Layer.h revision 73bededbdc82a5b6199f0860c8900e75c6f0e467
1/*
2 * Copyright (C) 2007 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef ANDROID_LAYER_H
18#define ANDROID_LAYER_H
19
20#include <stdint.h>
21#include <sys/types.h>
22
23#include <utils/RefBase.h>
24#include <utils/String8.h>
25#include <utils/Timers.h>
26
27#include <ui/FrameStats.h>
28#include <ui/GraphicBuffer.h>
29#include <ui/PixelFormat.h>
30#include <ui/Region.h>
31
32#include <gui/ISurfaceComposerClient.h>
33#include <gui/LayerState.h>
34#include <gui/BufferQueue.h>
35
36#include <list>
37
38#include "Client.h"
39#include "FrameTracker.h"
40#include "LayerVector.h"
41#include "MonitoredProducer.h"
42#include "SurfaceFlinger.h"
43#include "Transform.h"
44
45#include <layerproto/LayerProtoHeader.h>
46#include "DisplayHardware/HWComposer.h"
47#include "DisplayHardware/HWComposerBufferCache.h"
48#include "RenderArea.h"
49#include "RenderEngine/Mesh.h"
50#include "RenderEngine/Texture.h"
51
52#include <math/vec4.h>
53
54using namespace android::surfaceflinger;
55
56namespace android {
57
58// ---------------------------------------------------------------------------
59
60class Client;
61class Colorizer;
62class DisplayDevice;
63class GraphicBuffer;
64class SurfaceFlinger;
65class LayerDebugInfo;
66class LayerBE;
67
68// ---------------------------------------------------------------------------
69
70struct CompositionInfo {
71    HWC2::Composition compositionType;
72    sp<GraphicBuffer> mBuffer = nullptr;
73    int mBufferSlot = BufferQueue::INVALID_BUFFER_SLOT;
74    struct {
75        HWComposer* hwc;
76        sp<Fence> fence;
77        HWC2::BlendMode blendMode;
78        Rect displayFrame;
79        float alpha;
80        FloatRect sourceCrop;
81        HWC2::Transform transform;
82        int z;
83        int type;
84        int appId;
85        Region visibleRegion;
86        Region surfaceDamage;
87        sp<NativeHandle> sidebandStream;
88        android_dataspace dataspace;
89        hwc_color_t color;
90    } hwc;
91    struct {
92        RenderEngine* renderEngine;
93        Mesh* mesh;
94    } renderEngine;
95};
96
97class LayerBE {
98public:
99    LayerBE();
100
101    // The mesh used to draw the layer in GLES composition mode
102    Mesh mMesh;
103
104    // HWC items, accessed from the main thread
105    struct HWCInfo {
106        HWCInfo()
107              : hwc(nullptr),
108                layer(nullptr),
109                forceClientComposition(false),
110                compositionType(HWC2::Composition::Invalid),
111                clearClientTarget(false) {}
112
113        HWComposer* hwc;
114        HWC2::Layer* layer;
115        bool forceClientComposition;
116        HWC2::Composition compositionType;
117        bool clearClientTarget;
118        Rect displayFrame;
119        FloatRect sourceCrop;
120        HWComposerBufferCache bufferCache;
121    };
122
123    // A layer can be attached to multiple displays when operating in mirror mode
124    // (a.k.a: when several displays are attached with equal layerStack). In this
125    // case we need to keep track. In non-mirror mode, a layer will have only one
126    // HWCInfo. This map key is a display layerStack.
127    std::unordered_map<int32_t, HWCInfo> mHwcLayers;
128
129    CompositionInfo compositionInfo;
130};
131
132class Layer : public virtual RefBase {
133    static int32_t sSequence;
134
135public:
136    LayerBE& getBE() { return mBE; }
137    LayerBE& getBE() const { return mBE; }
138    mutable bool contentDirty;
139    // regions below are in window-manager space
140    Region visibleRegion;
141    Region coveredRegion;
142    Region visibleNonTransparentRegion;
143    Region surfaceDamageRegion;
144
145    // Layer serial number.  This gives layers an explicit ordering, so we
146    // have a stable sort order when their layer stack and Z-order are
147    // the same.
