/* * Copyright (C) 2008 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package android.hardware; import android.os.Looper; import android.os.Process; import android.os.RemoteException; import android.os.Handler; import android.os.Message; import android.os.ServiceManager; import android.util.Log; import android.util.SparseArray; import android.util.SparseBooleanArray; import android.util.SparseIntArray; import android.view.IRotationWatcher; import android.view.IWindowManager; import android.view.Surface; import java.util.ArrayList; import java.util.Collections; import java.util.HashMap; import java.util.List; /** *

* SensorManager lets you access the device's {@link android.hardware.Sensor * sensors}. Get an instance of this class by calling * {@link android.content.Context#getSystemService(java.lang.String) * Context.getSystemService()} with the argument * {@link android.content.Context#SENSOR_SERVICE}. *

*

* Always make sure to disable sensors you don't need, especially when your * activity is paused. Failing to do so can drain the battery in just a few * hours. Note that the system will not disable sensors automatically when * the screen turns off. *

* *
 * public class SensorActivity extends Activity, implements SensorEventListener {
 *     private final SensorManager mSensorManager;
 *     private final Sensor mAccelerometer;
 *
 *     public SensorActivity() {
 *         mSensorManager = (SensorManager)getSystemService(SENSOR_SERVICE);
 *         mAccelerometer = mSensorManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER);
 *     }
 *
 *     protected void onResume() {
 *         super.onResume();
 *         mSensorManager.registerListener(this, mAccelerometer, SensorManager.SENSOR_DELAY_NORMAL);
 *     }
 *
 *     protected void onPause() {
 *         super.onPause();
 *         mSensorManager.unregisterListener(this);
 *     }
 *
 *     public void onAccuracyChanged(Sensor sensor, int accuracy) {
 *     }
 *
 *     public void onSensorChanged(SensorEvent event) {
 *     }
 * }
 * 
* * @see SensorEventListener * @see SensorEvent * @see Sensor * */ public class SensorManager { private static final String TAG = "SensorManager"; private static final float[] mTempMatrix = new float[16]; /* NOTE: sensor IDs must be a power of 2 */ /** * A constant describing an orientation sensor. See * {@link android.hardware.SensorListener SensorListener} for more details. * * @deprecated use {@link android.hardware.Sensor Sensor} instead. */ @Deprecated public static final int SENSOR_ORIENTATION = 1 << 0; /** * A constant describing an accelerometer. See * {@link android.hardware.SensorListener SensorListener} for more details. * * @deprecated use {@link android.hardware.Sensor Sensor} instead. */ @Deprecated public static final int SENSOR_ACCELEROMETER = 1 << 1; /** * A constant describing a temperature sensor See * {@link android.hardware.SensorListener SensorListener} for more details. * * @deprecated use {@link android.hardware.Sensor Sensor} instead. */ @Deprecated public static final int SENSOR_TEMPERATURE = 1 << 2; /** * A constant describing a magnetic sensor See * {@link android.hardware.SensorListener SensorListener} for more details. * * @deprecated use {@link android.hardware.Sensor Sensor} instead. */ @Deprecated public static final int SENSOR_MAGNETIC_FIELD = 1 << 3; /** * A constant describing an ambient light sensor See * {@link android.hardware.SensorListener SensorListener} for more details. * * @deprecated use {@link android.hardware.Sensor Sensor} instead. */ @Deprecated public static final int SENSOR_LIGHT = 1 << 4; /** * A constant describing a proximity sensor See * {@link android.hardware.SensorListener SensorListener} for more details. * * @deprecated use {@link android.hardware.Sensor Sensor} instead. */ @Deprecated public static final int SENSOR_PROXIMITY = 1 << 5; /** * A constant describing a Tricorder See * {@link android.hardware.SensorListener SensorListener} for more details. * * @deprecated use {@link android.hardware.Sensor Sensor} instead. */ @Deprecated public static final int SENSOR_TRICORDER = 1 << 6; /** * A constant describing an orientation sensor. See * {@link android.hardware.SensorListener SensorListener} for more details. * * @deprecated use {@link android.hardware.Sensor Sensor} instead. */ @Deprecated public static final int SENSOR_ORIENTATION_RAW = 1 << 7; /** * A constant that includes all sensors * * @deprecated use {@link android.hardware.Sensor Sensor} instead. */ @Deprecated public static final int SENSOR_ALL = 0x7F; /** * Smallest sensor ID * * @deprecated use {@link android.hardware.Sensor Sensor} instead. */ @Deprecated public static final int SENSOR_MIN = SENSOR_ORIENTATION; /** * Largest sensor ID * * @deprecated use {@link android.hardware.Sensor Sensor} instead. */ @Deprecated public static final int SENSOR_MAX = ((SENSOR_ALL + 1)>>1); /** * Index of the X value in the array returned by * {@link android.hardware.SensorListener#onSensorChanged} * * @deprecated use {@link android.hardware.Sensor Sensor} instead. */ @Deprecated public static final int DATA_X = 0; /** * Index of the Y value in the array returned by * {@link android.hardware.SensorListener#onSensorChanged} * * @deprecated use {@link android.hardware.Sensor Sensor} instead. */ @Deprecated public static final int DATA_Y = 1; /** * Index of the Z value in the array returned by * {@link android.hardware.SensorListener#onSensorChanged} * * @deprecated use {@link android.hardware.Sensor Sensor} instead. */ @Deprecated public static final int DATA_Z = 2; /** * Offset to the untransformed values in the array returned by * {@link android.hardware.SensorListener#onSensorChanged} * * @deprecated use {@link android.hardware.Sensor Sensor} instead. */ @Deprecated public static final int RAW_DATA_INDEX = 3; /** * Index of the untransformed X value in the array returned by * {@link android.hardware.SensorListener#onSensorChanged} * * @deprecated use {@link android.hardware.Sensor Sensor} instead. */ @Deprecated public static final int RAW_DATA_X = 3; /** * Index of the untransformed Y value in the array returned by * {@link android.hardware.SensorListener#onSensorChanged} * * @deprecated use {@link android.hardware.Sensor Sensor} instead. */ @Deprecated public static final int RAW_DATA_Y = 4; /** * Index of the untransformed Z value in the array returned by * {@link android.hardware.SensorListener#onSensorChanged} * * @deprecated use {@link android.hardware.Sensor Sensor} instead. */ @Deprecated public static final int RAW_DATA_Z = 5; /** Standard gravity (g) on Earth. This value is equivalent to 1G */ public static final float STANDARD_GRAVITY = 9.80665f; /** Sun's gravity in SI units (m/s^2) */ public static final float GRAVITY_SUN = 275.0f; /** Mercury's gravity in SI units (m/s^2) */ public static final float GRAVITY_MERCURY = 3.70f; /** Venus' gravity in SI units (m/s^2) */ public static final float GRAVITY_VENUS = 8.87f; /** Earth's gravity in SI units (m/s^2) */ public static final float GRAVITY_EARTH = 9.80665f; /** The Moon's gravity in SI units (m/s^2) */ public static final float GRAVITY_MOON = 1.6f; /** Mars' gravity in SI units (m/s^2) */ public static final float GRAVITY_MARS = 3.71f; /** Jupiter's gravity in SI units (m/s^2) */ public static final float GRAVITY_JUPITER = 23.12f; /** Saturn's gravity in SI units (m/s^2) */ public static final float GRAVITY_SATURN = 8.96f; /** Uranus' gravity in SI units (m/s^2) */ public static final float GRAVITY_URANUS = 8.69f; /** Neptune's gravity in SI units (m/s^2) */ public static final float GRAVITY_NEPTUNE = 11.0f; /** Pluto's gravity in SI units (m/s^2) */ public static final