1// Copyright (c) 1994-2006 Sun Microsystems Inc.
2// All Rights Reserved.
3//
4// Redistribution and use in source and binary forms, with or without
5// modification, are permitted provided that the following conditions are
6// met:
7//
8// - Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10//
11// - Redistribution in binary form must reproduce the above copyright
12// notice, this list of conditions and the following disclaimer in the
13// documentation and/or other materials provided with the distribution.
14//
15// - Neither the name of Sun Microsystems or the names of contributors may
16// be used to endorse or promote products derived from this software without
17// specific prior written permission.
18//
19// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
20// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
26// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
27// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31// The original source code covered by the above license above has been
32// modified significantly by Google Inc.
33// Copyright 2006-2009 the V8 project authors. All rights reserved.
34
35#include "v8.h"
36
37#include "arguments.h"
38#include "execution.h"
39#include "ic-inl.h"
40#include "factory.h"
41#include "runtime.h"
42#include "serialize.h"
43#include "stub-cache.h"
44#include "regexp-stack.h"
45#include "ast.h"
46#include "regexp-macro-assembler.h"
47#include "platform.h"
48// Include native regexp-macro-assembler.
49#ifdef V8_NATIVE_REGEXP
50#if V8_TARGET_ARCH_IA32
51#include "ia32/regexp-macro-assembler-ia32.h"
52#elif V8_TARGET_ARCH_X64
53#include "x64/regexp-macro-assembler-x64.h"
54#elif V8_TARGET_ARCH_ARM
55#include "arm/regexp-macro-assembler-arm.h"
56#else  // Unknown architecture.
57#error "Unknown architecture."
58#endif  // Target architecture.
59#endif  // V8_NATIVE_REGEXP
60
61namespace v8 {
62namespace internal {
63
64
65// -----------------------------------------------------------------------------
66// Implementation of Label
67
68int Label::pos() const {
69  if (pos_ < 0) return -pos_ - 1;
70  if (pos_ > 0) return  pos_ - 1;
71  UNREACHABLE();
72  return 0;
73}
74
75
76// -----------------------------------------------------------------------------
77// Implementation of RelocInfoWriter and RelocIterator
78//
79// Encoding
80//
81// The most common modes are given single-byte encodings.  Also, it is
82// easy to identify the type of reloc info and skip unwanted modes in
83// an iteration.
84//
85// The encoding relies on the fact that there are less than 14
86// different relocation modes.
87//
88// embedded_object:    [6 bits pc delta] 00
89//
90// code_taget:         [6 bits pc delta] 01
91//
92// position:           [6 bits pc delta] 10,
93//                     [7 bits signed data delta] 0
94//
95// statement_position: [6 bits pc delta] 10,
96//                     [7 bits signed data delta] 1
97//
98// any nondata mode:   00 [4 bits rmode] 11,  // rmode: 0..13 only
99//                     00 [6 bits pc delta]
100//
101// pc-jump:            00 1111 11,
102//                     00 [6 bits pc delta]
103//
104// pc-jump:            01 1111 11,
105// (variable length)   7 - 26 bit pc delta, written in chunks of 7
106//                     bits, the lowest 7 bits written first.
107//
108// data-jump + pos:    00 1110 11,
109//                     signed intptr_t, lowest byte written first
110//
111// data-jump + st.pos: 01 1110 11,
112//                     signed intptr_t, lowest byte written first
113//
114// data-jump + comm.:  10 1110 11,
115//                     signed intptr_t, lowest byte written first
116//
117const int kMaxRelocModes = 14;
118
119const int kTagBits = 2;
120const int kTagMask = (1 << kTagBits) - 1;
121const int kExtraTagBits = 4;
122const int kPositionTypeTagBits = 1;
123const int kSmallDataBits = kBitsPerByte - kPositionTypeTagBits;
124
125const int kEmbeddedObjectTag = 0;
126const int kCodeTargetTag = 1;
127const int kPositionTag = 2;
128const int kDefaultTag = 3;
129
130const int kPCJumpTag = (1 << kExtraTagBits) - 1;
131
132const int kSmallPCDeltaBits = kBitsPerByte - kTagBits;
133const int kSmallPCDeltaMask = (1 << kSmallPCDeltaBits) - 1;
134
135const int kVariableLengthPCJumpTopTag = 1;
136const int kChunkBits = 7;
137const int kChunkMask = (1 << kChunkBits) - 1;
138const int kLastChunkTagBits = 1;
139const int kLastChunkTagMask = 1;
140const int kLastChunkTag = 1;
141
142
143const int kDataJumpTag = kPCJumpTag - 1;
144
145const int kNonstatementPositionTag = 0;
146const int kStatementPositionTag = 1;
147const int kCommentTag = 2;
148
149
150uint32_t RelocInfoWriter::WriteVariableLengthPCJump(uint32_t pc_delta) {
151  // Return if the pc_delta can fit in kSmallPCDeltaBits bits.
