Layer.h revision 29abff83bb6e148961c2319add7bd72eb76af3d4
1e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov/*
2e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov * Copyright (C) 2007 The Android Open Source Project
3e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov *
4e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov * Licensed under the Apache License, Version 2.0 (the "License");
5e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov * you may not use this file except in compliance with the License.
6e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov * You may obtain a copy of the License at
7e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov *
8e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov *      http://www.apache.org/licenses/LICENSE-2.0
9e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov *
10e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov * Unless required by applicable law or agreed to in writing, software
11e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov * distributed under the License is distributed on an "AS IS" BASIS,
12e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov * See the License for the specific language governing permissions and
14e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov * limitations under the License.
15e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov */
16e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov
17e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov#ifndef ANDROID_LAYER_H
18e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov#define ANDROID_LAYER_H
19e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov
2049b20509b42c7e9abf941fdce55599c57ac689cfKirill Grouchnikov#include <stdint.h>
2149b20509b42c7e9abf941fdce55599c57ac689cfKirill Grouchnikov#include <sys/types.h>
22e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov
23e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov#include <utils/RefBase.h>
24e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov#include <utils/String8.h>
2549b20509b42c7e9abf941fdce55599c57ac689cfKirill Grouchnikov#include <utils/Timers.h>
26e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov
27e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov#include <ui/FrameStats.h>
2826b4a0416012ed538a0f4e0dc69ba6bd19d247beKirill Grouchnikov#include <ui/GraphicBuffer.h>
29e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov#include <ui/PixelFormat.h>
30e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov#include <ui/Region.h>
31def582a5836579a3fadabfdbe4413cb1652bf098Aurimas Liutikas
32def582a5836579a3fadabfdbe4413cb1652bf098Aurimas Liutikas#include <gui/ISurfaceComposerClient.h>
33def582a5836579a3fadabfdbe4413cb1652bf098Aurimas Liutikas#include <gui/LayerState.h>
34def582a5836579a3fadabfdbe4413cb1652bf098Aurimas Liutikas
35def582a5836579a3fadabfdbe4413cb1652bf098Aurimas Liutikas#include <list>
36def582a5836579a3fadabfdbe4413cb1652bf098Aurimas Liutikas
37def582a5836579a3fadabfdbe4413cb1652bf098Aurimas Liutikas#include "Client.h"
38def582a5836579a3fadabfdbe4413cb1652bf098Aurimas Liutikas#include "FrameTracker.h"
39e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov#include "LayerVector.h"
40e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov#include "MonitoredProducer.h"
41e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov#include "SurfaceFlinger.h"
42e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov#include "Transform.h"
43e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov
44e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov#include <layerproto/LayerProtoHeader.h>
45e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov#include "DisplayHardware/HWComposer.h"
46e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov#include "DisplayHardware/HWComposerBufferCache.h"
47e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov#include "RenderArea.h"
48e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov#include "RenderEngine/Mesh.h"
49e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov#include "RenderEngine/Texture.h"
50e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov
51e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov#include <math/vec4.h>
52e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov
53e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikovusing namespace android::surfaceflinger;
54e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov
55e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikovnamespace android {
56e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov
57e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov// ---------------------------------------------------------------------------
58e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov
59e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikovclass Client;
60e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikovclass Colorizer;
61e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikovclass DisplayDevice;
62e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikovclass GraphicBuffer;
63e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikovclass SurfaceFlinger;
64e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikovclass LayerDebugInfo;
65e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikovclass LayerBE;
66e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov
67e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov// ---------------------------------------------------------------------------
68e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov
69e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikovclass LayerBE {
70e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikovpublic:
71e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov    LayerBE();
72e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov
73e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov    // main thread
74e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov    int mBufferSlot;
75e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov    sp<GraphicBuffer> mBuffer;
76e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov    sp<NativeHandle> mSidebandStream;
77e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov
78e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov    // The mesh used to draw the layer in GLES composition mode
79e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov    Mesh mMesh;
80e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov
81e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov    // HWC items, accessed from the main thread
82e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov    struct HWCInfo {
8326b4a0416012ed538a0f4e0dc69ba6bd19d247beKirill Grouchnikov        HWCInfo()
8426b4a0416012ed538a0f4e0dc69ba6bd19d247beKirill Grouchnikov              : hwc(nullptr),
85e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov                layer(nullptr),
86e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov                forceClientComposition(false),
87e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov                compositionType(HWC2::Composition::Invalid),
88e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov                clearClientTarget(false) {}
89e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov
90e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov        HWComposer* hwc;
91e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov        HWC2::Layer* layer;
92e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov        bool forceClientComposition;
93e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov        HWC2::Composition compositionType;
94e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov        bool clearClientTarget;
95e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov        Rect displayFrame;
96fa2e2acf79d791a90410025daad438968550d18cAlan Viverette        FloatRect sourceCrop;
97fa2e2acf79d791a90410025daad438968550d18cAlan Viverette        HWComposerBufferCache bufferCache;
98fa2e2acf79d791a90410025daad438968550d18cAlan Viverette    };
99fa2e2acf79d791a90410025daad438968550d18cAlan Viverette
100e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov    // A layer can be attached to multiple displays when operating in mirror mode
101e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov    // (a.k.a: when several displays are attached with equal layerStack). In this
10226b4a0416012ed538a0f4e0dc69ba6bd19d247beKirill Grouchnikov    // case we need to keep track. In non-mirror mode, a layer will have only one
103e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov    // HWCInfo. This map key is a display layerStack.
