Layer.h revision 41fdfc920e2a479add53a1936c3ae76cdbea41db
1/*
2 * Copyright (C) 2007 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef ANDROID_LAYER_H
18#define ANDROID_LAYER_H
19
20#include <stdint.h>
21#include <sys/types.h>
22
23#include <EGL/egl.h>
24#include <EGL/eglext.h>
25
26#include <utils/RefBase.h>
27#include <utils/String8.h>
28#include <utils/Timers.h>
29
30#include <ui/FrameStats.h>
31#include <ui/GraphicBuffer.h>
32#include <ui/PixelFormat.h>
33#include <ui/Region.h>
34
35#include <gui/ISurfaceComposerClient.h>
36#include <gui/LayerState.h>
37
38#include <list>
39
40#include "Client.h"
41#include "FrameTracker.h"
42#include "LayerVector.h"
43#include "MonitoredProducer.h"
44#include "SurfaceFlinger.h"
45#include "SurfaceFlingerConsumer.h"
46#include "Transform.h"
47
48#include <layerproto/LayerProtoHeader.h>
49#include "DisplayHardware/HWComposer.h"
50#include "DisplayHardware/HWComposerBufferCache.h"
51#include "RenderArea.h"
52#include "RenderEngine/Mesh.h"
53#include "RenderEngine/Texture.h"
54
55#include <math/vec4.h>
56
57using namespace android::surfaceflinger;
58
59namespace android {
60
61// ---------------------------------------------------------------------------
62
63class Client;
64class Colorizer;
65class DisplayDevice;
66class GraphicBuffer;
67class SurfaceFlinger;
68class LayerDebugInfo;
69
70// ---------------------------------------------------------------------------
71
72class Layer : public virtual RefBase {
73    static int32_t sSequence;
74
75public:
76    mutable bool contentDirty;
77    // regions below are in window-manager space
78    Region visibleRegion;
79    Region coveredRegion;
80    Region visibleNonTransparentRegion;
81    Region surfaceDamageRegion;
82
83    // Layer serial number.  This gives layers an explicit ordering, so we
84    // have a stable sort order when their layer stack and Z-order are
85    // the same.
86    int32_t sequence;
87
88    enum { // flags for doTransaction()
89        eDontUpdateGeometryState = 0x00000001,
90        eVisibleRegion = 0x00000002,
91    };
92
93    struct Geometry {
94        uint32_t w;
95        uint32_t h;
96        Transform transform;
97
98        inline bool operator==(const Geometry& rhs) const {
99            return (w == rhs.w && h == rhs.h) && (transform.tx() == rhs.transform.tx()) &&
100                    (transform.ty() == rhs.transform.ty());
101        }
102        inline bool operator!=(const Geometry& rhs) const { return !operator==(rhs); }
103    };
104
105    struct State {
106        Geometry active;
107        Geometry requested;
108        int32_t z;
109
110        // The identifier of the layer stack this layer belongs to. A layer can
111        // only be associated to a single layer stack. A layer stack is a
112        // z-ordered group of layers which can be associated to one or more
113        // displays. Using the same layer stack on different displays is a way
114        // to achieve mirroring.
115        uint32_t layerStack;
116
117        uint8_t flags;
118        uint8_t mask;
119        uint8_t reserved[2];
120        int32_t sequence; // changes when visible regions can change
121        bool modified;
122
123        // Crop is expressed in layer space coordinate.
124        Rect crop;
125        Rect requestedCrop;
126
127        // finalCrop is expressed in display space coordinate.
128        Rect finalCrop;
129        Rect requestedFinalCrop;
130
131        // If set, defers this state update until the identified Layer
132        // receives a frame with the given frameNumber
133        wp<Layer> barrierLayer;
134        uint64_t frameNumber;
135
136        // the transparentRegion hint is a bit special, it's latched only
137        // when we receive a buffer -- this is because it's "content"
138        // dependent.
