Layer.h revision e5f4f694f11ad1e8a9bb3b1b9579a175435c7c19
1/*
2 * Copyright (C) 2007 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef ANDROID_LAYER_H
18#define ANDROID_LAYER_H
19
20#include <stdint.h>
21#include <sys/types.h>
22
23#include <utils/RefBase.h>
24#include <utils/String8.h>
25#include <utils/Timers.h>
26
27#include <ui/FloatRect.h>
28#include <ui/FrameStats.h>
29#include <ui/GraphicBuffer.h>
30#include <ui/PixelFormat.h>
31#include <ui/Region.h>
32
33#include <gui/ISurfaceComposerClient.h>
34#include <gui/LayerState.h>
35#include <gui/BufferQueue.h>
36
37#include <list>
38
39#include "Client.h"
40#include "FrameTracker.h"
41#include "LayerVector.h"
42#include "MonitoredProducer.h"
43#include "SurfaceFlinger.h"
44#include "Transform.h"
45
46#include <layerproto/LayerProtoHeader.h>
47#include "DisplayHardware/HWComposer.h"
48#include "DisplayHardware/HWComposerBufferCache.h"
49#include "RenderArea.h"
50#include "RenderEngine/Mesh.h"
51#include "RenderEngine/Texture.h"
52
53#include <math/vec4.h>
54
55using namespace android::surfaceflinger;
56
57namespace android {
58
59// ---------------------------------------------------------------------------
60
61class Client;
62class Colorizer;
63class DisplayDevice;
64class GraphicBuffer;
65class SurfaceFlinger;
66class LayerDebugInfo;
67class LayerBE;
68
69// ---------------------------------------------------------------------------
70
71struct CompositionInfo {
72    HWC2::Composition compositionType;
73    sp<GraphicBuffer> mBuffer = nullptr;
74    int mBufferSlot = BufferQueue::INVALID_BUFFER_SLOT;
75    struct {
76        HWComposer* hwc;
77        sp<Fence> fence;
78        HWC2::BlendMode blendMode;
79        Rect displayFrame;
80        float alpha;
81        FloatRect sourceCrop;
82        HWC2::Transform transform;
83        int z;
84        int type;
85        int appId;
86        Region visibleRegion;
87        Region surfaceDamage;
88        sp<NativeHandle> sidebandStream;
89        android_dataspace dataspace;
90        hwc_color_t color;
91    } hwc;
92    struct {
93        RenderEngine* renderEngine;
94        Mesh* mesh;
95    } renderEngine;
96};
97
98class LayerBE {
99public:
100    LayerBE();
101
102    // The mesh used to draw the layer in GLES composition mode
103    Mesh mMesh;
104
105    // HWC items, accessed from the main thread
106    struct HWCInfo {
107        HWCInfo()
108              : hwc(nullptr),
109                layer(nullptr),
110                forceClientComposition(false),
111                compositionType(HWC2::Composition::Invalid),
112                clearClientTarget(false) {}
113
114        HWComposer* hwc;
115        HWC2::Layer* layer;
116        bool forceClientComposition;
117        HWC2::Composition compositionType;
118        bool clearClientTarget;
119        Rect displayFrame;
120        FloatRect sourceCrop;
121        HWComposerBufferCache bufferCache;
122    };
123
124    // A layer can be attached to multiple displays when operating in mirror mode
125    // (a.k.a: when several displays are attached with equal layerStack). In this
126    // case we need to keep track. In non-mirror mode, a layer will have only one
127    // HWCInfo. This map key is a display layerStack.
128    std::unordered_map<int32_t, HWCInfo> mHwcLayers;
129
130    CompositionInfo compositionInfo;
131};
132
133class Layer : public virtual RefBase {
134    static int32_t sSequence;
135
136public:
137    LayerBE& getBE() { return mBE; }
138    LayerBE& getBE() const { return mBE; }
139    mutable bool contentDirty;
140    // regions below are in window-manager space
141    Region visibleRegion;
142    Region coveredRegion;
143    Region visibleNonTransparentRegion;
144    Region surfaceDamageRegion;
145
146    // Layer serial number.  This gives layers an explicit ordering, so we
147    // have a stable sort order when their layer stack and Z-order are
148    // the same.
