VelocityTracker.cpp revision 219aec37372d9db514591126feb6f6ac7441442a
1/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#define LOG_TAG "VelocityTracker"
18//#define LOG_NDEBUG 0
19
20// Log debug messages about velocity tracking.
21#define DEBUG_VELOCITY 0
22
23// Log debug messages about the progress of the algorithm itself.
24#define DEBUG_STRATEGY 0
25
26#include <inttypes.h>
27#include <limits.h>
28#include <math.h>
29
30#include <android-base/stringprintf.h>
31#include <cutils/properties.h>
32#include <input/VelocityTracker.h>
33#include <utils/BitSet.h>
34#include <utils/Timers.h>
35
36namespace android {
37
38// Nanoseconds per milliseconds.
39static const nsecs_t NANOS_PER_MS = 1000000;
40
41// Threshold for determining that a pointer has stopped moving.
42// Some input devices do not send ACTION_MOVE events in the case where a pointer has
43// stopped.  We need to detect this case so that we can accurately predict the
44// velocity after the pointer starts moving again.
45static const nsecs_t ASSUME_POINTER_STOPPED_TIME = 40 * NANOS_PER_MS;
46
47
48static float vectorDot(const float* a, const float* b, uint32_t m) {
49    float r = 0;
50    for (size_t i = 0; i < m; i++) {
51        r += *(a++) * *(b++);
52    }
53    return r;
54}
55
56static float vectorNorm(const float* a, uint32_t m) {
57    float r = 0;
58    for (size_t i = 0; i < m; i++) {
59        float t = *(a++);
60        r += t * t;
61    }
62    return sqrtf(r);
63}
64
65#if DEBUG_STRATEGY || DEBUG_VELOCITY
66static std::string vectorToString(const float* a, uint32_t m) {
67    std::string str;
68    str += "[";
69    for (size_t i = 0; i < m; i++) {
70        if (i) {
71            str += ",";
72        }
73        str += android::base::StringPrintf(" %f", *(a++));
74    }
75    str += " ]";
76    return str;
77}
78#endif
79
80#if DEBUG_STRATEGY
81static std::string matrixToString(const float* a, uint32_t m, uint32_t n, bool rowMajor) {
82    std::string str;
83    str = "[";
84    for (size_t i = 0; i < m; i++) {
85        if (i) {
86            str += ",";
87        }
88        str += " [";
89        for (size_t j = 0; j < n; j++) {
90            if (j) {
91                str += ",";
92            }
93            str += android::base::StringPrintf(" %f", a[rowMajor ? i * n + j : j * m + i]);
94        }
95        str += " ]";
96    }
97    str += " ]";
98    return str;
99}
100#endif
101
102
103// --- VelocityTracker ---
104
105// The default velocity tracker strategy.
106// Although other strategies are available for testing and comparison purposes,
107// this is the strategy that applications will actually use.  Be very careful
108// when adjusting the default strategy because it can dramatically affect
109// (often in a bad way) the user experience.
110const char* VelocityTracker::DEFAULT_STRATEGY = "lsq2";
111
112VelocityTracker::VelocityTracker(const char* strategy) :
113        mLastEventTime(0), mCurrentPointerIdBits(0), mActivePointerId(-1) {
114    char value[PROPERTY_VALUE_MAX];
115
116    // Allow the default strategy to be overridden using a system property for debugging.
117    if (!strategy) {
118        int length = property_get("debug.velocitytracker.strategy", value, NULL);
119        if (length > 0) {
120            strategy = value;
121        } else {
122            strategy = DEFAULT_STRATEGY;
123        }
124    }
125
126    // Configure the strategy.
127    if (!configureStrategy(strategy)) {
128        ALOGD("Unrecognized velocity tracker strategy name '%s'.", strategy);
129        if (!configureStrategy(DEFAULT_STRATEGY)) {
130            LOG_ALWAYS_FATAL("Could not create the default velocity tracker strategy '%s'!",
131                    strategy);
132        }
133    }
134}
135
136VelocityTracker::~VelocityTracker() {
137    delete mStrategy;
138}
139
140bool VelocityTracker::configureStrategy(const char* strategy) {
141    mStrategy = createStrategy(strategy);
142    return mStrategy != NULL;
143}
144
145VelocityTrackerStrategy* VelocityTracker::createStrategy(const char* strategy) {
146    if (!strcmp("impulse", strategy)) {
147        // Physical model of pushing an object.  Quality: VERY GOOD.
148        // Works with duplicate coordinates, unclean finger liftoff.
149        return new ImpulseVelocityTrackerStrategy();
150    }
151    if (!strcmp("lsq1", strategy)) {
152        // 1st order least squares.  Quality: POOR.
153        // Frequently underfits the touch data especially when the finger accelerates
154        // or changes direction.  Often underestimates velocity.  The direction
155        // is overly influenced by historical touch points.
156        return new LeastSquaresVelocityTrackerStrategy(1);
157    }
158    if (!strcmp("lsq2", strategy)) {
159        // 2nd order least squares.  Quality: VERY GOOD.
160        // Pretty much ideal, but can be confused by certain kinds of touch data,
161        // particularly if the panel has a tendency to generate delayed,
162        // duplicate or jittery touch coordinates when the finger is released.
163        return new LeastSquaresVelocityTrackerStrategy(2);
164    }
165    if (!strcmp("lsq3", strategy)) {
166        // 3rd order least squares.  Quality: UNUSABLE.
167        // Frequently overfits the touch data yielding wildly divergent estimates
168        // of the velocity when the finger is released.
169        return new LeastSquaresVelocityTrackerStrategy(3);
170    }
171    if (!strcmp("wlsq2-delta", strategy)) {
172        // 2nd order weighted least squares, delta weighting.  Quality: EXPERIMENTAL
173        return new LeastSquaresVelocityTrackerStrategy(2,
174                LeastSquaresVelocityTrackerStrategy::WEIGHTING_DELTA);
175    }
176    if (!strcmp("wlsq2-central", strategy)) {
177        // 2nd order weighted least squares, central weighting.  Quality: EXPERIMENTAL
178        return new LeastSquaresVelocityTrackerStrategy(2,
179                LeastSquaresVelocityTrackerStrategy::WEIGHTING_CENTRAL);
180    }
181    if (!strcmp("wlsq2-recent", strategy)) {
182        // 2nd order weighted least squares, recent weighting.  Quality: EXPERIMENTAL
183        return new LeastSquaresVelocityTrackerStrategy(2,
184                LeastSquaresVelocityTrackerStrategy::WEIGHTING_RECENT);
185    }
186    if (!strcmp("int1", strategy)) {
187        // 1st order integrating filter.  Quality: GOOD.