148    int32_t sequence;
149
150    enum { // flags for doTransaction()
151        eDontUpdateGeometryState = 0x00000001,
152        eVisibleRegion = 0x00000002,
153    };
154
155    struct Geometry {
156        uint32_t w;
157        uint32_t h;
158        Transform transform;
159
160        inline bool operator==(const Geometry& rhs) const {
161            return (w == rhs.w && h == rhs.h) && (transform.tx() == rhs.transform.tx()) &&
162                    (transform.ty() == rhs.transform.ty());
163        }
164        inline bool operator!=(const Geometry& rhs) const { return !operator==(rhs); }
165    };
166
167    struct State {
168        Geometry active;
169        Geometry requested;
170        int32_t z;
171
172        // The identifier of the layer stack this layer belongs to. A layer can
173        // only be associated to a single layer stack. A layer stack is a
174        // z-ordered group of layers which can be associated to one or more
175        // displays. Using the same layer stack on different displays is a way
176        // to achieve mirroring.
177        uint32_t layerStack;
178
179        uint8_t flags;
180        uint8_t mask;
181        uint8_t reserved[2];
182        int32_t sequence; // changes when visible regions can change
183        bool modified;
184
185        // Crop is expressed in layer space coordinate.
186        Rect crop;
187        Rect requestedCrop;
188
189        // finalCrop is expressed in display space coordinate.
190        Rect finalCrop;
191        Rect requestedFinalCrop;
192
193        // If set, defers this state update until the identified Layer
194        // receives a frame with the given frameNumber
195        wp<Layer> barrierLayer;
196        uint64_t frameNumber;
197
198        // the transparentRegion hint is a bit special, it's latched only
199        // when we receive a buffer -- this is because it's "content"
200        // dependent.
201        Region activeTransparentRegion;
202        Region requestedTransparentRegion;
203        android_dataspace dataSpace;
204
205        uint32_t appId;
206        uint32_t type;
207
208        // If non-null, a Surface this Surface's Z-order is interpreted relative to.
209        wp<Layer> zOrderRelativeOf;
210
211        // A list of surfaces whose Z-order is interpreted relative to ours.
212        SortedVector<wp<Layer>> zOrderRelatives;
213
214        half4 color;
215    };
216
217    Layer(SurfaceFlinger* flinger, const sp<Client>& client, const String8& name, uint32_t w,
218          uint32_t h, uint32_t flags);
219    virtual ~Layer();
220
221    void setPrimaryDisplayOnly() { mPrimaryDisplayOnly = true; }
222
223    // ------------------------------------------------------------------------
224    // Geometry setting functions.
225    //
226    // The following group of functions are used to specify the layers
227    // bounds, and the mapping of the texture on to those bounds. According
228    // to various settings changes to them may apply immediately, or be delayed until
229    // a pending resize is completed by the producer submitting a buffer. For example
230    // if we were to change the buffer size, and update the matrix ahead of the
231    // new buffer arriving, then we would be stretching the buffer to a different
232    // aspect before and after the buffer arriving, which probably isn't what we wanted.
233    //
234    // The first set of geometry functions are controlled by the scaling mode, described
235    // in window.h. The scaling mode may be set by the client, as it submits buffers.
236    // This value may be overriden through SurfaceControl, with setOverrideScalingMode.
237    //
238    // Put simply, if our scaling mode is SCALING_MODE_FREEZE, then
239    // matrix updates will not be applied while a resize is pending
240    // and the size and transform will remain in their previous state
241    // until a new buffer is submitted. If the scaling mode is another value
242    // then the old-buffer will immediately be scaled to the pending size
243    // and the new matrix will be immediately applied following this scaling
244    // transformation.
245
246    // Set the default buffer size for the assosciated Producer, in pixels. This is
247    // also the rendered size of the layer prior to any transformations. Parent
248    // or local matrix transformations will not affect the size of the buffer,
249    // but may affect it's on-screen size or clipping.
