SynchronousQueue.java revision 8210fadf25ece2a0db4cd0428d7f27d7166310b9
1/*
2 * Written by Doug Lea, Bill Scherer, and Michael Scott with
3 * assistance from members of JCP JSR-166 Expert Group and released to
4 * the public domain, as explained at
5 * http://creativecommons.org/licenses/publicdomain
6 */
7
8package java.util.concurrent;
9import java.util.concurrent.locks.*;
10import java.util.concurrent.atomic.*;
11import java.util.*;
12
13// BEGIN android-note
14// removed link to collections framework docs
15// END android-note
16
17/**
18 * A {@linkplain BlockingQueue blocking queue} in which each insert
19 * operation must wait for a corresponding remove operation by another
20 * thread, and vice versa.  A synchronous queue does not have any
21 * internal capacity, not even a capacity of one.  You cannot
22 * <tt>peek</tt> at a synchronous queue because an element is only
23 * present when you try to remove it; you cannot insert an element
24 * (using any method) unless another thread is trying to remove it;
25 * you cannot iterate as there is nothing to iterate.  The
26 * <em>head</em> of the queue is the element that the first queued
27 * inserting thread is trying to add to the queue; if there is no such
28 * queued thread then no element is available for removal and
29 * <tt>poll()</tt> will return <tt>null</tt>.  For purposes of other
30 * <tt>Collection</tt> methods (for example <tt>contains</tt>), a
31 * <tt>SynchronousQueue</tt> acts as an empty collection.  This queue
32 * does not permit <tt>null</tt> elements.
33 *
34 * <p>Synchronous queues are similar to rendezvous channels used in
35 * CSP and Ada. They are well suited for handoff designs, in which an
36 * object running in one thread must sync up with an object running
37 * in another thread in order to hand it some information, event, or
38 * task.
39 *
40 * <p> This class supports an optional fairness policy for ordering
41 * waiting producer and consumer threads.  By default, this ordering
42 * is not guaranteed. However, a queue constructed with fairness set
43 * to <tt>true</tt> grants threads access in FIFO order.
44 *
45 * <p>This class and its iterator implement all of the
46 * <em>optional</em> methods of the {@link Collection} and {@link
47 * Iterator} interfaces.
48 *
49 * @since 1.5
50 * @author Doug Lea and Bill Scherer and Michael Scott
51 * @param <E> the type of elements held in this collection
52 */
53public class SynchronousQueue<E> extends AbstractQueue<E>
54    implements BlockingQueue<E>, java.io.Serializable {
55    private static final long serialVersionUID = -3223113410248163686L;
56
57    /*
58     * This class implements extensions of the dual stack and dual
59     * queue algorithms described in "Nonblocking Concurrent Objects
60     * with Condition Synchronization", by W. N. Scherer III and
61     * M. L. Scott.  18th Annual Conf. on Distributed Computing,
62     * Oct. 2004 (see also
63     * http://www.cs.rochester.edu/u/scott/synchronization/pseudocode/duals.html).
64     * The (Lifo) stack is used for non-fair mode, and the (Fifo)
65     * queue for fair mode. The performance of the two is generally
66     * similar. Fifo usually supports higher throughput under
67     * contention but Lifo maintains higher thread locality in common
68     * applications.
69     *
70     * A dual queue (and similarly stack) is one that at any given
71     * time either holds "data" -- items provided by put operations,
72     * or "requests" -- slots representing take operations, or is
73     * empty. A call to "fulfill" (i.e., a call requesting an item
74     * from a queue holding data or vice versa) dequeues a
75     * complementary node.  The most interesting feature of these
76     * queues is that any operation can figure out which mode the
77     * queue is in, and act accordingly without needing locks.
78     *
79     * Both the queue and stack extend abstract class Transferer
80     * defining the single method transfer that does a put or a
81     * take. These are unified into a single method because in dual
82     * data structures, the put and take operations are symmetrical,
83     * so nearly all code can be combined. The resulting transfer
84     * methods are on the long side, but are easier to follow than
85     * they would be if broken up into nearly-duplicated parts.
86     *
87     * The queue and stack data structures share many conceptual
88     * similarities but very few concrete details. For simplicity,
89     * they are kept distinct so that they can later evolve
90     * separately.
91     *
92     * The algorithms here differ from the versions in the above paper
93     * in extending them for use in synchronous queues, as well as
94     * dealing with cancellation. The main differences include:
95     *
96     *  1. The original algorithms used bit-marked pointers, but
97     *     the ones here use mode bits in nodes, leading to a number
98     *     of further adaptations.
99     *  2. SynchronousQueues must block threads waiting to become
100     *     fulfilled.
101     *  3. Support for cancellation via timeout and interrupts,
102     *     including cleaning out cancelled nodes/threads
103     *     from lists to avoid garbage retention and memory depletion.
