
2114        if (I == MDKindMap.end())
2115          return Error(InvalidID);
2116        Value *Node = MDValueList.getValueFwdRef(Record[i+1]);
2117        Inst->setMetadata(I->second, cast<MDNode>(Node));
2118      }
2119      break;
2120    }
2121    }
2122  }
2123}
2124
2125/// ParseFunctionBody - Lazily parse the specified function body block.
2126error_code BitcodeReader::ParseFunctionBody(Function *F) {
2127  if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
2128    return Error(InvalidRecord);
2129
2130  InstructionList.clear();
2131  unsigned ModuleValueListSize = ValueList.size();
2132  unsigned ModuleMDValueListSize = MDValueList.size();
2133
2134  // Add all the function arguments to the value table.
2135  for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
2136    ValueList.push_back(I);
2137
2138  unsigned NextValueNo = ValueList.size();
2139  BasicBlock *CurBB = 0;
2140  unsigned CurBBNo = 0;
2141
2142  DebugLoc LastLoc;
2143
2144  // Read all the records.
2145  SmallVector<uint64_t, 64> Record;
2146  while (1) {
2147    unsigned Code = Stream.ReadCode();
2148    if (Code == bitc::END_BLOCK) {
2149      if (Stream.ReadBlockEnd())
2150        return Error(MalformedBlock);
2151      break;
2152    }
2153
2154    if (Code == bitc::ENTER_SUBBLOCK) {
2155      switch (Stream.ReadSubBlockID()) {
2156      default:  // Skip unknown content.
2157        if (Stream.SkipBlock())
2158          return Error(InvalidRecord);
2159        break;
2160      case bitc::CONSTANTS_BLOCK_ID:
2161        if (error_code EC = ParseConstants())
2162          return EC;
2163        NextValueNo = ValueList.size();
2164        break;
2165      case bitc::VALUE_SYMTAB_BLOCK_ID:
2166        if (error_code EC = ParseValueSymbolTable())
2167          return EC;
2168        break;
2169      case bitc::METADATA_ATTACHMENT_ID:
2170        if (error_code EC = ParseMetadataAttachment())
2171          return EC;
2172        break;
2173      case bitc::METADATA_BLOCK_ID:
2174        if (error_code EC = ParseMetadata())
2175          return EC;
2176        break;
2177      }
2178      continue;
2179    }
2180
2181    if (Code == bitc::DEFINE_ABBREV) {
2182      Stream.ReadAbbrevRecord();
2183      continue;
2184    }
2185
2186    // Read a record.
2187    Record.clear();
2188    Instruction *I = 0;
2189    unsigned BitCode = Stream.readRecord(Code, Record);
2190    switch (BitCode) {
2191    default: // Default behavior: reject
2192      return Error(InvalidValue);
2193    case bitc::FUNC_CODE_DECLAREBLOCKS:     // DECLAREBLOCKS: [nblocks]
2194      if (Record.size() < 1 || Record[0] == 0)
2195        return Error(InvalidRecord);
2196      // Create all the basic blocks for the function.
2197      FunctionBBs.resize(Record[0]);
2198      for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
2199        FunctionBBs[i] = BasicBlock::Create(Context, "", F);
2200      CurBB = FunctionBBs[0];
2201      continue;
2202
2203    case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
2204      // This record indicates that the last instruction is at the same
2205      // location as the previous instruction with a location.
2206      I = 0;
2207
2208      // Get the last instruction emitted.
2209      if (CurBB && !CurBB->empty())
2210        I = &CurBB->back();
2211      else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
2212               !FunctionBBs[CurBBNo-1]->empty())
2213        I = &FunctionBBs[CurBBNo-1]->back();
2214
2215      if (I == 0)
2216        return Error(InvalidRecord);
2217      I->setDebugLoc(LastLoc);
2218      I = 0;
2219      continue;
2220
2221    case FUNC_CODE_DEBUG_LOC_2_7:
