BitcodeWriter.cpp revision eeb251e8db802b836af7461d0f6eb1252c527ab8
1//===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Bitcode writer implementation.
11//
12//===----------------------------------------------------------------------===//
13
14#include "ReaderWriter_2_9_func.h"
15#include "legacy_bitcode.h"
16#include "ValueEnumerator.h"
17#include "llvm/ADT/Triple.h"
18#include "llvm/Bitcode/BitstreamWriter.h"
19#include "llvm/Bitcode/LLVMBitCodes.h"
20#include "llvm/IR/Constants.h"
21#include "llvm/IR/DerivedTypes.h"
22#include "llvm/IR/InlineAsm.h"
23#include "llvm/IR/Instructions.h"
24#include "llvm/IR/Module.h"
25#include "llvm/IR/Operator.h"
26#include "llvm/IR/ValueSymbolTable.h"
27#include "llvm/Support/ErrorHandling.h"
28#include "llvm/Support/MathExtras.h"
29#include "llvm/Support/Program.h"
30#include "llvm/Support/raw_ostream.h"
31#include <cctype>
32#include <map>
33using namespace llvm;
34
35/// These are manifest constants used by the bitcode writer. They do not need to
36/// be kept in sync with the reader, but need to be consistent within this file.
37enum {
38  CurVersion = 0,
39
40  // VALUE_SYMTAB_BLOCK abbrev id's.
41  VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
42  VST_ENTRY_7_ABBREV,
43  VST_ENTRY_6_ABBREV,
44  VST_BBENTRY_6_ABBREV,
45
46  // CONSTANTS_BLOCK abbrev id's.
47  CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
48  CONSTANTS_INTEGER_ABBREV,
49  CONSTANTS_CE_CAST_Abbrev,
50  CONSTANTS_NULL_Abbrev,
51
52  // FUNCTION_BLOCK abbrev id's.
53  FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
54  FUNCTION_INST_BINOP_ABBREV,
55  FUNCTION_INST_BINOP_FLAGS_ABBREV,
56  FUNCTION_INST_CAST_ABBREV,
57  FUNCTION_INST_RET_VOID_ABBREV,
58  FUNCTION_INST_RET_VAL_ABBREV,
59  FUNCTION_INST_UNREACHABLE_ABBREV
60};
61
62
63static unsigned GetEncodedCastOpcode(unsigned Opcode) {
64  switch (Opcode) {
65  default: llvm_unreachable("Unknown cast instruction!");
66  case Instruction::Trunc   : return bitc::CAST_TRUNC;
67  case Instruction::ZExt    : return bitc::CAST_ZEXT;
68  case Instruction::SExt    : return bitc::CAST_SEXT;
69  case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
70  case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
71  case Instruction::UIToFP  : return bitc::CAST_UITOFP;
72  case Instruction::SIToFP  : return bitc::CAST_SITOFP;
73  case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
74  case Instruction::FPExt   : return bitc::CAST_FPEXT;
75  case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
76  case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
77  case Instruction::BitCast : return bitc::CAST_BITCAST;
78  }
79}
80
81static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
82  switch (Opcode) {
83  default: llvm_unreachable("Unknown binary instruction!");
84  case Instruction::Add:
85  case Instruction::FAdd: return bitc::BINOP_ADD;
86  case Instruction::Sub:
87  case Instruction::FSub: return bitc::BINOP_SUB;
88  case Instruction::Mul:
89  case Instruction::FMul: return bitc::BINOP_MUL;
90  case Instruction::UDiv: return bitc::BINOP_UDIV;
91  case Instruction::FDiv:
92  case Instruction::SDiv: return bitc::BINOP_SDIV;
93  case Instruction::URem: return bitc::BINOP_UREM;
94  case Instruction::FRem:
95  case Instruction::SRem: return bitc::BINOP_SREM;
96  case Instruction::Shl:  return bitc::BINOP_SHL;
97  case Instruction::LShr: return bitc::BINOP_LSHR;
98  case Instruction::AShr: return bitc::BINOP_ASHR;
99  case Instruction::And:  return bitc::BINOP_AND;
100  case Instruction::Or:   return bitc::BINOP_OR;
101  case Instruction::Xor:  return bitc::BINOP_XOR;
102  }
103}
104
105static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
106  switch (Op) {
107  default: llvm_unreachable("Unknown RMW operation!");
108  case AtomicRMWInst::Xchg: return bitc::RMW_XCHG;
109  case AtomicRMWInst::Add: return bitc::RMW_ADD;
110  case AtomicRMWInst::Sub: return bitc::RMW_SUB;
111  case AtomicRMWInst::And: return bitc::RMW_AND;
112  case AtomicRMWInst::Nand: return bitc::RMW_NAND;
113  case AtomicRMWInst::Or: return bitc::RMW_OR;
114  case AtomicRMWInst::Xor: return bitc::RMW_XOR;
115  case AtomicRMWInst::Max: return bitc::RMW_MAX;
116  case AtomicRMWInst::Min: return bitc::RMW_MIN;
117  case AtomicRMWInst::UMax: return bitc::RMW_UMAX;
118  case AtomicRMWInst::UMin: return bitc::RMW_UMIN;
119  }
120}
121
122static unsigned GetEncodedOrdering(AtomicOrdering Ordering) {
123  switch (Ordering) {
124  default: llvm_unreachable("Unknown atomic ordering");
125  case NotAtomic: return bitc::ORDERING_NOTATOMIC;
126  case Unordered: return bitc::ORDERING_UNORDERED;
127  case Monotonic: return bitc::ORDERING_MONOTONIC;
128  case Acquire: return bitc::ORDERING_ACQUIRE;
129  case Release: return bitc::ORDERING_RELEASE;
130  case AcquireRelease: return bitc::ORDERING_ACQREL;
131  case SequentiallyConsistent: return bitc::ORDERING_SEQCST;
132  }
133}
134
135static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) {
136  switch (SynchScope) {
137  default: llvm_unreachable("Unknown synchronization scope");
138  case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD;
139  case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD;
140  }
141}
142
143static void WriteStringRecord(unsigned Code, StringRef Str,
144                              unsigned AbbrevToUse, BitstreamWriter &Stream) {
145  SmallVector<unsigned, 64> Vals;
146
147  // Code: [strchar x N]
148  for (unsigned i = 0, e = Str.size(); i != e; ++i) {
149    if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i]))
150      AbbrevToUse = 0;
151    Vals.push_back(Str[i]);
152  }
153
154  // Emit the finished record.
155  Stream.EmitRecord(Code, Vals, AbbrevToUse);
156}
157
158// Emit information about parameter attributes.
159static void WriteAttributeTable(const llvm_2_9_func::ValueEnumerator &VE,
160                                BitstreamWriter &Stream) {
161  const std::vector<AttributeSet> &Attrs = VE.getAttributes();
162  if (Attrs.empty()) return;
163
164  Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
165
166  SmallVector<uint64_t, 64> Record;
167  for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
168    const AttributeSet &A = Attrs[i];
169    for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) {
170      Record.push_back(A.getSlotIndex(i));
171      Record.push_back(encodeLLVMAttributesForBitcode(A, A.getSlotIndex(i)));
172    }
173
174    // This needs to use the 3.2 entry type
175    Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY_OLD, Record);
176    Record.clear();
177  }
178
179  Stream.ExitBlock();
180}
181
182/// WriteTypeTable - Write out the type table for a module.
183static void WriteTypeTable(const llvm_2_9_func::ValueEnumerator &VE,
184                           BitstreamWriter &Stream) {
185  const llvm_2_9_func::ValueEnumerator::TypeList &TypeList = VE.getTypes();
186
187  Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
188  SmallVector<uint64_t, 64> TypeVals;
189
190  // Abbrev for TYPE_CODE_POINTER.
191  BitCodeAbbrev *Abbv = new BitCodeAbbrev();
192  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
193  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
194                            Log2_32_Ceil(VE.getTypes().size()+1)));
195  Abbv->Add(BitCodeAbbrevOp(0));  // Addrspace = 0
196  unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
197
198  // Abbrev for TYPE_CODE_FUNCTION.