104e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov    std::unordered_map<int32_t, HWCInfo> mHwcLayers;
105e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov};
106e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov
107e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikovclass Layer : public virtual RefBase {
108e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov    static int32_t sSequence;
10926b4a0416012ed538a0f4e0dc69ba6bd19d247beKirill Grouchnikov
110e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikovpublic:
11126b4a0416012ed538a0f4e0dc69ba6bd19d247beKirill Grouchnikov    LayerBE& getBE() { return mBE; }
112e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov    LayerBE& getBE() const { return mBE; }
113e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov    mutable bool contentDirty;
114e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov    // regions below are in window-manager space
115fa2e2acf79d791a90410025daad438968550d18cAlan Viverette    Region visibleRegion;
116e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov    Region coveredRegion;
117e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov    Region visibleNonTransparentRegion;
118e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov    Region surfaceDamageRegion;
119e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov
120e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov    // Layer serial number.  This gives layers an explicit ordering, so we
121e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov    // have a stable sort order when their layer stack and Z-order are
122e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov    // the same.
123e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov    int32_t sequence;
124e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov
125e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov    enum { // flags for doTransaction()
126e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov        eDontUpdateGeometryState = 0x00000001,
127e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov        eVisibleRegion = 0x00000002,
128e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov    };
129e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov
130e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov    struct Geometry {
131e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov        uint32_t w;
132e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov        uint32_t h;
133e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov        Transform transform;
134e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov
135e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov        inline bool operator==(const Geometry& rhs) const {
136e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov            return (w == rhs.w && h == rhs.h) && (transform.tx() == rhs.transform.tx()) &&
137e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov                    (transform.ty() == rhs.transform.ty());
138e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov        }
139e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov        inline bool operator!=(const Geometry& rhs) const { return !operator==(rhs); }
140e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov    };
141e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov
142e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov    struct State {
143e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov        Geometry active;
144e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov        Geometry requested;
145e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov        int32_t z;
146e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov
1470984f98baad154a687823303666d437161ef3bffKirill Grouchnikov        // The identifier of the layer stack this layer belongs to. A layer can
148e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov        // only be associated to a single layer stack. A layer stack is a
149e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov        // z-ordered group of layers which can be associated to one or more
150e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov        // displays. Using the same layer stack on different displays is a way
151e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov        // to achieve mirroring.
152e8e0eae2600001c8b1e9d5a9f0331cf045193746Aurimas Liutikas        uint32_t layerStack;
153e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov
154e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov        uint8_t flags;
15549b20509b42c7e9abf941fdce55599c57ac689cfKirill Grouchnikov        uint8_t mask;
15649b20509b42c7e9abf941fdce55599c57ac689cfKirill Grouchnikov        uint8_t reserved[2];
15749b20509b42c7e9abf941fdce55599c57ac689cfKirill Grouchnikov        int32_t sequence; // changes when visible regions can change
15849b20509b42c7e9abf941fdce55599c57ac689cfKirill Grouchnikov        bool modified;
15949b20509b42c7e9abf941fdce55599c57ac689cfKirill Grouchnikov
16049b20509b42c7e9abf941fdce55599c57ac689cfKirill Grouchnikov        // Crop is expressed in layer space coordinate.