2222      LLVM2_7MetadataDetected = true;
2223    case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
2224      I = 0;     // Get the last instruction emitted.
2225      if (CurBB && !CurBB->empty())
2226        I = &CurBB->back();
2227      else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
2228               !FunctionBBs[CurBBNo-1]->empty())
2229        I = &FunctionBBs[CurBBNo-1]->back();
2230      if (I == 0 || Record.size() < 4)
2231        return Error(InvalidRecord);
2232
2233      unsigned Line = Record[0], Col = Record[1];
2234      unsigned ScopeID = Record[2], IAID = Record[3];
2235
2236      MDNode *Scope = 0, *IA = 0;
2237      if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1));
2238      if (IAID)    IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1));
2239      LastLoc = DebugLoc::get(Line, Col, Scope, IA);
2240      I->setDebugLoc(LastLoc);
2241      I = 0;
2242      continue;
2243    }
2244
2245    case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
2246      unsigned OpNum = 0;
2247      Value *LHS, *RHS;
2248      if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
2249          getValue(Record, OpNum, LHS->getType(), RHS) ||
2250          OpNum+1 > Record.size())
2251        return Error(InvalidRecord);
2252
2253      int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
2254      if (Opc == -1)
2255        return Error(InvalidRecord);
2256      I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
2257      InstructionList.push_back(I);
2258      if (OpNum < Record.size()) {
2259        if (Opc == Instruction::Add ||
2260            Opc == Instruction::Sub ||
2261            Opc == Instruction::Mul ||
2262            Opc == Instruction::Shl) {
2263          if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2264            cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
2265          if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2266            cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
2267        } else if (Opc == Instruction::SDiv ||
2268                   Opc == Instruction::UDiv ||
2269                   Opc == Instruction::LShr ||
2270                   Opc == Instruction::AShr) {
2271          if (Record[OpNum] & (1 << bitc::PEO_EXACT))
2272            cast<BinaryOperator>(I)->setIsExact(true);
2273        }
2274      }
2275      break;
2276    }
2277    case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
2278      unsigned OpNum = 0;
2279      Value *Op;
2280      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2281          OpNum+2 != Record.size())
2282        return Error(InvalidRecord);
2283
2284      Type *ResTy = getTypeByID(Record[OpNum]);
2285      int Opc = GetDecodedCastOpcode(Record[OpNum+1]);
2286      if (Opc == -1 || ResTy == 0)
2287        return Error(InvalidRecord);
2288      I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy);
2289      InstructionList.push_back(I);
2290      break;
2291    }
2292    case bitc::FUNC_CODE_INST_INBOUNDS_GEP:
2293    case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands]
2294      unsigned OpNum = 0;
2295      Value *BasePtr;
2296      if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
2297        return Error(InvalidRecord);
2298
2299      SmallVector<Value*, 16> GEPIdx;
2300      while (OpNum != Record.size()) {
2301        Value *Op;
2302        if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2303          return Error(InvalidRecord);
2304        GEPIdx.push_back(Op);
2305      }
2306
2307      I = GetElementPtrInst::Create(BasePtr, GEPIdx);
2308      InstructionList.push_back(I);
2309      if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP)
2310        cast<GetElementPtrInst>(I)->setIsInBounds(true);
2311      break;
2312    }
2313
2314    case bitc::FUNC_CODE_INST_EXTRACTVAL: {
2315                                       // EXTRACTVAL: [opty, opval, n x indices]
2316      unsigned OpNum = 0;
2317      Value *Agg;
2318      if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
2319        return Error(InvalidRecord);
2320
2321      SmallVector<unsigned, 4> EXTRACTVALIdx;
2322      for (unsigned RecSize = Record.size();
2323           OpNum != RecSize; ++OpNum) {
2324        uint64_t Index = Record[OpNum];
2325        if ((unsigned)Index != Index)
2326          return Error(InvalidValue);
2327        EXTRACTVALIdx.push_back((unsigned)Index);
2328      }
2329
2330      I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
2331      InstructionList.push_back(I);
2332      break;
2333    }
2334
2335    case bitc::FUNC_CODE_INST_INSERTVAL: {
2336                           // INSERTVAL: [opty, opval, opty, opval, n x indices]
2337      unsigned OpNum = 0;
2338      Value *Agg;
2339      if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
2340        return Error(InvalidRecord);
2341      Value *Val;
2342      if (getValueTypePair(Record, OpNum, NextValueNo, Val))
2343        return Error(InvalidRecord);
2344
2345      SmallVector<unsigned, 4> INSERTVALIdx;
2346      for (unsigned RecSize = Record.size();
2347           OpNum != RecSize; ++OpNum) {
2348        uint64_t Index = Record[OpNum];
2349        if ((unsigned)Index != Index)
2350          return Error(InvalidValue);
2351        INSERTVALIdx.push_back((unsigned)Index);
2352      }
2353
2354      I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
2355      InstructionList.push_back(I);
2356      break;
2357    }
2358
2359    case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
2360      // obsolete form of select
2361      // handles select i1 ... in old bitcode
2362      unsigned OpNum = 0;
2363      Value *TrueVal, *FalseVal, *Cond;
2364      if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