152  // Otherwise write a variable length PC jump for the bits that do
153  // not fit in the kSmallPCDeltaBits bits.
154  if (is_uintn(pc_delta, kSmallPCDeltaBits)) return pc_delta;
155  WriteExtraTag(kPCJumpTag, kVariableLengthPCJumpTopTag);
156  uint32_t pc_jump = pc_delta >> kSmallPCDeltaBits;
157  ASSERT(pc_jump > 0);
158  // Write kChunkBits size chunks of the pc_jump.
159  for (; pc_jump > 0; pc_jump = pc_jump >> kChunkBits) {
160    byte b = pc_jump & kChunkMask;
161    *--pos_ = b << kLastChunkTagBits;
162  }
163  // Tag the last chunk so it can be identified.
164  *pos_ = *pos_ | kLastChunkTag;
165  // Return the remaining kSmallPCDeltaBits of the pc_delta.
166  return pc_delta & kSmallPCDeltaMask;
167}
168
169
170void RelocInfoWriter::WriteTaggedPC(uint32_t pc_delta, int tag) {
171  // Write a byte of tagged pc-delta, possibly preceded by var. length pc-jump.
172  pc_delta = WriteVariableLengthPCJump(pc_delta);
173  *--pos_ = pc_delta << kTagBits | tag;
174}
175
176
177void RelocInfoWriter::WriteTaggedData(intptr_t data_delta, int tag) {
178  *--pos_ = static_cast<byte>(data_delta << kPositionTypeTagBits | tag);
179}
180
181
182void RelocInfoWriter::WriteExtraTag(int extra_tag, int top_tag) {
183  *--pos_ = static_cast<int>(top_tag << (kTagBits + kExtraTagBits) |
184                             extra_tag << kTagBits |
185                             kDefaultTag);
186}
187
188
189void RelocInfoWriter::WriteExtraTaggedPC(uint32_t pc_delta, int extra_tag) {
190  // Write two-byte tagged pc-delta, possibly preceded by var. length pc-jump.
191  pc_delta = WriteVariableLengthPCJump(pc_delta);
192  WriteExtraTag(extra_tag, 0);
193  *--pos_ = pc_delta;
194}
195
196
197void RelocInfoWriter::WriteExtraTaggedData(intptr_t data_delta, int top_tag) {
198  WriteExtraTag(kDataJumpTag, top_tag);
199  for (int i = 0; i < kIntptrSize; i++) {
200    *--pos_ = static_cast<byte>(data_delta);
201  // Signed right shift is arithmetic shift.  Tested in test-utils.cc.
202    data_delta = data_delta >> kBitsPerByte;
203  }
204}
205
206
207void RelocInfoWriter::Write(const RelocInfo* rinfo) {
208#ifdef DEBUG
209  byte* begin_pos = pos_;
210#endif
211  Counters::reloc_info_count.Increment();
212  ASSERT(rinfo->pc() - last_pc_ >= 0);
213  ASSERT(RelocInfo::NUMBER_OF_MODES < kMaxRelocModes);
214  // Use unsigned delta-encoding for pc.
215  uint32_t pc_delta = static_cast<uint32_t>(rinfo->pc() - last_pc_);
216  RelocInfo::Mode rmode = rinfo->rmode();
217
218  // The two most common modes are given small tags, and usually fit in a byte.
