VelocityTracker.cpp revision 7b9d189574fdf530df9c2e30e4fd799c9a25e6b4
1/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#define LOG_TAG "VelocityTracker"
18//#define LOG_NDEBUG 0
19
20// Log debug messages about velocity tracking.
21#define DEBUG_VELOCITY 0
22
23// Log debug messages about the progress of the algorithm itself.
24#define DEBUG_STRATEGY 0
25
26#include <inttypes.h>
27#include <limits.h>
28#include <math.h>
29
30#include <cutils/properties.h>
31#include <input/VelocityTracker.h>
32#include <utils/BitSet.h>
33#include <utils/String8.h>
34#include <utils/Timers.h>
35
36namespace android {
37
38// Nanoseconds per milliseconds.
39static const nsecs_t NANOS_PER_MS = 1000000;
40
41// Threshold for determining that a pointer has stopped moving.
42// Some input devices do not send ACTION_MOVE events in the case where a pointer has
43// stopped.  We need to detect this case so that we can accurately predict the
44// velocity after the pointer starts moving again.
45static const nsecs_t ASSUME_POINTER_STOPPED_TIME = 40 * NANOS_PER_MS;
46
47
48static float vectorDot(const float* a, const float* b, uint32_t m) {
49    float r = 0;
50    for (size_t i = 0; i < m; i++) {
51        r += *(a++) * *(b++);
52    }
53    return r;
54}
55
56static float vectorNorm(const float* a, uint32_t m) {
57    float r = 0;
58    for (size_t i = 0; i < m; i++) {
59        float t = *(a++);
60        r += t * t;
61    }
62    return sqrtf(r);
63}
64
65#if DEBUG_STRATEGY || DEBUG_VELOCITY
66static String8 vectorToString(const float* a, uint32_t m) {
67    String8 str;
68    str.append("[");
69    for (size_t i = 0; i < m; i++) {
70        if (i) {
71            str.append(",");
72        }
73        str.appendFormat(" %f", *(a++));
74    }
75    str.append(" ]");
76    return str;
77}
78
79static String8 matrixToString(const float* a, uint32_t m, uint32_t n, bool rowMajor) {
80    String8 str;
81    str.append("[");
82    for (size_t i = 0; i < m; i++) {
83        if (i) {
84            str.append(",");
85        }
86        str.append(" [");
87        for (size_t j = 0; j < n; j++) {
88            if (j) {
89                str.append(",");
90            }
91            str.appendFormat(" %f", a[rowMajor ? i * n + j : j * m + i]);
92        }
93        str.append(" ]");
94    }
95    str.append(" ]");
96    return str;
97}
98#endif
99
100
101// --- VelocityTracker ---
102
103// The default velocity tracker strategy.
104// Although other strategies are available for testing and comparison purposes,
105// this is the strategy that applications will actually use.  Be very careful
106// when adjusting the default strategy because it can dramatically affect
107// (often in a bad way) the user experience.
108const char* VelocityTracker::DEFAULT_STRATEGY = "lsq2";
109
110VelocityTracker::VelocityTracker(const char* strategy) :
111        mLastEventTime(0), mCurrentPointerIdBits(0), mActivePointerId(-1) {
112    char value[PROPERTY_VALUE_MAX];
113
114    // Allow the default strategy to be overridden using a system property for debugging.
115    if (!strategy) {
116        int length = property_get("debug.velocitytracker.strategy", value, NULL);
117        if (length > 0) {
118            strategy = value;
119        } else {
120            strategy = DEFAULT_STRATEGY;
121        }
122    }
123
124    // Configure the strategy.
125    if (!configureStrategy(strategy)) {
126        ALOGD("Unrecognized velocity tracker strategy name '%s'.", strategy);
127        if (!configureStrategy(DEFAULT_STRATEGY)) {
128            LOG_ALWAYS_FATAL("Could not create the default velocity tracker strategy '%s'!",
129                    strategy);
130        }
131    }
132}
133
134VelocityTracker::~VelocityTracker() {
135    delete mStrategy;
136}
137
138bool VelocityTracker::configureStrategy(const char* strategy) {
139    mStrategy = createStrategy(strategy);
140    return mStrategy != NULL;
141}
142
143VelocityTrackerStrategy* VelocityTracker::createStrategy(const char* strategy) {
144    if (!strcmp("lsq1", strategy)) {
145        // 1st order least squares.  Quality: POOR.
146        // Frequently underfits the touch data especially when the finger accelerates
147        // or changes direction.  Often underestimates velocity.  The direction
148        // is overly influenced by historical touch points.
149        return new LeastSquaresVelocityTrackerStrategy(1);
150    }
151    if (!strcmp("lsq2", strategy)) {
152        // 2nd order least squares.  Quality: VERY GOOD.