16149b20509b42c7e9abf941fdce55599c57ac689cfKirill Grouchnikov        Rect crop;
16249b20509b42c7e9abf941fdce55599c57ac689cfKirill Grouchnikov        Rect requestedCrop;
16349b20509b42c7e9abf941fdce55599c57ac689cfKirill Grouchnikov
16449b20509b42c7e9abf941fdce55599c57ac689cfKirill Grouchnikov        // finalCrop is expressed in display space coordinate.
16549b20509b42c7e9abf941fdce55599c57ac689cfKirill Grouchnikov        Rect finalCrop;
16649b20509b42c7e9abf941fdce55599c57ac689cfKirill Grouchnikov        Rect requestedFinalCrop;
16749b20509b42c7e9abf941fdce55599c57ac689cfKirill Grouchnikov
16849b20509b42c7e9abf941fdce55599c57ac689cfKirill Grouchnikov        // If set, defers this state update until the identified Layer
169ac5fe7c617c66850fff75a9fce9979c6e5674b0fAurimas Liutikas        // receives a frame with the given frameNumber
17049b20509b42c7e9abf941fdce55599c57ac689cfKirill Grouchnikov        wp<Layer> barrierLayer;
17149b20509b42c7e9abf941fdce55599c57ac689cfKirill Grouchnikov        uint64_t frameNumber;
17249b20509b42c7e9abf941fdce55599c57ac689cfKirill Grouchnikov
17349b20509b42c7e9abf941fdce55599c57ac689cfKirill Grouchnikov        // the transparentRegion hint is a bit special, it's latched only
17449b20509b42c7e9abf941fdce55599c57ac689cfKirill Grouchnikov        // when we receive a buffer -- this is because it's "content"
17549b20509b42c7e9abf941fdce55599c57ac689cfKirill Grouchnikov        // dependent.
17649b20509b42c7e9abf941fdce55599c57ac689cfKirill Grouchnikov        Region activeTransparentRegion;
17749b20509b42c7e9abf941fdce55599c57ac689cfKirill Grouchnikov        Region requestedTransparentRegion;
17849b20509b42c7e9abf941fdce55599c57ac689cfKirill Grouchnikov        android_dataspace dataSpace;
17949b20509b42c7e9abf941fdce55599c57ac689cfKirill Grouchnikov
18026b4a0416012ed538a0f4e0dc69ba6bd19d247beKirill Grouchnikov        uint32_t appId;
18126b4a0416012ed538a0f4e0dc69ba6bd19d247beKirill Grouchnikov        uint32_t type;
18226b4a0416012ed538a0f4e0dc69ba6bd19d247beKirill Grouchnikov
18326b4a0416012ed538a0f4e0dc69ba6bd19d247beKirill Grouchnikov        // If non-null, a Surface this Surface's Z-order is interpreted relative to.
18426b4a0416012ed538a0f4e0dc69ba6bd19d247beKirill Grouchnikov        wp<Layer> zOrderRelativeOf;
18526b4a0416012ed538a0f4e0dc69ba6bd19d247beKirill Grouchnikov
18626b4a0416012ed538a0f4e0dc69ba6bd19d247beKirill Grouchnikov        // A list of surfaces whose Z-order is interpreted relative to ours.
18726b4a0416012ed538a0f4e0dc69ba6bd19d247beKirill Grouchnikov        SortedVector<wp<Layer>> zOrderRelatives;
18826b4a0416012ed538a0f4e0dc69ba6bd19d247beKirill Grouchnikov
18949b20509b42c7e9abf941fdce55599c57ac689cfKirill Grouchnikov        half4 color;
19049b20509b42c7e9abf941fdce55599c57ac689cfKirill Grouchnikov    };
19149b20509b42c7e9abf941fdce55599c57ac689cfKirill Grouchnikov
19249b20509b42c7e9abf941fdce55599c57ac689cfKirill Grouchnikov    Layer(SurfaceFlinger* flinger, const sp<Client>& client, const String8& name, uint32_t w,
19349b20509b42c7e9abf941fdce55599c57ac689cfKirill Grouchnikov          uint32_t h, uint32_t flags);
19449b20509b42c7e9abf941fdce55599c57ac689cfKirill Grouchnikov    virtual ~Layer();
19549b20509b42c7e9abf941fdce55599c57ac689cfKirill Grouchnikov
196e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov    void setPrimaryDisplayOnly() { mPrimaryDisplayOnly = true; }
197e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov
198e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov    // ------------------------------------------------------------------------
199e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov    // Geometry setting functions.
200e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov    //
201e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov    // The following group of functions are used to specify the layers
202e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov    // bounds, and the mapping of the texture on to those bounds. According
203e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov    // to various settings changes to them may apply immediately, or be delayed until
204e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov    // a pending resize is completed by the producer submitting a buffer. For example
205e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov    // if we were to change the buffer size, and update the matrix ahead of the
206e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov    // new buffer arriving, then we would be stretching the buffer to a different
207e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov    // aspect before and after the buffer arriving, which probably isn't what we wanted.
