BitcodeReader.cpp revision 5cb1f3949c5bdd43c84647920d147a6b8509e256
1//===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This header defines the BitcodeReader class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Bitcode/ReaderWriter.h"
15#include "BitReader_3_0.h"
16#include "llvm/ADT/STLExtras.h"
17#include "llvm/ADT/SmallString.h"
18#include "llvm/ADT/SmallVector.h"
19#include "llvm/IR/AutoUpgrade.h"
20#include "llvm/IR/Constants.h"
21#include "llvm/IR/CFG.h"
22#include "llvm/IR/DerivedTypes.h"
23#include "llvm/IR/DiagnosticPrinter.h"
24#include "llvm/IR/GVMaterializer.h"
25#include "llvm/IR/InlineAsm.h"
26#include "llvm/IR/IntrinsicInst.h"
27#include "llvm/IR/IRBuilder.h"
28#include "llvm/IR/LLVMContext.h"
29#include "llvm/IR/Module.h"
30#include "llvm/IR/OperandTraits.h"
31#include "llvm/IR/Operator.h"
32#include "llvm/ADT/SmallPtrSet.h"
33#include "llvm/Support/ManagedStatic.h"
34#include "llvm/Support/MathExtras.h"
35#include "llvm/Support/MemoryBuffer.h"
36
37using namespace llvm;
38using namespace llvm_3_0;
39
40#define FUNC_CODE_INST_UNWIND_2_7     14
41#define eh_exception_2_7             145
42#define eh_selector_2_7              149
43
44#define TYPE_BLOCK_ID_OLD_3_0         10
45#define TYPE_SYMTAB_BLOCK_ID_OLD_3_0  13
46#define TYPE_CODE_STRUCT_OLD_3_0      10
47
48namespace {
49  void FindExnAndSelIntrinsics(BasicBlock *BB, CallInst *&Exn,
50                                      CallInst *&Sel,
51                                      SmallPtrSet<BasicBlock*, 8> &Visited) {
52    if (!Visited.insert(BB).second) return;
53
54    for (BasicBlock::iterator
55           I = BB->begin(), E = BB->end(); I != E; ++I) {
56      if (CallInst *CI = dyn_cast<CallInst>(I)) {
57        switch (CI->getCalledFunction()->getIntrinsicID()) {
58        default: break;
59        case eh_exception_2_7:
60          assert(!Exn && "Found more than one eh.exception call!");
61          Exn = CI;
62          break;
63        case eh_selector_2_7:
64          assert(!Sel && "Found more than one eh.selector call!");
65          Sel = CI;
66          break;
67        }
68
69        if (Exn && Sel) return;
70      }
71    }
72
73    if (Exn && Sel) return;
74
75    for (succ_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) {
76      FindExnAndSelIntrinsics(*I, Exn, Sel, Visited);
77      if (Exn && Sel) return;
78    }
79  }
80
81
82
83  /// TransferClausesToLandingPadInst - Transfer the exception handling clauses
84  /// from the eh_selector call to the new landingpad instruction.
85  void TransferClausesToLandingPadInst(LandingPadInst *LPI,
86                                              CallInst *EHSel) {
87    LLVMContext &Context = LPI->getContext();
88    unsigned N = EHSel->getNumArgOperands();
89
90    for (unsigned i = N - 1; i > 1; --i) {
91      if (const ConstantInt *CI = dyn_cast<ConstantInt>(EHSel->getArgOperand(i))){
92        unsigned FilterLength = CI->getZExtValue();
93        unsigned FirstCatch = i + FilterLength + !FilterLength;
94        assert(FirstCatch <= N && "Invalid filter length");
95
96        if (FirstCatch < N)
97          for (unsigned j = FirstCatch; j < N; ++j) {
98            Value *Val = EHSel->getArgOperand(j);
99            if (!Val->hasName() || Val->getName() != "llvm.eh.catch.all.value") {
100              LPI->addClause(cast<Constant>(EHSel->getArgOperand(j)));
101            } else {
102              GlobalVariable *GV = cast<GlobalVariable>(Val);
103              LPI->addClause(GV->getInitializer());
104            }
105          }
106
107        if (!FilterLength) {
108          // Cleanup.
109          LPI->setCleanup(true);
110        } else {
111          // Filter.
112          SmallVector<Constant *, 4> TyInfo;
113          TyInfo.reserve(FilterLength - 1);
114          for (unsigned j = i + 1; j < FirstCatch; ++j)
115            TyInfo.push_back(cast<Constant>(EHSel->getArgOperand(j)));
116          ArrayType *AType =
117            ArrayType::get(!TyInfo.empty() ? TyInfo[0]->getType() :
118                           PointerType::getUnqual(Type::getInt8Ty(Context)),
119                           TyInfo.size());
120          LPI->addClause(ConstantArray::get(AType, TyInfo));
121        }
122
123        N = i;
124      }
125    }
126
127    if (N > 2)
128      for (unsigned j = 2; j < N; ++j) {
129        Value *Val = EHSel->getArgOperand(j);
130        if (!Val->hasName() || Val->getName() != "llvm.eh.catch.all.value") {
131          LPI->addClause(cast<Constant>(EHSel->getArgOperand(j)));
132        } else {
133          GlobalVariable *GV = cast<GlobalVariable>(Val);
134          LPI->addClause(GV->getInitializer());
135        }
136      }
137  }
138
139
140  /// This function upgrades the old pre-3.0 exception handling system to the new
141  /// one. N.B. This will be removed in 3.1.
142  void UpgradeExceptionHandling(Module *M) {
143    Function *EHException = M->getFunction("llvm.eh.exception");
144    Function *EHSelector = M->getFunction("llvm.eh.selector");
145    if (!EHException || !EHSelector)
146      return;
147
148    LLVMContext &Context = M->getContext();
149    Type *ExnTy = PointerType::getUnqual(Type::getInt8Ty(Context));
150    Type *SelTy = Type::getInt32Ty(Context);
151    Type *LPadSlotTy = StructType::get(ExnTy, SelTy, nullptr);
152
153    // This map links the invoke instruction with the eh.exception and eh.selector
154    // calls associated with it.
155    DenseMap<InvokeInst*, std::pair<Value*, Value*> > InvokeToIntrinsicsMap;
156    for (Module::iterator
157           I = M->begin(), E = M->end(); I != E; ++I) {
158      Function &F = *I;
159
160      for (Function::iterator
161             II = F.begin(), IE = F.end(); II != IE; ++II) {
162        BasicBlock *BB = &*II;
163        InvokeInst *Inst = dyn_cast<InvokeInst>(BB->getTerminator());
164        if (!Inst) continue;
165        BasicBlock *UnwindDest = Inst->getUnwindDest();
166        if (UnwindDest->isLandingPad()) continue; // Already converted.
167
168        SmallPtrSet<BasicBlock*, 8> Visited;
169        CallInst *Exn = 0;
170        CallInst *Sel = 0;
171        FindExnAndSelIntrinsics(UnwindDest, Exn, Sel, Visited);
172        assert(Exn && Sel && "Cannot find eh.exception and eh.selector calls!");
173        InvokeToIntrinsicsMap[Inst] = std::make_pair(Exn, Sel);
174      }
175    }
176
177    // This map stores the slots where the exception object and selector value are
178    // stored within a function.
179    DenseMap<Function*, std::pair<Value*, Value*> > FnToLPadSlotMap;
180    SmallPtrSet<Instruction*, 32> DeadInsts;
181    for (DenseMap<InvokeInst*, std::pair<Value*, Value*> >::iterator
182           I = InvokeToIntrinsicsMap.begin(), E = InvokeToIntrinsicsMap.end();
183         I != E; ++I) {
184      InvokeInst *Invoke = I->first;
185      BasicBlock *UnwindDest = Invoke->getUnwindDest();
186      Function *F = UnwindDest->getParent();
187      std::pair<Value*, Value*> EHIntrinsics = I->second;
188      CallInst *Exn = cast<CallInst>(EHIntrinsics.first);
189      CallInst *Sel = cast<CallInst>(EHIntrinsics.second);
190
191      // Store the exception object and selector value in the entry block.
192      Value *ExnSlot = 0;
193      Value *SelSlot = 0;
194      if (!FnToLPadSlotMap[F].first) {
195        BasicBlock *Entry = &F->front();
196        ExnSlot = new AllocaInst(ExnTy, "exn", Entry->getTerminator());
197        SelSlot = new AllocaInst(SelTy, "sel", Entry->getTerminator());
198        FnToLPadSlotMap[F] = std::make_pair(ExnSlot, SelSlot);
199      } else {
200        ExnSlot = FnToLPadSlotMap[F].first;
201        SelSlot = FnToLPadSlotMap[F].second;
202      }
203
204      if (!UnwindDest->getSinglePredecessor()) {
205        // The unwind destination doesn't have a single predecessor. Create an
206        // unwind destination which has only one predecessor.
207        BasicBlock *NewBB = BasicBlock::Create(Context, "new.lpad",
208                                               UnwindDest->getParent());
209        BranchInst::Create(UnwindDest, NewBB);
210        Invoke->setUnwindDest(NewBB);
211
212        // Fix up any PHIs in the original unwind destination block.
213        for (BasicBlock::iterator
214               II = UnwindDest->begin(); isa<PHINode>(II); ++II) {
215          PHINode *PN = cast<PHINode>(II);
216          int Idx = PN->getBasicBlockIndex(Invoke->getParent());
217          if (Idx == -1) continue;
218          PN->setIncomingBlock(Idx, NewBB);
219        }
220
221        UnwindDest = NewBB;
222      }
223
224      IRBuilder<> Builder(Context);
225      Builder.SetInsertPoint(UnwindDest, UnwindDest->getFirstInsertionPt());
226
227      Value *PersFn = Sel->getArgOperand(1);
228      LandingPadInst *LPI = Builder.CreateLandingPad(LPadSlotTy, PersFn, 0);
229      Value *LPExn = Builder.CreateExtractValue(LPI, 0);
230      Value *LPSel = Builder.CreateExtractValue(LPI, 1);
231      Builder.CreateStore(LPExn, ExnSlot);
232      Builder.CreateStore(LPSel, SelSlot);
233
234      TransferClausesToLandingPadInst(LPI, Sel);
235
236      DeadInsts.insert(Exn);
237      DeadInsts.insert(Sel);
238    }
239
240    // Replace the old intrinsic calls with the values from the landingpad
241    // instruction(s). These values were stored in allocas for us to use here.
242    for (DenseMap<InvokeInst*, std::pair<Value*, Value*> >::iterator
243           I = InvokeToIntrinsicsMap.begin(), E = InvokeToIntrinsicsMap.end();
244         I != E; ++I) {
245      std::pair<Value*, Value*> EHIntrinsics = I->second;
246      CallInst *Exn = cast<CallInst>(EHIntrinsics.first);
247      CallInst *Sel = cast<CallInst>(EHIntrinsics.second);
248      BasicBlock *Parent = Exn->getParent();
249
250      std::pair<Value*,Value*> ExnSelSlots = FnToLPadSlotMap[Parent->getParent()];
251
252      IRBuilder<> Builder(Context);
253      Builder.SetInsertPoint(Parent, Exn);
254      LoadInst *LPExn = Builder.CreateLoad(ExnSelSlots.first, "exn.load");
255      LoadInst *LPSel = Builder.CreateLoad(ExnSelSlots.second, "sel.load");
256
257      Exn->replaceAllUsesWith(LPExn);
258      Sel->replaceAllUsesWith(LPSel);
259    }
260
261    // Remove the dead instructions.
262    for (SmallPtrSet<Instruction*, 32>::iterator
263           I = DeadInsts.begin(), E = DeadInsts.end(); I != E; ++I) {
264      Instruction *Inst = *I;
265      Inst->eraseFromParent();
266    }
267
268    // Replace calls to "llvm.eh.resume" with the 'resume' instruction. Load the
269    // exception and selector values from the stored place.
270    Function *EHResume = M->getFunction("llvm.eh.resume");
271    if (!EHResume) return;
272
273    while (!EHResume->use_empty()) {
274      CallInst *Resume = cast<CallInst>(*EHResume->use_begin());
275      BasicBlock *BB = Resume->getParent();
276
277      IRBuilder<> Builder(Context);
278      Builder.SetInsertPoint(BB, Resume);
279
280      Value *LPadVal =
281        Builder.CreateInsertValue(UndefValue::get(LPadSlotTy),
282                                  Resume->getArgOperand(0), 0, "lpad.val");
283      LPadVal = Builder.CreateInsertValue(LPadVal, Resume->getArgOperand(1),
284                                          1, "lpad.val");
285      Builder.CreateResume(LPadVal);
286
287      // Remove all instructions after the 'resume.'
288      BasicBlock::iterator I = Resume;
289      while (I != BB->end()) {
290        Instruction *Inst = &*I++;
291        Inst->eraseFromParent();
292      }
293    }
294  }
295
296
297  void StripDebugInfoOfFunction(Module* M, const char* name) {
298    if (Function* FuncStart = M->getFunction(name)) {
299      while (!FuncStart->use_empty()) {
300        cast<CallInst>(*FuncStart->use_begin())->eraseFromParent();
301      }
302      FuncStart->eraseFromParent();
303    }
304  }
305
306  /// This function strips all debug info intrinsics, except for llvm.dbg.declare.
307  /// If an llvm.dbg.declare intrinsic is invalid, then this function simply
308  /// strips that use.
309  void CheckDebugInfoIntrinsics(Module *M) {
310    StripDebugInfoOfFunction(M, "llvm.dbg.func.start");
311    StripDebugInfoOfFunction(M, "llvm.dbg.stoppoint");
312    StripDebugInfoOfFunction(M, "llvm.dbg.region.start");
313    StripDebugInfoOfFunction(M, "llvm.dbg.region.end");
314
315    if (Function *Declare = M->getFunction("llvm.dbg.declare")) {
316      if (!Declare->use_empty()) {
317        DbgDeclareInst *DDI = cast<DbgDeclareInst>(*Declare->use_begin());
318        if (!isa<MDNode>(ValueAsMetadata::get(DDI->getArgOperand(0))) ||
319            !isa<MDNode>(ValueAsMetadata::get(DDI->getArgOperand(1)))) {
320          while (!Declare->use_empty()) {
321            CallInst *CI = cast<CallInst>(*Declare->use_begin());
322            CI->eraseFromParent();
323          }
324          Declare->eraseFromParent();
325        }
326      }
327    }
328  }
329
330
331//===----------------------------------------------------------------------===//
332//                          BitcodeReaderValueList Class
333//===----------------------------------------------------------------------===//
334
335class BitcodeReaderValueList {
336  std::vector<WeakVH> ValuePtrs;
337
338  /// ResolveConstants - As we resolve forward-referenced constants, we add
339  /// information about them to this vector.  This allows us to resolve them in
340  /// bulk instead of resolving each reference at a time.  See the code in
341  /// ResolveConstantForwardRefs for more information about this.
342  ///
343  /// The key of this vector is the placeholder constant, the value is the slot
344  /// number that holds the resolved value.
345  typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy;
346  ResolveConstantsTy ResolveConstants;
347  LLVMContext &Context;
348public:
349  BitcodeReaderValueList(LLVMContext &C) : Context(C) {}
350  ~BitcodeReaderValueList() {
351    assert(ResolveConstants.empty() && "Constants not resolved?");
352  }
353
354  // vector compatibility methods
355  unsigned size() const { return ValuePtrs.size(); }
356  void resize(unsigned N) { ValuePtrs.resize(N); }
357  void push_back(Value *V) {
358    ValuePtrs.push_back(V);
359  }
360
361  void clear() {
362    assert(ResolveConstants.empty() && "Constants not resolved?");
363    ValuePtrs.clear();
364  }
365
366  Value *operator[](unsigned i) const {
367    assert(i < ValuePtrs.size());
368    return ValuePtrs[i];
369  }
370
371  Value *back() const { return ValuePtrs.back(); }
372    void pop_back() { ValuePtrs.pop_back(); }
373  bool empty() const { return ValuePtrs.empty(); }
374  void shrinkTo(unsigned N) {
375    assert(N <= size() && "Invalid shrinkTo request!");
376    ValuePtrs.resize(N);
377  }
378
379  Constant *getConstantFwdRef(unsigned Idx, Type *Ty);
380  Value *getValueFwdRef(unsigned Idx, Type *Ty);
381
382  void AssignValue(Value *V, unsigned Idx);
383
384  /// ResolveConstantForwardRefs - Once all constants are read, this method bulk
385  /// resolves any forward references.
386  void ResolveConstantForwardRefs();
387};
388
389
390//===----------------------------------------------------------------------===//
391//                          BitcodeReaderMDValueList Class
392//===----------------------------------------------------------------------===//
393
394class BitcodeReaderMDValueList {
395  unsigned NumFwdRefs;
396  bool AnyFwdRefs;
397  std::vector<TrackingMDRef> MDValuePtrs;
398
399  LLVMContext &Context;
400public:
401  BitcodeReaderMDValueList(LLVMContext &C)
402      : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {}
403
404  // vector compatibility methods
405  unsigned size() const       { return MDValuePtrs.size(); }
406  void resize(unsigned N)     { MDValuePtrs.resize(N); }
407  void push_back(Metadata *MD) { MDValuePtrs.emplace_back(MD); }
408  void clear()                { MDValuePtrs.clear();  }
409  Metadata *back() const      { return MDValuePtrs.back(); }
410  void pop_back()             { MDValuePtrs.pop_back(); }
411  bool empty() const          { return MDValuePtrs.empty(); }
412
413  Metadata *operator[](unsigned i) const {
414    assert(i < MDValuePtrs.size());
415    return MDValuePtrs[i];
416  }
417
418  void shrinkTo(unsigned N) {
419    assert(N <= size() && "Invalid shrinkTo request!");
420    MDValuePtrs.resize(N);
421  }
422
423  Metadata *getValueFwdRef(unsigned Idx);
424  void AssignValue(Metadata *MD, unsigned Idx);
425  void tryToResolveCycles();
426};
427
428class BitcodeReader : public GVMaterializer {
429  LLVMContext &Context;
430  DiagnosticHandlerFunction DiagnosticHandler;
431  Module *TheModule;
432  std::unique_ptr<MemoryBuffer> Buffer;
433  std::unique_ptr<BitstreamReader> StreamFile;
434  BitstreamCursor Stream;
435  DataStreamer *LazyStreamer;
436  uint64_t NextUnreadBit;
437  bool SeenValueSymbolTable;
438
439  std::vector<Type*> TypeList;
440  BitcodeReaderValueList ValueList;
441  BitcodeReaderMDValueList MDValueList;
442  SmallVector<Instruction *, 64> InstructionList;
443
444  std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits;
445  std::vector<std::pair<GlobalAlias*, unsigned> > AliasInits;
446
447  /// MAttributes - The set of attributes by index.  Index zero in the
448  /// file is for null, and is thus not represented here.  As such all indices
449  /// are off by one.
