1/*
2 * Copyright (C) 2008 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16/*
17 * Garbage-collecting memory allocator.
18 */
19#include "Dalvik.h"
20#include "alloc/HeapBitmap.h"
21#include "alloc/Verify.h"
22#include "alloc/HeapTable.h"
23#include "alloc/Heap.h"
24#include "alloc/HeapInternal.h"
25#include "alloc/DdmHeap.h"
26#include "alloc/HeapSource.h"
27#include "alloc/MarkSweep.h"
28#include "alloc/Visit.h"
29
30#include "utils/threads.h"      // need Android thread priorities
31#define kInvalidPriority        10000
32
33#include <cutils/sched_policy.h>
34
35#include <sys/time.h>
36#include <sys/resource.h>
37#include <limits.h>
38#include <errno.h>
39
40static const char* GcReasonStr[] = {
41    [GC_FOR_MALLOC] = "GC_FOR_MALLOC",
42    [GC_CONCURRENT] = "GC_CONCURRENT",
43    [GC_EXPLICIT] = "GC_EXPLICIT",
44    [GC_EXTERNAL_ALLOC] = "GC_EXTERNAL_ALLOC",
45    [GC_HPROF_DUMP_HEAP] = "GC_HPROF_DUMP_HEAP"
46};
47
48/*
49 * Initialize the GC heap.
50 *
51 * Returns true if successful, false otherwise.
52 */
53bool dvmHeapStartup()
54{
55    GcHeap *gcHeap;
56
57#if defined(WITH_ALLOC_LIMITS)
58    gDvm.checkAllocLimits = false;
59    gDvm.allocationLimit = -1;
60#endif
61
62    gcHeap = dvmHeapSourceStartup(gDvm.heapSizeStart, gDvm.heapSizeMax);
63    if (gcHeap == NULL) {
64        return false;
65    }
66    gcHeap->heapWorkerCurrentObject = NULL;
67    gcHeap->heapWorkerCurrentMethod = NULL;
68    gcHeap->heapWorkerInterpStartTime = 0LL;
69    gcHeap->ddmHpifWhen = 0;
70    gcHeap->ddmHpsgWhen = 0;
71    gcHeap->ddmHpsgWhat = 0;
72    gcHeap->ddmNhsgWhen = 0;
73    gcHeap->ddmNhsgWhat = 0;
74#if WITH_HPROF
75    gcHeap->hprofDumpOnGc = false;
76    gcHeap->hprofContext = NULL;
77#endif
78    gDvm.gcHeap = gcHeap;
79
80    /* Set up the lists and lock we'll use for finalizable
81     * and reference objects.
82     */
83    dvmInitMutex(&gDvm.heapWorkerListLock);
84    gcHeap->finalizableRefs = NULL;
85    gcHeap->pendingFinalizationRefs = NULL;
86    gcHeap->referenceOperations = NULL;
87
88    if (!dvmCardTableStartup()) {
89        LOGE_HEAP("card table startup failed.");
90        return false;
91    }
92
93    /* Initialize the HeapWorker locks and other state
94     * that the GC uses.
95     */
96    dvmInitializeHeapWorkerState();
97
98    return true;
99}
100
101bool dvmHeapStartupAfterZygote(void)
102{
103    return dvmHeapSourceStartupAfterZygote();
104}
105
106void dvmHeapShutdown()
107{
108//TODO: make sure we're locked
109    if (gDvm.gcHeap != NULL) {
110        dvmCardTableShutdown();
111         /* Tables are allocated on the native heap; they need to be
112         * cleaned up explicitly.  The process may stick around, so we
113         * don't want to leak any native memory.