149    int32_t sequence;
150
151    enum { // flags for doTransaction()
152        eDontUpdateGeometryState = 0x00000001,
153        eVisibleRegion = 0x00000002,
154    };
155
156    struct Geometry {
157        uint32_t w;
158        uint32_t h;
159        Transform transform;
160
161        inline bool operator==(const Geometry& rhs) const {
162            return (w == rhs.w && h == rhs.h) && (transform.tx() == rhs.transform.tx()) &&
163                    (transform.ty() == rhs.transform.ty());
164        }
165        inline bool operator!=(const Geometry& rhs) const { return !operator==(rhs); }
166    };
167
168    struct State {
169        Geometry active;
170        Geometry requested;
171        int32_t z;
172
173        // The identifier of the layer stack this layer belongs to. A layer can
174        // only be associated to a single layer stack. A layer stack is a
175        // z-ordered group of layers which can be associated to one or more
176        // displays. Using the same layer stack on different displays is a way
177        // to achieve mirroring.
178        uint32_t layerStack;
179
180        uint8_t flags;
181        uint8_t mask;
182        uint8_t reserved[2];
183        int32_t sequence; // changes when visible regions can change
184        bool modified;
185
186        // Crop is expressed in layer space coordinate.
187        Rect crop;
188        Rect requestedCrop;
189
190        // finalCrop is expressed in display space coordinate.
191        Rect finalCrop;
192        Rect requestedFinalCrop;
193
194        // If set, defers this state update until the identified Layer
195        // receives a frame with the given frameNumber
196        wp<Layer> barrierLayer;
197        uint64_t frameNumber;
198
199        // the transparentRegion hint is a bit special, it's latched only
200        // when we receive a buffer -- this is because it's "content"
201        // dependent.
202        Region activeTransparentRegion;
203        Region requestedTransparentRegion;
204        android_dataspace dataSpace;
205
206        uint32_t appId;
207        uint32_t type;
208
209        // If non-null, a Surface this Surface's Z-order is interpreted relative to.
210        wp<Layer> zOrderRelativeOf;
211
212        // A list of surfaces whose Z-order is interpreted relative to ours.
213        SortedVector<wp<Layer>> zOrderRelatives;
214
215        half4 color;
216    };
217
218    Layer(SurfaceFlinger* flinger, const sp<Client>& client, const String8& name, uint32_t w,
219          uint32_t h, uint32_t flags);
220    virtual ~Layer();
221
222    void setPrimaryDisplayOnly() { mPrimaryDisplayOnly = true; }
223
224    // ------------------------------------------------------------------------
225    // Geometry setting functions.
226    //
227    // The following group of functions are used to specify the layers
228    // bounds, and the mapping of the texture on to those bounds. According
229    // to various settings changes to them may apply immediately, or be delayed until
230    // a pending resize is completed by the producer submitting a buffer. For example
231    // if we were to change the buffer size, and update the matrix ahead of the
232    // new buffer arriving, then we would be stretching the buffer to a different
233    // aspect before and after the buffer arriving, which probably isn't what we wanted.
234    //
235    // The first set of geometry functions are controlled by the scaling mode, described
236    // in window.h. The scaling mode may be set by the client, as it submits buffers.
237    // This value may be overriden through SurfaceControl, with setOverrideScalingMode.
238    //
239    // Put simply, if our scaling mode is SCALING_MODE_FREEZE, then
240    // matrix updates will not be applied while a resize is pending
241    // and the size and transform will remain in their previous state
242    // until a new buffer is submitted. If the scaling mode is another value
243    // then the old-buffer will immediately be scaled to the pending size
244    // and the new matrix will be immediately applied following this scaling
245    // transformation.
246
247    // Set the default buffer size for the assosciated Producer, in pixels. This is
248    // also the rendered size of the layer prior to any transformations. Parent
249    // or local matrix transformations will not affect the size of the buffer,
250    // but may affect it's on-screen size or clipping.