104     *
105     * Blocking is mainly accomplished using LockSupport park/unpark,
106     * except that nodes that appear to be the next ones to become
107     * fulfilled first spin a bit (on multiprocessors only). On very
108     * busy synchronous queues, spinning can dramatically improve
109     * throughput. And on less busy ones, the amount of spinning is
110     * small enough not to be noticeable.
111     *
112     * Cleaning is done in different ways in queues vs stacks.  For
113     * queues, we can almost always remove a node immediately in O(1)
114     * time (modulo retries for consistency checks) when it is
115     * cancelled. But if it may be pinned as the current tail, it must
116     * wait until some subsequent cancellation. For stacks, we need a
117     * potentially O(n) traversal to be sure that we can remove the
118     * node, but this can run concurrently with other threads
119     * accessing the stack.
120     *
121     * While garbage collection takes care of most node reclamation
122     * issues that otherwise complicate nonblocking algorithms, care
123     * is taken to "forget" references to data, other nodes, and
124     * threads that might be held on to long-term by blocked
125     * threads. In cases where setting to null would otherwise
126     * conflict with main algorithms, this is done by changing a
127     * node's link to now point to the node itself. This doesn't arise
128     * much for Stack nodes (because blocked threads do not hang on to
129     * old head pointers), but references in Queue nodes must be
130     * aggressively forgotten to avoid reachability of everything any
131     * node has ever referred to since arrival.
132     */
133
134    /**
135     * Shared internal API for dual stacks and queues.
136     */
137    static abstract class Transferer {
138        /**
139         * Performs a put or take.
140         *
141         * @param e if non-null, the item to be handed to a consumer;
142         *          if null, requests that transfer return an item
143         *          offered by producer.
144         * @param timed if this operation should timeout
145         * @param nanos the timeout, in nanoseconds
146         * @return if non-null, the item provided or received; if null,
147         *         the operation failed due to timeout or interrupt --
148         *         the caller can distinguish which of these occurred
149         *         by checking Thread.interrupted.
150         */
151        abstract Object transfer(Object e, boolean timed, long nanos);
152    }
153
154    /** The number of CPUs, for spin control */
155    static final int NCPUS = Runtime.getRuntime().availableProcessors();
156
157    /**
158     * The number of times to spin before blocking in timed waits.
159     * The value is empirically derived -- it works well across a
160     * variety of processors and OSes. Empirically, the best value
161     * seems not to vary with number of CPUs (beyond 2) so is just
162     * a constant.
163     */
164    static final int maxTimedSpins = (NCPUS < 2)? 0 : 32;
165
166    /**
167     * The number of times to spin before blocking in untimed waits.
168     * This is greater than timed value because untimed waits spin
169     * faster since they don't need to check times on each spin.
170     */
171    static final int maxUntimedSpins = maxTimedSpins * 16;
172
173    /**
174     * The number of nanoseconds for which it is faster to spin
175     * rather than to use timed park. A rough estimate suffices.
176     */
177    static final long spinForTimeoutThreshold = 1000L;
178
179    /** Dual stack */
180    static final class TransferStack extends Transferer {
181        /*
182         * This extends Scherer-Scott dual stack algorithm, differing,
183         * among other ways, by using "covering" nodes rather than
184         * bit-marked pointers: Fulfilling operations push on marker
185         * nodes (with FULFILLING bit set in mode) to reserve a spot
186         * to match a waiting node.
187         */
188
189        /* Modes for SNodes, ORed together in node fields */
190        /** Node represents an unfulfilled consumer */
191        static final int REQUEST    = 0;
192        /** Node represents an unfulfilled producer */
193        static final int DATA       = 1;
194        /** Node is fulfilling another unfulfilled DATA or REQUEST */
195        static final int FULFILLING = 2;
196
197        /** Return true if m has fulfilling bit set */
198        static boolean isFulfilling(int m) { return (m & FULFILLING) != 0; }
199
200        /** Node class for TransferStacks. */
201        static final class SNode {
202            volatile SNode next;        // next node in stack
203            volatile SNode match;       // the node matched to this
204            volatile Thread waiter;     // to control park/unpark
205            Object item;                // data; or null for REQUESTs
206            int mode;
207            // Note: item and mode fields don't need to be volatile
208            // since they are always written before, and read after,
209            // other volatile/atomic operations.
210
211            SNode(Object item) {
212                this.item = item;
213            }
214
215            static final AtomicReferenceFieldUpdater<SNode, SNode>
216                nextUpdater = AtomicReferenceFieldUpdater.newUpdater
217                (SNode.class, SNode.class, "next");
218
219            boolean casNext(SNode cmp, SNode val) {
220                return (cmp == next &&
221                        nextUpdater.compareAndSet(this, cmp, val));
222            }
223
224            static final AtomicReferenceFieldUpdater<SNode, SNode>
225                matchUpdater = AtomicReferenceFieldUpdater.newUpdater
226                (SNode.class, SNode.class, "match");
227
228            /**
229             * Tries to match node s to this node, if so, waking up thread.
