Hwc2TestBuffer.cpp revision 4cab6aac0dca13a79701e86ac6ff3cbb1584a8ab
1/*
2 * Copyright (C) 2016 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include <mutex>
18#include <array>
19#include <sstream>
20#include <algorithm>
21
22#include <gui/Surface.h>
23#include <gui/BufferItemConsumer.h>
24
25#include <ui/GraphicBuffer.h>
26#include <android/hardware/graphics/common/1.0/types.h>
27#include <math/vec4.h>
28
29#include <GLES3/gl3.h>
30
31#include "Hwc2TestBuffer.h"
32#include "Hwc2TestLayers.h"
33
34using namespace android;
35using android::hardware::graphics::common::V1_0::BufferUsage;
36
37/* Returns a fence from egl */
38typedef void (*FenceCallback)(int32_t fence, void* callbackArgs);
39
40/* Returns fence to fence generator */
41static void setFence(int32_t fence, void* fenceGenerator);
42
43
44/* Used to receive the surfaces and fences from egl. The egl buffers are thrown
45 * away. The fences are sent to the requester via a callback */
46class Hwc2TestSurfaceManager {
47public:
48    /* Listens for a new frame, detaches the buffer and returns the fence
49     * through saved callback. */
50    class BufferListener : public ConsumerBase::FrameAvailableListener {
51    public:
52        BufferListener(sp<IGraphicBufferConsumer> consumer,
53                FenceCallback callback, void* callbackArgs)
54            : mConsumer(consumer),
55              mCallback(callback),
56              mCallbackArgs(callbackArgs) { }
57
58        void onFrameAvailable(const BufferItem& /*item*/)
59        {
60            BufferItem item;
61
62            if (mConsumer->acquireBuffer(&item, 0))
63                return;
64            if (mConsumer->detachBuffer(item.mSlot))
65                return;
66
67            mCallback(item.mFence->dup(), mCallbackArgs);
68        }
69
70    private:
71        sp<IGraphicBufferConsumer> mConsumer;
72        FenceCallback mCallback;
73        void* mCallbackArgs;
74    };
75
76    /* Creates a buffer listener that waits on a new frame from the buffer
77     * queue. */
78    void initialize(const Area& bufferArea, android_pixel_format_t format,
79            FenceCallback callback, void* callbackArgs)
80    {
81        sp<IGraphicBufferProducer> producer;
82        sp<IGraphicBufferConsumer> consumer;
83        BufferQueue::createBufferQueue(&producer, &consumer);
84
85        consumer->setDefaultBufferSize(bufferArea.width, bufferArea.height);
86        consumer->setDefaultBufferFormat(format);
87
88        mBufferItemConsumer = new BufferItemConsumer(consumer, 0);
89
90        mListener = new BufferListener(consumer, callback, callbackArgs);
91        mBufferItemConsumer->setFrameAvailableListener(mListener);
92
93        mSurface = new Surface(producer, true);
94    }
95
96    /* Used by Egl manager. The surface is never displayed. */
97    sp<Surface> getSurface() const
98    {
99        return mSurface;
100    }
101
102private:
103    sp<BufferItemConsumer> mBufferItemConsumer;
104    sp<BufferListener> mListener;
105    /* Used by Egl manager. The surface is never displayed */
106    sp<Surface> mSurface;
107};
108
109
110/* Used to generate valid fences. It is not possible to create a dummy sync
111 * fence for testing. Egl can generate buffers along with a valid fence.