153        // Pretty much ideal, but can be confused by certain kinds of touch data,
154        // particularly if the panel has a tendency to generate delayed,
155        // duplicate or jittery touch coordinates when the finger is released.
156        return new LeastSquaresVelocityTrackerStrategy(2);
157    }
158    if (!strcmp("lsq3", strategy)) {
159        // 3rd order least squares.  Quality: UNUSABLE.
160        // Frequently overfits the touch data yielding wildly divergent estimates
161        // of the velocity when the finger is released.
162        return new LeastSquaresVelocityTrackerStrategy(3);
163    }
164    if (!strcmp("wlsq2-delta", strategy)) {
165        // 2nd order weighted least squares, delta weighting.  Quality: EXPERIMENTAL
166        return new LeastSquaresVelocityTrackerStrategy(2,
167                LeastSquaresVelocityTrackerStrategy::WEIGHTING_DELTA);
168    }
169    if (!strcmp("wlsq2-central", strategy)) {
170        // 2nd order weighted least squares, central weighting.  Quality: EXPERIMENTAL
171        return new LeastSquaresVelocityTrackerStrategy(2,
172                LeastSquaresVelocityTrackerStrategy::WEIGHTING_CENTRAL);
173    }
174    if (!strcmp("wlsq2-recent", strategy)) {
175        // 2nd order weighted least squares, recent weighting.  Quality: EXPERIMENTAL
176        return new LeastSquaresVelocityTrackerStrategy(2,
177                LeastSquaresVelocityTrackerStrategy::WEIGHTING_RECENT);
178    }
179    if (!strcmp("int1", strategy)) {
180        // 1st order integrating filter.  Quality: GOOD.
181        // Not as good as 'lsq2' because it cannot estimate acceleration but it is
182        // more tolerant of errors.  Like 'lsq1', this strategy tends to underestimate
183        // the velocity of a fling but this strategy tends to respond to changes in
184        // direction more quickly and accurately.
185        return new IntegratingVelocityTrackerStrategy(1);
186    }
187    if (!strcmp("int2", strategy)) {
188        // 2nd order integrating filter.  Quality: EXPERIMENTAL.
189        // For comparison purposes only.  Unlike 'int1' this strategy can compensate
190        // for acceleration but it typically overestimates the effect.
191        return new IntegratingVelocityTrackerStrategy(2);
192    }
193    if (!strcmp("legacy", strategy)) {
194        // Legacy velocity tracker algorithm.  Quality: POOR.
195        // For comparison purposes only.  This algorithm is strongly influenced by
196        // old data points, consistently underestimates velocity and takes a very long
197        // time to adjust to changes in direction.
198        return new LegacyVelocityTrackerStrategy();
199    }
200    return NULL;
201}
202
203void VelocityTracker::clear() {
204    mCurrentPointerIdBits.clear();
205    mActivePointerId = -1;
206
207    mStrategy->clear();
208}
209
210void VelocityTracker::clearPointers(BitSet32 idBits) {
211    BitSet32 remainingIdBits(mCurrentPointerIdBits.value & ~idBits.value);
212    mCurrentPointerIdBits = remainingIdBits;
213
214    if (mActivePointerId >= 0 && idBits.hasBit(mActivePointerId)) {
215        mActivePointerId = !remainingIdBits.isEmpty() ? remainingIdBits.firstMarkedBit() : -1;
216    }
217
218    mStrategy->clearPointers(idBits);
219}
220
221void VelocityTracker::addMovement(nsecs_t eventTime, BitSet32 idBits, const Position* positions) {
222    while (idBits.count() > MAX_POINTERS) {
223        idBits.clearLastMarkedBit();
224    }
225
226    if ((mCurrentPointerIdBits.value & idBits.value)
227            && eventTime >= mLastEventTime + ASSUME_POINTER_STOPPED_TIME) {
228#if DEBUG_VELOCITY
229        ALOGD("VelocityTracker: stopped for %0.3f ms, clearing state.",
230                (eventTime - mLastEventTime) * 0.000001f);
231#endif
232        // We have not received any movements for too long.  Assume that all pointers
233        // have stopped.