2365          getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
2366          getValue(Record, OpNum, Type::getInt1Ty(Context), Cond))
2367        return Error(InvalidRecord);
2368
2369      I = SelectInst::Create(Cond, TrueVal, FalseVal);
2370      InstructionList.push_back(I);
2371      break;
2372    }
2373
2374    case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
2375      // new form of select
2376      // handles select i1 or select [N x i1]
2377      unsigned OpNum = 0;
2378      Value *TrueVal, *FalseVal, *Cond;
2379      if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
2380          getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
2381          getValueTypePair(Record, OpNum, NextValueNo, Cond))
2382        return Error(InvalidRecord);
2383
2384      // select condition can be either i1 or [N x i1]
2385      if (VectorType* vector_type =
2386          dyn_cast<VectorType>(Cond->getType())) {
2387        // expect <n x i1>
2388        if (vector_type->getElementType() != Type::getInt1Ty(Context))
2389          return Error(InvalidTypeForValue);
2390      } else {
2391        // expect i1
2392        if (Cond->getType() != Type::getInt1Ty(Context))
2393          return Error(InvalidTypeForValue);
2394      }
2395
2396      I = SelectInst::Create(Cond, TrueVal, FalseVal);
2397      InstructionList.push_back(I);
2398      break;
2399    }
2400
2401    case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
2402      unsigned OpNum = 0;
2403      Value *Vec, *Idx;
2404      if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
2405          getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
2406        return Error(InvalidRecord);
2407      I = ExtractElementInst::Create(Vec, Idx);
2408      InstructionList.push_back(I);
2409      break;
2410    }
2411
2412    case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
2413      unsigned OpNum = 0;
2414      Value *Vec, *Elt, *Idx;
2415      if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
2416          getValue(Record, OpNum,
2417                   cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
2418          getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
2419        return Error(InvalidRecord);
2420      I = InsertElementInst::Create(Vec, Elt, Idx);
2421      InstructionList.push_back(I);
2422      break;
2423    }
2424
2425    case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
2426      unsigned OpNum = 0;
2427      Value *Vec1, *Vec2, *Mask;
2428      if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
2429          getValue(Record, OpNum, Vec1->getType(), Vec2))
2430        return Error(InvalidRecord);
2431
2432      if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
2433        return Error(InvalidRecord);
2434      I = new ShuffleVectorInst(Vec1, Vec2, Mask);
2435      InstructionList.push_back(I);
2436      break;
2437    }
2438
2439    case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
2440      // Old form of ICmp/FCmp returning bool
2441      // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
2442      // both legal on vectors but had different behaviour.
2443    case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
2444      // FCmp/ICmp returning bool or vector of bool
2445
2446      unsigned OpNum = 0;
2447      Value *LHS, *RHS;
2448      if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
2449          getValue(Record, OpNum, LHS->getType(), RHS) ||
2450          OpNum+1 != Record.size())
2451        return Error(InvalidRecord);
2452
2453      if (LHS->getType()->isFPOrFPVectorTy())
2454        I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
2455      else
2456        I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
2457      InstructionList.push_back(I);
2458      break;
2459    }
2460
2461    case FUNC_CODE_INST_GETRESULT_2_7: {
2462      if (Record.size() != 2) {
2463        return Error(InvalidRecord);
2464      }
2465      unsigned OpNum = 0;
2466      Value *Op;
2467      getValueTypePair(Record, OpNum, NextValueNo, Op);
2468      unsigned Index = Record[1];
2469      I = ExtractValueInst::Create(Op, Index);
2470      InstructionList.push_back(I);
2471      break;
2472    }
2473
2474    case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
2475      {
2476        unsigned Size = Record.size();
2477        if (Size == 0) {
2478          I = ReturnInst::Create(Context);
2479          InstructionList.push_back(I);
2480          break;
2481        }
2482
2483        unsigned OpNum = 0;
2484        Value *Op = NULL;
2485        if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2486          return Error(InvalidRecord);
2487        if (OpNum != Record.size())
2488          return Error(InvalidRecord);
2489
2490        I = ReturnInst::Create(Context, Op);
2491        InstructionList.push_back(I);
2492        break;
2493      }
2494    case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
2495      if (Record.size() != 1 && Record.size() != 3)
2496        return Error(InvalidRecord);
2497      BasicBlock *TrueDest = getBasicBlock(Record[0]);
2498      if (TrueDest == 0)
2499        return Error(InvalidRecord);
2500
2501      if (Record.size() == 1) {
2502        I = BranchInst::Create(TrueDest);
2503        InstructionList.push_back(I);
2504      }
2505      else {
2506        BasicBlock *FalseDest = getBasicBlock(Record[1]);
2507        Value *Cond = getFnValueByID(Record[2], Type::getInt1Ty(Context));
2508        if (FalseDest == 0 || Cond == 0)
2509          return Error(InvalidRecord);
2510        I = BranchInst::Create(TrueDest, FalseDest, Cond);
2511        InstructionList.push_back(I);
2512      }