450  std::vector<AttributeSet> MAttributes;
451
452  /// \brief The set of attribute groups.
453  std::map<unsigned, AttributeSet> MAttributeGroups;
454
455  /// FunctionBBs - While parsing a function body, this is a list of the basic
456  /// blocks for the function.
457  std::vector<BasicBlock*> FunctionBBs;
458
459  // When reading the module header, this list is populated with functions that
460  // have bodies later in the file.
461  std::vector<Function*> FunctionsWithBodies;
462
463  // When intrinsic functions are encountered which require upgrading they are
464  // stored here with their replacement function.
465  typedef std::vector<std::pair<Function*, Function*> > UpgradedIntrinsicMap;
466  UpgradedIntrinsicMap UpgradedIntrinsics;
467
468  // Map the bitcode's custom MDKind ID to the Module's MDKind ID.
469  DenseMap<unsigned, unsigned> MDKindMap;
470
471  // Several operations happen after the module header has been read, but
472  // before function bodies are processed. This keeps track of whether
473  // we've done this yet.
474  bool SeenFirstFunctionBody;
475
476  /// DeferredFunctionInfo - When function bodies are initially scanned, this
477  /// map contains info about where to find deferred function body in the
478  /// stream.
479  DenseMap<Function*, uint64_t> DeferredFunctionInfo;
480
481  /// BlockAddrFwdRefs - These are blockaddr references to basic blocks.  These
482  /// are resolved lazily when functions are loaded.
483  typedef std::pair<unsigned, GlobalVariable*> BlockAddrRefTy;
484  DenseMap<Function*, std::vector<BlockAddrRefTy> > BlockAddrFwdRefs;
485
486  static const std::error_category &BitcodeErrorCategory();
487
488public:
489  std::error_code Error(BitcodeError E, const Twine &Message);
490  std::error_code Error(BitcodeError E);
491  std::error_code Error(const Twine &Message);
492
493  explicit BitcodeReader(MemoryBuffer *buffer, LLVMContext &C,
494                         DiagnosticHandlerFunction DiagnosticHandler);
495  ~BitcodeReader() { FreeState(); }
496
497  void FreeState();
498
499  void releaseBuffer();
500
501  bool isDematerializable(const GlobalValue *GV) const override;
502  std::error_code materialize(GlobalValue *GV) override;
503  std::error_code MaterializeModule(Module *M) override;
504  std::vector<StructType *> getIdentifiedStructTypes() const override;
505  void Dematerialize(GlobalValue *GV) override;
506
507  /// @brief Main interface to parsing a bitcode buffer.
508  /// @returns true if an error occurred.
509  std::error_code ParseBitcodeInto(Module *M);
510
511  /// @brief Cheap mechanism to just extract module triple
512  /// @returns true if an error occurred.
513  llvm::ErrorOr<std::string> parseTriple();
514
515  static uint64_t decodeSignRotatedValue(uint64_t V);
516
517  /// Materialize any deferred Metadata block.
518  std::error_code materializeMetadata() override;
519
520private:
521  std::vector<StructType *> IdentifiedStructTypes;
522  StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
523  StructType *createIdentifiedStructType(LLVMContext &Context);
524
525  Type *getTypeByID(unsigned ID);
526  Type *getTypeByIDOrNull(unsigned ID);
527  Value *getFnValueByID(unsigned ID, Type *Ty) {
528    if (Ty && Ty->isMetadataTy())
529      return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
530    return ValueList.getValueFwdRef(ID, Ty);
531  }
532  Metadata *getFnMetadataByID(unsigned ID) {
533    return MDValueList.getValueFwdRef(ID);
534  }
535  BasicBlock *getBasicBlock(unsigned ID) const {
536    if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
537    return FunctionBBs[ID];
538  }
539  AttributeSet getAttributes(unsigned i) const {
540    if (i-1 < MAttributes.size())
541      return MAttributes[i-1];
542    return AttributeSet();
543  }
544
545  /// getValueTypePair - Read a value/type pair out of the specified record from
546  /// slot 'Slot'.  Increment Slot past the number of slots used in the record.
547  /// Return true on failure.
548  bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
549                        unsigned InstNum, Value *&ResVal) {
550    if (Slot == Record.size()) return true;
551    unsigned ValNo = (unsigned)Record[Slot++];
552    if (ValNo < InstNum) {
553      // If this is not a forward reference, just return the value we already
554      // have.
555      ResVal = getFnValueByID(ValNo, nullptr);
556      return ResVal == nullptr;
557    } else if (Slot == Record.size()) {
558      return true;
559    }
560
561    unsigned TypeNo = (unsigned)Record[Slot++];
562    ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo));
563    return ResVal == nullptr;
564  }
565  bool getValue(SmallVector<uint64_t, 64> &Record, unsigned &Slot,
566                Type *Ty, Value *&ResVal) {
567    if (Slot == Record.size()) return true;
568    unsigned ValNo = (unsigned)Record[Slot++];
569    ResVal = getFnValueByID(ValNo, Ty);
570    return ResVal == 0;
571  }
572
573
574  std::error_code ParseModule(bool Resume);
575  std::error_code ParseAttributeBlock();
576  std::error_code ParseTypeTable();
577  std::error_code ParseOldTypeTable();         // FIXME: Remove in LLVM 3.1
578  std::error_code ParseTypeTableBody();
579
580  std::error_code ParseOldTypeSymbolTable();   // FIXME: Remove in LLVM 3.1
581  std::error_code ParseValueSymbolTable();
582  std::error_code ParseConstants();
583  std::error_code RememberAndSkipFunctionBody();
584  std::error_code ParseFunctionBody(Function *F);
585  std::error_code GlobalCleanup();
586  std::error_code ResolveGlobalAndAliasInits();
587  std::error_code ParseMetadata();
588  std::error_code ParseMetadataAttachment();
589  llvm::ErrorOr<std::string> parseModuleTriple();
590  std::error_code InitStream();
591  std::error_code InitStreamFromBuffer();
592  std::error_code InitLazyStream();
593};
594
595} // end anonymous namespace
596
597static std::error_code Error(DiagnosticHandlerFunction DiagnosticHandler,
598                             std::error_code EC, const Twine &Message) {
599  BitcodeDiagnosticInfo DI(EC, DS_Error, Message);
600  DiagnosticHandler(DI);
601  return EC;
602}
603
604static std::error_code Error(DiagnosticHandlerFunction DiagnosticHandler,
605                             std::error_code EC) {
606  return Error(DiagnosticHandler, EC, EC.message());
607}
608
609std::error_code BitcodeReader::Error(BitcodeError E, const Twine &Message) {
610  return ::Error(DiagnosticHandler, make_error_code(E), Message);
611}
612
613std::error_code BitcodeReader::Error(const Twine &Message) {
614  return ::Error(DiagnosticHandler,
615                 make_error_code(BitcodeError::CorruptedBitcode), Message);
616}
617
618std::error_code BitcodeReader::Error(BitcodeError E) {
619  return ::Error(DiagnosticHandler, make_error_code(E));
620}
621
622static DiagnosticHandlerFunction getDiagHandler(DiagnosticHandlerFunction F,
623                                                LLVMContext &C) {
624  if (F)
625    return F;
626  return [&C](const DiagnosticInfo &DI) { C.diagnose(DI); };
627}
628
629BitcodeReader::BitcodeReader(MemoryBuffer *buffer, LLVMContext &C,
630                             DiagnosticHandlerFunction DiagnosticHandler)
631    : Context(C), DiagnosticHandler(getDiagHandler(DiagnosticHandler, C)),
632      TheModule(nullptr), Buffer(buffer), LazyStreamer(nullptr),
633      NextUnreadBit(0), SeenValueSymbolTable(false), ValueList(C),
634      MDValueList(C), SeenFirstFunctionBody(false) {}
635
636
637void BitcodeReader::FreeState() {
638  Buffer = nullptr;
639  std::vector<Type*>().swap(TypeList);
640  ValueList.clear();
641  MDValueList.clear();
642
643  std::vector<AttributeSet>().swap(MAttributes);
644  std::vector<BasicBlock*>().swap(FunctionBBs);
645  std::vector<Function*>().swap(FunctionsWithBodies);
646  DeferredFunctionInfo.clear();
647  MDKindMap.clear();
648}
649
650//===----------------------------------------------------------------------===//
651//  Helper functions to implement forward reference resolution, etc.
652//===----------------------------------------------------------------------===//
653
654/// ConvertToString - Convert a string from a record into an std::string, return
655/// true on failure.
656template<typename StrTy>
657static bool ConvertToString(ArrayRef<uint64_t> Record, unsigned Idx,
658                            StrTy &Result) {
659  if (Idx > Record.size())
660    return true;
661
662  for (unsigned i = Idx, e = Record.size(); i != e; ++i)
663    Result += (char)Record[i];
664  return false;
665}
666
667static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
668  switch (Val) {
669  default: // Map unknown/new linkages to external
670  case 0:
671    return GlobalValue::ExternalLinkage;
672  case 1:
673    return GlobalValue::WeakAnyLinkage;
674  case 2:
675    return GlobalValue::AppendingLinkage;
676  case 3:
677    return GlobalValue::InternalLinkage;
678  case 4:
679    return GlobalValue::LinkOnceAnyLinkage;
680  case 5:
681    return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
682  case 6:
683    return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
684  case 7:
685    return GlobalValue::ExternalWeakLinkage;
686  case 8:
687    return GlobalValue::CommonLinkage;
688  case 9:
689    return GlobalValue::PrivateLinkage;
690  case 10:
691    return GlobalValue::WeakODRLinkage;
692  case 11:
693    return GlobalValue::LinkOnceODRLinkage;
694  case 12:
695    return GlobalValue::AvailableExternallyLinkage;
696  case 13:
697    return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
698  case 14:
699    return GlobalValue::ExternalWeakLinkage; // Obsolete LinkerPrivateWeakLinkage
700  //ANDROID: convert LinkOnceODRAutoHideLinkage -> LinkOnceODRLinkage
701  case 15:
702    return GlobalValue::LinkOnceODRLinkage;
703  }
704}
705
706static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) {
707  switch (Val) {
708  default: // Map unknown visibilities to default.
709  case 0: return GlobalValue::DefaultVisibility;
710  case 1: return GlobalValue::HiddenVisibility;
711  case 2: return GlobalValue::ProtectedVisibility;
712  }
713}
714
715static GlobalVariable::ThreadLocalMode GetDecodedThreadLocalMode(unsigned Val) {
716  switch (Val) {
717    case 0: return GlobalVariable::NotThreadLocal;
718    default: // Map unknown non-zero value to general dynamic.
719    case 1: return GlobalVariable::GeneralDynamicTLSModel;
720    case 2: return GlobalVariable::LocalDynamicTLSModel;
721    case 3: return GlobalVariable::InitialExecTLSModel;
722    case 4: return GlobalVariable::LocalExecTLSModel;
723  }
724}
725
726static int GetDecodedCastOpcode(unsigned Val) {
727  switch (Val) {
728  default: return -1;
729  case bitc::CAST_TRUNC   : return Instruction::Trunc;
730  case bitc::CAST_ZEXT    : return Instruction::ZExt;
731  case bitc::CAST_SEXT    : return Instruction::SExt;
732  case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
733  case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
734  case bitc::CAST_UITOFP  : return Instruction::UIToFP;
735  case bitc::CAST_SITOFP  : return Instruction::SIToFP;
736  case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
737  case bitc::CAST_FPEXT   : return Instruction::FPExt;
738  case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
739  case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
740  case bitc::CAST_BITCAST : return Instruction::BitCast;
741  }
742}
743static int GetDecodedBinaryOpcode(unsigned Val, Type *Ty) {
744  switch (Val) {
745  default: return -1;
746  case bitc::BINOP_ADD:
747    return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add;
748  case bitc::BINOP_SUB:
749    return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub;
750  case bitc::BINOP_MUL:
751    return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul;
752  case bitc::BINOP_UDIV: return Instruction::UDiv;
753  case bitc::BINOP_SDIV:
754    return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv;
755  case bitc::BINOP_UREM: return Instruction::URem;
756  case bitc::BINOP_SREM:
757    return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem;
758  case bitc::BINOP_SHL:  return Instruction::Shl;
759  case bitc::BINOP_LSHR: return Instruction::LShr;
760  case bitc::BINOP_ASHR: return Instruction::AShr;
761  case bitc::BINOP_AND:  return Instruction::And;
762  case bitc::BINOP_OR:   return Instruction::Or;
763  case bitc::BINOP_XOR:  return Instruction::Xor;
764  }
765}
766
767static AtomicRMWInst::BinOp GetDecodedRMWOperation(unsigned Val) {
768  switch (Val) {
769  default: return AtomicRMWInst::BAD_BINOP;
770  case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
771  case bitc::RMW_ADD: return AtomicRMWInst::Add;
772  case bitc::RMW_SUB: return AtomicRMWInst::Sub;
773  case bitc::RMW_AND: return AtomicRMWInst::And;
774  case bitc::RMW_NAND: return AtomicRMWInst::Nand;
775  case bitc::RMW_OR: return AtomicRMWInst::Or;
776  case bitc::RMW_XOR: return AtomicRMWInst::Xor;
777  case bitc::RMW_MAX: return AtomicRMWInst::Max;
778  case bitc::RMW_MIN: return AtomicRMWInst::Min;
779  case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
780  case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
781  }
782}
783
784static AtomicOrdering GetDecodedOrdering(unsigned Val) {
785  switch (Val) {
786  case bitc::ORDERING_NOTATOMIC: return NotAtomic;
787  case bitc::ORDERING_UNORDERED: return Unordered;
788  case bitc::ORDERING_MONOTONIC: return Monotonic;
789  case bitc::ORDERING_ACQUIRE: return Acquire;
790  case bitc::ORDERING_RELEASE: return Release;
791  case bitc::ORDERING_ACQREL: return AcquireRelease;
792  default: // Map unknown orderings to sequentially-consistent.
793  case bitc::ORDERING_SEQCST: return SequentiallyConsistent;
794  }
795}
796
797static SynchronizationScope GetDecodedSynchScope(unsigned Val) {
798  switch (Val) {
799  case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread;
800  default: // Map unknown scopes to cross-thread.
801  case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread;
802  }
803}
804
805namespace llvm {
806namespace {
807  /// @brief A class for maintaining the slot number definition
808  /// as a placeholder for the actual definition for forward constants defs.
809  class ConstantPlaceHolder : public ConstantExpr {
810    void operator=(const ConstantPlaceHolder &) = delete;
811  public:
812    // allocate space for exactly one operand
813    void *operator new(size_t s) {
814      return User::operator new(s, 1);
815    }
816    explicit ConstantPlaceHolder(Type *Ty, LLVMContext& Context)
817      : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
818      Op<0>() = UndefValue::get(Type::getInt32Ty(Context));
819    }
820
821    /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
822    static bool classof(const Value *V) {
823      return isa<ConstantExpr>(V) &&
824             cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
825    }
826
827
828    /// Provide fast operand accessors
829    DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
830  };
831}
832
833// FIXME: can we inherit this from ConstantExpr?
834template <>
835struct OperandTraits<ConstantPlaceHolder> :
836  public FixedNumOperandTraits<ConstantPlaceHolder, 1> {
837};
838DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value)
839}
840
841
842void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) {
843  if (Idx == size()) {
844    push_back(V);
845    return;
846  }
847
848  if (Idx >= size())
849    resize(Idx+1);
850
851  WeakVH &OldV = ValuePtrs[Idx];
852  if (!OldV) {
853    OldV = V;
854    return;
855  }
856
857  // Handle constants and non-constants (e.g. instrs) differently for
858  // efficiency.
859  if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
860    ResolveConstants.push_back(std::make_pair(PHC, Idx));
861    OldV = V;
862  } else {
863    // If there was a forward reference to this value, replace it.
864    Value *PrevVal = OldV;
865    OldV->replaceAllUsesWith(V);
866    delete PrevVal;
867  }
868}
869
870
871Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
872                                                    Type *Ty) {
873  if (Idx >= size())
874    resize(Idx + 1);
875
876  if (Value *V = ValuePtrs[Idx]) {
877    assert(Ty == V->getType() && "Type mismatch in constant table!");
878    return cast<Constant>(V);
879  }
880
881  // Create and return a placeholder, which will later be RAUW'd.
882  Constant *C = new ConstantPlaceHolder(Ty, Context);
883  ValuePtrs[Idx] = C;
884  return C;
885}
886
887Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) {
888  if (Idx >= size())
889    resize(Idx + 1);
890
891  if (Value *V = ValuePtrs[Idx]) {
892    assert((!Ty || Ty == V->getType()) && "Type mismatch in value table!");
893    return V;
894  }
895
896  // No type specified, must be invalid reference.