234        mStrategy->clear();
235    }
236    mLastEventTime = eventTime;
237
238    mCurrentPointerIdBits = idBits;
239    if (mActivePointerId < 0 || !idBits.hasBit(mActivePointerId)) {
240        mActivePointerId = idBits.isEmpty() ? -1 : idBits.firstMarkedBit();
241    }
242
243    mStrategy->addMovement(eventTime, idBits, positions);
244
245#if DEBUG_VELOCITY
246    ALOGD("VelocityTracker: addMovement eventTime=%" PRId64 ", idBits=0x%08x, activePointerId=%d",
247            eventTime, idBits.value, mActivePointerId);
248    for (BitSet32 iterBits(idBits); !iterBits.isEmpty(); ) {
249        uint32_t id = iterBits.firstMarkedBit();
250        uint32_t index = idBits.getIndexOfBit(id);
251        iterBits.clearBit(id);
252        Estimator estimator;
253        getEstimator(id, &estimator);
254        ALOGD("  %d: position (%0.3f, %0.3f), "
255                "estimator (degree=%d, xCoeff=%s, yCoeff=%s, confidence=%f)",
256                id, positions[index].x, positions[index].y,
257                int(estimator.degree),
258                vectorToString(estimator.xCoeff, estimator.degree + 1).string(),
259                vectorToString(estimator.yCoeff, estimator.degree + 1).string(),
260                estimator.confidence);
261    }
262#endif
263}
264
265void VelocityTracker::addMovement(const MotionEvent* event) {
266    int32_t actionMasked = event->getActionMasked();
267
268    switch (actionMasked) {
269    case AMOTION_EVENT_ACTION_DOWN:
270    case AMOTION_EVENT_ACTION_HOVER_ENTER:
271        // Clear all pointers on down before adding the new movement.
272        clear();
273        break;
274    case AMOTION_EVENT_ACTION_POINTER_DOWN: {
275        // Start a new movement trace for a pointer that just went down.
276        // We do this on down instead of on up because the client may want to query the
277        // final velocity for a pointer that just went up.
278        BitSet32 downIdBits;
279        downIdBits.markBit(event->getPointerId(event->getActionIndex()));
280        clearPointers(downIdBits);
281        break;
282    }
283    case AMOTION_EVENT_ACTION_MOVE:
284    case AMOTION_EVENT_ACTION_HOVER_MOVE:
285        break;
286    default:
287        // Ignore all other actions because they do not convey any new information about
288        // pointer movement.  We also want to preserve the last known velocity of the pointers.
289        // Note that ACTION_UP and ACTION_POINTER_UP always report the last known position
290        // of the pointers that went up.  ACTION_POINTER_UP does include the new position of
291        // pointers that remained down but we will also receive an ACTION_MOVE with this
292        // information if any of them actually moved.  Since we don't know how many pointers
293        // will be going up at once it makes sense to just wait for the following ACTION_MOVE
294        // before adding the movement.
295        return;
296    }
297
298    size_t pointerCount = event->getPointerCount();
299    if (pointerCount > MAX_POINTERS) {
300        pointerCount = MAX_POINTERS;
301    }
302
303    BitSet32 idBits;
304    for (size_t i = 0; i < pointerCount; i++) {
305        idBits.markBit(event->getPointerId(i));
306    }
307
308    uint32_t pointerIndex[MAX_POINTERS];
309    for (size_t i = 0; i < pointerCount; i++) {
310        pointerIndex[i] = idBits.getIndexOfBit(event->getPointerId(i));
311    }
312
313    nsecs_t eventTime;
314    Position positions[pointerCount];
315
316    size_t historySize = event->getHistorySize();
317    for (size_t h = 0; h < historySize; h++) {
318        eventTime = event->getHistoricalEventTime(h);
319        for (size_t i = 0; i < pointerCount; i++) {
320            uint32_t index = pointerIndex[i];
321            positions[index].x = event->getHistoricalX(i, h);
322            positions[index].y = event->getHistoricalY(i, h);
323        }
324        addMovement(eventTime, idBits, positions);
325    }
326
327    eventTime = event->getEventTime();
328    for (size_t i = 0; i < pointerCount; i++) {
329        uint32_t index = pointerIndex[i];
330        positions[index].x = event->getX(i);
331        positions[index].y = event->getY(i);
332    }
333    addMovement(eventTime, idBits, positions);
334}
335
336bool VelocityTracker::getVelocity(uint32_t id, float* outVx, float* outVy) const {
337    Estimator estimator;
338    if (getEstimator(id, &estimator) && estimator.degree >= 1) {
339        *outVx = estimator.xCoeff[1];
340        *outVy = estimator.yCoeff[1];
341        return true;
342    }
343    *outVx = 0;
344    *outVy = 0;
345    return false;
346}
347