114         */
115        dvmHeapFreeLargeTable(gDvm.gcHeap->finalizableRefs);
116        gDvm.gcHeap->finalizableRefs = NULL;
117
118        dvmHeapFreeLargeTable(gDvm.gcHeap->pendingFinalizationRefs);
119        gDvm.gcHeap->pendingFinalizationRefs = NULL;
120
121        dvmHeapFreeLargeTable(gDvm.gcHeap->referenceOperations);
122        gDvm.gcHeap->referenceOperations = NULL;
123
124        /* Destroy the heap.  Any outstanding pointers will point to
125         * unmapped memory (unless/until someone else maps it).  This
126         * frees gDvm.gcHeap as a side-effect.
127         */
128        dvmHeapSourceShutdown(&gDvm.gcHeap);
129    }
130}
131
132/*
133 * Shutdown any threads internal to the heap.
134 */
135void dvmHeapThreadShutdown(void)
136{
137    dvmHeapSourceThreadShutdown();
138}
139
140/*
141 * We've been asked to allocate something we can't, e.g. an array so
142 * large that (length * elementWidth) is larger than 2^31.
143 *
144 * _The Java Programming Language_, 4th edition, says, "you can be sure
145 * that all SoftReferences to softly reachable objects will be cleared
146 * before an OutOfMemoryError is thrown."
147 *
148 * It's unclear whether that holds for all situations where an OOM can
149 * be thrown, or just in the context of an allocation that fails due
150 * to lack of heap space.  For simplicity we just throw the exception.
151 *
152 * (OOM due to actually running out of space is handled elsewhere.)
153 */
154void dvmThrowBadAllocException(const char* msg)
155{
156    dvmThrowException("Ljava/lang/OutOfMemoryError;", msg);
157}
158
159/*
160 * Grab the lock, but put ourselves into THREAD_VMWAIT if it looks like
161 * we're going to have to wait on the mutex.
162 */
163bool dvmLockHeap()
164{
165    if (dvmTryLockMutex(&gDvm.gcHeapLock) != 0) {
166        Thread *self;
167        ThreadStatus oldStatus;
168
169        self = dvmThreadSelf();
170        oldStatus = dvmChangeStatus(self, THREAD_VMWAIT);
171        dvmLockMutex(&gDvm.gcHeapLock);
172        dvmChangeStatus(self, oldStatus);
173    }
174
175    return true;
176}
177
178void dvmUnlockHeap()
179{
180    dvmUnlockMutex(&gDvm.gcHeapLock);
181}
182
183/* Pop an object from the list of pending finalizations and
184 * reference clears/enqueues, and return the object.
185 * The caller must call dvmReleaseTrackedAlloc()
186 * on the object when finished.
187 *
188 * Typically only called by the heap worker thread.
189 */
190Object *dvmGetNextHeapWorkerObject(HeapWorkerOperation *op)
191{
192    Object *obj;
193    GcHeap *gcHeap = gDvm.gcHeap;
194
195    assert(op != NULL);
196
197    dvmLockMutex(&gDvm.heapWorkerListLock);
198
199    obj = dvmHeapGetNextObjectFromLargeTable(&gcHeap->referenceOperations);
200    if (obj != NULL) {
201        *op = WORKER_ENQUEUE;
202    } else {
203        obj = dvmHeapGetNextObjectFromLargeTable(
204                &gcHeap->pendingFinalizationRefs);
205        if (obj != NULL) {
206            *op = WORKER_FINALIZE;
207        }
208    }
209
210    if (obj != NULL) {
211        /* Don't let the GC collect the object until the
212         * worker thread is done with it.
213         */
214        dvmAddTrackedAlloc(obj, NULL);
215    }
216
217    dvmUnlockMutex(&gDvm.heapWorkerListLock);
218
219    return obj;
220}
221
222/* Do a full garbage collection, which may grow the
223 * heap as a side-effect if the live set is large.
224 */
225static void gcForMalloc(bool collectSoftReferences)
226{
227    if (gDvm.allocProf.enabled) {
228        Thread* self = dvmThreadSelf();
229        gDvm.allocProf.gcCount++;
230        if (self != NULL) {
231            self->allocProf.gcCount++;
232        }
233    }
234    /* This may adjust the soft limit as a side-effect.