230             * Fulfillers call tryMatch to identify their waiters.
231             * Waiters block until they have been matched.
232             *
233             * @param s the node to match
234             * @return true if successfully matched to s
235             */
236            boolean tryMatch(SNode s) {
237                if (match == null &&
238                    matchUpdater.compareAndSet(this, null, s)) {
239                    Thread w = waiter;
240                    if (w != null) {    // waiters need at most one unpark
241                        waiter = null;
242                        LockSupport.unpark(w);
243                    }
244                    return true;
245                }
246                return match == s;
247            }
248
249            /**
250             * Tries to cancel a wait by matching node to itself.
251             */
252            void tryCancel() {
253                matchUpdater.compareAndSet(this, null, this);
254            }
255
256            boolean isCancelled() {
257                return match == this;
258            }
259        }
260
261        /** The head (top) of the stack */
262        volatile SNode head;
263
264        static final AtomicReferenceFieldUpdater<TransferStack, SNode>
265            headUpdater = AtomicReferenceFieldUpdater.newUpdater
266            (TransferStack.class,  SNode.class, "head");
267
268        boolean casHead(SNode h, SNode nh) {
269            return h == head && headUpdater.compareAndSet(this, h, nh);
270        }
271
272        /**
273         * Creates or resets fields of a node. Called only from transfer
274         * where the node to push on stack is lazily created and
275         * reused when possible to help reduce intervals between reads
276         * and CASes of head and to avoid surges of garbage when CASes
277         * to push nodes fail due to contention.
278         */
279        static SNode snode(SNode s, Object e, SNode next, int mode) {
280            if (s == null) s = new SNode(e);
281            s.mode = mode;
282            s.next = next;
283            return s;
284        }
285
286        /**
287         * Puts or takes an item.
288         */
289        Object transfer(Object e, boolean timed, long nanos) {
290            /*
291             * Basic algorithm is to loop trying one of three actions:
292             *
293             * 1. If apparently empty or already containing nodes of same
294             *    mode, try to push node on stack and wait for a match,
295             *    returning it, or null if cancelled.
296             *
297             * 2. If apparently containing node of complementary mode,
298             *    try to push a fulfilling node on to stack, match
299             *    with corresponding waiting node, pop both from
300             *    stack, and return matched item. The matching or
301             *    unlinking might not actually be necessary because of
302             *    other threads performing action 3:
303             *
304             * 3. If top of stack already holds another fulfilling node,
305             *    help it out by doing its match and/or pop
306             *    operations, and then continue. The code for helping
307             *    is essentially the same as for fulfilling, except
308             *    that it doesn't return the item.
309             */
310
311            SNode s = null; // constructed/reused as needed
312            int mode = (e == null)? REQUEST : DATA;
313
314            for (;;) {
315                SNode h = head;
316                if (h == null || h.mode == mode) {  // empty or same-mode
317                    if (timed && nanos <= 0) {      // can't wait
318                        if (h != null && h.isCancelled())
319                            casHead(h, h.next);     // pop cancelled node
320                        else
321                            return null;
322                    } else if (casHead(h, s = snode(s, e, h, mode))) {
323                        SNode m = awaitFulfill(s, timed, nanos);
324                        if (m == s) {               // wait was cancelled
325                            clean(s);
326                            return null;
327                        }
328                        if ((h = head) != null && h.next == s)
329                            casHead(h, s.next);     // help s's fulfiller
330                        return mode == REQUEST? m.item : s.item;
331                    }
332                } else if (!isFulfilling(h.mode)) { // try to fulfill
333                    if (h.isCancelled())            // already cancelled
334                        casHead(h, h.next);         // pop and retry
335                    else if (casHead(h, s=snode(s, e, h, FULFILLING|mode))) {
336                        for (;;) { // loop until matched or waiters disappear
337                            SNode m = s.next;       // m is s's match
338                            if (m == null) {        // all waiters are gone
339                                casHead(s, null);   // pop fulfill node
340                                s = null;           // use new node next time
341                                break;              // restart main loop
342                            }
343                            SNode mn = m.next;
344                            if (m.tryMatch(s)) {
345                                casHead(s, mn);     // pop both s and m
346                                return (mode == REQUEST)? m.item : s.item;
347                            } else                  // lost match
348                                s.casNext(m, mn);   // help unlink
349                        }
350                    }
351                } else {                            // help a fulfiller
352                    SNode m = h.next;               // m is h's match
353                    if (m == null)                  // waiter is gone
354                        casHead(h, null);           // pop fulfilling node
355                    else {
356                        SNode mn = m.next;
357                        if (m.tryMatch(h))          // help match
358                            casHead(h, mn);         // pop both h and m
359                        else                        // lost match
360                            h.casNext(m, mn);       // help unlink
361                    }
362                }
363            }
364        }
365
366        /**
367         * Spins/blocks until node s is matched by a fulfill operation.