2513      break;
2514    }
2515    case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
2516      if (Record.size() < 3 || (Record.size() & 1) == 0)
2517        return Error(InvalidRecord);
2518      Type *OpTy = getTypeByID(Record[0]);
2519      Value *Cond = getFnValueByID(Record[1], OpTy);
2520      BasicBlock *Default = getBasicBlock(Record[2]);
2521      if (OpTy == 0 || Cond == 0 || Default == 0)
2522        return Error(InvalidRecord);
2523      unsigned NumCases = (Record.size()-3)/2;
2524      SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
2525      InstructionList.push_back(SI);
2526      for (unsigned i = 0, e = NumCases; i != e; ++i) {
2527        ConstantInt *CaseVal =
2528          dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
2529        BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
2530        if (CaseVal == 0 || DestBB == 0) {
2531          delete SI;
2532          return Error(InvalidRecord);
2533        }
2534        SI->addCase(CaseVal, DestBB);
2535      }
2536      I = SI;
2537      break;
2538    }
2539    case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
2540      if (Record.size() < 2)
2541        return Error(InvalidRecord);
2542      Type *OpTy = getTypeByID(Record[0]);
2543      Value *Address = getFnValueByID(Record[1], OpTy);
2544      if (OpTy == 0 || Address == 0)
2545        return Error(InvalidRecord);
2546      unsigned NumDests = Record.size()-2;
2547      IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
2548      InstructionList.push_back(IBI);
2549      for (unsigned i = 0, e = NumDests; i != e; ++i) {
2550        if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
2551          IBI->addDestination(DestBB);
2552        } else {
2553          delete IBI;
2554          return Error(InvalidRecord);
2555        }
2556      }
2557      I = IBI;
2558      break;
2559    }
2560
2561    case bitc::FUNC_CODE_INST_INVOKE: {
2562      // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
2563      if (Record.size() < 4)
2564        return Error(InvalidRecord);
2565      AttributeSet PAL = getAttributes(Record[0]);
2566      unsigned CCInfo = Record[1];
2567      BasicBlock *NormalBB = getBasicBlock(Record[2]);
2568      BasicBlock *UnwindBB = getBasicBlock(Record[3]);
2569
2570      unsigned OpNum = 4;
2571      Value *Callee;
2572      if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
2573        return Error(InvalidRecord);
2574
2575      PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
2576      FunctionType *FTy = !CalleeTy ? 0 :
2577        dyn_cast<FunctionType>(CalleeTy->getElementType());
2578
2579      // Check that the right number of fixed parameters are here.
2580      if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 ||
2581          Record.size() < OpNum+FTy->getNumParams())
2582        return Error(InvalidRecord);
2583
2584      SmallVector<Value*, 16> Ops;
2585      for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
2586        Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
2587        if (Ops.back() == 0)
2588          return Error(InvalidRecord);
2589      }
2590
2591      if (!FTy->isVarArg()) {
2592        if (Record.size() != OpNum)
2593          return Error(InvalidRecord);
2594      } else {
2595        // Read type/value pairs for varargs params.
2596        while (OpNum != Record.size()) {
2597          Value *Op;
2598          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2599            return Error(InvalidRecord);
2600          Ops.push_back(Op);
2601        }
2602      }
2603
2604      I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops);
2605      InstructionList.push_back(I);
2606      cast<InvokeInst>(I)->setCallingConv(
2607        static_cast<CallingConv::ID>(CCInfo));
2608      cast<InvokeInst>(I)->setAttributes(PAL);
2609      break;
2610    }
2611    case FUNC_CODE_INST_UNWIND_2_7: { // UNWIND_OLD
2612      // 'unwind' instruction has been removed in LLVM 3.1
2613      // Replace 'unwind' with 'landingpad' and 'resume'.
2614      Type *ExnTy = StructType::get(Type::getInt8PtrTy(Context),
2615                                    Type::getInt32Ty(Context), NULL);
2616      Constant *PersFn =
2617        F->getParent()->
2618        getOrInsertFunction("__gcc_personality_v0",
2619                          FunctionType::get(Type::getInt32Ty(Context), true));
2620
2621      LandingPadInst *LP = LandingPadInst::Create(ExnTy, PersFn, 1);
2622      LP->setCleanup(true);
2623
2624      CurBB->getInstList().push_back(LP);
2625      I = ResumeInst::Create(LP);
2626      InstructionList.push_back(I);
2627      break;
2628    }
2629    case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
2630      I = new UnreachableInst(Context);
2631      InstructionList.push_back(I);
2632      break;
2633    case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
2634      if (Record.size() < 1 || ((Record.size()-1)&1))
2635        return Error(InvalidRecord);
2636      Type *Ty = getTypeByID(Record[0]);
2637      if (!Ty)
2638        return Error(InvalidRecord);
2639
2640      PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2);
2641      InstructionList.push_back(PN);
2642
2643      for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
2644        Value *V = getFnValueByID(Record[1+i], Ty);
2645        BasicBlock *BB = getBasicBlock(Record[2+i]);
2646        if (!V || !BB)
2647          return Error(InvalidRecord);
2648        PN->addIncoming(V, BB);
2649      }
2650      I = PN;
2651      break;
2652    }
2653
2654    case FUNC_CODE_INST_MALLOC_2_7: { // MALLOC: [instty, op, align]
2655      // Autoupgrade malloc instruction to malloc call.
2656      // FIXME: Remove in LLVM 3.0.
