Layer.h revision 07376a98a6c66c4e48bdebe82616f0ae47e5f805
1/*
2 * Copyright (C) 2007 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef ANDROID_LAYER_H
18#define ANDROID_LAYER_H
19
20#include <sys/types.h>
21
22#include <utils/RefBase.h>
23#include <utils/String8.h>
24#include <utils/Timers.h>
25
26#include <ui/FloatRect.h>
27#include <ui/FrameStats.h>
28#include <ui/GraphicBuffer.h>
29#include <ui/PixelFormat.h>
30#include <ui/Region.h>
31
32#include <gui/ISurfaceComposerClient.h>
33#include <gui/LayerState.h>
34#include <gui/BufferQueue.h>
35
36#include <list>
37#include <cstdint>
38
39#include "Client.h"
40#include "FrameTracker.h"
41#include "LayerVector.h"
42#include "MonitoredProducer.h"
43#include "SurfaceFlinger.h"
44#include "TimeStats/TimeStats.h"
45#include "Transform.h"
46
47#include <layerproto/LayerProtoHeader.h>
48#include "DisplayHardware/HWComposer.h"
49#include "DisplayHardware/HWComposerBufferCache.h"
50#include "RenderArea.h"
51#include "RenderEngine/Mesh.h"
52#include "RenderEngine/Texture.h"
53
54#include <math/vec4.h>
55#include <vector>
56
57using namespace android::surfaceflinger;
58
59namespace android {
60
61// ---------------------------------------------------------------------------
62
63class Client;
64class Colorizer;
65class DisplayDevice;
66class GraphicBuffer;
67class SurfaceFlinger;
68class LayerDebugInfo;
69class LayerBE;
70
71namespace impl {
72class SurfaceInterceptor;
73}
74
75// ---------------------------------------------------------------------------
76
77struct CompositionInfo {
78    HWC2::Composition compositionType;
79    sp<GraphicBuffer> mBuffer = nullptr;
80    int mBufferSlot = BufferQueue::INVALID_BUFFER_SLOT;
81    struct {
82        HWComposer* hwc;
83        sp<Fence> fence;
84        HWC2::BlendMode blendMode;
85        Rect displayFrame;
86        float alpha;
87        FloatRect sourceCrop;
88        HWC2::Transform transform;
89        int z;
90        int type;
91        int appId;
92        Region visibleRegion;
93        Region surfaceDamage;
94        sp<NativeHandle> sidebandStream;
95        android_dataspace dataspace;
96        hwc_color_t color;
97    } hwc;
98    struct {
99        RE::RenderEngine* renderEngine;
100        Mesh* mesh;
101    } renderEngine;
102};
103
104class LayerBE {
105public:
106    LayerBE();
107
108    // The mesh used to draw the layer in GLES composition mode
109    Mesh mMesh;
110
111    // HWC items, accessed from the main thread
112    struct HWCInfo {
113        HWCInfo()
114              : hwc(nullptr),
115                layer(nullptr),
116                forceClientComposition(false),
117                compositionType(HWC2::Composition::Invalid),
118                clearClientTarget(false),
119                transform(HWC2::Transform::None) {}
120
121        HWComposer* hwc;
122        HWC2::Layer* layer;
123        bool forceClientComposition;
124        HWC2::Composition compositionType;
125        bool clearClientTarget;
126        Rect displayFrame;
127        FloatRect sourceCrop;
128        HWComposerBufferCache bufferCache;
129        HWC2::Transform transform;
130    };
131
132    // A layer can be attached to multiple displays when operating in mirror mode
133    // (a.k.a: when several displays are attached with equal layerStack). In this
134    // case we need to keep track. In non-mirror mode, a layer will have only one
135    // HWCInfo. This map key is a display layerStack.
136    std::unordered_map<int32_t, HWCInfo> mHwcLayers;
137
138    CompositionInfo compositionInfo;
139};
140
141class Layer : public virtual RefBase {
142    static int32_t sSequence;
143
144public:
145    LayerBE& getBE() { return mBE; }
146    LayerBE& getBE() const { return mBE; }
147    mutable bool contentDirty;
148    // regions below are in window-manager space
149    Region visibleRegion;
150    Region coveredRegion;
151    Region visibleNonTransparentRegion;
152    Region surfaceDamageRegion;
153
154    // Layer serial number.  This gives layers an explicit ordering, so we
155    // have a stable sort order when their layer stack and Z-order are
156    // the same.