float GRAVITY_PLUTO = 0.6f; /** Gravity (estimate) on the first Death Star in Empire units (m/s^2) */ public static final float GRAVITY_DEATH_STAR_I = 0.000000353036145f; /** Gravity on the island */ public static final float GRAVITY_THE_ISLAND = 4.815162342f; /** Maximum magnetic field on Earth's surface */ public static final float MAGNETIC_FIELD_EARTH_MAX = 60.0f; /** Minimum magnetic field on Earth's surface */ public static final float MAGNETIC_FIELD_EARTH_MIN = 30.0f; /** Standard atmosphere, or average sea-level pressure in hPa (millibar) */ public static final float PRESSURE_STANDARD_ATMOSPHERE = 1013.25f; /** Maximum luminance of sunlight in lux */ public static final float LIGHT_SUNLIGHT_MAX = 120000.0f; /** luminance of sunlight in lux */ public static final float LIGHT_SUNLIGHT = 110000.0f; /** luminance in shade in lux */ public static final float LIGHT_SHADE = 20000.0f; /** luminance under an overcast sky in lux */ public static final float LIGHT_OVERCAST = 10000.0f; /** luminance at sunrise in lux */ public static final float LIGHT_SUNRISE = 400.0f; /** luminance under a cloudy sky in lux */ public static final float LIGHT_CLOUDY = 100.0f; /** luminance at night with full moon in lux */ public static final float LIGHT_FULLMOON = 0.25f; /** luminance at night with no moon in lux*/ public static final float LIGHT_NO_MOON = 0.001f; /** get sensor data as fast as possible */ public static final int SENSOR_DELAY_FASTEST = 0; /** rate suitable for games */ public static final int SENSOR_DELAY_GAME = 1; /** rate suitable for the user interface */ public static final int SENSOR_DELAY_UI = 2; /** rate (default) suitable for screen orientation changes */ public static final int SENSOR_DELAY_NORMAL = 3; /** * The values returned by this sensor cannot be trusted, calibration is * needed or the environment doesn't allow readings */ public static final int SENSOR_STATUS_UNRELIABLE = 0; /** * This sensor is reporting data with low accuracy, calibration with the * environment is needed */ public static final int SENSOR_STATUS_ACCURACY_LOW = 1; /** * This sensor is reporting data with an average level of accuracy, * calibration with the environment may improve the readings */ public static final int SENSOR_STATUS_ACCURACY_MEDIUM = 2; /** This sensor is reporting data with maximum accuracy */ public static final int SENSOR_STATUS_ACCURACY_HIGH = 3; /** see {@link #remapCoordinateSystem} */ public static final int AXIS_X = 1; /** see {@link #remapCoordinateSystem} */ public static final int AXIS_Y = 2; /** see {@link #remapCoordinateSystem} */ public static final int AXIS_Z = 3; /** see {@link #remapCoordinateSystem} */ public static final int AXIS_MINUS_X = AXIS_X | 0x80; /** see {@link #remapCoordinateSystem} */ public static final int AXIS_MINUS_Y = AXIS_Y | 0x80; /** see {@link #remapCoordinateSystem} */ public static final int AXIS_MINUS_Z = AXIS_Z | 0x80; /*-----------------------------------------------------------------------*/ Looper mMainLooper; @SuppressWarnings("deprecation") private HashMap mLegacyListenersMap = new HashMap(); /*-----------------------------------------------------------------------*/ private static final int SENSOR_DISABLE = -1; private static boolean sSensorModuleInitialized = false; private static ArrayList sFullSensorsList = new ArrayList(); private static SparseArray> sSensorListByType = new SparseArray>(); private static IWindowManager sWindowManager; private static int sRotation = Surface.ROTATION_0; /* The thread and the sensor list are global to the process * but the actual thread is spawned on demand */ private static SensorThread sSensorThread; private static int sQueue; // Used within this module from outside SensorManager, don't make private static SparseArray sHandleToSensor = new SparseArray(); static final ArrayList sListeners = new ArrayList(); /*-----------------------------------------------------------------------*/ static private class SensorThread { Thread mThread; boolean mSensorsReady; SensorThread() { } @Override protected void finalize() { } // must be called with sListeners lock boolean startLocked() { try { if (mThread == null) { mSensorsReady = false; SensorThreadRunnable runnable = new SensorThreadRunnable(); Thread thread = new Thread(runnable, SensorThread.class.getName()); thread.start(); synchronized (runnable) { while (mSensorsReady == false) { runnable.wait(); } } mThread = thread; } } catch (InterruptedException e) { } return mThread == null ? false : true; } private class SensorThreadRunnable implements Runnable { SensorThreadRunnable() { } private boolean open() { // NOTE: this cannot synchronize on sListeners, since // it's held in the main thread at least until we // return from here. sQueue = sensors_create_queue(); return true; } public void run() { //Log.d(TAG, "entering main sensor thread"); final float[] values = new float[3]; final int[] status = new int[1]; final long timestamp[] = new long[1]; Process.setThreadPriority(Process.THREAD_PRIORITY_URGENT_DISPLAY); if (!open()) { return; } synchronized (this) { // we've open the driver, we're ready to open the sensors mSensorsReady = true; this.notify(); } while (true) { // wait for an event final int sensor = sensors_data_poll(sQueue, values, status, timestamp); int accuracy = status[0]; synchronized (sListeners) { if (sensor == -1 || sListeners.isEmpty()) { // we lost the connection to the event stream. this happens // when the last listener is removed or if there is an error if (sensor == -1 && !sListeners.isEmpty()) { // log a warning in case of abnormal termination Log.e(TAG, "_sensors_data_poll() failed, we bail out: sensors=" + sensor); } // we have no more listeners or polling failed, terminate the thread sensors_destroy_queue(sQueue); sQueue = 0; mThread = null; break; } final Sensor sensorObject = sHandleToSensor.get(sensor); if (sensorObject != null) { // report the sensor event to all listeners that // care about it. final int size = sListeners.size(); for (int i=0 ; i mSensorList = new ArrayList(); private final Handler mHandler; private SensorEvent mValuesPool; public SparseBooleanArray mSensors = new SparseBooleanArray(); public SparseBooleanArray mFirstEvent = new SparseBooleanArray(); public SparseIntArray mSensorAccuracies = new SparseIntArray(); ListenerDelegate(SensorEventListener listener, Sensor sensor, Handler handler) { mSensorEventListener = listener; Looper looper = (handler != null) ? handler.getLooper() : mMainLooper; // currently we create one Handler instance per listener, but we could // have one per looper (we'd need to pass the ListenerDelegate // instance to handleMessage and keep track of them separately). mHandler = new Handler(looper) { @Override public void handleMessage(Message msg) { final SensorEvent t = (SensorEvent)msg.obj; final int handle = t.sensor.getHandle(); switch (t.sensor.getType()) { // Only report accuracy for sensors that support it. case Sensor.TYPE_MAGNETIC_FIELD: case Sensor.TYPE_ORIENTATION: // call onAccuracyChanged() only if the value changes final int accuracy = mSensorAccuracies.get(handle); if ((t.accuracy >= 0) && (accuracy != t.accuracy)) { mSensorAccuracies.put(handle, t.accuracy); mSensorEventListener.onAccuracyChanged(t.sensor, t.accuracy); } break; default: // For other sensors, just report the accuracy once if (mFirstEvent.get(handle) == false) { mFirstEvent.put(handle, true); mSensorEventListener.onAccuracyChanged( t.sensor, SENSOR_STATUS_ACCURACY_HIGH); } break; } mSensorEventListener.onSensorChanged(t); returnToPool(t); } }; addSensor(sensor); } protected SensorEvent createSensorEvent() { // maximal size for all legacy events is 3 return new