219  if (rmode == RelocInfo::EMBEDDED_OBJECT) {
220    WriteTaggedPC(pc_delta, kEmbeddedObjectTag);
221  } else if (rmode == RelocInfo::CODE_TARGET) {
222    WriteTaggedPC(pc_delta, kCodeTargetTag);
223  } else if (RelocInfo::IsPosition(rmode)) {
224    // Use signed delta-encoding for data.
225    intptr_t data_delta = rinfo->data() - last_data_;
226    int pos_type_tag = rmode == RelocInfo::POSITION ? kNonstatementPositionTag
227                                                    : kStatementPositionTag;
228    // Check if data is small enough to fit in a tagged byte.
229    // We cannot use is_intn because data_delta is not an int32_t.
230    if (data_delta >= -(1 << (kSmallDataBits-1)) &&
231        data_delta < 1 << (kSmallDataBits-1)) {
232      WriteTaggedPC(pc_delta, kPositionTag);
233      WriteTaggedData(data_delta, pos_type_tag);
234      last_data_ = rinfo->data();
235    } else {
236      // Otherwise, use costly encoding.
237      WriteExtraTaggedPC(pc_delta, kPCJumpTag);
238      WriteExtraTaggedData(data_delta, pos_type_tag);
239      last_data_ = rinfo->data();
240    }
241  } else if (RelocInfo::IsComment(rmode)) {
242    // Comments are normally not generated, so we use the costly encoding.
243    WriteExtraTaggedPC(pc_delta, kPCJumpTag);
244    WriteExtraTaggedData(rinfo->data() - last_data_, kCommentTag);
245    last_data_ = rinfo->data();
246  } else {
247    // For all other modes we simply use the mode as the extra tag.
248    // None of these modes need a data component.
249    ASSERT(rmode < kPCJumpTag && rmode < kDataJumpTag);
250    WriteExtraTaggedPC(pc_delta, rmode);
251  }
252  last_pc_ = rinfo->pc();
253#ifdef DEBUG
254  ASSERT(begin_pos - pos_ <= kMaxSize);
255#endif
256}
257
258
259inline int RelocIterator::AdvanceGetTag() {
260  return *--pos_ & kTagMask;
261}
262
263
264inline int RelocIterator::GetExtraTag() {
265  return (*pos_ >> kTagBits) & ((1 << kExtraTagBits) - 1);
266}
267
268
269inline int RelocIterator::GetTopTag() {
270  return *pos_ >> (kTagBits + kExtraTagBits);
271}
272
273
274inline void RelocIterator::ReadTaggedPC() {
275  rinfo_.pc_ += *pos_ >> kTagBits;
276}
277
278
279inline void RelocIterator::AdvanceReadPC() {
280  rinfo_.pc_ += *--pos_;
281}
282
283
284void RelocIterator::AdvanceReadData() {
285  intptr_t x = 0;
286  for (int i = 0; i < kIntptrSize; i++) {
287    x |= static_cast<intptr_t>(*--pos_) << i * kBitsPerByte;
288  }
289  rinfo_.data_ += x;
290}
291
292
293void RelocIterator::AdvanceReadVariableLengthPCJump() {
294  // Read the 32-kSmallPCDeltaBits most significant bits of the
295  // pc jump in kChunkBits bit chunks and shift them into place.
296  // Stop when the last chunk is encountered.
297  uint32_t pc_jump = 0;
298  for (int i = 0; i < kIntSize; i++) {
299    byte pc_jump_part = *--pos_;
300    pc_jump |= (pc_jump_part >> kLastChunkTagBits) << i * kChunkBits;
301    if ((pc_jump_part & kLastChunkTagMask) == 1) break;
302  }
303  // The least significant kSmallPCDeltaBits bits will be added
304  // later.
305  rinfo_.pc_ += pc_jump << kSmallPCDeltaBits;
306}
307
308
309inline int RelocIterator::GetPositionTypeTag() {
310  return *pos_ & ((1 << kPositionTypeTagBits) - 1);
311}
312
313
314inline void RelocIterator::ReadTaggedData() {
315  int8_t signed_b = *pos_;
316  // Signed right shift is arithmetic shift.  Tested in test-utils.cc.