157    int32_t sequence;
158
159    enum { // flags for doTransaction()
160        eDontUpdateGeometryState = 0x00000001,
161        eVisibleRegion = 0x00000002,
162    };
163
164    struct Geometry {
165        uint32_t w;
166        uint32_t h;
167        Transform transform;
168
169        inline bool operator==(const Geometry& rhs) const {
170            return (w == rhs.w && h == rhs.h) && (transform.tx() == rhs.transform.tx()) &&
171                    (transform.ty() == rhs.transform.ty());
172        }
173        inline bool operator!=(const Geometry& rhs) const { return !operator==(rhs); }
174    };
175
176    struct State {
177        Geometry active;
178        Geometry requested;
179        int32_t z;
180
181        // The identifier of the layer stack this layer belongs to. A layer can
182        // only be associated to a single layer stack. A layer stack is a
183        // z-ordered group of layers which can be associated to one or more
184        // displays. Using the same layer stack on different displays is a way
185        // to achieve mirroring.
186        uint32_t layerStack;
187
188        uint8_t flags;
189        uint8_t reserved[2];
190        int32_t sequence; // changes when visible regions can change
191        bool modified;
192
193        // Crop is expressed in layer space coordinate.
194        Rect crop;
195        Rect requestedCrop;
196
197        // finalCrop is expressed in display space coordinate.
198        Rect finalCrop;
199        Rect requestedFinalCrop;
200
201        // If set, defers this state update until the identified Layer
202        // receives a frame with the given frameNumber
203        wp<Layer> barrierLayer;
204        uint64_t frameNumber;
205
206        // the transparentRegion hint is a bit special, it's latched only
207        // when we receive a buffer -- this is because it's "content"
208        // dependent.
209        Region activeTransparentRegion;
210        Region requestedTransparentRegion;
211
212        int32_t appId;
213        int32_t type;
214
215        // If non-null, a Surface this Surface's Z-order is interpreted relative to.
216        wp<Layer> zOrderRelativeOf;
217
218        // A list of surfaces whose Z-order is interpreted relative to ours.
219        SortedVector<wp<Layer>> zOrderRelatives;
220
221        half4 color;
222    };
223
224    Layer(SurfaceFlinger* flinger, const sp<Client>& client, const String8& name, uint32_t w,
225          uint32_t h, uint32_t flags);
226    virtual ~Layer();
227
228    void setPrimaryDisplayOnly() { mPrimaryDisplayOnly = true; }
229
230    // ------------------------------------------------------------------------
231    // Geometry setting functions.
232    //
233    // The following group of functions are used to specify the layers
234    // bounds, and the mapping of the texture on to those bounds. According
235    // to various settings changes to them may apply immediately, or be delayed until
236    // a pending resize is completed by the producer submitting a buffer. For example
237    // if we were to change the buffer size, and update the matrix ahead of the
238    // new buffer arriving, then we would be stretching the buffer to a different
239    // aspect before and after the buffer arriving, which probably isn't what we wanted.
240    //
241    // The first set of geometry functions are controlled by the scaling mode, described
242    // in window.h. The scaling mode may be set by the client, as it submits buffers.
243    // This value may be overriden through SurfaceControl, with setOverrideScalingMode.
244    //
245    // Put simply, if our scaling mode is SCALING_MODE_FREEZE, then
246    // matrix updates will not be applied while a resize is pending
247    // and the size and transform will remain in their previous state
248    // until a new buffer is submitted. If the scaling mode is another value
249    // then the old-buffer will immediately be scaled to the pending size
250    // and the new matrix will be immediately applied following this scaling
251    // transformation.
252
253    // Set the default buffer size for the assosciated Producer, in pixels. This is
254    // also the rendered size of the layer prior to any transformations. Parent
255    // or local matrix transformations will not affect the size of the buffer,
256    // but may affect it's on-screen size or clipping.
257    bool setSize(uint32_t w, uint32_t h);
258    // Set a 2x2 transformation matrix on the layer. This transform
259    // will be applied after parent transforms, but before any final
260    // producer specified transform.