208e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov    //
209e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov    // The first set of geometry functions are controlled by the scaling mode, described
210e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov    // in window.h. The scaling mode may be set by the client, as it submits buffers.
211e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov    // This value may be overriden through SurfaceControl, with setOverrideScalingMode.
212e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov    //
213e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov    // Put simply, if our scaling mode is SCALING_MODE_FREEZE, then
214e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov    // matrix updates will not be applied while a resize is pending
215e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov    // and the size and transform will remain in their previous state
216e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov    // until a new buffer is submitted. If the scaling mode is another value
217e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov    // then the old-buffer will immediately be scaled to the pending size
218e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov    // and the new matrix will be immediately applied following this scaling
219e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov    // transformation.
22026b4a0416012ed538a0f4e0dc69ba6bd19d247beKirill Grouchnikov
22126b4a0416012ed538a0f4e0dc69ba6bd19d247beKirill Grouchnikov    // Set the default buffer size for the assosciated Producer, in pixels. This is
22226b4a0416012ed538a0f4e0dc69ba6bd19d247beKirill Grouchnikov    // also the rendered size of the layer prior to any transformations. Parent
22326b4a0416012ed538a0f4e0dc69ba6bd19d247beKirill Grouchnikov    // or local matrix transformations will not affect the size of the buffer,
22426b4a0416012ed538a0f4e0dc69ba6bd19d247beKirill Grouchnikov    // but may affect it's on-screen size or clipping.
22526b4a0416012ed538a0f4e0dc69ba6bd19d247beKirill Grouchnikov    bool setSize(uint32_t w, uint32_t h);
22626b4a0416012ed538a0f4e0dc69ba6bd19d247beKirill Grouchnikov    // Set a 2x2 transformation matrix on the layer. This transform
22726b4a0416012ed538a0f4e0dc69ba6bd19d247beKirill Grouchnikov    // will be applied after parent transforms, but before any final
22826b4a0416012ed538a0f4e0dc69ba6bd19d247beKirill Grouchnikov    // producer specified transform.
22926b4a0416012ed538a0f4e0dc69ba6bd19d247beKirill Grouchnikov    bool setMatrix(const layer_state_t::matrix22_t& matrix);
23026b4a0416012ed538a0f4e0dc69ba6bd19d247beKirill Grouchnikov
23126b4a0416012ed538a0f4e0dc69ba6bd19d247beKirill Grouchnikov    // This second set of geometry attributes are controlled by
23226b4a0416012ed538a0f4e0dc69ba6bd19d247beKirill Grouchnikov    // setGeometryAppliesWithResize, and their default mode is to be
23326b4a0416012ed538a0f4e0dc69ba6bd19d247beKirill Grouchnikov    // immediate. If setGeometryAppliesWithResize is specified
23426b4a0416012ed538a0f4e0dc69ba6bd19d247beKirill Grouchnikov    // while a resize is pending, then update of these attributes will
23526b4a0416012ed538a0f4e0dc69ba6bd19d247beKirill Grouchnikov    // be delayed until the resize completes.
236e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov
237e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov    // setPosition operates in parent buffer space (pre parent-transform) or display
238e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov    // space for top-level layers.
239e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov    bool setPosition(float x, float y, bool immediate);
240e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov    // Buffer space
241e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov    bool setCrop(const Rect& crop, bool immediate);
242e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov    // Parent buffer space/display space
243e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov    bool setFinalCrop(const Rect& crop, bool immediate);
244e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov
245e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov    // TODO(b/38182121): Could we eliminate the various latching modes by
246e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov    // using the layer hierarchy?
