Layer.h revision 6f65f3e7caab86a76419e7c1d1c787634a0852d8
1/*
2 * Copyright (C) 2007 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef ANDROID_LAYER_H
18#define ANDROID_LAYER_H
19
20#include <stdint.h>
21#include <sys/types.h>
22
23#include <EGL/egl.h>
24#include <EGL/eglext.h>
25
26#include <utils/RefBase.h>
27#include <utils/String8.h>
28#include <utils/Timers.h>
29
30#include <ui/FrameStats.h>
31#include <ui/GraphicBuffer.h>
32#include <ui/PixelFormat.h>
33#include <ui/Region.h>
34
35#include <gui/ISurfaceComposerClient.h>
36#include <gui/LayerState.h>
37
38#include <list>
39
40#include "Client.h"
41#include "FrameTracker.h"
42#include "LayerVector.h"
43#include "MonitoredProducer.h"
44#include "SurfaceFlinger.h"
45#include "Transform.h"
46
47#include <layerproto/LayerProtoHeader.h>
48#include "DisplayHardware/HWComposer.h"
49#include "DisplayHardware/HWComposerBufferCache.h"
50#include "RenderArea.h"
51#include "RenderEngine/Mesh.h"
52#include "RenderEngine/Texture.h"
53
54#include <math/vec4.h>
55
56using namespace android::surfaceflinger;
57
58namespace android {
59
60// ---------------------------------------------------------------------------
61
62class Client;
63class Colorizer;
64class DisplayDevice;
65class GraphicBuffer;
66class SurfaceFlinger;
67class LayerDebugInfo;
68class LayerBE;
69
70// ---------------------------------------------------------------------------
71
72class LayerBE {
73public:
74    LayerBE();
75
76    sp<NativeHandle> mSidebandStream;
77
78    // The mesh used to draw the layer in GLES composition mode
79    Mesh mMesh;
80
81    // HWC items, accessed from the main thread
82    struct HWCInfo {
83        HWCInfo()
84              : hwc(nullptr),
85                layer(nullptr),
86                forceClientComposition(false),
87                compositionType(HWC2::Composition::Invalid),
88                clearClientTarget(false) {}
89
90        HWComposer* hwc;
91        HWC2::Layer* layer;
92        bool forceClientComposition;
93        HWC2::Composition compositionType;
94        bool clearClientTarget;
95        Rect displayFrame;
96        FloatRect sourceCrop;
97        HWComposerBufferCache bufferCache;
98    };
99
100    // A layer can be attached to multiple displays when operating in mirror mode
101    // (a.k.a: when several displays are attached with equal layerStack). In this
102    // case we need to keep track. In non-mirror mode, a layer will have only one
103    // HWCInfo. This map key is a display layerStack.
104    std::unordered_map<int32_t, HWCInfo> mHwcLayers;
105};
106
107class Layer : public virtual RefBase {
108    static int32_t sSequence;
109
110public:
111    LayerBE& getBE() { return mBE; }
112    LayerBE& getBE() const { return mBE; }
113    mutable bool contentDirty;
114    // regions below are in window-manager space
115    Region visibleRegion;
116    Region coveredRegion;
117    Region visibleNonTransparentRegion;
118    Region surfaceDamageRegion;
119
120    // Layer serial number.  This gives layers an explicit ordering, so we
121    // have a stable sort order when their layer stack and Z-order are
122    // the same.
123    int32_t sequence;
124
125    enum { // flags for doTransaction()
126        eDontUpdateGeometryState = 0x00000001,
127        eVisibleRegion = 0x00000002,
128    };
129
130    struct Geometry {
131        uint32_t w;
132        uint32_t h;
133        Transform transform;
134
135        inline bool operator==(const Geometry& rhs) const {
136            return (w == rhs.w && h == rhs.h) && (transform.tx() == rhs.transform.tx()) &&
137                    (transform.ty() == rhs.transform.ty());
138        }
139        inline bool operator!=(const Geometry& rhs) const { return !operator==(rhs); }
140    };
141
142    struct State {
143        Geometry active;
144        Geometry requested;
145        int32_t z;
146
147        // The identifier of the layer stack this layer belongs to. A layer can
148        // only be associated to a single layer stack. A layer stack is a
149        // z-ordered group of layers which can be associated to one or more
150        // displays. Using the same layer stack on different displays is a way
151        // to achieve mirroring.