199  Abbv = new BitCodeAbbrev();
200  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION_OLD));
201  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
202  Abbv->Add(BitCodeAbbrevOp(0));  // FIXME: DEAD value, remove in LLVM 3.0
203  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
204  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
205                            Log2_32_Ceil(VE.getTypes().size()+1)));
206  unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
207
208  // Abbrev for TYPE_CODE_STRUCT_ANON.
209  Abbv = new BitCodeAbbrev();
210  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
211  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
212  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
213  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
214                            Log2_32_Ceil(VE.getTypes().size()+1)));
215  unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv);
216
217  // Abbrev for TYPE_CODE_STRUCT_NAME.
218  Abbv = new BitCodeAbbrev();
219  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
220  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
221  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
222  unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv);
223
224  // Abbrev for TYPE_CODE_STRUCT_NAMED.
225  Abbv = new BitCodeAbbrev();
226  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
227  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
228  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
229  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
230                            Log2_32_Ceil(VE.getTypes().size()+1)));
231  unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv);
232
233  // Abbrev for TYPE_CODE_ARRAY.
234  Abbv = new BitCodeAbbrev();
235  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
236  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
237  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
238                            Log2_32_Ceil(VE.getTypes().size()+1)));
239  unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
240
241  // Emit an entry count so the reader can reserve space.
242  TypeVals.push_back(TypeList.size());
243  Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
244  TypeVals.clear();
245
246  // Loop over all of the types, emitting each in turn.
247  for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
248    Type *T = TypeList[i];
249    int AbbrevToUse = 0;
250    unsigned Code = 0;
251
252    switch (T->getTypeID()) {
253    default: llvm_unreachable("Unknown type!");
254    case Type::VoidTyID:      Code = bitc::TYPE_CODE_VOID;   break;
255    case Type::FloatTyID:     Code = bitc::TYPE_CODE_FLOAT;  break;
256    case Type::DoubleTyID:    Code = bitc::TYPE_CODE_DOUBLE; break;
257    case Type::X86_FP80TyID:  Code = bitc::TYPE_CODE_X86_FP80; break;
258    case Type::FP128TyID:     Code = bitc::TYPE_CODE_FP128; break;
259    case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
260    case Type::LabelTyID:     Code = bitc::TYPE_CODE_LABEL;  break;
261    case Type::MetadataTyID:  Code = bitc::TYPE_CODE_METADATA; break;
262    case Type::X86_MMXTyID:   Code = bitc::TYPE_CODE_X86_MMX; break;
263    case Type::IntegerTyID:
264      // INTEGER: [width]
265      Code = bitc::TYPE_CODE_INTEGER;
266      TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
267      break;
268    case Type::PointerTyID: {
269      PointerType *PTy = cast<PointerType>(T);
270      // POINTER: [pointee type, address space]
271      Code = bitc::TYPE_CODE_POINTER;
272      TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
273      unsigned AddressSpace = PTy->getAddressSpace();
274      TypeVals.push_back(AddressSpace);
275      if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
276      break;
277    }
278    case Type::FunctionTyID: {
279      FunctionType *FT = cast<FunctionType>(T);
280      // FUNCTION: [isvararg, attrid, retty, paramty x N]
281      Code = bitc::TYPE_CODE_FUNCTION_OLD;
282      TypeVals.push_back(FT->isVarArg());
283      TypeVals.push_back(0);  // FIXME: DEAD: remove in llvm 3.0
284      TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
285      for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
286        TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
287      AbbrevToUse = FunctionAbbrev;
288      break;
289    }
290    case Type::StructTyID: {
291      StructType *ST = cast<StructType>(T);
292      // STRUCT: [ispacked, eltty x N]
293      TypeVals.push_back(ST->isPacked());
294      // Output all of the element types.
295      for (StructType::element_iterator I = ST->element_begin(),
296           E = ST->element_end(); I != E; ++I)
297        TypeVals.push_back(VE.getTypeID(*I));
298
299      if (ST->isLiteral()) {
300        Code = bitc::TYPE_CODE_STRUCT_ANON;
301        AbbrevToUse = StructAnonAbbrev;
302      } else {
303        if (ST->isOpaque()) {
304          Code = bitc::TYPE_CODE_OPAQUE;
305        } else {
306          Code = bitc::TYPE_CODE_STRUCT_NAMED;
307          AbbrevToUse = StructNamedAbbrev;
308        }
309
310        // Emit the name if it is present.
311        if (!ST->getName().empty())
312          WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
313                            StructNameAbbrev, Stream);
314      }
315      break;
316    }
317    case Type::ArrayTyID: {
318      ArrayType *AT = cast<ArrayType>(T);
319      // ARRAY: [numelts, eltty]
320      Code = bitc::TYPE_CODE_ARRAY;
321      TypeVals.push_back(AT->getNumElements());
322      TypeVals.push_back(VE.getTypeID(AT->getElementType()));
323      AbbrevToUse = ArrayAbbrev;
324      break;
325    }
326    case Type::VectorTyID: {
327      VectorType *VT = cast<VectorType>(T);
328      // VECTOR [numelts, eltty]
329      Code = bitc::TYPE_CODE_VECTOR;
330      TypeVals.push_back(VT->getNumElements());
331      TypeVals.push_back(VE.getTypeID(VT->getElementType()));
332      break;
333    }
334    }
335
336    // Emit the finished record.
337    Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
338    TypeVals.clear();
339  }
340
341  Stream.ExitBlock();
342}
343
344static unsigned getEncodedLinkage(const GlobalValue *GV) {
345  switch (GV->getLinkage()) {
346  case GlobalValue::ExternalLinkage:                 return 0;
347  case GlobalValue::WeakAnyLinkage:                  return 1;
348  case GlobalValue::AppendingLinkage:                return 2;
349  case GlobalValue::InternalLinkage:                 return 3;
350  case GlobalValue::LinkOnceAnyLinkage:              return 4;
351  case GlobalValue::DLLImportLinkage:                return 5;
352  case GlobalValue::DLLExportLinkage:                return 6;
353  case GlobalValue::ExternalWeakLinkage:             return 7;
354  case GlobalValue::CommonLinkage:                   return 8;
355  case GlobalValue::PrivateLinkage:                  return 9;
356  case GlobalValue::WeakODRLinkage:                  return 10;
357  case GlobalValue::LinkOnceODRLinkage:              return 11;
358  case GlobalValue::AvailableExternallyLinkage:      return 12;
359  case GlobalValue::LinkerPrivateLinkage:            return 13;
360  case GlobalValue::LinkerPrivateWeakLinkage:        return 14;
361  }
362  llvm_unreachable("Invalid linkage");
363}
364
365static unsigned getEncodedVisibility(const GlobalValue *GV) {
366  switch (GV->getVisibility()) {
367  default: llvm_unreachable("Invalid visibility!");
368  case GlobalValue::DefaultVisibility:   return 0;
369  case GlobalValue::HiddenVisibility:    return 1;
370  case GlobalValue::ProtectedVisibility: return 2;
371  }
372}
373
374// Emit top-level description of module, including target triple, inline asm,
375// descriptors for global variables, and function prototype info.
376static void WriteModuleInfo(const Module *M,
377                            const llvm_2_9_func::ValueEnumerator &VE,
378                            BitstreamWriter &Stream) {
379  // Emit various pieces of data attached to a module.
380  if (!M->getTargetTriple().empty())
381    WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
382                      0/*TODO*/, Stream);
383  if (!M->getDataLayout().empty())
384    WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(),
385                      0/*TODO*/, Stream);
386  if (!M->getModuleInlineAsm().empty())
387    WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
388                      0/*TODO*/, Stream);
389
390  // Emit information about sections and GC, computing how many there are. Also
391  // compute the maximum alignment value.
392  std::map<std::string, unsigned> SectionMap;
393  std::map<std::string, unsigned> GCMap;
394  unsigned MaxAlignment = 0;
395  unsigned MaxGlobalType = 0;
396  for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
397       GV != E; ++GV) {
398    MaxAlignment = std::max(MaxAlignment, GV->getAlignment());
399    MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType()));
400
401    if (!GV->hasSection()) continue;
402    // Give section names unique ID's.
