Layer.h revision 2afd5172c3e6bd99a287d24a1dd5fe5c7b70754e
1/*
2 * Copyright (C) 2007 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef ANDROID_LAYER_H
18#define ANDROID_LAYER_H
19
20#include <sys/types.h>
21
22#include <utils/RefBase.h>
23#include <utils/String8.h>
24#include <utils/Timers.h>
25
26#include <ui/FloatRect.h>
27#include <ui/FrameStats.h>
28#include <ui/GraphicBuffer.h>
29#include <ui/PixelFormat.h>
30#include <ui/Region.h>
31
32#include <gui/ISurfaceComposerClient.h>
33#include <gui/LayerState.h>
34#include <gui/BufferQueue.h>
35
36#include <list>
37#include <cstdint>
38
39#include "Client.h"
40#include "FrameTracker.h"
41#include "LayerVector.h"
42#include "MonitoredProducer.h"
43#include "SurfaceFlinger.h"
44#include "Transform.h"
45
46#include <layerproto/LayerProtoHeader.h>
47#include "DisplayHardware/HWComposer.h"
48#include "DisplayHardware/HWComposerBufferCache.h"
49#include "RenderArea.h"
50#include "RenderEngine/Mesh.h"
51#include "RenderEngine/Texture.h"
52
53#include <math/vec4.h>
54
55using namespace android::surfaceflinger;
56
57namespace android {
58
59// ---------------------------------------------------------------------------
60
61class Client;
62class Colorizer;
63class DisplayDevice;
64class GraphicBuffer;
65class SurfaceFlinger;
66class LayerDebugInfo;
67class LayerBE;
68
69namespace impl {
70class SurfaceInterceptor;
71}
72
73// ---------------------------------------------------------------------------
74
75struct CompositionInfo {
76    HWC2::Composition compositionType;
77    sp<GraphicBuffer> mBuffer = nullptr;
78    int mBufferSlot = BufferQueue::INVALID_BUFFER_SLOT;
79    struct {
80        HWComposer* hwc;
81        sp<Fence> fence;
82        HWC2::BlendMode blendMode;
83        Rect displayFrame;
84        float alpha;
85        FloatRect sourceCrop;
86        HWC2::Transform transform;
87        int z;
88        int type;
89        int appId;
90        Region visibleRegion;
91        Region surfaceDamage;
92        sp<NativeHandle> sidebandStream;
93        android_dataspace dataspace;
94        hwc_color_t color;
95    } hwc;
96    struct {
97        RE::RenderEngine* renderEngine;
98        Mesh* mesh;
99    } renderEngine;
100};
101
102class LayerBE {
103public:
104    LayerBE();
105
106    // The mesh used to draw the layer in GLES composition mode
107    Mesh mMesh;
108
109    // HWC items, accessed from the main thread
110    struct HWCInfo {
111        HWCInfo()
112              : hwc(nullptr),
113                layer(nullptr),
114                forceClientComposition(false),
115                compositionType(HWC2::Composition::Invalid),
116                clearClientTarget(false) {}
117
118        HWComposer* hwc;
119        HWC2::Layer* layer;
120        bool forceClientComposition;
121        HWC2::Composition compositionType;
122        bool clearClientTarget;
123        Rect displayFrame;
124        FloatRect sourceCrop;
125        HWComposerBufferCache bufferCache;
126    };
127
128    // A layer can be attached to multiple displays when operating in mirror mode
129    // (a.k.a: when several displays are attached with equal layerStack). In this
130    // case we need to keep track. In non-mirror mode, a layer will have only one
131    // HWCInfo. This map key is a display layerStack.
132    std::unordered_map<int32_t, HWCInfo> mHwcLayers;
133
134    CompositionInfo compositionInfo;
135};
136
137class Layer : public virtual RefBase {
138    static int32_t sSequence;
139
140public:
141    LayerBE& getBE() { return mBE; }
142    LayerBE& getBE() const { return mBE; }
143    mutable bool contentDirty;
144    // regions below are in window-manager space
145    Region visibleRegion;
146    Region coveredRegion;
147    Region visibleNonTransparentRegion;
148    Region surfaceDamageRegion;
149
150    // Layer serial number.  This gives layers an explicit ordering, so we
151    // have a stable sort order when their layer stack and Z-order are
152    // the same.