897  if (!Ty) return nullptr;
898
899  // Create and return a placeholder, which will later be RAUW'd.
900  Value *V = new Argument(Ty);
901  ValuePtrs[Idx] = V;
902  return V;
903}
904
905/// ResolveConstantForwardRefs - Once all constants are read, this method bulk
906/// resolves any forward references.  The idea behind this is that we sometimes
907/// get constants (such as large arrays) which reference *many* forward ref
908/// constants.  Replacing each of these causes a lot of thrashing when
909/// building/reuniquing the constant.  Instead of doing this, we look at all the
910/// uses and rewrite all the place holders at once for any constant that uses
911/// a placeholder.
912void BitcodeReaderValueList::ResolveConstantForwardRefs() {
913  // Sort the values by-pointer so that they are efficient to look up with a
914  // binary search.
915  std::sort(ResolveConstants.begin(), ResolveConstants.end());
916
917  SmallVector<Constant*, 64> NewOps;
918
919  while (!ResolveConstants.empty()) {
920    Value *RealVal = operator[](ResolveConstants.back().second);
921    Constant *Placeholder = ResolveConstants.back().first;
922    ResolveConstants.pop_back();
923
924    // Loop over all users of the placeholder, updating them to reference the
925    // new value.  If they reference more than one placeholder, update them all
926    // at once.
927    while (!Placeholder->use_empty()) {
928      auto UI = Placeholder->user_begin();
929      User *U = *UI;
930
931      // If the using object isn't uniqued, just update the operands.  This
932      // handles instructions and initializers for global variables.
933      if (!isa<Constant>(U) || isa<GlobalValue>(U)) {
934        UI.getUse().set(RealVal);
935        continue;
936      }
937
938      // Otherwise, we have a constant that uses the placeholder.  Replace that
939      // constant with a new constant that has *all* placeholder uses updated.
940      Constant *UserC = cast<Constant>(U);
941      for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
942           I != E; ++I) {
943        Value *NewOp;
944        if (!isa<ConstantPlaceHolder>(*I)) {
945          // Not a placeholder reference.
946          NewOp = *I;
947        } else if (*I == Placeholder) {
948          // Common case is that it just references this one placeholder.
949          NewOp = RealVal;
950        } else {
951          // Otherwise, look up the placeholder in ResolveConstants.
952          ResolveConstantsTy::iterator It =
953            std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
954                             std::pair<Constant*, unsigned>(cast<Constant>(*I),
955                                                            0));
956          assert(It != ResolveConstants.end() && It->first == *I);
957          NewOp = operator[](It->second);
958        }
959
960        NewOps.push_back(cast<Constant>(NewOp));
961      }
962
963      // Make the new constant.
964      Constant *NewC;
965      if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
966        NewC = ConstantArray::get(UserCA->getType(), NewOps);
967      } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
968        NewC = ConstantStruct::get(UserCS->getType(), NewOps);
969      } else if (isa<ConstantVector>(UserC)) {
970        NewC = ConstantVector::get(NewOps);
971      } else {
972        assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
973        NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps);
974      }
975
976      UserC->replaceAllUsesWith(NewC);
977      UserC->destroyConstant();
978      NewOps.clear();
979    }
980
981    // Update all ValueHandles, they should be the only users at this point.
982    Placeholder->replaceAllUsesWith(RealVal);
983    delete Placeholder;
984  }
985}
986
987void BitcodeReaderMDValueList::AssignValue(Metadata *MD, unsigned Idx) {
988  if (Idx == size()) {
989    push_back(MD);
990    return;
991  }
992
993  if (Idx >= size())
994    resize(Idx+1);
995
996  TrackingMDRef &OldMD = MDValuePtrs[Idx];
997  if (!OldMD) {
998    OldMD.reset(MD);
999    return;
1000  }
1001
1002  // If there was a forward reference to this value, replace it.
1003  TempMDTuple PrevMD(cast<MDTuple>(OldMD.get()));
1004  PrevMD->replaceAllUsesWith(MD);
1005  --NumFwdRefs;
1006}
1007
1008Metadata *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) {
1009  if (Idx >= size())
1010    resize(Idx + 1);
1011
1012  if (Metadata *MD = MDValuePtrs[Idx])
1013    return MD;
1014
1015  // Create and return a placeholder, which will later be RAUW'd.
1016  AnyFwdRefs = true;
1017  ++NumFwdRefs;
1018  Metadata *MD = MDNode::getTemporary(Context, None).release();
1019  MDValuePtrs[Idx].reset(MD);
1020  return MD;
1021}
1022
1023void BitcodeReaderMDValueList::tryToResolveCycles() {
1024  if (!AnyFwdRefs)
1025    // Nothing to do.
1026    return;
1027
1028  if (NumFwdRefs)
1029    // Still forward references... can't resolve cycles.
1030    return;
1031
1032  // Resolve any cycles.
1033  for (auto &MD : MDValuePtrs) {
1034    auto *N = dyn_cast_or_null<MDNode>(MD);
1035    if (!N)
1036      continue;
1037
1038    assert(!N->isTemporary() && "Unexpected forward reference");
1039    N->resolveCycles();
1040  }
1041}
1042
1043Type *BitcodeReader::getTypeByID(unsigned ID) {
1044  // The type table size is always specified correctly.
1045  if (ID >= TypeList.size())
1046    return nullptr;
1047
1048  if (Type *Ty = TypeList[ID])
1049    return Ty;
1050
1051  // If we have a forward reference, the only possible case is when it is to a
1052  // named struct.  Just create a placeholder for now.
1053  return TypeList[ID] = createIdentifiedStructType(Context);
1054}
1055
1056StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1057                                                      StringRef Name) {
1058  auto *Ret = StructType::create(Context, Name);
1059  IdentifiedStructTypes.push_back(Ret);
1060  return Ret;
1061}
1062
1063StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1064  auto *Ret = StructType::create(Context);
1065  IdentifiedStructTypes.push_back(Ret);
1066  return Ret;
1067}
1068
1069
1070/// FIXME: Remove in LLVM 3.1, only used by ParseOldTypeTable.
1071Type *BitcodeReader::getTypeByIDOrNull(unsigned ID) {
1072  if (ID >= TypeList.size())
1073    TypeList.resize(ID+1);
1074
1075  return TypeList[ID];
1076}
1077
1078//===----------------------------------------------------------------------===//
1079//  Functions for parsing blocks from the bitcode file
1080//===----------------------------------------------------------------------===//
1081
1082
1083/// \brief This fills an AttrBuilder object with the LLVM attributes that have
1084/// been decoded from the given integer. This function must stay in sync with
1085/// 'encodeLLVMAttributesForBitcode'.
1086static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1087                                           uint64_t EncodedAttrs) {
1088  // FIXME: Remove in 4.0.
1089
1090  // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
1091  // the bits above 31 down by 11 bits.
1092  unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1093  assert((!Alignment || isPowerOf2_32(Alignment)) &&
1094         "Alignment must be a power of two.");
1095
1096  if (Alignment)
1097    B.addAlignmentAttr(Alignment);
1098  B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1099                (EncodedAttrs & 0xffff));
1100}
1101
1102std::error_code BitcodeReader::ParseAttributeBlock() {
1103  if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1104    return Error("Invalid record");
1105
1106  if (!MAttributes.empty())
1107    return Error("Invalid multiple blocks");
1108
1109  SmallVector<uint64_t, 64> Record;
1110
1111  SmallVector<AttributeSet, 8> Attrs;
1112
1113  // Read all the records.
1114  while (1) {
1115    BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1116
1117    switch (Entry.Kind) {
1118    case BitstreamEntry::SubBlock: // Handled for us already.
1119    case BitstreamEntry::Error:
1120      return Error("Malformed block");
1121    case BitstreamEntry::EndBlock:
1122      return std::error_code();
1123    case BitstreamEntry::Record:
1124      // The interesting case.
1125      break;
1126    }
1127
1128    // Read a record.
1129    Record.clear();
1130    switch (Stream.readRecord(Entry.ID, Record)) {
1131    default:  // Default behavior: ignore.
1132      break;
1133    case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...]
1134      // FIXME: Remove in 4.0.
1135      if (Record.size() & 1)
1136        return Error("Invalid record");
1137
1138      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1139        AttrBuilder B;
1140        decodeLLVMAttributesForBitcode(B, Record[i+1]);
1141        Attrs.push_back(AttributeSet::get(Context, Record[i], B));
1142      }
1143
1144      MAttributes.push_back(AttributeSet::get(Context, Attrs));
1145      Attrs.clear();
1146      break;
1147    }
1148    case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...]
1149      for (unsigned i = 0, e = Record.size(); i != e; ++i)
1150        Attrs.push_back(MAttributeGroups[Record[i]]);
1151
1152      MAttributes.push_back(AttributeSet::get(Context, Attrs));
1153      Attrs.clear();
1154      break;
1155    }
1156    }
1157  }
1158}
1159
1160
1161std::error_code BitcodeReader::ParseTypeTable() {
1162  if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
1163    return Error("Invalid record");
1164
1165  return ParseTypeTableBody();
1166}
1167
1168std::error_code BitcodeReader::ParseTypeTableBody() {
1169  if (!TypeList.empty())
1170    return Error("Invalid multiple blocks");
1171
1172  SmallVector<uint64_t, 64> Record;
1173  unsigned NumRecords = 0;
1174
1175  SmallString<64> TypeName;
1176
1177  // Read all the records for this type table.
1178  while (1) {
1179    BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1180
1181    switch (Entry.Kind) {
1182    case BitstreamEntry::SubBlock: // Handled for us already.
1183    case BitstreamEntry::Error:
1184      return Error("Malformed block");
1185    case BitstreamEntry::EndBlock:
1186      if (NumRecords != TypeList.size())
1187        return Error("Malformed block");
1188      return std::error_code();
1189    case BitstreamEntry::Record:
1190      // The interesting case.
1191      break;
1192    }
1193
1194    // Read a record.
1195    Record.clear();
1196    Type *ResultTy = nullptr;
1197    switch (Stream.readRecord(Entry.ID, Record)) {
1198    default:
1199      return Error("Invalid value");
1200    case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
1201      // TYPE_CODE_NUMENTRY contains a count of the number of types in the
1202      // type list.  This allows us to reserve space.
1203      if (Record.size() < 1)
1204        return Error("Invalid record");
1205      TypeList.resize(Record[0]);
1206      continue;
1207    case bitc::TYPE_CODE_VOID:      // VOID
1208      ResultTy = Type::getVoidTy(Context);
1209      break;
1210    case bitc::TYPE_CODE_HALF:     // HALF
1211      ResultTy = Type::getHalfTy(Context);
1212      break;
1213    case bitc::TYPE_CODE_FLOAT:     // FLOAT
1214      ResultTy = Type::getFloatTy(Context);
1215      break;
1216    case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
1217      ResultTy = Type::getDoubleTy(Context);
1218      break;
1219    case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
1220      ResultTy = Type::getX86_FP80Ty(Context);
1221      break;
1222    case bitc::TYPE_CODE_FP128:     // FP128
1223      ResultTy = Type::getFP128Ty(Context);
1224      break;
1225    case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
1226      ResultTy = Type::getPPC_FP128Ty(Context);
1227      break;
1228    case bitc::TYPE_CODE_LABEL:     // LABEL
1229      ResultTy = Type::getLabelTy(Context);
1230      break;
1231    case bitc::TYPE_CODE_METADATA:  // METADATA
1232      ResultTy = Type::getMetadataTy(Context);
1233      break;
1234    case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
1235      ResultTy = Type::getX86_MMXTy(Context);
1236      break;
1237    case bitc::TYPE_CODE_INTEGER:   // INTEGER: [width]
1238      if (Record.size() < 1)
1239        return Error("Invalid record");
1240
1241      ResultTy = IntegerType::get(Context, Record[0]);
1242      break;
1243    case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
1244                                    //          [pointee type, address space]
1245      if (Record.size() < 1)
1246        return Error("Invalid record");
1247      unsigned AddressSpace = 0;
1248      if (Record.size() == 2)
1249        AddressSpace = Record[1];
1250      ResultTy = getTypeByID(Record[0]);
1251      if (!ResultTy)
1252        return Error("Invalid type");
1253      ResultTy = PointerType::get(ResultTy, AddressSpace);
1254      break;
1255    }
1256    case bitc::TYPE_CODE_FUNCTION_OLD: {
1257      // FIXME: attrid is dead, remove it in LLVM 4.0
1258      // FUNCTION: [vararg, attrid, retty, paramty x N]
1259      if (Record.size() < 3)
1260        return Error("Invalid record");
1261      SmallVector<Type*, 8> ArgTys;
1262      for (unsigned i = 3, e = Record.size(); i != e; ++i) {
1263        if (Type *T = getTypeByID(Record[i]))
1264          ArgTys.push_back(T);
1265        else
1266          break;
1267      }
1268
1269      ResultTy = getTypeByID(Record[2]);
1270      if (!ResultTy || ArgTys.size() < Record.size()-3)
1271        return Error("Invalid type");
1272
1273      ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1274      break;
1275    }
1276    case bitc::TYPE_CODE_FUNCTION: {
1277      // FUNCTION: [vararg, retty, paramty x N]
1278      if (Record.size() < 2)
1279        return Error("Invalid record");
1280      SmallVector<Type*, 8> ArgTys;
1281      for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1282        if (Type *T = getTypeByID(Record[i]))
1283          ArgTys.push_back(T);
1284        else
1285          break;
1286      }
1287
1288      ResultTy = getTypeByID(Record[1]);
1289      if (!ResultTy || ArgTys.size() < Record.size()-2)
1290        return Error("Invalid type");
1291
1292      ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1293      break;
1294    }
1295    case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
1296      if (Record.size() < 1)
1297        return Error("Invalid record");
1298      SmallVector<Type*, 8> EltTys;
1299      for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1300        if (Type *T = getTypeByID(Record[i]))
1301          EltTys.push_back(T);
1302        else
1303          break;
1304      }
1305      if (EltTys.size() != Record.size()-1)
1306        return Error("Invalid type");
1307      ResultTy = StructType::get(Context, EltTys, Record[0]);
1308      break;
1309    }
1310    case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
1311      if (ConvertToString(Record, 0, TypeName))
1312        return Error("Invalid record");
1313      continue;
1314
1315    case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
1316      if (Record.size() < 1)
1317        return Error("Invalid record");
1318
1319      if (NumRecords >= TypeList.size())
1320        return Error("Invalid TYPE table");
1321
1322      // Check to see if this was forward referenced, if so fill in the temp.
1323      StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1324      if (Res) {
1325        Res->setName(TypeName);
1326        TypeList[NumRecords] = nullptr;
1327      } else  // Otherwise, create a new struct.
1328        Res = createIdentifiedStructType(Context, TypeName);
1329      TypeName.clear();
1330
1331      SmallVector<Type*, 8> EltTys;
1332      for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1333        if (Type *T = getTypeByID(Record[i]))
1334          EltTys.push_back(T);
1335        else
1336          break;
1337      }
1338      if (EltTys.size() != Record.size()-1)
1339        return Error("Invalid record");
1340      Res->setBody(EltTys, Record[0]);
1341      ResultTy = Res;
1342      break;
1343    }
1344    case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
1345      if (Record.size() != 1)
1346        return Error("Invalid record");
1347
1348      if (NumRecords >= TypeList.size())
1349        return Error("Invalid TYPE table");
1350
1351      // Check to see if this was forward referenced, if so fill in the temp.
1352      StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1353      if (Res) {
1354        Res->setName(TypeName);
1355        TypeList[NumRecords] = nullptr;
1356      } else  // Otherwise, create a new struct with no body.
1357        Res = createIdentifiedStructType(Context, TypeName);
1358      TypeName.clear();
1359      ResultTy = Res;
1360      break;
1361    }
1362    case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
1363      if (Record.size() < 2)
1364        return Error("Invalid record");
1365      if ((ResultTy = getTypeByID(Record[1])))
1366        ResultTy = ArrayType::get(ResultTy, Record[0]);
1367      else
1368        return Error("Invalid type");
1369      break;
1370    case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
1371      if (Record.size() < 2)
1372        return Error("Invalid record");
1373      if ((ResultTy = getTypeByID(Record[1])))
1374        ResultTy = VectorType::get(ResultTy, Record[0]);
1375      else
1376        return Error("Invalid type");
1377      break;
1378    }
1379
1380    if (NumRecords >= TypeList.size())
1381      return Error("Invalid TYPE table");
1382    assert(ResultTy && "Didn't read a type?");
1383    assert(!TypeList[NumRecords] && "Already read type?");
1384    TypeList[NumRecords++] = ResultTy;
1385  }
1386}
1387
1388// FIXME: Remove in LLVM 3.1
1389std::error_code BitcodeReader::ParseOldTypeTable() {
1390  if (Stream.EnterSubBlock(TYPE_BLOCK_ID_OLD_3_0))
1391    return Error("Malformed block");
1392
1393  if (!TypeList.empty())
1394    return Error("Invalid TYPE table");
1395
1396
1397  // While horrible, we have no good ordering of types in the bc file.  Just
1398  // iteratively parse types out of the bc file in multiple passes until we get
1399  // them all.  Do this by saving a cursor for the start of the type block.
1400  BitstreamCursor StartOfTypeBlockCursor(Stream);
1401
1402  unsigned NumTypesRead = 0;
1403
1404  SmallVector<uint64_t, 64> Record;
1405RestartScan:
1406  unsigned NextTypeID = 0;
1407  bool ReadAnyTypes = false;
1408
1409  // Read all the records for this type table.