188        // Not as good as 'lsq2' because it cannot estimate acceleration but it is
189        // more tolerant of errors.  Like 'lsq1', this strategy tends to underestimate
190        // the velocity of a fling but this strategy tends to respond to changes in
191        // direction more quickly and accurately.
192        return new IntegratingVelocityTrackerStrategy(1);
193    }
194    if (!strcmp("int2", strategy)) {
195        // 2nd order integrating filter.  Quality: EXPERIMENTAL.
196        // For comparison purposes only.  Unlike 'int1' this strategy can compensate
197        // for acceleration but it typically overestimates the effect.
198        return new IntegratingVelocityTrackerStrategy(2);
199    }
200    if (!strcmp("legacy", strategy)) {
201        // Legacy velocity tracker algorithm.  Quality: POOR.
202        // For comparison purposes only.  This algorithm is strongly influenced by
203        // old data points, consistently underestimates velocity and takes a very long
204        // time to adjust to changes in direction.
205        return new LegacyVelocityTrackerStrategy();
206    }
207    return NULL;
208}
209
210void VelocityTracker::clear() {
211    mCurrentPointerIdBits.clear();
212    mActivePointerId = -1;
213
214    mStrategy->clear();
215}
216
217void VelocityTracker::clearPointers(BitSet32 idBits) {
218    BitSet32 remainingIdBits(mCurrentPointerIdBits.value & ~idBits.value);
219    mCurrentPointerIdBits = remainingIdBits;
220
221    if (mActivePointerId >= 0 && idBits.hasBit(mActivePointerId)) {
222        mActivePointerId = !remainingIdBits.isEmpty() ? remainingIdBits.firstMarkedBit() : -1;
223    }
224
225    mStrategy->clearPointers(idBits);
226}
227
228void VelocityTracker::addMovement(nsecs_t eventTime, BitSet32 idBits, const Position* positions) {
229    while (idBits.count() > MAX_POINTERS) {
230        idBits.clearLastMarkedBit();
231    }
232
233    if ((mCurrentPointerIdBits.value & idBits.value)
234            && eventTime >= mLastEventTime + ASSUME_POINTER_STOPPED_TIME) {
235#if DEBUG_VELOCITY
236        ALOGD("VelocityTracker: stopped for %0.3f ms, clearing state.",
237                (eventTime - mLastEventTime) * 0.000001f);
238#endif
239        // We have not received any movements for too long.  Assume that all pointers
240        // have stopped.
241        mStrategy->clear();
242    }
243    mLastEventTime = eventTime;
244
245    mCurrentPointerIdBits = idBits;
246    if (mActivePointerId < 0 || !idBits.hasBit(mActivePointerId)) {
247        mActivePointerId = idBits.isEmpty() ? -1 : idBits.firstMarkedBit();
248    }
249
250    mStrategy->addMovement(eventTime, idBits, positions);
251
252#if DEBUG_VELOCITY
253    ALOGD("VelocityTracker: addMovement eventTime=%" PRId64 ", idBits=0x%08x, activePointerId=%d",
254            eventTime, idBits.value, mActivePointerId);
255    for (BitSet32 iterBits(idBits); !iterBits.isEmpty(); ) {
256        uint32_t id = iterBits.firstMarkedBit();
257        uint32_t index = idBits.getIndexOfBit(id);
258        iterBits.clearBit(id);
259        Estimator estimator;
260        getEstimator(id, &estimator);
261        ALOGD("  %d: position (%0.3f, %0.3f), "
262                "estimator (degree=%d, xCoeff=%s, yCoeff=%s, confidence=%f)",
263                id, positions[index].x, positions[index].y,
264                int(estimator.degree),
265                vectorToString(estimator.xCoeff, estimator.degree + 1).c_str(),
266                vectorToString(estimator.yCoeff, estimator.degree + 1).c_str(),
267                estimator.confidence);
268    }
269#endif
270}
271
272void VelocityTracker::addMovement(const MotionEvent* event) {
273    int32_t actionMasked = event->getActionMasked();
274
275    switch (actionMasked) {
276    case AMOTION_EVENT_ACTION_DOWN:
277    case AMOTION_EVENT_ACTION_HOVER_ENTER:
278        // Clear all pointers on down before adding the new movement.
279        clear();
280        break;
281    case AMOTION_EVENT_ACTION_POINTER_DOWN: {
282        // Start a new movement trace for a pointer that just went down.
283        // We do this on down instead of on up because the client may want to query the
284        // final velocity for a pointer that just went up.
285        BitSet32 downIdBits;
286        downIdBits.markBit(event->getPointerId(event->getActionIndex()));
287        clearPointers(downIdBits);
288        break;
289    }
290    case AMOTION_EVENT_ACTION_MOVE:
291    case AMOTION_EVENT_ACTION_HOVER_MOVE:
292        break;
293    default:
294        // Ignore all other actions because they do not convey any new information about
295        // pointer movement.  We also want to preserve the last known velocity of the pointers.
296        // Note that ACTION_UP and ACTION_POINTER_UP always report the last known position
297        // of the pointers that went up.  ACTION_POINTER_UP does include the new position of
298        // pointers that remained down but we will also receive an ACTION_MOVE with this
299        // information if any of them actually moved.  Since we don't know how many pointers
300        // will be going up at once it makes sense to just wait for the following ACTION_MOVE
301        // before adding the movement.
