BitcodeWriter.cpp revision d711dec946b6408791ca59eb98e363ef04bbd4aa
1//===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Bitcode writer implementation.
11//
12//===----------------------------------------------------------------------===//
13
14#include "ReaderWriter_3_2.h"
15#include "llvm/Bitcode/BitstreamWriter.h"
16#include "llvm/Bitcode/LLVMBitCodes.h"
17#include "ValueEnumerator.h"
18#include "llvm/Constants.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/InlineAsm.h"
21#include "llvm/Instructions.h"
22#include "llvm/Module.h"
23#include "llvm/Operator.h"
24#include "llvm/ValueSymbolTable.h"
25#include "llvm/ADT/Triple.h"
26#include "llvm/Support/CommandLine.h"
27#include "llvm/Support/ErrorHandling.h"
28#include "llvm/Support/MathExtras.h"
29#include "llvm/Support/raw_ostream.h"
30#include "llvm/Support/Program.h"
31#include <cctype>
32#include <map>
33using namespace llvm;
34
35static cl::opt<bool>
36EnablePreserveUseListOrdering("enable-bc-uselist-preserve",
37                              cl::desc("Turn on experimental support for "
38                                       "use-list order preservation."),
39                              cl::init(false), cl::Hidden);
40
41/// These are manifest constants used by the bitcode writer. They do not need to
42/// be kept in sync with the reader, but need to be consistent within this file.
43enum {
44  CurVersion = 0,
45
46  // VALUE_SYMTAB_BLOCK abbrev id's.
47  VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
48  VST_ENTRY_7_ABBREV,
49  VST_ENTRY_6_ABBREV,
50  VST_BBENTRY_6_ABBREV,
51
52  // CONSTANTS_BLOCK abbrev id's.
53  CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
54  CONSTANTS_INTEGER_ABBREV,
55  CONSTANTS_CE_CAST_Abbrev,
56  CONSTANTS_NULL_Abbrev,
57
58  // FUNCTION_BLOCK abbrev id's.
59  FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
60  FUNCTION_INST_BINOP_ABBREV,
61  FUNCTION_INST_BINOP_FLAGS_ABBREV,
62  FUNCTION_INST_CAST_ABBREV,
63  FUNCTION_INST_RET_VOID_ABBREV,
64  FUNCTION_INST_RET_VAL_ABBREV,
65  FUNCTION_INST_UNREACHABLE_ABBREV,
66
67  // SwitchInst Magic
68  SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
69};
70
71static unsigned GetEncodedCastOpcode(unsigned Opcode) {
72  switch (Opcode) {
73  default: llvm_unreachable("Unknown cast instruction!");
74  case Instruction::Trunc   : return bitc::CAST_TRUNC;
75  case Instruction::ZExt    : return bitc::CAST_ZEXT;
76  case Instruction::SExt    : return bitc::CAST_SEXT;
77  case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
78  case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
79  case Instruction::UIToFP  : return bitc::CAST_UITOFP;
80  case Instruction::SIToFP  : return bitc::CAST_SITOFP;
81  case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
82  case Instruction::FPExt   : return bitc::CAST_FPEXT;
83  case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
84  case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
85  case Instruction::BitCast : return bitc::CAST_BITCAST;
86  }
87}
88
89static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
90  switch (Opcode) {
91  default: llvm_unreachable("Unknown binary instruction!");
92  case Instruction::Add:
93  case Instruction::FAdd: return bitc::BINOP_ADD;
94  case Instruction::Sub:
95  case Instruction::FSub: return bitc::BINOP_SUB;
96  case Instruction::Mul:
97  case Instruction::FMul: return bitc::BINOP_MUL;
98  case Instruction::UDiv: return bitc::BINOP_UDIV;
99  case Instruction::FDiv:
100  case Instruction::SDiv: return bitc::BINOP_SDIV;
101  case Instruction::URem: return bitc::BINOP_UREM;
102  case Instruction::FRem:
103  case Instruction::SRem: return bitc::BINOP_SREM;
104  case Instruction::Shl:  return bitc::BINOP_SHL;
105  case Instruction::LShr: return bitc::BINOP_LSHR;
106  case Instruction::AShr: return bitc::BINOP_ASHR;
107  case Instruction::And:  return bitc::BINOP_AND;
108  case Instruction::Or:   return bitc::BINOP_OR;
109  case Instruction::Xor:  return bitc::BINOP_XOR;
110  }
111}
112
113static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
114  switch (Op) {
115  default: llvm_unreachable("Unknown RMW operation!");
116  case AtomicRMWInst::Xchg: return bitc::RMW_XCHG;
117  case AtomicRMWInst::Add: return bitc::RMW_ADD;
118  case AtomicRMWInst::Sub: return bitc::RMW_SUB;
119  case AtomicRMWInst::And: return bitc::RMW_AND;
120  case AtomicRMWInst::Nand: return bitc::RMW_NAND;
121  case AtomicRMWInst::Or: return bitc::RMW_OR;
122  case AtomicRMWInst::Xor: return bitc::RMW_XOR;
123  case AtomicRMWInst::Max: return bitc::RMW_MAX;
124  case AtomicRMWInst::Min: return bitc::RMW_MIN;
125  case AtomicRMWInst::UMax: return bitc::RMW_UMAX;
126  case AtomicRMWInst::UMin: return bitc::RMW_UMIN;
127  }
128}
129
130static unsigned GetEncodedOrdering(AtomicOrdering Ordering) {
131  switch (Ordering) {
132  case NotAtomic: return bitc::ORDERING_NOTATOMIC;
133  case Unordered: return bitc::ORDERING_UNORDERED;
134  case Monotonic: return bitc::ORDERING_MONOTONIC;
135  case Acquire: return bitc::ORDERING_ACQUIRE;
136  case Release: return bitc::ORDERING_RELEASE;
137  case AcquireRelease: return bitc::ORDERING_ACQREL;
138  case SequentiallyConsistent: return bitc::ORDERING_SEQCST;
139  }
140  llvm_unreachable("Invalid ordering");
141}
142
143static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) {
144  switch (SynchScope) {
145  case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD;
146  case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD;
147  }
148  llvm_unreachable("Invalid synch scope");
149}
150
151static void WriteStringRecord(unsigned Code, StringRef Str,
152                              unsigned AbbrevToUse, BitstreamWriter &Stream) {
153  SmallVector<unsigned, 64> Vals;
154
155  // Code: [strchar x N]
156  for (unsigned i = 0, e = Str.size(); i != e; ++i) {
157    if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i]))
158      AbbrevToUse = 0;
159    Vals.push_back(Str[i]);
160  }
161
162  // Emit the finished record.
163  Stream.EmitRecord(Code, Vals, AbbrevToUse);
164}
165
166// Emit information about parameter attributes.
167static void WriteAttributeTable(const llvm_3_2::ValueEnumerator &VE,
168                                BitstreamWriter &Stream) {
169  const std::vector<AttrListPtr> &Attrs = VE.getAttributes();
170  if (Attrs.empty()) return;
171
172  Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
173
174  SmallVector<uint64_t, 64> Record;
175  for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
176    const AttrListPtr &A = Attrs[i];
177    for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) {
178      const AttributeWithIndex &PAWI = A.getSlot(i);
179      Record.push_back(PAWI.Index);
180      Record.push_back(Attribute::encodeLLVMAttributesForBitcode(PAWI.Attrs));
181    }
182
183    Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
184    Record.clear();
185  }
186
187  Stream.ExitBlock();
188}
189
190/// WriteTypeTable - Write out the type table for a module.
191static void WriteTypeTable(const llvm_3_2::ValueEnumerator &VE,
192                           BitstreamWriter &Stream) {
193  const llvm_3_2::ValueEnumerator::TypeList &TypeList = VE.getTypes();
194
195  Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
196  SmallVector<uint64_t, 64> TypeVals;
197
198  uint64_t NumBits = Log2_32_Ceil(VE.getTypes().size()+1);
199
200  // Abbrev for TYPE_CODE_POINTER.
201  BitCodeAbbrev *Abbv = new BitCodeAbbrev();
202  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
203  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
204  Abbv->Add(BitCodeAbbrevOp(0));  // Addrspace = 0
205  unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
206
207  // Abbrev for TYPE_CODE_FUNCTION.
208  Abbv = new BitCodeAbbrev();
209  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
210  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
211  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
212  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
213
214  unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
215
216  // Abbrev for TYPE_CODE_STRUCT_ANON.
217  Abbv = new BitCodeAbbrev();
218  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
219  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
220  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
221  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
222
223  unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv);
224
225  // Abbrev for TYPE_CODE_STRUCT_NAME.
226  Abbv = new BitCodeAbbrev();
227  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
228  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
229  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
230  unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv);
231
232  // Abbrev for TYPE_CODE_STRUCT_NAMED.
233  Abbv = new BitCodeAbbrev();
234  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
235  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
236  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
237  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
238
239  unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv);
240
241  // Abbrev for TYPE_CODE_ARRAY.
242  Abbv = new BitCodeAbbrev();
243  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
244  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
245  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
246
247  unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
248
249  // Emit an entry count so the reader can reserve space.