317  rinfo_.data_ += signed_b >> kPositionTypeTagBits;
318}
319
320
321inline RelocInfo::Mode RelocIterator::DebugInfoModeFromTag(int tag) {
322  if (tag == kStatementPositionTag) {
323    return RelocInfo::STATEMENT_POSITION;
324  } else if (tag == kNonstatementPositionTag) {
325    return RelocInfo::POSITION;
326  } else {
327    ASSERT(tag == kCommentTag);
328    return RelocInfo::COMMENT;
329  }
330}
331
332
333void RelocIterator::next() {
334  ASSERT(!done());
335  // Basically, do the opposite of RelocInfoWriter::Write.
336  // Reading of data is as far as possible avoided for unwanted modes,
337  // but we must always update the pc.
338  //
339  // We exit this loop by returning when we find a mode we want.
340  while (pos_ > end_) {
341    int tag = AdvanceGetTag();
342    if (tag == kEmbeddedObjectTag) {
343      ReadTaggedPC();
344      if (SetMode(RelocInfo::EMBEDDED_OBJECT)) return;
345    } else if (tag == kCodeTargetTag) {
346      ReadTaggedPC();
347      if (SetMode(RelocInfo::CODE_TARGET)) return;
348    } else if (tag == kPositionTag) {
349      ReadTaggedPC();
350      Advance();
351      // Check if we want source positions.
352      if (mode_mask_ & RelocInfo::kPositionMask) {
353        // Check if we want this type of source position.
354        if (SetMode(DebugInfoModeFromTag(GetPositionTypeTag()))) {
355          // Finally read the data before returning.
356          ReadTaggedData();
357          return;
358        }
359      }
360    } else {
361      ASSERT(tag == kDefaultTag);
362      int extra_tag = GetExtraTag();
363      if (extra_tag == kPCJumpTag) {
364        int top_tag = GetTopTag();
365        if (top_tag == kVariableLengthPCJumpTopTag) {
366          AdvanceReadVariableLengthPCJump();
367        } else {
368          AdvanceReadPC();
369        }
370      } else if (extra_tag == kDataJumpTag) {
371        // Check if we want debug modes (the only ones with data).
372        if (mode_mask_ & RelocInfo::kDebugMask) {
373          int top_tag = GetTopTag();
374          AdvanceReadData();
375          if (SetMode(DebugInfoModeFromTag(top_tag))) return;
376        } else {
377          // Otherwise, just skip over the data.
378          Advance(kIntptrSize);
379        }
380      } else {
381        AdvanceReadPC();
382        if (SetMode(static_cast<RelocInfo::Mode>(extra_tag))) return;
383      }
384    }
385  }
386  done_ = true;
387}
388
389
390RelocIterator::RelocIterator(Code* code, int mode_mask) {
391  rinfo_.pc_ = code->instruction_start();
392  rinfo_.data_ = 0;
393  // relocation info is read backwards
394  pos_ = code->relocation_start() + code->relocation_size();
395  end_ = code->relocation_start();
396  done_ = false;
397  mode_mask_ = mode_mask;
398  if (mode_mask_ == 0) pos_ = end_;
399  next();
400}
401
402
403RelocIterator::RelocIterator(const CodeDesc& desc, int mode_mask) {
404  rinfo_.pc_ = desc.buffer;
405  rinfo_.data_ = 0;
406  // relocation info is read backwards
407  pos_ = desc.buffer + desc.buffer_size;