250    bool setSize(uint32_t w, uint32_t h);
251    // Set a 2x2 transformation matrix on the layer. This transform
252    // will be applied after parent transforms, but before any final
253    // producer specified transform.
254    bool setMatrix(const layer_state_t::matrix22_t& matrix);
255
256    // This second set of geometry attributes are controlled by
257    // setGeometryAppliesWithResize, and their default mode is to be
258    // immediate. If setGeometryAppliesWithResize is specified
259    // while a resize is pending, then update of these attributes will
260    // be delayed until the resize completes.
261
262    // setPosition operates in parent buffer space (pre parent-transform) or display
263    // space for top-level layers.
264    bool setPosition(float x, float y, bool immediate);
265    // Buffer space
266    bool setCrop(const Rect& crop, bool immediate);
267    // Parent buffer space/display space
268    bool setFinalCrop(const Rect& crop, bool immediate);
269
270    // TODO(b/38182121): Could we eliminate the various latching modes by
271    // using the layer hierarchy?
272    // -----------------------------------------------------------------------
273    bool setLayer(int32_t z);
274    bool setRelativeLayer(const sp<IBinder>& relativeToHandle, int32_t relativeZ);
275
276    bool setAlpha(float alpha);
277    bool setColor(const half3& color);
278    bool setTransparentRegionHint(const Region& transparent);
279    bool setFlags(uint8_t flags, uint8_t mask);
280    bool setLayerStack(uint32_t layerStack);
281    bool setDataSpace(android_dataspace dataSpace);
282    android_dataspace getDataSpace() const;
283    uint32_t getLayerStack() const;
284    void deferTransactionUntil(const sp<IBinder>& barrierHandle, uint64_t frameNumber);
285    void deferTransactionUntil(const sp<Layer>& barrierLayer, uint64_t frameNumber);
286    bool setOverrideScalingMode(int32_t overrideScalingMode);
287    void setInfo(uint32_t type, uint32_t appId);
288    bool reparentChildren(const sp<IBinder>& layer);
289    bool reparent(const sp<IBinder>& newParentHandle);
290    bool detachChildren();
291
292    // If we have received a new buffer this frame, we will pass its surface
293    // damage down to hardware composer. Otherwise, we must send a region with
294    // one empty rect.
295    virtual void useSurfaceDamage() = 0;
296    virtual void useEmptyDamage() = 0;
297
298    uint32_t getTransactionFlags(uint32_t flags);
299    uint32_t setTransactionFlags(uint32_t flags);
300
301    bool belongsToDisplay(uint32_t layerStack, bool isPrimaryDisplay) const {
302        return getLayerStack() == layerStack && (!mPrimaryDisplayOnly || isPrimaryDisplay);
303    }
304
305    void computeGeometry(const RenderArea& renderArea, Mesh& mesh, bool useIdentityTransform) const;
306    Rect computeBounds(const Region& activeTransparentRegion) const;
307    Rect computeBounds() const;
308
309    int32_t getSequence() const { return sequence; }
310
311    // -----------------------------------------------------------------------
312    // Virtuals
313    virtual const char* getTypeId() const = 0;
314
315    /*
316     * isOpaque - true if this surface is opaque
317     *
318     * This takes into account the buffer format (i.e. whether or not the
319     * pixel format includes an alpha channel) and the "opaque" flag set
320     * on the layer.  It does not examine the current plane alpha value.
321     */
322    virtual bool isOpaque(const Layer::State& s) const = 0;
323
324    /*
325     * isSecure - true if this surface is secure, that is if it prevents
326     * screenshots or VNC servers.
327     */
328    bool isSecure() const;
329
330    /*
331     * isVisible - true if this layer is visible, false otherwise
332     */
333    virtual bool isVisible() const = 0;
334
335    /*
336     * isHiddenByPolicy - true if this layer has been forced invisible.
337     * just because this is false, doesn't mean isVisible() is true.