153    int32_t sequence;
154
155    enum { // flags for doTransaction()
156        eDontUpdateGeometryState = 0x00000001,
157        eVisibleRegion = 0x00000002,
158    };
159
160    struct Geometry {
161        uint32_t w;
162        uint32_t h;
163        Transform transform;
164
165        inline bool operator==(const Geometry& rhs) const {
166            return (w == rhs.w && h == rhs.h) && (transform.tx() == rhs.transform.tx()) &&
167                    (transform.ty() == rhs.transform.ty());
168        }
169        inline bool operator!=(const Geometry& rhs) const { return !operator==(rhs); }
170    };
171
172    struct State {
173        Geometry active;
174        Geometry requested;
175        int32_t z;
176
177        // The identifier of the layer stack this layer belongs to. A layer can
178        // only be associated to a single layer stack. A layer stack is a
179        // z-ordered group of layers which can be associated to one or more
180        // displays. Using the same layer stack on different displays is a way
181        // to achieve mirroring.
182        uint32_t layerStack;
183
184        uint8_t flags;
185        uint8_t mask;
186        uint8_t reserved[2];
187        int32_t sequence; // changes when visible regions can change
188        bool modified;
189
190        // Crop is expressed in layer space coordinate.
191        Rect crop;
192        Rect requestedCrop;
193
194        // finalCrop is expressed in display space coordinate.
195        Rect finalCrop;
196        Rect requestedFinalCrop;
197
198        // If set, defers this state update until the identified Layer
199        // receives a frame with the given frameNumber
200        wp<Layer> barrierLayer;
201        uint64_t frameNumber;
202
203        // the transparentRegion hint is a bit special, it's latched only
204        // when we receive a buffer -- this is because it's "content"
205        // dependent.
206        Region activeTransparentRegion;
207        Region requestedTransparentRegion;
208        android_dataspace dataSpace;
209
210        int32_t appId;
211        int32_t type;
212
213        // If non-null, a Surface this Surface's Z-order is interpreted relative to.
214        wp<Layer> zOrderRelativeOf;
215
216        // A list of surfaces whose Z-order is interpreted relative to ours.
217        SortedVector<wp<Layer>> zOrderRelatives;
218
219        half4 color;
220    };
221
222    Layer(SurfaceFlinger* flinger, const sp<Client>& client, const String8& name, uint32_t w,
223          uint32_t h, uint32_t flags);
224    virtual ~Layer();
225
226    void setPrimaryDisplayOnly() { mPrimaryDisplayOnly = true; }
227
228    // ------------------------------------------------------------------------
229    // Geometry setting functions.
230    //
231    // The following group of functions are used to specify the layers
232    // bounds, and the mapping of the texture on to those bounds. According
233    // to various settings changes to them may apply immediately, or be delayed until
234    // a pending resize is completed by the producer submitting a buffer. For example
235    // if we were to change the buffer size, and update the matrix ahead of the
236    // new buffer arriving, then we would be stretching the buffer to a different
237    // aspect before and after the buffer arriving, which probably isn't what we wanted.
238    //
239    // The first set of geometry functions are controlled by the scaling mode, described
240    // in window.h. The scaling mode may be set by the client, as it submits buffers.
241    // This value may be overriden through SurfaceControl, with setOverrideScalingMode.
242    //
243    // Put simply, if our scaling mode is SCALING_MODE_FREEZE, then
244    // matrix updates will not be applied while a resize is pending
245    // and the size and transform will remain in their previous state
246    // until a new buffer is submitted. If the scaling mode is another value
247    // then the old-buffer will immediately be scaled to the pending size
248    // and the new matrix will be immediately applied following this scaling
249    // transformation.
250
251    // Set the default buffer size for the assosciated Producer, in pixels. This is
252    // also the rendered size of the layer prior to any transformations. Parent
253    // or local matrix transformations will not affect the size of the buffer,
254    // but may affect it's on-screen size or clipping.