139        Region activeTransparentRegion;
140        Region requestedTransparentRegion;
141        android_dataspace dataSpace;
142
143        uint32_t appId;
144        uint32_t type;
145
146        // If non-null, a Surface this Surface's Z-order is interpreted relative to.
147        wp<Layer> zOrderRelativeOf;
148
149        // A list of surfaces whose Z-order is interpreted relative to ours.
150        SortedVector<wp<Layer>> zOrderRelatives;
151
152        half4 color;
153    };
154
155    Layer(SurfaceFlinger* flinger, const sp<Client>& client, const String8& name, uint32_t w,
156          uint32_t h, uint32_t flags);
157    virtual ~Layer();
158
159    void setPrimaryDisplayOnly() { mPrimaryDisplayOnly = true; }
160
161    // ------------------------------------------------------------------------
162    // Geometry setting functions.
163    //
164    // The following group of functions are used to specify the layers
165    // bounds, and the mapping of the texture on to those bounds. According
166    // to various settings changes to them may apply immediately, or be delayed until
167    // a pending resize is completed by the producer submitting a buffer. For example
168    // if we were to change the buffer size, and update the matrix ahead of the
169    // new buffer arriving, then we would be stretching the buffer to a different
170    // aspect before and after the buffer arriving, which probably isn't what we wanted.
171    //
172    // The first set of geometry functions are controlled by the scaling mode, described
173    // in window.h. The scaling mode may be set by the client, as it submits buffers.
174    // This value may be overriden through SurfaceControl, with setOverrideScalingMode.
175    //
176    // Put simply, if our scaling mode is SCALING_MODE_FREEZE, then
177    // matrix updates will not be applied while a resize is pending
178    // and the size and transform will remain in their previous state
179    // until a new buffer is submitted. If the scaling mode is another value
180    // then the old-buffer will immediately be scaled to the pending size
181    // and the new matrix will be immediately applied following this scaling
182    // transformation.
183
184    // Set the default buffer size for the assosciated Producer, in pixels. This is
185    // also the rendered size of the layer prior to any transformations. Parent
186    // or local matrix transformations will not affect the size of the buffer,
187    // but may affect it's on-screen size or clipping.
188    bool setSize(uint32_t w, uint32_t h);
189    // Set a 2x2 transformation matrix on the layer. This transform
190    // will be applied after parent transforms, but before any final
191    // producer specified transform.
192    bool setMatrix(const layer_state_t::matrix22_t& matrix);
193
194    // This second set of geometry attributes are controlled by
195    // setGeometryAppliesWithResize, and their default mode is to be
196    // immediate. If setGeometryAppliesWithResize is specified
197    // while a resize is pending, then update of these attributes will
198    // be delayed until the resize completes.
199
200    // setPosition operates in parent buffer space (pre parent-transform) or display
201    // space for top-level layers.
202    bool setPosition(float x, float y, bool immediate);
203    // Buffer space
204    bool setCrop(const Rect& crop, bool immediate);
205    // Parent buffer space/display space
206    bool setFinalCrop(const Rect& crop, bool immediate);
207
208    // TODO(b/38182121): Could we eliminate the various latching modes by
209    // using the layer hierarchy?
210    // -----------------------------------------------------------------------
211    bool setLayer(int32_t z);
212    bool setRelativeLayer(const sp<IBinder>& relativeToHandle, int32_t relativeZ);
213
214    bool setAlpha(float alpha);
215    bool setColor(const half3& color);
216    bool setTransparentRegionHint(const Region& transparent);
217    bool setFlags(uint8_t flags, uint8_t mask);
218    bool setLayerStack(uint32_t layerStack);
219    bool setDataSpace(android_dataspace dataSpace);
220    android_dataspace getDataSpace() const;
221    uint32_t getLayerStack() const;
222    void deferTransactionUntil(const sp<IBinder>& barrierHandle, uint64_t frameNumber);
223    void deferTransactionUntil(const sp<Layer>& barrierLayer, uint64_t frameNumber);
224    bool setOverrideScalingMode(int32_t overrideScalingMode);
225    void setInfo(uint32_t type, uint32_t appId);
226    bool reparentChildren(const sp<IBinder>& layer);
227    bool reparent(const sp<IBinder>& newParentHandle);
228    bool detachChildren();
229
230    // If we have received a new buffer this frame, we will pass its surface
231    // damage down to hardware composer. Otherwise, we must send a region with
232    // one empty rect.