112 * The buffer cannot be guaranteed to be the same format across all devices so
113 * a CPU filled buffer is used instead. The Egl fence is used along with the
114 * CPU filled buffer. */
115class Hwc2TestEglManager {
116public:
117    Hwc2TestEglManager()
118        : mEglDisplay(EGL_NO_DISPLAY),
119          mEglSurface(EGL_NO_SURFACE),
120          mEglContext(EGL_NO_CONTEXT) { }
121
122    ~Hwc2TestEglManager()
123    {
124        cleanup();
125    }
126
127    int initialize(sp<Surface> surface)
128    {
129        mSurface = surface;
130
131        mEglDisplay = eglGetDisplay(EGL_DEFAULT_DISPLAY);
132        if (mEglDisplay == EGL_NO_DISPLAY) return false;
133
134        EGLint major;
135        EGLint minor;
136        if (!eglInitialize(mEglDisplay, &major, &minor)) {
137            ALOGW("Could not initialize EGL");
138            return false;
139        }
140
141        /* We're going to use a 1x1 pbuffer surface later on
142         * The configuration distance doesn't really matter for what we're
143         * trying to do */
144        EGLint configAttrs[] = {
145                EGL_RENDERABLE_TYPE, EGL_OPENGL_ES2_BIT,
146                EGL_RED_SIZE, 8,
147                EGL_GREEN_SIZE, 8,
148                EGL_BLUE_SIZE, 8,
149                EGL_ALPHA_SIZE, 0,
150                EGL_DEPTH_SIZE, 24,
151                EGL_STENCIL_SIZE, 0,
152                EGL_NONE
153        };
154
155        EGLConfig configs[1];
156        EGLint configCnt;
157        if (!eglChooseConfig(mEglDisplay, configAttrs, configs, 1,
158                &configCnt)) {
159            ALOGW("Could not select EGL configuration");
160            eglReleaseThread();
161            eglTerminate(mEglDisplay);
162            return false;
163        }
164
165        if (configCnt <= 0) {
166            ALOGW("Could not find EGL configuration");
167            eglReleaseThread();
168            eglTerminate(mEglDisplay);
169            return false;
170        }
171
172        /* These objects are initialized below but the default "null" values are
173         * used to cleanup properly at any point in the initialization sequence */
174        EGLint attrs[] = { EGL_CONTEXT_CLIENT_VERSION, 2, EGL_NONE };
175        mEglContext = eglCreateContext(mEglDisplay, configs[0], EGL_NO_CONTEXT,
176                attrs);
177        if (mEglContext == EGL_NO_CONTEXT) {
178            ALOGW("Could not create EGL context");
179            cleanup();
180            return false;
181        }
182
183        EGLint surfaceAttrs[] = { EGL_NONE };
184        mEglSurface = eglCreateWindowSurface(mEglDisplay, configs[0],
185                mSurface.get(), surfaceAttrs);
186        if (mEglSurface == EGL_NO_SURFACE) {
187            ALOGW("Could not create EGL surface");
188            cleanup();
189            return false;
190        }
191
192        if (!eglMakeCurrent(mEglDisplay, mEglSurface, mEglSurface, mEglContext)) {
193            ALOGW("Could not change current EGL context");
194            cleanup();
195            return false;
196        }
197
198        return true;
199    }
200
201    void makeCurrent() const
202    {
203        eglMakeCurrent(mEglDisplay, mEglSurface, mEglSurface, mEglContext);
204    }
205
206    void present() const
207    {
208        eglSwapBuffers(mEglDisplay, mEglSurface);
209    }
210
211private:
212    void cleanup()
213    {
214        if (mEglDisplay == EGL_NO_DISPLAY)
215            return;
216        if (mEglSurface != EGL_NO_SURFACE)
217            eglDestroySurface(mEglDisplay, mEglSurface);
218        if (mEglContext != EGL_NO_CONTEXT)
219            eglDestroyContext(mEglDisplay, mEglContext);
220
221        eglMakeCurrent(mEglDisplay, EGL_NO_SURFACE, EGL_NO_SURFACE,
222                EGL_NO_CONTEXT);
223        eglReleaseThread();
224        eglTerminate(mEglDisplay);
225    }
226
227    sp<Surface> mSurface;
228    EGLDisplay mEglDisplay;
229    EGLSurface mEglSurface;
230    EGLContext mEglContext;
231};
232
233
234static const std::array<vec2, 4> triangles = {{
235    {  1.0f,  1.0f },
236    { -1.0f,  1.0f },
237    {  1.0f, -1.0f },
238    { -1.0f, -1.0f },
239}};
240
241class Hwc2TestFenceGenerator {
242public:
243
244    Hwc2TestFenceGenerator()
245    {
246        mSurfaceManager.initialize({1, 1}, HAL_PIXEL_FORMAT_RGBA_8888,
247                setFence, this);
248
249        if (!mEglManager.initialize(mSurfaceManager.getSurface()))
250            return;
251
252        mEglManager.makeCurrent();
253
254        glClearColor(0.0, 0.0, 0.0, 1.0);
255        glEnableVertexAttribArray(0);
256    }
257
258    ~Hwc2TestFenceGenerator()
259    {
260        if (mFence >= 0)
261            close(mFence);
262        mFence = -1;
263
264        mEglManager.makeCurrent();
265    }
266
267    /* It is not possible to simply generate a fence. The easiest way is to
268     * generate a buffer using egl and use the associated fence. The buffer
269     * cannot be guaranteed to be a certain format across all devices using this
270     * method. Instead the buffer is generated using the CPU */
271    int32_t get()
272    {
273        if (mFence >= 0) {
274            return dup(mFence);
275        }
276
277        std::unique_lock<std::mutex> lock(mMutex);
278
279        /* If the pending is still set to false and times out, we cannot recover.