255    bool setSize(uint32_t w, uint32_t h);
256    // Set a 2x2 transformation matrix on the layer. This transform
257    // will be applied after parent transforms, but before any final
258    // producer specified transform.
259    bool setMatrix(const layer_state_t::matrix22_t& matrix);
260
261    // This second set of geometry attributes are controlled by
262    // setGeometryAppliesWithResize, and their default mode is to be
263    // immediate. If setGeometryAppliesWithResize is specified
264    // while a resize is pending, then update of these attributes will
265    // be delayed until the resize completes.
266
267    // setPosition operates in parent buffer space (pre parent-transform) or display
268    // space for top-level layers.
269    bool setPosition(float x, float y, bool immediate);
270    // Buffer space
271    bool setCrop(const Rect& crop, bool immediate);
272    // Parent buffer space/display space
273    bool setFinalCrop(const Rect& crop, bool immediate);
274
275    // TODO(b/38182121): Could we eliminate the various latching modes by
276    // using the layer hierarchy?
277    // -----------------------------------------------------------------------
278    bool setLayer(int32_t z);
279    bool setRelativeLayer(const sp<IBinder>& relativeToHandle, int32_t relativeZ);
280
281    bool setAlpha(float alpha);
282    bool setColor(const half3& color);
283    bool setTransparentRegionHint(const Region& transparent);
284    bool setFlags(uint8_t flags, uint8_t mask);
285    bool setLayerStack(uint32_t layerStack);
286    bool setDataSpace(android_dataspace dataSpace);
287    android_dataspace getDataSpace() const;
288    uint32_t getLayerStack() const;
289    void deferTransactionUntil(const sp<IBinder>& barrierHandle, uint64_t frameNumber);
290    void deferTransactionUntil(const sp<Layer>& barrierLayer, uint64_t frameNumber);
291    bool setOverrideScalingMode(int32_t overrideScalingMode);
292    void setInfo(int32_t type, int32_t appId);
293    bool reparentChildren(const sp<IBinder>& layer);
294    void setChildrenDrawingParent(const sp<Layer>& layer);
295    bool reparent(const sp<IBinder>& newParentHandle);
296    bool detachChildren();
297
298    // If we have received a new buffer this frame, we will pass its surface
299    // damage down to hardware composer. Otherwise, we must send a region with
300    // one empty rect.
301    virtual void useSurfaceDamage() {}
302    virtual void useEmptyDamage() {}
303
304    uint32_t getTransactionFlags(uint32_t flags);
305    uint32_t setTransactionFlags(uint32_t flags);
306
307    bool belongsToDisplay(uint32_t layerStack, bool isPrimaryDisplay) const {
308        return getLayerStack() == layerStack && (!mPrimaryDisplayOnly || isPrimaryDisplay);
309    }
310
311    void computeGeometry(const RenderArea& renderArea, Mesh& mesh, bool useIdentityTransform) const;
312    FloatRect computeBounds(const Region& activeTransparentRegion) const;
313    FloatRect computeBounds() const;
314
315    int32_t getSequence() const { return sequence; }
316
317    // -----------------------------------------------------------------------
318    // Virtuals
319    virtual const char* getTypeId() const = 0;
320
321    /*
322     * isOpaque - true if this surface is opaque
323     *
324     * This takes into account the buffer format (i.e. whether or not the
325     * pixel format includes an alpha channel) and the "opaque" flag set
326     * on the layer.  It does not examine the current plane alpha value.
327     */
328    virtual bool isOpaque(const Layer::State&) const { return false; }
329
330    /*
331     * isSecure - true if this surface is secure, that is if it prevents
332     * screenshots or VNC servers.
333     */
334    bool isSecure() const;
335
336    /*
337     * isVisible - true if this layer is visible, false otherwise
338     */
339    virtual bool isVisible() const = 0;
340
341    /*
342     * isHiddenByPolicy - true if this layer has been forced invisible.
343     * just because this is false, doesn't mean isVisible() is true.
344     * For example if this layer has no active buffer, it may not be hidden by
345     * policy, but it still can not be visible.