233    void useSurfaceDamage();
234    void useEmptyDamage();
235
236    uint32_t getTransactionFlags(uint32_t flags);
237    uint32_t setTransactionFlags(uint32_t flags);
238
239    bool belongsToDisplay(uint32_t layerStack, bool isPrimaryDisplay) const {
240        return getLayerStack() == layerStack && (!mPrimaryDisplayOnly || isPrimaryDisplay);
241    }
242
243    void computeGeometry(const RenderArea& renderArea, Mesh& mesh, bool useIdentityTransform) const;
244    Rect computeBounds(const Region& activeTransparentRegion) const;
245    Rect computeBounds() const;
246
247    int32_t getSequence() const { return sequence; }
248
249    // -----------------------------------------------------------------------
250    // Virtuals
251    virtual const char* getTypeId() const = 0;
252
253    /*
254     * isOpaque - true if this surface is opaque
255     *
256     * This takes into account the buffer format (i.e. whether or not the
257     * pixel format includes an alpha channel) and the "opaque" flag set
258     * on the layer.  It does not examine the current plane alpha value.
259     */
260    virtual bool isOpaque(const Layer::State& s) const = 0;
261
262    /*
263     * isSecure - true if this surface is secure, that is if it prevents
264     * screenshots or VNC servers.
265     */
266    bool isSecure() const;
267
268    /*
269     * isVisible - true if this layer is visible, false otherwise
270     */
271    virtual bool isVisible() const = 0;
272
273    /*
274     * isHiddenByPolicy - true if this layer has been forced invisible.
275     * just because this is false, doesn't mean isVisible() is true.
276     * For example if this layer has no active buffer, it may not be hidden by
277     * policy, but it still can not be visible.
278     */
279    bool isHiddenByPolicy() const;
280
281    /*
282     * isFixedSize - true if content has a fixed size
283     */
284    virtual bool isFixedSize() const = 0;
285
286    void writeToProto(LayerProto* layerInfo,
287                      LayerVector::StateSet stateSet = LayerVector::StateSet::Drawing);
288
289protected:
290    /*
291     * onDraw - draws the surface.
292     */
293    virtual void onDraw(const RenderArea& renderArea, const Region& clip,
294                        bool useIdentityTransform) const = 0;
295
296public:
297#ifdef USE_HWC2
298    void setGeometry(const sp<const DisplayDevice>& displayDevice, uint32_t z);
299    void forceClientComposition(int32_t hwcId);
300    void setPerFrameData(const sp<const DisplayDevice>& displayDevice);
301
302    // callIntoHwc exists so we can update our local state and call
303    // acceptDisplayChanges without unnecessarily updating the device's state
304    void setCompositionType(int32_t hwcId, HWC2::Composition type, bool callIntoHwc = true);
305    HWC2::Composition getCompositionType(int32_t hwcId) const;
306    void setClearClientTarget(int32_t hwcId, bool clear);
307    bool getClearClientTarget(int32_t hwcId) const;
308    void updateCursorPosition(const sp<const DisplayDevice>& hw);
309#else
310    void setGeometry(const sp<const DisplayDevice>& hw, HWComposer::HWCLayerInterface& layer);
311    void setPerFrameData(const sp<const DisplayDevice>& hw, HWComposer::HWCLayerInterface& layer);
312    void setAcquireFence(const sp<const DisplayDevice>& hw,
313                                 HWComposer::HWCLayerInterface& layer);
314    Rect getPosition(const sp<const DisplayDevice>& hw);
315#endif
316
317    /*
318     * called after page-flip
319     */
320#ifdef USE_HWC2
321    void onLayerDisplayed(const sp<Fence>& releaseFence);
322#else
323    void onLayerDisplayed(const sp<const DisplayDevice>& hw, HWComposer::HWCLayerInterface* layer);
324#endif
325
326    bool shouldPresentNow(const DispSync& dispSync) const;
327
328    /*
329     * called before composition.