302        return;
303    }
304
305    size_t pointerCount = event->getPointerCount();
306    if (pointerCount > MAX_POINTERS) {
307        pointerCount = MAX_POINTERS;
308    }
309
310    BitSet32 idBits;
311    for (size_t i = 0; i < pointerCount; i++) {
312        idBits.markBit(event->getPointerId(i));
313    }
314
315    uint32_t pointerIndex[MAX_POINTERS];
316    for (size_t i = 0; i < pointerCount; i++) {
317        pointerIndex[i] = idBits.getIndexOfBit(event->getPointerId(i));
318    }
319
320    nsecs_t eventTime;
321    Position positions[pointerCount];
322
323    size_t historySize = event->getHistorySize();
324    for (size_t h = 0; h < historySize; h++) {
325        eventTime = event->getHistoricalEventTime(h);
326        for (size_t i = 0; i < pointerCount; i++) {
327            uint32_t index = pointerIndex[i];
328            positions[index].x = event->getHistoricalX(i, h);
329            positions[index].y = event->getHistoricalY(i, h);
330        }
331        addMovement(eventTime, idBits, positions);
332    }
333
334    eventTime = event->getEventTime();
335    for (size_t i = 0; i < pointerCount; i++) {
336        uint32_t index = pointerIndex[i];
337        positions[index].x = event->getX(i);
338        positions[index].y = event->getY(i);
339    }
340    addMovement(eventTime, idBits, positions);
341}
342
343bool VelocityTracker::getVelocity(uint32_t id, float* outVx, float* outVy) const {
344    Estimator estimator;
345    if (getEstimator(id, &estimator) && estimator.degree >= 1) {
346        *outVx = estimator.xCoeff[1];
347        *outVy = estimator.yCoeff[1];
348        return true;
349    }
350    *outVx = 0;
351    *outVy = 0;
352    return false;
353}
354
355bool VelocityTracker::getEstimator(uint32_t id, Estimator* outEstimator) const {
356    return mStrategy->getEstimator(id, outEstimator);
357}
358
359
360// --- LeastSquaresVelocityTrackerStrategy ---
361
362LeastSquaresVelocityTrackerStrategy::LeastSquaresVelocityTrackerStrategy(
363        uint32_t degree, Weighting weighting) :
364        mDegree(degree), mWeighting(weighting) {
365    clear();
366}
367
368LeastSquaresVelocityTrackerStrategy::~LeastSquaresVelocityTrackerStrategy() {
369}
370
371void LeastSquaresVelocityTrackerStrategy::clear() {
372    mIndex = 0;
373    mMovements[0].idBits.clear();
374}
375
376void LeastSquaresVelocityTrackerStrategy::clearPointers(BitSet32 idBits) {
377    BitSet32 remainingIdBits(mMovements[mIndex].idBits.value & ~idBits.value);
378    mMovements[mIndex].idBits = remainingIdBits;
379}
380
381void LeastSquaresVelocityTrackerStrategy::addMovement(nsecs_t eventTime, BitSet32 idBits,
382        const VelocityTracker::Position* positions) {
383    if (++mIndex == HISTORY_SIZE) {
384        mIndex = 0;
385    }
386
387    Movement& movement = mMovements[mIndex];
388    movement.eventTime = eventTime;
389    movement.idBits = idBits;
390    uint32_t count = idBits.count();
391    for (uint32_t i = 0; i < count; i++) {
392        movement.positions[i] = positions[i];
393    }
394}
395
396/**
397 * Solves a linear least squares problem to obtain a N degree polynomial that fits
398 * the specified input data as nearly as possible.
399 *
400 * Returns true if a solution is found, false otherwise.
401 *
402 * The input consists of two vectors of data points X and Y with indices 0..m-1
403 * along with a weight vector W of the same size.
404 *
405 * The output is a vector B with indices 0..n that describes a polynomial
406 * that fits the data, such the sum of W[i] * W[i] * abs(Y[i] - (B[0] + B[1] X[i]
407 * + B[2] X[i]^2 ... B[n] X[i]^n)) for all i between 0 and m-1 is minimized.
408 *
409 * Accordingly, the weight vector W should be initialized by the caller with the
410 * reciprocal square root of the variance of the error in each input data point.
411 * In other words, an ideal choice for W would be W[i] = 1 / var(Y[i]) = 1 / stddev(Y[i]).
412 * The weights express the relative importance of each data point.  If the weights are
413 * all 1, then the data points are considered to be of equal importance when fitting
414 * the polynomial.  It is a good idea to choose weights that diminish the importance
415 * of data points that may have higher than usual error margins.
416 *
417 * Errors among data points are assumed to be independent.  W is represented here
418 * as a vector although in the literature it is typically taken to be a diagonal matrix.
419 *
420 * That is to say, the function that generated the input data can be approximated
421 * by y(x) ~= B[0] + B[1] x + B[2] x^2 + ... + B[n] x^n.
422 *
423 * The coefficient of determination (R^2) is also returned to describe the goodness
424 * of fit of the model for the given data.  It is a value between 0 and 1, where 1
425 * indicates perfect correspondence.
426 *
427 * This function first expands the X vector to a m by n matrix A such that
428 * A[i][0] = 1, A[i][1] = X[i], A[i][2] = X[i]^2, ..., A[i][n] = X[i]^n, then
429 * multiplies it by w[i]./
430 *
431 * Then it calculates the QR decomposition of A yielding an m by m orthonormal matrix Q
432 * and an m by n upper triangular matrix R.  Because R is upper triangular (lower
433 * part is all zeroes), we can simplify the decomposition into an m by n matrix
434 * Q1 and a n by n matrix R1 such that A = Q1 R1.
435 *
436 * Finally we solve the system of linear equations given by R1 B = (Qtranspose W Y)
437 * to find B.
438 *
439 * For efficiency, we lay out A and Q column-wise in memory because we frequently
440 * operate on the column vectors.  Conversely, we lay out R row-wise.
441 *
442 * http://en.wikipedia.org/wiki/Numerical_methods_for_linear_least_squares
443 * http://en.wikipedia.org/wiki/Gram-Schmidt
444 */
445static bool solveLeastSquares(const float* x, const float* y,
446        const float* w, uint32_t m, uint32_t n, float* outB, float* outDet) {
447#if DEBUG_STRATEGY
448    ALOGD("solveLeastSquares: m=%d, n=%d, x=%s, y=%s, w=%s", int(m), int(n),
449            vectorToString(x, m).c_str(), vectorToString(y, m).c_str(),
450            vectorToString(w, m).c_str());
451#endif
452
453    // Expand the X vector to a matrix A, pre-multiplied by the weights.