251    bool setSize(uint32_t w, uint32_t h);
252    // Set a 2x2 transformation matrix on the layer. This transform
253    // will be applied after parent transforms, but before any final
254    // producer specified transform.
255    bool setMatrix(const layer_state_t::matrix22_t& matrix);
256
257    // This second set of geometry attributes are controlled by
258    // setGeometryAppliesWithResize, and their default mode is to be
259    // immediate. If setGeometryAppliesWithResize is specified
260    // while a resize is pending, then update of these attributes will
261    // be delayed until the resize completes.
262
263    // setPosition operates in parent buffer space (pre parent-transform) or display
264    // space for top-level layers.
265    bool setPosition(float x, float y, bool immediate);
266    // Buffer space
267    bool setCrop(const Rect& crop, bool immediate);
268    // Parent buffer space/display space
269    bool setFinalCrop(const Rect& crop, bool immediate);
270
271    // TODO(b/38182121): Could we eliminate the various latching modes by
272    // using the layer hierarchy?
273    // -----------------------------------------------------------------------
274    bool setLayer(int32_t z);
275    bool setRelativeLayer(const sp<IBinder>& relativeToHandle, int32_t relativeZ);
276
277    bool setAlpha(float alpha);
278    bool setColor(const half3& color);
279    bool setTransparentRegionHint(const Region& transparent);
280    bool setFlags(uint8_t flags, uint8_t mask);
281    bool setLayerStack(uint32_t layerStack);
282    bool setDataSpace(android_dataspace dataSpace);
283    android_dataspace getDataSpace() const;
284    uint32_t getLayerStack() const;
285    void deferTransactionUntil(const sp<IBinder>& barrierHandle, uint64_t frameNumber);
286    void deferTransactionUntil(const sp<Layer>& barrierLayer, uint64_t frameNumber);
287    bool setOverrideScalingMode(int32_t overrideScalingMode);
288    void setInfo(uint32_t type, uint32_t appId);
289    bool reparentChildren(const sp<IBinder>& layer);
290    bool reparent(const sp<IBinder>& newParentHandle);
291    bool detachChildren();
292
293    // If we have received a new buffer this frame, we will pass its surface
294    // damage down to hardware composer. Otherwise, we must send a region with
295    // one empty rect.
296    virtual void useSurfaceDamage() = 0;
297    virtual void useEmptyDamage() = 0;
298
299    uint32_t getTransactionFlags(uint32_t flags);
300    uint32_t setTransactionFlags(uint32_t flags);
301
302    bool belongsToDisplay(uint32_t layerStack, bool isPrimaryDisplay) const {
303        return getLayerStack() == layerStack && (!mPrimaryDisplayOnly || isPrimaryDisplay);
304    }
305
306    void computeGeometry(const RenderArea& renderArea, Mesh& mesh, bool useIdentityTransform) const;
307    FloatRect computeBounds(const Region& activeTransparentRegion) const;
308    FloatRect computeBounds() const;
309
310    int32_t getSequence() const { return sequence; }
311
312    // -----------------------------------------------------------------------
313    // Virtuals
314    virtual const char* getTypeId() const = 0;
315
316    /*
317     * isOpaque - true if this surface is opaque
318     *
319     * This takes into account the buffer format (i.e. whether or not the
320     * pixel format includes an alpha channel) and the "opaque" flag set
321     * on the layer.  It does not examine the current plane alpha value.
322     */
323    virtual bool isOpaque(const Layer::State& s) const = 0;
324
325    /*
326     * isSecure - true if this surface is secure, that is if it prevents
327     * screenshots or VNC servers.
328     */
329    bool isSecure() const;
330
331    /*
332     * isVisible - true if this layer is visible, false otherwise
333     */
334    virtual bool isVisible() const = 0;
335
336    /*
337     * isHiddenByPolicy - true if this layer has been forced invisible.
338     * just because this is false, doesn't mean isVisible() is true.