152        uint32_t layerStack;
153
154        uint8_t flags;
155        uint8_t mask;
156        uint8_t reserved[2];
157        int32_t sequence; // changes when visible regions can change
158        bool modified;
159
160        // Crop is expressed in layer space coordinate.
161        Rect crop;
162        Rect requestedCrop;
163
164        // finalCrop is expressed in display space coordinate.
165        Rect finalCrop;
166        Rect requestedFinalCrop;
167
168        // If set, defers this state update until the identified Layer
169        // receives a frame with the given frameNumber
170        wp<Layer> barrierLayer;
171        uint64_t frameNumber;
172
173        // the transparentRegion hint is a bit special, it's latched only
174        // when we receive a buffer -- this is because it's "content"
175        // dependent.
176        Region activeTransparentRegion;
177        Region requestedTransparentRegion;
178        android_dataspace dataSpace;
179
180        uint32_t appId;
181        uint32_t type;
182
183        // If non-null, a Surface this Surface's Z-order is interpreted relative to.
184        wp<Layer> zOrderRelativeOf;
185
186        // A list of surfaces whose Z-order is interpreted relative to ours.
187        SortedVector<wp<Layer>> zOrderRelatives;
188
189        half4 color;
190    };
191
192    Layer(SurfaceFlinger* flinger, const sp<Client>& client, const String8& name, uint32_t w,
193          uint32_t h, uint32_t flags);
194    virtual ~Layer();
195
196    void setPrimaryDisplayOnly() { mPrimaryDisplayOnly = true; }
197
198    // ------------------------------------------------------------------------
199    // Geometry setting functions.
200    //
201    // The following group of functions are used to specify the layers
202    // bounds, and the mapping of the texture on to those bounds. According
203    // to various settings changes to them may apply immediately, or be delayed until
204    // a pending resize is completed by the producer submitting a buffer. For example
205    // if we were to change the buffer size, and update the matrix ahead of the
206    // new buffer arriving, then we would be stretching the buffer to a different
207    // aspect before and after the buffer arriving, which probably isn't what we wanted.
208    //
209    // The first set of geometry functions are controlled by the scaling mode, described
210    // in window.h. The scaling mode may be set by the client, as it submits buffers.
211    // This value may be overriden through SurfaceControl, with setOverrideScalingMode.
212    //
213    // Put simply, if our scaling mode is SCALING_MODE_FREEZE, then
214    // matrix updates will not be applied while a resize is pending
215    // and the size and transform will remain in their previous state
216    // until a new buffer is submitted. If the scaling mode is another value
217    // then the old-buffer will immediately be scaled to the pending size
218    // and the new matrix will be immediately applied following this scaling
219    // transformation.
220
221    // Set the default buffer size for the assosciated Producer, in pixels. This is
222    // also the rendered size of the layer prior to any transformations. Parent
223    // or local matrix transformations will not affect the size of the buffer,
224    // but may affect it's on-screen size or clipping.
225    bool setSize(uint32_t w, uint32_t h);
226    // Set a 2x2 transformation matrix on the layer. This transform
227    // will be applied after parent transforms, but before any final
228    // producer specified transform.
229    bool setMatrix(const layer_state_t::matrix22_t& matrix);
230
231    // This second set of geometry attributes are controlled by
232    // setGeometryAppliesWithResize, and their default mode is to be
233    // immediate. If setGeometryAppliesWithResize is specified
234    // while a resize is pending, then update of these attributes will
235    // be delayed until the resize completes.