261    bool setMatrix(const layer_state_t::matrix22_t& matrix);
262
263    // This second set of geometry attributes are controlled by
264    // setGeometryAppliesWithResize, and their default mode is to be
265    // immediate. If setGeometryAppliesWithResize is specified
266    // while a resize is pending, then update of these attributes will
267    // be delayed until the resize completes.
268
269    // setPosition operates in parent buffer space (pre parent-transform) or display
270    // space for top-level layers.
271    bool setPosition(float x, float y, bool immediate);
272    // Buffer space
273    bool setCrop(const Rect& crop, bool immediate);
274    // Parent buffer space/display space
275    bool setFinalCrop(const Rect& crop, bool immediate);
276
277    // TODO(b/38182121): Could we eliminate the various latching modes by
278    // using the layer hierarchy?
279    // -----------------------------------------------------------------------
280    bool setLayer(int32_t z);
281    bool setRelativeLayer(const sp<IBinder>& relativeToHandle, int32_t relativeZ);
282
283    bool setAlpha(float alpha);
284    bool setColor(const half3& color);
285    bool setTransparentRegionHint(const Region& transparent);
286    bool setFlags(uint8_t flags, uint8_t mask);
287    bool setLayerStack(uint32_t layerStack);
288    uint32_t getLayerStack() const;
289    void deferTransactionUntil(const sp<IBinder>& barrierHandle, uint64_t frameNumber);
290    void deferTransactionUntil(const sp<Layer>& barrierLayer, uint64_t frameNumber);
291    bool setOverrideScalingMode(int32_t overrideScalingMode);
292    void setInfo(int32_t type, int32_t appId);
293    bool reparentChildren(const sp<IBinder>& layer);
294    void setChildrenDrawingParent(const sp<Layer>& layer);
295    bool reparent(const sp<IBinder>& newParentHandle);
296    bool detachChildren();
297
298    ui::Dataspace getDataSpace() const { return mCurrentDataSpace; }
299
300    // Before color management is introduced, contents on Android have to be
301    // desaturated in order to match what they appears like visually.
302    // With color management, these contents will appear desaturated, thus
303    // needed to be saturated so that they match what they are designed for
304    // visually.
305    bool isLegacyDataSpace() const;
306
307    // If we have received a new buffer this frame, we will pass its surface
308    // damage down to hardware composer. Otherwise, we must send a region with
309    // one empty rect.
310    virtual void useSurfaceDamage() {}
311    virtual void useEmptyDamage() {}
312
313    uint32_t getTransactionFlags(uint32_t flags);
314    uint32_t setTransactionFlags(uint32_t flags);
315
316    bool belongsToDisplay(uint32_t layerStack, bool isPrimaryDisplay) const {
317        return getLayerStack() == layerStack && (!mPrimaryDisplayOnly || isPrimaryDisplay);
318    }
319
320    void computeGeometry(const RenderArea& renderArea, Mesh& mesh, bool useIdentityTransform) const;
321    FloatRect computeBounds(const Region& activeTransparentRegion) const;
322    FloatRect computeBounds() const;
323
324    int32_t getSequence() const { return sequence; }
325
326    // -----------------------------------------------------------------------
327    // Virtuals
328    virtual const char* getTypeId() const = 0;
329
330    /*
331     * isOpaque - true if this surface is opaque
332     *
333     * This takes into account the buffer format (i.e. whether or not the
334     * pixel format includes an alpha channel) and the "opaque" flag set
335     * on the layer.  It does not examine the current plane alpha value.
336     */
337    virtual bool isOpaque(const Layer::State&) const { return false; }
338
339    /*
340     * isSecure - true if this surface is secure, that is if it prevents
341     * screenshots or VNC servers.
342     */
343    bool isSecure() const;
344
345    /*
346     * isVisible - true if this layer is visible, false otherwise
347     */
348    virtual bool isVisible() const = 0;
349
350    /*
351     * isHiddenByPolicy - true if this layer has been forced invisible.
352     * just because this is false, doesn't mean isVisible() is true.
353     * For example if this layer has no active buffer, it may not be hidden by
354     * policy, but it still can not be visible.