339     * For example if this layer has no active buffer, it may not be hidden by
340     * policy, but it still can not be visible.
341     */
342    bool isHiddenByPolicy() const;
343
344    /*
345     * isFixedSize - true if content has a fixed size
346     */
347    virtual bool isFixedSize() const = 0;
348
349    bool isPendingRemoval() const { return mPendingRemoval; }
350
351    void writeToProto(LayerProto* layerInfo,
352                      LayerVector::StateSet stateSet = LayerVector::StateSet::Drawing);
353
354protected:
355    /*
356     * onDraw - draws the surface.
357     */
358    virtual void onDraw(const RenderArea& renderArea, const Region& clip,
359                        bool useIdentityTransform) const = 0;
360
361public:
362    virtual void setDefaultBufferSize(uint32_t w, uint32_t h) = 0;
363
364    void setGeometry(const sp<const DisplayDevice>& displayDevice, uint32_t z);
365    void forceClientComposition(int32_t hwcId);
366    bool getForceClientComposition(int32_t hwcId);
367    virtual void setPerFrameData(const sp<const DisplayDevice>& displayDevice) = 0;
368
369    // callIntoHwc exists so we can update our local state and call
370    // acceptDisplayChanges without unnecessarily updating the device's state
371    void setCompositionType(int32_t hwcId, HWC2::Composition type, bool callIntoHwc = true);
372    HWC2::Composition getCompositionType(int32_t hwcId) const;
373    void setClearClientTarget(int32_t hwcId, bool clear);
374    bool getClearClientTarget(int32_t hwcId) const;
375    void updateCursorPosition(const sp<const DisplayDevice>& hw);
376
377    /*
378     * called after page-flip
379     */
380    virtual void onLayerDisplayed(const sp<Fence>& releaseFence);
381
382    virtual void abandon() = 0;
383
384    virtual bool shouldPresentNow(const DispSync& dispSync) const = 0;
385    virtual void setTransformHint(uint32_t orientation) const = 0;
386
387    /*
388     * called before composition.
389     * returns true if the layer has pending updates.
390     */
391    virtual bool onPreComposition(nsecs_t refreshStartTime) = 0;
392
393    /*
394     * called after composition.
395     * returns true if the layer latched a new buffer this frame.
396     */
397    virtual bool onPostComposition(const std::shared_ptr<FenceTime>& glDoneFence,
398                                   const std::shared_ptr<FenceTime>& presentFence,
399                                   const CompositorTiming& compositorTiming) = 0;
400
401    // If a buffer was replaced this frame, release the former buffer
402    virtual void releasePendingBuffer(nsecs_t dequeueReadyTime) = 0;
403
404    /*
405     * draw - performs some global clipping optimizations
406     * and calls onDraw().
407     */
408    void draw(const RenderArea& renderArea, const Region& clip) const;
409    void draw(const RenderArea& renderArea, bool useIdentityTransform) const;
410    void draw(const RenderArea& renderArea) const;
411
412    /*
413     * doTransaction - process the transaction. This is a good place to figure
414     * out which attributes of the surface have changed.
415     */
416    uint32_t doTransaction(uint32_t transactionFlags);
417
418    /*
419     * setVisibleRegion - called to set the new visible region. This gives
420     * a chance to update the new visible region or record the fact it changed.
421     */
422    void setVisibleRegion(const Region& visibleRegion);
423
424    /*
425     * setCoveredRegion - called when the covered region changes. The covered
426     * region corresponds to any area of the surface that is covered
427     * (transparently or not) by another surface.
428     */
429    void setCoveredRegion(const Region& coveredRegion);
430
431    /*
432     * setVisibleNonTransparentRegion - called when the visible and
433     * non-transparent region changes.
434     */
435    void setVisibleNonTransparentRegion(const Region& visibleNonTransparentRegion);
436
437    /*
438     * Clear the visible, covered, and non-transparent regions.
439     */
440    void clearVisibilityRegions();
441
442    /*
443     * latchBuffer - called each time the screen is redrawn and returns whether
444     * the visible regions need to be recomputed (this is a fairly heavy
445     * operation, so this should be set only if needed). Typically this is used
446     * to figure out if the content or size of a surface has changed.