408  end_ = pos_ - desc.reloc_size;
409  done_ = false;
410  mode_mask_ = mode_mask;
411  if (mode_mask_ == 0) pos_ = end_;
412  next();
413}
414
415
416// -----------------------------------------------------------------------------
417// Implementation of RelocInfo
418
419
420#ifdef ENABLE_DISASSEMBLER
421const char* RelocInfo::RelocModeName(RelocInfo::Mode rmode) {
422  switch (rmode) {
423    case RelocInfo::NONE:
424      return "no reloc";
425    case RelocInfo::EMBEDDED_OBJECT:
426      return "embedded object";
427    case RelocInfo::EMBEDDED_STRING:
428      return "embedded string";
429    case RelocInfo::CONSTRUCT_CALL:
430      return "code target (js construct call)";
431    case RelocInfo::CODE_TARGET_CONTEXT:
432      return "code target (context)";
433    case RelocInfo::DEBUG_BREAK:
434#ifndef ENABLE_DEBUGGER_SUPPORT
435      UNREACHABLE();
436#endif
437      return "debug break";
438    case RelocInfo::CODE_TARGET:
439      return "code target";
440    case RelocInfo::RUNTIME_ENTRY:
441      return "runtime entry";
442    case RelocInfo::JS_RETURN:
443      return "js return";
444    case RelocInfo::COMMENT:
445      return "comment";
446    case RelocInfo::POSITION:
447      return "position";
448    case RelocInfo::STATEMENT_POSITION:
449      return "statement position";
450    case RelocInfo::EXTERNAL_REFERENCE:
451      return "external reference";
452    case RelocInfo::INTERNAL_REFERENCE:
453      return "internal reference";
454    case RelocInfo::NUMBER_OF_MODES:
455      UNREACHABLE();
456      return "number_of_modes";
457  }
458  return "unknown relocation type";
459}
460
461
462void RelocInfo::Print() {
463  PrintF("%p  %s", pc_, RelocModeName(rmode_));
464  if (IsComment(rmode_)) {
465    PrintF("  (%s)", data_);
466  } else if (rmode_ == EMBEDDED_OBJECT) {
467    PrintF("  (");
468    target_object()->ShortPrint();
469    PrintF(")");
470  } else if (rmode_ == EXTERNAL_REFERENCE) {
471    ExternalReferenceEncoder ref_encoder;
472    PrintF(" (%s)  (%p)",
473           ref_encoder.NameOfAddress(*target_reference_address()),
474           *target_reference_address());
475  } else if (IsCodeTarget(rmode_)) {
476    Code* code = Code::GetCodeFromTargetAddress(target_address());
477    PrintF(" (%s)  (%p)", Code::Kind2String(code->kind()), target_address());
478  } else if (IsPosition(rmode_)) {
479    PrintF("  (%d)", data());
480  }
481
482  PrintF("\n");
483}
484#endif  // ENABLE_DISASSEMBLER
485
486
487#ifdef DEBUG
488void RelocInfo::Verify() {
489  switch (rmode_) {
490    case EMBEDDED_OBJECT:
491      Object::VerifyPointer(target_object());
492      break;
493    case DEBUG_BREAK:
494#ifndef ENABLE_DEBUGGER_SUPPORT
495      UNREACHABLE();
496      break;
497#endif
498    case CONSTRUCT_CALL:
499    case CODE_TARGET_CONTEXT:
500    case CODE_TARGET: {
501      // convert inline target address to code object
502      Address addr = target_address();
503      ASSERT(addr != NULL);
504      // Check that we can find the right code object.