403    unsigned &Entry = SectionMap[GV->getSection()];
404    if (Entry != 0) continue;
405    WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(),
406                      0/*TODO*/, Stream);
407    Entry = SectionMap.size();
408  }
409  for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
410    MaxAlignment = std::max(MaxAlignment, F->getAlignment());
411    if (F->hasSection()) {
412      // Give section names unique ID's.
413      unsigned &Entry = SectionMap[F->getSection()];
414      if (!Entry) {
415        WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(),
416                          0/*TODO*/, Stream);
417        Entry = SectionMap.size();
418      }
419    }
420    if (F->hasGC()) {
421      // Same for GC names.
422      unsigned &Entry = GCMap[F->getGC()];
423      if (!Entry) {
424        WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(),
425                          0/*TODO*/, Stream);
426        Entry = GCMap.size();
427      }
428    }
429  }
430
431  // Emit abbrev for globals, now that we know # sections and max alignment.
432  unsigned SimpleGVarAbbrev = 0;
433  if (!M->global_empty()) {
434    // Add an abbrev for common globals with no visibility or thread localness.
435    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
436    Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
437    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
438                              Log2_32_Ceil(MaxGlobalType+1)));
439    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));      // Constant.
440    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));        // Initializer.
441    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));      // Linkage.
442    if (MaxAlignment == 0)                                      // Alignment.
443      Abbv->Add(BitCodeAbbrevOp(0));
444    else {
445      unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
446      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
447                               Log2_32_Ceil(MaxEncAlignment+1)));
448    }
449    if (SectionMap.empty())                                    // Section.
450      Abbv->Add(BitCodeAbbrevOp(0));
451    else
452      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
453                               Log2_32_Ceil(SectionMap.size()+1)));
454    // Don't bother emitting vis + thread local.
455    SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
456  }
457
458  // Emit the global variable information.
459  SmallVector<unsigned, 64> Vals;
460  for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
461       GV != E; ++GV) {
462    unsigned AbbrevToUse = 0;
463
464    // GLOBALVAR: [type, isconst, initid,
465    //             linkage, alignment, section, visibility, threadlocal,
466    //             unnamed_addr]
467    Vals.push_back(VE.getTypeID(GV->getType()));
468    Vals.push_back(GV->isConstant());
469    Vals.push_back(GV->isDeclaration() ? 0 :
470                   (VE.getValueID(GV->getInitializer()) + 1));
471    Vals.push_back(getEncodedLinkage(GV));
472    Vals.push_back(Log2_32(GV->getAlignment())+1);
473    Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0);
474    if (GV->isThreadLocal() ||
475        GV->getVisibility() != GlobalValue::DefaultVisibility ||
476        GV->hasUnnamedAddr()) {
477      Vals.push_back(getEncodedVisibility(GV));
478      Vals.push_back(GV->isThreadLocal());
479      Vals.push_back(GV->hasUnnamedAddr());
480    } else {
481      AbbrevToUse = SimpleGVarAbbrev;
482    }
483
484    Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
485    Vals.clear();
486  }
487
488  // Emit the function proto information.
489  for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
490    // FUNCTION:  [type, callingconv, isproto, paramattr,
491    //             linkage, alignment, section, visibility, gc, unnamed_addr]
492    Vals.push_back(VE.getTypeID(F->getType()));
493    Vals.push_back(F->getCallingConv());
494    Vals.push_back(F->isDeclaration());
495    Vals.push_back(getEncodedLinkage(F));
496    Vals.push_back(VE.getAttributeID(F->getAttributes()));
497    Vals.push_back(Log2_32(F->getAlignment())+1);
498    Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0);
499    Vals.push_back(getEncodedVisibility(F));
500    Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0);
501    Vals.push_back(F->hasUnnamedAddr());
502
503    unsigned AbbrevToUse = 0;
504    Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
505    Vals.clear();
506  }
507
508  // Emit the alias information.
509  for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end();
510       AI != E; ++AI) {
511    Vals.push_back(VE.getTypeID(AI->getType()));
512    Vals.push_back(VE.getValueID(AI->getAliasee()));
513    Vals.push_back(getEncodedLinkage(AI));
514    Vals.push_back(getEncodedVisibility(AI));
515    unsigned AbbrevToUse = 0;
516    Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
517    Vals.clear();
518  }
519}
520
521static uint64_t GetOptimizationFlags(const Value *V) {
522  uint64_t Flags = 0;
523
524  if (const OverflowingBinaryOperator *OBO =
525        dyn_cast<OverflowingBinaryOperator>(V)) {
526    if (OBO->hasNoSignedWrap())
527      Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
528    if (OBO->hasNoUnsignedWrap())
529      Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
530  } else if (const PossiblyExactOperator *PEO =
531               dyn_cast<PossiblyExactOperator>(V)) {
532    if (PEO->isExact())
533      Flags |= 1 << bitc::PEO_EXACT;
534  }
535
536  return Flags;
537}
538
539static void WriteMDNode(const MDNode *N,
540                        const llvm_2_9_func::ValueEnumerator &VE,
541                        BitstreamWriter &Stream,
542                        SmallVector<uint64_t, 64> &Record) {
543  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
544    if (N->getOperand(i)) {
545      Record.push_back(VE.getTypeID(N->getOperand(i)->getType()));
546      Record.push_back(VE.getValueID(N->getOperand(i)));
547    } else {
548      Record.push_back(VE.getTypeID(Type::getVoidTy(N->getContext())));
549      Record.push_back(0);
550    }
551  }
552  unsigned MDCode = N->isFunctionLocal() ? bitc::METADATA_FN_NODE :
553                                           bitc::METADATA_NODE;
554  Stream.EmitRecord(MDCode, Record, 0);
555  Record.clear();
556}
557
558static void WriteModuleMetadata(const Module *M,
559                                const llvm_2_9_func::ValueEnumerator &VE,
560                                BitstreamWriter &Stream) {
561  const llvm_2_9_func::ValueEnumerator::ValueList &Vals = VE.getMDValues();
562  bool StartedMetadataBlock = false;
563  unsigned MDSAbbrev = 0;
564  SmallVector<uint64_t, 64> Record;
565  for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
566
567    if (const MDNode *N = dyn_cast<MDNode>(Vals[i].first)) {
568      if (!N->isFunctionLocal() || !N->getFunction()) {
569        if (!StartedMetadataBlock) {
570          Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
571          StartedMetadataBlock = true;
572        }
573        WriteMDNode(N, VE, Stream, Record);
574      }
575    } else if (const MDString *MDS = dyn_cast<MDString>(Vals[i].first)) {
576      if (!StartedMetadataBlock)  {
577        Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
578
579        // Abbrev for METADATA_STRING.
580        BitCodeAbbrev *Abbv = new BitCodeAbbrev();
581        Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING));
582        Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
583        Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
584        MDSAbbrev = Stream.EmitAbbrev(Abbv);
585        StartedMetadataBlock = true;
586      }
587
588      // Code: [strchar x N]
589      Record.append(MDS->begin(), MDS->end());
590
591      // Emit the finished record.
592      Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev);
593      Record.clear();
594    }
595  }
596
597  // Write named metadata.
598  for (Module::const_named_metadata_iterator I = M->named_metadata_begin(),
599       E = M->named_metadata_end(); I != E; ++I) {
600    const NamedMDNode *NMD = I;
601    if (!StartedMetadataBlock)  {
602      Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
603      StartedMetadataBlock = true;
604    }
605
606    // Write name.
607    StringRef Str = NMD->getName();
608    for (unsigned i = 0, e = Str.size(); i != e; ++i)
609      Record.push_back(Str[i]);
610    Stream.EmitRecord(bitc::METADATA_NAME, Record, 0/*TODO*/);
611    Record.clear();
612
613    // Write named metadata operands.