355     */
356    bool isHiddenByPolicy() const;
357
358    /*
359     * isFixedSize - true if content has a fixed size
360     */
361    virtual bool isFixedSize() const { return true; }
362
363
364    bool isPendingRemoval() const { return mPendingRemoval; }
365
366    void writeToProto(LayerProto* layerInfo,
367                      LayerVector::StateSet stateSet = LayerVector::StateSet::Drawing);
368
369    void writeToProto(LayerProto* layerInfo, int32_t hwcId);
370
371protected:
372    /*
373     * onDraw - draws the surface.
374     */
375    virtual void onDraw(const RenderArea& renderArea, const Region& clip,
376                        bool useIdentityTransform) const = 0;
377
378public:
379    virtual void setDefaultBufferSize(uint32_t /*w*/, uint32_t /*h*/) {}
380
381    virtual bool isHdrY410() const { return false; }
382
383    void setGeometry(const sp<const DisplayDevice>& displayDevice, uint32_t z);
384    void forceClientComposition(int32_t hwcId);
385    bool getForceClientComposition(int32_t hwcId);
386    virtual void setPerFrameData(const sp<const DisplayDevice>& displayDevice) = 0;
387
388    // callIntoHwc exists so we can update our local state and call
389    // acceptDisplayChanges without unnecessarily updating the device's state
390    void setCompositionType(int32_t hwcId, HWC2::Composition type, bool callIntoHwc = true);
391    HWC2::Composition getCompositionType(int32_t hwcId) const;
392    void setClearClientTarget(int32_t hwcId, bool clear);
393    bool getClearClientTarget(int32_t hwcId) const;
394    void updateCursorPosition(const sp<const DisplayDevice>& hw);
395
396    /*
397     * called after page-flip
398     */
399    virtual void onLayerDisplayed(const sp<Fence>& releaseFence);
400
401    virtual void abandon() {}
402
403    virtual bool shouldPresentNow(const DispSync& /*dispSync*/) const { return false; }
404    virtual void setTransformHint(uint32_t /*orientation*/) const { }
405
406    /*
407     * called before composition.
408     * returns true if the layer has pending updates.
409     */
410    virtual bool onPreComposition(nsecs_t /*refreshStartTime*/) { return true; }
411
412    /*
413     * called after composition.
414     * returns true if the layer latched a new buffer this frame.
415     */
416    virtual bool onPostComposition(const std::shared_ptr<FenceTime>& /*glDoneFence*/,
417                                   const std::shared_ptr<FenceTime>& /*presentFence*/,
418                                   const CompositorTiming& /*compositorTiming*/) {
419        return false;
420    }
421
422    // If a buffer was replaced this frame, release the former buffer
423    virtual void releasePendingBuffer(nsecs_t /*dequeueReadyTime*/) { }
424
425
426    /*
427     * draw - performs some global clipping optimizations
428     * and calls onDraw().
429     */
430    void draw(const RenderArea& renderArea, const Region& clip) const;
431    void draw(const RenderArea& renderArea, bool useIdentityTransform) const;
432    void draw(const RenderArea& renderArea) const;
433
434    /*
435     * doTransaction - process the transaction. This is a good place to figure
436     * out which attributes of the surface have changed.
437     */
438    uint32_t doTransaction(uint32_t transactionFlags);
439
440    /*
441     * setVisibleRegion - called to set the new visible region. This gives
442     * a chance to update the new visible region or record the fact it changed.
443     */
444    void setVisibleRegion(const Region& visibleRegion);
445
446    /*
447     * setCoveredRegion - called when the covered region changes. The covered
448     * region corresponds to any area of the surface that is covered
449     * (transparently or not) by another surface.
450     */
451    void setCoveredRegion(const Region& coveredRegion);
452
453    /*
454     * setVisibleNonTransparentRegion - called when the visible and
455     * non-transparent region changes.
456     */
457    void setVisibleNonTransparentRegion(const Region& visibleNonTransparentRegion);
458
459    /*
460     * Clear the visible, covered, and non-transparent regions.
461     */
462    void clearVisibilityRegions();
463
464    /*
465     * latchBuffer - called each time the screen is redrawn and returns whether
466     * the visible regions need to be recomputed (this is a fairly heavy
467     * operation, so this should be set only if needed). Typically this is used
468     * to figure out if the content or size of a surface has changed.