454    float a[n][m]; // column-major order
455    for (uint32_t h = 0; h < m; h++) {
456        a[0][h] = w[h];
457        for (uint32_t i = 1; i < n; i++) {
458            a[i][h] = a[i - 1][h] * x[h];
459        }
460    }
461#if DEBUG_STRATEGY
462    ALOGD("  - a=%s", matrixToString(&a[0][0], m, n, false /*rowMajor*/).c_str());
463#endif
464
465    // Apply the Gram-Schmidt process to A to obtain its QR decomposition.
466    float q[n][m]; // orthonormal basis, column-major order
467    float r[n][n]; // upper triangular matrix, row-major order
468    for (uint32_t j = 0; j < n; j++) {
469        for (uint32_t h = 0; h < m; h++) {
470            q[j][h] = a[j][h];
471        }
472        for (uint32_t i = 0; i < j; i++) {
473            float dot = vectorDot(&q[j][0], &q[i][0], m);
474            for (uint32_t h = 0; h < m; h++) {
475                q[j][h] -= dot * q[i][h];
476            }
477        }
478
479        float norm = vectorNorm(&q[j][0], m);
480        if (norm < 0.000001f) {
481            // vectors are linearly dependent or zero so no solution
482#if DEBUG_STRATEGY
483            ALOGD("  - no solution, norm=%f", norm);
484#endif
485            return false;
486        }
487
488        float invNorm = 1.0f / norm;
489        for (uint32_t h = 0; h < m; h++) {
490            q[j][h] *= invNorm;
491        }
492        for (uint32_t i = 0; i < n; i++) {
493            r[j][i] = i < j ? 0 : vectorDot(&q[j][0], &a[i][0], m);
494        }
495    }
496#if DEBUG_STRATEGY
497    ALOGD("  - q=%s", matrixToString(&q[0][0], m, n, false /*rowMajor*/).c_str());
498    ALOGD("  - r=%s", matrixToString(&r[0][0], n, n, true /*rowMajor*/).c_str());
499
500    // calculate QR, if we factored A correctly then QR should equal A
501    float qr[n][m];
502    for (uint32_t h = 0; h < m; h++) {
503        for (uint32_t i = 0; i < n; i++) {
504            qr[i][h] = 0;
505            for (uint32_t j = 0; j < n; j++) {
506                qr[i][h] += q[j][h] * r[j][i];
507            }
508        }
509    }
510    ALOGD("  - qr=%s", matrixToString(&qr[0][0], m, n, false /*rowMajor*/).c_str());
511#endif
512
513    // Solve R B = Qt W Y to find B.  This is easy because R is upper triangular.
514    // We just work from bottom-right to top-left calculating B's coefficients.
515    float wy[m];
516    for (uint32_t h = 0; h < m; h++) {
517        wy[h] = y[h] * w[h];
518    }
519    for (uint32_t i = n; i != 0; ) {
520        i--;
521        outB[i] = vectorDot(&q[i][0], wy, m);
522        for (uint32_t j = n - 1; j > i; j--) {
523            outB[i] -= r[i][j] * outB[j];
524        }
525        outB[i] /= r[i][i];
526    }
527#if DEBUG_STRATEGY
528    ALOGD("  - b=%s", vectorToString(outB, n).c_str());
529#endif
530
531    // Calculate the coefficient of determination as 1 - (SSerr / SStot) where
532    // SSerr is the residual sum of squares (variance of the error),
533    // and SStot is the total sum of squares (variance of the data) where each
534    // has been weighted.
535    float ymean = 0;
536    for (uint32_t h = 0; h < m; h++) {
537        ymean += y[h];
538    }
539    ymean /= m;
540
541    float sserr = 0;
542    float sstot = 0;
543    for (uint32_t h = 0; h < m; h++) {
544        float err = y[h] - outB[0];
545        float term = 1;
546        for (uint32_t i = 1; i < n; i++) {
547            term *= x[h];
548            err -= term * outB[i];
549        }
550        sserr += w[h] * w[h] * err * err;
551        float var = y[h] - ymean;
552        sstot += w[h] * w[h] * var * var;
553    }
554    *outDet = sstot > 0.000001f ? 1.0f - (sserr / sstot) : 1;
555#if DEBUG_STRATEGY
556    ALOGD("  - sserr=%f", sserr);
557    ALOGD("  - sstot=%f", sstot);
558    ALOGD("  - det=%f", *outDet);
559#endif
560    return true;
561}
562
563/*
564 * Optimized unweighted second-order least squares fit. About 2x speed improvement compared to
565 * the default implementation
566 */
567static float solveUnweightedLeastSquaresDeg2(const float* x, const float* y, size_t count) {
568    float sxi = 0, sxiyi = 0, syi = 0, sxi2 = 0, sxi3 = 0, sxi2yi = 0, sxi4 = 0;
569
570    for (size_t i = 0; i < count; i++) {
571        float xi = x[i];
572        float yi = y[i];
573        float xi2 = xi*xi;
574        float xi3 = xi2*xi;
575        float xi4 = xi3*xi;
576        float xi2yi = xi2*yi;
577        float xiyi = xi*yi;
578
579        sxi += xi;
580        sxi2 += xi2;
581        sxiyi += xiyi;
582        sxi2yi += xi2yi;
583        syi += yi;
584        sxi3 += xi3;
585        sxi4 += xi4;
586    }
587
588    float Sxx = sxi2 - sxi*sxi / count;
589    float Sxy = sxiyi - sxi*syi / count;
590    float Sxx2 = sxi3 - sxi*sxi2 / count;
591    float Sx2y = sxi2yi - sxi2*syi / count;
592    float Sx2x2 = sxi4 - sxi2*sxi2 / count;
593
594    float numerator = Sxy*Sx2x2 - Sx2y*Sxx2;
595    float denominator = Sxx*Sx2x2 - Sxx2*Sxx2;
596    if (denominator == 0) {
597        ALOGW("division by 0 when computing velocity, Sxx=%f, Sx2x2=%f, Sxx2=%f", Sxx, Sx2x2, Sxx2);
598        return 0;
599    }
600    return numerator/denominator;
601}
602
603bool LeastSquaresVelocityTrackerStrategy::getEstimator(uint32_t id,
604        VelocityTracker::Estimator* outEstimator) const {
605    outEstimator->clear();
606
607    // Iterate over movement samples in reverse time order and collect samples.