250  TypeVals.push_back(TypeList.size());
251  Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
252  TypeVals.clear();
253
254  // Loop over all of the types, emitting each in turn.
255  for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
256    Type *T = TypeList[i];
257    int AbbrevToUse = 0;
258    unsigned Code = 0;
259
260    switch (T->getTypeID()) {
261    default: llvm_unreachable("Unknown type!");
262    case Type::VoidTyID:      Code = bitc::TYPE_CODE_VOID;   break;
263    case Type::HalfTyID:      Code = bitc::TYPE_CODE_HALF;   break;
264    case Type::FloatTyID:     Code = bitc::TYPE_CODE_FLOAT;  break;
265    case Type::DoubleTyID:    Code = bitc::TYPE_CODE_DOUBLE; break;
266    case Type::X86_FP80TyID:  Code = bitc::TYPE_CODE_X86_FP80; break;
267    case Type::FP128TyID:     Code = bitc::TYPE_CODE_FP128; break;
268    case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
269    case Type::LabelTyID:     Code = bitc::TYPE_CODE_LABEL;  break;
270    case Type::MetadataTyID:  Code = bitc::TYPE_CODE_METADATA; break;
271    case Type::X86_MMXTyID:   Code = bitc::TYPE_CODE_X86_MMX; break;
272    case Type::IntegerTyID:
273      // INTEGER: [width]
274      Code = bitc::TYPE_CODE_INTEGER;
275      TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
276      break;
277    case Type::PointerTyID: {
278      PointerType *PTy = cast<PointerType>(T);
279      // POINTER: [pointee type, address space]
280      Code = bitc::TYPE_CODE_POINTER;
281      TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
282      unsigned AddressSpace = PTy->getAddressSpace();
283      TypeVals.push_back(AddressSpace);
284      if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
285      break;
286    }
287    case Type::FunctionTyID: {
288      FunctionType *FT = cast<FunctionType>(T);
289      // FUNCTION: [isvararg, retty, paramty x N]
290      Code = bitc::TYPE_CODE_FUNCTION;
291      TypeVals.push_back(FT->isVarArg());
292      TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
293      for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
294        TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
295      AbbrevToUse = FunctionAbbrev;
296      break;
297    }
298    case Type::StructTyID: {
299      StructType *ST = cast<StructType>(T);
300      // STRUCT: [ispacked, eltty x N]
301      TypeVals.push_back(ST->isPacked());
302      // Output all of the element types.
303      for (StructType::element_iterator I = ST->element_begin(),
304           E = ST->element_end(); I != E; ++I)
305        TypeVals.push_back(VE.getTypeID(*I));
306
307      if (ST->isLiteral()) {
308        Code = bitc::TYPE_CODE_STRUCT_ANON;
309        AbbrevToUse = StructAnonAbbrev;
310      } else {
311        if (ST->isOpaque()) {
312          Code = bitc::TYPE_CODE_OPAQUE;
313        } else {
314          Code = bitc::TYPE_CODE_STRUCT_NAMED;
315          AbbrevToUse = StructNamedAbbrev;
316        }
317
318        // Emit the name if it is present.
319        if (!ST->getName().empty())
320          WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
321                            StructNameAbbrev, Stream);
322      }
323      break;
324    }
325    case Type::ArrayTyID: {
326      ArrayType *AT = cast<ArrayType>(T);
327      // ARRAY: [numelts, eltty]
328      Code = bitc::TYPE_CODE_ARRAY;
329      TypeVals.push_back(AT->getNumElements());
330      TypeVals.push_back(VE.getTypeID(AT->getElementType()));
331      AbbrevToUse = ArrayAbbrev;
332      break;
333    }
334    case Type::VectorTyID: {
335      VectorType *VT = cast<VectorType>(T);
336      // VECTOR [numelts, eltty]
337      Code = bitc::TYPE_CODE_VECTOR;
338      TypeVals.push_back(VT->getNumElements());
339      TypeVals.push_back(VE.getTypeID(VT->getElementType()));
340      break;
341    }
342    }
343
344    // Emit the finished record.
345    Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
346    TypeVals.clear();
347  }
348
349  Stream.ExitBlock();
350}
351
352static unsigned getEncodedLinkage(const GlobalValue *GV) {
353  switch (GV->getLinkage()) {
354  case GlobalValue::ExternalLinkage:                 return 0;
355  case GlobalValue::WeakAnyLinkage:                  return 1;
356  case GlobalValue::AppendingLinkage:                return 2;
357  case GlobalValue::InternalLinkage:                 return 3;
358  case GlobalValue::LinkOnceAnyLinkage:              return 4;
359  case GlobalValue::DLLImportLinkage:                return 5;
360  case GlobalValue::DLLExportLinkage:                return 6;
361  case GlobalValue::ExternalWeakLinkage:             return 7;
362  case GlobalValue::CommonLinkage:                   return 8;
363  case GlobalValue::PrivateLinkage:                  return 9;
364  case GlobalValue::WeakODRLinkage:                  return 10;
365  case GlobalValue::LinkOnceODRLinkage:              return 11;
366  case GlobalValue::AvailableExternallyLinkage:      return 12;
367  case GlobalValue::LinkerPrivateLinkage:            return 13;
368  case GlobalValue::LinkerPrivateWeakLinkage:        return 14;
369  case GlobalValue::LinkOnceODRAutoHideLinkage:      return 15;
370  }
371  llvm_unreachable("Invalid linkage");
372}
373
374static unsigned getEncodedVisibility(const GlobalValue *GV) {
375  switch (GV->getVisibility()) {
376  case GlobalValue::DefaultVisibility:   return 0;
377  case GlobalValue::HiddenVisibility:    return 1;
378  case GlobalValue::ProtectedVisibility: return 2;
379  }
380  llvm_unreachable("Invalid visibility");
381}
382
383static unsigned getEncodedThreadLocalMode(const GlobalVariable *GV) {
384  switch (GV->getThreadLocalMode()) {
385    case GlobalVariable::NotThreadLocal:         return 0;
386    case GlobalVariable::GeneralDynamicTLSModel: return 1;
387    case GlobalVariable::LocalDynamicTLSModel:   return 2;
388    case GlobalVariable::InitialExecTLSModel:    return 3;
389    case GlobalVariable::LocalExecTLSModel:      return 4;
390  }
391  llvm_unreachable("Invalid TLS model");
392}
393
394// Emit top-level description of module, including target triple, inline asm,
395// descriptors for global variables, and function prototype info.
396static void WriteModuleInfo(const Module *M,
397                            const llvm_3_2::ValueEnumerator &VE,
398                            BitstreamWriter &Stream) {
399  // Emit the list of dependent libraries for the Module.
400  for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I)
401    WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream);
402
403  // Emit various pieces of data attached to a module.
404  if (!M->getTargetTriple().empty())
405    WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
406                      0/*TODO*/, Stream);
407  if (!M->getDataLayout().empty())
408    WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(),
409                      0/*TODO*/, Stream);
410  if (!M->getModuleInlineAsm().empty())
411    WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
412                      0/*TODO*/, Stream);
413
414  // Emit information about sections and GC, computing how many there are. Also
415  // compute the maximum alignment value.
416  std::map<std::string, unsigned> SectionMap;
417  std::map<std::string, unsigned> GCMap;
418  unsigned MaxAlignment = 0;
419  unsigned MaxGlobalType = 0;
420  for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
421       GV != E; ++GV) {
422    MaxAlignment = std::max(MaxAlignment, GV->getAlignment());
423    MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType()));
424    if (GV->hasSection()) {
425      // Give section names unique ID's.
426      unsigned &Entry = SectionMap[GV->getSection()];
427      if (!Entry) {
428        WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(),
429                          0/*TODO*/, Stream);
430        Entry = SectionMap.size();
431      }
432    }
433  }
434  for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
435    MaxAlignment = std::max(MaxAlignment, F->getAlignment());
436    if (F->hasSection()) {
437      // Give section names unique ID's.
438      unsigned &Entry = SectionMap[F->getSection()];
439      if (!Entry) {
440        WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(),
441                          0/*TODO*/, Stream);
442        Entry = SectionMap.size();
443      }
444    }
445    if (F->hasGC()) {
446      // Same for GC names.
447      unsigned &Entry = GCMap[F->getGC()];
448      if (!Entry) {
449        WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(),
450                          0/*TODO*/, Stream);
451        Entry = GCMap.size();
452      }
453    }
454  }
455
456  // Emit abbrev for globals, now that we know # sections and max alignment.
457  unsigned SimpleGVarAbbrev = 0;
458  if (!M->global_empty()) {
459    // Add an abbrev for common globals with no visibility or thread localness.
460    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
461    Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
462    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
463                              Log2_32_Ceil(MaxGlobalType+1)));
464    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));      // Constant.
465    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));        // Initializer.
466    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));      // Linkage.
467    if (MaxAlignment == 0)                                      // Alignment.
468      Abbv->Add(BitCodeAbbrevOp(0));
469    else {
470      unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
471      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
472                               Log2_32_Ceil(MaxEncAlignment+1)));
473    }
474    if (SectionMap.empty())                                    // Section.