447     */
448    virtual Region latchBuffer(bool& recomputeVisibleRegions, nsecs_t latchTime) = 0;
449    virtual bool isBufferLatched() const = 0;
450
451    bool isPotentialCursor() const { return mPotentialCursor; }
452    /*
453     * called with the state lock from a binder thread when the layer is
454     * removed from the current list to the pending removal list
455     */
456    void onRemovedFromCurrentState();
457
458    /*
459     * called with the state lock from the main thread when the layer is
460     * removed from the pending removal list
461     */
462    void onRemoved();
463
464    // Updates the transform hint in our SurfaceFlingerConsumer to match
465    // the current orientation of the display device.
466    void updateTransformHint(const sp<const DisplayDevice>& hw) const;
467
468    /*
469     * returns the rectangle that crops the content of the layer and scales it
470     * to the layer's size.
471     */
472    Rect getContentCrop() const;
473
474    /*
475     * Returns if a frame is queued.
476     */
477    bool hasQueuedFrame() const {
478        return mQueuedFrames > 0 || mSidebandStreamChanged || mAutoRefresh;
479    }
480
481    int32_t getQueuedFrameCount() const { return mQueuedFrames; }
482
483    // -----------------------------------------------------------------------
484
485    bool createHwcLayer(HWComposer* hwc, int32_t hwcId);
486    bool destroyHwcLayer(int32_t hwcId);
487    void destroyAllHwcLayers();
488
489    bool hasHwcLayer(int32_t hwcId) {
490        return getBE().mHwcLayers.count(hwcId) > 0;
491    }
492
493    HWC2::Layer* getHwcLayer(int32_t hwcId) {
494        if (getBE().mHwcLayers.count(hwcId) == 0) {
495            return nullptr;
496        }
497        return getBE().mHwcLayers[hwcId].layer;
498    }
499
500    // -----------------------------------------------------------------------
501
502    void clearWithOpenGL(const RenderArea& renderArea) const;
503    void setFiltering(bool filtering);
504    bool getFiltering() const;
505
506
507    inline const State& getDrawingState() const { return mDrawingState; }
508    inline const State& getCurrentState() const { return mCurrentState; }
509    inline State& getCurrentState() { return mCurrentState; }
510
511    LayerDebugInfo getLayerDebugInfo() const;
512
513    /* always call base class first */
514    static void miniDumpHeader(String8& result);
515    void miniDump(String8& result, int32_t hwcId) const;
516    void dumpFrameStats(String8& result) const;
517    void dumpFrameEvents(String8& result);
518    void clearFrameStats();
519    void logFrameStats();
520    void getFrameStats(FrameStats* outStats) const;
521
522    virtual std::vector<OccupancyTracker::Segment> getOccupancyHistory(bool forceFlush) = 0;
523
524    void onDisconnect();
525    void addAndGetFrameTimestamps(const NewFrameEventsEntry* newEntry,
526                                  FrameEventHistoryDelta* outDelta);
527
528    virtual bool getTransformToDisplayInverse() const = 0;
529
530    Transform getTransform() const;
531
532    // Returns the Alpha of the Surface, accounting for the Alpha
533    // of parent Surfaces in the hierarchy (alpha's will be multiplied
534    // down the hierarchy).
535    half getAlpha() const;
536    half4 getColor() const;
537
538    void traverseInReverseZOrder(LayerVector::StateSet stateSet,
539                                 const LayerVector::Visitor& visitor);
540    void traverseInZOrder(LayerVector::StateSet stateSet, const LayerVector::Visitor& visitor);
541
542    void traverseChildrenInZOrder(LayerVector::StateSet stateSet,
543                                  const LayerVector::Visitor& visitor);
544
545    size_t getChildrenCount() const;
546    void addChild(const sp<Layer>& layer);
547    // Returns index if removed, or negative value otherwise
548    // for symmetry with Vector::remove
549    ssize_t removeChild(const sp<Layer>& layer);
550    sp<Layer> getParent() const { return mCurrentParent.promote(); }
551    bool hasParent() const { return getParent() != nullptr; }
552    Rect computeScreenBounds(bool reduceTransparentRegion = true) const;
553    bool setChildLayer(const sp<Layer>& childLayer, int32_t z);
554    bool setChildRelativeLayer(const sp<Layer>& childLayer,
555            const sp<IBinder>& relativeToHandle, int32_t relativeZ);
556
557    // Copy the current list of children to the drawing state. Called by
558    // SurfaceFlinger to complete a transaction.