346     */
347    bool isHiddenByPolicy() const;
348
349    /*
350     * isFixedSize - true if content has a fixed size
351     */
352    virtual bool isFixedSize() const { return true; }
353
354
355    bool isPendingRemoval() const { return mPendingRemoval; }
356
357    void writeToProto(LayerProto* layerInfo,
358                      LayerVector::StateSet stateSet = LayerVector::StateSet::Drawing);
359
360protected:
361    /*
362     * onDraw - draws the surface.
363     */
364    virtual void onDraw(const RenderArea& renderArea, const Region& clip,
365                        bool useIdentityTransform) const = 0;
366
367public:
368    virtual void setDefaultBufferSize(uint32_t /*w*/, uint32_t /*h*/) {}
369
370    void setGeometry(const sp<const DisplayDevice>& displayDevice, uint32_t z);
371    void forceClientComposition(int32_t hwcId);
372    bool getForceClientComposition(int32_t hwcId);
373    virtual void setPerFrameData(const sp<const DisplayDevice>& displayDevice) = 0;
374
375    // callIntoHwc exists so we can update our local state and call
376    // acceptDisplayChanges without unnecessarily updating the device's state
377    void setCompositionType(int32_t hwcId, HWC2::Composition type, bool callIntoHwc = true);
378    HWC2::Composition getCompositionType(int32_t hwcId) const;
379    void setClearClientTarget(int32_t hwcId, bool clear);
380    bool getClearClientTarget(int32_t hwcId) const;
381    void updateCursorPosition(const sp<const DisplayDevice>& hw);
382
383    /*
384     * called after page-flip
385     */
386    virtual void onLayerDisplayed(const sp<Fence>& releaseFence);
387
388    virtual void abandon() {}
389
390    virtual bool shouldPresentNow(const DispSync& /*dispSync*/) const { return false; }
391    virtual void setTransformHint(uint32_t /*orientation*/) const { }
392
393    /*
394     * called before composition.
395     * returns true if the layer has pending updates.
396     */
397    virtual bool onPreComposition(nsecs_t /*refreshStartTime*/) { return true; }
398
399    /*
400     * called after composition.
401     * returns true if the layer latched a new buffer this frame.
402     */
403    virtual bool onPostComposition(const std::shared_ptr<FenceTime>& /*glDoneFence*/,
404                                   const std::shared_ptr<FenceTime>& /*presentFence*/,
405                                   const CompositorTiming& /*compositorTiming*/) {
406        return false;
407    }
408
409    // If a buffer was replaced this frame, release the former buffer
410    virtual void releasePendingBuffer(nsecs_t /*dequeueReadyTime*/) { }
411
412
413    /*
414     * draw - performs some global clipping optimizations
415     * and calls onDraw().
416     */
417    void draw(const RenderArea& renderArea, const Region& clip) const;
418    void draw(const RenderArea& renderArea, bool useIdentityTransform) const;
419    void draw(const RenderArea& renderArea) const;
420
421    /*
422     * doTransaction - process the transaction. This is a good place to figure
423     * out which attributes of the surface have changed.
424     */
425    uint32_t doTransaction(uint32_t transactionFlags);
426
427    /*
428     * setVisibleRegion - called to set the new visible region. This gives
429     * a chance to update the new visible region or record the fact it changed.
430     */
431    void setVisibleRegion(const Region& visibleRegion);
432
433    /*
434     * setCoveredRegion - called when the covered region changes. The covered
435     * region corresponds to any area of the surface that is covered
436     * (transparently or not) by another surface.
437     */
438    void setCoveredRegion(const Region& coveredRegion);
439
440    /*
441     * setVisibleNonTransparentRegion - called when the visible and
442     * non-transparent region changes.
443     */
444    void setVisibleNonTransparentRegion(const Region& visibleNonTransparentRegion);
445
446    /*
447     * Clear the visible, covered, and non-transparent regions.
448     */
449    void clearVisibilityRegions();
450
451    /*
452     * latchBuffer - called each time the screen is redrawn and returns whether
453     * the visible regions need to be recomputed (this is a fairly heavy
454     * operation, so this should be set only if needed). Typically this is used
455     * to figure out if the content or size of a surface has changed.