475      Abbv->Add(BitCodeAbbrevOp(0));
476    else
477      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
478                               Log2_32_Ceil(SectionMap.size()+1)));
479    // Don't bother emitting vis + thread local.
480    SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
481  }
482
483  // Emit the global variable information.
484  SmallVector<unsigned, 64> Vals;
485  for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
486       GV != E; ++GV) {
487    unsigned AbbrevToUse = 0;
488
489    // GLOBALVAR: [type, isconst, initid,
490    //             linkage, alignment, section, visibility, threadlocal,
491    //             unnamed_addr]
492    Vals.push_back(VE.getTypeID(GV->getType()));
493    Vals.push_back(GV->isConstant());
494    Vals.push_back(GV->isDeclaration() ? 0 :
495                   (VE.getValueID(GV->getInitializer()) + 1));
496    Vals.push_back(getEncodedLinkage(GV));
497    Vals.push_back(Log2_32(GV->getAlignment())+1);
498    Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0);
499    if (GV->isThreadLocal() ||
500        GV->getVisibility() != GlobalValue::DefaultVisibility ||
501        GV->hasUnnamedAddr()) {
502      Vals.push_back(getEncodedVisibility(GV));
503      Vals.push_back(getEncodedThreadLocalMode(GV));
504      Vals.push_back(GV->hasUnnamedAddr());
505    } else {
506      AbbrevToUse = SimpleGVarAbbrev;
507    }
508
509    Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
510    Vals.clear();
511  }
512
513  // Emit the function proto information.
514  for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
515    // FUNCTION:  [type, callingconv, isproto, linkage, paramattrs, alignment,
516    //             section, visibility, gc, unnamed_addr]
517    Vals.push_back(VE.getTypeID(F->getType()));
518    Vals.push_back(F->getCallingConv());
519    Vals.push_back(F->isDeclaration());
520    Vals.push_back(getEncodedLinkage(F));
521    Vals.push_back(VE.getAttributeID(F->getAttributes()));
522    Vals.push_back(Log2_32(F->getAlignment())+1);
523    Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0);
524    Vals.push_back(getEncodedVisibility(F));
525    Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0);
526    Vals.push_back(F->hasUnnamedAddr());
527
528    unsigned AbbrevToUse = 0;
529    Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
530    Vals.clear();
531  }
532
533  // Emit the alias information.
534  for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end();
535       AI != E; ++AI) {
536    // ALIAS: [alias type, aliasee val#, linkage, visibility]
537    Vals.push_back(VE.getTypeID(AI->getType()));
538    Vals.push_back(VE.getValueID(AI->getAliasee()));
539    Vals.push_back(getEncodedLinkage(AI));
540    Vals.push_back(getEncodedVisibility(AI));
541    unsigned AbbrevToUse = 0;
542    Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
543    Vals.clear();
544  }
545}
546
547static uint64_t GetOptimizationFlags(const Value *V) {
548  uint64_t Flags = 0;
549
550  if (const OverflowingBinaryOperator *OBO =
551        dyn_cast<OverflowingBinaryOperator>(V)) {
552    if (OBO->hasNoSignedWrap())
553      Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
554    if (OBO->hasNoUnsignedWrap())
555      Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
556  } else if (const PossiblyExactOperator *PEO =
557               dyn_cast<PossiblyExactOperator>(V)) {
558    if (PEO->isExact())
559      Flags |= 1 << bitc::PEO_EXACT;
560  }
561
562  return Flags;
563}
564
565static void WriteMDNode(const MDNode *N,
566                        const llvm_3_2::ValueEnumerator &VE,
567                        BitstreamWriter &Stream,
568                        SmallVector<uint64_t, 64> &Record) {
569  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
570    if (N->getOperand(i)) {
571      Record.push_back(VE.getTypeID(N->getOperand(i)->getType()));
572      Record.push_back(VE.getValueID(N->getOperand(i)));
573    } else {
574      Record.push_back(VE.getTypeID(Type::getVoidTy(N->getContext())));
575      Record.push_back(0);
576    }
577  }
578  unsigned MDCode = N->isFunctionLocal() ? bitc::METADATA_FN_NODE :
579                                           bitc::METADATA_NODE;
580  Stream.EmitRecord(MDCode, Record, 0);
581  Record.clear();
582}
583
584static void WriteModuleMetadata(const Module *M,
585                                const llvm_3_2::ValueEnumerator &VE,
586                                BitstreamWriter &Stream) {
587  const llvm_3_2::ValueEnumerator::ValueList &Vals = VE.getMDValues();
588  bool StartedMetadataBlock = false;
589  unsigned MDSAbbrev = 0;
590  SmallVector<uint64_t, 64> Record;
591  for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
592
593    if (const MDNode *N = dyn_cast<MDNode>(Vals[i].first)) {
594      if (!N->isFunctionLocal() || !N->getFunction()) {
595        if (!StartedMetadataBlock) {
596          Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
597          StartedMetadataBlock = true;
598        }
599        WriteMDNode(N, VE, Stream, Record);
600      }
601    } else if (const MDString *MDS = dyn_cast<MDString>(Vals[i].first)) {
602      if (!StartedMetadataBlock)  {
603        Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
604
605        // Abbrev for METADATA_STRING.
606        BitCodeAbbrev *Abbv = new BitCodeAbbrev();
607        Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING));
608        Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
609        Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
610        MDSAbbrev = Stream.EmitAbbrev(Abbv);
611        StartedMetadataBlock = true;
612      }
613
614      // Code: [strchar x N]
615      Record.append(MDS->begin(), MDS->end());
616
617      // Emit the finished record.
618      Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev);
619      Record.clear();
620    }
621  }
622
623  // Write named metadata.
624  for (Module::const_named_metadata_iterator I = M->named_metadata_begin(),
625       E = M->named_metadata_end(); I != E; ++I) {
626    const NamedMDNode *NMD = I;
627    if (!StartedMetadataBlock)  {
628      Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
629      StartedMetadataBlock = true;
630    }
631
632    // Write name.
633    StringRef Str = NMD->getName();
634    for (unsigned i = 0, e = Str.size(); i != e; ++i)
635      Record.push_back(Str[i]);
636    Stream.EmitRecord(bitc::METADATA_NAME, Record, 0/*TODO*/);
637    Record.clear();
638
639    // Write named metadata operands.
640    for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i)
641      Record.push_back(VE.getValueID(NMD->getOperand(i)));
642    Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
643    Record.clear();
644  }
645
646  if (StartedMetadataBlock)
647    Stream.ExitBlock();
648}
649
650static void WriteFunctionLocalMetadata(const Function &F,
651                                       const llvm_3_2::ValueEnumerator &VE,
652                                       BitstreamWriter &Stream) {
653  bool StartedMetadataBlock = false;
654  SmallVector<uint64_t, 64> Record;
655  const SmallVector<const MDNode *, 8> &Vals = VE.getFunctionLocalMDValues();
656  for (unsigned i = 0, e = Vals.size(); i != e; ++i)
657    if (const MDNode *N = Vals[i])
658      if (N->isFunctionLocal() && N->getFunction() == &F) {
659        if (!StartedMetadataBlock) {
660          Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
661          StartedMetadataBlock = true;
662        }
663        WriteMDNode(N, VE, Stream, Record);
664      }
665
666  if (StartedMetadataBlock)
667    Stream.ExitBlock();
668}
669
670static void WriteMetadataAttachment(const Function &F,
671                                    const llvm_3_2::ValueEnumerator &VE,
672                                    BitstreamWriter &Stream) {
673  Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
674
675  SmallVector<uint64_t, 64> Record;
676
677  // Write metadata attachments
678  // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
679  SmallVector<std::pair<unsigned, MDNode*>, 4> MDs;
680
681  for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
682    for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
683         I != E; ++I) {
684      MDs.clear();
685      I->getAllMetadataOtherThanDebugLoc(MDs);
686
687      // If no metadata, ignore instruction.
688      if (MDs.empty()) continue;
689
690      Record.push_back(VE.getInstructionID(I));
691
692      for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
693        Record.push_back(MDs[i].first);
694        Record.push_back(VE.getValueID(MDs[i].second));
695      }
696      Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
697      Record.clear();
698    }
699
700  Stream.ExitBlock();
701}
702
703static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) {
704  SmallVector<uint64_t, 64> Record;
705
706  // Write metadata kinds
707  // METADATA_KIND - [n x [id, name]]
708  SmallVector<StringRef, 4> Names;
709  M->getMDKindNames(Names);
710
711  if (Names.empty()) return;
712
713  Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
714
715  for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
716    Record.push_back(MDKindID);
717    StringRef KName = Names[MDKindID];
718    Record.append(KName.begin(), KName.end());
719
720    Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
721    Record.clear();
722  }
723
724  Stream.ExitBlock();
725}
726
727static void EmitAPInt(SmallVectorImpl<uint64_t> &Vals,
728                      unsigned &Code, unsigned &AbbrevToUse, const APInt &Val,
729                      bool EmitSizeForWideNumbers = false
730                      ) {
731  if (Val.getBitWidth() <= 64) {
732    uint64_t V = Val.getSExtValue();
733    if ((int64_t)V >= 0)
734      Vals.push_back(V << 1);
735    else
736      Vals.push_back((-V << 1) | 1);
737    Code = bitc::CST_CODE_INTEGER;
738    AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
739  } else {
740    // Wide integers, > 64 bits in size.