2657      if (Record.size() < 3) {
2658        return Error(InvalidRecord);
2659      }
2660      PointerType *Ty =
2661          dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
2662      Value *Size = getFnValueByID(Record[1], Type::getInt32Ty(Context));
2663      if (!Ty || !Size)
2664        return Error(InvalidRecord);
2665      if (!CurBB)
2666        return Error(InvalidInstructionWithNoBB);
2667      Type *Int32Ty = IntegerType::getInt32Ty(CurBB->getContext());
2668      Constant *AllocSize = ConstantExpr::getSizeOf(Ty->getElementType());
2669      AllocSize = ConstantExpr::getTruncOrBitCast(AllocSize, Int32Ty);
2670      I = CallInst::CreateMalloc(CurBB, Int32Ty, Ty->getElementType(),
2671                                 AllocSize, Size, NULL);
2672      InstructionList.push_back(I);
2673      break;
2674    }
2675    case FUNC_CODE_INST_FREE_2_7: { // FREE: [op, opty]
2676      unsigned OpNum = 0;
2677      Value *Op;
2678      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2679          OpNum != Record.size()) {
2680        return Error(InvalidRecord);
2681      }
2682      if (!CurBB)
2683        return Error(InvalidInstructionWithNoBB);
2684      I = CallInst::CreateFree(Op, CurBB);
2685      InstructionList.push_back(I);
2686      break;
2687    }
2688
2689    case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
2690      // For backward compatibility, tolerate a lack of an opty, and use i32.
2691      // Remove this in LLVM 3.0.
2692      if (Record.size() < 3 || Record.size() > 4) {
2693        return Error(InvalidRecord);
2694      }
2695      unsigned OpNum = 0;
2696      PointerType *Ty =
2697        dyn_cast_or_null<PointerType>(getTypeByID(Record[OpNum++]));
2698      Type *OpTy = Record.size() == 4 ? getTypeByID(Record[OpNum++]) :
2699                                              Type::getInt32Ty(Context);
2700      Value *Size = getFnValueByID(Record[OpNum++], OpTy);
2701      unsigned Align = Record[OpNum++];
2702      if (!Ty || !Size)
2703        return Error(InvalidRecord);
2704      I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1);
2705      InstructionList.push_back(I);
2706      break;
2707    }
2708    case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
2709      unsigned OpNum = 0;
2710      Value *Op;
2711      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2712          OpNum+2 != Record.size())
2713        return Error(InvalidRecord);
2714
2715      I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2716      InstructionList.push_back(I);
2717      break;
2718    }
2719    case bitc::FUNC_CODE_INST_STORE: { // STORE2:[ptrty, ptr, val, align, vol]
2720      unsigned OpNum = 0;
2721      Value *Val, *Ptr;
2722      if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
2723          getValue(Record, OpNum,
2724                    cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
2725          OpNum+2 != Record.size())
2726        return Error(InvalidRecord);
2727
2728      I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2729      InstructionList.push_back(I);
2730      break;
2731    }
2732    case FUNC_CODE_INST_STORE_2_7: {
2733      unsigned OpNum = 0;
2734      Value *Val, *Ptr;
2735      if (getValueTypePair(Record, OpNum, NextValueNo, Val) ||
2736          getValue(Record, OpNum,
2737                   PointerType::getUnqual(Val->getType()), Ptr)||
2738          OpNum+2 != Record.size()) {
2739        return Error(InvalidRecord);
2740      }
2741      I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2742      InstructionList.push_back(I);
2743      break;
2744    }
2745    case FUNC_CODE_INST_CALL_2_7:
2746      LLVM2_7MetadataDetected = true;
2747    case bitc::FUNC_CODE_INST_CALL: {
2748      // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...]
2749      if (Record.size() < 3)
2750        return Error(InvalidRecord);
2751
2752      AttributeSet PAL = getAttributes(Record[0]);
2753      unsigned CCInfo = Record[1];
2754
2755      unsigned OpNum = 2;
2756      Value *Callee;
2757      if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
2758        return Error(InvalidRecord);
2759
2760      PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
2761      FunctionType *FTy = 0;
2762      if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType());
2763      if (!FTy || Record.size() < FTy->getNumParams()+OpNum)
2764        return Error(InvalidRecord);
2765
2766      SmallVector<Value*, 16> Args;
2767      // Read the fixed params.
2768      for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
2769        if (FTy->getParamType(i)->isLabelTy())
2770          Args.push_back(getBasicBlock(Record[OpNum]));
2771        else
2772          Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
2773        if (Args.back() == 0)
2774          return Error(InvalidRecord);
2775      }
2776
2777      // Read type/value pairs for varargs params.