368         *
369         * @param s the waiting node
370         * @param timed true if timed wait
371         * @param nanos timeout value
372         * @return matched node, or s if cancelled
373         */
374        SNode awaitFulfill(SNode s, boolean timed, long nanos) {
375            /*
376             * When a node/thread is about to block, it sets its waiter
377             * field and then rechecks state at least one more time
378             * before actually parking, thus covering race vs
379             * fulfiller noticing that waiter is non-null so should be
380             * woken.
381             *
382             * When invoked by nodes that appear at the point of call
383             * to be at the head of the stack, calls to park are
384             * preceded by spins to avoid blocking when producers and
385             * consumers are arriving very close in time.  This can
386             * happen enough to bother only on multiprocessors.
387             *
388             * The order of checks for returning out of main loop
389             * reflects fact that interrupts have precedence over
390             * normal returns, which have precedence over
391             * timeouts. (So, on timeout, one last check for match is
392             * done before giving up.) Except that calls from untimed
393             * SynchronousQueue.{poll/offer} don't check interrupts
394             * and don't wait at all, so are trapped in transfer
395             * method rather than calling awaitFulfill.
396             */
397            long lastTime = (timed)? System.nanoTime() : 0;
398            Thread w = Thread.currentThread();
399            SNode h = head;
400            int spins = (shouldSpin(s)?
401                         (timed? maxTimedSpins : maxUntimedSpins) : 0);
402            for (;;) {
403                if (w.isInterrupted())
404                    s.tryCancel();
405                SNode m = s.match;
406                if (m != null)
407                    return m;
408                if (timed) {
409                    long now = System.nanoTime();
410                    nanos -= now - lastTime;
411                    lastTime = now;
412                    if (nanos <= 0) {
413                        s.tryCancel();
414                        continue;
415                    }
416                }
417                if (spins > 0)
418                    spins = shouldSpin(s)? (spins-1) : 0;
419                else if (s.waiter == null)
420                    s.waiter = w; // establish waiter so can park next iter
421                else if (!timed)
422                    LockSupport.park();
423                else if (nanos > spinForTimeoutThreshold)
424                    LockSupport.parkNanos(nanos);
425            }
426        }
427
428        /**
429         * Returns true if node s is at head or there is an active
430         * fulfiller.
431         */
432        boolean shouldSpin(SNode s) {
433            SNode h = head;
434            return (h == s || h == null || isFulfilling(h.mode));
435        }
436
437        /**
438         * Unlinks s from the stack.
439         */
440        void clean(SNode s) {
441            s.item = null;   // forget item
442            s.waiter = null; // forget thread
443
444            /*
445             * At worst we may need to traverse entire stack to unlink
446             * s. If there are multiple concurrent calls to clean, we
447             * might not see s if another thread has already removed
448             * it. But we can stop when we see any node known to
449             * follow s. We use s.next unless it too is cancelled, in
450             * which case we try the node one past. We don't check any
451             * further because we don't want to doubly traverse just to
452             * find sentinel.
453             */
454
455            SNode past = s.next;
456            if (past != null && past.isCancelled())
457                past = past.next;
458
459            // Absorb cancelled nodes at head
460            SNode p;
461            while ((p = head) != null && p != past && p.isCancelled())
462                casHead(p, p.next);
463
464            // Unsplice embedded nodes
465            while (p != null && p != past) {
466                SNode n = p.next;
467                if (n != null && n.isCancelled())
468                    p.casNext(n, n.next);
469                else
470                    p = n;
471            }
472        }
473    }
474
475    /** Dual Queue */
476    static final class TransferQueue extends Transferer {
477        /*
478         * This extends Scherer-Scott dual queue algorithm, differing,
479         * among other ways, by using modes within nodes rather than
480         * marked pointers. The algorithm is a little simpler than
481         * that for stacks because fulfillers do not need explicit
482         * nodes, and matching is done by CAS'ing QNode.item field
483         * from non-null to null (for put) or vice versa (for take).
484         */
485
486        /** Node class for TransferQueue. */
487        static final class QNode {
488            volatile QNode next;          // next node in queue
489            volatile Object item;         // CAS'ed to or from null
490            volatile Thread waiter;       // to control park/unpark
491            final boolean isData;
492
493            QNode(Object item, boolean isData) {
494                this.item = item;
495                this.isData = isData;
496            }
497
498            static final AtomicReferenceFieldUpdater<QNode, QNode>
499                nextUpdater = AtomicReferenceFieldUpdater.newUpdater
500                (QNode.class, QNode.class, "next");
501
502            boolean casNext(QNode cmp, QNode val) {
503                return (next == cmp &&
504                        nextUpdater.compareAndSet(this, cmp, val));
505            }
506
507            static final AtomicReferenceFieldUpdater<QNode, Object>
508                itemUpdater = AtomicReferenceFieldUpdater.newUpdater
509                (QNode.class, Object.class, "item");
510
511            boolean casItem(Object cmp, Object val) {
512                return (item == cmp &&
513                        itemUpdater.compareAndSet(this, cmp, val));
514            }
515
516            /**
517             * Tries to cancel by CAS'ing ref to this as item.