247e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov    // -----------------------------------------------------------------------
248e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov    bool setLayer(int32_t z);
249e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov    bool setRelativeLayer(const sp<IBinder>& relativeToHandle, int32_t relativeZ);
250e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov
251e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov    bool setAlpha(float alpha);
252e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov    bool setColor(const half3& color);
253e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov    bool setTransparentRegionHint(const Region& transparent);
254e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov    bool setFlags(uint8_t flags, uint8_t mask);
255e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov    bool setLayerStack(uint32_t layerStack);
256e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov    bool setDataSpace(android_dataspace dataSpace);
25726b4a0416012ed538a0f4e0dc69ba6bd19d247beKirill Grouchnikov    android_dataspace getDataSpace() const;
258e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov    uint32_t getLayerStack() const;
259e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov    void deferTransactionUntil(const sp<IBinder>& barrierHandle, uint64_t frameNumber);
260e963911344d98d1a79e3e8dcea16ea04371f2af6Kirill Grouchnikov    void deferTransactionUntil(const sp<Layer>& barrierLayer, uint64_t frameNumber);
261    bool setOverrideScalingMode(int32_t overrideScalingMode);
262    void setInfo(uint32_t type, uint32_t appId);
263    bool reparentChildren(const sp<IBinder>& layer);
264    bool reparent(const sp<IBinder>& newParentHandle);
265    bool detachChildren();
266
267    // If we have received a new buffer this frame, we will pass its surface
268    // damage down to hardware composer. Otherwise, we must send a region with
269    // one empty rect.
270    virtual void useSurfaceDamage() = 0;
271    virtual void useEmptyDamage() = 0;
272
273    uint32_t getTransactionFlags(uint32_t flags);
274    uint32_t setTransactionFlags(uint32_t flags);
275
276    bool belongsToDisplay(uint32_t layerStack, bool isPrimaryDisplay) const {
277        return getLayerStack() == layerStack && (!mPrimaryDisplayOnly || isPrimaryDisplay);
278    }
279
280    void computeGeometry(const RenderArea& renderArea, Mesh& mesh, bool useIdentityTransform) const;
281    Rect computeBounds(const Region& activeTransparentRegion) const;
282    Rect computeBounds() const;
283
284    int32_t getSequence() const { return sequence; }
285
286    // -----------------------------------------------------------------------
287    // Virtuals
288    virtual const char* getTypeId() const = 0;
289
290    /*
291     * isOpaque - true if this surface is opaque
292     *
293     * This takes into account the buffer format (i.e. whether or not the
294     * pixel format includes an alpha channel) and the "opaque" flag set
295     * on the layer.  It does not examine the current plane alpha value.
296     */
297    virtual bool isOpaque(const Layer::State& s) const = 0;
298
299    /*
300     * isSecure - true if this surface is secure, that is if it prevents
301     * screenshots or VNC servers.
302     */
303    bool isSecure() const;
304
305    /*
306     * isVisible - true if this layer is visible, false otherwise
307     */
308    virtual bool isVisible() const = 0;
309
310    /*
311     * isHiddenByPolicy - true if this layer has been forced invisible.
312     * just because this is false, doesn't mean isVisible() is true.
313     * For example if this layer has no active buffer, it may not be hidden by
314     * policy, but it still can not be visible.
315     */
316    bool isHiddenByPolicy() const;
317
318    /*
319     * isFixedSize - true if content has a fixed size
320     */
321    virtual bool isFixedSize() const = 0;
322
323    bool isPendingRemoval() const { return mPendingRemoval; }
324
325    void writeToProto(LayerProto* layerInfo,
326                      LayerVector::StateSet stateSet = LayerVector::StateSet::Drawing);
327
328protected:
329    /*
330     * onDraw - draws the surface.
331     */
332    virtual void onDraw(const RenderArea& renderArea, const Region& clip,
333                        bool useIdentityTransform) const = 0;
334
335public:
336    virtual void setDefaultBufferSize(uint32_t w, uint32_t h) = 0;
337
338    void setGeometry(const sp<const DisplayDevice>& displayDevice, uint32_t z);
339    void forceClientComposition(int32_t hwcId);
340    bool getForceClientComposition(int32_t hwcId);
341    virtual void setPerFrameData(const sp<const DisplayDevice>& displayDevice) = 0;
342
343    // callIntoHwc exists so we can update our local state and call
344    // acceptDisplayChanges without unnecessarily updating the device's state
345    void setCompositionType(int32_t hwcId, HWC2::Composition type, bool callIntoHwc = true);
346    HWC2::Composition getCompositionType(int32_t hwcId) const;
347    void setClearClientTarget(int32_t hwcId, bool clear);
348    bool getClearClientTarget(int32_t hwcId) const;
349    void updateCursorPosition(const sp<const DisplayDevice>& hw);
350
351    /*
352     * called after page-flip
353     */
354    virtual void onLayerDisplayed(const sp<Fence>& releaseFence);
355
356    virtual void abandon() = 0;
357
358    virtual bool shouldPresentNow(const DispSync& dispSync) const = 0;
359    virtual void setTransformHint(uint32_t orientation) const = 0;
360
361    /*
362     * called before composition.
363     * returns true if the layer has pending updates.
364     */
365    virtual bool onPreComposition(nsecs_t refreshStartTime) = 0;
366
367    /*
368     * called after composition.