2778      if (!FTy->isVarArg()) {
2779        if (OpNum != Record.size())
2780          return Error(InvalidRecord);
2781      } else {
2782        while (OpNum != Record.size()) {
2783          Value *Op;
2784          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2785            return Error(InvalidRecord);
2786          Args.push_back(Op);
2787        }
2788      }
2789
2790      I = CallInst::Create(Callee, Args);
2791      InstructionList.push_back(I);
2792      cast<CallInst>(I)->setCallingConv(
2793        static_cast<CallingConv::ID>(CCInfo>>1));
2794      cast<CallInst>(I)->setTailCall(CCInfo & 1);
2795      cast<CallInst>(I)->setAttributes(PAL);
2796      break;
2797    }
2798    case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
2799      if (Record.size() < 3)
2800        return Error(InvalidRecord);
2801      Type *OpTy = getTypeByID(Record[0]);
2802      Value *Op = getFnValueByID(Record[1], OpTy);
2803      Type *ResTy = getTypeByID(Record[2]);
2804      if (!OpTy || !Op || !ResTy)
2805        return Error(InvalidRecord);
2806      I = new VAArgInst(Op, ResTy);
2807      InstructionList.push_back(I);
2808      break;
2809    }
2810    }
2811
2812    // Add instruction to end of current BB.  If there is no current BB, reject
2813    // this file.
2814    if (CurBB == 0) {
2815      delete I;
2816      return Error(InvalidInstructionWithNoBB);
2817    }
2818    CurBB->getInstList().push_back(I);
2819
2820    // If this was a terminator instruction, move to the next block.
2821    if (isa<TerminatorInst>(I)) {
2822      ++CurBBNo;
2823      CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0;
2824    }
2825
2826    // Non-void values get registered in the value table for future use.
2827    if (I && !I->getType()->isVoidTy())
2828      ValueList.AssignValue(I, NextValueNo++);
2829  }
2830
2831  // Check the function list for unresolved values.
2832  if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
2833    if (A->getParent() == 0) {
2834      // We found at least one unresolved value.  Nuke them all to avoid leaks.
2835      for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
2836        if ((A = dyn_cast<Argument>(ValueList[i])) && A->getParent() == 0) {
2837          A->replaceAllUsesWith(UndefValue::get(A->getType()));
2838          delete A;
2839        }
2840      }
2841      return Error(NeverResolvedValueFoundInFunction);
2842    }
2843  }
2844
2845  // FIXME: Check for unresolved forward-declared metadata references
2846  // and clean up leaks.
2847
2848  // See if anything took the address of blocks in this function.  If so,
2849  // resolve them now.
2850  DenseMap<Function*, std::vector<BlockAddrRefTy> >::iterator BAFRI =
2851    BlockAddrFwdRefs.find(F);
2852  if (BAFRI != BlockAddrFwdRefs.end()) {
2853    std::vector<BlockAddrRefTy> &RefList = BAFRI->second;
2854    for (unsigned i = 0, e = RefList.size(); i != e; ++i) {
2855      unsigned BlockIdx = RefList[i].first;
2856      if (BlockIdx >= FunctionBBs.size())
2857        return Error(InvalidID);
2858
2859      GlobalVariable *FwdRef = RefList[i].second;
2860      FwdRef->replaceAllUsesWith(BlockAddress::get(F, FunctionBBs[BlockIdx]));
2861      FwdRef->eraseFromParent();
2862    }
2863
2864    BlockAddrFwdRefs.erase(BAFRI);
2865  }
2866
2867  unsigned NewMDValueListSize = MDValueList.size();
2868  // Trim the value list down to the size it was before we parsed this function.
2869  ValueList.shrinkTo(ModuleValueListSize);
2870  MDValueList.shrinkTo(ModuleMDValueListSize);
2871
2872  if (LLVM2_7MetadataDetected) {
2873    MDValueList.resize(NewMDValueListSize);
2874  }
2875
2876  std::vector<BasicBlock*>().swap(FunctionBBs);
2877  return error_code::success();
2878}
2879
2880//===----------------------------------------------------------------------===//
2881// GVMaterializer implementation
2882//===----------------------------------------------------------------------===//
2883
2884
2885bool BitcodeReader::isMaterializable(const GlobalValue *GV) const {
2886  if (const Function *F = dyn_cast<Function>(GV)) {
2887    return F->isDeclaration() &&
2888      DeferredFunctionInfo.count(const_cast<Function*>(F));
2889  }
2890  return false;
2891}
2892
2893error_code BitcodeReader::Materialize(GlobalValue *GV) {
2894  Function *F = dyn_cast<Function>(GV);
2895  // If it's not a function or is already material, ignore the request.
2896  if (!F || !F->isMaterializable())
2897    return error_code::success();
2898
2899  DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
2900  assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
2901
2902  // Move the bit stream to the saved position of the deferred function body.
2903  Stream.JumpToBit(DFII->second);
2904
2905  if (error_code EC = ParseFunctionBody(F))
2906    return EC;
2907
2908  // Upgrade any old intrinsic calls in the function.