518             */
519            void tryCancel(Object cmp) {
520                itemUpdater.compareAndSet(this, cmp, this);
521            }
522
523            boolean isCancelled() {
524                return item == this;
525            }
526
527            /**
528             * Returns true if this node is known to be off the queue
529             * because its next pointer has been forgotten due to
530             * an advanceHead operation.
531             */
532            boolean isOffList() {
533                return next == this;
534            }
535        }
536
537        /** Head of queue */
538        transient volatile QNode head;
539        /** Tail of queue */
540        transient volatile QNode tail;
541        /**
542         * Reference to a cancelled node that might not yet have been
543         * unlinked from queue because it was the last inserted node
544         * when it cancelled.
545         */
546        transient volatile QNode cleanMe;
547
548        TransferQueue() {
549            QNode h = new QNode(null, false); // initialize to dummy node.
550            head = h;
551            tail = h;
552        }
553
554        static final AtomicReferenceFieldUpdater<TransferQueue, QNode>
555            headUpdater = AtomicReferenceFieldUpdater.newUpdater
556            (TransferQueue.class,  QNode.class, "head");
557
558        /**
559         * Tries to cas nh as new head; if successful, unlink
560         * old head's next node to avoid garbage retention.
561         */
562        void advanceHead(QNode h, QNode nh) {
563            if (h == head && headUpdater.compareAndSet(this, h, nh))
564                h.next = h; // forget old next
565        }
566
567        static final AtomicReferenceFieldUpdater<TransferQueue, QNode>
568            tailUpdater = AtomicReferenceFieldUpdater.newUpdater
569            (TransferQueue.class, QNode.class, "tail");
570
571        /**
572         * Tries to cas nt as new tail.
573         */
574        void advanceTail(QNode t, QNode nt) {
575            if (tail == t)
576                tailUpdater.compareAndSet(this, t, nt);
577        }
578
579        static final AtomicReferenceFieldUpdater<TransferQueue, QNode>
580            cleanMeUpdater = AtomicReferenceFieldUpdater.newUpdater
581            (TransferQueue.class, QNode.class, "cleanMe");
582
583        /**
584         * Tries to CAS cleanMe slot.
585         */
586        boolean casCleanMe(QNode cmp, QNode val) {
587            return (cleanMe == cmp &&
588                    cleanMeUpdater.compareAndSet(this, cmp, val));
589        }
590
591        /**
592         * Puts or takes an item.
593         */
594        Object transfer(Object e, boolean timed, long nanos) {
595            /* Basic algorithm is to loop trying to take either of
596             * two actions:
597             *
598             * 1. If queue apparently empty or holding same-mode nodes,
599             *    try to add node to queue of waiters, wait to be
600             *    fulfilled (or cancelled) and return matching item.
601             *
602             * 2. If queue apparently contains waiting items, and this
603             *    call is of complementary mode, try to fulfill by CAS'ing
604             *    item field of waiting node and dequeuing it, and then
605             *    returning matching item.
606             *
607             * In each case, along the way, check for and try to help
608             * advance head and tail on behalf of other stalled/slow
609             * threads.
610             *
611             * The loop starts off with a null check guarding against
612             * seeing uninitialized head or tail values. This never
613             * happens in current SynchronousQueue, but could if
614             * callers held non-volatile/final ref to the
615             * transferer. The check is here anyway because it places
616             * null checks at top of loop, which is usually faster
617             * than having them implicitly interspersed.
618             */
619
620            QNode s = null; // constructed/reused as needed
621            boolean isData = (e != null);
622
623            for (;;) {
624                QNode t = tail;
625                QNode h = head;
626                if (t == null || h == null)         // saw uninitialized value
627                    continue;                       // spin
628
629                if (h == t || t.isData == isData) { // empty or same-mode
630                    QNode tn = t.next;
631                    if (t != tail)                  // inconsistent read
632                        continue;
633                    if (tn != null) {               // lagging tail
634                        advanceTail(t, tn);
635                        continue;
636                    }
637                    if (timed && nanos <= 0)        // can't wait
638                        return null;
639                    if (s == null)
640                        s = new QNode(e, isData);
641                    if (!t.casNext(null, s))        // failed to link in
642                        continue;
643
644                    advanceTail(t, s);              // swing tail and wait
645                    Object x = awaitFulfill(s, e, timed, nanos);
646                    if (x == s) {                   // wait was cancelled
647                        clean(t, s);
648                        return null;
649                    }
650
651                    if (!s.isOffList()) {           // not already unlinked
652                        advanceHead(t, s);          // unlink if head
653                        if (x != null)              // and forget fields
654                            s.item = s;
655                        s.waiter = null;
656                    }
657                    return (x != null)? x : e;
658
659                } else {                            // complementary-mode
660                    QNode m = h.next;               // node to fulfill
661                    if (t != tail || m == null || h != head)
662                        continue;                   // inconsistent read
663
664                    Object x = m.item;
665                    if (isData == (x != null) ||    // m already fulfilled
666                        x == m ||                   // m cancelled
667                        !m.casItem(x, e)) {         // lost CAS
668                        advanceHead(h, m);          // dequeue and retry
669                        continue;
670                    }
671
672                    advanceHead(h, m);              // successfully fulfilled
673                    LockSupport.unpark(m.waiter);
674                    return (x != null)? x : e;
675                }
676            }
677        }
678
679        /**
680         * Spins/blocks until node s is fulfilled.