608    float x[HISTORY_SIZE];
609    float y[HISTORY_SIZE];
610    float w[HISTORY_SIZE];
611    float time[HISTORY_SIZE];
612    uint32_t m = 0;
613    uint32_t index = mIndex;
614    const Movement& newestMovement = mMovements[mIndex];
615    do {
616        const Movement& movement = mMovements[index];
617        if (!movement.idBits.hasBit(id)) {
618            break;
619        }
620
621        nsecs_t age = newestMovement.eventTime - movement.eventTime;
622        if (age > HORIZON) {
623            break;
624        }
625
626        const VelocityTracker::Position& position = movement.getPosition(id);
627        x[m] = position.x;
628        y[m] = position.y;
629        w[m] = chooseWeight(index);
630        time[m] = -age * 0.000000001f;
631        index = (index == 0 ? HISTORY_SIZE : index) - 1;
632    } while (++m < HISTORY_SIZE);
633
634    if (m == 0) {
635        return false; // no data
636    }
637
638    // Calculate a least squares polynomial fit.
639    uint32_t degree = mDegree;
640    if (degree > m - 1) {
641        degree = m - 1;
642    }
643    if (degree >= 1) {
644        if (degree == 2 && mWeighting == WEIGHTING_NONE) { // optimize unweighted, degree=2 fit
645            outEstimator->time = newestMovement.eventTime;
646            outEstimator->degree = 2;
647            outEstimator->confidence = 1;
648            outEstimator->xCoeff[0] = 0; // only slope is calculated, set rest of coefficients = 0
649            outEstimator->yCoeff[0] = 0;
650            outEstimator->xCoeff[1] = solveUnweightedLeastSquaresDeg2(time, x, m);
651            outEstimator->yCoeff[1] = solveUnweightedLeastSquaresDeg2(time, y, m);
652            outEstimator->xCoeff[2] = 0;
653            outEstimator->yCoeff[2] = 0;
654            return true;
655        }
656
657        float xdet, ydet;
658        uint32_t n = degree + 1;
659        if (solveLeastSquares(time, x, w, m, n, outEstimator->xCoeff, &xdet)
660                && solveLeastSquares(time, y, w, m, n, outEstimator->yCoeff, &ydet)) {
661            outEstimator->time = newestMovement.eventTime;
662            outEstimator->degree = degree;
663            outEstimator->confidence = xdet * ydet;
664#if DEBUG_STRATEGY
665            ALOGD("estimate: degree=%d, xCoeff=%s, yCoeff=%s, confidence=%f",
666                    int(outEstimator->degree),
667                    vectorToString(outEstimator->xCoeff, n).c_str(),
668                    vectorToString(outEstimator->yCoeff, n).c_str(),
669                    outEstimator->confidence);
670#endif
671            return true;
672        }
673    }
674
675    // No velocity data available for this pointer, but we do have its current position.
676    outEstimator->xCoeff[0] = x[0];
677    outEstimator->yCoeff[0] = y[0];
678    outEstimator->time = newestMovement.eventTime;
679    outEstimator->degree = 0;
680    outEstimator->confidence = 1;
681    return true;
682}
683
684float LeastSquaresVelocityTrackerStrategy::chooseWeight(uint32_t index) const {
685    switch (mWeighting) {
686    case WEIGHTING_DELTA: {
687        // Weight points based on how much time elapsed between them and the next
688        // point so that points that "cover" a shorter time span are weighed less.
689        //   delta  0ms: 0.5
690        //   delta 10ms: 1.0
691        if (index == mIndex) {
692            return 1.0f;
693        }
694        uint32_t nextIndex = (index + 1) % HISTORY_SIZE;
695        float deltaMillis = (mMovements[nextIndex].eventTime- mMovements[index].eventTime)
696                * 0.000001f;
697        if (deltaMillis < 0) {
698            return 0.5f;
699        }
700        if (deltaMillis < 10) {
701            return 0.5f + deltaMillis * 0.05;
702        }
703        return 1.0f;
704    }
705
706    case WEIGHTING_CENTRAL: {
707        // Weight points based on their age, weighing very recent and very old points less.
708        //   age  0ms: 0.5
709        //   age 10ms: 1.0
710        //   age 50ms: 1.0
711        //   age 60ms: 0.5
712        float ageMillis = (mMovements[mIndex].eventTime - mMovements[index].eventTime)
713                * 0.000001f;
714        if (ageMillis < 0) {
715            return 0.5f;
716        }
717        if (ageMillis < 10) {
718            return 0.5f + ageMillis * 0.05;
719        }
720        if (ageMillis < 50) {
721            return 1.0f;
722        }
723        if (ageMillis < 60) {
724            return 0.5f + (60 - ageMillis) * 0.05;
725        }
726        return 0.5f;
727    }
728
729    case WEIGHTING_RECENT: {
730        // Weight points based on their age, weighing older points less.