614    for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i)
615      Record.push_back(VE.getValueID(NMD->getOperand(i)));
616    Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
617    Record.clear();
618  }
619
620  if (StartedMetadataBlock)
621    Stream.ExitBlock();
622}
623
624static void WriteFunctionLocalMetadata(const Function &F,
625                                       const llvm_2_9_func::ValueEnumerator &VE,
626                                       BitstreamWriter &Stream) {
627  bool StartedMetadataBlock = false;
628  SmallVector<uint64_t, 64> Record;
629  const SmallVector<const MDNode *, 8> &Vals = VE.getFunctionLocalMDValues();
630  for (unsigned i = 0, e = Vals.size(); i != e; ++i)
631    if (const MDNode *N = Vals[i])
632      if (N->isFunctionLocal() && N->getFunction() == &F) {
633        if (!StartedMetadataBlock) {
634          Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
635          StartedMetadataBlock = true;
636        }
637        WriteMDNode(N, VE, Stream, Record);
638      }
639
640  if (StartedMetadataBlock)
641    Stream.ExitBlock();
642}
643
644static void WriteMetadataAttachment(const Function &F,
645                                    const llvm_2_9_func::ValueEnumerator &VE,
646                                    BitstreamWriter &Stream) {
647  Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
648
649  SmallVector<uint64_t, 64> Record;
650
651  // Write metadata attachments
652  // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
653  SmallVector<std::pair<unsigned, MDNode*>, 4> MDs;
654
655  for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
656    for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
657         I != E; ++I) {
658      MDs.clear();
659      I->getAllMetadataOtherThanDebugLoc(MDs);
660
661      // If no metadata, ignore instruction.
662      if (MDs.empty()) continue;
663
664      Record.push_back(VE.getInstructionID(I));
665
666      for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
667        Record.push_back(MDs[i].first);
668        Record.push_back(VE.getValueID(MDs[i].second));
669      }
670      Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
671      Record.clear();
672    }
673
674  Stream.ExitBlock();
675}
676
677static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) {
678  SmallVector<uint64_t, 64> Record;
679
680  // Write metadata kinds
681  // METADATA_KIND - [n x [id, name]]
682  SmallVector<StringRef, 4> Names;
683  M->getMDKindNames(Names);
684
685  if (Names.empty()) return;
686
687  Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
688
689  for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
690    Record.push_back(MDKindID);
691    StringRef KName = Names[MDKindID];
692    Record.append(KName.begin(), KName.end());
693
694    Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
695    Record.clear();
696  }
697
698  Stream.ExitBlock();
699}
700
701static void WriteConstants(unsigned FirstVal, unsigned LastVal,
702                           const llvm_2_9_func::ValueEnumerator &VE,
703                           BitstreamWriter &Stream, bool isGlobal) {
704  if (FirstVal == LastVal) return;
705
706  Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
707
708  unsigned AggregateAbbrev = 0;
709  unsigned String8Abbrev = 0;
710  unsigned CString7Abbrev = 0;
711  unsigned CString6Abbrev = 0;
712  // If this is a constant pool for the module, emit module-specific abbrevs.
713  if (isGlobal) {
714    // Abbrev for CST_CODE_AGGREGATE.
715    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
716    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
717    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
718    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
719    AggregateAbbrev = Stream.EmitAbbrev(Abbv);
720
721    // Abbrev for CST_CODE_STRING.
722    Abbv = new BitCodeAbbrev();
723    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
724    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
725    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
726    String8Abbrev = Stream.EmitAbbrev(Abbv);
727    // Abbrev for CST_CODE_CSTRING.
728    Abbv = new BitCodeAbbrev();
729    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
730    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
731    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
732    CString7Abbrev = Stream.EmitAbbrev(Abbv);
733    // Abbrev for CST_CODE_CSTRING.
734    Abbv = new BitCodeAbbrev();
735    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
736    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
737    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
738    CString6Abbrev = Stream.EmitAbbrev(Abbv);
739  }
740
741  SmallVector<uint64_t, 64> Record;
742
743  const llvm_2_9_func::ValueEnumerator::ValueList &Vals = VE.getValues();
744  Type *LastTy = 0;
745  for (unsigned i = FirstVal; i != LastVal; ++i) {
746    const Value *V = Vals[i].first;
747    // If we need to switch types, do so now.
748    if (V->getType() != LastTy) {
749      LastTy = V->getType();
750      Record.push_back(VE.getTypeID(LastTy));
751      Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
752                        CONSTANTS_SETTYPE_ABBREV);
753      Record.clear();
754    }
755
756    if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
757      Record.push_back(unsigned(IA->hasSideEffects()) |
758                       unsigned(IA->isAlignStack()) << 1);
759
760      // Add the asm string.
761      const std::string &AsmStr = IA->getAsmString();
762      Record.push_back(AsmStr.size());
763      for (unsigned i = 0, e = AsmStr.size(); i != e; ++i)
764        Record.push_back(AsmStr[i]);
765
766      // Add the constraint string.
767      const std::string &ConstraintStr = IA->getConstraintString();
768      Record.push_back(ConstraintStr.size());
769      for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i)
770        Record.push_back(ConstraintStr[i]);
771      Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
772      Record.clear();
773      continue;
774    }
775    const Constant *C = cast<Constant>(V);
776    unsigned Code = -1U;
777    unsigned AbbrevToUse = 0;
778    if (C->isNullValue()) {
779      Code = bitc::CST_CODE_NULL;
780    } else if (isa<UndefValue>(C)) {
781      Code = bitc::CST_CODE_UNDEF;
782    } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
783      if (IV->getBitWidth() <= 64) {
784        uint64_t V = IV->getSExtValue();
785        if ((int64_t)V >= 0)
786          Record.push_back(V << 1);
787        else
788          Record.push_back((-V << 1) | 1);
789        Code = bitc::CST_CODE_INTEGER;
790        AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
791      } else {                             // Wide integers, > 64 bits in size.
792        // We have an arbitrary precision integer value to write whose
793        // bit width is > 64. However, in canonical unsigned integer
794        // format it is likely that the high bits are going to be zero.
795        // So, we only write the number of active words.
796        unsigned NWords = IV->getValue().getActiveWords();
797        const uint64_t *RawWords = IV->getValue().getRawData();
798        for (unsigned i = 0; i != NWords; ++i) {
799          int64_t V = RawWords[i];
800          if (V >= 0)
801            Record.push_back(V << 1);
802          else
803            Record.push_back((-V << 1) | 1);
804        }
805        Code = bitc::CST_CODE_WIDE_INTEGER;
806      }
807    } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
808      Code = bitc::CST_CODE_FLOAT;
809      Type *Ty = CFP->getType();
810      if (Ty->isFloatTy() || Ty->isDoubleTy()) {
811        Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
812      } else if (Ty->isX86_FP80Ty()) {
813        // api needed to prevent premature destruction
814        // bits are not in the same order as a normal i80 APInt, compensate.
815        APInt api = CFP->getValueAPF().bitcastToAPInt();
816        const uint64_t *p = api.getRawData();
817        Record.push_back((p[1] << 48) | (p[0] >> 16));
818        Record.push_back(p[0] & 0xffffLL);
819      } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
820        APInt api = CFP->getValueAPF().bitcastToAPInt();
821        const uint64_t *p = api.getRawData();
822        Record.push_back(p[0]);
823        Record.push_back(p[1]);
824      } else {
825        assert (0 && "Unknown FP type!");
826      }
827    } else if (isa<ConstantDataSequential>(C) &&
828               cast<ConstantDataSequential>(C)->isString()) {
829      const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
830      // Emit constant strings specially.
831      unsigned NumElts = Str->getNumElements();
832      // If this is a null-terminated string, use the denser CSTRING encoding.
833      if (Str->isCString()) {
834        Code = bitc::CST_CODE_CSTRING;
835        --NumElts;  // Don't encode the null, which isn't allowed by char6.
836      } else {
837        Code = bitc::CST_CODE_STRING;
838        AbbrevToUse = String8Abbrev;
839      }
840      bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
841      bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
842      for (unsigned i = 0; i != NumElts; ++i) {
843        unsigned char V = Str->getElementAsInteger(i);
844        Record.push_back(V);
845        isCStr7 &= (V & 128) == 0;
846        if (isCStrChar6)
847          isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
848      }
849
850      if (isCStrChar6)
851        AbbrevToUse = CString6Abbrev;
852      else if (isCStr7)
853        AbbrevToUse = CString7Abbrev;
854    } else if (const ConstantDataSequential *CDS =
855                  dyn_cast<ConstantDataSequential>(C)) {
856      // We must replace ConstantDataSequential's representation with the
857      // legacy ConstantArray/ConstantVector/ConstantStruct version.
858      // ValueEnumerator is similarly modified to mark the appropriate
859      // Constants as used (so they are emitted).