469     */
470    virtual Region latchBuffer(bool& /*recomputeVisibleRegions*/, nsecs_t /*latchTime*/) {
471        return {};
472    }
473
474    virtual bool isBufferLatched() const { return false; }
475
476    bool isPotentialCursor() const { return mPotentialCursor; }
477    /*
478     * called with the state lock from a binder thread when the layer is
479     * removed from the current list to the pending removal list
480     */
481    void onRemovedFromCurrentState();
482
483    /*
484     * called with the state lock from the main thread when the layer is
485     * removed from the pending removal list
486     */
487    void onRemoved();
488
489    // Updates the transform hint in our SurfaceFlingerConsumer to match
490    // the current orientation of the display device.
491    void updateTransformHint(const sp<const DisplayDevice>& hw) const;
492
493    /*
494     * returns the rectangle that crops the content of the layer and scales it
495     * to the layer's size.
496     */
497    Rect getContentCrop() const;
498
499    /*
500     * Returns if a frame is queued.
501     */
502    bool hasQueuedFrame() const {
503        return mQueuedFrames > 0 || mSidebandStreamChanged || mAutoRefresh;
504    }
505
506    int32_t getQueuedFrameCount() const { return mQueuedFrames; }
507
508    // -----------------------------------------------------------------------
509
510    bool createHwcLayer(HWComposer* hwc, int32_t hwcId);
511    bool destroyHwcLayer(int32_t hwcId);
512    void destroyAllHwcLayers();
513
514    bool hasHwcLayer(int32_t hwcId) {
515        return getBE().mHwcLayers.count(hwcId) > 0;
516    }
517
518    HWC2::Layer* getHwcLayer(int32_t hwcId) {
519        if (getBE().mHwcLayers.count(hwcId) == 0) {
520            return nullptr;
521        }
522        return getBE().mHwcLayers[hwcId].layer;
523    }
524
525    // -----------------------------------------------------------------------
526
527    void clearWithOpenGL(const RenderArea& renderArea) const;
528    void setFiltering(bool filtering);
529    bool getFiltering() const;
530
531
532    inline const State& getDrawingState() const { return mDrawingState; }
533    inline const State& getCurrentState() const { return mCurrentState; }
534    inline State& getCurrentState() { return mCurrentState; }
535
536    LayerDebugInfo getLayerDebugInfo() const;
537
538    /* always call base class first */
539    static void miniDumpHeader(String8& result);
540    void miniDump(String8& result, int32_t hwcId) const;
541    void dumpFrameStats(String8& result) const;
542    void dumpFrameEvents(String8& result);
543    void clearFrameStats();
544    void logFrameStats();
545    void getFrameStats(FrameStats* outStats) const;
546
547    virtual std::vector<OccupancyTracker::Segment> getOccupancyHistory(bool /*forceFlush*/) {
548        return {};
549    }
550
551    void onDisconnect();
552    void addAndGetFrameTimestamps(const NewFrameEventsEntry* newEntry,
553                                  FrameEventHistoryDelta* outDelta);
554
555    virtual bool getTransformToDisplayInverse() const { return false; }
556
557    Transform getTransform() const;
558
559    // Returns the Alpha of the Surface, accounting for the Alpha
560    // of parent Surfaces in the hierarchy (alpha's will be multiplied
561    // down the hierarchy).
562    half getAlpha() const;
563    half4 getColor() const;
564
565    void traverseInReverseZOrder(LayerVector::StateSet stateSet,
566                                 const LayerVector::Visitor& visitor);
567    void traverseInZOrder(LayerVector::StateSet stateSet, const LayerVector::Visitor& visitor);
568
569    /**
570     * Traverse only children in z order, ignoring relative layers that are not children of the
571     * parent.
572     */
573    void traverseChildrenInZOrder(LayerVector::StateSet stateSet,
574                                  const LayerVector::Visitor& visitor);
575
576    size_t getChildrenCount() const;
577    void addChild(const sp<Layer>& layer);
578    // Returns index if removed, or negative value otherwise
579    // for symmetry with Vector::remove
580    ssize_t removeChild(const sp<Layer>& layer);
581    sp<Layer> getParent() const { return mCurrentParent.promote(); }
582    bool hasParent() const { return getParent() != nullptr; }
583    Rect computeScreenBounds(bool reduceTransparentRegion = true) const;
584    bool setChildLayer(const sp<Layer>& childLayer, int32_t z);
585    bool setChildRelativeLayer(const sp<Layer>& childLayer,
586            const sp<IBinder>& relativeToHandle, int32_t relativeZ);
587
588    // Copy the current list of children to the drawing state. Called by
589    // SurfaceFlinger to complete a transaction.