338     * For example if this layer has no active buffer, it may not be hidden by
339     * policy, but it still can not be visible.
340     */
341    bool isHiddenByPolicy() const;
342
343    /*
344     * isFixedSize - true if content has a fixed size
345     */
346    virtual bool isFixedSize() const = 0;
347
348    bool isPendingRemoval() const { return mPendingRemoval; }
349
350    void writeToProto(LayerProto* layerInfo,
351                      LayerVector::StateSet stateSet = LayerVector::StateSet::Drawing);
352
353protected:
354    /*
355     * onDraw - draws the surface.
356     */
357    virtual void onDraw(const RenderArea& renderArea, const Region& clip,
358                        bool useIdentityTransform) const = 0;
359
360public:
361    virtual void setDefaultBufferSize(uint32_t w, uint32_t h) = 0;
362
363    void setGeometry(const sp<const DisplayDevice>& displayDevice, uint32_t z);
364    void forceClientComposition(int32_t hwcId);
365    bool getForceClientComposition(int32_t hwcId);
366    virtual void setPerFrameData(const sp<const DisplayDevice>& displayDevice) = 0;
367
368    // callIntoHwc exists so we can update our local state and call
369    // acceptDisplayChanges without unnecessarily updating the device's state
370    void setCompositionType(int32_t hwcId, HWC2::Composition type, bool callIntoHwc = true);
371    HWC2::Composition getCompositionType(int32_t hwcId) const;
372    void setClearClientTarget(int32_t hwcId, bool clear);
373    bool getClearClientTarget(int32_t hwcId) const;
374    void updateCursorPosition(const sp<const DisplayDevice>& hw);
375
376    /*
377     * called after page-flip
378     */
379    virtual void onLayerDisplayed(const sp<Fence>& releaseFence);
380
381    virtual void abandon() = 0;
382
383    virtual bool shouldPresentNow(const DispSync& dispSync) const = 0;
384    virtual void setTransformHint(uint32_t orientation) const = 0;
385
386    /*
387     * called before composition.
388     * returns true if the layer has pending updates.
389     */
390    virtual bool onPreComposition(nsecs_t refreshStartTime) = 0;
391
392    /*
393     * called after composition.
394     * returns true if the layer latched a new buffer this frame.
395     */
396    virtual bool onPostComposition(const std::shared_ptr<FenceTime>& glDoneFence,
397                                   const std::shared_ptr<FenceTime>& presentFence,
398                                   const CompositorTiming& compositorTiming) = 0;
399
400    // If a buffer was replaced this frame, release the former buffer
401    virtual void releasePendingBuffer(nsecs_t dequeueReadyTime) = 0;
402
403    /*
404     * draw - performs some global clipping optimizations
405     * and calls onDraw().
406     */
407    void draw(const RenderArea& renderArea, const Region& clip) const;
408    void draw(const RenderArea& renderArea, bool useIdentityTransform) const;
409    void draw(const RenderArea& renderArea) const;
410
411    /*
412     * doTransaction - process the transaction. This is a good place to figure
413     * out which attributes of the surface have changed.
414     */
415    uint32_t doTransaction(uint32_t transactionFlags);
416
417    /*
418     * setVisibleRegion - called to set the new visible region. This gives
419     * a chance to update the new visible region or record the fact it changed.
420     */
421    void setVisibleRegion(const Region& visibleRegion);
422
423    /*
424     * setCoveredRegion - called when the covered region changes. The covered
425     * region corresponds to any area of the surface that is covered
426     * (transparently or not) by another surface.
427     */
428    void setCoveredRegion(const Region& coveredRegion);
429
430    /*
431     * setVisibleNonTransparentRegion - called when the visible and
432     * non-transparent region changes.
433     */
434    void setVisibleNonTransparentRegion(const Region& visibleNonTransparentRegion);
435
436    /*
437     * latchBuffer - called each time the screen is redrawn and returns whether
438     * the visible regions need to be recomputed (this is a fairly heavy
439     * operation, so this should be set only if needed). Typically this is used
440     * to figure out if the content or size of a surface has changed.