348bool VelocityTracker::getEstimator(uint32_t id, Estimator* outEstimator) const {
349    return mStrategy->getEstimator(id, outEstimator);
350}
351
352
353// --- LeastSquaresVelocityTrackerStrategy ---
354
355const nsecs_t LeastSquaresVelocityTrackerStrategy::HORIZON;
356const uint32_t LeastSquaresVelocityTrackerStrategy::HISTORY_SIZE;
357
358LeastSquaresVelocityTrackerStrategy::LeastSquaresVelocityTrackerStrategy(
359        uint32_t degree, Weighting weighting) :
360        mDegree(degree), mWeighting(weighting) {
361    clear();
362}
363
364LeastSquaresVelocityTrackerStrategy::~LeastSquaresVelocityTrackerStrategy() {
365}
366
367void LeastSquaresVelocityTrackerStrategy::clear() {
368    mIndex = 0;
369    mMovements[0].idBits.clear();
370}
371
372void LeastSquaresVelocityTrackerStrategy::clearPointers(BitSet32 idBits) {
373    BitSet32 remainingIdBits(mMovements[mIndex].idBits.value & ~idBits.value);
374    mMovements[mIndex].idBits = remainingIdBits;
375}
376
377void LeastSquaresVelocityTrackerStrategy::addMovement(nsecs_t eventTime, BitSet32 idBits,
378        const VelocityTracker::Position* positions) {
379    if (++mIndex == HISTORY_SIZE) {
380        mIndex = 0;
381    }
382
383    Movement& movement = mMovements[mIndex];
384    movement.eventTime = eventTime;
385    movement.idBits = idBits;
386    uint32_t count = idBits.count();
387    for (uint32_t i = 0; i < count; i++) {
388        movement.positions[i] = positions[i];
389    }
390}
391
392/**
393 * Solves a linear least squares problem to obtain a N degree polynomial that fits
394 * the specified input data as nearly as possible.
395 *
396 * Returns true if a solution is found, false otherwise.
397 *
398 * The input consists of two vectors of data points X and Y with indices 0..m-1
399 * along with a weight vector W of the same size.
400 *
401 * The output is a vector B with indices 0..n that describes a polynomial
402 * that fits the data, such the sum of W[i] * W[i] * abs(Y[i] - (B[0] + B[1] X[i]
403 * + B[2] X[i]^2 ... B[n] X[i]^n)) for all i between 0 and m-1 is minimized.
404 *
405 * Accordingly, the weight vector W should be initialized by the caller with the
406 * reciprocal square root of the variance of the error in each input data point.
407 * In other words, an ideal choice for W would be W[i] = 1 / var(Y[i]) = 1 / stddev(Y[i]).
408 * The weights express the relative importance of each data point.  If the weights are
409 * all 1, then the data points are considered to be of equal importance when fitting
410 * the polynomial.  It is a good idea to choose weights that diminish the importance
411 * of data points that may have higher than usual error margins.
412 *
413 * Errors among data points are assumed to be independent.  W is represented here
414 * as a vector although in the literature it is typically taken to be a diagonal matrix.
415 *
416 * That is to say, the function that generated the input data can be approximated
417 * by y(x) ~= B[0] + B[1] x + B[2] x^2 + ... + B[n] x^n.
418 *
419 * The coefficient of determination (R^2) is also returned to describe the goodness
420 * of fit of the model for the given data.  It is a value between 0 and 1, where 1
421 * indicates perfect correspondence.
422 *
423 * This function first expands the X vector to a m by n matrix A such that
424 * A[i][0] = 1, A[i][1] = X[i], A[i][2] = X[i]^2, ..., A[i][n] = X[i]^n, then
425 * multiplies it by w[i]./
426 *
427 * Then it calculates the QR decomposition of A yielding an m by m orthonormal matrix Q
428 * and an m by n upper triangular matrix R.  Because R is upper triangular (lower
429 * part is all zeroes), we can simplify the decomposition into an m by n matrix
430 * Q1 and a n by n matrix R1 such that A = Q1 R1.
431 *
432 * Finally we solve the system of linear equations given by R1 B = (Qtranspose W Y)
433 * to find B.
434 *
435 * For efficiency, we lay out A and Q column-wise in memory because we frequently
436 * operate on the column vectors.  Conversely, we lay out R row-wise.
437 *
438 * http://en.wikipedia.org/wiki/Numerical_methods_for_linear_least_squares
439 * http://en.wikipedia.org/wiki/Gram-Schmidt
440 */
441static bool solveLeastSquares(const float* x, const float* y,
442        const float* w, uint32_t m, uint32_t n, float* outB, float* outDet) {
443#if DEBUG_STRATEGY
444    ALOGD("solveLeastSquares: m=%d, n=%d, x=%s, y=%s, w=%s", int(m), int(n),
445            vectorToString(x, m).string(), vectorToString(y, m).string(),
446            vectorToString(w, m).string());
447#endif
448
449    // Expand the X vector to a matrix A, pre-multiplied by the weights.