235     */
236    LOGD_HEAP("dvmMalloc initiating GC%s\n",
237            collectSoftReferences ? "(collect SoftReferences)" : "");
238    dvmCollectGarbageInternal(collectSoftReferences, GC_FOR_MALLOC);
239}
240
241/* Try as hard as possible to allocate some memory.
242 */
243static void *tryMalloc(size_t size)
244{
245    void *ptr;
246
247    /* Don't try too hard if there's no way the allocation is
248     * going to succeed.  We have to collect SoftReferences before
249     * throwing an OOME, though.
250     */
251    if (size >= gDvm.heapSizeMax) {
252        LOGW_HEAP("dvmMalloc(%zu/0x%08zx): "
253                "someone's allocating a huge buffer\n", size, size);
254        ptr = NULL;
255        goto collect_soft_refs;
256    }
257
258//TODO: figure out better heuristics
259//    There will be a lot of churn if someone allocates a bunch of
260//    big objects in a row, and we hit the frag case each time.
261//    A full GC for each.
262//    Maybe we grow the heap in bigger leaps
263//    Maybe we skip the GC if the size is large and we did one recently
264//      (number of allocations ago) (watch for thread effects)
265//    DeflateTest allocs a bunch of ~128k buffers w/in 0-5 allocs of each other
266//      (or, at least, there are only 0-5 objects swept each time)
267
268    ptr = dvmHeapSourceAlloc(size);
269    if (ptr != NULL) {
270        return ptr;
271    }
272
273    /*
274     * The allocation failed.  If the GC is running, block until it
275     * completes and retry.
276     */
277    if (gDvm.gcHeap->gcRunning) {
278        /*
279         * The GC is concurrently tracing the heap.  Release the heap
280         * lock, wait for the GC to complete, and retrying allocating.
281         */
282        dvmWaitForConcurrentGcToComplete();
283        ptr = dvmHeapSourceAlloc(size);
284        if (ptr != NULL) {
285            return ptr;
286        }
287    }
288    /*
289     * Another failure.  Our thread was starved or there may be too
290     * many live objects.  Try a foreground GC.  This will have no
291     * effect if the concurrent GC is already running.
292     */
293    gcForMalloc(false);
294    ptr = dvmHeapSourceAlloc(size);
295    if (ptr != NULL) {
296        return ptr;
297    }
298
299    /* Even that didn't work;  this is an exceptional state.
300     * Try harder, growing the heap if necessary.
301     */
302    ptr = dvmHeapSourceAllocAndGrow(size);
303    if (ptr != NULL) {
304        size_t newHeapSize;
305
306        newHeapSize = dvmHeapSourceGetIdealFootprint();
307//TODO: may want to grow a little bit more so that the amount of free
308//      space is equal to the old free space + the utilization slop for
309//      the new allocation.
310        LOGI_HEAP("Grow heap (frag case) to "
311                "%zu.%03zuMB for %zu-byte allocation\n",
312                FRACTIONAL_MB(newHeapSize), size);
313        return ptr;
314    }
315
316    /* Most allocations should have succeeded by now, so the heap
317     * is really full, really fragmented, or the requested size is
318     * really big.  Do another GC, collecting SoftReferences this
319     * time.  The VM spec requires that all SoftReferences have
320     * been collected and cleared before throwing an OOME.
321     */
322//TODO: wait for the finalizers from the previous GC to finish
323collect_soft_refs:
324    LOGI_HEAP("Forcing collection of SoftReferences for %zu-byte allocation\n",
325            size);
326    gcForMalloc(true);
327    ptr = dvmHeapSourceAllocAndGrow(size);
328    if (ptr != NULL) {
329        return ptr;
330    }
331//TODO: maybe wait for finalizers and try one last time
332
333    LOGE_HEAP("Out of memory on a %zd-byte allocation.\n", size);
334//TODO: tell the HeapSource to dump its state
335    dvmDumpThread(dvmThreadSelf(), false);
336
337    return NULL;
338}
339
340/* Throw an OutOfMemoryError if there's a thread to attach it to.