330     * returns true if the layer has pending updates.
331     */
332    virtual bool onPreComposition(nsecs_t refreshStartTime) = 0;
333
334    /*
335     * called after composition.
336     * returns true if the layer latched a new buffer this frame.
337     */
338    bool onPostComposition(const std::shared_ptr<FenceTime>& glDoneFence,
339                           const std::shared_ptr<FenceTime>& presentFence,
340                           const CompositorTiming& compositorTiming);
341
342#ifdef USE_HWC2
343    // If a buffer was replaced this frame, release the former buffer
344    virtual void releasePendingBuffer(nsecs_t dequeueReadyTime) = 0;
345#endif
346
347    /*
348     * draw - performs some global clipping optimizations
349     * and calls onDraw().
350     */
351    void draw(const RenderArea& renderArea, const Region& clip) const;
352    void draw(const RenderArea& renderArea, bool useIdentityTransform) const;
353    void draw(const RenderArea& renderArea) const;
354
355    /*
356     * doTransaction - process the transaction. This is a good place to figure
357     * out which attributes of the surface have changed.
358     */
359    uint32_t doTransaction(uint32_t transactionFlags);
360
361    /*
362     * setVisibleRegion - called to set the new visible region. This gives
363     * a chance to update the new visible region or record the fact it changed.
364     */
365    void setVisibleRegion(const Region& visibleRegion);
366
367    /*
368     * setCoveredRegion - called when the covered region changes. The covered
369     * region corresponds to any area of the surface that is covered
370     * (transparently or not) by another surface.
371     */
372    void setCoveredRegion(const Region& coveredRegion);
373
374    /*
375     * setVisibleNonTransparentRegion - called when the visible and
376     * non-transparent region changes.
377     */
378    void setVisibleNonTransparentRegion(const Region& visibleNonTransparentRegion);
379
380    /*
381     * latchBuffer - called each time the screen is redrawn and returns whether
382     * the visible regions need to be recomputed (this is a fairly heavy
383     * operation, so this should be set only if needed). Typically this is used
384     * to figure out if the content or size of a surface has changed.
385     */
386    virtual Region latchBuffer(bool& recomputeVisibleRegions, nsecs_t latchTime) = 0;
387    virtual bool isBufferLatched() const = 0;
388
389    bool isPotentialCursor() const { return mPotentialCursor; }
390    /*
391     * called with the state lock from a binder thread when the layer is
392     * removed from the current list to the pending removal list
393     */
394    void onRemovedFromCurrentState();
395
396    /*
397     * called with the state lock from the main thread when the layer is
398     * removed from the pending removal list
399     */
400    void onRemoved();
401
402    // Updates the transform hint in our SurfaceFlingerConsumer to match
403    // the current orientation of the display device.
404    void updateTransformHint(const sp<const DisplayDevice>& hw) const;
405
406    /*
407     * returns the rectangle that crops the content of the layer and scales it
408     * to the layer's size.
409     */
410    Rect getContentCrop() const;
411
412    /*
413     * Returns if a frame is queued.