741    // We have an arbitrary precision integer value to write whose
742    // bit width is > 64. However, in canonical unsigned integer
743    // format it is likely that the high bits are going to be zero.
744    // So, we only write the number of active words.
745    unsigned NWords = Val.getActiveWords();
746
747    if (EmitSizeForWideNumbers)
748      Vals.push_back(NWords);
749
750    const uint64_t *RawWords = Val.getRawData();
751    for (unsigned i = 0; i != NWords; ++i) {
752      int64_t V = RawWords[i];
753      if (V >= 0)
754        Vals.push_back(V << 1);
755      else
756        Vals.push_back((-V << 1) | 1);
757    }
758    Code = bitc::CST_CODE_WIDE_INTEGER;
759  }
760}
761
762static void WriteConstants(unsigned FirstVal, unsigned LastVal,
763                           const llvm_3_2::ValueEnumerator &VE,
764                           BitstreamWriter &Stream, bool isGlobal) {
765  if (FirstVal == LastVal) return;
766
767  Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
768
769  unsigned AggregateAbbrev = 0;
770  unsigned String8Abbrev = 0;
771  unsigned CString7Abbrev = 0;
772  unsigned CString6Abbrev = 0;
773  // If this is a constant pool for the module, emit module-specific abbrevs.
774  if (isGlobal) {
775    // Abbrev for CST_CODE_AGGREGATE.
776    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
777    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
778    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
779    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
780    AggregateAbbrev = Stream.EmitAbbrev(Abbv);
781
782    // Abbrev for CST_CODE_STRING.
783    Abbv = new BitCodeAbbrev();
784    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
785    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
786    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
787    String8Abbrev = Stream.EmitAbbrev(Abbv);
788    // Abbrev for CST_CODE_CSTRING.
789    Abbv = new BitCodeAbbrev();
790    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
791    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
792    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
793    CString7Abbrev = Stream.EmitAbbrev(Abbv);
794    // Abbrev for CST_CODE_CSTRING.
795    Abbv = new BitCodeAbbrev();
796    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
797    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
798    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
799    CString6Abbrev = Stream.EmitAbbrev(Abbv);
800  }
801
802  SmallVector<uint64_t, 64> Record;
803
804  const llvm_3_2::ValueEnumerator::ValueList &Vals = VE.getValues();
805  Type *LastTy = 0;
806  for (unsigned i = FirstVal; i != LastVal; ++i) {
807    const Value *V = Vals[i].first;
808    // If we need to switch types, do so now.
809    if (V->getType() != LastTy) {
810      LastTy = V->getType();
811      Record.push_back(VE.getTypeID(LastTy));
812      Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
813                        CONSTANTS_SETTYPE_ABBREV);
814      Record.clear();
815    }
816
817    if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
818      Record.push_back(unsigned(IA->hasSideEffects()) |
819                       unsigned(IA->isAlignStack()) << 1 |
820                       unsigned(IA->getDialect()&1) << 2);
821
822      // Add the asm string.
823      const std::string &AsmStr = IA->getAsmString();
824      Record.push_back(AsmStr.size());
825      for (unsigned i = 0, e = AsmStr.size(); i != e; ++i)
826        Record.push_back(AsmStr[i]);
827
828      // Add the constraint string.
829      const std::string &ConstraintStr = IA->getConstraintString();
830      Record.push_back(ConstraintStr.size());
831      for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i)
832        Record.push_back(ConstraintStr[i]);
833      Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
834      Record.clear();
835      continue;
836    }
837    const Constant *C = cast<Constant>(V);
838    unsigned Code = -1U;
839    unsigned AbbrevToUse = 0;
840    if (C->isNullValue()) {
841      Code = bitc::CST_CODE_NULL;
842    } else if (isa<UndefValue>(C)) {
843      Code = bitc::CST_CODE_UNDEF;
844    } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
845      EmitAPInt(Record, Code, AbbrevToUse, IV->getValue());
846    } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
847      Code = bitc::CST_CODE_FLOAT;
848      Type *Ty = CFP->getType();
849      if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) {
850        Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
851      } else if (Ty->isX86_FP80Ty()) {
852        // api needed to prevent premature destruction
853        // bits are not in the same order as a normal i80 APInt, compensate.
854        APInt api = CFP->getValueAPF().bitcastToAPInt();
855        const uint64_t *p = api.getRawData();
856        Record.push_back((p[1] << 48) | (p[0] >> 16));
857        Record.push_back(p[0] & 0xffffLL);
858      } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
859        APInt api = CFP->getValueAPF().bitcastToAPInt();
860        const uint64_t *p = api.getRawData();
861        Record.push_back(p[0]);
862        Record.push_back(p[1]);
863      } else {
864        assert (0 && "Unknown FP type!");
865      }
866    } else if (isa<ConstantDataSequential>(C) &&
867               cast<ConstantDataSequential>(C)->isString()) {
868      const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
869      // Emit constant strings specially.
870      unsigned NumElts = Str->getNumElements();
871      // If this is a null-terminated string, use the denser CSTRING encoding.
872      if (Str->isCString()) {
873        Code = bitc::CST_CODE_CSTRING;
874        --NumElts;  // Don't encode the null, which isn't allowed by char6.
875      } else {
876        Code = bitc::CST_CODE_STRING;
877        AbbrevToUse = String8Abbrev;
878      }
879      bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
880      bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
881      for (unsigned i = 0; i != NumElts; ++i) {
882        unsigned char V = Str->getElementAsInteger(i);
883        Record.push_back(V);
884        isCStr7 &= (V & 128) == 0;
885        if (isCStrChar6)
886          isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
887      }
888
889      if (isCStrChar6)
890        AbbrevToUse = CString6Abbrev;
891      else if (isCStr7)
892        AbbrevToUse = CString7Abbrev;
893    } else if (const ConstantDataSequential *CDS =
894                  dyn_cast<ConstantDataSequential>(C)) {
895      Code = bitc::CST_CODE_DATA;
896      Type *EltTy = CDS->getType()->getElementType();
897      if (isa<IntegerType>(EltTy)) {
898        for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
899          Record.push_back(CDS->getElementAsInteger(i));
900      } else if (EltTy->isFloatTy()) {
901        for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
902          union { float F; uint32_t I; };
903          F = CDS->getElementAsFloat(i);
904          Record.push_back(I);
905        }
906      } else {
907        assert(EltTy->isDoubleTy() && "Unknown ConstantData element type");
908        for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
909          union { double F; uint64_t I; };
910          F = CDS->getElementAsDouble(i);
911          Record.push_back(I);
912        }
913      }
914    } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) ||
915               isa<ConstantVector>(C)) {
916      Code = bitc::CST_CODE_AGGREGATE;
917      for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
918        Record.push_back(VE.getValueID(C->getOperand(i)));
919      AbbrevToUse = AggregateAbbrev;
920    } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
921      switch (CE->getOpcode()) {
922      default:
923        if (Instruction::isCast(CE->getOpcode())) {
924          Code = bitc::CST_CODE_CE_CAST;
925          Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
926          Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
927          Record.push_back(VE.getValueID(C->getOperand(0)));
928          AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
929        } else {
930          assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
931          Code = bitc::CST_CODE_CE_BINOP;
932          Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
933          Record.push_back(VE.getValueID(C->getOperand(0)));
934          Record.push_back(VE.getValueID(C->getOperand(1)));
935          uint64_t Flags = GetOptimizationFlags(CE);
936          if (Flags != 0)
937            Record.push_back(Flags);
938        }
939        break;
940      case Instruction::GetElementPtr:
941        Code = bitc::CST_CODE_CE_GEP;
942        if (cast<GEPOperator>(C)->isInBounds())
943          Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
944        for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
945          Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
946          Record.push_back(VE.getValueID(C->getOperand(i)));
947        }
948        break;
949      case Instruction::Select:
950        Code = bitc::CST_CODE_CE_SELECT;
951        Record.push_back(VE.getValueID(C->getOperand(0)));
952        Record.push_back(VE.getValueID(C->getOperand(1)));
953        Record.push_back(VE.getValueID(C->getOperand(2)));
954        break;
955      case Instruction::ExtractElement:
956        Code = bitc::CST_CODE_CE_EXTRACTELT;
957        Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
958        Record.push_back(VE.getValueID(C->getOperand(0)));
959        Record.push_back(VE.getValueID(C->getOperand(1)));
960        break;
961      case Instruction::InsertElement:
962        Code = bitc::CST_CODE_CE_INSERTELT;
963        Record.push_back(VE.getValueID(C->getOperand(0)));
964        Record.push_back(VE.getValueID(C->getOperand(1)));
965        Record.push_back(VE.getValueID(C->getOperand(2)));
966        break;
967      case Instruction::ShuffleVector:
968        // If the return type and argument types are the same, this is a
969        // standard shufflevector instruction.  If the types are different,
970        // then the shuffle is widening or truncating the input vectors, and
971        // the argument type must also be encoded.