860      Code = bitc::CST_CODE_AGGREGATE;
861      for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
862        Record.push_back(VE.getValueID(CDS->getElementAsConstant(i)));
863      AbbrevToUse = AggregateAbbrev;
864    } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) ||
865               isa<ConstantVector>(C)) {
866      Code = bitc::CST_CODE_AGGREGATE;
867      for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
868        Record.push_back(VE.getValueID(C->getOperand(i)));
869      AbbrevToUse = AggregateAbbrev;
870    } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
871      switch (CE->getOpcode()) {
872      default:
873        if (Instruction::isCast(CE->getOpcode())) {
874          Code = bitc::CST_CODE_CE_CAST;
875          Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
876          Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
877          Record.push_back(VE.getValueID(C->getOperand(0)));
878          AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
879        } else {
880          assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
881          Code = bitc::CST_CODE_CE_BINOP;
882          Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
883          Record.push_back(VE.getValueID(C->getOperand(0)));
884          Record.push_back(VE.getValueID(C->getOperand(1)));
885          uint64_t Flags = GetOptimizationFlags(CE);
886          if (Flags != 0)
887            Record.push_back(Flags);
888        }
889        break;
890      case Instruction::GetElementPtr:
891        Code = bitc::CST_CODE_CE_GEP;
892        if (cast<GEPOperator>(C)->isInBounds())
893          Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
894        for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
895          Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
896          Record.push_back(VE.getValueID(C->getOperand(i)));
897        }
898        break;
899      case Instruction::Select:
900        Code = bitc::CST_CODE_CE_SELECT;
901        Record.push_back(VE.getValueID(C->getOperand(0)));
902        Record.push_back(VE.getValueID(C->getOperand(1)));
903        Record.push_back(VE.getValueID(C->getOperand(2)));
904        break;
905      case Instruction::ExtractElement:
906        Code = bitc::CST_CODE_CE_EXTRACTELT;
907        Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
908        Record.push_back(VE.getValueID(C->getOperand(0)));
909        Record.push_back(VE.getValueID(C->getOperand(1)));
910        break;
911      case Instruction::InsertElement:
912        Code = bitc::CST_CODE_CE_INSERTELT;
913        Record.push_back(VE.getValueID(C->getOperand(0)));
914        Record.push_back(VE.getValueID(C->getOperand(1)));
915        Record.push_back(VE.getValueID(C->getOperand(2)));
916        break;
917      case Instruction::ShuffleVector:
918        // If the return type and argument types are the same, this is a
919        // standard shufflevector instruction.  If the types are different,
920        // then the shuffle is widening or truncating the input vectors, and
921        // the argument type must also be encoded.
922        if (C->getType() == C->getOperand(0)->getType()) {
923          Code = bitc::CST_CODE_CE_SHUFFLEVEC;
924        } else {
925          Code = bitc::CST_CODE_CE_SHUFVEC_EX;
926          Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
927        }
928        Record.push_back(VE.getValueID(C->getOperand(0)));
929        Record.push_back(VE.getValueID(C->getOperand(1)));
930        Record.push_back(VE.getValueID(C->getOperand(2)));
931        break;
932      case Instruction::ICmp:
933      case Instruction::FCmp:
934        Code = bitc::CST_CODE_CE_CMP;
935        Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
936        Record.push_back(VE.getValueID(C->getOperand(0)));
937        Record.push_back(VE.getValueID(C->getOperand(1)));
938        Record.push_back(CE->getPredicate());
939        break;
940      }
941    } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
942      Code = bitc::CST_CODE_BLOCKADDRESS;
943      Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
944      Record.push_back(VE.getValueID(BA->getFunction()));
945      Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
946    } else {
947#ifndef NDEBUG
948      C->dump();
949#endif
950      llvm_unreachable("Unknown constant!");
951    }
952    Stream.EmitRecord(Code, Record, AbbrevToUse);
953    Record.clear();
954  }
955
956  Stream.ExitBlock();
957}
958
959static void WriteModuleConstants(const llvm_2_9_func::ValueEnumerator &VE,
960                                 BitstreamWriter &Stream) {
961  const llvm_2_9_func::ValueEnumerator::ValueList &Vals = VE.getValues();
962
963  // Find the first constant to emit, which is the first non-globalvalue value.
964  // We know globalvalues have been emitted by WriteModuleInfo.
965  for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
966    if (!isa<GlobalValue>(Vals[i].first)) {
967      WriteConstants(i, Vals.size(), VE, Stream, true);
968      return;
969    }
970  }
971}
972
973/// PushValueAndType - The file has to encode both the value and type id for
974/// many values, because we need to know what type to create for forward
975/// references.  However, most operands are not forward references, so this type
976/// field is not needed.
977///
978/// This function adds V's value ID to Vals.  If the value ID is higher than the
979/// instruction ID, then it is a forward reference, and it also includes the
980/// type ID.
981static bool PushValueAndType(const Value *V, unsigned InstID,
982                             SmallVector<unsigned, 64> &Vals,
983                             llvm_2_9_func::ValueEnumerator &VE) {
984  unsigned ValID = VE.getValueID(V);
985  Vals.push_back(ValID);
986  if (ValID >= InstID) {
987    Vals.push_back(VE.getTypeID(V->getType()));
988    return true;
989  }
990  return false;
991}
992
993/// WriteInstruction - Emit an instruction to the specified stream.
994static void WriteInstruction(const Instruction &I, unsigned InstID,
995                             llvm_2_9_func::ValueEnumerator &VE,
996                             BitstreamWriter &Stream,
997                             SmallVector<unsigned, 64> &Vals) {
998  unsigned Code = 0;
999  unsigned AbbrevToUse = 0;
1000  VE.setInstructionID(&I);
1001  switch (I.getOpcode()) {
1002  default:
1003    if (Instruction::isCast(I.getOpcode())) {
1004      Code = bitc::FUNC_CODE_INST_CAST;
1005      if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1006        AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
1007      Vals.push_back(VE.getTypeID(I.getType()));
1008      Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
1009    } else {
1010      assert(isa<BinaryOperator>(I) && "Unknown instruction!");
1011      Code = bitc::FUNC_CODE_INST_BINOP;
1012      if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1013        AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
1014      Vals.push_back(VE.getValueID(I.getOperand(1)));
1015      Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
1016      uint64_t Flags = GetOptimizationFlags(&I);
1017      if (Flags != 0) {
1018        if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
1019          AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
1020        Vals.push_back(Flags);
1021      }
1022    }
1023    break;
1024
1025  case Instruction::GetElementPtr:
1026    Code = bitc::FUNC_CODE_INST_GEP;
1027    if (cast<GEPOperator>(&I)->isInBounds())
1028      Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP;
1029    for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
1030      PushValueAndType(I.getOperand(i), InstID, Vals, VE);
1031    break;
1032  case Instruction::ExtractValue: {
1033    Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
1034    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1035    const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
1036    for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
1037      Vals.push_back(*i);
1038    break;
1039  }
1040  case Instruction::InsertValue: {
1041    Code = bitc::FUNC_CODE_INST_INSERTVAL;
1042    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1043    PushValueAndType(I.getOperand(1), InstID, Vals, VE);
1044    const InsertValueInst *IVI = cast<InsertValueInst>(&I);
1045    for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
1046      Vals.push_back(*i);
1047    break;
1048  }
1049  case Instruction::Select:
1050    Code = bitc::FUNC_CODE_INST_VSELECT;
1051    PushValueAndType(I.getOperand(1), InstID, Vals, VE);
1052    Vals.push_back(VE.getValueID(I.getOperand(2)));
1053    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1054    break;
1055  case Instruction::ExtractElement:
1056    Code = bitc::FUNC_CODE_INST_EXTRACTELT;
1057    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1058    Vals.push_back(VE.getValueID(I.getOperand(1)));