559    void commitChildList();
560    int32_t getZ() const;
561
562protected:
563    // constant
564    sp<SurfaceFlinger> mFlinger;
565    /*
566     * Trivial class, used to ensure that mFlinger->onLayerDestroyed(mLayer)
567     * is called.
568     */
569    class LayerCleaner {
570        sp<SurfaceFlinger> mFlinger;
571        wp<Layer> mLayer;
572
573    protected:
574        ~LayerCleaner() {
575            // destroy client resources
576            mFlinger->onLayerDestroyed(mLayer);
577        }
578
579    public:
580        LayerCleaner(const sp<SurfaceFlinger>& flinger, const sp<Layer>& layer)
581              : mFlinger(flinger), mLayer(layer) {}
582    };
583
584    virtual void onFirstRef();
585
586    friend class SurfaceInterceptor;
587
588    void commitTransaction(const State& stateToCommit);
589
590    uint32_t getEffectiveUsage(uint32_t usage) const;
591
592    FloatRect computeCrop(const sp<const DisplayDevice>& hw) const;
593    // Compute the initial crop as specified by parent layers and the
594    // SurfaceControl for this layer. Does not include buffer crop from the
595    // IGraphicBufferProducer client, as that should not affect child clipping.
596    // Returns in screen space.
597    Rect computeInitialCrop(const sp<const DisplayDevice>& hw) const;
598
599    // drawing
600    void clearWithOpenGL(const RenderArea& renderArea, float r, float g, float b,
601                         float alpha) const;
602
603    void setParent(const sp<Layer>& layer);
604
605    LayerVector makeTraversalList(LayerVector::StateSet stateSet, bool* outSkipRelativeZUsers);
606    void addZOrderRelative(const wp<Layer>& relative);
607    void removeZOrderRelative(const wp<Layer>& relative);
608
609    class SyncPoint {
610    public:
611        explicit SyncPoint(uint64_t frameNumber)
612              : mFrameNumber(frameNumber), mFrameIsAvailable(false), mTransactionIsApplied(false) {}
613
614        uint64_t getFrameNumber() const { return mFrameNumber; }
615
616        bool frameIsAvailable() const { return mFrameIsAvailable; }
617
618        void setFrameAvailable() { mFrameIsAvailable = true; }
619
620        bool transactionIsApplied() const { return mTransactionIsApplied; }
621
622        void setTransactionApplied() { mTransactionIsApplied = true; }
623
624    private:
625        const uint64_t mFrameNumber;
626        std::atomic<bool> mFrameIsAvailable;
627        std::atomic<bool> mTransactionIsApplied;
628    };
629
630    // SyncPoints which will be signaled when the correct frame is at the head
631    // of the queue and dropped after the frame has been latched. Protected by
632    // mLocalSyncPointMutex.
633    Mutex mLocalSyncPointMutex;
634    std::list<std::shared_ptr<SyncPoint>> mLocalSyncPoints;
635
636    // SyncPoints which will be signaled and then dropped when the transaction
637    // is applied
638    std::list<std::shared_ptr<SyncPoint>> mRemoteSyncPoints;
639
640    // Returns false if the relevant frame has already been latched
641    bool addSyncPoint(const std::shared_ptr<SyncPoint>& point);
642
643    void pushPendingState();
644    void popPendingState(State* stateToCommit);
645    bool applyPendingStates(State* stateToCommit);
646
647    void clearSyncPoints();
648
649    // Returns mCurrentScaling mode (originating from the
650    // Client) or mOverrideScalingMode mode (originating from
651    // the Surface Controller) if set.