972        if (C->getType() == C->getOperand(0)->getType()) {
973          Code = bitc::CST_CODE_CE_SHUFFLEVEC;
974        } else {
975          Code = bitc::CST_CODE_CE_SHUFVEC_EX;
976          Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
977        }
978        Record.push_back(VE.getValueID(C->getOperand(0)));
979        Record.push_back(VE.getValueID(C->getOperand(1)));
980        Record.push_back(VE.getValueID(C->getOperand(2)));
981        break;
982      case Instruction::ICmp:
983      case Instruction::FCmp:
984        Code = bitc::CST_CODE_CE_CMP;
985        Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
986        Record.push_back(VE.getValueID(C->getOperand(0)));
987        Record.push_back(VE.getValueID(C->getOperand(1)));
988        Record.push_back(CE->getPredicate());
989        break;
990      }
991    } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
992      Code = bitc::CST_CODE_BLOCKADDRESS;
993      Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
994      Record.push_back(VE.getValueID(BA->getFunction()));
995      Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
996    } else {
997#ifndef NDEBUG
998      C->dump();
999#endif
1000      llvm_unreachable("Unknown constant!");
1001    }
1002    Stream.EmitRecord(Code, Record, AbbrevToUse);
1003    Record.clear();
1004  }
1005
1006  Stream.ExitBlock();
1007}
1008
1009static void WriteModuleConstants(const llvm_3_2::ValueEnumerator &VE,
1010                                 BitstreamWriter &Stream) {
1011  const llvm_3_2::ValueEnumerator::ValueList &Vals = VE.getValues();
1012
1013  // Find the first constant to emit, which is the first non-globalvalue value.
1014  // We know globalvalues have been emitted by WriteModuleInfo.
1015  for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
1016    if (!isa<GlobalValue>(Vals[i].first)) {
1017      WriteConstants(i, Vals.size(), VE, Stream, true);
1018      return;
1019    }
1020  }
1021}
1022
1023/// PushValueAndType - The file has to encode both the value and type id for
1024/// many values, because we need to know what type to create for forward
1025/// references.  However, most operands are not forward references, so this type
1026/// field is not needed.
1027///
1028/// This function adds V's value ID to Vals.  If the value ID is higher than the
1029/// instruction ID, then it is a forward reference, and it also includes the
1030/// type ID.
1031static bool PushValueAndType(const Value *V, unsigned InstID,
1032                             SmallVector<unsigned, 64> &Vals,
1033                             llvm_3_2::ValueEnumerator &VE) {
1034  unsigned ValID = VE.getValueID(V);
1035  Vals.push_back(ValID);
1036  if (ValID >= InstID) {
1037    Vals.push_back(VE.getTypeID(V->getType()));
1038    return true;
1039  }
1040  return false;
1041}
1042
1043/// WriteInstruction - Emit an instruction to the specified stream.
1044static void WriteInstruction(const Instruction &I, unsigned InstID,
1045                             llvm_3_2::ValueEnumerator &VE,
1046                             BitstreamWriter &Stream,
1047                             SmallVector<unsigned, 64> &Vals) {
1048  unsigned Code = 0;
1049  unsigned AbbrevToUse = 0;
1050  VE.setInstructionID(&I);
1051  switch (I.getOpcode()) {
1052  default:
1053    if (Instruction::isCast(I.getOpcode())) {
1054      Code = bitc::FUNC_CODE_INST_CAST;
1055      if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1056        AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
1057      Vals.push_back(VE.getTypeID(I.getType()));
1058      Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
1059    } else {
1060      assert(isa<BinaryOperator>(I) && "Unknown instruction!");
1061      Code = bitc::FUNC_CODE_INST_BINOP;
1062      if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1063        AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
1064      Vals.push_back(VE.getValueID(I.getOperand(1)));
1065      Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
1066      uint64_t Flags = GetOptimizationFlags(&I);
1067      if (Flags != 0) {
1068        if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
1069          AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
1070        Vals.push_back(Flags);
1071      }
1072    }
1073    break;
1074
1075  case Instruction::GetElementPtr:
1076    Code = bitc::FUNC_CODE_INST_GEP;
1077    if (cast<GEPOperator>(&I)->isInBounds())
1078      Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP;
1079    for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
1080      PushValueAndType(I.getOperand(i), InstID, Vals, VE);
1081    break;
1082  case Instruction::ExtractValue: {
1083    Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
1084    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1085    const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
1086    for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
1087      Vals.push_back(*i);
1088    break;
1089  }
1090  case Instruction::InsertValue: {
1091    Code = bitc::FUNC_CODE_INST_INSERTVAL;
1092    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1093    PushValueAndType(I.getOperand(1), InstID, Vals, VE);
1094    const InsertValueInst *IVI = cast<InsertValueInst>(&I);
1095    for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
1096      Vals.push_back(*i);
1097    break;
1098  }
1099  case Instruction::Select:
1100    Code = bitc::FUNC_CODE_INST_VSELECT;
1101    PushValueAndType(I.getOperand(1), InstID, Vals, VE);
1102    Vals.push_back(VE.getValueID(I.getOperand(2)));
1103    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1104    break;
1105  case Instruction::ExtractElement:
1106    Code = bitc::FUNC_CODE_INST_EXTRACTELT;
1107    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1108    Vals.push_back(VE.getValueID(I.getOperand(1)));
1109    break;
1110  case Instruction::InsertElement:
1111    Code = bitc::FUNC_CODE_INST_INSERTELT;
1112    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1113    Vals.push_back(VE.getValueID(I.getOperand(1)));
1114    Vals.push_back(VE.getValueID(I.getOperand(2)));
1115    break;
1116  case Instruction::ShuffleVector:
1117    Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
1118    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1119    Vals.push_back(VE.getValueID(I.getOperand(1)));
1120    Vals.push_back(VE.getValueID(I.getOperand(2)));
1121    break;
1122  case Instruction::ICmp:
1123  case Instruction::FCmp:
1124    // compare returning Int1Ty or vector of Int1Ty
1125    Code = bitc::FUNC_CODE_INST_CMP2;
1126    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1127    Vals.push_back(VE.getValueID(I.getOperand(1)));
1128    Vals.push_back(cast<CmpInst>(I).getPredicate());
1129    break;
1130
1131  case Instruction::Ret:
1132    {
1133      Code = bitc::FUNC_CODE_INST_RET;
1134      unsigned NumOperands = I.getNumOperands();
1135      if (NumOperands == 0)
1136        AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
1137      else if (NumOperands == 1) {
1138        if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1139          AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
1140      } else {
1141        for (unsigned i = 0, e = NumOperands; i != e; ++i)
1142          PushValueAndType(I.getOperand(i), InstID, Vals, VE);
1143      }
1144    }
1145    break;
1146  case Instruction::Br:
1147    {
1148      Code = bitc::FUNC_CODE_INST_BR;
1149      BranchInst &II = cast<BranchInst>(I);
1150      Vals.push_back(VE.getValueID(II.getSuccessor(0)));
1151      if (II.isConditional()) {
1152        Vals.push_back(VE.getValueID(II.getSuccessor(1)));
1153        Vals.push_back(VE.getValueID(II.getCondition()));
1154      }
1155    }
1156    break;
1157  case Instruction::Switch:
1158    {
1159      // Redefine Vals, since here we need to use 64 bit values
1160      // explicitly to store large APInt numbers.
1161      SmallVector<uint64_t, 128> Vals64;
1162
1163      Code = bitc::FUNC_CODE_INST_SWITCH;
1164      SwitchInst &SI = cast<SwitchInst>(I);
1165
1166      uint32_t SwitchRecordHeader = SI.hash() | (SWITCH_INST_MAGIC << 16);
1167      Vals64.push_back(SwitchRecordHeader);
1168
1169      Vals64.push_back(VE.getTypeID(SI.getCondition()->getType()));
1170      Vals64.push_back(VE.getValueID(SI.getCondition()));
1171      Vals64.push_back(VE.getValueID(SI.getDefaultDest()));
1172      Vals64.push_back(SI.getNumCases());
1173      for (SwitchInst::CaseIt i = SI.case_begin(), e = SI.case_end();
1174           i != e; ++i) {
1175        IntegersSubset& CaseRanges = i.getCaseValueEx();
1176        unsigned Code, Abbrev; // will unused.