SensorEvent(3); } protected SensorEvent getFromPool() { SensorEvent t = null; synchronized (this) { // remove the array from the pool t = mValuesPool; mValuesPool = null; } if (t == null) { // the pool was empty, we need a new one t = createSensorEvent(); } return t; } protected void returnToPool(SensorEvent t) { synchronized (this) { // put back the array into the pool if (mValuesPool == null) { mValuesPool = t; } } } Object getListener() { return mSensorEventListener; } void addSensor(Sensor sensor) { mSensors.put(sensor.getHandle(), true); mSensorList.add(sensor); } int removeSensor(Sensor sensor) { mSensors.delete(sensor.getHandle()); mSensorList.remove(sensor); return mSensors.size(); } boolean hasSensor(Sensor sensor) { return mSensors.get(sensor.getHandle()); } List getSensors() { return mSensorList; } void onSensorChangedLocked(Sensor sensor, float[] values, long[] timestamp, int accuracy) { SensorEvent t = getFromPool(); final float[] v = t.values; v[0] = values[0]; v[1] = values[1]; v[2] = values[2]; t.timestamp = timestamp[0]; t.accuracy = accuracy; t.sensor = sensor; Message msg = Message.obtain(); msg.what = 0; msg.obj = t; mHandler.sendMessage(msg); } } /** * {@hide} */ public SensorManager(Looper mainLooper) { mMainLooper = mainLooper; synchronized(sListeners) { if (!sSensorModuleInitialized) { sSensorModuleInitialized = true; nativeClassInit(); sWindowManager = IWindowManager.Stub.asInterface( ServiceManager.getService("window")); if (sWindowManager != null) { // if it's null we're running in the system process // which won't get the rotated values try { sRotation = sWindowManager.watchRotation( new IRotationWatcher.Stub() { public void onRotationChanged(int rotation) { SensorManager.this.onRotationChanged(rotation); } } ); } catch (RemoteException e) { } } // initialize the sensor list sensors_module_init(); final ArrayList fullList = sFullSensorsList; int i = 0; do { Sensor sensor = new Sensor(); i = sensors_module_get_next_sensor(sensor, i); if (i>=0) { //Log.d(TAG, "found sensor: " + sensor.getName() + // ", handle=" + sensor.getHandle()); sensor.setLegacyType(getLegacySensorType(sensor.getType())); fullList.add(sensor); sHandleToSensor.append(sensor.getHandle(), sensor); } } while (i>0); sSensorThread = new SensorThread(); } } } private int getLegacySensorType(int type) { switch (type) { case Sensor.TYPE_ACCELEROMETER: return SENSOR_ACCELEROMETER; case Sensor.TYPE_MAGNETIC_FIELD: return SENSOR_MAGNETIC_FIELD; case Sensor.TYPE_ORIENTATION: return SENSOR_ORIENTATION_RAW; case Sensor.TYPE_TEMPERATURE: return SENSOR_TEMPERATURE; } return 0; } /** * @return available sensors. * @deprecated This method is deprecated, use * {@link SensorManager#getSensorList(int)} instead */ @Deprecated public int getSensors() { int result = 0; final ArrayList fullList = sFullSensorsList; for (Sensor i : fullList) { switch (i.getType()) { case Sensor.TYPE_ACCELEROMETER: result |= SensorManager.SENSOR_ACCELEROMETER; break; case Sensor.TYPE_MAGNETIC_FIELD: result |= SensorManager.SENSOR_MAGNETIC_FIELD; break; case Sensor.TYPE_ORIENTATION: result |= SensorManager.SENSOR_ORIENTATION | SensorManager.SENSOR_ORIENTATION_RAW; break; } } return result; } /** * Use this method to get the list of available sensors of a certain type. * Make multiple calls to get sensors of different types or use * {@link android.hardware.Sensor#TYPE_ALL Sensor.TYPE_ALL} to get all the * sensors. * * @param type * of sensors requested * * @return a list of sensors matching the asked type. * * @see #getDefaultSensor(int) * @see Sensor */ public List getSensorList(int type) { // cache the returned lists the first time List list; final ArrayList fullList = sFullSensorsList; synchronized(fullList) { list = sSensorListByType.get(type); if (list == null) { if (type == Sensor.TYPE_ALL) { list = fullList; } else { list = new ArrayList(); for (Sensor i : fullList) { if (i.getType() == type) list.add(i); } } list = Collections.unmodifiableList(list); sSensorListByType.append(type, list); } } return list; } /** * Use this method to get the default sensor for a given type. Note that the * returned sensor could be a composite sensor, and its data could be * averaged or filtered. If you need to access the raw sensors use * {@link SensorManager#getSensorList(int) getSensorList}. * * @param type * of sensors requested * * @return the default sensors matching the asked type. * * @see #getSensorList(int) * @see Sensor */ public Sensor getDefaultSensor(int type) { // TODO: need to be smarter, for now, just return the 1st sensor List l = getSensorList(type); return l.isEmpty() ? null : l.get(0); } /** * Registers a listener for given sensors. * * @deprecated This method is deprecated, use * {@link SensorManager#registerListener(SensorEventListener, Sensor, int)} * instead. * * @param listener * sensor listener object * * @param sensors * a bit masks of the sensors to register to * * @return true if the sensor is supported and successfully * enabled */ @Deprecated public boolean registerListener(SensorListener listener, int sensors) { return registerListener(listener, sensors, SENSOR_DELAY_NORMAL); } /** * Registers a SensorListener for given sensors. * * @deprecated This method is deprecated, use * {@link SensorManager#registerListener(SensorEventListener, Sensor, int)} * instead. * * @param listener * sensor listener object * * @param sensors * a bit masks of the sensors to register to * * @param rate * rate of events. This is only a hint to the system. events may be * received faster or slower than the specified rate. Usually events * are received faster. The value must be one of * {@link #SENSOR_DELAY_NORMAL}, {@link #SENSOR_DELAY_UI}, * {@link #SENSOR_DELAY_GAME}, or {@link #SENSOR_DELAY_FASTEST}. * * @return true if the sensor is supported and successfully * enabled */ @Deprecated public boolean registerListener(SensorListener listener, int sensors, int rate) { if (listener == null) { return false; } boolean result = false; result = registerLegacyListener(SENSOR_ACCELEROMETER, Sensor.TYPE_ACCELEROMETER, listener, sensors, rate) || result; result = registerLegacyListener(SENSOR_MAGNETIC_FIELD, Sensor.TYPE_MAGNETIC_FIELD, listener, sensors, rate) || result; result = registerLegacyListener(SENSOR_ORIENTATION_RAW, Sensor.TYPE_ORIENTATION, listener, sensors, rate) || result; result = registerLegacyListener(SENSOR_ORIENTATION, Sensor.TYPE_ORIENTATION, listener, sensors, rate) || result; result = registerLegacyListener(SENSOR_TEMPERATURE, Sensor.TYPE_TEMPERATURE, listener, sensors, rate) || result; return result; } @SuppressWarnings("deprecation") private boolean registerLegacyListener(int legacyType, int type, SensorListener listener, int sensors, int rate) { if (listener == null) { return false; } boolean result = false; // Are we activating this legacy sensor? if ((sensors & legacyType) != 0) { // if so, find a suitable Sensor Sensor sensor = getDefaultSensor(type); if (sensor != null) { // If we don't already have one, create a LegacyListener // to wrap this listener and process the events as // they are expected by legacy apps. LegacyListener legacyListener = null; synchronized (mLegacyListenersMap) { legacyListener = mLegacyListenersMap.get(listener); if (legacyListener == null) { // we didn't find a LegacyListener for this client, // create one, and put it in our list. legacyListener = new LegacyListener(listener); mLegacyListenersMap.put(listener, legacyListener); } } // register this legacy sensor with this legacy listener legacyListener.registerSensor(legacyType); // and finally, register the legacy listener with the new apis result = registerListener(legacyListener, sensor, rate); } } return