236
237    // setPosition operates in parent buffer space (pre parent-transform) or display
238    // space for top-level layers.
239    bool setPosition(float x, float y, bool immediate);
240    // Buffer space
241    bool setCrop(const Rect& crop, bool immediate);
242    // Parent buffer space/display space
243    bool setFinalCrop(const Rect& crop, bool immediate);
244
245    // TODO(b/38182121): Could we eliminate the various latching modes by
246    // using the layer hierarchy?
247    // -----------------------------------------------------------------------
248    bool setLayer(int32_t z);
249    bool setRelativeLayer(const sp<IBinder>& relativeToHandle, int32_t relativeZ);
250
251    bool setAlpha(float alpha);
252    bool setColor(const half3& color);
253    bool setTransparentRegionHint(const Region& transparent);
254    bool setFlags(uint8_t flags, uint8_t mask);
255    bool setLayerStack(uint32_t layerStack);
256    bool setDataSpace(android_dataspace dataSpace);
257    android_dataspace getDataSpace() const;
258    uint32_t getLayerStack() const;
259    void deferTransactionUntil(const sp<IBinder>& barrierHandle, uint64_t frameNumber);
260    void deferTransactionUntil(const sp<Layer>& barrierLayer, uint64_t frameNumber);
261    bool setOverrideScalingMode(int32_t overrideScalingMode);
262    void setInfo(uint32_t type, uint32_t appId);
263    bool reparentChildren(const sp<IBinder>& layer);
264    bool reparent(const sp<IBinder>& newParentHandle);
265    bool detachChildren();
266
267    // If we have received a new buffer this frame, we will pass its surface
268    // damage down to hardware composer. Otherwise, we must send a region with
269    // one empty rect.
270    virtual void useSurfaceDamage() = 0;
271    virtual void useEmptyDamage() = 0;
272
273    uint32_t getTransactionFlags(uint32_t flags);
274    uint32_t setTransactionFlags(uint32_t flags);
275
276    bool belongsToDisplay(uint32_t layerStack, bool isPrimaryDisplay) const {
277        return getLayerStack() == layerStack && (!mPrimaryDisplayOnly || isPrimaryDisplay);
278    }
279
280    void computeGeometry(const RenderArea& renderArea, Mesh& mesh, bool useIdentityTransform) const;
281    Rect computeBounds(const Region& activeTransparentRegion) const;
282    Rect computeBounds() const;
283
284    int32_t getSequence() const { return sequence; }
285
286    // -----------------------------------------------------------------------
287    // Virtuals
288    virtual const char* getTypeId() const = 0;
289
290    /*
291     * isOpaque - true if this surface is opaque
292     *
293     * This takes into account the buffer format (i.e. whether or not the
294     * pixel format includes an alpha channel) and the "opaque" flag set
295     * on the layer.  It does not examine the current plane alpha value.
296     */
297    virtual bool isOpaque(const Layer::State& s) const = 0;
298
299    /*
300     * isSecure - true if this surface is secure, that is if it prevents
301     * screenshots or VNC servers.
302     */
303    bool isSecure() const;
304
305    /*
306     * isVisible - true if this layer is visible, false otherwise
307     */
308    virtual bool isVisible() const = 0;
309
310    /*
311     * isHiddenByPolicy - true if this layer has been forced invisible.
312     * just because this is false, doesn't mean isVisible() is true.
313     * For example if this layer has no active buffer, it may not be hidden by
314     * policy, but it still can not be visible.
315     */
316    bool isHiddenByPolicy() const;
317
318    /*
319     * isFixedSize - true if content has a fixed size
320     */
321    virtual bool isFixedSize() const = 0;
322
323    bool isPendingRemoval() const { return mPendingRemoval; }
324
325    void writeToProto(LayerProto* layerInfo,
326                      LayerVector::StateSet stateSet = LayerVector::StateSet::Drawing);
327
328protected:
329    /*
330     * onDraw - draws the surface.