590    void commitChildList();
591    int32_t getZ() const;
592    void pushPendingState();
593
594protected:
595    // constant
596    sp<SurfaceFlinger> mFlinger;
597    /*
598     * Trivial class, used to ensure that mFlinger->onLayerDestroyed(mLayer)
599     * is called.
600     */
601    class LayerCleaner {
602        sp<SurfaceFlinger> mFlinger;
603        wp<Layer> mLayer;
604
605    protected:
606        ~LayerCleaner() {
607            // destroy client resources
608            mFlinger->onLayerDestroyed(mLayer);
609        }
610
611    public:
612        LayerCleaner(const sp<SurfaceFlinger>& flinger, const sp<Layer>& layer)
613              : mFlinger(flinger), mLayer(layer) {}
614    };
615
616    virtual void onFirstRef();
617
618    friend class impl::SurfaceInterceptor;
619
620    void commitTransaction(const State& stateToCommit);
621
622    uint32_t getEffectiveUsage(uint32_t usage) const;
623
624    FloatRect computeCrop(const sp<const DisplayDevice>& hw) const;
625    // Compute the initial crop as specified by parent layers and the
626    // SurfaceControl for this layer. Does not include buffer crop from the
627    // IGraphicBufferProducer client, as that should not affect child clipping.
628    // Returns in screen space.
629    Rect computeInitialCrop(const sp<const DisplayDevice>& hw) const;
630
631    // drawing
632    void clearWithOpenGL(const RenderArea& renderArea, float r, float g, float b,
633                         float alpha) const;
634
635    void setParent(const sp<Layer>& layer);
636
637    LayerVector makeTraversalList(LayerVector::StateSet stateSet, bool* outSkipRelativeZUsers);
638    void addZOrderRelative(const wp<Layer>& relative);
639    void removeZOrderRelative(const wp<Layer>& relative);
640
641    class SyncPoint {
642    public:
643        explicit SyncPoint(uint64_t frameNumber)
644              : mFrameNumber(frameNumber), mFrameIsAvailable(false), mTransactionIsApplied(false) {}
645
646        uint64_t getFrameNumber() const { return mFrameNumber; }
647
648        bool frameIsAvailable() const { return mFrameIsAvailable; }
649
650        void setFrameAvailable() { mFrameIsAvailable = true; }
651
652        bool transactionIsApplied() const { return mTransactionIsApplied; }
653
654        void setTransactionApplied() { mTransactionIsApplied = true; }
655
656    private:
657        const uint64_t mFrameNumber;
658        std::atomic<bool> mFrameIsAvailable;
659        std::atomic<bool> mTransactionIsApplied;
660    };
661
662    // SyncPoints which will be signaled when the correct frame is at the head
663    // of the queue and dropped after the frame has been latched. Protected by
664    // mLocalSyncPointMutex.
665    Mutex mLocalSyncPointMutex;
666    std::list<std::shared_ptr<SyncPoint>> mLocalSyncPoints;
667
668    // SyncPoints which will be signaled and then dropped when the transaction
669    // is applied
670    std::list<std::shared_ptr<SyncPoint>> mRemoteSyncPoints;
671
672    // Returns false if the relevant frame has already been latched
673    bool addSyncPoint(const std::shared_ptr<SyncPoint>& point);
674
675    void popPendingState(State* stateToCommit);
676    bool applyPendingStates(State* stateToCommit);
677
678    void clearSyncPoints();
679
680    // Returns mCurrentScaling mode (originating from the
681    // Client) or mOverrideScalingMode mode (originating from
682    // the Surface Controller) if set.
683    virtual uint32_t getEffectiveScalingMode() const { return 0; }
684
685public:
686    /*
687     * The layer handle is just a BBinder object passed to the client
688     * (remote process) -- we don't keep any reference on our side such that
689     * the dtor is called when the remote side let go of its reference.
690     *
691     * LayerCleaner ensures that mFlinger->onLayerDestroyed() is called for
692     * this layer when the handle is destroyed.