731        //   age   0ms: 1.0
732        //   age  50ms: 1.0
733        //   age 100ms: 0.5
734        float ageMillis = (mMovements[mIndex].eventTime - mMovements[index].eventTime)
735                * 0.000001f;
736        if (ageMillis < 50) {
737            return 1.0f;
738        }
739        if (ageMillis < 100) {
740            return 0.5f + (100 - ageMillis) * 0.01f;
741        }
742        return 0.5f;
743    }
744
745    case WEIGHTING_NONE:
746    default:
747        return 1.0f;
748    }
749}
750
751
752// --- IntegratingVelocityTrackerStrategy ---
753
754IntegratingVelocityTrackerStrategy::IntegratingVelocityTrackerStrategy(uint32_t degree) :
755        mDegree(degree) {
756}
757
758IntegratingVelocityTrackerStrategy::~IntegratingVelocityTrackerStrategy() {
759}
760
761void IntegratingVelocityTrackerStrategy::clear() {
762    mPointerIdBits.clear();
763}
764
765void IntegratingVelocityTrackerStrategy::clearPointers(BitSet32 idBits) {
766    mPointerIdBits.value &= ~idBits.value;
767}
768
769void IntegratingVelocityTrackerStrategy::addMovement(nsecs_t eventTime, BitSet32 idBits,
770        const VelocityTracker::Position* positions) {
771    uint32_t index = 0;
772    for (BitSet32 iterIdBits(idBits); !iterIdBits.isEmpty();) {
773        uint32_t id = iterIdBits.clearFirstMarkedBit();
774        State& state = mPointerState[id];
775        const VelocityTracker::Position& position = positions[index++];
776        if (mPointerIdBits.hasBit(id)) {
777            updateState(state, eventTime, position.x, position.y);
778        } else {
779            initState(state, eventTime, position.x, position.y);
780        }
781    }
782
783    mPointerIdBits = idBits;
784}
785
786bool IntegratingVelocityTrackerStrategy::getEstimator(uint32_t id,
787        VelocityTracker::Estimator* outEstimator) const {
788    outEstimator->clear();
789
790    if (mPointerIdBits.hasBit(id)) {
791        const State& state = mPointerState[id];
792        populateEstimator(state, outEstimator);
793        return true;
794    }
795
796    return false;
797}
798
799void IntegratingVelocityTrackerStrategy::initState(State& state,
800        nsecs_t eventTime, float xpos, float ypos) const {
801    state.updateTime = eventTime;
802    state.degree = 0;
803
804    state.xpos = xpos;
805    state.xvel = 0;
806    state.xaccel = 0;
807    state.ypos = ypos;
808    state.yvel = 0;
809    state.yaccel = 0;
810}
811
812void IntegratingVelocityTrackerStrategy::updateState(State& state,
813        nsecs_t eventTime, float xpos, float ypos) const {
814    const nsecs_t MIN_TIME_DELTA = 2 * NANOS_PER_MS;
815    const float FILTER_TIME_CONSTANT = 0.010f; // 10 milliseconds
816
817    if (eventTime <= state.updateTime + MIN_TIME_DELTA) {
818        return;
819    }
820
821    float dt = (eventTime - state.updateTime) * 0.000000001f;
822    state.updateTime = eventTime;
823
824    float xvel = (xpos - state.xpos) / dt;
825    float yvel = (ypos - state.ypos) / dt;
826    if (state.degree == 0) {
827        state.xvel = xvel;
828        state.yvel = yvel;
829        state.degree = 1;
830    } else {
831        float alpha = dt / (FILTER_TIME_CONSTANT + dt);
832        if (mDegree == 1) {
833            state.xvel += (xvel - state.xvel) * alpha;
834            state.yvel += (yvel - state.yvel) * alpha;
835        } else {
836            float xaccel = (xvel - state.xvel) / dt;
837            float yaccel = (yvel - state.yvel) / dt;
838            if (state.degree == 1) {
839                state.xaccel = xaccel;
840                state.yaccel = yaccel;
841                state.degree = 2;
842            } else {
843                state.xaccel += (xaccel - state.xaccel) * alpha;
844                state.yaccel += (yaccel - state.yaccel) * alpha;
845            }
846            state.xvel += (state.xaccel * dt) * alpha;
847            state.yvel += (state.yaccel * dt) * alpha;
848        }
849    }
850    state.xpos = xpos;
851    state.ypos = ypos;
852}
853
854void IntegratingVelocityTrackerStrategy::populateEstimator(const State& state,
855        VelocityTracker::Estimator* outEstimator) const {
856    outEstimator->time = state.updateTime;
857    outEstimator->confidence = 1.0f;
858    outEstimator->degree = state.degree;
859    outEstimator->xCoeff[0] = state.xpos;
860    outEstimator->xCoeff[1] = state.xvel;
861    outEstimator->xCoeff[2] = state.xaccel / 2;
862    outEstimator->yCoeff[0] = state.ypos;
863    outEstimator->yCoeff[1] = state.yvel;
864    outEstimator->yCoeff[2] = state.yaccel / 2;
865}
866
867
868// --- LegacyVelocityTrackerStrategy ---
869
870LegacyVelocityTrackerStrategy::LegacyVelocityTrackerStrategy() {
871    clear();
872}
873
874LegacyVelocityTrackerStrategy::~LegacyVelocityTrackerStrategy() {
875}
876
877void LegacyVelocityTrackerStrategy::clear() {
878    mIndex = 0;
879    mMovements[0].idBits.clear();
880}
881
882void LegacyVelocityTrackerStrategy::clearPointers(BitSet32 idBits) {
883    BitSet32 remainingIdBits(mMovements[mIndex].idBits.value & ~idBits.value);
884    mMovements[mIndex].idBits = remainingIdBits;
885}
886
887void LegacyVelocityTrackerStrategy::addMovement(nsecs_t eventTime, BitSet32 idBits,
888        const VelocityTracker::Position* positions) {
889    if (++mIndex == HISTORY_SIZE) {
890        mIndex = 0;
891    }
892
893    Movement& movement = mMovements[mIndex];
894    movement.eventTime = eventTime;
895    movement.idBits = idBits;
896    uint32_t count = idBits.count();
897    for (uint32_t i = 0; i < count; i++) {
898        movement.positions[i] = positions[i];
899    }
900}
901
902bool LegacyVelocityTrackerStrategy::getEstimator(uint32_t id,
903        VelocityTracker::Estimator* outEstimator) const {
904    outEstimator->clear();
905
906    const Movement& newestMovement = mMovements[mIndex];
907    if (!newestMovement.idBits.hasBit(id)) {
908        return false; // no data
909    }
910
911    // Find the oldest sample that contains the pointer and that is not older than HORIZON.