331     */
332    virtual void onDraw(const RenderArea& renderArea, const Region& clip,
333                        bool useIdentityTransform) const = 0;
334
335public:
336    virtual void setDefaultBufferSize(uint32_t w, uint32_t h) = 0;
337
338    void setGeometry(const sp<const DisplayDevice>& displayDevice, uint32_t z);
339    void forceClientComposition(int32_t hwcId);
340    bool getForceClientComposition(int32_t hwcId);
341    virtual void setPerFrameData(const sp<const DisplayDevice>& displayDevice) = 0;
342
343    // callIntoHwc exists so we can update our local state and call
344    // acceptDisplayChanges without unnecessarily updating the device's state
345    void setCompositionType(int32_t hwcId, HWC2::Composition type, bool callIntoHwc = true);
346    HWC2::Composition getCompositionType(int32_t hwcId) const;
347    void setClearClientTarget(int32_t hwcId, bool clear);
348    bool getClearClientTarget(int32_t hwcId) const;
349    void updateCursorPosition(const sp<const DisplayDevice>& hw);
350
351    /*
352     * called after page-flip
353     */
354    virtual void onLayerDisplayed(const sp<Fence>& releaseFence);
355
356    virtual void abandon() = 0;
357
358    virtual bool shouldPresentNow(const DispSync& dispSync) const = 0;
359    virtual void setTransformHint(uint32_t orientation) const = 0;
360
361    /*
362     * called before composition.
363     * returns true if the layer has pending updates.
364     */
365    virtual bool onPreComposition(nsecs_t refreshStartTime) = 0;
366
367    /*
368     * called after composition.
369     * returns true if the layer latched a new buffer this frame.
370     */
371    virtual bool onPostComposition(const std::shared_ptr<FenceTime>& glDoneFence,
372                                   const std::shared_ptr<FenceTime>& presentFence,
373                                   const CompositorTiming& compositorTiming) = 0;
374
375    // If a buffer was replaced this frame, release the former buffer
376    virtual void releasePendingBuffer(nsecs_t dequeueReadyTime) = 0;
377
378    /*
379     * draw - performs some global clipping optimizations
380     * and calls onDraw().
381     */
382    void draw(const RenderArea& renderArea, const Region& clip) const;
383    void draw(const RenderArea& renderArea, bool useIdentityTransform) const;
384    void draw(const RenderArea& renderArea) const;
385
386    /*
387     * doTransaction - process the transaction. This is a good place to figure
388     * out which attributes of the surface have changed.
389     */
390    uint32_t doTransaction(uint32_t transactionFlags);
391
392    /*
393     * setVisibleRegion - called to set the new visible region. This gives
394     * a chance to update the new visible region or record the fact it changed.
395     */
396    void setVisibleRegion(const Region& visibleRegion);
397
398    /*
399     * setCoveredRegion - called when the covered region changes. The covered
400     * region corresponds to any area of the surface that is covered
401     * (transparently or not) by another surface.
402     */
403    void setCoveredRegion(const Region& coveredRegion);
404
405    /*
406     * setVisibleNonTransparentRegion - called when the visible and
407     * non-transparent region changes.
408     */
409    void setVisibleNonTransparentRegion(const Region& visibleNonTransparentRegion);
410
411    /*
412     * latchBuffer - called each time the screen is redrawn and returns whether
413     * the visible regions need to be recomputed (this is a fairly heavy
414     * operation, so this should be set only if needed). Typically this is used
415     * to figure out if the content or size of a surface has changed.