505      Code* code = Code::GetCodeFromTargetAddress(addr);
506      Object* found = Heap::FindCodeObject(addr);
507      ASSERT(found->IsCode());
508      ASSERT(code->address() == HeapObject::cast(found)->address());
509      break;
510    }
511    case RelocInfo::EMBEDDED_STRING:
512    case RUNTIME_ENTRY:
513    case JS_RETURN:
514    case COMMENT:
515    case POSITION:
516    case STATEMENT_POSITION:
517    case EXTERNAL_REFERENCE:
518    case INTERNAL_REFERENCE:
519    case NONE:
520      break;
521    case NUMBER_OF_MODES:
522      UNREACHABLE();
523      break;
524  }
525}
526#endif  // DEBUG
527
528
529// -----------------------------------------------------------------------------
530// Implementation of ExternalReference
531
532ExternalReference::ExternalReference(Builtins::CFunctionId id)
533  : address_(Redirect(Builtins::c_function_address(id))) {}
534
535
536ExternalReference::ExternalReference(ApiFunction* fun)
537  : address_(Redirect(fun->address())) {}
538
539
540ExternalReference::ExternalReference(Builtins::Name name)
541  : address_(Builtins::builtin_address(name)) {}
542
543
544ExternalReference::ExternalReference(Runtime::FunctionId id)
545  : address_(Redirect(Runtime::FunctionForId(id)->entry)) {}
546
547
548ExternalReference::ExternalReference(Runtime::Function* f)
549  : address_(Redirect(f->entry)) {}
550
551
552ExternalReference::ExternalReference(const IC_Utility& ic_utility)
553  : address_(Redirect(ic_utility.address())) {}
554
555#ifdef ENABLE_DEBUGGER_SUPPORT
556ExternalReference::ExternalReference(const Debug_Address& debug_address)
557  : address_(debug_address.address()) {}
558#endif
559
560ExternalReference::ExternalReference(StatsCounter* counter)
561  : address_(reinterpret_cast<Address>(counter->GetInternalPointer())) {}
562
563
564ExternalReference::ExternalReference(Top::AddressId id)
565  : address_(Top::get_address_from_id(id)) {}
566
567
568ExternalReference::ExternalReference(const SCTableReference& table_ref)
569  : address_(table_ref.address()) {}
570
571
572ExternalReference ExternalReference::perform_gc_function() {
573  return ExternalReference(Redirect(FUNCTION_ADDR(Runtime::PerformGC)));
574}
575
576
577ExternalReference ExternalReference::random_positive_smi_function() {
578  return ExternalReference(Redirect(FUNCTION_ADDR(V8::RandomPositiveSmi)));
579}
580
581
582ExternalReference ExternalReference::transcendental_cache_array_address() {
583  return ExternalReference(TranscendentalCache::cache_array_address());
584}
585
586
587ExternalReference ExternalReference::keyed_lookup_cache_keys() {
588  return ExternalReference(KeyedLookupCache::keys_address());
589}
590
591
592ExternalReference ExternalReference::keyed_lookup_cache_field_offsets() {
593  return ExternalReference(KeyedLookupCache::field_offsets_address());
594}
595
596
597ExternalReference ExternalReference::the_hole_value_location() {
598  return ExternalReference(Factory::the_hole_value().location());
599}
600
601
602ExternalReference ExternalReference::roots_address() {
603  return ExternalReference(Heap::roots_address());
604}
605
606
607ExternalReference ExternalReference::address_of_stack_limit() {
608  return ExternalReference(StackGuard::address_of_jslimit());
609}
610
611
612ExternalReference ExternalReference::address_of_real_stack_limit() {
613  return ExternalReference(StackGuard::address_of_real_jslimit());
614}
615
616
617ExternalReference ExternalReference::address_of_regexp_stack_limit() {
618  return ExternalReference(RegExpStack::limit_address());
619}
620
621
622ExternalReference ExternalReference::new_space_start() {
623  return ExternalReference(Heap::NewSpaceStart());
624}
625
626
627ExternalReference ExternalReference::new_space_mask() {
628  return ExternalReference(reinterpret_cast<Address>(Heap::NewSpaceMask()));
629}
630
631
632ExternalReference ExternalReference::new_space_allocation_top_address() {
633  return ExternalReference(Heap::NewSpaceAllocationTopAddress());
634}
635
636
637ExternalReference ExternalReference::heap_always_allocate_scope_depth() {
638  return ExternalReference(Heap::always_allocate_scope_depth_address());
639}
640
641
642ExternalReference ExternalReference::new_space_allocation_limit_address() {
643  return ExternalReference(Heap::NewSpaceAllocationLimitAddress());