1177
1178        if (CaseRanges.isSingleNumber()) {
1179          Vals64.push_back(1/*NumItems = 1*/);
1180          Vals64.push_back(true/*IsSingleNumber = true*/);
1181          EmitAPInt(Vals64, Code, Abbrev, CaseRanges.getSingleNumber(0), true);
1182        } else {
1183
1184          Vals64.push_back(CaseRanges.getNumItems());
1185
1186          if (CaseRanges.isSingleNumbersOnly()) {
1187            for (unsigned ri = 0, rn = CaseRanges.getNumItems();
1188                 ri != rn; ++ri) {
1189
1190              Vals64.push_back(true/*IsSingleNumber = true*/);
1191
1192              EmitAPInt(Vals64, Code, Abbrev,
1193                        CaseRanges.getSingleNumber(ri), true);
1194            }
1195          } else
1196            for (unsigned ri = 0, rn = CaseRanges.getNumItems();
1197                 ri != rn; ++ri) {
1198              IntegersSubset::Range r = CaseRanges.getItem(ri);
1199              bool IsSingleNumber = CaseRanges.isSingleNumber(ri);
1200
1201              Vals64.push_back(IsSingleNumber);
1202
1203              EmitAPInt(Vals64, Code, Abbrev, r.getLow(), true);
1204              if (!IsSingleNumber)
1205                EmitAPInt(Vals64, Code, Abbrev, r.getHigh(), true);
1206            }
1207        }
1208        Vals64.push_back(VE.getValueID(i.getCaseSuccessor()));
1209      }
1210
1211      Stream.EmitRecord(Code, Vals64, AbbrevToUse);
1212
1213      // Also do expected action - clear external Vals collection:
1214      Vals.clear();
1215      return;
1216    }
1217    break;
1218  case Instruction::IndirectBr:
1219    Code = bitc::FUNC_CODE_INST_INDIRECTBR;
1220    Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1221    for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
1222      Vals.push_back(VE.getValueID(I.getOperand(i)));
1223    break;
1224
1225  case Instruction::Invoke: {
1226    const InvokeInst *II = cast<InvokeInst>(&I);
1227    const Value *Callee(II->getCalledValue());
1228    PointerType *PTy = cast<PointerType>(Callee->getType());
1229    FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1230    Code = bitc::FUNC_CODE_INST_INVOKE;
1231
1232    Vals.push_back(VE.getAttributeID(II->getAttributes()));
1233    Vals.push_back(II->getCallingConv());
1234    Vals.push_back(VE.getValueID(II->getNormalDest()));
1235    Vals.push_back(VE.getValueID(II->getUnwindDest()));
1236    PushValueAndType(Callee, InstID, Vals, VE);
1237
1238    // Emit value #'s for the fixed parameters.
1239    for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1240      Vals.push_back(VE.getValueID(I.getOperand(i)));  // fixed param.
1241
1242    // Emit type/value pairs for varargs params.
1243    if (FTy->isVarArg()) {
1244      for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3;
1245           i != e; ++i)
1246        PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
1247    }
1248    break;
1249  }
1250  case Instruction::Resume:
1251    Code = bitc::FUNC_CODE_INST_RESUME;
1252    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1253    break;
1254  case Instruction::Unreachable:
1255    Code = bitc::FUNC_CODE_INST_UNREACHABLE;
1256    AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
1257    break;
1258
1259  case Instruction::PHI: {
1260    const PHINode &PN = cast<PHINode>(I);
1261    Code = bitc::FUNC_CODE_INST_PHI;
1262    Vals.push_back(VE.getTypeID(PN.getType()));
1263    for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
1264      Vals.push_back(VE.getValueID(PN.getIncomingValue(i)));
1265      Vals.push_back(VE.getValueID(PN.getIncomingBlock(i)));
1266    }
1267    break;
1268  }
1269
1270  case Instruction::LandingPad: {
1271    const LandingPadInst &LP = cast<LandingPadInst>(I);
1272    Code = bitc::FUNC_CODE_INST_LANDINGPAD;
1273    Vals.push_back(VE.getTypeID(LP.getType()));
1274    PushValueAndType(LP.getPersonalityFn(), InstID, Vals, VE);
1275    Vals.push_back(LP.isCleanup());
1276    Vals.push_back(LP.getNumClauses());
1277    for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
1278      if (LP.isCatch(I))
1279        Vals.push_back(LandingPadInst::Catch);
1280      else
1281        Vals.push_back(LandingPadInst::Filter);
1282      PushValueAndType(LP.getClause(I), InstID, Vals, VE);
1283    }
1284    break;
1285  }
1286
1287  case Instruction::Alloca:
1288    Code = bitc::FUNC_CODE_INST_ALLOCA;
1289    Vals.push_back(VE.getTypeID(I.getType()));
1290    Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1291    Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
1292    Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1);
1293    break;
1294
1295  case Instruction::Load:
1296    if (cast<LoadInst>(I).isAtomic()) {
1297      Code = bitc::FUNC_CODE_INST_LOADATOMIC;
1298      PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1299    } else {
1300      Code = bitc::FUNC_CODE_INST_LOAD;
1301      if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))  // ptr
1302        AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
1303    }
1304    Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
1305    Vals.push_back(cast<LoadInst>(I).isVolatile());
1306    if (cast<LoadInst>(I).isAtomic()) {
1307      Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering()));
1308      Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope()));
1309    }
1310    break;
1311  case Instruction::Store:
1312    if (cast<StoreInst>(I).isAtomic())
1313      Code = bitc::FUNC_CODE_INST_STOREATOMIC;
1314    else
1315      Code = bitc::FUNC_CODE_INST_STORE;
1316    PushValueAndType(I.getOperand(1), InstID, Vals, VE);  // ptrty + ptr
1317    Vals.push_back(VE.getValueID(I.getOperand(0)));       // val.
1318    Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
1319    Vals.push_back(cast<StoreInst>(I).isVolatile());
1320    if (cast<StoreInst>(I).isAtomic()) {
1321      Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering()));
1322      Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope()));
1323    }
1324    break;
1325  case Instruction::AtomicCmpXchg:
1326    Code = bitc::FUNC_CODE_INST_CMPXCHG;
1327    PushValueAndType(I.getOperand(0), InstID, Vals, VE);  // ptrty + ptr
1328    Vals.push_back(VE.getValueID(I.getOperand(1)));       // cmp.
1329    Vals.push_back(VE.getValueID(I.getOperand(2)));       // newval.
1330    Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
1331    Vals.push_back(GetEncodedOrdering(
1332                     cast<AtomicCmpXchgInst>(I).getOrdering()));
1333    Vals.push_back(GetEncodedSynchScope(
1334                     cast<AtomicCmpXchgInst>(I).getSynchScope()));
1335    break;
1336  case Instruction::AtomicRMW:
1337    Code = bitc::FUNC_CODE_INST_ATOMICRMW;
1338    PushValueAndType(I.getOperand(0), InstID, Vals, VE);  // ptrty + ptr
1339    Vals.push_back(VE.getValueID(I.getOperand(1)));       // val.
1340    Vals.push_back(GetEncodedRMWOperation(
1341                     cast<AtomicRMWInst>(I).getOperation()));
1342    Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
1343    Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
1344    Vals.push_back(GetEncodedSynchScope(
1345                     cast<AtomicRMWInst>(I).getSynchScope()));
1346    break;
1347  case Instruction::Fence:
1348    Code = bitc::FUNC_CODE_INST_FENCE;
1349    Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering()));
1350    Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope()));
1351    break;
1352  case Instruction::Call: {
1353    const CallInst &CI = cast<CallInst>(I);
1354    PointerType *PTy = cast<PointerType>(CI.getCalledValue()->getType());
1355    FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1356
1357    Code = bitc::FUNC_CODE_INST_CALL;
1358
1359    Vals.push_back(VE.getAttributeID(CI.getAttributes()));
1360    Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()));
1361    PushValueAndType(CI.getCalledValue(), InstID, Vals, VE);  // Callee
1362
1363    // Emit value #'s for the fixed parameters.
1364    for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1365      Vals.push_back(VE.getValueID(CI.getArgOperand(i)));  // fixed param.
1366
1367    // Emit type/value pairs for varargs params.
1368    if (FTy->isVarArg()) {
1369      for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands();
1370           i != e; ++i)
1371        PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE);  // varargs
1372    }
1373    break;
1374  }
1375  case Instruction::VAArg:
1376    Code = bitc::FUNC_CODE_INST_VAARG;
1377    Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
1378    Vals.push_back(VE.getValueID(I.getOperand(0))); // valist.
1379    Vals.push_back(VE.getTypeID(I.getType())); // restype.
1380    break;
1381  }
1382
1383  Stream.EmitRecord(Code, Vals, AbbrevToUse);
1384  Vals.clear();
1385}
1386
1387// Emit names for globals/functions etc.
1388static void WriteValueSymbolTable(const ValueSymbolTable &VST,
1389                                  const llvm_3_2::ValueEnumerator &VE,
1390                                  BitstreamWriter &Stream) {
1391  if (VST.empty()) return;
1392  Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
1393
1394  // FIXME: Set up the abbrev, we know how many values there are!
1395  // FIXME: We know if the type names can use 7-bit ascii.
1396  SmallVector<unsigned, 64> NameVals;
1397
1398  for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
1399       SI != SE; ++SI) {
1400
1401    const ValueName &Name = *SI;
1402
1403    // Figure out the encoding to use for the name.
1404    bool is7Bit = true;
1405    bool isChar6 = true;
1406    for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
1407         C != E; ++C) {
1408      if (isChar6)
1409        isChar6 = BitCodeAbbrevOp::isChar6(*C);
1410      if ((unsigned char)*C & 128) {
1411        is7Bit = false;
1412        break;  // don't bother scanning the rest.