416     */
417    virtual Region latchBuffer(bool& recomputeVisibleRegions, nsecs_t latchTime) = 0;
418    virtual bool isBufferLatched() const = 0;
419
420    bool isPotentialCursor() const { return mPotentialCursor; }
421    /*
422     * called with the state lock from a binder thread when the layer is
423     * removed from the current list to the pending removal list
424     */
425    void onRemovedFromCurrentState();
426
427    /*
428     * called with the state lock from the main thread when the layer is
429     * removed from the pending removal list
430     */
431    void onRemoved();
432
433    // Updates the transform hint in our SurfaceFlingerConsumer to match
434    // the current orientation of the display device.
435    void updateTransformHint(const sp<const DisplayDevice>& hw) const;
436
437    /*
438     * returns the rectangle that crops the content of the layer and scales it
439     * to the layer's size.
440     */
441    Rect getContentCrop() const;
442
443    /*
444     * Returns if a frame is queued.
445     */
446    bool hasQueuedFrame() const {
447        return mQueuedFrames > 0 || mSidebandStreamChanged || mAutoRefresh;
448    }
449
450    int32_t getQueuedFrameCount() const { return mQueuedFrames; }
451
452    // -----------------------------------------------------------------------
453
454    bool createHwcLayer(HWComposer* hwc, int32_t hwcId);
455    bool destroyHwcLayer(int32_t hwcId);
456    void destroyAllHwcLayers();
457
458    bool hasHwcLayer(int32_t hwcId) {
459        return getBE().mHwcLayers.count(hwcId) > 0;
460    }
461
462    HWC2::Layer* getHwcLayer(int32_t hwcId) {
463        if (getBE().mHwcLayers.count(hwcId) == 0) {
464            return nullptr;
465        }
466        return getBE().mHwcLayers[hwcId].layer;
467    }
468
469    // -----------------------------------------------------------------------
470
471    void clearWithOpenGL(const RenderArea& renderArea) const;
472    void setFiltering(bool filtering);
473    bool getFiltering() const;
474
475    // only for debugging
476    inline const sp<GraphicBuffer>& getActiveBuffer() const { return mActiveBuffer; }
477
478    inline const State& getDrawingState() const { return mDrawingState; }
479    inline const State& getCurrentState() const { return mCurrentState; }
480    inline State& getCurrentState() { return mCurrentState; }
481
482    LayerDebugInfo getLayerDebugInfo() const;
483
484    /* always call base class first */
485    static void miniDumpHeader(String8& result);
486    void miniDump(String8& result, int32_t hwcId) const;
487    void dumpFrameStats(String8& result) const;
488    void dumpFrameEvents(String8& result);
489    void clearFrameStats();
490    void logFrameStats();
491    void getFrameStats(FrameStats* outStats) const;
492
493    virtual std::vector<OccupancyTracker::Segment> getOccupancyHistory(bool forceFlush) = 0;
494
495    void onDisconnect();
496    void addAndGetFrameTimestamps(const NewFrameEventsEntry* newEntry,
497                                  FrameEventHistoryDelta* outDelta);
498
499    virtual bool getTransformToDisplayInverse() const = 0;
500
501    Transform getTransform() const;
502
503    // Returns the Alpha of the Surface, accounting for the Alpha
504    // of parent Surfaces in the hierarchy (alpha's will be multiplied
505    // down the hierarchy).
506    half getAlpha() const;
507    half4 getColor() const;
508
509    void traverseInReverseZOrder(LayerVector::StateSet stateSet,
510                                 const LayerVector::Visitor& visitor);
511    void traverseInZOrder(LayerVector::StateSet stateSet, const LayerVector::Visitor& visitor);
512
513    void traverseChildrenInZOrder(LayerVector::StateSet stateSet,
514                                  const LayerVector::Visitor& visitor);
515
516    size_t getChildrenCount() const;
517    void addChild(const sp<Layer>& layer);
518    // Returns index if removed, or negative value otherwise
519    // for symmetry with Vector::remove
520    ssize_t removeChild(const sp<Layer>& layer);
521    sp<Layer> getParent() const { return mCurrentParent.promote(); }
522    bool hasParent() const { return getParent() != nullptr; }
523    Rect computeScreenBounds(bool reduceTransparentRegion = true) const;
524    bool setChildLayer(const sp<Layer>& childLayer, int32_t z);
525    bool setChildRelativeLayer(const sp<Layer>& childLayer,
526            const sp<IBinder>& relativeToHandle, int32_t relativeZ);
527
528    // Copy the current list of children to the drawing state. Called by
529    // SurfaceFlinger to complete a transaction.