341 * Avoid recursing.
342 *
343 * The caller must not be holding the heap lock, or else the allocations
344 * in dvmThrowException() will deadlock.
345 */
346static void throwOOME()
347{
348    Thread *self;
349
350    if ((self = dvmThreadSelf()) != NULL) {
351        /* If the current (failing) dvmMalloc() happened as part of thread
352         * creation/attachment before the thread became part of the root set,
353         * we can't rely on the thread-local trackedAlloc table, so
354         * we can't keep track of a real allocated OOME object.  But, since
355         * the thread is in the process of being created, it won't have
356         * a useful stack anyway, so we may as well make things easier
357         * by throwing the (stackless) pre-built OOME.
358         */
359        if (dvmIsOnThreadList(self) && !self->throwingOOME) {
360            /* Let ourselves know that we tried to throw an OOM
361             * error in the normal way in case we run out of
362             * memory trying to allocate it inside dvmThrowException().
363             */
364            self->throwingOOME = true;
365
366            /* Don't include a description string;
367             * one fewer allocation.
368             */
369            dvmThrowException("Ljava/lang/OutOfMemoryError;", NULL);
370        } else {
371            /*
372             * This thread has already tried to throw an OutOfMemoryError,
373             * which probably means that we're running out of memory
374             * while recursively trying to throw.
375             *
376             * To avoid any more allocation attempts, "throw" a pre-built
377             * OutOfMemoryError object (which won't have a useful stack trace).
378             *
379             * Note that since this call can't possibly allocate anything,
380             * we don't care about the state of self->throwingOOME
381             * (which will usually already be set).
382             */
383            dvmSetException(self, gDvm.outOfMemoryObj);
384        }
385        /* We're done with the possible recursion.
386         */
387        self->throwingOOME = false;
388    }
389}
390
391/*
392 * Allocate storage on the GC heap.  We guarantee 8-byte alignment.
393 *
394 * The new storage is zeroed out.
395 *
396 * Note that, in rare cases, this could get called while a GC is in
397 * progress.  If a non-VM thread tries to attach itself through JNI,
398 * it will need to allocate some objects.  If this becomes annoying to
399 * deal with, we can block it at the source, but holding the allocation
400 * mutex should be enough.
401 *
402 * In rare circumstances (JNI AttachCurrentThread) we can be called
403 * from a non-VM thread.
404 *
405 * Use ALLOC_DONT_TRACK when we either don't want to track an allocation
406 * (because it's being done for the interpreter "new" operation and will
407 * be part of the root set immediately) or we can't (because this allocation
408 * is for a brand new thread).
409 *
410 * Returns NULL and throws an exception on failure.
411 *
412 * TODO: don't do a GC if the debugger thinks all threads are suspended
413 */
414void* dvmMalloc(size_t size, int flags)
415{
416    GcHeap *gcHeap = gDvm.gcHeap;
417    void *ptr;
418
419#if defined(WITH_ALLOC_LIMITS)
420    /*
421     * See if they've exceeded the allocation limit for this thread.
422     *
423     * A limit value of -1 means "no limit".
424     *
425     * This is enabled at compile time because it requires us to do a
426     * TLS lookup for the Thread pointer.  This has enough of a performance
427     * impact that we don't want to do it if we don't have to.  (Now that
428     * we're using gDvm.checkAllocLimits we may want to reconsider this,
429     * but it's probably still best to just compile the check out of
430     * production code -- one less thing to hit on every allocation.)