1410  while (1) {
1411    unsigned Code = Stream.ReadCode();
1412    if (Code == bitc::END_BLOCK) {
1413      if (NextTypeID != TypeList.size())
1414        return Error("Invalid TYPE table");
1415
1416      // If we haven't read all of the types yet, iterate again.
1417      if (NumTypesRead != TypeList.size()) {
1418        // If we didn't successfully read any types in this pass, then we must
1419        // have an unhandled forward reference.
1420        if (!ReadAnyTypes)
1421          return Error("Invalid TYPE table");
1422
1423        Stream = StartOfTypeBlockCursor;
1424        goto RestartScan;
1425      }
1426
1427      if (Stream.ReadBlockEnd())
1428        return Error("Invalid TYPE table");
1429      return std::error_code();
1430    }
1431
1432    if (Code == bitc::ENTER_SUBBLOCK) {
1433      // No known subblocks, always skip them.
1434      Stream.ReadSubBlockID();
1435      if (Stream.SkipBlock())
1436        return Error("Malformed block");
1437      continue;
1438    }
1439
1440    if (Code == bitc::DEFINE_ABBREV) {
1441      Stream.ReadAbbrevRecord();
1442      continue;
1443    }
1444
1445    // Read a record.
1446    Record.clear();
1447    Type *ResultTy = nullptr;
1448    switch (Stream.readRecord(Code, Record)) {
1449    default: return Error("Invalid TYPE table");
1450    case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
1451      // TYPE_CODE_NUMENTRY contains a count of the number of types in the
1452      // type list.  This allows us to reserve space.
1453      if (Record.size() < 1)
1454        return Error("Invalid TYPE table");
1455      TypeList.resize(Record[0]);
1456      continue;
1457    case bitc::TYPE_CODE_VOID:      // VOID
1458      ResultTy = Type::getVoidTy(Context);
1459      break;
1460    case bitc::TYPE_CODE_FLOAT:     // FLOAT
1461      ResultTy = Type::getFloatTy(Context);
1462      break;
1463    case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
1464      ResultTy = Type::getDoubleTy(Context);
1465      break;
1466    case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
1467      ResultTy = Type::getX86_FP80Ty(Context);
1468      break;
1469    case bitc::TYPE_CODE_FP128:     // FP128
1470      ResultTy = Type::getFP128Ty(Context);
1471      break;
1472    case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
1473      ResultTy = Type::getPPC_FP128Ty(Context);
1474      break;
1475    case bitc::TYPE_CODE_LABEL:     // LABEL
1476      ResultTy = Type::getLabelTy(Context);
1477      break;
1478    case bitc::TYPE_CODE_METADATA:  // METADATA
1479      ResultTy = Type::getMetadataTy(Context);
1480      break;
1481    case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
1482      ResultTy = Type::getX86_MMXTy(Context);
1483      break;
1484    case bitc::TYPE_CODE_INTEGER:   // INTEGER: [width]
1485      if (Record.size() < 1)
1486        return Error("Invalid TYPE table");
1487      ResultTy = IntegerType::get(Context, Record[0]);
1488      break;
1489    case bitc::TYPE_CODE_OPAQUE:    // OPAQUE
1490      if (NextTypeID < TypeList.size() && TypeList[NextTypeID] == 0)
1491        ResultTy = StructType::create(Context, "");
1492      break;
1493    case TYPE_CODE_STRUCT_OLD_3_0: {// STRUCT_OLD
1494      if (NextTypeID >= TypeList.size()) break;
1495      // If we already read it, don't reprocess.
1496      if (TypeList[NextTypeID] &&
1497          !cast<StructType>(TypeList[NextTypeID])->isOpaque())
1498        break;
1499
1500      // Set a type.
1501      if (TypeList[NextTypeID] == 0)
1502        TypeList[NextTypeID] = StructType::create(Context, "");
1503
1504      std::vector<Type*> EltTys;
1505      for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1506        if (Type *Elt = getTypeByIDOrNull(Record[i]))
1507          EltTys.push_back(Elt);
1508        else
1509          break;
1510      }
1511
1512      if (EltTys.size() != Record.size()-1)
1513        break;      // Not all elements are ready.
1514
1515      cast<StructType>(TypeList[NextTypeID])->setBody(EltTys, Record[0]);
1516      ResultTy = TypeList[NextTypeID];
1517      TypeList[NextTypeID] = 0;
1518      break;
1519    }
1520    case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
1521      //          [pointee type, address space]
1522      if (Record.size() < 1)
1523        return Error("Invalid TYPE table");
1524      unsigned AddressSpace = 0;
1525      if (Record.size() == 2)
1526        AddressSpace = Record[1];
1527      if ((ResultTy = getTypeByIDOrNull(Record[0])))
1528        ResultTy = PointerType::get(ResultTy, AddressSpace);
1529      break;
1530    }
1531    case bitc::TYPE_CODE_FUNCTION_OLD: {
1532      // FIXME: attrid is dead, remove it in LLVM 3.0
1533      // FUNCTION: [vararg, attrid, retty, paramty x N]
1534      if (Record.size() < 3)
1535        return Error("Invalid TYPE table");
1536      std::vector<Type*> ArgTys;
1537      for (unsigned i = 3, e = Record.size(); i != e; ++i) {
1538        if (Type *Elt = getTypeByIDOrNull(Record[i]))
1539          ArgTys.push_back(Elt);
1540        else
1541          break;
1542      }
1543      if (ArgTys.size()+3 != Record.size())
1544        break;  // Something was null.
1545      if ((ResultTy = getTypeByIDOrNull(Record[2])))
1546        ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1547      break;
1548    }
1549    case bitc::TYPE_CODE_FUNCTION: {
1550      // FUNCTION: [vararg, retty, paramty x N]
1551      if (Record.size() < 2)
1552        return Error("Invalid TYPE table");
1553      std::vector<Type*> ArgTys;
1554      for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1555        if (Type *Elt = getTypeByIDOrNull(Record[i]))
1556          ArgTys.push_back(Elt);
1557        else
1558          break;
1559      }
1560      if (ArgTys.size()+2 != Record.size())
1561        break;  // Something was null.
1562      if ((ResultTy = getTypeByIDOrNull(Record[1])))
1563        ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1564      break;
1565    }
1566    case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
1567      if (Record.size() < 2)
1568        return Error("Invalid TYPE table");
1569      if ((ResultTy = getTypeByIDOrNull(Record[1])))
1570        ResultTy = ArrayType::get(ResultTy, Record[0]);
1571      break;
1572    case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
1573      if (Record.size() < 2)
1574        return Error("Invalid TYPE table");
1575      if ((ResultTy = getTypeByIDOrNull(Record[1])))
1576        ResultTy = VectorType::get(ResultTy, Record[0]);
1577      break;
1578    }
1579
1580    if (NextTypeID >= TypeList.size())
1581      return Error("Invalid TYPE table");
1582
1583    if (ResultTy && TypeList[NextTypeID] == 0) {
1584      ++NumTypesRead;
1585      ReadAnyTypes = true;
1586
1587      TypeList[NextTypeID] = ResultTy;
1588    }
1589
1590    ++NextTypeID;
1591  }
1592}
1593
1594
1595std::error_code BitcodeReader::ParseOldTypeSymbolTable() {
1596  if (Stream.EnterSubBlock(TYPE_SYMTAB_BLOCK_ID_OLD_3_0))
1597    return Error("Malformed block");
1598
1599  SmallVector<uint64_t, 64> Record;
1600
1601  // Read all the records for this type table.
1602  std::string TypeName;
1603  while (1) {
1604    unsigned Code = Stream.ReadCode();
1605    if (Code == bitc::END_BLOCK) {
1606      if (Stream.ReadBlockEnd())
1607        return Error("Malformed block");
1608      return std::error_code();
1609    }
1610
1611    if (Code == bitc::ENTER_SUBBLOCK) {
1612      // No known subblocks, always skip them.
1613      Stream.ReadSubBlockID();
1614      if (Stream.SkipBlock())
1615        return Error("Malformed block");
1616      continue;
1617    }
1618
1619    if (Code == bitc::DEFINE_ABBREV) {
1620      Stream.ReadAbbrevRecord();
1621      continue;
1622    }
1623
1624    // Read a record.
1625    Record.clear();
1626    switch (Stream.readRecord(Code, Record)) {
1627    default:  // Default behavior: unknown type.
1628      break;
1629    case bitc::TST_CODE_ENTRY:    // TST_ENTRY: [typeid, namechar x N]
1630      if (ConvertToString(Record, 1, TypeName))
1631        return Error("Invalid record");
1632      unsigned TypeID = Record[0];
1633      if (TypeID >= TypeList.size())
1634        return Error("Invalid record");
1635
1636      // Only apply the type name to a struct type with no name.
1637      if (StructType *STy = dyn_cast<StructType>(TypeList[TypeID]))
1638        if (!STy->isLiteral() && !STy->hasName())
1639          STy->setName(TypeName);
1640      TypeName.clear();
1641      break;
1642    }
1643  }
1644}
1645
1646std::error_code BitcodeReader::ParseValueSymbolTable() {
1647  if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
1648    return Error("Invalid record");
1649
1650  SmallVector<uint64_t, 64> Record;
1651
1652  // Read all the records for this value table.
1653  SmallString<128> ValueName;
1654  while (1) {
1655    unsigned Code = Stream.ReadCode();
1656    if (Code == bitc::END_BLOCK) {
1657      if (Stream.ReadBlockEnd())
1658        return Error("Malformed block");
1659      return std::error_code();
1660    }
1661    if (Code == bitc::ENTER_SUBBLOCK) {
1662      // No known subblocks, always skip them.
1663      Stream.ReadSubBlockID();
1664      if (Stream.SkipBlock())
1665        return Error("Malformed block");
1666      continue;
1667    }
1668
1669    if (Code == bitc::DEFINE_ABBREV) {
1670      Stream.ReadAbbrevRecord();
1671      continue;
1672    }
1673
1674    // Read a record.
1675    Record.clear();
1676    switch (Stream.readRecord(Code, Record)) {
1677    default:  // Default behavior: unknown type.
1678      break;
1679    case bitc::VST_CODE_ENTRY: {  // VST_ENTRY: [valueid, namechar x N]
1680      if (ConvertToString(Record, 1, ValueName))
1681        return Error("Invalid record");
1682      unsigned ValueID = Record[0];
1683      if (ValueID >= ValueList.size())
1684        return Error("Invalid record");
1685      Value *V = ValueList[ValueID];
1686
1687      V->setName(StringRef(ValueName.data(), ValueName.size()));
1688      ValueName.clear();
1689      break;
1690    }
1691    case bitc::VST_CODE_BBENTRY: {
1692      if (ConvertToString(Record, 1, ValueName))
1693        return Error("Invalid record");
1694      BasicBlock *BB = getBasicBlock(Record[0]);
1695      if (!BB)
1696        return Error("Invalid record");
1697
1698      BB->setName(StringRef(ValueName.data(), ValueName.size()));
1699      ValueName.clear();
1700      break;
1701    }
1702    }
1703  }
1704}
1705
1706std::error_code BitcodeReader::ParseMetadata() {
1707  unsigned NextMDValueNo = MDValueList.size();
1708
1709  if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
1710    return Error("Invalid record");
1711
1712  SmallVector<uint64_t, 64> Record;
1713
1714  // Read all the records.
1715  while (1) {
1716    unsigned Code = Stream.ReadCode();
1717    if (Code == bitc::END_BLOCK) {
1718      if (Stream.ReadBlockEnd())
1719        return Error("Malformed block");
1720      return std::error_code();
1721    }
1722
1723    if (Code == bitc::ENTER_SUBBLOCK) {
1724      // No known subblocks, always skip them.
1725      Stream.ReadSubBlockID();
1726      if (Stream.SkipBlock())
1727        return Error("Malformed block");
1728      continue;
1729    }
1730
1731    if (Code == bitc::DEFINE_ABBREV) {
1732      Stream.ReadAbbrevRecord();
1733      continue;
1734    }
1735
1736    bool IsFunctionLocal = false;
1737    // Read a record.
1738    Record.clear();
1739    Code = Stream.readRecord(Code, Record);
1740    switch (Code) {
1741    default:  // Default behavior: ignore.
1742      break;
1743    case bitc::METADATA_NAME: {
1744      // Read name of the named metadata.
1745      SmallString<8> Name(Record.begin(), Record.end());
1746      Record.clear();
1747      Code = Stream.ReadCode();
1748
1749      // METADATA_NAME is always followed by METADATA_NAMED_NODE.
1750      unsigned NextBitCode = Stream.readRecord(Code, Record);
1751      assert(NextBitCode == bitc::METADATA_NAMED_NODE); (void)NextBitCode;
1752
1753      // Read named metadata elements.
1754      unsigned Size = Record.size();
1755      NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name);
1756      for (unsigned i = 0; i != Size; ++i) {
1757        MDNode *MD = dyn_cast_or_null<MDNode>(MDValueList.getValueFwdRef(Record[i]));
1758        if (!MD)
1759          return Error("Invalid record");
1760        NMD->addOperand(MD);
1761      }
1762      break;
1763    }
1764    case bitc::METADATA_OLD_FN_NODE:
1765      IsFunctionLocal = true;
1766      // fall-through
1767    case bitc::METADATA_OLD_NODE: {
1768      if (Record.size() % 2 == 1)
1769        return Error("Invalid record");
1770
1771      unsigned Size = Record.size();
1772      SmallVector<Metadata *, 8> Elts;
1773      for (unsigned i = 0; i != Size; i += 2) {
1774        Type *Ty = getTypeByID(Record[i]);
1775        if (!Ty)
1776          return Error("Invalid record");
1777        if (Ty->isMetadataTy())
1778          Elts.push_back(MDValueList.getValueFwdRef(Record[i+1]));
1779        else if (!Ty->isVoidTy()) {
1780          auto *MD =
1781              ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty));
1782          assert(isa<ConstantAsMetadata>(MD) &&
1783                 "Expected non-function-local metadata");
1784          Elts.push_back(MD);
1785        } else
1786          Elts.push_back(nullptr);
1787      }
1788      MDValueList.AssignValue(MDNode::get(Context, Elts), NextMDValueNo++);
1789      break;
1790    }
1791    case bitc::METADATA_STRING: {
1792      std::string String(Record.begin(), Record.end());
1793      llvm::UpgradeMDStringConstant(String);
1794      Metadata *MD = MDString::get(Context, String);
1795      MDValueList.AssignValue(MD, NextMDValueNo++);
1796      break;
1797    }
1798    case bitc::METADATA_KIND: {
1799      if (Record.size() < 2)
1800        return Error("Invalid record");
1801
1802      unsigned Kind = Record[0];
1803      SmallString<8> Name(Record.begin()+1, Record.end());
1804
1805      unsigned NewKind = TheModule->getMDKindID(Name.str());
1806      if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second)
1807        return Error("Conflicting METADATA_KIND records");
1808      break;
1809    }
1810    }
1811  }
1812}
1813
1814/// decodeSignRotatedValue - Decode a signed value stored with the sign bit in
1815/// the LSB for dense VBR encoding.
1816uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
1817  if ((V & 1) == 0)
1818    return V >> 1;
1819  if (V != 1)
1820    return -(V >> 1);
1821  // There is no such thing as -0 with integers.  "-0" really means MININT.
1822  return 1ULL << 63;
1823}
1824
1825// FIXME: Delete this in LLVM 4.0 and just assert that the aliasee is a
1826// GlobalObject.
1827static GlobalObject &
1828getGlobalObjectInExpr(const DenseMap<GlobalAlias *, Constant *> &Map,
1829                      Constant &C) {
1830  auto *GO = dyn_cast<GlobalObject>(&C);
1831  if (GO)
1832    return *GO;
1833
1834  auto *GA = dyn_cast<GlobalAlias>(&C);
1835  if (GA)
1836    return getGlobalObjectInExpr(Map, *Map.find(GA)->second);
1837
1838  auto &CE = cast<ConstantExpr>(C);
1839  assert(CE.getOpcode() == Instruction::BitCast ||
1840         CE.getOpcode() == Instruction::GetElementPtr ||
1841         CE.getOpcode() == Instruction::AddrSpaceCast);
1842  if (CE.getOpcode() == Instruction::GetElementPtr)
1843    assert(cast<GEPOperator>(CE).hasAllZeroIndices());
1844  return getGlobalObjectInExpr(Map, *CE.getOperand(0));
1845}
1846
1847/// ResolveGlobalAndAliasInits - Resolve all of the initializers for global
1848/// values and aliases that we can.
1849std::error_code BitcodeReader::ResolveGlobalAndAliasInits() {
1850  std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
1851  std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
1852
1853  GlobalInitWorklist.swap(GlobalInits);
1854  AliasInitWorklist.swap(AliasInits);
1855
1856  while (!GlobalInitWorklist.empty()) {
1857    unsigned ValID = GlobalInitWorklist.back().second;
1858    if (ValID >= ValueList.size()) {
1859      // Not ready to resolve this yet, it requires something later in the file.
1860      GlobalInits.push_back(GlobalInitWorklist.back());
1861    } else {
1862      if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
1863        GlobalInitWorklist.back().first->setInitializer(C);
1864      else
1865        return Error("Expected a constant");
1866    }
1867    GlobalInitWorklist.pop_back();
1868  }
1869
1870  // FIXME: Delete this in LLVM 4.0
1871  // Older versions of llvm could write an alias pointing to another. We cannot
1872  // construct those aliases, so we first collect an alias to aliasee expression
1873  // and then compute the actual aliasee.