530    void commitChildList();
531    int32_t getZ() const;
532
533protected:
534    // constant
535    sp<SurfaceFlinger> mFlinger;
536    /*
537     * Trivial class, used to ensure that mFlinger->onLayerDestroyed(mLayer)
538     * is called.
539     */
540    class LayerCleaner {
541        sp<SurfaceFlinger> mFlinger;
542        wp<Layer> mLayer;
543
544    protected:
545        ~LayerCleaner() {
546            // destroy client resources
547            mFlinger->onLayerDestroyed(mLayer);
548        }
549
550    public:
551        LayerCleaner(const sp<SurfaceFlinger>& flinger, const sp<Layer>& layer)
552              : mFlinger(flinger), mLayer(layer) {}
553    };
554
555    virtual void onFirstRef();
556
557    friend class SurfaceInterceptor;
558
559    void commitTransaction(const State& stateToCommit);
560
561    uint32_t getEffectiveUsage(uint32_t usage) const;
562
563    FloatRect computeCrop(const sp<const DisplayDevice>& hw) const;
564    // Compute the initial crop as specified by parent layers and the
565    // SurfaceControl for this layer. Does not include buffer crop from the
566    // IGraphicBufferProducer client, as that should not affect child clipping.
567    // Returns in screen space.
568    Rect computeInitialCrop(const sp<const DisplayDevice>& hw) const;
569
570    // drawing
571    void clearWithOpenGL(const RenderArea& renderArea, float r, float g, float b,
572                         float alpha) const;
573
574    void setParent(const sp<Layer>& layer);
575
576    LayerVector makeTraversalList(LayerVector::StateSet stateSet);
577    void addZOrderRelative(const wp<Layer>& relative);
578    void removeZOrderRelative(const wp<Layer>& relative);
579
580    class SyncPoint {
581    public:
582        explicit SyncPoint(uint64_t frameNumber)
583              : mFrameNumber(frameNumber), mFrameIsAvailable(false), mTransactionIsApplied(false) {}
584
585        uint64_t getFrameNumber() const { return mFrameNumber; }
586
587        bool frameIsAvailable() const { return mFrameIsAvailable; }
588
589        void setFrameAvailable() { mFrameIsAvailable = true; }
590
591        bool transactionIsApplied() const { return mTransactionIsApplied; }
592
593        void setTransactionApplied() { mTransactionIsApplied = true; }
594
595    private:
596        const uint64_t mFrameNumber;
597        std::atomic<bool> mFrameIsAvailable;
598        std::atomic<bool> mTransactionIsApplied;
599    };
600
601    // SyncPoints which will be signaled when the correct frame is at the head
602    // of the queue and dropped after the frame has been latched. Protected by
603    // mLocalSyncPointMutex.
604    Mutex mLocalSyncPointMutex;
605    std::list<std::shared_ptr<SyncPoint>> mLocalSyncPoints;
606
607    // SyncPoints which will be signaled and then dropped when the transaction
608    // is applied
609    std::list<std::shared_ptr<SyncPoint>> mRemoteSyncPoints;
610
611    // Returns false if the relevant frame has already been latched
612    bool addSyncPoint(const std::shared_ptr<SyncPoint>& point);
613
614    void pushPendingState();
615    void popPendingState(State* stateToCommit);
616    bool applyPendingStates(State* stateToCommit);
617
618    void clearSyncPoints();
619
620    // Returns mCurrentScaling mode (originating from the
621    // Client) or mOverrideScalingMode mode (originating from
622    // the Surface Controller) if set.