2909  for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(),
2910       E = UpgradedIntrinsics.end(); I != E; ++I) {
2911    if (I->first != I->second) {
2912      for (Value::use_iterator UI = I->first->use_begin(),
2913           UE = I->first->use_end(); UI != UE; ) {
2914        if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2915          UpgradeIntrinsicCall(CI, I->second);
2916      }
2917    }
2918  }
2919
2920  return error_code::success();
2921}
2922
2923bool BitcodeReader::isDematerializable(const GlobalValue *GV) const {
2924  const Function *F = dyn_cast<Function>(GV);
2925  if (!F || F->isDeclaration())
2926    return false;
2927  return DeferredFunctionInfo.count(const_cast<Function*>(F));
2928}
2929
2930void BitcodeReader::Dematerialize(GlobalValue *GV) {
2931  Function *F = dyn_cast<Function>(GV);
2932  // If this function isn't dematerializable, this is a noop.
2933  if (!F || !isDematerializable(F))
2934    return;
2935
2936  assert(DeferredFunctionInfo.count(F) && "No info to read function later?");
2937
2938  // Just forget the function body, we can remat it later.
2939  F->deleteBody();
2940}
2941
2942
2943error_code BitcodeReader::MaterializeModule(Module *M) {
2944  assert(M == TheModule &&
2945         "Can only Materialize the Module this BitcodeReader is attached to.");
2946  // Iterate over the module, deserializing any functions that are still on
2947  // disk.
2948  for (Module::iterator F = TheModule->begin(), E = TheModule->end();
2949       F != E; ++F) {
2950    if (F->isMaterializable()) {
2951      if (error_code EC = Materialize(F))
2952        return EC;
2953    }
2954  }
2955
2956  // Upgrade any intrinsic calls that slipped through (should not happen!) and
2957  // delete the old functions to clean up. We can't do this unless the entire
2958  // module is materialized because there could always be another function body
2959  // with calls to the old function.
2960  for (std::vector<std::pair<Function*, Function*> >::iterator I =
2961       UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) {
2962    if (I->first != I->second) {
2963      for (Value::use_iterator UI = I->first->use_begin(),
2964           UE = I->first->use_end(); UI != UE; ) {
2965        if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2966          UpgradeIntrinsicCall(CI, I->second);
2967      }
2968      if (!I->first->use_empty())
2969        I->first->replaceAllUsesWith(I->second);
2970      I->first->eraseFromParent();
2971    }
2972  }
2973  std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics);
2974
2975  // Check debug info intrinsics.
2976  CheckDebugInfoIntrinsics(TheModule);
2977
2978  return error_code::success();
2979}
2980
2981error_code BitcodeReader::InitStream() {
2982  if (LazyStreamer)
2983    return InitLazyStream();
2984  return InitStreamFromBuffer();
2985}
2986
2987error_code BitcodeReader::InitStreamFromBuffer() {
2988  const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart();
2989  const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
2990
2991  if (Buffer->getBufferSize() & 3) {
2992    if (!isRawBitcode(BufPtr, BufEnd) && !isBitcodeWrapper(BufPtr, BufEnd))
2993      return Error(InvalidBitcodeSignature);
2994    else
2995      return Error(BitcodeStreamInvalidSize);
2996  }
2997
2998  // If we have a wrapper header, parse it and ignore the non-bc file contents.
2999  // The magic number is 0x0B17C0DE stored in little endian.
3000  if (isBitcodeWrapper(BufPtr, BufEnd))
3001    if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
3002      return Error(InvalidBitcodeWrapperHeader);
3003
3004  StreamFile.reset(new BitstreamReader(BufPtr, BufEnd));
3005  Stream.init(*StreamFile);
3006
3007  return error_code::success();
3008}
3009
3010error_code BitcodeReader::InitLazyStream() {
3011  // Check and strip off the bitcode wrapper; BitstreamReader expects never to
3012  // see it.