1059    break;
1060  case Instruction::InsertElement:
1061    Code = bitc::FUNC_CODE_INST_INSERTELT;
1062    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1063    Vals.push_back(VE.getValueID(I.getOperand(1)));
1064    Vals.push_back(VE.getValueID(I.getOperand(2)));
1065    break;
1066  case Instruction::ShuffleVector:
1067    Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
1068    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1069    Vals.push_back(VE.getValueID(I.getOperand(1)));
1070    Vals.push_back(VE.getValueID(I.getOperand(2)));
1071    break;
1072  case Instruction::ICmp:
1073  case Instruction::FCmp:
1074    // compare returning Int1Ty or vector of Int1Ty
1075    Code = bitc::FUNC_CODE_INST_CMP2;
1076    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1077    Vals.push_back(VE.getValueID(I.getOperand(1)));
1078    Vals.push_back(cast<CmpInst>(I).getPredicate());
1079    break;
1080
1081  case Instruction::Ret:
1082    {
1083      Code = bitc::FUNC_CODE_INST_RET;
1084      unsigned NumOperands = I.getNumOperands();
1085      if (NumOperands == 0)
1086        AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
1087      else if (NumOperands == 1) {
1088        if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1089          AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
1090      } else {
1091        for (unsigned i = 0, e = NumOperands; i != e; ++i)
1092          PushValueAndType(I.getOperand(i), InstID, Vals, VE);
1093      }
1094    }
1095    break;
1096  case Instruction::Br:
1097    {
1098      Code = bitc::FUNC_CODE_INST_BR;
1099      const BranchInst &II = cast<BranchInst>(I);
1100      Vals.push_back(VE.getValueID(II.getSuccessor(0)));
1101      if (II.isConditional()) {
1102        Vals.push_back(VE.getValueID(II.getSuccessor(1)));
1103        Vals.push_back(VE.getValueID(II.getCondition()));
1104      }
1105    }
1106    break;
1107  case Instruction::Switch:
1108    {
1109      Code = bitc::FUNC_CODE_INST_SWITCH;
1110      const SwitchInst &SI = cast<SwitchInst>(I);
1111
1112      Vals.push_back(VE.getTypeID(SI.getCondition()->getType()));
1113      Vals.push_back(VE.getValueID(SI.getCondition()));
1114      Vals.push_back(VE.getValueID(SI.getDefaultDest()));
1115      for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
1116           i != e; ++i) {
1117          Vals.push_back(VE.getValueID(i.getCaseValue()));
1118          Vals.push_back(VE.getValueID(i.getCaseSuccessor()));
1119      }
1120    }
1121    break;
1122  case Instruction::IndirectBr:
1123    Code = bitc::FUNC_CODE_INST_INDIRECTBR;
1124    Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1125    for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
1126      Vals.push_back(VE.getValueID(I.getOperand(i)));
1127    break;
1128
1129  case Instruction::Invoke: {
1130    const InvokeInst *II = cast<InvokeInst>(&I);
1131    const Value *Callee(II->getCalledValue());
1132    PointerType *PTy = cast<PointerType>(Callee->getType());
1133    FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1134    Code = bitc::FUNC_CODE_INST_INVOKE;
1135
1136    Vals.push_back(VE.getAttributeID(II->getAttributes()));
1137    Vals.push_back(II->getCallingConv());
1138    Vals.push_back(VE.getValueID(II->getNormalDest()));
1139    Vals.push_back(VE.getValueID(II->getUnwindDest()));
1140    PushValueAndType(Callee, InstID, Vals, VE);
1141
1142    // Emit value #'s for the fixed parameters.
1143    for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1144      Vals.push_back(VE.getValueID(I.getOperand(i)));  // fixed param.
1145
1146    // Emit type/value pairs for varargs params.
1147    if (FTy->isVarArg()) {
1148      for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3;
1149           i != e; ++i)
1150        PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
1151    }
1152    break;
1153  }
1154  case Instruction::Resume:
1155    Code = bitc::FUNC_CODE_INST_RESUME;
1156    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1157    break;
1158  case Instruction::Unreachable:
1159    Code = bitc::FUNC_CODE_INST_UNREACHABLE;
1160    AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
1161    break;
1162
1163  case Instruction::PHI: {
1164    const PHINode &PN = cast<PHINode>(I);
1165    Code = bitc::FUNC_CODE_INST_PHI;
1166    Vals.push_back(VE.getTypeID(PN.getType()));
1167    for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
1168      Vals.push_back(VE.getValueID(PN.getIncomingValue(i)));
1169      Vals.push_back(VE.getValueID(PN.getIncomingBlock(i)));
1170    }
1171    break;
1172  }
1173
1174  case Instruction::LandingPad: {
1175    const LandingPadInst &LP = cast<LandingPadInst>(I);
1176    Code = bitc::FUNC_CODE_INST_LANDINGPAD;
1177    Vals.push_back(VE.getTypeID(LP.getType()));
1178    PushValueAndType(LP.getPersonalityFn(), InstID, Vals, VE);
1179    Vals.push_back(LP.isCleanup());
1180    Vals.push_back(LP.getNumClauses());
1181    for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
1182      if (LP.isCatch(I))
1183        Vals.push_back(LandingPadInst::Catch);
1184      else
1185        Vals.push_back(LandingPadInst::Filter);
1186      PushValueAndType(LP.getClause(I), InstID, Vals, VE);
1187    }
1188    break;
1189  }
1190
1191  case Instruction::Alloca:
1192    Code = bitc::FUNC_CODE_INST_ALLOCA;
1193    Vals.push_back(VE.getTypeID(I.getType()));
1194    Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1195    Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
1196    Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1);
1197    break;
1198
1199  case Instruction::Load:
1200    if (cast<LoadInst>(I).isAtomic()) {
1201      Code = bitc::FUNC_CODE_INST_LOADATOMIC;
1202      PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1203    } else {
1204      Code = bitc::FUNC_CODE_INST_LOAD;
1205      if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))  // ptr
1206        AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
1207    }
1208    Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
1209    Vals.push_back(cast<LoadInst>(I).isVolatile());
1210    if (cast<LoadInst>(I).isAtomic()) {
1211      Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering()));
1212      Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope()));
1213    }
1214    break;
1215  case Instruction::Store:
1216    if (cast<StoreInst>(I).isAtomic())
1217      Code = bitc::FUNC_CODE_INST_STOREATOMIC;
1218    else
1219      Code = bitc::FUNC_CODE_INST_STORE;
1220    PushValueAndType(I.getOperand(1), InstID, Vals, VE);  // ptrty + ptr
1221    Vals.push_back(VE.getValueID(I.getOperand(0)));       // val.
1222    Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
1223    Vals.push_back(cast<StoreInst>(I).isVolatile());
1224    if (cast<StoreInst>(I).isAtomic()) {
1225      Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering()));
1226      Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope()));
1227    }
1228    break;
1229  case Instruction::AtomicCmpXchg:
1230    Code = bitc::FUNC_CODE_INST_CMPXCHG;
1231    PushValueAndType(I.getOperand(0), InstID, Vals, VE);  // ptrty + ptr
1232    Vals.push_back(VE.getValueID(I.getOperand(1)));       // cmp.
1233    Vals.push_back(VE.getValueID(I.getOperand(2)));       // newval.
1234    Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
1235    Vals.push_back(GetEncodedOrdering(
1236                     cast<AtomicCmpXchgInst>(I).getOrdering()));
1237    Vals.push_back(GetEncodedSynchScope(
1238                     cast<AtomicCmpXchgInst>(I).getSynchScope()));
1239    break;
1240  case Instruction::AtomicRMW:
1241    Code = bitc::FUNC_CODE_INST_ATOMICRMW;
1242    PushValueAndType(I.getOperand(0), InstID, Vals, VE);  // ptrty + ptr
1243    Vals.push_back(VE.getValueID(I.getOperand(1)));       // val.
1244    Vals.push_back(GetEncodedRMWOperation(
1245                     cast<AtomicRMWInst>(I).getOperation()));
1246    Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
1247    Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
1248    Vals.push_back(GetEncodedSynchScope(
1249                     cast<AtomicRMWInst>(I).getSynchScope()));
1250    break;
1251  case Instruction::Fence:
1252    Code = bitc::FUNC_CODE_INST_FENCE;
1253    Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering()));
1254    Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope()));
1255    break;
1256  case Instruction::Call: {
1257    const CallInst &CI = cast<CallInst>(I);
1258    PointerType *PTy = cast<PointerType>(CI.getCalledValue()->getType());
1259    FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1260
1261    Code = bitc::FUNC_CODE_INST_CALL;
1262
1263    Vals.push_back(VE.getAttributeID(CI.getAttributes()));
1264    Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()));
1265    PushValueAndType(CI.getCalledValue(), InstID, Vals, VE);  // Callee
1266
1267    // Emit value #'s for the fixed parameters.