1874  DenseMap<GlobalAlias *, Constant *> AliasInit;
1875
1876  while (!AliasInitWorklist.empty()) {
1877    unsigned ValID = AliasInitWorklist.back().second;
1878    if (ValID >= ValueList.size()) {
1879      AliasInits.push_back(AliasInitWorklist.back());
1880    } else {
1881      if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
1882        AliasInit.insert(std::make_pair(AliasInitWorklist.back().first, C));
1883      else
1884        return Error("Expected a constant");
1885    }
1886    AliasInitWorklist.pop_back();
1887  }
1888
1889  for (auto &Pair : AliasInit) {
1890    auto &GO = getGlobalObjectInExpr(AliasInit, *Pair.second);
1891    Pair.first->setAliasee(&GO);
1892  }
1893
1894  return std::error_code();
1895}
1896
1897static APInt ReadWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
1898  SmallVector<uint64_t, 8> Words(Vals.size());
1899  std::transform(Vals.begin(), Vals.end(), Words.begin(),
1900                 BitcodeReader::decodeSignRotatedValue);
1901
1902  return APInt(TypeBits, Words);
1903}
1904
1905std::error_code BitcodeReader::ParseConstants() {
1906  if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
1907    return Error("Invalid record");
1908
1909  SmallVector<uint64_t, 64> Record;
1910
1911  // Read all the records for this value table.
1912  Type *CurTy = Type::getInt32Ty(Context);
1913  unsigned NextCstNo = ValueList.size();
1914  while (1) {
1915    BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1916
1917    switch (Entry.Kind) {
1918    case BitstreamEntry::SubBlock: // Handled for us already.
1919    case BitstreamEntry::Error:
1920      return Error("Malformed block");
1921    case BitstreamEntry::EndBlock:
1922      if (NextCstNo != ValueList.size())
1923        return Error("Invalid constant reference");
1924
1925      // Once all the constants have been read, go through and resolve forward
1926      // references.
1927      ValueList.ResolveConstantForwardRefs();
1928      return std::error_code();
1929    case BitstreamEntry::Record:
1930      // The interesting case.
1931      break;
1932    }
1933
1934    // Read a record.
1935    Record.clear();
1936    Value *V = nullptr;
1937    unsigned BitCode = Stream.readRecord(Entry.ID, Record);
1938    switch (BitCode) {
1939    default:  // Default behavior: unknown constant
1940    case bitc::CST_CODE_UNDEF:     // UNDEF
1941      V = UndefValue::get(CurTy);
1942      break;
1943    case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
1944      if (Record.empty())
1945        return Error("Invalid record");
1946      if (Record[0] >= TypeList.size())
1947        return Error("Invalid record");
1948      CurTy = TypeList[Record[0]];
1949      continue;  // Skip the ValueList manipulation.
1950    case bitc::CST_CODE_NULL:      // NULL
1951      V = Constant::getNullValue(CurTy);
1952      break;
1953    case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
1954      if (!CurTy->isIntegerTy() || Record.empty())
1955        return Error("Invalid record");
1956      V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
1957      break;
1958    case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
1959      if (!CurTy->isIntegerTy() || Record.empty())
1960        return Error("Invalid record");
1961
1962      APInt VInt = ReadWideAPInt(Record,
1963                                 cast<IntegerType>(CurTy)->getBitWidth());
1964      V = ConstantInt::get(Context, VInt);
1965
1966      break;
1967    }
1968    case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
1969      if (Record.empty())
1970        return Error("Invalid record");
1971      if (CurTy->isHalfTy())
1972        V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf,
1973                                             APInt(16, (uint16_t)Record[0])));
1974      else if (CurTy->isFloatTy())
1975        V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle,
1976                                             APInt(32, (uint32_t)Record[0])));
1977      else if (CurTy->isDoubleTy())
1978        V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble,
1979                                             APInt(64, Record[0])));
1980      else if (CurTy->isX86_FP80Ty()) {
1981        // Bits are not stored the same way as a normal i80 APInt, compensate.
1982        uint64_t Rearrange[2];
1983        Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
1984        Rearrange[1] = Record[0] >> 48;
1985        V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended,
1986                                             APInt(80, Rearrange)));
1987      } else if (CurTy->isFP128Ty())
1988        V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad,
1989                                             APInt(128, Record)));
1990      else if (CurTy->isPPC_FP128Ty())
1991        V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble,
1992                                             APInt(128, Record)));
1993      else
1994        V = UndefValue::get(CurTy);
1995      break;
1996    }
1997
1998    case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
1999      if (Record.empty())
2000        return Error("Invalid record");
2001
2002      unsigned Size = Record.size();
2003      SmallVector<Constant*, 16> Elts;
2004
2005      if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2006        for (unsigned i = 0; i != Size; ++i)
2007          Elts.push_back(ValueList.getConstantFwdRef(Record[i],
2008                                                     STy->getElementType(i)));
2009        V = ConstantStruct::get(STy, Elts);
2010      } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
2011        Type *EltTy = ATy->getElementType();
2012        for (unsigned i = 0; i != Size; ++i)
2013          Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2014        V = ConstantArray::get(ATy, Elts);
2015      } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
2016        Type *EltTy = VTy->getElementType();
2017        for (unsigned i = 0; i != Size; ++i)
2018          Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2019        V = ConstantVector::get(Elts);
2020      } else {
2021        V = UndefValue::get(CurTy);
2022      }
2023      break;
2024    }
2025    case bitc::CST_CODE_STRING: { // STRING: [values]
2026      if (Record.empty())
2027        return Error("Invalid record");
2028
2029      ArrayType *ATy = cast<ArrayType>(CurTy);
2030      Type *EltTy = ATy->getElementType();
2031
2032      unsigned Size = Record.size();
2033      std::vector<Constant*> Elts;
2034      for (unsigned i = 0; i != Size; ++i)
2035        Elts.push_back(ConstantInt::get(EltTy, Record[i]));
2036      V = ConstantArray::get(ATy, Elts);
2037      break;
2038    }
2039    case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
2040      if (Record.empty())
2041        return Error("Invalid record");
2042
2043      ArrayType *ATy = cast<ArrayType>(CurTy);
2044      Type *EltTy = ATy->getElementType();
2045
2046      unsigned Size = Record.size();
2047      std::vector<Constant*> Elts;
2048      for (unsigned i = 0; i != Size; ++i)
2049        Elts.push_back(ConstantInt::get(EltTy, Record[i]));
2050      Elts.push_back(Constant::getNullValue(EltTy));
2051      V = ConstantArray::get(ATy, Elts);
2052      break;
2053    }
2054    case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
2055      if (Record.size() < 3)
2056        return Error("Invalid record");
2057      int Opc = GetDecodedBinaryOpcode(Record[0], CurTy);
2058      if (Opc < 0) {
2059        V = UndefValue::get(CurTy);  // Unknown binop.
2060      } else {
2061        Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2062        Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
2063        unsigned Flags = 0;
2064        if (Record.size() >= 4) {
2065          if (Opc == Instruction::Add ||
2066              Opc == Instruction::Sub ||
2067              Opc == Instruction::Mul ||
2068              Opc == Instruction::Shl) {
2069            if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2070              Flags |= OverflowingBinaryOperator::NoSignedWrap;
2071            if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2072              Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2073          } else if (Opc == Instruction::SDiv ||
2074                     Opc == Instruction::UDiv ||
2075                     Opc == Instruction::LShr ||
2076                     Opc == Instruction::AShr) {
2077            if (Record[3] & (1 << bitc::PEO_EXACT))
2078              Flags |= SDivOperator::IsExact;
2079          }
2080        }
2081        V = ConstantExpr::get(Opc, LHS, RHS, Flags);
2082      }
2083      break;
2084    }
2085    case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
2086      if (Record.size() < 3)
2087        return Error("Invalid record");
2088      int Opc = GetDecodedCastOpcode(Record[0]);
2089      if (Opc < 0) {
2090        V = UndefValue::get(CurTy);  // Unknown cast.
2091      } else {
2092        Type *OpTy = getTypeByID(Record[1]);
2093        if (!OpTy)
2094          return Error("Invalid record");
2095        Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
2096        V = ConstantExpr::getCast(Opc, Op, CurTy);
2097      }
2098      break;
2099    }
2100    case bitc::CST_CODE_CE_INBOUNDS_GEP:
2101    case bitc::CST_CODE_CE_GEP: {  // CE_GEP:        [n x operands]
2102      if (Record.size() & 1)
2103        return Error("Invalid record");
2104      SmallVector<Constant*, 16> Elts;
2105      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
2106        Type *ElTy = getTypeByID(Record[i]);
2107        if (!ElTy)
2108          return Error("Invalid record");
2109        Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy));
2110      }
2111      ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2112      V = ConstantExpr::getGetElementPtr(Elts[0], Indices,
2113                                         BitCode ==
2114                                           bitc::CST_CODE_CE_INBOUNDS_GEP);
2115      break;
2116    }
2117    case bitc::CST_CODE_CE_SELECT:  // CE_SELECT: [opval#, opval#, opval#]
2118      if (Record.size() < 3)
2119        return Error("Invalid record");
2120      V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
2121                                                              Type::getInt1Ty(Context)),
2122                                  ValueList.getConstantFwdRef(Record[1],CurTy),
2123                                  ValueList.getConstantFwdRef(Record[2],CurTy));
2124      break;
2125    case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval]
2126      if (Record.size() < 3)
2127        return Error("Invalid record");
2128      VectorType *OpTy =
2129        dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2130      if (!OpTy)
2131        return Error("Invalid record");
2132      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2133      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2134      V = ConstantExpr::getExtractElement(Op0, Op1);
2135      break;
2136    }
2137    case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval]
2138      VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2139      if (Record.size() < 3 || !OpTy)
2140        return Error("Invalid record");
2141      Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2142      Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
2143                                                  OpTy->getElementType());
2144      Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2145      V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
2146      break;
2147    }
2148    case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
2149      VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2150      if (Record.size() < 3 || !OpTy)
2151        return Error("Invalid record");
2152      Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2153      Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
2154      Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
2155                                                 OpTy->getNumElements());
2156      Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
2157      V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
2158      break;
2159    }
2160    case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
2161      VectorType *RTy = dyn_cast<VectorType>(CurTy);
2162      VectorType *OpTy =
2163        dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2164      if (Record.size() < 4 || !RTy || !OpTy)
2165        return Error("Invalid record");
2166      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2167      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2168      Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
2169                                                 RTy->getNumElements());
2170      Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
2171      V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
2172      break;
2173    }
2174    case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
2175      if (Record.size() < 4)
2176        return Error("Invalid record");
2177      Type *OpTy = getTypeByID(Record[0]);
2178      if (!OpTy)
2179        return Error("Invalid record");
2180      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2181      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2182
2183      if (OpTy->isFPOrFPVectorTy())
2184        V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
2185      else
2186        V = ConstantExpr::getICmp(Record[3], Op0, Op1);
2187      break;
2188    }
2189    case bitc::CST_CODE_INLINEASM:
2190    case bitc::CST_CODE_INLINEASM_OLD: {
2191      if (Record.size() < 2)
2192        return Error("Invalid record");
2193      std::string AsmStr, ConstrStr;
2194      bool HasSideEffects = Record[0] & 1;
2195      bool IsAlignStack = Record[0] >> 1;
2196      unsigned AsmStrSize = Record[1];
2197      if (2+AsmStrSize >= Record.size())
2198        return Error("Invalid record");
2199      unsigned ConstStrSize = Record[2+AsmStrSize];
2200      if (3+AsmStrSize+ConstStrSize > Record.size())
2201        return Error("Invalid record");
2202
2203      for (unsigned i = 0; i != AsmStrSize; ++i)
2204        AsmStr += (char)Record[2+i];
2205      for (unsigned i = 0; i != ConstStrSize; ++i)
2206        ConstrStr += (char)Record[3+AsmStrSize+i];
2207      PointerType *PTy = cast<PointerType>(CurTy);
2208      V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
2209                         AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
2210      break;
2211    }
2212    case bitc::CST_CODE_BLOCKADDRESS:{
2213      if (Record.size() < 3)
2214        return Error("Invalid record");
2215      Type *FnTy = getTypeByID(Record[0]);
2216      if (!FnTy)
2217        return Error("Invalid record");
2218      Function *Fn =
2219        dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
2220      if (!Fn)
2221        return Error("Invalid record");
2222
2223      GlobalVariable *FwdRef = new GlobalVariable(*Fn->getParent(),
2224                                                  Type::getInt8Ty(Context),
2225                                            false, GlobalValue::InternalLinkage,
2226                                                  0, "");
2227      BlockAddrFwdRefs[Fn].push_back(std::make_pair(Record[2], FwdRef));
2228      V = FwdRef;
2229      break;
2230    }
2231    }
2232
2233    ValueList.AssignValue(V, NextCstNo);
2234    ++NextCstNo;
2235  }
2236
2237  if (NextCstNo != ValueList.size())
2238    return Error("Invalid constant reference");
2239
2240  if (Stream.ReadBlockEnd())
2241    return Error("Expected a constant");
2242
2243  // Once all the constants have been read, go through and resolve forward
2244  // references.
2245  ValueList.ResolveConstantForwardRefs();
2246  return std::error_code();
2247}
2248
2249std::error_code BitcodeReader::materializeMetadata() {
2250  return std::error_code();
2251}
2252
2253/// RememberAndSkipFunctionBody - When we see the block for a function body,
2254/// remember where it is and then skip it.  This lets us lazily deserialize the
2255/// functions.
2256std::error_code BitcodeReader::RememberAndSkipFunctionBody() {
2257  // Get the function we are talking about.
2258  if (FunctionsWithBodies.empty())
2259    return Error("Insufficient function protos");
2260
2261  Function *Fn = FunctionsWithBodies.back();
2262  FunctionsWithBodies.pop_back();
2263
2264  // Save the current stream state.
2265  uint64_t CurBit = Stream.GetCurrentBitNo();
2266  DeferredFunctionInfo[Fn] = CurBit;
2267
2268  // Skip over the function block for now.
2269  if (Stream.SkipBlock())
2270    return Error("Invalid record");
2271  return std::error_code();
2272}
2273
2274std::error_code BitcodeReader::GlobalCleanup() {
2275  // Patch the initializers for globals and aliases up.
2276  ResolveGlobalAndAliasInits();
2277  if (!GlobalInits.empty() || !AliasInits.empty())
2278    return Error("Malformed global initializer set");
2279
2280  // Look for intrinsic functions which need to be upgraded at some point
2281  for (Module::iterator FI = TheModule->begin(), FE = TheModule->end();
2282       FI != FE; ++FI) {
2283    Function *NewFn;
2284    if (UpgradeIntrinsicFunction(FI, NewFn))
2285      UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn));
2286  }
2287
2288  // Look for global variables which need to be renamed.
2289  for (Module::global_iterator
2290         GI = TheModule->global_begin(), GE = TheModule->global_end();
2291       GI != GE;) {
2292    GlobalVariable *GV = GI++;
2293    UpgradeGlobalVariable(GV);
2294  }
2295
2296  // Force deallocation of memory for these vectors to favor the client that
2297  // want lazy deserialization.
2298  std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
2299  std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
2300  return std::error_code();
2301}
2302
2303std::error_code BitcodeReader::ParseModule(bool Resume) {
2304  if (Resume)
2305    Stream.JumpToBit(NextUnreadBit);
2306  else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
2307    return Error("Invalid record");
2308
2309  SmallVector<uint64_t, 64> Record;
2310  std::vector<std::string> SectionTable;
2311  std::vector<std::string> GCTable;
2312
2313  // Read all the records for this module.
2314  while (1) {
2315    BitstreamEntry Entry = Stream.advance();
2316
2317    switch (Entry.Kind) {
2318    case BitstreamEntry::Error:
2319      return Error("Malformed block");
2320    case BitstreamEntry::EndBlock:
2321      return GlobalCleanup();
2322
2323    case BitstreamEntry::SubBlock:
2324      switch (Entry.ID) {
2325      default:  // Skip unknown content.
2326        if (Stream.SkipBlock())
2327          return Error("Invalid record");
2328        break;
2329      case bitc::BLOCKINFO_BLOCK_ID:
2330        if (Stream.ReadBlockInfoBlock())
2331          return Error("Malformed block");
2332        break;
2333      case bitc::PARAMATTR_BLOCK_ID:
2334        if (std::error_code EC = ParseAttributeBlock())
2335          return EC;
2336        break;
2337      case bitc::TYPE_BLOCK_ID_NEW:
2338        if (std::error_code EC = ParseTypeTable())
2339          return EC;
2340        break;
2341      case TYPE_BLOCK_ID_OLD_3_0:
2342        if (std::error_code EC = ParseOldTypeTable())
2343          return EC;
2344        break;
2345      case TYPE_SYMTAB_BLOCK_ID_OLD_3_0:
2346        if (std::error_code EC = ParseOldTypeSymbolTable())
2347          return EC;
2348        break;
2349      case bitc::VALUE_SYMTAB_BLOCK_ID:
2350        if (std::error_code EC = ParseValueSymbolTable())
2351          return EC;
2352        SeenValueSymbolTable = true;
2353        break;
2354      case bitc::CONSTANTS_BLOCK_ID:
2355        if (std::error_code EC = ParseConstants())
2356          return EC;
2357        if (std::error_code EC = ResolveGlobalAndAliasInits())
2358          return EC;
2359        break;
2360      case bitc::METADATA_BLOCK_ID:
2361        if (std::error_code EC = ParseMetadata())
2362          return EC;
2363        break;
2364      case bitc::FUNCTION_BLOCK_ID:
2365        // If this is the first function body we've seen, reverse the
2366        // FunctionsWithBodies list.
2367        if (!SeenFirstFunctionBody) {
2368          std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
2369          if (std::error_code EC = GlobalCleanup())
2370            return EC;
2371          SeenFirstFunctionBody = true;
2372        }
2373
2374        if (std::error_code EC = RememberAndSkipFunctionBody())
2375          return EC;
2376        // For streaming bitcode, suspend parsing when we reach the function
2377        // bodies. Subsequent materialization calls will resume it when
2378        // necessary. For streaming, the function bodies must be at the end of
2379        // the bitcode. If the bitcode file is old, the symbol table will be
2380        // at the end instead and will not have been seen yet. In this case,
2381        // just finish the parse now.