414     */
415    bool hasQueuedFrame() const {
416        return mQueuedFrames > 0 || mSidebandStreamChanged || mAutoRefresh;
417    }
418
419    int32_t getQueuedFrameCount() const { return mQueuedFrames; }
420
421#ifdef USE_HWC2
422    // -----------------------------------------------------------------------
423
424    bool createHwcLayer(HWComposer* hwc, int32_t hwcId);
425    void destroyHwcLayer(int32_t hwcId);
426    void destroyAllHwcLayers();
427
428    bool hasHwcLayer(int32_t hwcId) { return mHwcLayers.count(hwcId) > 0; }
429
430    HWC2::Layer* getHwcLayer(int32_t hwcId) {
431        if (mHwcLayers.count(hwcId) == 0) {
432            return nullptr;
433        }
434        return mHwcLayers[hwcId].layer;
435    }
436
437#endif
438    // -----------------------------------------------------------------------
439
440    void clearWithOpenGL(const RenderArea& renderArea) const;
441    void setFiltering(bool filtering);
442    bool getFiltering() const;
443
444    // only for debugging
445    inline const sp<GraphicBuffer>& getActiveBuffer() const { return mActiveBuffer; }
446
447    inline const State& getDrawingState() const { return mDrawingState; }
448    inline const State& getCurrentState() const { return mCurrentState; }
449    inline State& getCurrentState() { return mCurrentState; }
450
451    LayerDebugInfo getLayerDebugInfo() const;
452
453    /* always call base class first */
454#ifdef USE_HWC2
455    static void miniDumpHeader(String8& result);
456    void miniDump(String8& result, int32_t hwcId) const;
457#endif
458    void dumpFrameStats(String8& result) const;
459    void dumpFrameEvents(String8& result);
460    void clearFrameStats();
461    void logFrameStats();
462    void getFrameStats(FrameStats* outStats) const;
463
464    std::vector<OccupancyTracker::Segment> getOccupancyHistory(bool forceFlush);
465
466    void onDisconnect();
467    void addAndGetFrameTimestamps(const NewFrameEventsEntry* newEntry,
468                                  FrameEventHistoryDelta* outDelta);
469
470    bool getTransformToDisplayInverse() const;
471
472    Transform getTransform() const;
473
474    // Returns the Alpha of the Surface, accounting for the Alpha
475    // of parent Surfaces in the hierarchy (alpha's will be multiplied
476    // down the hierarchy).
477    half getAlpha() const;
478    half4 getColor() const;
479
480    void traverseInReverseZOrder(LayerVector::StateSet stateSet,
481                                 const LayerVector::Visitor& visitor);
482    void traverseInZOrder(LayerVector::StateSet stateSet, const LayerVector::Visitor& visitor);
483
484    void traverseChildrenInZOrder(LayerVector::StateSet stateSet,
485                                  const LayerVector::Visitor& visitor);
486
487    size_t getChildrenCount() const;
488    void addChild(const sp<Layer>& layer);
489    // Returns index if removed, or negative value otherwise
490    // for symmetry with Vector::remove
491    ssize_t removeChild(const sp<Layer>& layer);
492    sp<Layer> getParent() const { return mCurrentParent.promote(); }
493    bool hasParent() const { return getParent() != nullptr; }
494    Rect computeScreenBounds(bool reduceTransparentRegion = true) const;
495    bool setChildLayer(const sp<Layer>& childLayer, int32_t z);
496
497    // Copy the current list of children to the drawing state. Called by
498    // SurfaceFlinger to complete a transaction.
499    void commitChildList();
500    int32_t getZ() const;
501
502protected:
503    // constant
504    sp<SurfaceFlinger> mFlinger;
505    /*
506     * Trivial class, used to ensure that mFlinger->onLayerDestroyed(mLayer)
507     * is called.