912    nsecs_t minTime = newestMovement.eventTime - HORIZON;
913    uint32_t oldestIndex = mIndex;
914    uint32_t numTouches = 1;
915    do {
916        uint32_t nextOldestIndex = (oldestIndex == 0 ? HISTORY_SIZE : oldestIndex) - 1;
917        const Movement& nextOldestMovement = mMovements[nextOldestIndex];
918        if (!nextOldestMovement.idBits.hasBit(id)
919                || nextOldestMovement.eventTime < minTime) {
920            break;
921        }
922        oldestIndex = nextOldestIndex;
923    } while (++numTouches < HISTORY_SIZE);
924
925    // Calculate an exponentially weighted moving average of the velocity estimate
926    // at different points in time measured relative to the oldest sample.
927    // This is essentially an IIR filter.  Newer samples are weighted more heavily
928    // than older samples.  Samples at equal time points are weighted more or less
929    // equally.
930    //
931    // One tricky problem is that the sample data may be poorly conditioned.
932    // Sometimes samples arrive very close together in time which can cause us to
933    // overestimate the velocity at that time point.  Most samples might be measured
934    // 16ms apart but some consecutive samples could be only 0.5sm apart because
935    // the hardware or driver reports them irregularly or in bursts.
936    float accumVx = 0;
937    float accumVy = 0;
938    uint32_t index = oldestIndex;
939    uint32_t samplesUsed = 0;
940    const Movement& oldestMovement = mMovements[oldestIndex];
941    const VelocityTracker::Position& oldestPosition = oldestMovement.getPosition(id);
942    nsecs_t lastDuration = 0;
943
944    while (numTouches-- > 1) {
945        if (++index == HISTORY_SIZE) {
946            index = 0;
947        }
948        const Movement& movement = mMovements[index];
949        nsecs_t duration = movement.eventTime - oldestMovement.eventTime;
950
951        // If the duration between samples is small, we may significantly overestimate
952        // the velocity.  Consequently, we impose a minimum duration constraint on the
953        // samples that we include in the calculation.
954        if (duration >= MIN_DURATION) {
955            const VelocityTracker::Position& position = movement.getPosition(id);
956            float scale = 1000000000.0f / duration; // one over time delta in seconds
957            float vx = (position.x - oldestPosition.x) * scale;
958            float vy = (position.y - oldestPosition.y) * scale;
959            accumVx = (accumVx * lastDuration + vx * duration) / (duration + lastDuration);
960            accumVy = (accumVy * lastDuration + vy * duration) / (duration + lastDuration);
961            lastDuration = duration;
962            samplesUsed += 1;
963        }
964    }
965
966    // Report velocity.
967    const VelocityTracker::Position& newestPosition = newestMovement.getPosition(id);
968    outEstimator->time = newestMovement.eventTime;
969    outEstimator->confidence = 1;
970    outEstimator->xCoeff[0] = newestPosition.x;
971    outEstimator->yCoeff[0] = newestPosition.y;
972    if (samplesUsed) {
973        outEstimator->xCoeff[1] = accumVx;
974        outEstimator->yCoeff[1] = accumVy;
975        outEstimator->degree = 1;
976    } else {
977        outEstimator->degree = 0;
978    }
979    return true;
980}
981
982// --- ImpulseVelocityTrackerStrategy ---
983
984ImpulseVelocityTrackerStrategy::ImpulseVelocityTrackerStrategy() {
985    clear();
986}
987
988ImpulseVelocityTrackerStrategy::~ImpulseVelocityTrackerStrategy() {
989}
990
991void ImpulseVelocityTrackerStrategy::clear() {
992    mIndex = 0;
993    mMovements[0].idBits.clear();
994}
995
996void ImpulseVelocityTrackerStrategy::clearPointers(BitSet32 idBits) {
997    BitSet32 remainingIdBits(mMovements[mIndex].idBits.value & ~idBits.value);
998    mMovements[mIndex].idBits = remainingIdBits;
999}
1000
1001void ImpulseVelocityTrackerStrategy::addMovement(nsecs_t eventTime, BitSet32 idBits,
1002        const VelocityTracker::Position* positions) {
1003    if (++mIndex == HISTORY_SIZE) {
1004        mIndex = 0;
1005    }
1006
1007    Movement& movement = mMovements[mIndex];
1008    movement.eventTime = eventTime;
1009    movement.idBits = idBits;
1010    uint32_t count = idBits.count();
1011    for (uint32_t i = 0; i < count; i++) {
1012        movement.positions[i] = positions[i];
1013    }
1014}
1015
1016/**
1017 * Calculate the total impulse provided to the screen and the resulting velocity.
1018 *
1019 * The touchscreen is modeled as a physical object.
1020 * Initial condition is discussed below, but for now suppose that v(t=0) = 0
1021 *
1022 * The kinetic energy of the object at the release is E=0.5*m*v^2
1023 * Then vfinal = sqrt(2E/m). The goal is to calculate E.
1024 *
1025 * The kinetic energy at the release is equal to the total work done on the object by the finger.
1026 * The total work W is the sum of all dW along the path.
1027 *
1028 * dW = F*dx, where dx is the piece of path traveled.
1029 * Force is change of momentum over time, F = dp/dt = m dv/dt.
1030 * Then substituting:
1031 * dW = m (dv/dt) * dx = m * v * dv
1032 *
1033 * Summing along the path, we get:
1034 * W = sum(dW) = sum(m * v * dv) = m * sum(v * dv)
1035 * Since the mass stays constant, the equation for final velocity is:
1036 * vfinal = sqrt(2*sum(v * dv))
1037 *
1038 * Here,
1039 * dv : change of velocity = (v[i+1]-v[i])
1040 * dx : change of distance = (x[i+1]-x[i])
1041 * dt : change of time = (t[i+1]-t[i])
1042 * v : instantaneous velocity = dx/dt
1043 *
1044 * The final formula is:
1045 * vfinal = sqrt(2) * sqrt(sum((v[i]-v[i-1])*|v[i]|)) for all i
1046 * The absolute value is needed to properly account for the sign. If the velocity over a
1047 * particular segment descreases, then this indicates braking, which means that negative
1048 * work was done. So for two positive, but decreasing, velocities, this contribution would be
1049 * negative and will cause a smaller final velocity.
1050 *
1051 * Initial condition
1052 * There are two ways to deal with initial condition:
1053 * 1) Assume that v(0) = 0, which would mean that the screen is initially at rest.