1268    for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1269      Vals.push_back(VE.getValueID(CI.getArgOperand(i)));  // fixed param.
1270
1271    // Emit type/value pairs for varargs params.
1272    if (FTy->isVarArg()) {
1273      for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands();
1274           i != e; ++i)
1275        PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE);  // varargs
1276    }
1277    break;
1278  }
1279  case Instruction::VAArg:
1280    Code = bitc::FUNC_CODE_INST_VAARG;
1281    Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
1282    Vals.push_back(VE.getValueID(I.getOperand(0))); // valist.
1283    Vals.push_back(VE.getTypeID(I.getType())); // restype.
1284    break;
1285  }
1286
1287  Stream.EmitRecord(Code, Vals, AbbrevToUse);
1288  Vals.clear();
1289}
1290
1291// Emit names for globals/functions etc.
1292static void WriteValueSymbolTable(const ValueSymbolTable &VST,
1293                                  const llvm_2_9_func::ValueEnumerator &VE,
1294                                  BitstreamWriter &Stream) {
1295  if (VST.empty()) return;
1296  Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
1297
1298  // FIXME: Set up the abbrev, we know how many values there are!
1299  // FIXME: We know if the type names can use 7-bit ascii.
1300  SmallVector<unsigned, 64> NameVals;
1301
1302  for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
1303       SI != SE; ++SI) {
1304
1305    const ValueName &Name = *SI;
1306
1307    // Figure out the encoding to use for the name.
1308    bool is7Bit = true;
1309    bool isChar6 = true;
1310    for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
1311         C != E; ++C) {
1312      if (isChar6)
1313        isChar6 = BitCodeAbbrevOp::isChar6(*C);
1314      if ((unsigned char)*C & 128) {
1315        is7Bit = false;
1316        break;  // don't bother scanning the rest.
1317      }
1318    }
1319
1320    unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
1321
1322    // VST_ENTRY:   [valueid, namechar x N]
1323    // VST_BBENTRY: [bbid, namechar x N]
1324    unsigned Code;
1325    if (isa<BasicBlock>(SI->getValue())) {
1326      Code = bitc::VST_CODE_BBENTRY;
1327      if (isChar6)
1328        AbbrevToUse = VST_BBENTRY_6_ABBREV;
1329    } else {
1330      Code = bitc::VST_CODE_ENTRY;
1331      if (isChar6)
1332        AbbrevToUse = VST_ENTRY_6_ABBREV;
1333      else if (is7Bit)
1334        AbbrevToUse = VST_ENTRY_7_ABBREV;
1335    }
1336
1337    NameVals.push_back(VE.getValueID(SI->getValue()));
1338    for (const char *P = Name.getKeyData(),
1339         *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
1340      NameVals.push_back((unsigned char)*P);
1341
1342    // Emit the finished record.
1343    Stream.EmitRecord(Code, NameVals, AbbrevToUse);
1344    NameVals.clear();
1345  }
1346  Stream.ExitBlock();
1347}
1348
1349/// WriteFunction - Emit a function body to the module stream.
1350static void WriteFunction(const Function &F, llvm_2_9_func::ValueEnumerator &VE,
1351                          BitstreamWriter &Stream) {
1352  Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
1353  VE.incorporateFunction(F);
1354
1355  SmallVector<unsigned, 64> Vals;
1356
1357  // Emit the number of basic blocks, so the reader can create them ahead of
1358  // time.
1359  Vals.push_back(VE.getBasicBlocks().size());
1360  Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
1361  Vals.clear();
1362
1363  // If there are function-local constants, emit them now.
1364  unsigned CstStart, CstEnd;
1365  VE.getFunctionConstantRange(CstStart, CstEnd);
1366  WriteConstants(CstStart, CstEnd, VE, Stream, false);
1367
1368  // If there is function-local metadata, emit it now.
1369  WriteFunctionLocalMetadata(F, VE, Stream);
1370
1371  // Keep a running idea of what the instruction ID is.
1372  unsigned InstID = CstEnd;
1373
1374  bool NeedsMetadataAttachment = false;
1375
1376  DebugLoc LastDL;
1377
1378  // Finally, emit all the instructions, in order.
1379  for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1380    for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
1381         I != E; ++I) {
1382      WriteInstruction(*I, InstID, VE, Stream, Vals);
1383
1384      if (!I->getType()->isVoidTy())
1385        ++InstID;
1386
1387      // If the instruction has metadata, write a metadata attachment later.
1388      NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
1389
1390      // If the instruction has a debug location, emit it.
1391      DebugLoc DL = I->getDebugLoc();
1392      if (DL.isUnknown()) {
1393        // nothing todo.
1394      } else if (DL == LastDL) {
1395        // Just repeat the same debug loc as last time.
1396        Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
1397      } else {
1398        MDNode *Scope, *IA;
1399        DL.getScopeAndInlinedAt(Scope, IA, I->getContext());
1400
1401        Vals.push_back(DL.getLine());
1402        Vals.push_back(DL.getCol());
1403        Vals.push_back(Scope ? VE.getValueID(Scope)+1 : 0);
1404        Vals.push_back(IA ? VE.getValueID(IA)+1 : 0);
1405        Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
1406        Vals.clear();
1407
1408        LastDL = DL;
1409      }
1410    }
1411
1412  // Emit names for all the instructions etc.
1413  WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
1414
1415  if (NeedsMetadataAttachment)
1416    WriteMetadataAttachment(F, VE, Stream);
1417  VE.purgeFunction();
1418  Stream.ExitBlock();
1419}
1420
1421// Emit blockinfo, which defines the standard abbreviations etc.
1422static void WriteBlockInfo(const llvm_2_9_func::ValueEnumerator &VE,
1423                           BitstreamWriter &Stream) {
1424  // We only want to emit block info records for blocks that have multiple
1425  // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.  Other
1426  // blocks can defined their abbrevs inline.
1427  Stream.EnterBlockInfoBlock(2);
1428
1429  { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
1430    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1431    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
1432    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1433    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1434    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1435    if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1436                                   Abbv) != VST_ENTRY_8_ABBREV)
1437      llvm_unreachable("Unexpected abbrev ordering!");
1438  }
1439
1440  { // 7-bit fixed width VST_ENTRY strings.
1441    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1442    Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1443    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1444    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1445    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1446    if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1447                                   Abbv) != VST_ENTRY_7_ABBREV)
1448      llvm_unreachable("Unexpected abbrev ordering!");
1449  }
1450  { // 6-bit char6 VST_ENTRY strings.
1451    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1452    Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1453    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1454    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1455    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1456    if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1457                                   Abbv) != VST_ENTRY_6_ABBREV)
1458      llvm_unreachable("Unexpected abbrev ordering!");
1459  }
1460  { // 6-bit char6 VST_BBENTRY strings.
1461    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1462    Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
1463    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1464    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1465    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1466    if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1467                                   Abbv) != VST_BBENTRY_6_ABBREV)
1468      llvm_unreachable("Unexpected abbrev ordering!");
1469  }
1470
1471
1472
1473  { // SETTYPE abbrev for CONSTANTS_BLOCK.
1474    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1475    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
1476    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1477                              Log2_32_Ceil(VE.getTypes().size()+1)));
1478    if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1479                                   Abbv) != CONSTANTS_SETTYPE_ABBREV)
1480      llvm_unreachable("Unexpected abbrev ordering!");
1481  }
1482
1483  { // INTEGER abbrev for CONSTANTS_BLOCK.
1484    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1485    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
1486    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1487    if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1488                                   Abbv) != CONSTANTS_INTEGER_ABBREV)
1489      llvm_unreachable("Unexpected abbrev ordering!");
1490  }
1491
1492  { // CE_CAST abbrev for CONSTANTS_BLOCK.
1493    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1494    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
1495    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
1496    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
1497                              Log2_32_Ceil(VE.getTypes().size()+1)));
1498    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
1499
1500    if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1501                                   Abbv) != CONSTANTS_CE_CAST_Abbrev)
1502      llvm_unreachable("Unexpected abbrev ordering!");
1503  }
1504  { // NULL abbrev for CONSTANTS_BLOCK.