280         * Set an error and return */
281        while (mPending != false) {
282            if (mCv.wait_for(lock, std::chrono::seconds(2)) == std::cv_status::timeout)
283                return -ETIME;
284        }
285
286        /* Generate a fence. The fence will be returned through the setFence
287         * callback */
288        mEglManager.makeCurrent();
289
290        glVertexAttribPointer(0, 2, GL_FLOAT, GL_FALSE, 0, triangles.data());
291        glClear(GL_COLOR_BUFFER_BIT);
292
293        mEglManager.present();
294
295        /* Wait for the setFence callback */
296        while (mPending != true) {
297            if (mCv.wait_for(lock, std::chrono::seconds(2)) == std::cv_status::timeout)
298                return -ETIME;
299        }
300
301        mPending = false;
302
303        return dup(mFence);
304    }
305
306    /* Callback that sets the fence */
307    void set(int32_t fence)
308    {
309        mFence = fence;
310        mPending = true;
311
312        mCv.notify_all();
313    }
314
315private:
316
317    Hwc2TestSurfaceManager mSurfaceManager;
318    Hwc2TestEglManager mEglManager;
319
320    std::mutex mMutex;
321    std::condition_variable mCv;
322
323    int32_t mFence = -1;
324    bool mPending = false;
325};
326
327
328static void setFence(int32_t fence, void* fenceGenerator)
329{
330    static_cast<Hwc2TestFenceGenerator*>(fenceGenerator)->set(fence);
331}
332
333
334/* Sets the pixel of a buffer given the location, format, stride and color.
335 * Currently only supports RGBA_8888 */
336static void setColor(int32_t x, int32_t y,
337        android_pixel_format_t format, uint32_t stride, uint8_t* img, uint8_t r,
338        uint8_t g, uint8_t b, uint8_t a)
339{
340       switch (format) {
341       case HAL_PIXEL_FORMAT_RGBA_8888:
342           img[(y * stride + x) * 4 + 0] = r;
343           img[(y * stride + x) * 4 + 1] = g;
344           img[(y * stride + x) * 4 + 2] = b;
345           img[(y * stride + x) * 4 + 3] = a;
346           break;
347       default:
348           break;
349       }
350}
351
352Hwc2TestBuffer::Hwc2TestBuffer()
353    : mFenceGenerator(new Hwc2TestFenceGenerator()) { }
354
355Hwc2TestBuffer::~Hwc2TestBuffer() = default;
356
357/* When the buffer changes sizes, save the new size and invalidate the current
358 * buffer */
359void Hwc2TestBuffer::updateBufferArea(const Area& bufferArea)
360{
361    if (mBufferArea.width == bufferArea.width
362            && mBufferArea.height == bufferArea.height)
363        return;
364
365    mBufferArea.width = bufferArea.width;
366    mBufferArea.height = bufferArea.height;
367
368    mValidBuffer = false;
369}
370
371/* Returns a valid buffer handle and fence. The handle is filled using the CPU
372 * to ensure the correct format across all devices. The fence is created using
373 * egl. */
374int Hwc2TestBuffer::get(buffer_handle_t* outHandle, int32_t* outFence)
375{
376    if (mBufferArea.width == -1 || mBufferArea.height == -1)
377        return -EINVAL;
378
379    /* If the current buffer is valid, the previous buffer can be reused.