369     * returns true if the layer latched a new buffer this frame.
370     */
371    virtual bool onPostComposition(const std::shared_ptr<FenceTime>& glDoneFence,
372                                   const std::shared_ptr<FenceTime>& presentFence,
373                                   const CompositorTiming& compositorTiming) = 0;
374
375    // If a buffer was replaced this frame, release the former buffer
376    virtual void releasePendingBuffer(nsecs_t dequeueReadyTime) = 0;
377
378    /*
379     * draw - performs some global clipping optimizations
380     * and calls onDraw().
381     */
382    void draw(const RenderArea& renderArea, const Region& clip) const;
383    void draw(const RenderArea& renderArea, bool useIdentityTransform) const;
384    void draw(const RenderArea& renderArea) const;
385
386    /*
387     * doTransaction - process the transaction. This is a good place to figure
388     * out which attributes of the surface have changed.
389     */
390    uint32_t doTransaction(uint32_t transactionFlags);
391
392    /*
393     * setVisibleRegion - called to set the new visible region. This gives
394     * a chance to update the new visible region or record the fact it changed.
395     */
396    void setVisibleRegion(const Region& visibleRegion);
397
398    /*
399     * setCoveredRegion - called when the covered region changes. The covered
400     * region corresponds to any area of the surface that is covered
401     * (transparently or not) by another surface.
402     */
403    void setCoveredRegion(const Region& coveredRegion);
404
405    /*
406     * setVisibleNonTransparentRegion - called when the visible and
407     * non-transparent region changes.
408     */
409    void setVisibleNonTransparentRegion(const Region& visibleNonTransparentRegion);
410
411    /*
412     * latchBuffer - called each time the screen is redrawn and returns whether
413     * the visible regions need to be recomputed (this is a fairly heavy
414     * operation, so this should be set only if needed). Typically this is used
415     * to figure out if the content or size of a surface has changed.
416     */
417    virtual Region latchBuffer(bool& recomputeVisibleRegions, nsecs_t latchTime) = 0;
418    virtual bool isBufferLatched() const = 0;
419
420    bool isPotentialCursor() const { return mPotentialCursor; }
421    /*
422     * called with the state lock from a binder thread when the layer is
423     * removed from the current list to the pending removal list
424     */
425    void onRemovedFromCurrentState();
426
427    /*
428     * called with the state lock from the main thread when the layer is
429     * removed from the pending removal list
430     */
431    void onRemoved();
432
433    // Updates the transform hint in our SurfaceFlingerConsumer to match
434    // the current orientation of the display device.
435    void updateTransformHint(const sp<const DisplayDevice>& hw) const;
436
437    /*
438     * returns the rectangle that crops the content of the layer and scales it
439     * to the layer's size.
440     */
441    Rect getContentCrop() const;
442
443    /*
444     * Returns if a frame is queued.
445     */
446    bool hasQueuedFrame() const {
447        return mQueuedFrames > 0 || mSidebandStreamChanged || mAutoRefresh;
448    }
449
450    int32_t getQueuedFrameCount() const { return mQueuedFrames; }
451
452    // -----------------------------------------------------------------------
453
454    bool createHwcLayer(HWComposer* hwc, int32_t hwcId);
455    bool destroyHwcLayer(int32_t hwcId);
456    void destroyAllHwcLayers();
457
458    bool hasHwcLayer(int32_t hwcId) {
459        return getBE().mHwcLayers.count(hwcId) > 0;
460    }
461
462    HWC2::Layer* getHwcLayer(int32_t hwcId) {
463        if (getBE().mHwcLayers.count(hwcId) == 0) {
464            return nullptr;
465        }
466        return getBE().mHwcLayers[hwcId].layer;
467    }
468
469    // -----------------------------------------------------------------------
470
471    void clearWithOpenGL(const RenderArea& renderArea) const;
472    void setFiltering(bool filtering);
473    bool getFiltering() const;
474
475
476    inline const State& getDrawingState() const { return mDrawingState; }
477    inline const State& getCurrentState() const { return mCurrentState; }
478    inline State& getCurrentState() { return mCurrentState; }
479
480    LayerDebugInfo getLayerDebugInfo() const;
481
482    /* always call base class first */
483    static void miniDumpHeader(String8& result);
484    void miniDump(String8& result, int32_t hwcId) const;
485    void dumpFrameStats(String8& result) const;
486    void dumpFrameEvents(String8& result);
487    void clearFrameStats();
488    void logFrameStats();
489    void getFrameStats(FrameStats* outStats) const;
490
491    virtual std::vector<OccupancyTracker::Segment> getOccupancyHistory(bool forceFlush) = 0;
492
493    void onDisconnect();
494    void addAndGetFrameTimestamps(const NewFrameEventsEntry* newEntry,
495                                  FrameEventHistoryDelta* outDelta);
496
497    virtual bool getTransformToDisplayInverse() const = 0;
498
499    Transform getTransform() const;
500
501    // Returns the Alpha of the Surface, accounting for the Alpha
502    // of parent Surfaces in the hierarchy (alpha's will be multiplied
503    // down the hierarchy).