2382        if (LazyStreamer && SeenValueSymbolTable) {
2383          NextUnreadBit = Stream.GetCurrentBitNo();
2384          return std::error_code();
2385        }
2386        break;
2387        break;
2388      }
2389      continue;
2390
2391    case BitstreamEntry::Record:
2392      // The interesting case.
2393      break;
2394    }
2395
2396
2397    // Read a record.
2398    switch (Stream.readRecord(Entry.ID, Record)) {
2399    default: break;  // Default behavior, ignore unknown content.
2400    case bitc::MODULE_CODE_VERSION: {  // VERSION: [version#]
2401      if (Record.size() < 1)
2402        return Error("Invalid record");
2403      // Only version #0 is supported so far.
2404      if (Record[0] != 0)
2405        return Error("Invalid value");
2406      break;
2407    }
2408    case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
2409      std::string S;
2410      if (ConvertToString(Record, 0, S))
2411        return Error("Invalid record");
2412      TheModule->setTargetTriple(S);
2413      break;
2414    }
2415    case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
2416      std::string S;
2417      if (ConvertToString(Record, 0, S))
2418        return Error("Invalid record");
2419      TheModule->setDataLayout(S);
2420      break;
2421    }
2422    case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
2423      std::string S;
2424      if (ConvertToString(Record, 0, S))
2425        return Error("Invalid record");
2426      TheModule->setModuleInlineAsm(S);
2427      break;
2428    }
2429    case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
2430      std::string S;
2431      if (ConvertToString(Record, 0, S))
2432        return Error("Invalid record");
2433      // ANDROID: Ignore value, since we never used it anyways.
2434      // TheModule->addLibrary(S);
2435      break;
2436    }
2437    case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
2438      std::string S;
2439      if (ConvertToString(Record, 0, S))
2440        return Error("Invalid record");
2441      SectionTable.push_back(S);
2442      break;
2443    }
2444    case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
2445      std::string S;
2446      if (ConvertToString(Record, 0, S))
2447        return Error("Invalid record");
2448      GCTable.push_back(S);
2449      break;
2450    }
2451    // GLOBALVAR: [pointer type, isconst, initid,
2452    //             linkage, alignment, section, visibility, threadlocal,
2453    //             unnamed_addr]
2454    case bitc::MODULE_CODE_GLOBALVAR: {
2455      if (Record.size() < 6)
2456        return Error("Invalid record");
2457      Type *Ty = getTypeByID(Record[0]);
2458      if (!Ty)
2459        return Error("Invalid record");
2460      if (!Ty->isPointerTy())
2461        return Error("Invalid type for value");
2462      unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
2463      Ty = cast<PointerType>(Ty)->getElementType();
2464
2465      bool isConstant = Record[1];
2466      uint64_t RawLinkage = Record[3];
2467      GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
2468      unsigned Alignment = (1 << Record[4]) >> 1;
2469      std::string Section;
2470      if (Record[5]) {
2471        if (Record[5]-1 >= SectionTable.size())
2472          return Error("Invalid ID");
2473        Section = SectionTable[Record[5]-1];
2474      }
2475      GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
2476      if (Record.size() > 6)
2477        Visibility = GetDecodedVisibility(Record[6]);
2478
2479      GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
2480      if (Record.size() > 7)
2481        TLM = GetDecodedThreadLocalMode(Record[7]);
2482
2483      bool UnnamedAddr = false;
2484      if (Record.size() > 8)
2485        UnnamedAddr = Record[8];
2486
2487      GlobalVariable *NewGV =
2488        new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr,
2489                           TLM, AddressSpace);
2490      NewGV->setAlignment(Alignment);
2491      if (!Section.empty())
2492        NewGV->setSection(Section);
2493      NewGV->setVisibility(Visibility);
2494      NewGV->setUnnamedAddr(UnnamedAddr);
2495
2496      ValueList.push_back(NewGV);
2497
2498      // Remember which value to use for the global initializer.
2499      if (unsigned InitID = Record[2])
2500        GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
2501      break;
2502    }
2503    // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
2504    //             alignment, section, visibility, gc, unnamed_addr]
2505    case bitc::MODULE_CODE_FUNCTION: {
2506      if (Record.size() < 8)
2507        return Error("Invalid record");
2508      Type *Ty = getTypeByID(Record[0]);
2509      if (!Ty)
2510        return Error("Invalid record");
2511      if (!Ty->isPointerTy())
2512        return Error("Invalid type for value");
2513      FunctionType *FTy =
2514        dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
2515      if (!FTy)
2516        return Error("Invalid type for value");
2517
2518      Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
2519                                        "", TheModule);
2520
2521      Func->setCallingConv(static_cast<CallingConv::ID>(Record[1]));
2522      bool isProto = Record[2];
2523      uint64_t RawLinkage = Record[3];
2524      Func->setLinkage(getDecodedLinkage(RawLinkage));
2525      Func->setAttributes(getAttributes(Record[4]));
2526
2527      Func->setAlignment((1 << Record[5]) >> 1);
2528      if (Record[6]) {
2529        if (Record[6]-1 >= SectionTable.size())
2530          return Error("Invalid ID");
2531        Func->setSection(SectionTable[Record[6]-1]);
2532      }
2533      Func->setVisibility(GetDecodedVisibility(Record[7]));
2534      if (Record.size() > 8 && Record[8]) {
2535        if (Record[8]-1 > GCTable.size())
2536          return Error("Invalid ID");
2537        Func->setGC(GCTable[Record[8]-1].c_str());
2538      }
2539      bool UnnamedAddr = false;
2540      if (Record.size() > 9)
2541        UnnamedAddr = Record[9];
2542      Func->setUnnamedAddr(UnnamedAddr);
2543      ValueList.push_back(Func);
2544
2545      // If this is a function with a body, remember the prototype we are
2546      // creating now, so that we can match up the body with them later.
2547      if (!isProto) {
2548        Func->setIsMaterializable(true);
2549        FunctionsWithBodies.push_back(Func);
2550        if (LazyStreamer)
2551          DeferredFunctionInfo[Func] = 0;
2552      }
2553      break;
2554    }
2555    // ALIAS: [alias type, aliasee val#, linkage]
2556    // ALIAS: [alias type, aliasee val#, linkage, visibility]
2557    case bitc::MODULE_CODE_ALIAS: {
2558      if (Record.size() < 3)
2559        return Error("Invalid record");
2560      Type *Ty = getTypeByID(Record[0]);
2561      if (!Ty)
2562        return Error("Invalid record");
2563      auto *PTy = dyn_cast<PointerType>(Ty);
2564      if (!PTy)
2565        return Error("Invalid type for value");
2566
2567      auto *NewGA =
2568          GlobalAlias::create(PTy->getElementType(), PTy->getAddressSpace(),
2569                              getDecodedLinkage(Record[2]), "", TheModule);
2570      // Old bitcode files didn't have visibility field.
2571      if (Record.size() > 3)
2572        NewGA->setVisibility(GetDecodedVisibility(Record[3]));
2573      ValueList.push_back(NewGA);
2574      AliasInits.push_back(std::make_pair(NewGA, Record[1]));
2575      break;
2576    }
2577    /// MODULE_CODE_PURGEVALS: [numvals]
2578    case bitc::MODULE_CODE_PURGEVALS:
2579      // Trim down the value list to the specified size.
2580      if (Record.size() < 1 || Record[0] > ValueList.size())
2581        return Error("Invalid record");
2582      ValueList.shrinkTo(Record[0]);
2583      break;
2584    }
2585    Record.clear();
2586  }
2587}
2588
2589std::error_code BitcodeReader::ParseBitcodeInto(Module *M) {
2590  TheModule = nullptr;
2591
2592  if (std::error_code EC = InitStream())
2593    return EC;
2594
2595  // Sniff for the signature.
2596  if (Stream.Read(8) != 'B' ||
2597      Stream.Read(8) != 'C' ||
2598      Stream.Read(4) != 0x0 ||
2599      Stream.Read(4) != 0xC ||
2600      Stream.Read(4) != 0xE ||
2601      Stream.Read(4) != 0xD)
2602    return Error("Invalid bitcode signature");
2603
2604  // We expect a number of well-defined blocks, though we don't necessarily
2605  // need to understand them all.
2606  while (1) {
2607    if (Stream.AtEndOfStream())
2608      return std::error_code();
2609
2610    BitstreamEntry Entry =
2611      Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs);
2612
2613    switch (Entry.Kind) {
2614    case BitstreamEntry::Error:
2615      return Error("Malformed block");
2616    case BitstreamEntry::EndBlock:
2617      return std::error_code();
2618
2619    case BitstreamEntry::SubBlock:
2620      switch (Entry.ID) {
2621      case bitc::BLOCKINFO_BLOCK_ID:
2622        if (Stream.ReadBlockInfoBlock())
2623          return Error("Malformed block");
2624        break;
2625      case bitc::MODULE_BLOCK_ID:
2626        // Reject multiple MODULE_BLOCK's in a single bitstream.
2627        if (TheModule)
2628          return Error("Invalid multiple blocks");
2629        TheModule = M;
2630        if (std::error_code EC = ParseModule(false))
2631          return EC;
2632        if (LazyStreamer)
2633          return std::error_code();
2634        break;
2635      default:
2636        if (Stream.SkipBlock())
2637          return Error("Invalid record");
2638        break;
2639      }
2640      continue;
2641    case BitstreamEntry::Record:
2642      // There should be no records in the top-level of blocks.
2643
2644      // The ranlib in Xcode 4 will align archive members by appending newlines
2645      // to the end of them. If this file size is a multiple of 4 but not 8, we
2646      // have to read and ignore these final 4 bytes :-(
2647      if (Stream.getAbbrevIDWidth() == 2 && Entry.ID == 2 &&
2648          Stream.Read(6) == 2 && Stream.Read(24) == 0xa0a0a &&
2649          Stream.AtEndOfStream())
2650        return std::error_code();
2651
2652      return Error("Invalid record");
2653    }
2654  }
2655}
2656
2657llvm::ErrorOr<std::string> BitcodeReader::parseModuleTriple() {
2658  if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
2659    return Error("Invalid record");
2660
2661  SmallVector<uint64_t, 64> Record;
2662
2663  std::string Triple;
2664  // Read all the records for this module.
2665  while (1) {
2666    BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2667
2668    switch (Entry.Kind) {
2669    case BitstreamEntry::SubBlock: // Handled for us already.
2670    case BitstreamEntry::Error:
2671      return Error("Malformed block");
2672    case BitstreamEntry::EndBlock:
2673      return Triple;
2674    case BitstreamEntry::Record:
2675      // The interesting case.
2676      break;
2677    }
2678
2679    // Read a record.
2680    switch (Stream.readRecord(Entry.ID, Record)) {
2681    default: break;  // Default behavior, ignore unknown content.
2682    case bitc::MODULE_CODE_VERSION:  // VERSION: [version#]
2683      if (Record.size() < 1)
2684        return Error("Invalid record");
2685      // Only version #0 is supported so far.
2686      if (Record[0] != 0)
2687        return Error("Invalid record");
2688      break;
2689    case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
2690      std::string S;
2691      if (ConvertToString(Record, 0, S))
2692        return Error("Invalid record");
2693      Triple = S;
2694      break;
2695    }
2696    }
2697    Record.clear();
2698  }
2699
2700  return Error("Invalid bitcode signature");
2701}
2702
2703llvm::ErrorOr<std::string> BitcodeReader::parseTriple() {
2704  if (std::error_code EC = InitStream())
2705    return EC;
2706
2707  // Sniff for the signature.
2708  if (Stream.Read(8) != 'B' ||
2709      Stream.Read(8) != 'C' ||
2710      Stream.Read(4) != 0x0 ||
2711      Stream.Read(4) != 0xC ||
2712      Stream.Read(4) != 0xE ||
2713      Stream.Read(4) != 0xD)
2714    return Error("Invalid bitcode signature");
2715
2716  // We expect a number of well-defined blocks, though we don't necessarily
2717  // need to understand them all.
2718  while (1) {
2719    BitstreamEntry Entry = Stream.advance();
2720
2721    switch (Entry.Kind) {
2722    case BitstreamEntry::Error:
2723      return Error("Malformed block");
2724    case BitstreamEntry::EndBlock:
2725      return std::error_code();
2726
2727    case BitstreamEntry::SubBlock:
2728      if (Entry.ID == bitc::MODULE_BLOCK_ID)
2729        return parseModuleTriple();
2730
2731      // Ignore other sub-blocks.
2732      if (Stream.SkipBlock())
2733        return Error("Malformed block");
2734      continue;
2735
2736    case BitstreamEntry::Record:
2737      Stream.skipRecord(Entry.ID);
2738      continue;
2739    }
2740  }
2741}
2742
2743/// ParseMetadataAttachment - Parse metadata attachments.
2744std::error_code BitcodeReader::ParseMetadataAttachment() {
2745  if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID))
2746    return Error("Invalid record");
2747
2748  SmallVector<uint64_t, 64> Record;
2749  while (1) {
2750    BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2751
2752    switch (Entry.Kind) {
2753    case BitstreamEntry::SubBlock: // Handled for us already.
2754    case BitstreamEntry::Error:
2755      return Error("Malformed block");
2756    case BitstreamEntry::EndBlock:
2757      return std::error_code();
2758    case BitstreamEntry::Record:
2759      // The interesting case.
2760      break;
2761    }
2762
2763    // Read a metadata attachment record.
2764    Record.clear();
2765    switch (Stream.readRecord(Entry.ID, Record)) {
2766    default:  // Default behavior: ignore.
2767      break;
2768    case bitc::METADATA_ATTACHMENT: {
2769      unsigned RecordLength = Record.size();
2770      if (Record.empty() || (RecordLength - 1) % 2 == 1)
2771        return Error("Invalid record");
2772      Instruction *Inst = InstructionList[Record[0]];
2773      for (unsigned i = 1; i != RecordLength; i = i+2) {
2774        unsigned Kind = Record[i];
2775        DenseMap<unsigned, unsigned>::iterator I =
2776          MDKindMap.find(Kind);
2777        if (I == MDKindMap.end())
2778          return Error("Invalid ID");
2779        Metadata *Node = MDValueList.getValueFwdRef(Record[i + 1]);
2780        Inst->setMetadata(I->second, cast<MDNode>(Node));
2781      }
2782      break;
2783    }
2784    }
2785  }
2786}
2787
2788/// ParseFunctionBody - Lazily parse the specified function body block.
2789std::error_code BitcodeReader::ParseFunctionBody(Function *F) {
2790  if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
2791    return Error("Invalid record");
2792
2793  InstructionList.clear();
2794  unsigned ModuleValueListSize = ValueList.size();
2795  unsigned ModuleMDValueListSize = MDValueList.size();
2796
2797  // Add all the function arguments to the value table.
2798  for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
2799    ValueList.push_back(I);
2800
2801  unsigned NextValueNo = ValueList.size();
2802  BasicBlock *CurBB = nullptr;
2803  unsigned CurBBNo = 0;
2804
2805  DebugLoc LastLoc;
2806
2807  // Read all the records.
2808  SmallVector<uint64_t, 64> Record;
2809  while (1) {
2810    unsigned Code = Stream.ReadCode();
2811    if (Code == bitc::END_BLOCK) {
2812      if (Stream.ReadBlockEnd())
2813        return Error("Malformed block");
2814      break;
2815    }
2816
2817    if (Code == bitc::ENTER_SUBBLOCK) {
2818      switch (Stream.ReadSubBlockID()) {
2819      default:  // Skip unknown content.
2820        if (Stream.SkipBlock())
2821          return Error("Invalid record");
2822        break;
2823      case bitc::CONSTANTS_BLOCK_ID:
2824        if (std::error_code EC = ParseConstants())
2825          return EC;
2826        NextValueNo = ValueList.size();
2827        break;
2828      case bitc::VALUE_SYMTAB_BLOCK_ID:
2829        if (std::error_code EC = ParseValueSymbolTable())
2830          return EC;
2831        break;
2832      case bitc::METADATA_ATTACHMENT_ID:
2833        if (std::error_code EC = ParseMetadataAttachment())
2834          return EC;
2835        break;
2836      case bitc::METADATA_BLOCK_ID:
2837        if (std::error_code EC = ParseMetadata())
2838          return EC;
2839        break;
2840      }
2841      continue;
2842    }
2843
2844    if (Code == bitc::DEFINE_ABBREV) {
2845      Stream.ReadAbbrevRecord();
2846      continue;
2847    }
2848
2849    // Read a record.
2850    Record.clear();
2851    Instruction *I = nullptr;
2852    unsigned BitCode = Stream.readRecord(Code, Record);
2853    switch (BitCode) {
2854    default: // Default behavior: reject
2855      return Error("Invalid value");
2856    case bitc::FUNC_CODE_DECLAREBLOCKS:     // DECLAREBLOCKS: [nblocks]
2857      if (Record.size() < 1 || Record[0] == 0)
2858        return Error("Invalid record");
2859      // Create all the basic blocks for the function.
2860      FunctionBBs.resize(Record[0]);
2861      for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
2862        FunctionBBs[i] = BasicBlock::Create(Context, "", F);
2863      CurBB = FunctionBBs[0];
2864      continue;
2865
2866    case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
2867      // This record indicates that the last instruction is at the same
2868      // location as the previous instruction with a location.
2869      I = nullptr;
2870
2871      // Get the last instruction emitted.