623    virtual uint32_t getEffectiveScalingMode() const = 0;
624
625public:
626    /*
627     * The layer handle is just a BBinder object passed to the client
628     * (remote process) -- we don't keep any reference on our side such that
629     * the dtor is called when the remote side let go of its reference.
630     *
631     * LayerCleaner ensures that mFlinger->onLayerDestroyed() is called for
632     * this layer when the handle is destroyed.
633     */
634    class Handle : public BBinder, public LayerCleaner {
635    public:
636        Handle(const sp<SurfaceFlinger>& flinger, const sp<Layer>& layer)
637              : LayerCleaner(flinger, layer), owner(layer) {}
638
639        wp<Layer> owner;
640    };
641
642    sp<IBinder> getHandle();
643    const String8& getName() const;
644    virtual void notifyAvailableFrames() = 0;
645    virtual PixelFormat getPixelFormat() const = 0;
646    bool getPremultipledAlpha() const;
647
648protected:
649    // -----------------------------------------------------------------------
650
651    bool mPremultipliedAlpha;
652    String8 mName;
653    String8 mTransactionName; // A cached version of "TX - " + mName for systraces
654
655    bool mPrimaryDisplayOnly = false;
656
657    // these are protected by an external lock
658    State mCurrentState;
659    State mDrawingState;
660    volatile int32_t mTransactionFlags;
661
662    // Accessed from main thread and binder threads
663    Mutex mPendingStateMutex;
664    Vector<State> mPendingStates;
665
666    // thread-safe
667    volatile int32_t mQueuedFrames;
668    volatile int32_t mSidebandStreamChanged; // used like an atomic boolean
669
670    // Timestamp history for UIAutomation. Thread safe.
671    FrameTracker mFrameTracker;
672
673    // Timestamp history for the consumer to query.
674    // Accessed by both consumer and producer on main and binder threads.
675    Mutex mFrameEventHistoryMutex;
676    ConsumerFrameEventHistory mFrameEventHistory;
677    FenceTimeline mAcquireTimeline;
678    FenceTimeline mReleaseTimeline;
679
680    // main thread
681    int mActiveBufferSlot;
682    sp<GraphicBuffer> mActiveBuffer;
683    sp<NativeHandle> mSidebandStream;
684    Rect mCurrentCrop;
685    uint32_t mCurrentTransform;
686    // We encode unset as -1.
687    int32_t mOverrideScalingMode;
688    bool mCurrentOpacity;
689    std::atomic<uint64_t> mCurrentFrameNumber;
690    bool mFrameLatencyNeeded;
691    // Whether filtering is forced on or not
692    bool mFiltering;
693    // Whether filtering is needed b/c of the drawingstate
694    bool mNeedsFiltering;
695
696    bool mPendingRemoval = false;
697
698    // page-flip thread (currently main thread)
699    bool mProtectedByApp; // application requires protected path to external sink
700
701    // protected by mLock
702    mutable Mutex mLock;
703
704    const wp<Client> mClientRef;
705
706    // This layer can be a cursor on some displays.
707    bool mPotentialCursor;
708
709    // Local copy of the queued contents of the incoming BufferQueue
710    mutable Mutex mQueueItemLock;
711    Condition mQueueItemCondition;
712    Vector<BufferItem> mQueueItems;
713    std::atomic<uint64_t> mLastFrameNumberReceived;
714    bool mAutoRefresh;
715    bool mFreezeGeometryUpdates;
716
717    // Child list about to be committed/used for editing.
718    LayerVector mCurrentChildren;
719    // Child list used for rendering.
720    LayerVector mDrawingChildren;
721
722    wp<Layer> mCurrentParent;
723    wp<Layer> mDrawingParent;
724
725    mutable LayerBE mBE;
726};
727
728// ---------------------------------------------------------------------------
729
730}; // namespace android
731
732#endif // ANDROID_LAYER_H
733