3013  StreamingMemoryObject *Bytes = new StreamingMemoryObject(LazyStreamer);
3014  StreamFile.reset(new BitstreamReader(Bytes));
3015  Stream.init(*StreamFile);
3016
3017  unsigned char buf[16];
3018  if (Bytes->readBytes(0, 16, buf) == -1)
3019    return Error(BitcodeStreamInvalidSize);
3020
3021  if (!isBitcode(buf, buf + 16))
3022    return Error(InvalidBitcodeSignature);
3023
3024  if (isBitcodeWrapper(buf, buf + 4)) {
3025    const unsigned char *bitcodeStart = buf;
3026    const unsigned char *bitcodeEnd = buf + 16;
3027    SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false);
3028    Bytes->dropLeadingBytes(bitcodeStart - buf);
3029    Bytes->setKnownObjectSize(bitcodeEnd - bitcodeStart);
3030  }
3031  return error_code::success();
3032}
3033
3034namespace {
3035class BitcodeErrorCategoryType : public _do_message {
3036  const char *name() const override {
3037    return "llvm.bitcode";
3038  }
3039  std::string message(int IE) const override {
3040    BitcodeReader::ErrorType E = static_cast<BitcodeReader::ErrorType>(IE);
3041    switch (E) {
3042    case BitcodeReader::BitcodeStreamInvalidSize:
3043      return "Bitcode stream length should be >= 16 bytes and a multiple of 4";
3044    case BitcodeReader::ConflictingMETADATA_KINDRecords:
3045      return "Conflicting METADATA_KIND records";
3046    case BitcodeReader::CouldNotFindFunctionInStream:
3047      return "Could not find function in stream";
3048    case BitcodeReader::ExpectedConstant:
3049      return "Expected a constant";
3050    case BitcodeReader::InsufficientFunctionProtos:
3051      return "Insufficient function protos";
3052    case BitcodeReader::InvalidBitcodeSignature:
3053      return "Invalid bitcode signature";
3054    case BitcodeReader::InvalidBitcodeWrapperHeader:
3055      return "Invalid bitcode wrapper header";
3056    case BitcodeReader::InvalidConstantReference:
3057      return "Invalid ronstant reference";
3058    case BitcodeReader::InvalidID:
3059      return "Invalid ID";
3060    case BitcodeReader::InvalidInstructionWithNoBB:
3061      return "Invalid instruction with no BB";
3062    case BitcodeReader::InvalidRecord:
3063      return "Invalid record";
3064    case BitcodeReader::InvalidTypeForValue:
3065      return "Invalid type for value";
3066    case BitcodeReader::InvalidTYPETable:
3067      return "Invalid TYPE table";
3068    case BitcodeReader::InvalidType:
3069      return "Invalid type";
3070    case BitcodeReader::MalformedBlock:
3071      return "Malformed block";
3072    case BitcodeReader::MalformedGlobalInitializerSet:
3073      return "Malformed global initializer set";
3074    case BitcodeReader::InvalidMultipleBlocks:
3075      return "Invalid multiple blocks";
3076    case BitcodeReader::NeverResolvedValueFoundInFunction:
3077      return "Never resolved value found in function";
3078    case BitcodeReader::InvalidValue:
3079      return "Invalid value";
3080    }
3081    llvm_unreachable("Unknown error type!");
3082  }
3083};
3084}
3085
3086const error_category &BitcodeReader::BitcodeErrorCategory() {
3087  static BitcodeErrorCategoryType O;
3088  return O;
3089}
3090
3091//===----------------------------------------------------------------------===//
3092// External interface
3093//===----------------------------------------------------------------------===//
3094
3095/// getLazyBitcodeModule - lazy function-at-a-time loading from a file.
3096///
3097Module *llvm_2_7::getLazyBitcodeModule(MemoryBuffer *Buffer,
3098                                       LLVMContext& Context,
3099                                       std::string *ErrMsg) {
3100  Module *M = new Module(Buffer->getBufferIdentifier(), Context);
3101  BitcodeReader *R = new BitcodeReader(Buffer, Context);
3102  M->setMaterializer(R);
3103  if (error_code EC = R->ParseBitcodeInto(M)) {
3104    if (ErrMsg)
3105      *ErrMsg = EC.message();
3106
3107    delete M;  // Also deletes R.
3108    return 0;
3109  }
3110  // Have the BitcodeReader dtor delete 'Buffer'.
3111  R->setBufferOwned(true);
3112  return M;
3113}
3114
3115/// ParseBitcodeFile - Read the specified bitcode file, returning the module.
3116/// If an error occurs, return null and fill in *ErrMsg if non-null.
3117Module *llvm_2_7::ParseBitcodeFile(MemoryBuffer *Buffer, LLVMContext& Context,
3118                                   std::string *ErrMsg){
3119  Module *M = llvm_2_7::getLazyBitcodeModule(Buffer, Context, ErrMsg);
3120  if (!M) return 0;
3121
3122  // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether
3123  // there was an error.
3124  static_cast<BitcodeReader*>(M->getMaterializer())->setBufferOwned(false);
3125
3126  // Read in the entire module, and destroy the BitcodeReader.
3127  if (llvm::error_code ec = M->materializeAllPermanently()) {
3128    *ErrMsg = ec.message();
3129    delete M;
3130    return 0;
3131  }
3132
3133  return M;
3134}
3135
3136std::string llvm_2_7::getBitcodeTargetTriple(MemoryBuffer *Buffer,
3137                                             LLVMContext& Context,
3138                                             std::string *ErrMsg) {
3139  BitcodeReader *R = new BitcodeReader(Buffer, Context);
3140  // Don't let the BitcodeReader dtor delete 'Buffer'.
3141  R->setBufferOwned(false);
3142
3143  std::string Triple("");
3144  if (error_code EC = R->ParseTriple(Triple))
3145    if (ErrMsg)
3146      *ErrMsg = EC.message();
3147
3148  delete R;
3149  return Triple;
3150}
3151