681         *
682         * @param s the waiting node
683         * @param e the comparison value for checking match
684         * @param timed true if timed wait
685         * @param nanos timeout value
686         * @return matched item, or s if cancelled
687         */
688        Object awaitFulfill(QNode s, Object e, boolean timed, long nanos) {
689            /* Same idea as TransferStack.awaitFulfill */
690            long lastTime = (timed)? System.nanoTime() : 0;
691            Thread w = Thread.currentThread();
692            int spins = ((head.next == s) ?
693                         (timed? maxTimedSpins : maxUntimedSpins) : 0);
694            for (;;) {
695                if (w.isInterrupted())
696                    s.tryCancel(e);
697                Object x = s.item;
698                if (x != e)
699                    return x;
700                if (timed) {
701                    long now = System.nanoTime();
702                    nanos -= now - lastTime;
703                    lastTime = now;
704                    if (nanos <= 0) {
705                        s.tryCancel(e);
706                        continue;
707                    }
708                }
709                if (spins > 0)
710                    --spins;
711                else if (s.waiter == null)
712                    s.waiter = w;
713                else if (!timed)
714                    LockSupport.park();
715                else if (nanos > spinForTimeoutThreshold)
716                    LockSupport.parkNanos(nanos);
717            }
718        }
719
720        /**
721         * Gets rid of cancelled node s with original predecessor pred.
722         */
723        void clean(QNode pred, QNode s) {
724            s.waiter = null; // forget thread
725            /*
726             * At any given time, exactly one node on list cannot be
727             * deleted -- the last inserted node. To accommodate this,
728             * if we cannot delete s, we save its predecessor as
729             * "cleanMe", deleting the previously saved version
730             * first. At least one of node s or the node previously
731             * saved can always be deleted, so this always terminates.
732             */
733            while (pred.next == s) { // Return early if already unlinked
734                QNode h = head;
735                QNode hn = h.next;   // Absorb cancelled first node as head
736                if (hn != null && hn.isCancelled()) {
737                    advanceHead(h, hn);
738                    continue;
739                }
740                QNode t = tail;      // Ensure consistent read for tail
741                if (t == h)
742                    return;
743                QNode tn = t.next;
744                if (t != tail)
745                    continue;
746                if (tn != null) {
747                    advanceTail(t, tn);
748                    continue;
749                }
750                if (s != t) {        // If not tail, try to unsplice
751                    QNode sn = s.next;
752                    if (sn == s || pred.casNext(s, sn))
753                        return;
754                }
755                QNode dp = cleanMe;
756                if (dp != null) {    // Try unlinking previous cancelled node
757                    QNode d = dp.next;
758                    QNode dn;
759                    if (d == null ||               // d is gone or
760                        d == dp ||                 // d is off list or
761                        !d.isCancelled() ||        // d not cancelled or
762                        (d != t &&                 // d not tail and
763                         (dn = d.next) != null &&  //   has successor
764                         dn != d &&                //   that is on list
765                         dp.casNext(d, dn)))       // d unspliced
766                        casCleanMe(dp, null);
767                    if (dp == pred)
768                        return;      // s is already saved node
769                } else if (casCleanMe(null, pred))
770                    return;          // Postpone cleaning s
771            }
772        }
773    }
774
775    /**
776     * The transferer. Set only in constructor, but cannot be declared
777     * as final without further complicating serialization.  Since
778     * this is accessed only at most once per public method, there
779     * isn't a noticeable performance penalty for using volatile
780     * instead of final here.
781     */
782    private transient volatile Transferer transferer;
783
784    /**
785     * Creates a <tt>SynchronousQueue</tt> with nonfair access policy.
786     */
787    public SynchronousQueue() {
788        this(false);
789    }
790
791    /**
792     * Creates a <tt>SynchronousQueue</tt> with the specified fairness policy.
793     *
794     * @param fair if true, waiting threads contend in FIFO order for
795     *        access; otherwise the order is unspecified.
796     */
797    public SynchronousQueue(boolean fair) {
798        transferer = (fair)? new TransferQueue() : new TransferStack();
799    }
800
801    /**
802     * Adds the specified element to this queue, waiting if necessary for
803     * another thread to receive it.