result; } /** * Unregisters a listener for the sensors with which it is registered. * * @deprecated This method is deprecated, use * {@link SensorManager#unregisterListener(SensorEventListener, Sensor)} * instead. * * @param listener * a SensorListener object * * @param sensors * a bit masks of the sensors to unregister from */ @Deprecated public void unregisterListener(SensorListener listener, int sensors) { unregisterLegacyListener(SENSOR_ACCELEROMETER, Sensor.TYPE_ACCELEROMETER, listener, sensors); unregisterLegacyListener(SENSOR_MAGNETIC_FIELD, Sensor.TYPE_MAGNETIC_FIELD, listener, sensors); unregisterLegacyListener(SENSOR_ORIENTATION_RAW, Sensor.TYPE_ORIENTATION, listener, sensors); unregisterLegacyListener(SENSOR_ORIENTATION, Sensor.TYPE_ORIENTATION, listener, sensors); unregisterLegacyListener(SENSOR_TEMPERATURE, Sensor.TYPE_TEMPERATURE, listener, sensors); } @SuppressWarnings("deprecation") private void unregisterLegacyListener(int legacyType, int type, SensorListener listener, int sensors) { if (listener == null) { return; } // do we know about this listener? LegacyListener legacyListener = null; synchronized (mLegacyListenersMap) { legacyListener = mLegacyListenersMap.get(listener); } if (legacyListener != null) { // Are we deactivating this legacy sensor? if ((sensors & legacyType) != 0) { // if so, find the corresponding Sensor Sensor sensor = getDefaultSensor(type); if (sensor != null) { // unregister this legacy sensor and if we don't // need the corresponding Sensor, unregister it too if (legacyListener.unregisterSensor(legacyType)) { // corresponding sensor not needed, unregister unregisterListener(legacyListener, sensor); // finally check if we still need the legacyListener // in our mapping, if not, get rid of it too. synchronized(sListeners) { boolean found = false; for (ListenerDelegate i : sListeners) { if (i.getListener() == legacyListener) { found = true; break; } } if (!found) { synchronized (mLegacyListenersMap) { mLegacyListenersMap.remove(listener); } } } } } } } } /** * Unregisters a listener for all sensors. * * @deprecated This method is deprecated, use * {@link SensorManager#unregisterListener(SensorEventListener)} * instead. * * @param listener * a SensorListener object */ @Deprecated public void unregisterListener(SensorListener listener) { unregisterListener(listener, SENSOR_ALL | SENSOR_ORIENTATION_RAW); } /** * Unregisters a listener for the sensors with which it is registered. * * @param listener * a SensorEventListener object * * @param sensor * the sensor to unregister from * * @see #unregisterListener(SensorEventListener) * @see #registerListener(SensorEventListener, Sensor, int) * */ public void unregisterListener(SensorEventListener listener, Sensor sensor) { unregisterListener((Object)listener, sensor); } /** * Unregisters a listener for all sensors. * * @param listener * a SensorListener object * * @see #unregisterListener(SensorEventListener, Sensor) * @see #registerListener(SensorEventListener, Sensor, int) * */ public void unregisterListener(SensorEventListener listener) { unregisterListener((Object)listener); } /** * Registers a {@link android.hardware.SensorEventListener * SensorEventListener} for the given sensor. * * @param listener * A {@link android.hardware.SensorEventListener SensorEventListener} * object. * * @param sensor * The {@link android.hardware.Sensor Sensor} to register to. * * @param rate * The rate {@link android.hardware.SensorEvent sensor events} are * delivered at. This is only a hint to the system. Events may be * received faster or slower than the specified rate. Usually events * are received faster. The value must be one of * {@link #SENSOR_DELAY_NORMAL}, {@link #SENSOR_DELAY_UI}, * {@link #SENSOR_DELAY_GAME}, or {@link #SENSOR_DELAY_FASTEST} * or, the desired delay between events in microsecond. * * @return true if the sensor is supported and successfully * enabled. * * @see #registerListener(SensorEventListener, Sensor, int, Handler) * @see #unregisterListener(SensorEventListener) * @see #unregisterListener(SensorEventListener, Sensor) * */ public boolean registerListener(SensorEventListener listener, Sensor sensor, int rate) { return registerListener(listener, sensor, rate, null); } private boolean enableSensorLocked(Sensor sensor, int delay) { boolean result = false; for (ListenerDelegate i : sListeners) { if (i.hasSensor(sensor)) { String name = sensor.getName(); int handle = sensor.getHandle(); result = sensors_enable_sensor(sQueue, name, handle, delay); break; } } return result; } private boolean disableSensorLocked(Sensor sensor) { for (ListenerDelegate i : sListeners) { if (i.hasSensor(sensor)) { // not an error, it's just that this sensor is still in use return true; } } String name = sensor.getName(); int handle = sensor.getHandle(); return sensors_enable_sensor(sQueue, name, handle, SENSOR_DISABLE); } /** * Registers a {@link android.hardware.SensorEventListener * SensorEventListener} for the given sensor. * * @param listener * A {@link android.hardware.SensorEventListener SensorEventListener} * object. * * @param sensor * The {@link android.hardware.Sensor Sensor} to register to. * * @param rate * The rate {@link android.hardware.SensorEvent sensor events} are * delivered at. This is only a hint to the system. Events may be * received faster or slower than the specified rate. Usually events * are received faster. The value must be one of * {@link #SENSOR_DELAY_NORMAL}, {@link #SENSOR_DELAY_UI}, * {@link #SENSOR_DELAY_GAME}, or {@link #SENSOR_DELAY_FASTEST}. * or, the desired delay between events in microsecond. * * @param handler * The {@link android.os.Handler Handler} the * {@link android.hardware.SensorEvent sensor events} will be * delivered to. * * @return true if the sensor is supported and successfully enabled. * * @see #registerListener(SensorEventListener, Sensor, int) * @see #unregisterListener(SensorEventListener) * @see #unregisterListener(SensorEventListener, Sensor) * */ public boolean registerListener(SensorEventListener listener, Sensor sensor, int rate, Handler handler) { if (listener == null || sensor == null) { return false; } boolean result = true; int delay = -1; switch (rate) { case SENSOR_DELAY_FASTEST: delay = 0; break; case SENSOR_DELAY_GAME: delay = 20000; break; case SENSOR_DELAY_UI: delay = 60000; break; case SENSOR_DELAY_NORMAL: delay = 200000; break; default: delay = rate; break; } synchronized (sListeners) { // look for this listener in our list ListenerDelegate l = null; for (ListenerDelegate i : sListeners) { if (i.getListener() == listener) { l = i; break; } } // if we don't find it, add it to the list if (l == null) { l = new ListenerDelegate(listener, sensor, handler); sListeners.add(l); // if the list is not empty, start our main thread if (!sListeners.isEmpty()) { if (sSensorThread.startLocked()) { if (!enableSensorLocked(sensor, delay)) { // oops. there was an error sListeners.remove(l); result = false; } } else { // there was an error, remove the listener sListeners.remove(l); result = false; } } else { // weird, we couldn't add the listener result = false; } } else { l.addSensor(sensor); if (!enableSensorLocked(sensor, delay)) { // oops. there was an error l.removeSensor(sensor); result = false; } } } return result; } private void unregisterListener(Object listener, Sensor sensor) { if (listener == null || sensor == null) { return; } synchronized (sListeners) { final int size = sListeners.size(); for (int i=0 ; i * Computes the inclination matrix I as well as the rotation matrix * R transforming a vector from the device coordinate system to the * world's coordinate system which is defined as a direct orthonormal basis, * where: *