380     * Otherwise, create new buffer */
381    if (!mValidBuffer) {
382        int ret = generateBuffer();
383        if (ret)
384            return ret;
385    }
386
387    *outFence = mFenceGenerator->get();
388    *outHandle = mHandle;
389
390    mValidBuffer = true;
391
392    return 0;
393}
394
395/* CPU fills a buffer to guarantee the correct buffer format across all
396 * devices */
397int Hwc2TestBuffer::generateBuffer()
398{
399    /* Create new graphic buffer with correct dimensions */
400    mGraphicBuffer = new GraphicBuffer(mBufferArea.width, mBufferArea.height,
401            mFormat, BufferUsage::CPU_READ_OFTEN | BufferUsage::CPU_WRITE_OFTEN |
402            BufferUsage::COMPOSER_OVERLAY, "hwc2_test_buffer");
403
404    int ret = mGraphicBuffer->initCheck();
405    if (ret) {
406        return ret;
407    }
408    if (!mGraphicBuffer->handle) {
409        return -EINVAL;
410    }
411
412    /* Locks the buffer for writing */
413    uint8_t* img;
414    mGraphicBuffer->lock(static_cast<uint32_t>(BufferUsage::CPU_WRITE_OFTEN),
415            (void**)(&img));
416
417    uint32_t stride = mGraphicBuffer->getStride();
418
419    /* Iterate from the top row of the buffer to the bottom row */
420    for (int32_t y = 0; y < mBufferArea.height; y++) {
421
422        /* Will be used as R, G and B values for pixel colors */
423        uint8_t max = 255;
424        uint8_t min = 0;
425
426        /* Divide the rows into 3 sections. The first section will contain
427         * the lighest colors. The last section will contain the darkest
428         * colors. */
429        if (y < mBufferArea.height * 1.0 / 3.0) {
430            min = 255 / 2;
431        } else if (y >= mBufferArea.height * 2.0 / 3.0) {
432            max = 255 / 2;
433        }
434
435        /* Divide the columns into 3 sections. The first section is red,
436         * the second is green and the third is blue */
437        int32_t x = 0;
438        for (; x < mBufferArea.width / 3; x++) {
439            setColor(x, y, mFormat, stride, img, max, min, min, 255);
440        }
441
442        for (; x < mBufferArea.width * 2 / 3; x++) {
443            setColor(x, y, mFormat, stride, img, min, max, min, 255);
444        }
445
446        for (; x < mBufferArea.width; x++) {
447            setColor(x, y, mFormat, stride, img, min, min, max, 255);
448        }
449    }
450
451    /* Unlock the buffer for reading */
452    mGraphicBuffer->unlock();
453
454    mHandle = mGraphicBuffer->handle;
455
456    return 0;
457}
458
459
460Hwc2TestClientTargetBuffer::Hwc2TestClientTargetBuffer()
461    : mFenceGenerator(new Hwc2TestFenceGenerator()) { }
462
463Hwc2TestClientTargetBuffer::~Hwc2TestClientTargetBuffer() { }
464
465/* Generates a client target buffer using the layers assigned for client
466 * composition. Takes into account the individual layer properties such as
467 * transform, blend mode, source crop, etc. */
468int Hwc2TestClientTargetBuffer::get(buffer_handle_t* outHandle,
469        int32_t* outFence, const Area& bufferArea,
470        const Hwc2TestLayers* testLayers,
471        const std::set<hwc2_layer_t>* clientLayers,
472        const std::set<hwc2_layer_t>* clearLayers)
473{
474    /* Create new graphic buffer with correct dimensions */
475    mGraphicBuffer = new GraphicBuffer(bufferArea.width, bufferArea.height,
476            mFormat, BufferUsage::CPU_READ_OFTEN | BufferUsage::CPU_WRITE_OFTEN |
477            BufferUsage::COMPOSER_OVERLAY, "hwc2_test_buffer");
478
479    int ret = mGraphicBuffer->initCheck();
480    if (ret) {
481        return ret;
482    }
483    if (!mGraphicBuffer->handle) {
484        return -EINVAL;
485    }
486
487    uint8_t* img;
488    mGraphicBuffer->lock(static_cast<uint32_t>(BufferUsage::CPU_WRITE_OFTEN),
489            (void**)(&img));
490
491    uint32_t stride = mGraphicBuffer->getStride();
492
493    float bWDiv3 = bufferArea.width / 3;
494    float bW2Div3 = bufferArea.width * 2 / 3;
495    float bHDiv3 = bufferArea.height / 3;
496    float bH2Div3 = bufferArea.height * 2 / 3;
497
498    /* Cycle through every pixel in the buffer and determine what color it
499     * should be. */
500    for (int32_t y = 0; y < bufferArea.height; y++) {
501        for (int32_t x = 0; x < bufferArea.width; x++) {
502