450    float a[n][m]; // column-major order
451    for (uint32_t h = 0; h < m; h++) {
452        a[0][h] = w[h];
453        for (uint32_t i = 1; i < n; i++) {
454            a[i][h] = a[i - 1][h] * x[h];
455        }
456    }
457#if DEBUG_STRATEGY
458    ALOGD("  - a=%s", matrixToString(&a[0][0], m, n, false /*rowMajor*/).string());
459#endif
460
461    // Apply the Gram-Schmidt process to A to obtain its QR decomposition.
462    float q[n][m]; // orthonormal basis, column-major order
463    float r[n][n]; // upper triangular matrix, row-major order
464    for (uint32_t j = 0; j < n; j++) {
465        for (uint32_t h = 0; h < m; h++) {
466            q[j][h] = a[j][h];
467        }
468        for (uint32_t i = 0; i < j; i++) {
469            float dot = vectorDot(&q[j][0], &q[i][0], m);
470            for (uint32_t h = 0; h < m; h++) {
471                q[j][h] -= dot * q[i][h];
472            }
473        }
474
475        float norm = vectorNorm(&q[j][0], m);
476        if (norm < 0.000001f) {
477            // vectors are linearly dependent or zero so no solution
478#if DEBUG_STRATEGY
479            ALOGD("  - no solution, norm=%f", norm);
480#endif
481            return false;
482        }
483
484        float invNorm = 1.0f / norm;
485        for (uint32_t h = 0; h < m; h++) {
486            q[j][h] *= invNorm;
487        }
488        for (uint32_t i = 0; i < n; i++) {
489            r[j][i] = i < j ? 0 : vectorDot(&q[j][0], &a[i][0], m);
490        }
491    }
492#if DEBUG_STRATEGY
493    ALOGD("  - q=%s", matrixToString(&q[0][0], m, n, false /*rowMajor*/).string());
494    ALOGD("  - r=%s", matrixToString(&r[0][0], n, n, true /*rowMajor*/).string());
495
496    // calculate QR, if we factored A correctly then QR should equal A
497    float qr[n][m];
498    for (uint32_t h = 0; h < m; h++) {
499        for (uint32_t i = 0; i < n; i++) {
500            qr[i][h] = 0;
501            for (uint32_t j = 0; j < n; j++) {
502                qr[i][h] += q[j][h] * r[j][i];
503            }
504        }
505    }
506    ALOGD("  - qr=%s", matrixToString(&qr[0][0], m, n, false /*rowMajor*/).string());
507#endif
508
509    // Solve R B = Qt W Y to find B.  This is easy because R is upper triangular.
510    // We just work from bottom-right to top-left calculating B's coefficients.
511    float wy[m];
512    for (uint32_t h = 0; h < m; h++) {
513        wy[h] = y[h] * w[h];
514    }
515    for (uint32_t i = n; i != 0; ) {
516        i--;
517        outB[i] = vectorDot(&q[i][0], wy, m);
518        for (uint32_t j = n - 1; j > i; j--) {
519            outB[i] -= r[i][j] * outB[j];
520        }
521        outB[i] /= r[i][i];
522    }
523#if DEBUG_STRATEGY
524    ALOGD("  - b=%s", vectorToString(outB, n).string());
525#endif
526
527    // Calculate the coefficient of determination as 1 - (SSerr / SStot) where
528    // SSerr is the residual sum of squares (variance of the error),
529    // and SStot is the total sum of squares (variance of the data) where each
530    // has been weighted.
531    float ymean = 0;
532    for (uint32_t h = 0; h < m; h++) {
533        ymean += y[h];
534    }
535    ymean /= m;
536
537    float sserr = 0;
538    float sstot = 0;
539    for (uint32_t h = 0; h < m; h++) {
540        float err = y[h] - outB[0];
541        float term = 1;
542        for (uint32_t i = 1; i < n; i++) {
543            term *= x[h];
544            err -= term * outB[i];
545        }
546        sserr += w[h] * w[h] * err * err;
547        float var = y[h] - ymean;
548        sstot += w[h] * w[h] * var * var;
549    }
550    *outDet = sstot > 0.000001f ? 1.0f - (sserr / sstot) : 1;
551#if DEBUG_STRATEGY
552    ALOGD("  - sserr=%f", sserr);
553    ALOGD("  - sstot=%f", sstot);
554    ALOGD("  - det=%f", *outDet);
555#endif
556    return true;
557}
558
559bool LeastSquaresVelocityTrackerStrategy::getEstimator(uint32_t id,
560        VelocityTracker::Estimator* outEstimator) const {
561    outEstimator->clear();
562
563    // Iterate over movement samples in reverse time order and collect samples.