* *
    *
  • X is defined as the vector product Y.Z (It is tangential to * the ground at the device's current location and roughly points East).
  • *
  • Y is tangential to the ground at the device's current location and * points towards the magnetic North Pole.
  • *
  • Z points towards the sky and is perpendicular to the ground.
  • *
* *

*

World coordinate-system diagram.
*

* *

*


*

* By definition: *

* [0 0 g] = R * gravity (g = magnitude of gravity) *

* [0 m 0] = I * R * geomagnetic (m = magnitude of * geomagnetic field) *

* R is the identity matrix when the device is aligned with the * world's coordinate system, that is, when the device's X axis points * toward East, the Y axis points to the North Pole and the device is facing * the sky. * *

* I is a rotation matrix transforming the geomagnetic vector into * the same coordinate space as gravity (the world's coordinate space). * I is a simple rotation around the X axis. The inclination angle in * radians can be computed with {@link #getInclination}. *


* *

* Each matrix is returned either as a 3x3 or 4x4 row-major matrix depending * on the length of the passed array: *

* If the array length is 16: * *

     *   /  M[ 0]   M[ 1]   M[ 2]   M[ 3]  \
     *   |  M[ 4]   M[ 5]   M[ 6]   M[ 7]  |
     *   |  M[ 8]   M[ 9]   M[10]   M[11]  |
     *   \  M[12]   M[13]   M[14]   M[15]  /
     *
* * This matrix is ready to be used by OpenGL ES's * {@link javax.microedition.khronos.opengles.GL10#glLoadMatrixf(float[], int) * glLoadMatrixf(float[], int)}. *

* Note that because OpenGL matrices are column-major matrices you must * transpose the matrix before using it. However, since the matrix is a * rotation matrix, its transpose is also its inverse, conveniently, it is * often the inverse of the rotation that is needed for rendering; it can * therefore be used with OpenGL ES directly. *

* Also note that the returned matrices always have this form: * *

     *   /  M[ 0]   M[ 1]   M[ 2]   0  \
     *   |  M[ 4]   M[ 5]   M[ 6]   0  |
     *   |  M[ 8]   M[ 9]   M[10]   0  |
     *   \      0       0       0   1  /
     *
* *

* If the array length is 9: * *

     *   /  M[ 0]   M[ 1]   M[ 2]  \
     *   |  M[ 3]   M[ 4]   M[ 5]  |
     *   \  M[ 6]   M[ 7]   M[ 8]  /
     *
* *
*

* The inverse of each matrix can be computed easily by taking its * transpose. * *

* The matrices returned by this function are meaningful only when the * device is not free-falling and it is not close to the magnetic north. If * the device is accelerating, or placed into a strong magnetic field, the * returned matrices may be inaccurate. * * @param R * is an array of 9 floats holding the rotation matrix R when * this function returns. R can be null. *

* * @param I * is an array of 9 floats holding the rotation matrix I when * this function returns. I can be null. *

* * @param gravity * is an array of 3 floats containing the gravity vector expressed in * the device's coordinate. You can simply use the * {@link android.hardware.SensorEvent#values values} returned by a * {@link android.hardware.SensorEvent SensorEvent} of a * {@link android.hardware.Sensor Sensor} of type * {@link android.hardware.Sensor#TYPE_ACCELEROMETER * TYPE_ACCELEROMETER}. *