508     */
509    class LayerCleaner {
510        sp<SurfaceFlinger> mFlinger;
511        wp<Layer> mLayer;
512
513    protected:
514        ~LayerCleaner() {
515            // destroy client resources
516            mFlinger->onLayerDestroyed(mLayer);
517        }
518
519    public:
520        LayerCleaner(const sp<SurfaceFlinger>& flinger, const sp<Layer>& layer)
521              : mFlinger(flinger), mLayer(layer) {}
522    };
523
524    virtual void onFirstRef();
525
526    friend class SurfaceInterceptor;
527    void commitTransaction(const State& stateToCommit);
528
529    uint32_t getEffectiveUsage(uint32_t usage) const;
530
531    FloatRect computeCrop(const sp<const DisplayDevice>& hw) const;
532    // Compute the initial crop as specified by parent layers and the
533    // SurfaceControl for this layer. Does not include buffer crop from the
534    // IGraphicBufferProducer client, as that should not affect child clipping.
535    // Returns in screen space.
536    Rect computeInitialCrop(const sp<const DisplayDevice>& hw) const;
537
538    // drawing
539    void clearWithOpenGL(const RenderArea& renderArea, float r, float g, float b,
540                         float alpha) const;
541
542    void setParent(const sp<Layer>& layer);
543
544    LayerVector makeTraversalList(LayerVector::StateSet stateSet);
545    void addZOrderRelative(const wp<Layer>& relative);
546    void removeZOrderRelative(const wp<Layer>& relative);
547
548protected:
549    class SyncPoint {
550    public:
551        explicit SyncPoint(uint64_t frameNumber)
552              : mFrameNumber(frameNumber), mFrameIsAvailable(false), mTransactionIsApplied(false) {}
553
554        uint64_t getFrameNumber() const { return mFrameNumber; }
555
556        bool frameIsAvailable() const { return mFrameIsAvailable; }
557
558        void setFrameAvailable() { mFrameIsAvailable = true; }
559
560        bool transactionIsApplied() const { return mTransactionIsApplied; }
561
562        void setTransactionApplied() { mTransactionIsApplied = true; }
563
564    private:
565        const uint64_t mFrameNumber;
566        std::atomic<bool> mFrameIsAvailable;
567        std::atomic<bool> mTransactionIsApplied;
568    };
569
570    // SyncPoints which will be signaled when the correct frame is at the head
571    // of the queue and dropped after the frame has been latched. Protected by
572    // mLocalSyncPointMutex.
573    Mutex mLocalSyncPointMutex;
574    std::list<std::shared_ptr<SyncPoint>> mLocalSyncPoints;
575
576    // SyncPoints which will be signaled and then dropped when the transaction
577    // is applied
578    std::list<std::shared_ptr<SyncPoint>> mRemoteSyncPoints;
579
580    // Returns false if the relevant frame has already been latched
581    bool addSyncPoint(const std::shared_ptr<SyncPoint>& point);
582
583    void pushPendingState();
584    void popPendingState(State* stateToCommit);
585    bool applyPendingStates(State* stateToCommit);
586
587    void clearSyncPoints();
588
589    // Returns mCurrentScaling mode (originating from the
590    // Client) or mOverrideScalingMode mode (originating from
591    // the Surface Controller) if set.
592    virtual uint32_t getEffectiveScalingMode() const = 0;
593
594public:
595    /*
596     * The layer handle is just a BBinder object passed to the client
597     * (remote process) -- we don't keep any reference on our side such that
598     * the dtor is called when the remote side let go of its reference.
599     *
600     * LayerCleaner ensures that mFlinger->onLayerDestroyed() is called for
601     * this layer when the handle is destroyed.
602     */
603    class Handle : public BBinder, public LayerCleaner {
604    public:
605        Handle(const sp<SurfaceFlinger>& flinger, const sp<Layer>& layer)
606              : LayerCleaner(flinger, layer), owner(layer) {}
607
608        wp<Layer> owner;
609    };
610
611    sp<IBinder> getHandle();
612    const String8& getName() const;
613    virtual void notifyAvailableFrames() = 0;
614    virtual PixelFormat getPixelFormat() const = 0;
615    bool getPremultipledAlpha() const;
616
617protected:
618    // -----------------------------------------------------------------------
619
620    // constants
621    sp<SurfaceFlingerConsumer> mSurfaceFlingerConsumer;
622    bool mPremultipliedAlpha;
623    String8 mName;
624    String8 mTransactionName; // A cached version of "TX - " + mName for systraces
625
626    bool mPrimaryDisplayOnly = false;
627
628    // these are protected by an external lock
629    State mCurrentState;
630    State mDrawingState;
631    volatile int32_t mTransactionFlags;
632
633    // Accessed from main thread and binder threads
634    Mutex mPendingStateMutex;
635    Vector<State> mPendingStates;
636
637    // thread-safe
638    volatile int32_t mQueuedFrames;
639    volatile int32_t mSidebandStreamChanged; // used like an atomic boolean
640
641    // Timestamp history for UIAutomation. Thread safe.