564    float x[HISTORY_SIZE];
565    float y[HISTORY_SIZE];
566    float w[HISTORY_SIZE];
567    float time[HISTORY_SIZE];
568    uint32_t m = 0;
569    uint32_t index = mIndex;
570    const Movement& newestMovement = mMovements[mIndex];
571    do {
572        const Movement& movement = mMovements[index];
573        if (!movement.idBits.hasBit(id)) {
574            break;
575        }
576
577        nsecs_t age = newestMovement.eventTime - movement.eventTime;
578        if (age > HORIZON) {
579            break;
580        }
581
582        const VelocityTracker::Position& position = movement.getPosition(id);
583        x[m] = position.x;
584        y[m] = position.y;
585        w[m] = chooseWeight(index);
586        time[m] = -age * 0.000000001f;
587        index = (index == 0 ? HISTORY_SIZE : index) - 1;
588    } while (++m < HISTORY_SIZE);
589
590    if (m == 0) {
591        return false; // no data
592    }
593
594    // Calculate a least squares polynomial fit.
595    uint32_t degree = mDegree;
596    if (degree > m - 1) {
597        degree = m - 1;
598    }
599    if (degree >= 1) {
600        float xdet, ydet;
601        uint32_t n = degree + 1;
602        if (solveLeastSquares(time, x, w, m, n, outEstimator->xCoeff, &xdet)
603                && solveLeastSquares(time, y, w, m, n, outEstimator->yCoeff, &ydet)) {
604            outEstimator->time = newestMovement.eventTime;
605            outEstimator->degree = degree;
606            outEstimator->confidence = xdet * ydet;
607#if DEBUG_STRATEGY
608            ALOGD("estimate: degree=%d, xCoeff=%s, yCoeff=%s, confidence=%f",
609                    int(outEstimator->degree),
610                    vectorToString(outEstimator->xCoeff, n).string(),
611                    vectorToString(outEstimator->yCoeff, n).string(),
612                    outEstimator->confidence);
613#endif
614            return true;
615        }
616    }
617
618    // No velocity data available for this pointer, but we do have its current position.
619    outEstimator->xCoeff[0] = x[0];
620    outEstimator->yCoeff[0] = y[0];
621    outEstimator->time = newestMovement.eventTime;
622    outEstimator->degree = 0;
623    outEstimator->confidence = 1;
624    return true;
625}
626
627float LeastSquaresVelocityTrackerStrategy::chooseWeight(uint32_t index) const {
628    switch (mWeighting) {
629    case WEIGHTING_DELTA: {
630        // Weight points based on how much time elapsed between them and the next
631        // point so that points that "cover" a shorter time span are weighed less.
632        //   delta  0ms: 0.5
633        //   delta 10ms: 1.0
634        if (index == mIndex) {
635            return 1.0f;
636        }
637        uint32_t nextIndex = (index + 1) % HISTORY_SIZE;
638        float deltaMillis = (mMovements[nextIndex].eventTime- mMovements[index].eventTime)
639                * 0.000001f;
640        if (deltaMillis < 0) {
641            return 0.5f;
642        }
643        if (deltaMillis < 10) {
644            return 0.5f + deltaMillis * 0.05;
645        }
646        return 1.0f;
647    }
648
649    case WEIGHTING_CENTRAL: {
650        // Weight points based on their age, weighing very recent and very old points less.
651        //   age  0ms: 0.5
652        //   age 10ms: 1.0
653        //   age 50ms: 1.0
654        //   age 60ms: 0.5
655        float ageMillis = (mMovements[mIndex].eventTime - mMovements[index].eventTime)
656                * 0.000001f;
657        if (ageMillis < 0) {
658            return 0.5f;
659        }
660        if (ageMillis < 10) {
661            return 0.5f + ageMillis * 0.05;
662        }
663        if (ageMillis < 50) {
664            return 1.0f;
665        }
666        if (ageMillis < 60) {
667            return 0.5f + (60 - ageMillis) * 0.05;
668        }
669        return 0.5f;
670    }
671
672    case WEIGHTING_RECENT: {
673        // Weight points based on their age, weighing older points less.