* * @param geomagnetic * is an array of 3 floats containing the geomagnetic vector * expressed in the device's coordinate. You can simply use the * {@link android.hardware.SensorEvent#values values} returned by a * {@link android.hardware.SensorEvent SensorEvent} of a * {@link android.hardware.Sensor Sensor} of type * {@link android.hardware.Sensor#TYPE_MAGNETIC_FIELD * TYPE_MAGNETIC_FIELD}. * * @return true on success, false on failure (for * instance, if the device is in free fall). On failure the output * matrices are not modified. * * @see #getInclination(float[]) * @see #getOrientation(float[], float[]) * @see #remapCoordinateSystem(float[], int, int, float[]) */ public static boolean getRotationMatrix(float[] R, float[] I, float[] gravity, float[] geomagnetic) { // TODO: move this to native code for efficiency float Ax = gravity[0]; float Ay = gravity[1]; float Az = gravity[2]; final float Ex = geomagnetic[0]; final float Ey = geomagnetic[1]; final float Ez = geomagnetic[2]; float Hx = Ey*Az - Ez*Ay; float Hy = Ez*Ax - Ex*Az; float Hz = Ex*Ay - Ey*Ax; final float normH = (float)Math.sqrt(Hx*Hx + Hy*Hy + Hz*Hz); if (normH < 0.1f) { // device is close to free fall (or in space?), or close to // magnetic north pole. Typical values are > 100. return false; } final float invH = 1.0f / normH; Hx *= invH; Hy *= invH; Hz *= invH; final float invA = 1.0f / (float)Math.sqrt(Ax*Ax + Ay*Ay + Az*Az); Ax *= invA; Ay *= invA; Az *= invA; final float Mx = Ay*Hz - Az*Hy; final float My = Az*Hx - Ax*Hz; final float Mz = Ax*Hy - Ay*Hx; if (R != null) { if (R.length == 9) { R[0] = Hx; R[1] = Hy; R[2] = Hz; R[3] = Mx; R[4] = My; R[5] = Mz; R[6] = Ax; R[7] = Ay; R[8] = Az; } else if (R.length == 16) { R[0] = Hx; R[1] = Hy; R[2] = Hz; R[3] = 0; R[4] = Mx; R[5] = My; R[6] = Mz; R[7] = 0; R[8] = Ax; R[9] = Ay; R[10] = Az; R[11] = 0; R[12] = 0; R[13] = 0; R[14] = 0; R[15] = 1; } } if (I != null) { // compute the inclination matrix by projecting the geomagnetic // vector onto the Z (gravity) and X (horizontal component // of geomagnetic vector) axes. final float invE = 1.0f / (float)Math.sqrt(Ex*Ex + Ey*Ey + Ez*Ez); final float c = (Ex*Mx + Ey*My + Ez*Mz) * invE; final float s = (Ex*Ax + Ey*Ay + Ez*Az) * invE; if (I.length == 9) { I[0] = 1; I[1] = 0; I[2] = 0; I[3] = 0; I[4] = c; I[5] = s; I[6] = 0; I[7] =-s; I[8] = c; } else if (I.length == 16) { I[0] = 1; I[1] = 0; I[2] = 0; I[4] = 0; I[5] = c; I[6] = s; I[8] = 0; I[9] =-s; I[10]= c; I[3] = I[7] = I[11] = I[12] = I[13] = I[14] = 0; I[15] = 1; } } return true; } /** * Computes the geomagnetic inclination angle in radians from the * inclination matrix I returned by {@link #getRotationMatrix}. * * @param I * inclination matrix see {@link #getRotationMatrix}. * * @return The geomagnetic inclination angle in radians. * * @see #getRotationMatrix(float[], float[], float[], float[]) * @see #getOrientation(float[], float[]) * @see GeomagneticField * */ public static float getInclination(float[] I) { if (I.length == 9) { return (float)Math.atan2(I[5], I[4]); } else { return (float)Math.atan2(I[6], I[5]); } } /** *

* Rotates the supplied rotation matrix so it is expressed in a different * coordinate system. This is typically used when an application needs to * compute the three orientation angles of the device (see * {@link #getOrientation}) in a different coordinate system. *

* *

* When the rotation matrix is used for drawing (for instance with OpenGL * ES), it usually doesn't need to be transformed by this function, * unless the screen is physically rotated, in which case you can use * {@link android.view.Display#getRotation() Display.getRotation()} to * retrieve the current rotation of the screen. Note that because the user * is generally free to rotate their screen, you often should consider the * rotation in deciding the parameters to use here. *

* *

* Examples: *

* *

    *
  • Using the camera (Y axis along the camera's axis) for an augmented * reality application where the rotation angles are needed:
  • * *

    *

      * remapCoordinateSystem(inR, AXIS_X, AXIS_Z, outR); *
    *

    * *
  • Using the device as a mechanical compass when rotation is * {@link android.view.Surface#ROTATION_90 Surface.ROTATION_90}:
  • * *

    *

      * remapCoordinateSystem(inR, AXIS_Y, AXIS_MINUS_X, outR); *
    *

    * * Beware of the above example. This call is needed only to account for a * rotation from its natural orientation when calculating the rotation * angles (see {@link #getOrientation}). If the rotation matrix is also used * for rendering, it may not need to be transformed, for instance if your * {@link android.app.Activity Activity} is running in landscape mode. *
* *

* Since the resulting coordinate system is orthonormal, only two axes need * to be specified. * * @param inR * the rotation matrix to be transformed. Usually it is the matrix * returned by {@link #getRotationMatrix}. * * @param X * defines on which world axis and direction the X axis of the device * is mapped. * * @param Y * defines on which world axis and direction the Y axis of the device * is mapped. * * @param outR * the transformed rotation matrix. inR and outR can be the same * array, but it is not recommended for performance reason. * * @return true on success. false if the input * parameters are incorrect, for instance if X and Y define the same * axis. Or if inR and outR don't have the same length. * * @see #getRotationMatrix(float[], float[], float[], float[]) */ public static boolean remapCoordinateSystem(float[] inR, int X, int Y, float[] outR) { if (inR == outR) { final float[] temp = mTempMatrix; synchronized(temp) { // we don't expect to have a lot of contention if (remapCoordinateSystemImpl(inR, X, Y, temp)) { final int size = outR.length; for (int i=0 ; i=0x80); final boolean sy = (Y>=0x80); final boolean sz = (Z>=0x80); // Perform R * r, in avoiding actual muls and adds. final int rowLength = ((length==16)?4:3); for (int j=0 ; j<3 ; j++) { final int offset = j*rowLength; for (int i=0 ; i<3 ; i++) { if (x==i) outR[offset+i] = sx ? -inR[offset+0] : inR[offset+0]; if (y==i) outR[offset+i] = sy ? -inR[offset+1] : inR[offset+1]; if (z==i) outR[offset+i] = sz ? -inR[offset+2] : inR[offset+2]; } } if (length == 16) { outR[3] = outR[7] = outR[11] = outR[12] = outR[13] = outR[14] = 0; outR[15] = 1; } return true; } /** * Computes the device's orientation based on the rotation matrix. *

* When it returns, the array values is filled with the result: *

    *
  • values[0]: azimuth, rotation around the Z axis.
  • *
  • values[1]: pitch, rotation around the X axis.
  • *
  • values[2]: roll, rotation around the Y axis.
  • *
*

The reference coordinate-system used is different from the world * coordinate-system defined for the rotation matrix:

*
    *
  • X is defined as the vector product Y.Z (It is tangential to * the ground at the device's current location and roughly points West).
  • *
  • Y is tangential to the ground at the device's current location and * points towards the magnetic North Pole.
  • *
  • Z points towards the center of the Earth and is perpendicular to the ground.
  • *
* *

*

Inverted world coordinate-system diagram.
*

*

* All three angles above are in radians and positive in the * counter-clockwise direction. * * @param R * rotation matrix see {@link #getRotationMatrix}. * * @param values * an array of 3 floats to hold the result. * * @return The array values passed as argument. * * @see #getRotationMatrix(float[], float[], float[], float[]) * @see GeomagneticField */ public static float[] getOrientation(float[] R, float values[]) { /* * 4x4 (length=16) case: * / R[ 0] R[ 1] R[ 2] 0 \ * | R[ 4] R[ 5] R[ 6] 0 | * | R[ 8] R[ 9] R[10] 0 | * \ 0 0 0 1 / * * 3x3 (length=9) case: * / R[ 0] R[ 1] R[ 2] \ * | R[ 3] R[ 4] R[ 5] | * \ R[ 6] R[ 7] R[ 8] / * */ if (R.length == 9) { values[0] = (float)Math.atan2(R[1], R[4]); values[1] = (float)Math.asin(-R[7]); values[2] = (float)Math.atan2(-R[6], R[8]); } else { values[0] = (float)Math.atan2(R[1], R[5]); values[1] = (float)Math.asin(-R[9]); values[2] = (float)Math.atan2(-R[8], R[10]); } return values; } /** * Computes the Altitude in meters from the atmospheric pressure and the * pressure at sea level. *