456     */
457    virtual Region latchBuffer(bool& /*recomputeVisibleRegions*/, nsecs_t /*latchTime*/) {
458        return {};
459    }
460
461    virtual bool isBufferLatched() const { return false; }
462
463    bool isPotentialCursor() const { return mPotentialCursor; }
464    /*
465     * called with the state lock from a binder thread when the layer is
466     * removed from the current list to the pending removal list
467     */
468    void onRemovedFromCurrentState();
469
470    /*
471     * called with the state lock from the main thread when the layer is
472     * removed from the pending removal list
473     */
474    void onRemoved();
475
476    // Updates the transform hint in our SurfaceFlingerConsumer to match
477    // the current orientation of the display device.
478    void updateTransformHint(const sp<const DisplayDevice>& hw) const;
479
480    /*
481     * returns the rectangle that crops the content of the layer and scales it
482     * to the layer's size.
483     */
484    Rect getContentCrop() const;
485
486    /*
487     * Returns if a frame is queued.
488     */
489    bool hasQueuedFrame() const {
490        return mQueuedFrames > 0 || mSidebandStreamChanged || mAutoRefresh;
491    }
492
493    int32_t getQueuedFrameCount() const { return mQueuedFrames; }
494
495    // -----------------------------------------------------------------------
496
497    bool createHwcLayer(HWComposer* hwc, int32_t hwcId);
498    bool destroyHwcLayer(int32_t hwcId);
499    void destroyAllHwcLayers();
500
501    bool hasHwcLayer(int32_t hwcId) {
502        return getBE().mHwcLayers.count(hwcId) > 0;
503    }
504
505    HWC2::Layer* getHwcLayer(int32_t hwcId) {
506        if (getBE().mHwcLayers.count(hwcId) == 0) {
507            return nullptr;
508        }
509        return getBE().mHwcLayers[hwcId].layer;
510    }
511
512    // -----------------------------------------------------------------------
513
514    void clearWithOpenGL(const RenderArea& renderArea) const;
515    void setFiltering(bool filtering);
516    bool getFiltering() const;
517
518
519    inline const State& getDrawingState() const { return mDrawingState; }
520    inline const State& getCurrentState() const { return mCurrentState; }
521    inline State& getCurrentState() { return mCurrentState; }
522
523    LayerDebugInfo getLayerDebugInfo() const;
524
525    /* always call base class first */
526    static void miniDumpHeader(String8& result);
527    void miniDump(String8& result, int32_t hwcId) const;
528    void dumpFrameStats(String8& result) const;
529    void dumpFrameEvents(String8& result);
530    void clearFrameStats();
531    void logFrameStats();
532    void getFrameStats(FrameStats* outStats) const;
533
534    virtual std::vector<OccupancyTracker::Segment> getOccupancyHistory(bool /*forceFlush*/) {
535        return {};
536    }
537
538    void onDisconnect();
539    void addAndGetFrameTimestamps(const NewFrameEventsEntry* newEntry,
540                                  FrameEventHistoryDelta* outDelta);
541
542    virtual bool getTransformToDisplayInverse() const { return false; }
543
544    Transform getTransform() const;
545
546    // Returns the Alpha of the Surface, accounting for the Alpha
547    // of parent Surfaces in the hierarchy (alpha's will be multiplied
548    // down the hierarchy).
549    half getAlpha() const;
550    half4 getColor() const;
551
552    void traverseInReverseZOrder(LayerVector::StateSet stateSet,
553                                 const LayerVector::Visitor& visitor);
554    void traverseInZOrder(LayerVector::StateSet stateSet, const LayerVector::Visitor& visitor);
555
556    void traverseChildrenInZOrder(LayerVector::StateSet stateSet,
557                                  const LayerVector::Visitor& visitor);
558
559    size_t getChildrenCount() const;
560    void addChild(const sp<Layer>& layer);
561    // Returns index if removed, or negative value otherwise
562    // for symmetry with Vector::remove
563    ssize_t removeChild(const sp<Layer>& layer);
564    sp<Layer> getParent() const { return mCurrentParent.promote(); }
565    bool hasParent() const { return getParent() != nullptr; }
566    Rect computeScreenBounds(bool reduceTransparentRegion = true) const;
567    bool setChildLayer(const sp<Layer>& childLayer, int32_t z);
568    bool setChildRelativeLayer(const sp<Layer>& childLayer,
569            const sp<IBinder>& relativeToHandle, int32_t relativeZ);
570
571    // Copy the current list of children to the drawing state. Called by
572    // SurfaceFlinger to complete a transaction.