1505    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1506    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
1507    if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1508                                   Abbv) != CONSTANTS_NULL_Abbrev)
1509      llvm_unreachable("Unexpected abbrev ordering!");
1510  }
1511
1512  // FIXME: This should only use space for first class types!
1513
1514  { // INST_LOAD abbrev for FUNCTION_BLOCK.
1515    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1516    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
1517    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
1518    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
1519    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
1520    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1521                                   Abbv) != FUNCTION_INST_LOAD_ABBREV)
1522      llvm_unreachable("Unexpected abbrev ordering!");
1523  }
1524  { // INST_BINOP abbrev for FUNCTION_BLOCK.
1525    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1526    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1527    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1528    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1529    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1530    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1531                                   Abbv) != FUNCTION_INST_BINOP_ABBREV)
1532      llvm_unreachable("Unexpected abbrev ordering!");
1533  }
1534  { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
1535    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1536    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1537    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1538    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1539    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1540    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
1541    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1542                                   Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV)
1543      llvm_unreachable("Unexpected abbrev ordering!");
1544  }
1545  { // INST_CAST abbrev for FUNCTION_BLOCK.
1546    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1547    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
1548    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
1549    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
1550                              Log2_32_Ceil(VE.getTypes().size()+1)));
1551    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
1552    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1553                                   Abbv) != FUNCTION_INST_CAST_ABBREV)
1554      llvm_unreachable("Unexpected abbrev ordering!");
1555  }
1556
1557  { // INST_RET abbrev for FUNCTION_BLOCK.
1558    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1559    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1560    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1561                                   Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
1562      llvm_unreachable("Unexpected abbrev ordering!");
1563  }
1564  { // INST_RET abbrev for FUNCTION_BLOCK.
1565    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1566    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1567    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
1568    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1569                                   Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
1570      llvm_unreachable("Unexpected abbrev ordering!");
1571  }
1572  { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
1573    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1574    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
1575    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1576                                   Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
1577      llvm_unreachable("Unexpected abbrev ordering!");
1578  }
1579
1580  Stream.ExitBlock();
1581}
1582
1583
1584/// WriteModule - Emit the specified module to the bitstream.
1585static void WriteModule(const Module *M, BitstreamWriter &Stream) {
1586  Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
1587
1588  // Emit the version number if it is non-zero.
1589  if (CurVersion) {
1590    SmallVector<unsigned, 1> Vals;
1591    Vals.push_back(CurVersion);
1592    Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
1593  }
1594
1595  // Analyze the module, enumerating globals, functions, etc.
1596  llvm_2_9_func::ValueEnumerator VE(M);
1597
1598  // Emit blockinfo, which defines the standard abbreviations etc.
1599  WriteBlockInfo(VE, Stream);
1600
1601  // Emit information about parameter attributes.
1602  WriteAttributeTable(VE, Stream);
1603
1604  // Emit information describing all of the types in the module.
1605  WriteTypeTable(VE, Stream);
1606
1607  // Emit top-level description of module, including target triple, inline asm,
1608  // descriptors for global variables, and function prototype info.
1609  WriteModuleInfo(M, VE, Stream);
1610
1611  // Emit constants.
1612  WriteModuleConstants(VE, Stream);
1613
1614  // Emit metadata.
1615  WriteModuleMetadata(M, VE, Stream);
1616
1617  // Emit function bodies.
1618  for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F)
1619    if (!F->isDeclaration())
1620      WriteFunction(*F, VE, Stream);
1621
1622  // Emit metadata.
1623  WriteModuleMetadataStore(M, Stream);
1624
1625  // Emit names for globals/functions etc.
1626  WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
1627
1628  Stream.ExitBlock();
1629}
1630
1631/// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a
1632/// header and trailer to make it compatible with the system archiver.  To do
1633/// this we emit the following header, and then emit a trailer that pads the
1634/// file out to be a multiple of 16 bytes.
1635///
1636/// struct bc_header {
1637///   uint32_t Magic;         // 0x0B17C0DE
1638///   uint32_t Version;       // Version, currently always 0.
1639///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
1640///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
1641///   uint32_t CPUType;       // CPU specifier.
1642///   ... potentially more later ...
1643/// };
1644enum {
1645  DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size.
1646  DarwinBCHeaderSize = 5*4
1647};
1648
1649static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer,
1650                               uint32_t &Position) {
1651  Buffer[Position + 0] = (unsigned char) (Value >>  0);
1652  Buffer[Position + 1] = (unsigned char) (Value >>  8);
1653  Buffer[Position + 2] = (unsigned char) (Value >> 16);
1654  Buffer[Position + 3] = (unsigned char) (Value >> 24);
1655  Position += 4;
1656}
1657
1658static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer,
1659                                         const Triple &TT) {
1660  unsigned CPUType = ~0U;
1661
1662  // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
1663  // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
1664  // number from /usr/include/mach/machine.h.  It is ok to reproduce the
1665  // specific constants here because they are implicitly part of the Darwin ABI.
1666  enum {
1667    DARWIN_CPU_ARCH_ABI64      = 0x01000000,
1668    DARWIN_CPU_TYPE_X86        = 7,
1669    DARWIN_CPU_TYPE_ARM        = 12,
1670    DARWIN_CPU_TYPE_POWERPC    = 18
1671  };
1672
1673  Triple::ArchType Arch = TT.getArch();
1674  if (Arch == Triple::x86_64)
1675    CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
1676  else if (Arch == Triple::x86)
1677    CPUType = DARWIN_CPU_TYPE_X86;
1678  else if (Arch == Triple::ppc)
1679    CPUType = DARWIN_CPU_TYPE_POWERPC;
1680  else if (Arch == Triple::ppc64)
1681    CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
1682  else if (Arch == Triple::arm || Arch == Triple::thumb)
1683    CPUType = DARWIN_CPU_TYPE_ARM;
1684
1685  // Traditional Bitcode starts after header.
1686  assert(Buffer.size() >= DarwinBCHeaderSize &&
1687         "Expected header size to be reserved");
1688  unsigned BCOffset = DarwinBCHeaderSize;
1689  unsigned BCSize = Buffer.size()-DarwinBCHeaderSize;
1690
1691  // Write the magic and version.
1692  unsigned Position = 0;
1693  WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position);
1694  WriteInt32ToBuffer(0          , Buffer, Position); // Version.
1695  WriteInt32ToBuffer(BCOffset   , Buffer, Position);
1696  WriteInt32ToBuffer(BCSize     , Buffer, Position);
1697  WriteInt32ToBuffer(CPUType    , Buffer, Position);
1698
1699  // If the file is not a multiple of 16 bytes, insert dummy padding.
1700  while (Buffer.size() & 15)
1701    Buffer.push_back(0);
1702}
1703
1704/// WriteBitcodeToFile - Write the specified module to the specified output
1705/// stream.
1706void llvm_2_9_func::WriteBitcodeToFile(const Module *M, raw_ostream &Out) {
1707  SmallVector<char, 1024> Buffer;
1708  Buffer.reserve(256*1024);
1709
1710  // If this is darwin or another generic macho target, reserve space for the
1711  // header.
1712  Triple TT(M->getTargetTriple());
1713  if (TT.isOSDarwin())
1714    Buffer.insert(Buffer.begin(), DarwinBCHeaderSize, 0);
1715
1716  // Emit the module into the buffer.
1717  {
1718    BitstreamWriter Stream(Buffer);
1719
1720    // Emit the file header.
1721    Stream.Emit((unsigned)'B', 8);
1722    Stream.Emit((unsigned)'C', 8);
1723    Stream.Emit(0x0, 4);
1724    Stream.Emit(0xC, 4);
1725    Stream.Emit(0xE, 4);
1726    Stream.Emit(0xD, 4);
1727
1728    // Emit the module.
1729    WriteModule(M, Stream);
1730  }
1731
1732  if (TT.isOSDarwin())
1733    EmitDarwinBCHeaderAndTrailer(Buffer, TT);
1734
1735  // Write the generated bitstream to "Out".
1736  Out.write((char*)&Buffer.front(), Buffer.size());
1737}
1738