2872      if (CurBB && !CurBB->empty())
2873        I = &CurBB->back();
2874      else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
2875               !FunctionBBs[CurBBNo-1]->empty())
2876        I = &FunctionBBs[CurBBNo-1]->back();
2877
2878      if (!I)
2879        return Error("Invalid record");
2880      I->setDebugLoc(LastLoc);
2881      I = nullptr;
2882      continue;
2883
2884    case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
2885      I = nullptr;     // Get the last instruction emitted.
2886      if (CurBB && !CurBB->empty())
2887        I = &CurBB->back();
2888      else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
2889               !FunctionBBs[CurBBNo-1]->empty())
2890        I = &FunctionBBs[CurBBNo-1]->back();
2891      if (!I || Record.size() < 4)
2892        return Error("Invalid record");
2893
2894      unsigned Line = Record[0], Col = Record[1];
2895      unsigned ScopeID = Record[2], IAID = Record[3];
2896
2897      MDNode *Scope = nullptr, *IA = nullptr;
2898      if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1));
2899      if (IAID)    IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1));
2900      LastLoc = DebugLoc::get(Line, Col, Scope, IA);
2901      I->setDebugLoc(LastLoc);
2902      I = nullptr;
2903      continue;
2904    }
2905
2906    case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
2907      unsigned OpNum = 0;
2908      Value *LHS, *RHS;
2909      if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
2910          getValue(Record, OpNum, LHS->getType(), RHS) ||
2911          OpNum+1 > Record.size())
2912        return Error("Invalid record");
2913
2914      int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
2915      if (Opc == -1)
2916        return Error("Invalid record");
2917      I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
2918      InstructionList.push_back(I);
2919      if (OpNum < Record.size()) {
2920        if (Opc == Instruction::Add ||
2921            Opc == Instruction::Sub ||
2922            Opc == Instruction::Mul ||
2923            Opc == Instruction::Shl) {
2924          if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2925            cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
2926          if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2927            cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
2928        } else if (Opc == Instruction::SDiv ||
2929                   Opc == Instruction::UDiv ||
2930                   Opc == Instruction::LShr ||
2931                   Opc == Instruction::AShr) {
2932          if (Record[OpNum] & (1 << bitc::PEO_EXACT))
2933            cast<BinaryOperator>(I)->setIsExact(true);
2934        }
2935      }
2936      break;
2937    }
2938    case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
2939      unsigned OpNum = 0;
2940      Value *Op;
2941      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2942          OpNum+2 != Record.size())
2943        return Error("Invalid record");
2944
2945      Type *ResTy = getTypeByID(Record[OpNum]);
2946      int Opc = GetDecodedCastOpcode(Record[OpNum+1]);
2947      if (Opc == -1 || !ResTy)
2948        return Error("Invalid record");
2949      I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy);
2950      InstructionList.push_back(I);
2951      break;
2952    }
2953    case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
2954    case bitc::FUNC_CODE_INST_GEP_OLD: // GEP: [n x operands]
2955    case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands]
2956      unsigned OpNum = 0;
2957
2958      Type *Ty;
2959      bool InBounds;
2960
2961      if (BitCode == bitc::FUNC_CODE_INST_GEP) {
2962        InBounds = Record[OpNum++];
2963        Ty = getTypeByID(Record[OpNum++]);
2964      } else {
2965        InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
2966        Ty = nullptr;
2967      }
2968
2969      Value *BasePtr;
2970      if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
2971        return Error("Invalid record");
2972
2973      if (Ty &&
2974          Ty !=
2975              cast<SequentialType>(BasePtr->getType()->getScalarType())
2976                  ->getElementType())
2977        return Error(
2978            "Explicit gep type does not match pointee type of pointer operand");
2979
2980      SmallVector<Value*, 16> GEPIdx;
2981      while (OpNum != Record.size()) {
2982        Value *Op;
2983        if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2984          return Error("Invalid record");
2985        GEPIdx.push_back(Op);
2986      }
2987
2988      I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
2989
2990      InstructionList.push_back(I);
2991      if (InBounds)
2992        cast<GetElementPtrInst>(I)->setIsInBounds(true);
2993      break;
2994    }
2995
2996    case bitc::FUNC_CODE_INST_EXTRACTVAL: {
2997                                       // EXTRACTVAL: [opty, opval, n x indices]
2998      unsigned OpNum = 0;
2999      Value *Agg;
3000      if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
3001        return Error("Invalid record");
3002
3003      SmallVector<unsigned, 4> EXTRACTVALIdx;
3004      for (unsigned RecSize = Record.size();
3005           OpNum != RecSize; ++OpNum) {
3006        uint64_t Index = Record[OpNum];
3007        if ((unsigned)Index != Index)
3008          return Error("Invalid value");
3009        EXTRACTVALIdx.push_back((unsigned)Index);
3010      }
3011
3012      I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
3013      InstructionList.push_back(I);
3014      break;
3015    }
3016
3017    case bitc::FUNC_CODE_INST_INSERTVAL: {
3018                           // INSERTVAL: [opty, opval, opty, opval, n x indices]
3019      unsigned OpNum = 0;
3020      Value *Agg;
3021      if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
3022        return Error("Invalid record");
3023      Value *Val;
3024      if (getValueTypePair(Record, OpNum, NextValueNo, Val))
3025        return Error("Invalid record");
3026
3027      SmallVector<unsigned, 4> INSERTVALIdx;
3028      for (unsigned RecSize = Record.size();
3029           OpNum != RecSize; ++OpNum) {
3030        uint64_t Index = Record[OpNum];
3031        if ((unsigned)Index != Index)
3032          return Error("Invalid value");
3033        INSERTVALIdx.push_back((unsigned)Index);
3034      }
3035
3036      I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
3037      InstructionList.push_back(I);
3038      break;
3039    }
3040
3041    case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
3042      // obsolete form of select
3043      // handles select i1 ... in old bitcode
3044      unsigned OpNum = 0;
3045      Value *TrueVal, *FalseVal, *Cond;
3046      if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
3047          getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
3048          getValue(Record, OpNum, Type::getInt1Ty(Context), Cond))
3049        return Error("Invalid record");
3050
3051      I = SelectInst::Create(Cond, TrueVal, FalseVal);
3052      InstructionList.push_back(I);
3053      break;
3054    }
3055
3056    case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
3057      // new form of select
3058      // handles select i1 or select [N x i1]
3059      unsigned OpNum = 0;
3060      Value *TrueVal, *FalseVal, *Cond;
3061      if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
3062          getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
3063          getValueTypePair(Record, OpNum, NextValueNo, Cond))
3064        return Error("Invalid record");
3065
3066      // select condition can be either i1 or [N x i1]
3067      if (VectorType* vector_type =
3068          dyn_cast<VectorType>(Cond->getType())) {
3069        // expect <n x i1>
3070        if (vector_type->getElementType() != Type::getInt1Ty(Context))
3071          return Error("Invalid type for value");
3072      } else {
3073        // expect i1
3074        if (Cond->getType() != Type::getInt1Ty(Context))
3075          return Error("Invalid type for value");
3076      }
3077
3078      I = SelectInst::Create(Cond, TrueVal, FalseVal);
3079      InstructionList.push_back(I);
3080      break;
3081    }
3082
3083    case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
3084      unsigned OpNum = 0;
3085      Value *Vec, *Idx;
3086      if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
3087          getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
3088        return Error("Invalid record");
3089      I = ExtractElementInst::Create(Vec, Idx);
3090      InstructionList.push_back(I);
3091      break;
3092    }
3093
3094    case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
3095      unsigned OpNum = 0;
3096      Value *Vec, *Elt, *Idx;
3097      if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
3098          getValue(Record, OpNum,
3099                   cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
3100          getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
3101        return Error("Invalid record");
3102      I = InsertElementInst::Create(Vec, Elt, Idx);
3103      InstructionList.push_back(I);
3104      break;
3105    }
3106
3107    case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
3108      unsigned OpNum = 0;
3109      Value *Vec1, *Vec2, *Mask;
3110      if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
3111          getValue(Record, OpNum, Vec1->getType(), Vec2))
3112        return Error("Invalid record");
3113
3114      if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
3115        return Error("Invalid record");
3116      I = new ShuffleVectorInst(Vec1, Vec2, Mask);
3117      InstructionList.push_back(I);
3118      break;
3119    }
3120
3121    case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
3122      // Old form of ICmp/FCmp returning bool
3123      // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
3124      // both legal on vectors but had different behaviour.
3125    case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
3126      // FCmp/ICmp returning bool or vector of bool
3127
3128      unsigned OpNum = 0;
3129      Value *LHS, *RHS;
3130      if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
3131          getValue(Record, OpNum, LHS->getType(), RHS) ||
3132          OpNum+1 != Record.size())
3133        return Error("Invalid record");
3134
3135      if (LHS->getType()->isFPOrFPVectorTy())
3136        I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
3137      else
3138        I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
3139      InstructionList.push_back(I);
3140      break;
3141    }
3142
3143    case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
3144      {
3145        unsigned Size = Record.size();
3146        if (Size == 0) {
3147          I = ReturnInst::Create(Context);
3148          InstructionList.push_back(I);
3149          break;
3150        }
3151
3152        unsigned OpNum = 0;
3153        Value *Op = nullptr;
3154        if (getValueTypePair(Record, OpNum, NextValueNo, Op))
3155          return Error("Invalid record");
3156        if (OpNum != Record.size())
3157          return Error("Invalid record");
3158
3159        I = ReturnInst::Create(Context, Op);
3160        InstructionList.push_back(I);
3161        break;
3162      }
3163    case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
3164      if (Record.size() != 1 && Record.size() != 3)
3165        return Error("Invalid record");
3166      BasicBlock *TrueDest = getBasicBlock(Record[0]);
3167      if (!TrueDest)
3168        return Error("Invalid record");
3169
3170      if (Record.size() == 1) {
3171        I = BranchInst::Create(TrueDest);
3172        InstructionList.push_back(I);
3173      }
3174      else {
3175        BasicBlock *FalseDest = getBasicBlock(Record[1]);
3176        Value *Cond = getFnValueByID(Record[2], Type::getInt1Ty(Context));
3177        if (!FalseDest || !Cond)
3178          return Error("Invalid record");
3179        I = BranchInst::Create(TrueDest, FalseDest, Cond);
3180        InstructionList.push_back(I);
3181      }
3182      break;
3183    }
3184    case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
3185      if (Record.size() < 3 || (Record.size() & 1) == 0)
3186        return Error("Invalid record");
3187      Type *OpTy = getTypeByID(Record[0]);
3188      Value *Cond = getFnValueByID(Record[1], OpTy);
3189      BasicBlock *Default = getBasicBlock(Record[2]);
3190      if (!OpTy || !Cond || !Default)
3191        return Error("Invalid record");
3192      unsigned NumCases = (Record.size()-3)/2;
3193      SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
3194      InstructionList.push_back(SI);
3195      for (unsigned i = 0, e = NumCases; i != e; ++i) {
3196        ConstantInt *CaseVal =
3197          dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
3198        BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
3199        if (!CaseVal || !DestBB) {
3200          delete SI;
3201          return Error("Invalid record");
3202        }
3203        SI->addCase(CaseVal, DestBB);
3204      }
3205      I = SI;
3206      break;
3207    }
3208    case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
3209      if (Record.size() < 2)
3210        return Error("Invalid record");
3211      Type *OpTy = getTypeByID(Record[0]);
3212      Value *Address = getFnValueByID(Record[1], OpTy);
3213      if (!OpTy || !Address)
3214        return Error("Invalid record");
3215      unsigned NumDests = Record.size()-2;
3216      IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
3217      InstructionList.push_back(IBI);
3218      for (unsigned i = 0, e = NumDests; i != e; ++i) {
3219        if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
3220          IBI->addDestination(DestBB);
3221        } else {
3222          delete IBI;
3223          return Error("Invalid record");
3224        }
3225      }
3226      I = IBI;
3227      break;
3228    }
3229
3230    case bitc::FUNC_CODE_INST_INVOKE: {
3231      // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
3232      if (Record.size() < 4)
3233        return Error("Invalid record");
3234      AttributeSet PAL = getAttributes(Record[0]);
3235      unsigned CCInfo = Record[1];
3236      BasicBlock *NormalBB = getBasicBlock(Record[2]);
3237      BasicBlock *UnwindBB = getBasicBlock(Record[3]);
3238
3239      unsigned OpNum = 4;
3240      Value *Callee;
3241      if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
3242        return Error("Invalid record");
3243
3244      PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
3245      FunctionType *FTy = !CalleeTy ? nullptr :
3246        dyn_cast<FunctionType>(CalleeTy->getElementType());
3247
3248      // Check that the right number of fixed parameters are here.
3249      if (!FTy || !NormalBB || !UnwindBB ||
3250          Record.size() < OpNum+FTy->getNumParams())
3251        return Error("Invalid record");
3252
3253      SmallVector<Value*, 16> Ops;
3254      for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
3255        Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
3256        if (!Ops.back())
3257          return Error("Invalid record");
3258      }
3259
3260      if (!FTy->isVarArg()) {
3261        if (Record.size() != OpNum)
3262          return Error("Invalid record");
3263      } else {
3264        // Read type/value pairs for varargs params.
3265        while (OpNum != Record.size()) {
3266          Value *Op;
3267          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
3268            return Error("Invalid record");
3269          Ops.push_back(Op);
3270        }
3271      }
3272
3273      I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops);
3274      InstructionList.push_back(I);
3275      cast<InvokeInst>(I)->setCallingConv(
3276        static_cast<CallingConv::ID>(CCInfo));
3277      cast<InvokeInst>(I)->setAttributes(PAL);
3278      break;
3279    }
3280    case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
3281      unsigned Idx = 0;
3282      Value *Val = nullptr;
3283      if (getValueTypePair(Record, Idx, NextValueNo, Val))
3284        return Error("Invalid record");
3285      I = ResumeInst::Create(Val);
3286      InstructionList.push_back(I);
3287      break;
3288    }
3289    case FUNC_CODE_INST_UNWIND_2_7: { // UNWIND_OLD
3290      // 'unwind' instruction has been removed in LLVM 3.1
3291      // Replace 'unwind' with 'landingpad' and 'resume'.