504    half getAlpha() const;
505    half4 getColor() const;
506
507    void traverseInReverseZOrder(LayerVector::StateSet stateSet,
508                                 const LayerVector::Visitor& visitor);
509    void traverseInZOrder(LayerVector::StateSet stateSet, const LayerVector::Visitor& visitor);
510
511    void traverseChildrenInZOrder(LayerVector::StateSet stateSet,
512                                  const LayerVector::Visitor& visitor);
513
514    size_t getChildrenCount() const;
515    void addChild(const sp<Layer>& layer);
516    // Returns index if removed, or negative value otherwise
517    // for symmetry with Vector::remove
518    ssize_t removeChild(const sp<Layer>& layer);
519    sp<Layer> getParent() const { return mCurrentParent.promote(); }
520    bool hasParent() const { return getParent() != nullptr; }
521    Rect computeScreenBounds(bool reduceTransparentRegion = true) const;
522    bool setChildLayer(const sp<Layer>& childLayer, int32_t z);
523    bool setChildRelativeLayer(const sp<Layer>& childLayer,
524            const sp<IBinder>& relativeToHandle, int32_t relativeZ);
525
526    // Copy the current list of children to the drawing state. Called by
527    // SurfaceFlinger to complete a transaction.
528    void commitChildList();
529    int32_t getZ() const;
530
531protected:
532    // constant
533    sp<SurfaceFlinger> mFlinger;
534    /*
535     * Trivial class, used to ensure that mFlinger->onLayerDestroyed(mLayer)
536     * is called.
537     */
538    class LayerCleaner {
539        sp<SurfaceFlinger> mFlinger;
540        wp<Layer> mLayer;
541
542    protected:
543        ~LayerCleaner() {
544            // destroy client resources
545            mFlinger->onLayerDestroyed(mLayer);
546        }
547
548    public:
549        LayerCleaner(const sp<SurfaceFlinger>& flinger, const sp<Layer>& layer)
550              : mFlinger(flinger), mLayer(layer) {}
551    };
552
553    virtual void onFirstRef();
554
555    friend class SurfaceInterceptor;
556
557    void commitTransaction(const State& stateToCommit);
558
559    uint32_t getEffectiveUsage(uint32_t usage) const;
560
561    FloatRect computeCrop(const sp<const DisplayDevice>& hw) const;
562    // Compute the initial crop as specified by parent layers and the
563    // SurfaceControl for this layer. Does not include buffer crop from the
564    // IGraphicBufferProducer client, as that should not affect child clipping.
565    // Returns in screen space.
566    Rect computeInitialCrop(const sp<const DisplayDevice>& hw) const;
567
568    // drawing
569    void clearWithOpenGL(const RenderArea& renderArea, float r, float g, float b,
570                         float alpha) const;
571
572    void setParent(const sp<Layer>& layer);
573
574    LayerVector makeTraversalList(LayerVector::StateSet stateSet, bool* outSkipRelativeZUsers);
575    void addZOrderRelative(const wp<Layer>& relative);
576    void removeZOrderRelative(const wp<Layer>& relative);
577
578    class SyncPoint {
579    public:
580        explicit SyncPoint(uint64_t frameNumber)
581              : mFrameNumber(frameNumber), mFrameIsAvailable(false), mTransactionIsApplied(false) {}
582
583        uint64_t getFrameNumber() const { return mFrameNumber; }
584
585        bool frameIsAvailable() const { return mFrameIsAvailable; }
586
587        void setFrameAvailable() { mFrameIsAvailable = true; }
588
589        bool transactionIsApplied() const { return mTransactionIsApplied; }
590
591        void setTransactionApplied() { mTransactionIsApplied = true; }
592
593    private:
594        const uint64_t mFrameNumber;
595        std::atomic<bool> mFrameIsAvailable;
596        std::atomic<bool> mTransactionIsApplied;
597    };
598
599    // SyncPoints which will be signaled when the correct frame is at the head
600    // of the queue and dropped after the frame has been latched. Protected by
601    // mLocalSyncPointMutex.