644}
645
646
647ExternalReference ExternalReference::handle_scope_extensions_address() {
648  return ExternalReference(HandleScope::current_extensions_address());
649}
650
651
652ExternalReference ExternalReference::handle_scope_next_address() {
653  return ExternalReference(HandleScope::current_next_address());
654}
655
656
657ExternalReference ExternalReference::handle_scope_limit_address() {
658  return ExternalReference(HandleScope::current_limit_address());
659}
660
661
662ExternalReference ExternalReference::scheduled_exception_address() {
663  return ExternalReference(Top::scheduled_exception_address());
664}
665
666
667#ifdef V8_NATIVE_REGEXP
668
669ExternalReference ExternalReference::re_check_stack_guard_state() {
670  Address function;
671#ifdef V8_TARGET_ARCH_X64
672  function = FUNCTION_ADDR(RegExpMacroAssemblerX64::CheckStackGuardState);
673#elif V8_TARGET_ARCH_IA32
674  function = FUNCTION_ADDR(RegExpMacroAssemblerIA32::CheckStackGuardState);
675#elif V8_TARGET_ARCH_ARM
676  function = FUNCTION_ADDR(RegExpMacroAssemblerARM::CheckStackGuardState);
677#else
678  UNREACHABLE();
679#endif
680  return ExternalReference(Redirect(function));
681}
682
683ExternalReference ExternalReference::re_grow_stack() {
684  return ExternalReference(
685      Redirect(FUNCTION_ADDR(NativeRegExpMacroAssembler::GrowStack)));
686}
687
688ExternalReference ExternalReference::re_case_insensitive_compare_uc16() {
689  return ExternalReference(Redirect(
690      FUNCTION_ADDR(NativeRegExpMacroAssembler::CaseInsensitiveCompareUC16)));
691}
692
693ExternalReference ExternalReference::re_word_character_map() {
694  return ExternalReference(
695      NativeRegExpMacroAssembler::word_character_map_address());
696}
697
698ExternalReference ExternalReference::address_of_static_offsets_vector() {
699  return ExternalReference(OffsetsVector::static_offsets_vector_address());
700}
701
702ExternalReference ExternalReference::address_of_regexp_stack_memory_address() {
703  return ExternalReference(RegExpStack::memory_address());
704}
705
706ExternalReference ExternalReference::address_of_regexp_stack_memory_size() {
707  return ExternalReference(RegExpStack::memory_size_address());
708}
709
710#endif
711
712
713static double add_two_doubles(double x, double y) {
714  return x + y;
715}
716
717
718static double sub_two_doubles(double x, double y) {
719  return x - y;
720}
721
722
723static double mul_two_doubles(double x, double y) {
724  return x * y;
725}
726
727
728static double div_two_doubles(double x, double y) {
729  return x / y;
730}
731
732
733static double mod_two_doubles(double x, double y) {
734  return modulo(x, y);
735}
736
737
738static int native_compare_doubles(double y, double x) {
739  if (x == y) return EQUAL;
740  return x < y ? LESS : GREATER;
741}
742
743
744ExternalReference ExternalReference::double_fp_operation(
745    Token::Value operation) {
746  typedef double BinaryFPOperation(double x, double y);
747  BinaryFPOperation* function = NULL;
748  switch (operation) {
749    case Token::ADD:
750      function = &add_two_doubles;
751      break;
752    case Token::SUB:
753      function = &sub_two_doubles;
754      break;
755    case Token::MUL:
756      function = &mul_two_doubles;
757      break;
758    case Token::DIV:
759      function = &div_two_doubles;
760      break;
761    case Token::MOD:
762      function = &mod_two_doubles;
763      break;
764    default:
765      UNREACHABLE();
766  }
767  // Passing true as 2nd parameter indicates that they return an fp value.
768  return ExternalReference(Redirect(FUNCTION_ADDR(function), true));
769}
770
771
772ExternalReference ExternalReference::compare_doubles() {
773  return ExternalReference(Redirect(FUNCTION_ADDR(native_compare_doubles),
774                                    false));
775}
776
777
778ExternalReferenceRedirector* ExternalReference::redirector_ = NULL;
779
780
781#ifdef ENABLE_DEBUGGER_SUPPORT
782ExternalReference ExternalReference::debug_break() {
783  return ExternalReference(Redirect(FUNCTION_ADDR(Debug::Break)));
784}
785
786
787ExternalReference ExternalReference::debug_step_in_fp_address() {
788  return ExternalReference(Debug::step_in_fp_addr());
789}
790#endif
791
792} }  // namespace v8::internal
793