503            uint8_t r = 0, g = 0, b = 0;
504            float a = 0.0f;
505
506            /* Cycle through each client layer from back to front and
507             * update the pixel color. */
508            for (auto layer = clientLayers->rbegin();
509                    layer != clientLayers->rend(); ++layer) {
510
511                const hwc_rect_t df = testLayers->getDisplayFrame(*layer);
512
513                float dfL = df.left;
514                float dfT = df.top;
515                float dfR = df.right;
516                float dfB = df.bottom;
517
518                /* If the pixel location falls outside of the layer display
519                 * frame, skip the layer. */
520                if (x < dfL || x >= dfR || y < dfT || y >= dfB)
521                    continue;
522
523                /* If the device has requested the layer be clear, clear
524                 * the pixel and continue. */
525                if (clearLayers->count(*layer) != 0) {
526                    r = 0;
527                    g = 0;
528                    b = 0;
529                    a = 0.0f;
530                    continue;
531                }
532
533                float planeAlpha = testLayers->getPlaneAlpha(*layer);
534
535                /* If the layer is a solid color, fill the color and
536                 * continue. */
537                if (testLayers->getComposition(*layer)
538                        == HWC2_COMPOSITION_SOLID_COLOR) {
539                    const auto color = testLayers->getColor(*layer);
540                    r = color.r;
541                    g = color.g;
542                    b = color.b;
543                    a = color.a * planeAlpha;
544                    continue;
545                }
546
547                float xPos = x;
548                float yPos = y;
549
550                hwc_transform_t transform = testLayers->getTransform(*layer);
551
552                float dfW = dfR - dfL;
553                float dfH = dfB - dfT;
554
555                /* If a layer has a transform, find which location on the
556                 * layer will end up in the current pixel location. We
557                 * can calculate the color of the current pixel using that
558                 * location. */
559                if (transform > 0) {
560                    /* Change origin to be the center of the layer. */
561                    xPos = xPos - dfL - dfW / 2.0;
562                    yPos = yPos - dfT - dfH / 2.0;
563
564                    /* Flip Horizontal by reflecting across the y axis. */
565                    if (transform & HWC_TRANSFORM_FLIP_H)
566                        xPos = -xPos;
567
568                    /* Flip vertical by reflecting across the x axis. */
569                    if (transform & HWC_TRANSFORM_FLIP_V)
570                        yPos = -yPos;
571
572                    /* Rotate 90 by using a basic linear algebra rotation
573                     * and scaling the result so the display frame remains
574                     * the same. For example, a buffer of size 100x50 should
575                     * rotate 90 degress but remain the same dimension
576                     * (100x50) at the end of the transformation. */
577                    if (transform & HWC_TRANSFORM_ROT_90) {
578                        float tmp = xPos;
579                        xPos = yPos * dfW / dfH;
580                        yPos = -tmp * dfH / dfW;
581                    }
582
583                    /* Change origin back to the top left corner of the
584                     * layer. */
585                    xPos = xPos + dfL + dfW / 2.0;
586                    yPos = yPos + dfT + dfH / 2.0;
587                }
588
589                hwc_frect_t sc = testLayers->getSourceCrop(*layer);
590                float scL = sc.left, scT = sc.top;
591
592                float dfWDivScW = dfW / (sc.right - scL);
593                float dfHDivScH = dfH / (sc.bottom - scT);
594
595                float max = 255, min = 0;
596
597                /* Choose the pixel color. Similar to generateBuffer,
598                 * each layer will be divided into 3x3 colors. Because
599                 * both the source crop and display frame must be taken into
600                 * account, the formulas are more complicated.