1054 * This is not entirely accurate. We are only taking the past X ms of touch data, where X is
1055 * currently equal to 100. However, a touch event that created a fling probably lasted for longer
1056 * than that, which would mean that the user has already been interacting with the touchscreen
1057 * and it has probably already been moving.
1058 * 2) Assume that the touchscreen has already been moving at a certain velocity, calculate this
1059 * initial velocity and the equivalent energy, and start with this initial energy.
1060 * Consider an example where we have the following data, consisting of 3 points:
1061 *                 time: t0, t1, t2
1062 *                 x   : x0, x1, x2
1063 *                 v   : 0 , v1, v2
1064 * Here is what will happen in each of these scenarios:
1065 * 1) By directly applying the formula above with the v(0) = 0 boundary condition, we will get
1066 * vfinal = sqrt(2*(|v1|*(v1-v0) + |v2|*(v2-v1))). This can be simplified since v0=0
1067 * vfinal = sqrt(2*(|v1|*v1 + |v2|*(v2-v1))) = sqrt(2*(v1^2 + |v2|*(v2 - v1)))
1068 * since velocity is a real number
1069 * 2) If we treat the screen as already moving, then it must already have an energy (per mass)
1070 * equal to 1/2*v1^2. Then the initial energy should be 1/2*v1*2, and only the second segment
1071 * will contribute to the total kinetic energy (since we can effectively consider that v0=v1).
1072 * This will give the following expression for the final velocity:
1073 * vfinal = sqrt(2*(1/2*v1^2 + |v2|*(v2-v1)))
1074 * This analysis can be generalized to an arbitrary number of samples.
1075 *
1076 *
1077 * Comparing the two equations above, we see that the only mathematical difference
1078 * is the factor of 1/2 in front of the first velocity term.
1079 * This boundary condition would allow for the "proper" calculation of the case when all of the
1080 * samples are equally spaced in time and distance, which should suggest a constant velocity.
1081 *
1082 * Note that approach 2) is sensitive to the proper ordering of the data in time, since
1083 * the boundary condition must be applied to the oldest sample to be accurate.
1084 */
1085static float kineticEnergyToVelocity(float work) {
1086    static constexpr float sqrt2 = 1.41421356237;
1087    return (work < 0 ? -1.0 : 1.0) * sqrtf(fabsf(work)) * sqrt2;
1088}
1089
1090static float calculateImpulseVelocity(const nsecs_t* t, const float* x, size_t count) {
1091    // The input should be in reversed time order (most recent sample at index i=0)
1092    // t[i] is in nanoseconds, but due to FP arithmetic, convert to seconds inside this function
1093    static constexpr float NANOS_PER_SECOND = 1E-9;
1094
1095    if (count < 2) {
1096        return 0; // if 0 or 1 points, velocity is zero
1097    }
1098    if (t[1] > t[0]) { // Algorithm will still work, but not perfectly
1099        ALOGE("Samples provided to calculateImpulseVelocity in the wrong order");
1100    }
1101    if (count == 2) { // if 2 points, basic linear calculation
1102        if (t[1] == t[0]) {
1103            ALOGE("Events have identical time stamps t=%" PRId64 ", setting velocity = 0", t[0]);
1104            return 0;
1105        }
1106        return (x[1] - x[0]) / (NANOS_PER_SECOND * (t[1] - t[0]));
1107    }
1108    // Guaranteed to have at least 3 points here
1109    float work = 0;
1110    for (size_t i = count - 1; i > 0 ; i--) { // start with the oldest sample and go forward in time
1111        if (t[i] == t[i-1]) {
1112            ALOGE("Events have identical time stamps t=%" PRId64 ", skipping sample", t[i]);
1113            continue;
1114        }
1115        float vprev = kineticEnergyToVelocity(work); // v[i-1]
1116        float vcurr = (x[i] - x[i-1]) / (NANOS_PER_SECOND * (t[i] - t[i-1])); // v[i]
1117        work += (vcurr - vprev) * fabsf(vcurr);
1118        if (i == count - 1) {
1119            work *= 0.5; // initial condition, case 2) above
1120        }
1121    }
1122    return kineticEnergyToVelocity(work);
1123}
1124
1125bool ImpulseVelocityTrackerStrategy::getEstimator(uint32_t id,
1126        VelocityTracker::Estimator* outEstimator) const {
1127    outEstimator->clear();
1128
1129    // Iterate over movement samples in reverse time order and collect samples.
1130    float x[HISTORY_SIZE];
1131    float y[HISTORY_SIZE];
1132    nsecs_t time[HISTORY_SIZE];
1133    size_t m = 0; // number of points that will be used for fitting
1134    size_t index = mIndex;
1135    const Movement& newestMovement = mMovements[mIndex];
1136    do {
1137        const Movement& movement = mMovements[index];
1138        if (!movement.idBits.hasBit(id)) {
1139            break;
1140        }
1141
1142        nsecs_t age = newestMovement.eventTime - movement.eventTime;
1143        if (age > HORIZON) {
1144            break;
1145        }
1146
1147        const VelocityTracker::Position& position = movement.getPosition(id);
1148        x[m] = position.x;
1149        y[m] = position.y;
1150        time[m] = movement.eventTime;
1151        index = (index == 0 ? HISTORY_SIZE : index) - 1;
1152    } while (++m < HISTORY_SIZE);
1153
1154    if (m == 0) {
1155        return false; // no data
1156    }
1157    outEstimator->xCoeff[0] = 0;
1158    outEstimator->yCoeff[0] = 0;
1159    outEstimator->xCoeff[1] = calculateImpulseVelocity(time, x, m);
1160    outEstimator->yCoeff[1] = calculateImpulseVelocity(time, y, m);
1161    outEstimator->xCoeff[2] = 0;
1162    outEstimator->yCoeff[2] = 0;
1163    outEstimator->time = newestMovement.eventTime;
1164    outEstimator->degree = 2; // similar results to 2nd degree fit
1165    outEstimator->confidence = 1;
1166#if DEBUG_STRATEGY
1167    ALOGD("velocity: (%f, %f)", outEstimator->xCoeff[1], outEstimator->yCoeff[1]);
1168#endif
1169    return true;
1170}
1171
1172} // namespace android
1173