693     */
694    class Handle : public BBinder, public LayerCleaner {
695    public:
696        Handle(const sp<SurfaceFlinger>& flinger, const sp<Layer>& layer)
697              : LayerCleaner(flinger, layer), owner(layer) {}
698
699        wp<Layer> owner;
700    };
701
702    sp<IBinder> getHandle();
703    const String8& getName() const;
704    virtual void notifyAvailableFrames() {}
705    virtual PixelFormat getPixelFormat() const { return PIXEL_FORMAT_NONE; }
706    bool getPremultipledAlpha() const;
707
708protected:
709    // -----------------------------------------------------------------------
710    bool usingRelativeZ(LayerVector::StateSet stateSet);
711
712    bool mPremultipliedAlpha;
713    String8 mName;
714    String8 mTransactionName; // A cached version of "TX - " + mName for systraces
715
716    bool mPrimaryDisplayOnly = false;
717
718    // these are protected by an external lock
719    State mCurrentState;
720    State mDrawingState;
721    volatile int32_t mTransactionFlags;
722
723    // Accessed from main thread and binder threads
724    Mutex mPendingStateMutex;
725    Vector<State> mPendingStates;
726
727    // thread-safe
728    volatile int32_t mQueuedFrames;
729    volatile int32_t mSidebandStreamChanged; // used like an atomic boolean
730
731    // Timestamp history for UIAutomation. Thread safe.
732    FrameTracker mFrameTracker;
733
734    // Timestamp history for the consumer to query.
735    // Accessed by both consumer and producer on main and binder threads.
736    Mutex mFrameEventHistoryMutex;
737    ConsumerFrameEventHistory mFrameEventHistory;
738    FenceTimeline mAcquireTimeline;
739    FenceTimeline mReleaseTimeline;
740
741    TimeStats& mTimeStats = TimeStats::getInstance();
742
743    // main thread
744    int mActiveBufferSlot;
745    sp<GraphicBuffer> mActiveBuffer;
746    sp<NativeHandle> mSidebandStream;
747    ui::Dataspace mCurrentDataSpace = ui::Dataspace::UNKNOWN;
748    Rect mCurrentCrop;
749    uint32_t mCurrentTransform;
750    // We encode unset as -1.
751    int32_t mOverrideScalingMode;
752    bool mCurrentOpacity;
753    std::atomic<uint64_t> mCurrentFrameNumber;
754    bool mFrameLatencyNeeded;
755    // Whether filtering is forced on or not
756    bool mFiltering;
757    // Whether filtering is needed b/c of the drawingstate
758    bool mNeedsFiltering;
759
760    bool mPendingRemoval = false;
761
762    // page-flip thread (currently main thread)
763    bool mProtectedByApp; // application requires protected path to external sink
764
765    // protected by mLock
766    mutable Mutex mLock;
767
768    const wp<Client> mClientRef;
769
770    // This layer can be a cursor on some displays.
771    bool mPotentialCursor;
772
773    // Local copy of the queued contents of the incoming BufferQueue
774    mutable Mutex mQueueItemLock;
775    Condition mQueueItemCondition;
776    Vector<BufferItem> mQueueItems;
777    std::atomic<uint64_t> mLastFrameNumberReceived;
778    bool mAutoRefresh;
779    bool mFreezeGeometryUpdates;
780
781    // Child list about to be committed/used for editing.
782    LayerVector mCurrentChildren;
783    // Child list used for rendering.
784    LayerVector mDrawingChildren;
785
786    wp<Layer> mCurrentParent;
787    wp<Layer> mDrawingParent;
788
789    mutable LayerBE mBE;
790
791private:
792    /**
793     * Returns an unsorted vector of all layers that are part of this tree.
794     * That includes the current layer and all its descendants.
795     */
796    std::vector<Layer*> getLayersInTree(LayerVector::StateSet stateSet);
797    /**
798     * Traverses layers that are part of this tree in the correct z order.
799     * layersInTree must be sorted before calling this method.
800     */
801    void traverseChildrenInZOrderInner(const std::vector<Layer*>& layersInTree,
802                                       LayerVector::StateSet stateSet,
803                                       const LayerVector::Visitor& visitor);
804    LayerVector makeChildrenTraversalList(LayerVector::StateSet stateSet,
805                                          const std::vector<Layer*>& layersInTree);
806};
807
808// ---------------------------------------------------------------------------
809
810}; // namespace android
811
812#endif // ANDROID_LAYER_H
813