1413      }
1414    }
1415
1416    unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
1417
1418    // VST_ENTRY:   [valueid, namechar x N]
1419    // VST_BBENTRY: [bbid, namechar x N]
1420    unsigned Code;
1421    if (isa<BasicBlock>(SI->getValue())) {
1422      Code = bitc::VST_CODE_BBENTRY;
1423      if (isChar6)
1424        AbbrevToUse = VST_BBENTRY_6_ABBREV;
1425    } else {
1426      Code = bitc::VST_CODE_ENTRY;
1427      if (isChar6)
1428        AbbrevToUse = VST_ENTRY_6_ABBREV;
1429      else if (is7Bit)
1430        AbbrevToUse = VST_ENTRY_7_ABBREV;
1431    }
1432
1433    NameVals.push_back(VE.getValueID(SI->getValue()));
1434    for (const char *P = Name.getKeyData(),
1435         *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
1436      NameVals.push_back((unsigned char)*P);
1437
1438    // Emit the finished record.
1439    Stream.EmitRecord(Code, NameVals, AbbrevToUse);
1440    NameVals.clear();
1441  }
1442  Stream.ExitBlock();
1443}
1444
1445/// WriteFunction - Emit a function body to the module stream.
1446static void WriteFunction(const Function &F, llvm_3_2::ValueEnumerator &VE,
1447                          BitstreamWriter &Stream) {
1448  Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
1449  VE.incorporateFunction(F);
1450
1451  SmallVector<unsigned, 64> Vals;
1452
1453  // Emit the number of basic blocks, so the reader can create them ahead of
1454  // time.
1455  Vals.push_back(VE.getBasicBlocks().size());
1456  Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
1457  Vals.clear();
1458
1459  // If there are function-local constants, emit them now.
1460  unsigned CstStart, CstEnd;
1461  VE.getFunctionConstantRange(CstStart, CstEnd);
1462  WriteConstants(CstStart, CstEnd, VE, Stream, false);
1463
1464  // If there is function-local metadata, emit it now.
1465  WriteFunctionLocalMetadata(F, VE, Stream);
1466
1467  // Keep a running idea of what the instruction ID is.
1468  unsigned InstID = CstEnd;
1469
1470  bool NeedsMetadataAttachment = false;
1471
1472  DebugLoc LastDL;
1473
1474  // Finally, emit all the instructions, in order.
1475  for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1476    for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
1477         I != E; ++I) {
1478      WriteInstruction(*I, InstID, VE, Stream, Vals);
1479
1480      if (!I->getType()->isVoidTy())
1481        ++InstID;
1482
1483      // If the instruction has metadata, write a metadata attachment later.
1484      NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
1485
1486      // If the instruction has a debug location, emit it.
1487      DebugLoc DL = I->getDebugLoc();
1488      if (DL.isUnknown()) {
1489        // nothing todo.
1490      } else if (DL == LastDL) {
1491        // Just repeat the same debug loc as last time.
1492        Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
1493      } else {
1494        MDNode *Scope, *IA;
1495        DL.getScopeAndInlinedAt(Scope, IA, I->getContext());
1496
1497        Vals.push_back(DL.getLine());
1498        Vals.push_back(DL.getCol());
1499        Vals.push_back(Scope ? VE.getValueID(Scope)+1 : 0);
1500        Vals.push_back(IA ? VE.getValueID(IA)+1 : 0);
1501        Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
1502        Vals.clear();
1503
1504        LastDL = DL;
1505      }
1506    }
1507
1508  // Emit names for all the instructions etc.
1509  WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
1510
1511  if (NeedsMetadataAttachment)
1512    WriteMetadataAttachment(F, VE, Stream);
1513  VE.purgeFunction();
1514  Stream.ExitBlock();
1515}
1516
1517// Emit blockinfo, which defines the standard abbreviations etc.
1518static void WriteBlockInfo(const llvm_3_2::ValueEnumerator &VE,
1519                           BitstreamWriter &Stream) {
1520  // We only want to emit block info records for blocks that have multiple
1521  // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.  Other
1522  // blocks can defined their abbrevs inline.
1523  Stream.EnterBlockInfoBlock(2);
1524
1525  { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
1526    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1527    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
1528    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1529    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1530    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1531    if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1532                                   Abbv) != VST_ENTRY_8_ABBREV)
1533      llvm_unreachable("Unexpected abbrev ordering!");
1534  }
1535
1536  { // 7-bit fixed width VST_ENTRY strings.
1537    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1538    Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1539    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1540    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1541    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1542    if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1543                                   Abbv) != VST_ENTRY_7_ABBREV)
1544      llvm_unreachable("Unexpected abbrev ordering!");
1545  }
1546  { // 6-bit char6 VST_ENTRY strings.
1547    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1548    Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1549    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1550    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1551    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1552    if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1553                                   Abbv) != VST_ENTRY_6_ABBREV)
1554      llvm_unreachable("Unexpected abbrev ordering!");
1555  }
1556  { // 6-bit char6 VST_BBENTRY strings.
1557    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1558    Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
1559    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1560    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1561    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1562    if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1563                                   Abbv) != VST_BBENTRY_6_ABBREV)
1564      llvm_unreachable("Unexpected abbrev ordering!");
1565  }
1566
1567
1568
1569  { // SETTYPE abbrev for CONSTANTS_BLOCK.
1570    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1571    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
1572    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1573                              Log2_32_Ceil(VE.getTypes().size()+1)));
1574    if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1575                                   Abbv) != CONSTANTS_SETTYPE_ABBREV)
1576      llvm_unreachable("Unexpected abbrev ordering!");
1577  }
1578
1579  { // INTEGER abbrev for CONSTANTS_BLOCK.
1580    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1581    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
1582    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1583    if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1584                                   Abbv) != CONSTANTS_INTEGER_ABBREV)
1585      llvm_unreachable("Unexpected abbrev ordering!");
1586  }
1587
1588  { // CE_CAST abbrev for CONSTANTS_BLOCK.
1589    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1590    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
1591    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
1592    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
1593                              Log2_32_Ceil(VE.getTypes().size()+1)));
1594    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
1595
1596    if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1597                                   Abbv) != CONSTANTS_CE_CAST_Abbrev)
1598      llvm_unreachable("Unexpected abbrev ordering!");
1599  }
1600  { // NULL abbrev for CONSTANTS_BLOCK.
1601    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1602    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
1603    if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1604                                   Abbv) != CONSTANTS_NULL_Abbrev)
1605      llvm_unreachable("Unexpected abbrev ordering!");
1606  }
1607
1608  // FIXME: This should only use space for first class types!
1609
1610  { // INST_LOAD abbrev for FUNCTION_BLOCK.
1611    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1612    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
1613    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
1614    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
1615    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
1616    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1617                                   Abbv) != FUNCTION_INST_LOAD_ABBREV)
1618      llvm_unreachable("Unexpected abbrev ordering!");
1619  }
1620  { // INST_BINOP abbrev for FUNCTION_BLOCK.
1621    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1622    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1623    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1624    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1625    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1626    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1627                                   Abbv) != FUNCTION_INST_BINOP_ABBREV)
1628      llvm_unreachable("Unexpected abbrev ordering!");
1629  }
1630  { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
1631    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1632    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1633    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1634    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1635    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1636    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
1637    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1638                                   Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV)
1639      llvm_unreachable("Unexpected abbrev ordering!");
1640  }
1641  { // INST_CAST abbrev for FUNCTION_BLOCK.
1642    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1643    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
1644    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
1645    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
1646                              Log2_32_Ceil(VE.getTypes().size()+1)));
1647    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
1648    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1649                                   Abbv) != FUNCTION_INST_CAST_ABBREV)
1650      llvm_unreachable("Unexpected abbrev ordering!");
1651  }
1652
1653  { // INST_RET abbrev for FUNCTION_BLOCK.
1654    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1655    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1656    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1657                                   Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
1658      llvm_unreachable("Unexpected abbrev ordering!");
1659  }
1660  { // INST_RET abbrev for FUNCTION_BLOCK.
1661    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1662    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1663    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
1664    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1665                                   Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
1666      llvm_unreachable("Unexpected abbrev ordering!");
1667  }
1668  { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
1669    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1670    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
1671    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1672                                   Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
1673      llvm_unreachable("Unexpected abbrev ordering!");
1674  }
1675
1676  Stream.ExitBlock();
1677}
1678
1679// Sort the Users based on the order in which the reader parses the bitcode
1680// file.
1681static bool bitcodereader_order(const User *lhs, const User *rhs) {
1682  // TODO: Implement.
1683  return true;
1684}
1685
1686static void WriteUseList(const Value *V, const llvm_3_2::ValueEnumerator &VE,
1687                         BitstreamWriter &Stream) {
1688
1689  // One or zero uses can't get out of order.
1690  if (V->use_empty() || V->hasNUses(1))
1691    return;
1692
1693  // Make a copy of the in-memory use-list for sorting.
1694  unsigned UseListSize = std::distance(V->use_begin(), V->use_end());
1695  SmallVector<const User*, 8> UseList;
1696  UseList.reserve(UseListSize);
1697  for (Value::const_use_iterator I = V->use_begin(), E = V->use_end();
1698       I != E; ++I) {
1699    const User *U = *I;
1700    UseList.push_back(U);
1701  }
1702
1703  // Sort the copy based on the order read by the BitcodeReader.