3292      Type *ExnTy = StructType::get(Type::getInt8PtrTy(Context),
3293                                    Type::getInt32Ty(Context), nullptr);
3294      Constant *PersFn =
3295        F->getParent()->
3296        getOrInsertFunction("__gcc_personality_v0",
3297                          FunctionType::get(Type::getInt32Ty(Context), true));
3298
3299      LandingPadInst *LP = LandingPadInst::Create(ExnTy, PersFn, 1);
3300      LP->setCleanup(true);
3301
3302      CurBB->getInstList().push_back(LP);
3303      I = ResumeInst::Create(LP);
3304      InstructionList.push_back(I);
3305      break;
3306    }
3307    case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
3308      I = new UnreachableInst(Context);
3309      InstructionList.push_back(I);
3310      break;
3311    case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
3312      if (Record.size() < 1 || ((Record.size()-1)&1))
3313        return Error("Invalid record");
3314      Type *Ty = getTypeByID(Record[0]);
3315      if (!Ty)
3316        return Error("Invalid record");
3317
3318      PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2);
3319      InstructionList.push_back(PN);
3320
3321      for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
3322        Value *V = getFnValueByID(Record[1+i], Ty);
3323        BasicBlock *BB = getBasicBlock(Record[2+i]);
3324        if (!V || !BB)
3325          return Error("Invalid record");
3326        PN->addIncoming(V, BB);
3327      }
3328      I = PN;
3329      break;
3330    }
3331
3332    case bitc::FUNC_CODE_INST_LANDINGPAD: {
3333      // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
3334      unsigned Idx = 0;
3335      if (Record.size() < 4)
3336        return Error("Invalid record");
3337      Type *Ty = getTypeByID(Record[Idx++]);
3338      if (!Ty)
3339        return Error("Invalid record");
3340      Value *PersFn = nullptr;
3341      if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
3342        return Error("Invalid record");
3343
3344      bool IsCleanup = !!Record[Idx++];
3345      unsigned NumClauses = Record[Idx++];
3346      LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, NumClauses);
3347      LP->setCleanup(IsCleanup);
3348      for (unsigned J = 0; J != NumClauses; ++J) {
3349        LandingPadInst::ClauseType CT =
3350          LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
3351        Value *Val;
3352
3353        if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
3354          delete LP;
3355          return Error("Invalid record");
3356        }
3357
3358        assert((CT != LandingPadInst::Catch ||
3359                !isa<ArrayType>(Val->getType())) &&
3360               "Catch clause has a invalid type!");
3361        assert((CT != LandingPadInst::Filter ||
3362                isa<ArrayType>(Val->getType())) &&
3363               "Filter clause has invalid type!");
3364        LP->addClause(cast<Constant>(Val));
3365      }
3366
3367      I = LP;
3368      InstructionList.push_back(I);
3369      break;
3370    }
3371
3372    case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
3373      if (Record.size() != 4)
3374        return Error("Invalid record");
3375      PointerType *Ty =
3376        dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
3377      Type *OpTy = getTypeByID(Record[1]);
3378      Value *Size = getFnValueByID(Record[2], OpTy);
3379      unsigned Align = Record[3];
3380      if (!Ty || !Size)
3381        return Error("Invalid record");
3382      I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1);
3383      InstructionList.push_back(I);
3384      break;
3385    }
3386    case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
3387      unsigned OpNum = 0;
3388      Value *Op;
3389      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
3390          OpNum+2 != Record.size())
3391        return Error("Invalid record");
3392
3393      I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1);
3394      InstructionList.push_back(I);
3395      break;
3396    }
3397    case bitc::FUNC_CODE_INST_LOADATOMIC: {
3398       // LOADATOMIC: [opty, op, align, vol, ordering, synchscope]
3399      unsigned OpNum = 0;
3400      Value *Op;
3401      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
3402          OpNum+4 != Record.size())
3403        return Error("Invalid record");
3404
3405      AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]);
3406      if (Ordering == NotAtomic || Ordering == Release ||
3407          Ordering == AcquireRelease)
3408        return Error("Invalid record");
3409      if (Ordering != NotAtomic && Record[OpNum] == 0)
3410        return Error("Invalid record");
3411      SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]);
3412
3413      I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1,
3414                       Ordering, SynchScope);
3415      InstructionList.push_back(I);
3416      break;
3417    }
3418    case bitc::FUNC_CODE_INST_STORE: { // STORE2:[ptrty, ptr, val, align, vol]
3419      unsigned OpNum = 0;
3420      Value *Val, *Ptr;
3421      if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
3422          getValue(Record, OpNum,
3423                    cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
3424          OpNum+2 != Record.size())
3425        return Error("Invalid record");
3426
3427      I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
3428      InstructionList.push_back(I);
3429      break;
3430    }
3431    case bitc::FUNC_CODE_INST_STOREATOMIC: {
3432      // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope]
3433      unsigned OpNum = 0;
3434      Value *Val, *Ptr;
3435      if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
3436          getValue(Record, OpNum,
3437                    cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
3438          OpNum+4 != Record.size())
3439        return Error("Invalid record");
3440
3441      AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]);
3442      if (Ordering == NotAtomic || Ordering == Acquire ||
3443          Ordering == AcquireRelease)
3444        return Error("Invalid record");
3445      SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]);
3446      if (Ordering != NotAtomic && Record[OpNum] == 0)
3447        return Error("Invalid record");
3448
3449      I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1,
3450                        Ordering, SynchScope);
3451      InstructionList.push_back(I);
3452      break;
3453    }
3454    case bitc::FUNC_CODE_INST_CMPXCHG: {
3455      // CMPXCHG:[ptrty, ptr, cmp, new, vol, ordering, synchscope]
3456      unsigned OpNum = 0;
3457      Value *Ptr, *Cmp, *New;
3458      if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
3459          getValue(Record, OpNum,
3460                    cast<PointerType>(Ptr->getType())->getElementType(), Cmp) ||
3461          getValue(Record, OpNum,
3462                    cast<PointerType>(Ptr->getType())->getElementType(), New) ||
3463          OpNum+3 != Record.size())
3464        return Error("Invalid record");
3465      AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+1]);
3466      if (Ordering == NotAtomic || Ordering == Unordered)
3467        return Error("Invalid record");
3468      SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+2]);
3469      I = new AtomicCmpXchgInst(Ptr, Cmp, New, Ordering, Ordering, SynchScope);
3470      cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
3471      InstructionList.push_back(I);
3472      break;
3473    }
3474    case bitc::FUNC_CODE_INST_ATOMICRMW: {
3475      // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope]
3476      unsigned OpNum = 0;
3477      Value *Ptr, *Val;
3478      if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
3479          getValue(Record, OpNum,
3480                    cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
3481          OpNum+4 != Record.size())
3482        return Error("Invalid record");
3483      AtomicRMWInst::BinOp Operation = GetDecodedRMWOperation(Record[OpNum]);
3484      if (Operation < AtomicRMWInst::FIRST_BINOP ||
3485          Operation > AtomicRMWInst::LAST_BINOP)
3486        return Error("Invalid record");
3487      AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]);
3488      if (Ordering == NotAtomic || Ordering == Unordered)
3489        return Error("Invalid record");
3490      SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]);
3491      I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope);
3492      cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]);
3493      InstructionList.push_back(I);
3494      break;
3495    }
3496    case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope]
3497      if (2 != Record.size())
3498        return Error("Invalid record");
3499      AtomicOrdering Ordering = GetDecodedOrdering(Record[0]);
3500      if (Ordering == NotAtomic || Ordering == Unordered ||
3501          Ordering == Monotonic)
3502        return Error("Invalid record");
3503      SynchronizationScope SynchScope = GetDecodedSynchScope(Record[1]);
3504      I = new FenceInst(Context, Ordering, SynchScope);
3505      InstructionList.push_back(I);
3506      break;
3507    }
3508    case bitc::FUNC_CODE_INST_CALL: {
3509      // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...]
3510      if (Record.size() < 3)
3511        return Error("Invalid record");
3512
3513      AttributeSet PAL = getAttributes(Record[0]);
3514      unsigned CCInfo = Record[1];
3515
3516      unsigned OpNum = 2;
3517      Value *Callee;
3518      if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
3519        return Error("Invalid record");
3520
3521      PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
3522      FunctionType *FTy = nullptr;
3523      if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType());
3524      if (!FTy || Record.size() < FTy->getNumParams()+OpNum)
3525        return Error("Invalid record");
3526
3527      SmallVector<Value*, 16> Args;
3528      // Read the fixed params.
3529      for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
3530        if (FTy->getParamType(i)->isLabelTy())
3531          Args.push_back(getBasicBlock(Record[OpNum]));
3532        else
3533          Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
3534        if (!Args.back())
3535          return Error("Invalid record");
3536      }
3537
3538      // Read type/value pairs for varargs params.
3539      if (!FTy->isVarArg()) {
3540        if (OpNum != Record.size())
3541          return Error("Invalid record");
3542      } else {
3543        while (OpNum != Record.size()) {
3544          Value *Op;
3545          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
3546            return Error("Invalid record");
3547          Args.push_back(Op);
3548        }
3549      }
3550
3551      I = CallInst::Create(Callee, Args);
3552      InstructionList.push_back(I);
3553      cast<CallInst>(I)->setCallingConv(
3554        static_cast<CallingConv::ID>(CCInfo>>1));
3555      cast<CallInst>(I)->setTailCall(CCInfo & 1);
3556      cast<CallInst>(I)->setAttributes(PAL);
3557      break;
3558    }
3559    case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
3560      if (Record.size() < 3)
3561        return Error("Invalid record");
3562      Type *OpTy = getTypeByID(Record[0]);
3563      Value *Op = getFnValueByID(Record[1], OpTy);
3564      Type *ResTy = getTypeByID(Record[2]);
3565      if (!OpTy || !Op || !ResTy)
3566        return Error("Invalid record");
3567      I = new VAArgInst(Op, ResTy);
3568      InstructionList.push_back(I);
3569      break;
3570    }
3571    }
3572
3573    // Add instruction to end of current BB.  If there is no current BB, reject
3574    // this file.
3575    if (!CurBB) {
3576      delete I;
3577      return Error("Invalid instruction with no BB");
3578    }
3579    CurBB->getInstList().push_back(I);
3580
3581    // If this was a terminator instruction, move to the next block.
3582    if (isa<TerminatorInst>(I)) {
3583      ++CurBBNo;
3584      CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
3585    }
3586
3587    // Non-void values get registered in the value table for future use.
3588    if (I && !I->getType()->isVoidTy())
3589      ValueList.AssignValue(I, NextValueNo++);
3590  }
3591
3592  // Check the function list for unresolved values.
3593  if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
3594    if (!A->getParent()) {
3595      // We found at least one unresolved value.  Nuke them all to avoid leaks.
3596      for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
3597        if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
3598          A->replaceAllUsesWith(UndefValue::get(A->getType()));
3599          delete A;
3600        }
3601      }
3602      return Error("Never resolved value found in function");
3603    }
3604  }
3605
3606  // FIXME: Check for unresolved forward-declared metadata references
3607  // and clean up leaks.
3608
3609  // See if anything took the address of blocks in this function.  If so,
3610  // resolve them now.
3611  DenseMap<Function*, std::vector<BlockAddrRefTy> >::iterator BAFRI =
3612    BlockAddrFwdRefs.find(F);
3613  if (BAFRI != BlockAddrFwdRefs.end()) {
3614    std::vector<BlockAddrRefTy> &RefList = BAFRI->second;
3615    for (unsigned i = 0, e = RefList.size(); i != e; ++i) {
3616      unsigned BlockIdx = RefList[i].first;
3617      if (BlockIdx >= FunctionBBs.size())
3618        return Error("Invalid ID");
3619
3620      GlobalVariable *FwdRef = RefList[i].second;
3621      FwdRef->replaceAllUsesWith(BlockAddress::get(F, FunctionBBs[BlockIdx]));
3622      FwdRef->eraseFromParent();
3623    }
3624
3625    BlockAddrFwdRefs.erase(BAFRI);
3626  }
3627
3628  // Trim the value list down to the size it was before we parsed this function.
3629  ValueList.shrinkTo(ModuleValueListSize);
3630  MDValueList.shrinkTo(ModuleMDValueListSize);
3631  std::vector<BasicBlock*>().swap(FunctionBBs);
3632  return std::error_code();
3633}
3634
3635//===----------------------------------------------------------------------===//
3636// GVMaterializer implementation
3637//===----------------------------------------------------------------------===//
3638
3639void BitcodeReader::releaseBuffer() { Buffer.release(); }
3640
3641std::error_code BitcodeReader::materialize(GlobalValue *GV) {
3642  if (std::error_code EC = materializeMetadata())
3643    return EC;
3644
3645  Function *F = dyn_cast<Function>(GV);
3646  // If it's not a function or is already material, ignore the request.
3647  if (!F || !F->isMaterializable())
3648    return std::error_code();
3649
3650  DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
3651  assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
3652
3653  // Move the bit stream to the saved position of the deferred function body.
3654  Stream.JumpToBit(DFII->second);
3655
3656  if (std::error_code EC = ParseFunctionBody(F))
3657    return EC;
3658  F->setIsMaterializable(false);
3659
3660  // Upgrade any old intrinsic calls in the function.
3661  for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(),
3662       E = UpgradedIntrinsics.end(); I != E; ++I) {
3663    if (I->first != I->second) {
3664      for (auto UI = I->first->user_begin(), UE = I->first->user_end();
3665           UI != UE;) {
3666        if (CallInst* CI = dyn_cast<CallInst>(*UI++))
3667          UpgradeIntrinsicCall(CI, I->second);
3668      }
3669    }
3670  }
3671
3672  return std::error_code();
3673}
3674
3675bool BitcodeReader::isDematerializable(const GlobalValue *GV) const {
3676  const Function *F = dyn_cast<Function>(GV);
3677  if (!F || F->isDeclaration())
3678    return false;
3679  return DeferredFunctionInfo.count(const_cast<Function*>(F));
3680}
3681
3682void BitcodeReader::Dematerialize(GlobalValue *GV) {
3683  Function *F = dyn_cast<Function>(GV);
3684  // If this function isn't dematerializable, this is a noop.
3685  if (!F || !isDematerializable(F))
3686    return;
3687
3688  assert(DeferredFunctionInfo.count(F) && "No info to read function later?");
3689
3690  // Just forget the function body, we can remat it later.
3691  F->deleteBody();
3692  F->setIsMaterializable(true);
3693}
3694
3695std::error_code BitcodeReader::MaterializeModule(Module *M) {
3696  assert(M == TheModule &&
3697         "Can only Materialize the Module this BitcodeReader is attached to.");
3698  // Iterate over the module, deserializing any functions that are still on
3699  // disk.
3700  for (Module::iterator F = TheModule->begin(), E = TheModule->end();
3701       F != E; ++F) {
3702    if (std::error_code EC = materialize(F))
3703      return EC;
3704  }
3705  // At this point, if there are any function bodies, the current bit is
3706  // pointing to the END_BLOCK record after them. Now make sure the rest
3707  // of the bits in the module have been read.
3708  if (NextUnreadBit)
3709    ParseModule(true);
3710
3711  // Upgrade any intrinsic calls that slipped through (should not happen!) and
3712  // delete the old functions to clean up. We can't do this unless the entire
3713  // module is materialized because there could always be another function body
3714  // with calls to the old function.
3715  for (std::vector<std::pair<Function*, Function*> >::iterator I =
3716       UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) {
3717    if (I->first != I->second) {
3718      for (auto UI = I->first->user_begin(), UE = I->first->user_end();
3719           UI != UE;) {
3720        if (CallInst* CI = dyn_cast<CallInst>(*UI++))
3721          UpgradeIntrinsicCall(CI, I->second);
3722      }
3723      if (!I->first->use_empty())
3724        I->first->replaceAllUsesWith(I->second);
3725      I->first->eraseFromParent();
3726    }
3727  }
3728  std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics);
3729
3730  // Upgrade to new EH scheme. N.B. This will go away in 3.1.
3731  UpgradeExceptionHandling(M);
3732
3733  // Check debug info intrinsics.
3734  CheckDebugInfoIntrinsics(TheModule);
3735
3736  return std::error_code();
3737}
3738
3739std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
3740  return IdentifiedStructTypes;
3741}
3742
3743std::error_code BitcodeReader::InitStream() {
3744  if (LazyStreamer)
3745    return InitLazyStream();
3746  return InitStreamFromBuffer();
3747}
3748
3749std::error_code BitcodeReader::InitStreamFromBuffer() {
3750  const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart();
3751  const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
3752
3753  if (Buffer->getBufferSize() & 3)
3754    return Error("Invalid bitcode signature");
3755
3756  // If we have a wrapper header, parse it and ignore the non-bc file contents.
3757  // The magic number is 0x0B17C0DE stored in little endian.
3758  if (isBitcodeWrapper(BufPtr, BufEnd))
3759    if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
3760      return Error("Invalid bitcode wrapper header");
3761
3762  StreamFile.reset(new BitstreamReader(BufPtr, BufEnd));
3763  Stream.init(&*StreamFile);
3764
3765  return std::error_code();
3766}
3767
3768std::error_code BitcodeReader::InitLazyStream() {
3769  // Check and strip off the bitcode wrapper; BitstreamReader expects never to
3770  // see it.
3771  auto OwnedBytes = llvm::make_unique<StreamingMemoryObject>(LazyStreamer);
3772  StreamingMemoryObject &Bytes = *OwnedBytes;
3773  StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes));
3774  Stream.init(&*StreamFile);
3775
3776  unsigned char buf[16];
3777  if (Bytes.readBytes(buf, 16, 0) != 16)
3778    return Error("Invalid bitcode signature");
3779
3780  if (!isBitcode(buf, buf + 16))
3781    return Error("Invalid bitcode signature");
3782
3783  if (isBitcodeWrapper(buf, buf + 4)) {
3784    const unsigned char *bitcodeStart = buf;
3785    const unsigned char *bitcodeEnd = buf + 16;
3786    SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false);
3787    Bytes.dropLeadingBytes(bitcodeStart - buf);
3788    Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart);
3789  }
3790  return std::error_code();
3791}
3792
3793namespace {
3794class BitcodeErrorCategoryType : public std::error_category {
3795  const char *name() const LLVM_NOEXCEPT override {
3796    return "llvm.bitcode";
3797  }
3798  std::string message(int IE) const override {
3799    BitcodeError E = static_cast<BitcodeError>(IE);
3800    switch (E) {
3801    case BitcodeError::InvalidBitcodeSignature:
3802      return "Invalid bitcode signature";
3803    case BitcodeError::CorruptedBitcode:
3804      return "Corrupted bitcode";
3805    }
3806    llvm_unreachable("Unknown error type!");
3807  }
3808};
3809}
3810
3811static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory;
3812
3813const std::error_category &BitcodeReader::BitcodeErrorCategory() {
3814  return *ErrorCategory;
3815}
3816
3817//===----------------------------------------------------------------------===//
3818// External interface
3819//===----------------------------------------------------------------------===//
3820
3821/// getLazyBitcodeModule - lazy function-at-a-time loading from a file.
3822///
3823static llvm::ErrorOr<llvm::Module *>
3824getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer,
3825                         LLVMContext &Context, bool WillMaterializeAll,
3826                         DiagnosticHandlerFunction DiagnosticHandler) {
3827  Module *M = new Module(Buffer->getBufferIdentifier(), Context);
3828  BitcodeReader *R =
3829      new BitcodeReader(Buffer.get(), Context, DiagnosticHandler);
3830  M->setMaterializer(R);
3831
3832  auto cleanupOnError = [&](std::error_code EC) {
3833    R->releaseBuffer(); // Never take ownership on error.
3834    delete M;  // Also deletes R.
3835    return EC;
3836  };
3837
3838  if (std::error_code EC = R->ParseBitcodeInto(M))
3839    return cleanupOnError(EC);
3840
3841  Buffer.release(); // The BitcodeReader owns it now.
3842  return M;
3843}
3844
3845llvm::ErrorOr<Module *>
3846llvm_3_0::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer,
3847                           LLVMContext &Context,
3848                           DiagnosticHandlerFunction DiagnosticHandler) {
3849  return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false,
3850                                  DiagnosticHandler);
3851}
3852
3853/// ParseBitcodeFile - Read the specified bitcode file, returning the module.
3854/// If an error occurs, return null and fill in *ErrMsg if non-null.
3855llvm::ErrorOr<llvm::Module *>
3856llvm_3_0::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context,
3857                       DiagnosticHandlerFunction DiagnosticHandler) {
3858  std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
3859  ErrorOr<Module *> ModuleOrErr = getLazyBitcodeModuleImpl(
3860      std::move(Buf), Context, true, DiagnosticHandler);
3861  if (!ModuleOrErr)
3862    return ModuleOrErr;
3863  Module *M = ModuleOrErr.get();
3864  // Read in the entire module, and destroy the BitcodeReader.
3865  if (std::error_code EC = M->materializeAllPermanently()) {
3866    delete M;
3867    return EC;
3868  }
3869
3870  return M;
3871}
3872
3873std::string
3874llvm_3_0::getBitcodeTargetTriple(MemoryBufferRef Buffer, LLVMContext &Context,
3875                             DiagnosticHandlerFunction DiagnosticHandler) {
3876  std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
3877  auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context,
3878                                            DiagnosticHandler);
3879  ErrorOr<std::string> Triple = R->parseTriple();
3880  if (Triple.getError())
3881    return "";
3882  return Triple.get();
3883}
3884