601                 *
602                 * If the source crop and display frame were not taken into
603                 * account, we would simply divide the buffer into three
604                 * sections by height. Each section would get one color.
605                 * For example the formula for the first section would be:
606                 *
607                 * if (yPos < bufferArea.height / 3)
608                 *        //Select first section color
609                 *
610                 * However the pixel color is chosen based on the source
611                 * crop and displayed based on the display frame.
612                 *
613                 * If the display frame top was 0 and the source crop height
614                 * and display frame height were the same. The only factor
615                 * would be the source crop top. To calculate the new
616                 * section boundary, the section boundary would be moved up
617                 * by the height of the source crop top. The formula would
618                 * be:
619                 * if (yPos < (bufferArea.height / 3 - sourceCrop.top)
620                 *        //Select first section color
621                 *
622                 * If the display frame top could also vary but source crop
623                 * and display frame heights were the same, the formula
624                 * would be:
625                 * if (yPos < (bufferArea.height / 3 - sourceCrop.top
626                 *              + displayFrameTop)
627                 *        //Select first section color
628                 *
629                 * If the heights were not the same, the conversion between
630                 * the source crop and display frame dimensions must be
631                 * taken into account. The formula would be:
632                 * if (yPos < ((bufferArea.height / 3) - sourceCrop.top)
633                 *              * displayFrameHeight / sourceCropHeight
634                 *              + displayFrameTop)
635                 *        //Select first section color
636                 */
637                if (yPos < ((bHDiv3) - scT) * dfHDivScH + dfT) {
638                    min = 255 / 2;
639                } else if (yPos >= ((bH2Div3) - scT) * dfHDivScH + dfT) {
640                    max = 255 / 2;
641                }
642
643                uint8_t rCur = min, gCur = min, bCur = min;
644                float aCur = 1.0f;
645
646                /* This further divides the color sections from 3 to 3x3.
647                 * The math behind it follows the same logic as the previous
648                 * comment */
649                if (xPos < ((bWDiv3) - scL) * (dfWDivScW) + dfL) {
650                    rCur = max;
651                } else if (xPos < ((bW2Div3) - scL) * (dfWDivScW) + dfL) {
652                    gCur = max;
653                } else {
654                    bCur = max;
655                }
656
657
658                /* Blend the pixel color with the previous layers' pixel
659                 * colors using the plane alpha and blend mode. The final
660                 * pixel color is chosen using the plane alpha and blend
661                 * mode formulas found in hwcomposer2.h */
662                hwc2_blend_mode_t blendMode = testLayers->getBlendMode(*layer);
663
664                if (blendMode == HWC2_BLEND_MODE_PREMULTIPLIED) {
665                    rCur *= planeAlpha;
666                    gCur *= planeAlpha;
667                    bCur *= planeAlpha;
668                }
669
670                aCur *= planeAlpha;
671
672                if (blendMode == HWC2_BLEND_MODE_PREMULTIPLIED) {
673                    r = rCur + r * (1.0 - aCur);
674                    g = gCur + g * (1.0 - aCur);
675                    b = bCur + b * (1.0 - aCur);
676                    a = aCur + a * (1.0 - aCur);
677                } else if (blendMode == HWC2_BLEND_MODE_COVERAGE) {
678                    r = rCur * aCur + r * (1.0 - aCur);
679                    g = gCur * aCur + g * (1.0 - aCur);
680                    b = bCur * aCur + b * (1.0 - aCur);
681                    a = aCur * aCur + a * (1.0 - aCur);
682                } else {
683                    r = rCur;
684                    g = gCur;
685                    b = bCur;
686                    a = aCur;
687                }
688            }
689
690            /* Set the pixel color */
691            setColor(x, y, mFormat, stride, img, r, g, b, a * 255);
692        }
693    }
694
695    mGraphicBuffer->unlock();
696
697    *outFence = mFenceGenerator->get();
698    *outHandle = mGraphicBuffer->handle;
699
700    return 0;
701}
702