602    Mutex mLocalSyncPointMutex;
603    std::list<std::shared_ptr<SyncPoint>> mLocalSyncPoints;
604
605    // SyncPoints which will be signaled and then dropped when the transaction
606    // is applied
607    std::list<std::shared_ptr<SyncPoint>> mRemoteSyncPoints;
608
609    // Returns false if the relevant frame has already been latched
610    bool addSyncPoint(const std::shared_ptr<SyncPoint>& point);
611
612    void pushPendingState();
613    void popPendingState(State* stateToCommit);
614    bool applyPendingStates(State* stateToCommit);
615
616    void clearSyncPoints();
617
618    // Returns mCurrentScaling mode (originating from the
619    // Client) or mOverrideScalingMode mode (originating from
620    // the Surface Controller) if set.
621    virtual uint32_t getEffectiveScalingMode() const = 0;
622
623public:
624    /*
625     * The layer handle is just a BBinder object passed to the client
626     * (remote process) -- we don't keep any reference on our side such that
627     * the dtor is called when the remote side let go of its reference.
628     *
629     * LayerCleaner ensures that mFlinger->onLayerDestroyed() is called for
630     * this layer when the handle is destroyed.
631     */
632    class Handle : public BBinder, public LayerCleaner {
633    public:
634        Handle(const sp<SurfaceFlinger>& flinger, const sp<Layer>& layer)
635              : LayerCleaner(flinger, layer), owner(layer) {}
636
637        wp<Layer> owner;
638    };
639
640    sp<IBinder> getHandle();
641    const String8& getName() const;
642    virtual void notifyAvailableFrames() = 0;
643    virtual PixelFormat getPixelFormat() const = 0;
644    bool getPremultipledAlpha() const;
645
646protected:
647    // -----------------------------------------------------------------------
648    bool usingRelativeZ(LayerVector::StateSet stateSet);
649
650    bool mPremultipliedAlpha;
651    String8 mName;
652    String8 mTransactionName; // A cached version of "TX - " + mName for systraces
653
654    bool mPrimaryDisplayOnly = false;
655
656    // these are protected by an external lock
657    State mCurrentState;
658    State mDrawingState;
659    volatile int32_t mTransactionFlags;
660
661    // Accessed from main thread and binder threads
662    Mutex mPendingStateMutex;
663    Vector<State> mPendingStates;
664
665    // thread-safe
666    volatile int32_t mQueuedFrames;
667    volatile int32_t mSidebandStreamChanged; // used like an atomic boolean
668
669    // Timestamp history for UIAutomation. Thread safe.
670    FrameTracker mFrameTracker;
671
672    // Timestamp history for the consumer to query.
673    // Accessed by both consumer and producer on main and binder threads.
674    Mutex mFrameEventHistoryMutex;
675    ConsumerFrameEventHistory mFrameEventHistory;
676    FenceTimeline mAcquireTimeline;
677    FenceTimeline mReleaseTimeline;
678
679    // main thread
680    int mActiveBufferSlot;
681    sp<GraphicBuffer> mActiveBuffer;
682    sp<NativeHandle> mSidebandStream;
683    Rect mCurrentCrop;
684    uint32_t mCurrentTransform;
685    // We encode unset as -1.
686    int32_t mOverrideScalingMode;
687    bool mCurrentOpacity;
688    std::atomic<uint64_t> mCurrentFrameNumber;
689    bool mFrameLatencyNeeded;
690    // Whether filtering is forced on or not
691    bool mFiltering;
692    // Whether filtering is needed b/c of the drawingstate
693    bool mNeedsFiltering;
694
695    bool mPendingRemoval = false;
696
697    // page-flip thread (currently main thread)
698    bool mProtectedByApp; // application requires protected path to external sink
699
700    // protected by mLock
701    mutable Mutex mLock;
702
703    const wp<Client> mClientRef;
704
705    // This layer can be a cursor on some displays.
706    bool mPotentialCursor;
707
708    // Local copy of the queued contents of the incoming BufferQueue
709    mutable Mutex mQueueItemLock;
710    Condition mQueueItemCondition;
711    Vector<BufferItem> mQueueItems;
712    std::atomic<uint64_t> mLastFrameNumberReceived;
713    bool mAutoRefresh;
714    bool mFreezeGeometryUpdates;
715
716    // Child list about to be committed/used for editing.
717    LayerVector mCurrentChildren;
718    // Child list used for rendering.
719    LayerVector mDrawingChildren;
720
721    wp<Layer> mCurrentParent;
722    wp<Layer> mDrawingParent;
723
724    mutable LayerBE mBE;
725};
726
727// ---------------------------------------------------------------------------
728
729}; // namespace android
730
731#endif // ANDROID_LAYER_H
732