804     *
805     * @throws InterruptedException {@inheritDoc}
806     * @throws NullPointerException {@inheritDoc}
807     */
808    public void put(E o) throws InterruptedException {
809        if (o == null) throw new NullPointerException();
810        if (transferer.transfer(o, false, 0) == null) {
811            Thread.interrupted();
812            throw new InterruptedException();
813        }
814    }
815
816    /**
817     * Inserts the specified element into this queue, waiting if necessary
818     * up to the specified wait time for another thread to receive it.
819     *
820     * @return <tt>true</tt> if successful, or <tt>false</tt> if the
821     *         specified waiting time elapses before a consumer appears.
822     * @throws InterruptedException {@inheritDoc}
823     * @throws NullPointerException {@inheritDoc}
824     */
825    public boolean offer(E o, long timeout, TimeUnit unit)
826        throws InterruptedException {
827        if (o == null) throw new NullPointerException();
828        if (transferer.transfer(o, true, unit.toNanos(timeout)) != null)
829            return true;
830        if (!Thread.interrupted())
831            return false;
832        throw new InterruptedException();
833    }
834
835    /**
836     * Inserts the specified element into this queue, if another thread is
837     * waiting to receive it.
838     *
839     * @param e the element to add
840     * @return <tt>true</tt> if the element was added to this queue, else
841     *         <tt>false</tt>
842     * @throws NullPointerException if the specified element is null
843     */
844    public boolean offer(E e) {
845        if (e == null) throw new NullPointerException();
846        return transferer.transfer(e, true, 0) != null;
847    }
848
849    /**
850     * Retrieves and removes the head of this queue, waiting if necessary
851     * for another thread to insert it.
852     *
853     * @return the head of this queue
854     * @throws InterruptedException {@inheritDoc}
855     */
856    public E take() throws InterruptedException {
857        Object e = transferer.transfer(null, false, 0);
858        if (e != null)
859            return (E)e;
860        Thread.interrupted();
861        throw new InterruptedException();
862    }
863
864    /**
865     * Retrieves and removes the head of this queue, waiting
866     * if necessary up to the specified wait time, for another thread
867     * to insert it.
868     *
869     * @return the head of this queue, or <tt>null</tt> if the
870     *         specified waiting time elapses before an element is present.
871     * @throws InterruptedException {@inheritDoc}
872     */
873    public E poll(long timeout, TimeUnit unit) throws InterruptedException {
874        Object e = transferer.transfer(null, true, unit.toNanos(timeout));
875        if (e != null || !Thread.interrupted())
876            return (E)e;
877        throw new InterruptedException();
878    }
879
880    /**
881     * Retrieves and removes the head of this queue, if another thread
882     * is currently making an element available.
883     *
884     * @return the head of this queue, or <tt>null</tt> if no
885     *         element is available.
886     */
887    public E poll() {
888        return (E)transferer.transfer(null, true, 0);
889    }
890
891    /**
892     * Always returns <tt>true</tt>.
893     * A <tt>SynchronousQueue</tt> has no internal capacity.
894     *
895     * @return <tt>true</tt>
896     */
897    public boolean isEmpty() {
898        return true;
899    }
900
901    /**
902     * Always returns zero.
903     * A <tt>SynchronousQueue</tt> has no internal capacity.
904     *
905     * @return zero.
906     */
907    public int size() {
908        return 0;
909    }
910
911    /**
912     * Always returns zero.
913     * A <tt>SynchronousQueue</tt> has no internal capacity.
914     *
915     * @return zero.
916     */
917    public int remainingCapacity() {
918        return 0;
919    }
920
921    /**
922     * Does nothing.
923     * A <tt>SynchronousQueue</tt> has no internal capacity.
924     */
925    public void clear() {
926    }
927
928    /**
929     * Always returns <tt>false</tt>.
930     * A <tt>SynchronousQueue</tt> has no internal capacity.
931     *
932     * @param o the element
933     * @return <tt>false</tt>
934     */
935    public boolean contains(Object o) {
936        return false;
937    }
938
939    /**
940     * Always returns <tt>false</tt>.
941     * A <tt>SynchronousQueue</tt> has no internal capacity.
942     *
943     * @param o the element to remove
944     * @return <tt>false</tt>
945     */
946    public boolean remove(Object o) {
947        return false;
948    }
949
950    /**
951     * Returns <tt>false</tt> unless the given collection is empty.
952     * A <tt>SynchronousQueue</tt> has no internal capacity.
953     *
954     * @param c the collection
955     * @return <tt>false</tt> unless given collection is empty
956     */
957    public boolean containsAll(Collection<?> c) {
958        return c.isEmpty();
959    }
960
961    /**
962     * Always returns <tt>false</tt>.
963     * A <tt>SynchronousQueue</tt> has no internal capacity.
964     *
965     * @param c the collection
966     * @return <tt>false</tt>
967     */
968    public boolean removeAll(Collection<?> c) {
969        return false;
970    }
971
972    /**
973     * Always returns <tt>false</tt>.