1704  std::sort(UseList.begin(), UseList.end(), bitcodereader_order);
1705
1706  // TODO: Generate a diff between the BitcodeWriter in-memory use-list and the
1707  // sorted list (i.e., the expected BitcodeReader in-memory use-list).
1708
1709  // TODO: Emit the USELIST_CODE_ENTRYs.
1710}
1711
1712static void WriteFunctionUseList(const Function *F,
1713                                 llvm_3_2::ValueEnumerator &VE,
1714                                 BitstreamWriter &Stream) {
1715  VE.incorporateFunction(*F);
1716
1717  for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
1718       AI != AE; ++AI)
1719    WriteUseList(AI, VE, Stream);
1720  for (Function::const_iterator BB = F->begin(), FE = F->end(); BB != FE;
1721       ++BB) {
1722    WriteUseList(BB, VE, Stream);
1723    for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end(); II != IE;
1724         ++II) {
1725      WriteUseList(II, VE, Stream);
1726      for (User::const_op_iterator OI = II->op_begin(), E = II->op_end();
1727           OI != E; ++OI) {
1728        if ((isa<Constant>(*OI) && !isa<GlobalValue>(*OI)) ||
1729            isa<InlineAsm>(*OI))
1730          WriteUseList(*OI, VE, Stream);
1731      }
1732    }
1733  }
1734  VE.purgeFunction();
1735}
1736
1737// Emit use-lists.
1738static void WriteModuleUseLists(const Module *M, llvm_3_2::ValueEnumerator &VE,
1739                                BitstreamWriter &Stream) {
1740  Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3);
1741
1742  // XXX: this modifies the module, but in a way that should never change the
1743  // behavior of any pass or codegen in LLVM. The problem is that GVs may
1744  // contain entries in the use_list that do not exist in the Module and are
1745  // not stored in the .bc file.
1746  for (Module::const_global_iterator I = M->global_begin(), E = M->global_end();
1747       I != E; ++I)
1748    I->removeDeadConstantUsers();
1749
1750  // Write the global variables.
1751  for (Module::const_global_iterator GI = M->global_begin(),
1752         GE = M->global_end(); GI != GE; ++GI) {
1753    WriteUseList(GI, VE, Stream);
1754
1755    // Write the global variable initializers.
1756    if (GI->hasInitializer())
1757      WriteUseList(GI->getInitializer(), VE, Stream);
1758  }
1759
1760  // Write the functions.
1761  for (Module::const_iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) {
1762    WriteUseList(FI, VE, Stream);
1763    if (!FI->isDeclaration())
1764      WriteFunctionUseList(FI, VE, Stream);
1765  }
1766
1767  // Write the aliases.
1768  for (Module::const_alias_iterator AI = M->alias_begin(), AE = M->alias_end();
1769       AI != AE; ++AI) {
1770    WriteUseList(AI, VE, Stream);
1771    WriteUseList(AI->getAliasee(), VE, Stream);
1772  }
1773
1774  Stream.ExitBlock();
1775}
1776
1777/// WriteModule - Emit the specified module to the bitstream.
1778static void WriteModule(const Module *M, BitstreamWriter &Stream) {
1779  Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
1780
1781  // Emit the version number if it is non-zero.
1782  if (CurVersion) {
1783    SmallVector<unsigned, 1> Vals;
1784    Vals.push_back(CurVersion);
1785    Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
1786  }
1787
1788  // Analyze the module, enumerating globals, functions, etc.
1789  llvm_3_2::ValueEnumerator VE(M);
1790
1791  // Emit blockinfo, which defines the standard abbreviations etc.
1792  WriteBlockInfo(VE, Stream);
1793
1794  // Emit information about parameter attributes.
1795  WriteAttributeTable(VE, Stream);
1796
1797  // Emit information describing all of the types in the module.
1798  WriteTypeTable(VE, Stream);
1799
1800  // Emit top-level description of module, including target triple, inline asm,
1801  // descriptors for global variables, and function prototype info.
1802  WriteModuleInfo(M, VE, Stream);
1803
1804  // Emit constants.
1805  WriteModuleConstants(VE, Stream);
1806
1807  // Emit metadata.
1808  WriteModuleMetadata(M, VE, Stream);
1809
1810  // Emit metadata.
1811  WriteModuleMetadataStore(M, Stream);
1812
1813  // Emit names for globals/functions etc.
1814  WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
1815
1816  // Emit use-lists.
1817  if (EnablePreserveUseListOrdering)
1818    WriteModuleUseLists(M, VE, Stream);
1819
1820  // Emit function bodies.
1821  for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F)
1822    if (!F->isDeclaration())
1823      WriteFunction(*F, VE, Stream);
1824
1825  Stream.ExitBlock();
1826}
1827
1828/// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a
1829/// header and trailer to make it compatible with the system archiver.  To do
1830/// this we emit the following header, and then emit a trailer that pads the
1831/// file out to be a multiple of 16 bytes.
1832///
1833/// struct bc_header {
1834///   uint32_t Magic;         // 0x0B17C0DE
1835///   uint32_t Version;       // Version, currently always 0.
1836///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
1837///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
1838///   uint32_t CPUType;       // CPU specifier.
1839///   ... potentially more later ...
1840/// };
1841enum {
1842  DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size.
1843  DarwinBCHeaderSize = 5*4
1844};
1845
1846static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer,
1847                               uint32_t &Position) {
1848  Buffer[Position + 0] = (unsigned char) (Value >>  0);
1849  Buffer[Position + 1] = (unsigned char) (Value >>  8);
1850  Buffer[Position + 2] = (unsigned char) (Value >> 16);
1851  Buffer[Position + 3] = (unsigned char) (Value >> 24);
1852  Position += 4;
1853}
1854
1855static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer,
1856                                         const Triple &TT) {
1857  unsigned CPUType = ~0U;
1858
1859  // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
1860  // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
1861  // number from /usr/include/mach/machine.h.  It is ok to reproduce the
1862  // specific constants here because they are implicitly part of the Darwin ABI.
1863  enum {
1864    DARWIN_CPU_ARCH_ABI64      = 0x01000000,
1865    DARWIN_CPU_TYPE_X86        = 7,
1866    DARWIN_CPU_TYPE_ARM        = 12,
1867    DARWIN_CPU_TYPE_POWERPC    = 18
1868  };
1869
1870  Triple::ArchType Arch = TT.getArch();
1871  if (Arch == Triple::x86_64)
1872    CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
1873  else if (Arch == Triple::x86)
1874    CPUType = DARWIN_CPU_TYPE_X86;
1875  else if (Arch == Triple::ppc)
1876    CPUType = DARWIN_CPU_TYPE_POWERPC;
1877  else if (Arch == Triple::ppc64)
1878    CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
1879  else if (Arch == Triple::arm || Arch == Triple::thumb)
1880    CPUType = DARWIN_CPU_TYPE_ARM;
1881
1882  // Traditional Bitcode starts after header.
1883  assert(Buffer.size() >= DarwinBCHeaderSize &&
1884         "Expected header size to be reserved");
1885  unsigned BCOffset = DarwinBCHeaderSize;
1886  unsigned BCSize = Buffer.size()-DarwinBCHeaderSize;
1887
1888  // Write the magic and version.
1889  unsigned Position = 0;
1890  WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position);
1891  WriteInt32ToBuffer(0          , Buffer, Position); // Version.
1892  WriteInt32ToBuffer(BCOffset   , Buffer, Position);
1893  WriteInt32ToBuffer(BCSize     , Buffer, Position);
1894  WriteInt32ToBuffer(CPUType    , Buffer, Position);
1895
1896  // If the file is not a multiple of 16 bytes, insert dummy padding.
1897  while (Buffer.size() & 15)
1898    Buffer.push_back(0);
1899}
1900
1901/// WriteBitcodeToFile - Write the specified module to the specified output
1902/// stream.
1903void llvm_3_2::WriteBitcodeToFile(const Module *M, raw_ostream &Out) {
1904  SmallVector<char, 1024> Buffer;
1905  Buffer.reserve(256*1024);
1906
1907  // If this is darwin or another generic macho target, reserve space for the
1908  // header.
1909  Triple TT(M->getTargetTriple());
1910  if (TT.isOSDarwin())
1911    Buffer.insert(Buffer.begin(), DarwinBCHeaderSize, 0);
1912
1913  // Emit the module into the buffer.
1914  {
1915    BitstreamWriter Stream(Buffer);
1916
1917    // Emit the file header.
1918    Stream.Emit((unsigned)'B', 8);
1919    Stream.Emit((unsigned)'C', 8);
1920    Stream.Emit(0x0, 4);
1921    Stream.Emit(0xC, 4);
1922    Stream.Emit(0xE, 4);
1923    Stream.Emit(0xD, 4);
1924
1925    // Emit the module.
1926    WriteModule(M, Stream);
1927  }
1928
1929  if (TT.isOSDarwin())
1930    EmitDarwinBCHeaderAndTrailer(Buffer, TT);
1931
1932  // Write the generated bitstream to "Out".
1933  Out.write((char*)&Buffer.front(), Buffer.size());
1934}
1935