* Typically the atmospheric pressure is read from a * {@link Sensor#TYPE_PRESSURE} sensor. The pressure at sea level must be * known, usually it can be retrieved from airport databases in the * vicinity. If unknown, you can use {@link #PRESSURE_STANDARD_ATMOSPHERE} * as an approximation, but absolute altitudes won't be accurate. *

*

* To calculate altitude differences, you must calculate the difference * between the altitudes at both points. If you don't know the altitude * as sea level, you can use {@link #PRESSURE_STANDARD_ATMOSPHERE} instead, * which will give good results considering the range of pressure typically * involved. *

*

*

    * float altitude_difference = * getAltitude(SensorManager.PRESSURE_STANDARD_ATMOSPHERE, pressure_at_point2) * - getAltitude(SensorManager.PRESSURE_STANDARD_ATMOSPHERE, pressure_at_point1); *
*

* * @param p0 pressure at sea level * @param p atmospheric pressure * @return Altitude in meters */ public static float getAltitude(float p0, float p) { final float coef = 1.0f / 5.255f; return 44330.0f * (1.0f - (float)Math.pow(p/p0, coef)); } /** * {@hide} */ public void onRotationChanged(int rotation) { synchronized(sListeners) { sRotation = rotation; } } static int getRotation() { synchronized(sListeners) { return sRotation; } } private class LegacyListener implements SensorEventListener { private float mValues[] = new float[6]; @SuppressWarnings("deprecation") private SensorListener mTarget; private int mSensors; private final LmsFilter mYawfilter = new LmsFilter(); @SuppressWarnings("deprecation") LegacyListener(SensorListener target) { mTarget = target; mSensors = 0; } void registerSensor(int legacyType) { mSensors |= legacyType; } boolean unregisterSensor(int legacyType) { mSensors &= ~legacyType; int mask = SENSOR_ORIENTATION|SENSOR_ORIENTATION_RAW; if (((legacyType&mask)!=0) && ((mSensors&mask)!=0)) { return false; } return true; } @SuppressWarnings("deprecation") public void onAccuracyChanged(Sensor sensor, int accuracy) { try { mTarget.onAccuracyChanged(sensor.getLegacyType(), accuracy); } catch (AbstractMethodError e) { // old app that doesn't implement this method // just ignore it. } } @SuppressWarnings("deprecation") public void onSensorChanged(SensorEvent event) { final float v[] = mValues; v[0] = event.values[0]; v[1] = event.values[1]; v[2] = event.values[2]; int legacyType = event.sensor.getLegacyType(); mapSensorDataToWindow(legacyType, v, SensorManager.getRotation()); if (event.sensor.getType() == Sensor.TYPE_ORIENTATION) { if ((mSensors & SENSOR_ORIENTATION_RAW)!=0) { mTarget.onSensorChanged(SENSOR_ORIENTATION_RAW, v); } if ((mSensors & SENSOR_ORIENTATION)!=0) { v[0] = mYawfilter.filter(event.timestamp, v[0]); mTarget.onSensorChanged(SENSOR_ORIENTATION, v); } } else { mTarget.onSensorChanged(legacyType, v); } } /* * Helper function to convert the specified sensor's data to the windows's * coordinate space from the device's coordinate space. * * output: 3,4,5: values in the old API format * 0,1,2: transformed values in the old API format * */ private void mapSensorDataToWindow(int sensor, float[] values, int orientation) { float x = values[0]; float y = values[1]; float z = values[2]; switch (sensor) { case SensorManager.SENSOR_ORIENTATION: case SensorManager.SENSOR_ORIENTATION_RAW: z = -z; break; case SensorManager.SENSOR_ACCELEROMETER: x = -x; y = -y; z = -z; break; case SensorManager.SENSOR_MAGNETIC_FIELD: x = -x; y = -y; break; } values[0] = x; values[1] = y; values[2] = z; values[3] = x; values[4] = y; values[5] = z; if ((orientation & Surface.ROTATION_90) != 0) { // handles 90 and 270 rotation switch (sensor) { case SENSOR_ACCELEROMETER: case SENSOR_MAGNETIC_FIELD: values[0] =-y; values[1] = x; values[2] = z; break; case SENSOR_ORIENTATION: case SENSOR_ORIENTATION_RAW: values[0] = x + ((x < 270) ? 90 : -270); values[1] = z; values[2] = y; break; } } if ((orientation & Surface.ROTATION_180) != 0) { x = values[0]; y = values[1]; z = values[2]; // handles 180 (flip) and 270 (flip + 90) rotation switch (sensor) { case SENSOR_ACCELEROMETER: case SENSOR_MAGNETIC_FIELD: values[0] =-x; values[1] =-y; values[2] = z; break; case SENSOR_ORIENTATION: case SENSOR_ORIENTATION_RAW: values[0] = (x >= 180) ? (x - 180) : (x + 180); values[1] =-y; values[2] =-z; break; } } } } class LmsFilter { private static final int SENSORS_RATE_MS = 20; private static final int COUNT = 12; private static final float PREDICTION_RATIO = 1.0f/3.0f; private static final float PREDICTION_TIME = (SENSORS_RATE_MS*COUNT/1000.0f)*PREDICTION_RATIO; private float mV[] = new float[COUNT*2]; private float mT[] = new float[COUNT*2]; private int mIndex; public LmsFilter() { mIndex = COUNT; } public float filter(long time, float in) { float v = in; final float ns = 1.0f / 1000000000.0f; final float t = time*ns; float v1 = mV[mIndex]; if ((v-v1) > 180) { v -= 360; } else if ((v1-v) > 180) { v += 360; } /* Manage the circular buffer, we write the data twice spaced * by COUNT values, so that we don't have to copy the array * when it's full */ mIndex++; if (mIndex >= COUNT*2) mIndex = COUNT; mV[mIndex] = v; mT[mIndex] = t; mV[mIndex-COUNT] = v; mT[mIndex-COUNT] = t; float A, B, C, D, E; float a, b; int i; A = B = C = D = E = 0; for (i=0 ; i=0)?f:-f) >= 0.5f) f = f - (float)Math.ceil(f + 0.5f) + 1.0f; if (f < 0) f += 1.0f; f *= 360.0f; return f; } } /** Helper function to compute the angle change between two rotation matrices. * Given a current rotation matrix (R) and a previous rotation matrix * (prevR) computes the rotation around the x,y, and z axes which * transforms prevR to R. * outputs a 3 element vector containing the x,y, and z angle * change at indexes 0, 1, and 2 respectively. *

Each input matrix is either as a 3x3 or 4x4 row-major matrix * depending on the length of the passed array: *