674        //   age   0ms: 1.0
675        //   age  50ms: 1.0
676        //   age 100ms: 0.5
677        float ageMillis = (mMovements[mIndex].eventTime - mMovements[index].eventTime)
678                * 0.000001f;
679        if (ageMillis < 50) {
680            return 1.0f;
681        }
682        if (ageMillis < 100) {
683            return 0.5f + (100 - ageMillis) * 0.01f;
684        }
685        return 0.5f;
686    }
687
688    case WEIGHTING_NONE:
689    default:
690        return 1.0f;
691    }
692}
693
694
695// --- IntegratingVelocityTrackerStrategy ---
696
697IntegratingVelocityTrackerStrategy::IntegratingVelocityTrackerStrategy(uint32_t degree) :
698        mDegree(degree) {
699}
700
701IntegratingVelocityTrackerStrategy::~IntegratingVelocityTrackerStrategy() {
702}
703
704void IntegratingVelocityTrackerStrategy::clear() {
705    mPointerIdBits.clear();
706}
707
708void IntegratingVelocityTrackerStrategy::clearPointers(BitSet32 idBits) {
709    mPointerIdBits.value &= ~idBits.value;
710}
711
712void IntegratingVelocityTrackerStrategy::addMovement(nsecs_t eventTime, BitSet32 idBits,
713        const VelocityTracker::Position* positions) {
714    uint32_t index = 0;
715    for (BitSet32 iterIdBits(idBits); !iterIdBits.isEmpty();) {
716        uint32_t id = iterIdBits.clearFirstMarkedBit();
717        State& state = mPointerState[id];
718        const VelocityTracker::Position& position = positions[index++];
719        if (mPointerIdBits.hasBit(id)) {
720            updateState(state, eventTime, position.x, position.y);
721        } else {
722            initState(state, eventTime, position.x, position.y);
723        }
724    }
725
726    mPointerIdBits = idBits;
727}
728
729bool IntegratingVelocityTrackerStrategy::getEstimator(uint32_t id,
730        VelocityTracker::Estimator* outEstimator) const {
731    outEstimator->clear();
732
733    if (mPointerIdBits.hasBit(id)) {
734        const State& state = mPointerState[id];
735        populateEstimator(state, outEstimator);
736        return true;
737    }
738
739    return false;
740}
741
742void IntegratingVelocityTrackerStrategy::initState(State& state,
743        nsecs_t eventTime, float xpos, float ypos) const {
744    state.updateTime = eventTime;
745    state.degree = 0;
746
747    state.xpos = xpos;
748    state.xvel = 0;
749    state.xaccel = 0;
750    state.ypos = ypos;
751    state.yvel = 0;
752    state.yaccel = 0;
753}
754
755void IntegratingVelocityTrackerStrategy::updateState(State& state,
756        nsecs_t eventTime, float xpos, float ypos) const {
757    const nsecs_t MIN_TIME_DELTA = 2 * NANOS_PER_MS;
758    const float FILTER_TIME_CONSTANT = 0.010f; // 10 milliseconds
759
760    if (eventTime <= state.updateTime + MIN_TIME_DELTA) {
761        return;
762    }
763
764    float dt = (eventTime - state.updateTime) * 0.000000001f;
765    state.updateTime = eventTime;
766
767    float xvel = (xpos - state.xpos) / dt;
768    float yvel = (ypos - state.ypos) / dt;
769    if (state.degree == 0) {
770        state.xvel = xvel;
771        state.yvel = yvel;
772        state.degree = 1;
773    } else {
774        float alpha = dt / (FILTER_TIME_CONSTANT + dt);
775        if (mDegree == 1) {
776            state.xvel += (xvel - state.xvel) * alpha;
777            state.yvel += (yvel - state.yvel) * alpha;
778        } else {
779            float xaccel = (xvel - state.xvel) / dt;
780            float yaccel = (yvel - state.yvel) / dt;
781            if (state.degree == 1) {
782                state.xaccel = xaccel;
783                state.yaccel = yaccel;
784                state.degree = 2;
785            } else {
786                state.xaccel += (xaccel - state.xaccel) * alpha;
787                state.yaccel += (yaccel - state.yaccel) * alpha;
788            }
789            state.xvel += (state.xaccel * dt) * alpha;
790            state.yvel += (state.yaccel * dt) * alpha;
791        }
792    }
793    state.xpos = xpos;
794    state.ypos = ypos;
795}
796
797void IntegratingVelocityTrackerStrategy::populateEstimator(const State& state,
798        VelocityTracker::Estimator* outEstimator) const {
799    outEstimator->time = state.updateTime;
800    outEstimator->confidence = 1.0f;
801    outEstimator->degree = state.degree;
802    outEstimator->xCoeff[0] = state.xpos;
803    outEstimator->xCoeff[1] = state.xvel;
804    outEstimator->xCoeff[2] = state.xaccel / 2;
805    outEstimator->yCoeff[0] = state.ypos;
806    outEstimator->yCoeff[1] = state.yvel;
807    outEstimator->yCoeff[2] = state.yaccel / 2;
808}
809
810
811// --- LegacyVelocityTrackerStrategy ---
812
813const nsecs_t LegacyVelocityTrackerStrategy::HORIZON;
814const uint32_t LegacyVelocityTrackerStrategy::HISTORY_SIZE;
815const nsecs_t LegacyVelocityTrackerStrategy::MIN_DURATION;