642    FrameTracker mFrameTracker;
643
644    // Timestamp history for the consumer to query.
645    // Accessed by both consumer and producer on main and binder threads.
646    Mutex mFrameEventHistoryMutex;
647    ConsumerFrameEventHistory mFrameEventHistory;
648    FenceTimeline mAcquireTimeline;
649    FenceTimeline mReleaseTimeline;
650
651    // main thread
652    int mActiveBufferSlot;
653    sp<GraphicBuffer> mActiveBuffer;
654    sp<NativeHandle> mSidebandStream;
655    Rect mCurrentCrop;
656    uint32_t mCurrentTransform;
657    // We encode unset as -1.
658    int32_t mOverrideScalingMode;
659    bool mCurrentOpacity;
660    std::atomic<uint64_t> mCurrentFrameNumber;
661    bool mFrameLatencyNeeded;
662    // Whether filtering is forced on or not
663    bool mFiltering;
664    // Whether filtering is needed b/c of the drawingstate
665    bool mNeedsFiltering;
666    // The mesh used to draw the layer in GLES composition mode
667    mutable Mesh mMesh;
668
669#ifdef USE_HWC2
670    // HWC items, accessed from the main thread
671    struct HWCInfo {
672        HWCInfo()
673              : hwc(nullptr),
674                layer(nullptr),
675                forceClientComposition(false),
676                compositionType(HWC2::Composition::Invalid),
677                clearClientTarget(false) {}
678
679        HWComposer* hwc;
680        HWC2::Layer* layer;
681        bool forceClientComposition;
682        HWC2::Composition compositionType;
683        bool clearClientTarget;
684        Rect displayFrame;
685        FloatRect sourceCrop;
686        HWComposerBufferCache bufferCache;
687    };
688
689    // A layer can be attached to multiple displays when operating in mirror mode
690    // (a.k.a: when several displays are attached with equal layerStack). In this
691    // case we need to keep track. In non-mirror mode, a layer will have only one
692    // HWCInfo. This map key is a display layerStack.
693    std::unordered_map<int32_t, HWCInfo> mHwcLayers;
694#else
695    bool mIsGlesComposition;
696#endif
697
698    // page-flip thread (currently main thread)
699    bool mProtectedByApp; // application requires protected path to external sink
700
701    // protected by mLock
702    mutable Mutex mLock;
703
704    const wp<Client> mClientRef;
705
706    // This layer can be a cursor on some displays.
707    bool mPotentialCursor;
708
709    // Local copy of the queued contents of the incoming BufferQueue
710    mutable Mutex mQueueItemLock;
711    Condition mQueueItemCondition;
712    Vector<BufferItem> mQueueItems;
713    std::atomic<uint64_t> mLastFrameNumberReceived;
714    bool mAutoRefresh;
715    bool mFreezeGeometryUpdates;
716
717    // Child list about to be committed/used for editing.
718    LayerVector mCurrentChildren;
719    // Child list used for rendering.
720    LayerVector mDrawingChildren;
721
722    wp<Layer> mCurrentParent;
723    wp<Layer> mDrawingParent;
724};
725
726// ---------------------------------------------------------------------------
727
728}; // namespace android
729
730#endif // ANDROID_LAYER_H
731