441     */
442    virtual Region latchBuffer(bool& recomputeVisibleRegions, nsecs_t latchTime) = 0;
443    virtual bool isBufferLatched() const = 0;
444
445    bool isPotentialCursor() const { return mPotentialCursor; }
446    /*
447     * called with the state lock from a binder thread when the layer is
448     * removed from the current list to the pending removal list
449     */
450    void onRemovedFromCurrentState();
451
452    /*
453     * called with the state lock from the main thread when the layer is
454     * removed from the pending removal list
455     */
456    void onRemoved();
457
458    // Updates the transform hint in our SurfaceFlingerConsumer to match
459    // the current orientation of the display device.
460    void updateTransformHint(const sp<const DisplayDevice>& hw) const;
461
462    /*
463     * returns the rectangle that crops the content of the layer and scales it
464     * to the layer's size.
465     */
466    Rect getContentCrop() const;
467
468    /*
469     * Returns if a frame is queued.
470     */
471    bool hasQueuedFrame() const {
472        return mQueuedFrames > 0 || mSidebandStreamChanged || mAutoRefresh;
473    }
474
475    int32_t getQueuedFrameCount() const { return mQueuedFrames; }
476
477    // -----------------------------------------------------------------------
478
479    bool createHwcLayer(HWComposer* hwc, int32_t hwcId);
480    bool destroyHwcLayer(int32_t hwcId);
481    void destroyAllHwcLayers();
482
483    bool hasHwcLayer(int32_t hwcId) {
484        return getBE().mHwcLayers.count(hwcId) > 0;
485    }
486
487    HWC2::Layer* getHwcLayer(int32_t hwcId) {
488        if (getBE().mHwcLayers.count(hwcId) == 0) {
489            return nullptr;
490        }
491        return getBE().mHwcLayers[hwcId].layer;
492    }
493
494    // -----------------------------------------------------------------------
495
496    void clearWithOpenGL(const RenderArea& renderArea) const;
497    void setFiltering(bool filtering);
498    bool getFiltering() const;
499
500
501    inline const State& getDrawingState() const { return mDrawingState; }
502    inline const State& getCurrentState() const { return mCurrentState; }
503    inline State& getCurrentState() { return mCurrentState; }
504
505    LayerDebugInfo getLayerDebugInfo() const;
506
507    /* always call base class first */
508    static void miniDumpHeader(String8& result);
509    void miniDump(String8& result, int32_t hwcId) const;
510    void dumpFrameStats(String8& result) const;
511    void dumpFrameEvents(String8& result);
512    void clearFrameStats();
513    void logFrameStats();
514    void getFrameStats(FrameStats* outStats) const;
515
516    virtual std::vector<OccupancyTracker::Segment> getOccupancyHistory(bool forceFlush) = 0;
517
518    void onDisconnect();
519    void addAndGetFrameTimestamps(const NewFrameEventsEntry* newEntry,
520                                  FrameEventHistoryDelta* outDelta);
521
522    virtual bool getTransformToDisplayInverse() const = 0;
523
524    Transform getTransform() const;
525
526    // Returns the Alpha of the Surface, accounting for the Alpha
527    // of parent Surfaces in the hierarchy (alpha's will be multiplied
528    // down the hierarchy).
529    half getAlpha() const;
530    half4 getColor() const;
531
532    void traverseInReverseZOrder(LayerVector::StateSet stateSet,
533                                 const LayerVector::Visitor& visitor);
534    void traverseInZOrder(LayerVector::StateSet stateSet, const LayerVector::Visitor& visitor);
535
536    void traverseChildrenInZOrder(LayerVector::StateSet stateSet,
537                                  const LayerVector::Visitor& visitor);
538
539    size_t getChildrenCount() const;
540    void addChild(const sp<Layer>& layer);
541    // Returns index if removed, or negative value otherwise
542    // for symmetry with Vector::remove
543    ssize_t removeChild(const sp<Layer>& layer);
544    sp<Layer> getParent() const { return mCurrentParent.promote(); }
545    bool hasParent() const { return getParent() != nullptr; }
546    Rect computeScreenBounds(bool reduceTransparentRegion = true) const;
547    bool setChildLayer(const sp<Layer>& childLayer, int32_t z);
548    bool setChildRelativeLayer(const sp<Layer>& childLayer,
549            const sp<IBinder>& relativeToHandle, int32_t relativeZ);
550
551    // Copy the current list of children to the drawing state. Called by
552    // SurfaceFlinger to complete a transaction.