If the array length is 9, then the array elements represent this matrix *

     *   /  R[ 0]   R[ 1]   R[ 2]   \
     *   |  R[ 3]   R[ 4]   R[ 5]   |
     *   \  R[ 6]   R[ 7]   R[ 8]   /
     *
*

If the array length is 16, then the array elements represent this matrix *

     *   /  R[ 0]   R[ 1]   R[ 2]   R[ 3]  \
     *   |  R[ 4]   R[ 5]   R[ 6]   R[ 7]  |
     *   |  R[ 8]   R[ 9]   R[10]   R[11]  |
     *   \  R[12]   R[13]   R[14]   R[15]  /
     *
* @param R current rotation matrix * @param prevR previous rotation matrix * @param angleChange an array of floats in which the angle change is stored */ public static void getAngleChange( float[] angleChange, float[] R, float[] prevR) { float rd1=0,rd4=0, rd6=0,rd7=0, rd8=0; float ri0=0,ri1=0,ri2=0,ri3=0,ri4=0,ri5=0,ri6=0,ri7=0,ri8=0; float pri0=0, pri1=0, pri2=0, pri3=0, pri4=0, pri5=0, pri6=0, pri7=0, pri8=0; int i, j, k; if(R.length == 9) { ri0 = R[0]; ri1 = R[1]; ri2 = R[2]; ri3 = R[3]; ri4 = R[4]; ri5 = R[5]; ri6 = R[6]; ri7 = R[7]; ri8 = R[8]; } else if(R.length == 16) { ri0 = R[0]; ri1 = R[1]; ri2 = R[2]; ri3 = R[4]; ri4 = R[5]; ri5 = R[6]; ri6 = R[8]; ri7 = R[9]; ri8 = R[10]; } if(prevR.length == 9) { pri0 = prevR[0]; pri1 = prevR[1]; pri2 = prevR[2]; pri3 = prevR[3]; pri4 = prevR[4]; pri5 = prevR[5]; pri6 = prevR[6]; pri7 = prevR[7]; pri8 = prevR[8]; } else if(prevR.length == 16) { pri0 = prevR[0]; pri1 = prevR[1]; pri2 = prevR[2]; pri3 = prevR[4]; pri4 = prevR[5]; pri5 = prevR[6]; pri6 = prevR[8]; pri7 = prevR[9]; pri8 = prevR[10]; } // calculate the parts of the rotation difference matrix we need // rd[i][j] = pri[0][i] * ri[0][j] + pri[1][i] * ri[1][j] + pri[2][i] * ri[2][j]; rd1 = pri0 * ri1 + pri3 * ri4 + pri6 * ri7; //rd[0][1] rd4 = pri1 * ri1 + pri4 * ri4 + pri7 * ri7; //rd[1][1] rd6 = pri2 * ri0 + pri5 * ri3 + pri8 * ri6; //rd[2][0] rd7 = pri2 * ri1 + pri5 * ri4 + pri8 * ri7; //rd[2][1] rd8 = pri2 * ri2 + pri5 * ri5 + pri8 * ri8; //rd[2][2] angleChange[0] = (float)Math.atan2(rd1, rd4); angleChange[1] = (float)Math.asin(-rd7); angleChange[2] = (float)Math.atan2(-rd6, rd8); } /** Helper function to convert a rotation vector to a rotation matrix. * Given a rotation vector (presumably from a ROTATION_VECTOR sensor), returns a * 9 or 16 element rotation matrix in the array R. R must have length 9 or 16. * If R.length == 9, the following matrix is returned: *
     *   /  R[ 0]   R[ 1]   R[ 2]   \
     *   |  R[ 3]   R[ 4]   R[ 5]   |
     *   \  R[ 6]   R[ 7]   R[ 8]   /
     *
* If R.length == 16, the following matrix is returned: *
     *   /  R[ 0]   R[ 1]   R[ 2]   0  \
     *   |  R[ 4]   R[ 5]   R[ 6]   0  |
     *   |  R[ 8]   R[ 9]   R[10]   0  |
     *   \  0       0       0       1  /
     *
* @param rotationVector the rotation vector to convert * @param R an array of floats in which to store the rotation matrix */ public static void getRotationMatrixFromVector(float[] R, float[] rotationVector) { float q0; float q1 = rotationVector[0]; float q2 = rotationVector[1]; float q3 = rotationVector[2]; if (rotationVector.length == 4) { q0 = rotationVector[3]; } else { q0 = 1 - q1*q1 - q2*q2 - q3*q3; q0 = (q0 > 0) ? (float)Math.sqrt(q0) : 0; } float sq_q1 = 2 * q1 * q1; float sq_q2 = 2 * q2 * q2; float sq_q3 = 2 * q3 * q3; float q1_q2 = 2 * q1 * q2; float q3_q0 = 2 * q3 * q0; float q1_q3 = 2 * q1 * q3; float q2_q0 = 2 * q2 * q0; float q2_q3 = 2 * q2 * q3; float q1_q0 = 2 * q1 * q0; if(R.length == 9) { R[0] = 1 - sq_q2 - sq_q3; R[1] = q1_q2 - q3_q0; R[2] = q1_q3 + q2_q0; R[3] = q1_q2 + q3_q0; R[4] = 1 - sq_q1 - sq_q3; R[5] = q2_q3 - q1_q0; R[6] = q1_q3 - q2_q0; R[7] = q2_q3 + q1_q0; R[8] = 1 - sq_q1 - sq_q2; } else if (R.length == 16) { R[0] = 1 - sq_q2 - sq_q3; R[1] = q1_q2 - q3_q0; R[2] = q1_q3 + q2_q0; R[3] = 0.0f; R[4] = q1_q2 + q3_q0; R[5] = 1 - sq_q1 - sq_q3; R[6] = q2_q3 - q1_q0; R[7] = 0.0f; R[8] = q1_q3 - q2_q0; R[9] = q2_q3 + q1_q0; R[10] = 1 - sq_q1 - sq_q2; R[11] = 0.0f; R[12] = R[13] = R[14] = 0.0f; R[15] = 1.0f; } } /** Helper function to convert a rotation vector to a normalized quaternion. * Given a rotation vector (presumably from a ROTATION_VECTOR sensor), returns a normalized * quaternion in the array Q. The quaternion is stored as [w, x, y, z] * @param rv the rotation vector to convert * @param Q an array of floats in which to store the computed quaternion */ public static void getQuaternionFromVector(float[] Q, float[] rv) { if (rv.length == 4) { Q[0] = rv[3]; } else { Q[0] = 1 - rv[0]*rv[0] - rv[1]*rv[1] - rv[2]*rv[2]; Q[0] = (Q[0] > 0) ? (float)Math.sqrt(Q[0]) : 0; } Q[1] = rv[0]; Q[2] = rv[1]; Q[3] = rv[2]; } private static native void nativeClassInit(); private static native int sensors_module_init(); private static native int sensors_module_get_next_sensor(Sensor sensor, int next); // Used within this module from outside SensorManager, don't make private static native int sensors_create_queue(); static native void sensors_destroy_queue(int queue); static native boolean sensors_enable_sensor(int queue, String name, int sensor, int enable); static native int sensors_data_poll(int queue, float[] values, int[] status, long[] timestamp); }