974     * A <tt>SynchronousQueue</tt> has no internal capacity.
975     *
976     * @param c the collection
977     * @return <tt>false</tt>
978     */
979    public boolean retainAll(Collection<?> c) {
980        return false;
981    }
982
983    /**
984     * Always returns <tt>null</tt>.
985     * A <tt>SynchronousQueue</tt> does not return elements
986     * unless actively waited on.
987     *
988     * @return <tt>null</tt>
989     */
990    public E peek() {
991        return null;
992    }
993
994
995    static class EmptyIterator<E> implements Iterator<E> {
996        public boolean hasNext() {
997            return false;
998        }
999        public E next() {
1000            throw new NoSuchElementException();
1001        }
1002        public void remove() {
1003            throw new IllegalStateException();
1004        }
1005    }
1006
1007    /**
1008     * Returns an empty iterator in which <tt>hasNext</tt> always returns
1009     * <tt>false</tt>.
1010     *
1011     * @return an empty iterator
1012     */
1013    public Iterator<E> iterator() {
1014        return new EmptyIterator<E>();
1015    }
1016
1017    /**
1018     * Returns a zero-length array.
1019     * @return a zero-length array
1020     */
1021    public Object[] toArray() {
1022        return new Object[0];
1023    }
1024
1025    /**
1026     * Sets the zeroeth element of the specified array to <tt>null</tt>
1027     * (if the array has non-zero length) and returns it.
1028     *
1029     * @param a the array
1030     * @return the specified array
1031     * @throws NullPointerException if the specified array is null
1032     */
1033    public <T> T[] toArray(T[] a) {
1034        if (a.length > 0)
1035            a[0] = null;
1036        return a;
1037    }
1038
1039    /**
1040     * @throws UnsupportedOperationException {@inheritDoc}
1041     * @throws ClassCastException            {@inheritDoc}
1042     * @throws NullPointerException          {@inheritDoc}
1043     * @throws IllegalArgumentException      {@inheritDoc}
1044     */
1045    public int drainTo(Collection<? super E> c) {
1046        if (c == null)
1047            throw new NullPointerException();
1048        if (c == this)
1049            throw new IllegalArgumentException();
1050        int n = 0;
1051        E e;
1052        while ( (e = poll()) != null) {
1053            c.add(e);
1054            ++n;
1055        }
1056        return n;
1057    }
1058
1059    /**
1060     * @throws UnsupportedOperationException {@inheritDoc}
1061     * @throws ClassCastException            {@inheritDoc}
1062     * @throws NullPointerException          {@inheritDoc}
1063     * @throws IllegalArgumentException      {@inheritDoc}
1064     */
1065    public int drainTo(Collection<? super E> c, int maxElements) {
1066        if (c == null)
1067            throw new NullPointerException();
1068        if (c == this)
1069            throw new IllegalArgumentException();
1070        int n = 0;
1071        E e;
1072        while (n < maxElements && (e = poll()) != null) {
1073            c.add(e);
1074            ++n;
1075        }
1076        return n;
1077    }
1078
1079    /*
1080     * To cope with serialization strategy in the 1.5 version of
1081     * SynchronousQueue, we declare some unused classes and fields
1082     * that exist solely to enable serializability across versions.
1083     * These fields are never used, so are initialized only if this
1084     * object is ever serialized or deserialized.
1085     */
1086
1087    static class WaitQueue implements java.io.Serializable { }
1088    static class LifoWaitQueue extends WaitQueue {
1089        private static final long serialVersionUID = -3633113410248163686L;
1090    }
1091    static class FifoWaitQueue extends WaitQueue {
1092        private static final long serialVersionUID = -3623113410248163686L;
1093    }
1094    private ReentrantLock qlock;
1095    private WaitQueue waitingProducers;
1096    private WaitQueue waitingConsumers;
1097
1098    /**
1099     * Save the state to a stream (that is, serialize it).
1100     *
1101     * @param s the stream
1102     */
1103    private void writeObject(java.io.ObjectOutputStream s)
1104        throws java.io.IOException {
1105        boolean fair = transferer instanceof TransferQueue;
1106        if (fair) {
1107            qlock = new ReentrantLock(true);
1108            waitingProducers = new FifoWaitQueue();
1109            waitingConsumers = new FifoWaitQueue();
1110        }
1111        else {
1112            qlock = new ReentrantLock();
1113            waitingProducers = new LifoWaitQueue();
1114            waitingConsumers = new LifoWaitQueue();
1115        }
1116        s.defaultWriteObject();
1117    }
1118
1119    private void readObject(final java.io.ObjectInputStream s)
1120        throws java.io.IOException, ClassNotFoundException {
1121        s.defaultReadObject();
1122        if (waitingProducers instanceof FifoWaitQueue)
1123            transferer = new TransferQueue();
1124        else
1125            transferer = new TransferStack();
1126    }
1127
1128}
1129