553    void commitChildList();
554    int32_t getZ() const;
555
556protected:
557    // constant
558    sp<SurfaceFlinger> mFlinger;
559    /*
560     * Trivial class, used to ensure that mFlinger->onLayerDestroyed(mLayer)
561     * is called.
562     */
563    class LayerCleaner {
564        sp<SurfaceFlinger> mFlinger;
565        wp<Layer> mLayer;
566
567    protected:
568        ~LayerCleaner() {
569            // destroy client resources
570            mFlinger->onLayerDestroyed(mLayer);
571        }
572
573    public:
574        LayerCleaner(const sp<SurfaceFlinger>& flinger, const sp<Layer>& layer)
575              : mFlinger(flinger), mLayer(layer) {}
576    };
577
578    virtual void onFirstRef();
579
580    friend class SurfaceInterceptor;
581
582    void commitTransaction(const State& stateToCommit);
583
584    uint32_t getEffectiveUsage(uint32_t usage) const;
585
586    FloatRect computeCrop(const sp<const DisplayDevice>& hw) const;
587    // Compute the initial crop as specified by parent layers and the
588    // SurfaceControl for this layer. Does not include buffer crop from the
589    // IGraphicBufferProducer client, as that should not affect child clipping.
590    // Returns in screen space.
591    Rect computeInitialCrop(const sp<const DisplayDevice>& hw) const;
592
593    // drawing
594    void clearWithOpenGL(const RenderArea& renderArea, float r, float g, float b,
595                         float alpha) const;
596
597    void setParent(const sp<Layer>& layer);
598
599    LayerVector makeTraversalList(LayerVector::StateSet stateSet, bool* outSkipRelativeZUsers);
600    void addZOrderRelative(const wp<Layer>& relative);
601    void removeZOrderRelative(const wp<Layer>& relative);
602
603    class SyncPoint {
604    public:
605        explicit SyncPoint(uint64_t frameNumber)
606              : mFrameNumber(frameNumber), mFrameIsAvailable(false), mTransactionIsApplied(false) {}
607
608        uint64_t getFrameNumber() const { return mFrameNumber; }
609
610        bool frameIsAvailable() const { return mFrameIsAvailable; }
611
612        void setFrameAvailable() { mFrameIsAvailable = true; }
613
614        bool transactionIsApplied() const { return mTransactionIsApplied; }
615
616        void setTransactionApplied() { mTransactionIsApplied = true; }
617
618    private:
619        const uint64_t mFrameNumber;
620        std::atomic<bool> mFrameIsAvailable;
621        std::atomic<bool> mTransactionIsApplied;
622    };
623
624    // SyncPoints which will be signaled when the correct frame is at the head
625    // of the queue and dropped after the frame has been latched. Protected by
626    // mLocalSyncPointMutex.
627    Mutex mLocalSyncPointMutex;
628    std::list<std::shared_ptr<SyncPoint>> mLocalSyncPoints;
629
630    // SyncPoints which will be signaled and then dropped when the transaction
631    // is applied
632    std::list<std::shared_ptr<SyncPoint>> mRemoteSyncPoints;
633
634    // Returns false if the relevant frame has already been latched
635    bool addSyncPoint(const std::shared_ptr<SyncPoint>& point);
636
637    void pushPendingState();
638    void popPendingState(State* stateToCommit);
639    bool applyPendingStates(State* stateToCommit);
640
641    void clearSyncPoints();
642
643    // Returns mCurrentScaling mode (originating from the
644    // Client) or mOverrideScalingMode mode (originating from
645    // the Surface Controller) if set.