816
817LegacyVelocityTrackerStrategy::LegacyVelocityTrackerStrategy() {
818    clear();
819}
820
821LegacyVelocityTrackerStrategy::~LegacyVelocityTrackerStrategy() {
822}
823
824void LegacyVelocityTrackerStrategy::clear() {
825    mIndex = 0;
826    mMovements[0].idBits.clear();
827}
828
829void LegacyVelocityTrackerStrategy::clearPointers(BitSet32 idBits) {
830    BitSet32 remainingIdBits(mMovements[mIndex].idBits.value & ~idBits.value);
831    mMovements[mIndex].idBits = remainingIdBits;
832}
833
834void LegacyVelocityTrackerStrategy::addMovement(nsecs_t eventTime, BitSet32 idBits,
835        const VelocityTracker::Position* positions) {
836    if (++mIndex == HISTORY_SIZE) {
837        mIndex = 0;
838    }
839
840    Movement& movement = mMovements[mIndex];
841    movement.eventTime = eventTime;
842    movement.idBits = idBits;
843    uint32_t count = idBits.count();
844    for (uint32_t i = 0; i < count; i++) {
845        movement.positions[i] = positions[i];
846    }
847}
848
849bool LegacyVelocityTrackerStrategy::getEstimator(uint32_t id,
850        VelocityTracker::Estimator* outEstimator) const {
851    outEstimator->clear();
852
853    const Movement& newestMovement = mMovements[mIndex];
854    if (!newestMovement.idBits.hasBit(id)) {
855        return false; // no data
856    }
857
858    // Find the oldest sample that contains the pointer and that is not older than HORIZON.
859    nsecs_t minTime = newestMovement.eventTime - HORIZON;
860    uint32_t oldestIndex = mIndex;
861    uint32_t numTouches = 1;
862    do {
863        uint32_t nextOldestIndex = (oldestIndex == 0 ? HISTORY_SIZE : oldestIndex) - 1;
864        const Movement& nextOldestMovement = mMovements[nextOldestIndex];
865        if (!nextOldestMovement.idBits.hasBit(id)
866                || nextOldestMovement.eventTime < minTime) {
867            break;
868        }
869        oldestIndex = nextOldestIndex;
870    } while (++numTouches < HISTORY_SIZE);
871
872    // Calculate an exponentially weighted moving average of the velocity estimate
873    // at different points in time measured relative to the oldest sample.
874    // This is essentially an IIR filter.  Newer samples are weighted more heavily
875    // than older samples.  Samples at equal time points are weighted more or less
876    // equally.
877    //
878    // One tricky problem is that the sample data may be poorly conditioned.
879    // Sometimes samples arrive very close together in time which can cause us to
880    // overestimate the velocity at that time point.  Most samples might be measured
881    // 16ms apart but some consecutive samples could be only 0.5sm apart because
882    // the hardware or driver reports them irregularly or in bursts.
883    float accumVx = 0;
884    float accumVy = 0;
885    uint32_t index = oldestIndex;
886    uint32_t samplesUsed = 0;
887    const Movement& oldestMovement = mMovements[oldestIndex];
888    const VelocityTracker::Position& oldestPosition = oldestMovement.getPosition(id);
889    nsecs_t lastDuration = 0;
890
891    while (numTouches-- > 1) {
892        if (++index == HISTORY_SIZE) {
893            index = 0;
894        }
895        const Movement& movement = mMovements[index];
896        nsecs_t duration = movement.eventTime - oldestMovement.eventTime;
897
898        // If the duration between samples is small, we may significantly overestimate
899        // the velocity.  Consequently, we impose a minimum duration constraint on the
900        // samples that we include in the calculation.
901        if (duration >= MIN_DURATION) {
902            const VelocityTracker::Position& position = movement.getPosition(id);
903            float scale = 1000000000.0f / duration; // one over time delta in seconds
904            float vx = (position.x - oldestPosition.x) * scale;
905            float vy = (position.y - oldestPosition.y) * scale;
906            accumVx = (accumVx * lastDuration + vx * duration) / (duration + lastDuration);
907            accumVy = (accumVy * lastDuration + vy * duration) / (duration + lastDuration);
908            lastDuration = duration;
909            samplesUsed += 1;
910        }
911    }
912
913    // Report velocity.
914    const VelocityTracker::Position& newestPosition = newestMovement.getPosition(id);
915    outEstimator->time = newestMovement.eventTime;
916    outEstimator->confidence = 1;
917    outEstimator->xCoeff[0] = newestPosition.x;
918    outEstimator->yCoeff[0] = newestPosition.y;
919    if (samplesUsed) {
920        outEstimator->xCoeff[1] = accumVx;
921        outEstimator->yCoeff[1] = accumVy;
922        outEstimator->degree = 1;
923    } else {
924        outEstimator->degree = 0;
925    }
926    return true;
927}
928
929} // namespace android
930