573    void commitChildList();
574    int32_t getZ() const;
575
576protected:
577    // constant
578    sp<SurfaceFlinger> mFlinger;
579    /*
580     * Trivial class, used to ensure that mFlinger->onLayerDestroyed(mLayer)
581     * is called.
582     */
583    class LayerCleaner {
584        sp<SurfaceFlinger> mFlinger;
585        wp<Layer> mLayer;
586
587    protected:
588        ~LayerCleaner() {
589            // destroy client resources
590            mFlinger->onLayerDestroyed(mLayer);
591        }
592
593    public:
594        LayerCleaner(const sp<SurfaceFlinger>& flinger, const sp<Layer>& layer)
595              : mFlinger(flinger), mLayer(layer) {}
596    };
597
598    virtual void onFirstRef();
599
600    friend class impl::SurfaceInterceptor;
601
602    void commitTransaction(const State& stateToCommit);
603
604    uint32_t getEffectiveUsage(uint32_t usage) const;
605
606    FloatRect computeCrop(const sp<const DisplayDevice>& hw) const;
607    // Compute the initial crop as specified by parent layers and the
608    // SurfaceControl for this layer. Does not include buffer crop from the
609    // IGraphicBufferProducer client, as that should not affect child clipping.
610    // Returns in screen space.
611    Rect computeInitialCrop(const sp<const DisplayDevice>& hw) const;
612
613    // drawing
614    void clearWithOpenGL(const RenderArea& renderArea, float r, float g, float b,
615                         float alpha) const;
616
617    void setParent(const sp<Layer>& layer);
618
619    LayerVector makeTraversalList(LayerVector::StateSet stateSet, bool* outSkipRelativeZUsers);
620    void addZOrderRelative(const wp<Layer>& relative);
621    void removeZOrderRelative(const wp<Layer>& relative);
622
623    class SyncPoint {
624    public:
625        explicit SyncPoint(uint64_t frameNumber)
626              : mFrameNumber(frameNumber), mFrameIsAvailable(false), mTransactionIsApplied(false) {}
627
628        uint64_t getFrameNumber() const { return mFrameNumber; }
629
630        bool frameIsAvailable() const { return mFrameIsAvailable; }
631
632        void setFrameAvailable() { mFrameIsAvailable = true; }
633
634        bool transactionIsApplied() const { return mTransactionIsApplied; }
635
636        void setTransactionApplied() { mTransactionIsApplied = true; }
637
638    private:
639        const uint64_t mFrameNumber;
640        std::atomic<bool> mFrameIsAvailable;
641        std::atomic<bool> mTransactionIsApplied;
642    };
643
644    // SyncPoints which will be signaled when the correct frame is at the head
645    // of the queue and dropped after the frame has been latched. Protected by
646    // mLocalSyncPointMutex.
647    Mutex mLocalSyncPointMutex;
648    std::list<std::shared_ptr<SyncPoint>> mLocalSyncPoints;
649
650    // SyncPoints which will be signaled and then dropped when the transaction
651    // is applied
652    std::list<std::shared_ptr<SyncPoint>> mRemoteSyncPoints;
653
654    // Returns false if the relevant frame has already been latched
655    bool addSyncPoint(const std::shared_ptr<SyncPoint>& point);
656
657    void pushPendingState();
658    void popPendingState(State* stateToCommit);
659    bool applyPendingStates(State* stateToCommit);
660
661    void clearSyncPoints();
662
663    // Returns mCurrentScaling mode (originating from the
664    // Client) or mOverrideScalingMode mode (originating from
665    // the Surface Controller) if set.