646    virtual uint32_t getEffectiveScalingMode() const = 0;
647
648public:
649    /*
650     * The layer handle is just a BBinder object passed to the client
651     * (remote process) -- we don't keep any reference on our side such that
652     * the dtor is called when the remote side let go of its reference.
653     *
654     * LayerCleaner ensures that mFlinger->onLayerDestroyed() is called for
655     * this layer when the handle is destroyed.
656     */
657    class Handle : public BBinder, public LayerCleaner {
658    public:
659        Handle(const sp<SurfaceFlinger>& flinger, const sp<Layer>& layer)
660              : LayerCleaner(flinger, layer), owner(layer) {}
661
662        wp<Layer> owner;
663    };
664
665    sp<IBinder> getHandle();
666    const String8& getName() const;
667    virtual void notifyAvailableFrames() = 0;
668    virtual PixelFormat getPixelFormat() const = 0;
669    bool getPremultipledAlpha() const;
670
671protected:
672    // -----------------------------------------------------------------------
673    bool usingRelativeZ(LayerVector::StateSet stateSet);
674
675    bool mPremultipliedAlpha;
676    String8 mName;
677    String8 mTransactionName; // A cached version of "TX - " + mName for systraces
678
679    bool mPrimaryDisplayOnly = false;
680
681    // these are protected by an external lock
682    State mCurrentState;
683    State mDrawingState;
684    volatile int32_t mTransactionFlags;
685
686    // Accessed from main thread and binder threads
687    Mutex mPendingStateMutex;
688    Vector<State> mPendingStates;
689
690    // thread-safe
691    volatile int32_t mQueuedFrames;
692    volatile int32_t mSidebandStreamChanged; // used like an atomic boolean
693
694    // Timestamp history for UIAutomation. Thread safe.
695    FrameTracker mFrameTracker;
696
697    // Timestamp history for the consumer to query.
698    // Accessed by both consumer and producer on main and binder threads.
699    Mutex mFrameEventHistoryMutex;
700    ConsumerFrameEventHistory mFrameEventHistory;
701    FenceTimeline mAcquireTimeline;
702    FenceTimeline mReleaseTimeline;
703
704    // main thread
705    int mActiveBufferSlot;
706    sp<GraphicBuffer> mActiveBuffer;
707    sp<NativeHandle> mSidebandStream;
708    Rect mCurrentCrop;
709    uint32_t mCurrentTransform;
710    // We encode unset as -1.
711    int32_t mOverrideScalingMode;
712    bool mCurrentOpacity;
713    std::atomic<uint64_t> mCurrentFrameNumber;
714    bool mFrameLatencyNeeded;
715    // Whether filtering is forced on or not
716    bool mFiltering;
717    // Whether filtering is needed b/c of the drawingstate
718    bool mNeedsFiltering;
719
720    bool mPendingRemoval = false;
721
722    // page-flip thread (currently main thread)
723    bool mProtectedByApp; // application requires protected path to external sink
724
725    // protected by mLock
726    mutable Mutex mLock;
727
728    const wp<Client> mClientRef;
729
730    // This layer can be a cursor on some displays.
731    bool mPotentialCursor;
732
733    // Local copy of the queued contents of the incoming BufferQueue
734    mutable Mutex mQueueItemLock;
735    Condition mQueueItemCondition;
736    Vector<BufferItem> mQueueItems;
737    std::atomic<uint64_t> mLastFrameNumberReceived;
738    bool mAutoRefresh;
739    bool mFreezeGeometryUpdates;
740
741    // Child list about to be committed/used for editing.
742    LayerVector mCurrentChildren;
743    // Child list used for rendering.
744    LayerVector mDrawingChildren;
745
746    wp<Layer> mCurrentParent;
747    wp<Layer> mDrawingParent;
748
749    mutable LayerBE mBE;
750};
751
752// ---------------------------------------------------------------------------
753
754}; // namespace android
755
756#endif // ANDROID_LAYER_H
757