652    virtual uint32_t getEffectiveScalingMode() const = 0;
653
654public:
655    /*
656     * The layer handle is just a BBinder object passed to the client
657     * (remote process) -- we don't keep any reference on our side such that
658     * the dtor is called when the remote side let go of its reference.
659     *
660     * LayerCleaner ensures that mFlinger->onLayerDestroyed() is called for
661     * this layer when the handle is destroyed.
662     */
663    class Handle : public BBinder, public LayerCleaner {
664    public:
665        Handle(const sp<SurfaceFlinger>& flinger, const sp<Layer>& layer)
666              : LayerCleaner(flinger, layer), owner(layer) {}
667
668        wp<Layer> owner;
669    };
670
671    sp<IBinder> getHandle();
672    const String8& getName() const;
673    virtual void notifyAvailableFrames() = 0;
674    virtual PixelFormat getPixelFormat() const = 0;
675    bool getPremultipledAlpha() const;
676
677protected:
678    // -----------------------------------------------------------------------
679    bool usingRelativeZ(LayerVector::StateSet stateSet);
680
681    bool mPremultipliedAlpha;
682    String8 mName;
683    String8 mTransactionName; // A cached version of "TX - " + mName for systraces
684
685    bool mPrimaryDisplayOnly = false;
686
687    // these are protected by an external lock
688    State mCurrentState;
689    State mDrawingState;
690    volatile int32_t mTransactionFlags;
691
692    // Accessed from main thread and binder threads
693    Mutex mPendingStateMutex;
694    Vector<State> mPendingStates;
695
696    // thread-safe
697    volatile int32_t mQueuedFrames;
698    volatile int32_t mSidebandStreamChanged; // used like an atomic boolean
699
700    // Timestamp history for UIAutomation. Thread safe.
701    FrameTracker mFrameTracker;
702
703    // Timestamp history for the consumer to query.
704    // Accessed by both consumer and producer on main and binder threads.
705    Mutex mFrameEventHistoryMutex;
706    ConsumerFrameEventHistory mFrameEventHistory;
707    FenceTimeline mAcquireTimeline;
708    FenceTimeline mReleaseTimeline;
709
710    // main thread
711    int mActiveBufferSlot;
712    sp<GraphicBuffer> mActiveBuffer;
713    sp<NativeHandle> mSidebandStream;
714    Rect mCurrentCrop;
715    uint32_t mCurrentTransform;
716    // We encode unset as -1.
717    int32_t mOverrideScalingMode;
718    bool mCurrentOpacity;
719    std::atomic<uint64_t> mCurrentFrameNumber;
720    bool mFrameLatencyNeeded;
721    // Whether filtering is forced on or not
722    bool mFiltering;
723    // Whether filtering is needed b/c of the drawingstate
724    bool mNeedsFiltering;
725
726    bool mPendingRemoval = false;
727
728    // page-flip thread (currently main thread)
729    bool mProtectedByApp; // application requires protected path to external sink
730
731    // protected by mLock
732    mutable Mutex mLock;
733
734    const wp<Client> mClientRef;
735
736    // This layer can be a cursor on some displays.
737    bool mPotentialCursor;
738
739    // Local copy of the queued contents of the incoming BufferQueue
740    mutable Mutex mQueueItemLock;
741    Condition mQueueItemCondition;
742    Vector<BufferItem> mQueueItems;
743    std::atomic<uint64_t> mLastFrameNumberReceived;
744    bool mAutoRefresh;
745    bool mFreezeGeometryUpdates;
746
747    // Child list about to be committed/used for editing.
748    LayerVector mCurrentChildren;
749    // Child list used for rendering.
750    LayerVector mDrawingChildren;
751
752    wp<Layer> mCurrentParent;
753    wp<Layer> mDrawingParent;
754
755    mutable LayerBE mBE;
756};
757
758// ---------------------------------------------------------------------------
759
760}; // namespace android
761
762#endif // ANDROID_LAYER_H
763