666    virtual uint32_t getEffectiveScalingMode() const { return 0; }
667
668public:
669    /*
670     * The layer handle is just a BBinder object passed to the client
671     * (remote process) -- we don't keep any reference on our side such that
672     * the dtor is called when the remote side let go of its reference.
673     *
674     * LayerCleaner ensures that mFlinger->onLayerDestroyed() is called for
675     * this layer when the handle is destroyed.
676     */
677    class Handle : public BBinder, public LayerCleaner {
678    public:
679        Handle(const sp<SurfaceFlinger>& flinger, const sp<Layer>& layer)
680              : LayerCleaner(flinger, layer), owner(layer) {}
681
682        wp<Layer> owner;
683    };
684
685    sp<IBinder> getHandle();
686    const String8& getName() const;
687    virtual void notifyAvailableFrames() {}
688    virtual PixelFormat getPixelFormat() const { return PIXEL_FORMAT_NONE; }
689    bool getPremultipledAlpha() const;
690
691protected:
692    // -----------------------------------------------------------------------
693    bool usingRelativeZ(LayerVector::StateSet stateSet);
694
695    bool mPremultipliedAlpha;
696    String8 mName;
697    String8 mTransactionName; // A cached version of "TX - " + mName for systraces
698
699    bool mPrimaryDisplayOnly = false;
700
701    // these are protected by an external lock
702    State mCurrentState;
703    State mDrawingState;
704    volatile int32_t mTransactionFlags;
705
706    // Accessed from main thread and binder threads
707    Mutex mPendingStateMutex;
708    Vector<State> mPendingStates;
709
710    // thread-safe
711    volatile int32_t mQueuedFrames;
712    volatile int32_t mSidebandStreamChanged; // used like an atomic boolean
713
714    // Timestamp history for UIAutomation. Thread safe.
715    FrameTracker mFrameTracker;
716
717    // Timestamp history for the consumer to query.
718    // Accessed by both consumer and producer on main and binder threads.
719    Mutex mFrameEventHistoryMutex;
720    ConsumerFrameEventHistory mFrameEventHistory;
721    FenceTimeline mAcquireTimeline;
722    FenceTimeline mReleaseTimeline;
723
724    // main thread
725    int mActiveBufferSlot;
726    sp<GraphicBuffer> mActiveBuffer;
727    sp<NativeHandle> mSidebandStream;
728    Rect mCurrentCrop;
729    uint32_t mCurrentTransform;
730    // We encode unset as -1.
731    int32_t mOverrideScalingMode;
732    bool mCurrentOpacity;
733    std::atomic<uint64_t> mCurrentFrameNumber;
734    bool mFrameLatencyNeeded;
735    // Whether filtering is forced on or not
736    bool mFiltering;
737    // Whether filtering is needed b/c of the drawingstate
738    bool mNeedsFiltering;
739
740    bool mPendingRemoval = false;
741
742    // page-flip thread (currently main thread)
743    bool mProtectedByApp; // application requires protected path to external sink
744
745    // protected by mLock
746    mutable Mutex mLock;
747
748    const wp<Client> mClientRef;
749
750    // This layer can be a cursor on some displays.
751    bool mPotentialCursor;
752
753    // Local copy of the queued contents of the incoming BufferQueue
754    mutable Mutex mQueueItemLock;
755    Condition mQueueItemCondition;
756    Vector<BufferItem> mQueueItems;
757    std::atomic<uint64_t> mLastFrameNumberReceived;
758    bool mAutoRefresh;
759    bool mFreezeGeometryUpdates;
760
761    // Child list about to be committed/used for editing.
762    LayerVector mCurrentChildren;
763    // Child list used for rendering.
764    LayerVector mDrawingChildren;
765
766    wp<Layer> mCurrentParent;
767    wp<Layer> mDrawingParent;
768
769    mutable LayerBE mBE;
770};
771
772// ---------------------------------------------------------------------------
773
774}; // namespace android
775
776#endif // ANDROID_LAYER_H
777