431     */
432    if (gDvm.checkAllocLimits) {
433        Thread* self = dvmThreadSelf();
434        if (self != NULL) {
435            int count = self->allocLimit;
436            if (count > 0) {
437                self->allocLimit--;
438            } else if (count == 0) {
439                /* fail! */
440                assert(!gDvm.initializing);
441                self->allocLimit = -1;
442                dvmThrowException("Ldalvik/system/AllocationLimitError;",
443                    "thread allocation limit exceeded");
444                return NULL;
445            }
446        }
447    }
448
449    if (gDvm.allocationLimit >= 0) {
450        assert(!gDvm.initializing);
451        gDvm.allocationLimit = -1;
452        dvmThrowException("Ldalvik/system/AllocationLimitError;",
453            "global allocation limit exceeded");
454        return NULL;
455    }
456#endif
457
458    dvmLockHeap();
459
460    /* Try as hard as possible to allocate some memory.
461     */
462    ptr = tryMalloc(size);
463    if (ptr != NULL) {
464        /* We've got the memory.
465         */
466        if ((flags & ALLOC_FINALIZABLE) != 0) {
467            /* This object is an instance of a class that
468             * overrides finalize().  Add it to the finalizable list.
469             */
470            if (!dvmHeapAddRefToLargeTable(&gcHeap->finalizableRefs,
471                                    (Object *)ptr))
472            {
473                LOGE_HEAP("dvmMalloc(): no room for any more "
474                        "finalizable objects\n");
475                dvmAbort();
476            }
477        }
478
479        if (gDvm.allocProf.enabled) {
480            Thread* self = dvmThreadSelf();
481            gDvm.allocProf.allocCount++;
482            gDvm.allocProf.allocSize += size;
483            if (self != NULL) {
484                self->allocProf.allocCount++;
485                self->allocProf.allocSize += size;
486            }
487        }
488    } else {
489        /* The allocation failed.
490         */
491
492        if (gDvm.allocProf.enabled) {
493            Thread* self = dvmThreadSelf();
494            gDvm.allocProf.failedAllocCount++;
495            gDvm.allocProf.failedAllocSize += size;
496            if (self != NULL) {
497                self->allocProf.failedAllocCount++;
498                self->allocProf.failedAllocSize += size;
499            }
500        }
501    }
502
503    dvmUnlockHeap();
504
505    if (ptr != NULL) {
506        /*
507         * If caller hasn't asked us not to track it, add it to the
508         * internal tracking list.
509         */
510        if ((flags & ALLOC_DONT_TRACK) == 0) {
511            dvmAddTrackedAlloc(ptr, NULL);
512        }
513    } else {
514        /*
515         * The allocation failed; throw an OutOfMemoryError.
516         */
517        throwOOME();
518    }
519
520    return ptr;
521}
522
523/*
524 * Returns true iff <obj> points to a valid allocated object.
525 */
526bool dvmIsValidObject(const Object* obj)
527{
528    /* Don't bother if it's NULL or not 8-byte aligned.
529     */
530    if (obj != NULL && ((uintptr_t)obj & (8-1)) == 0) {
531        /* Even if the heap isn't locked, this shouldn't return
532         * any false negatives.  The only mutation that could
533         * be happening is allocation, which means that another
534         * thread could be in the middle of a read-modify-write
535         * to add a new bit for a new object.  However, that
536         * RMW will have completed by the time any other thread
537         * could possibly see the new pointer, so there is no
538         * danger of dvmIsValidObject() being called on a valid
539         * pointer whose bit isn't set.
540         *
541         * Freeing will only happen during the sweep phase, which
542         * only happens while the heap is locked.
543         */
544        return dvmHeapSourceContains(obj);
545    }
546    return false;
547}
548
549size_t dvmObjectSizeInHeap(const Object *obj)
550{
551    return dvmHeapSourceChunkSize(obj);
552}
553
554static void verifyRootsAndHeap(void)
555{
556    dvmVerifyRoots();
557    dvmVerifyBitmap(dvmHeapSourceGetLiveBits());
558}
559
560/*
561 * Initiate garbage collection.
562 *
563 * NOTES:
564 * - If we don't hold gDvm.threadListLock, it's possible for a thread to
565 *   be added to the thread list while we work.  The thread should NOT
566 *   start executing, so this is only interesting when we start chasing
567 *   thread stacks.  (Before we do so, grab the lock.)
568 *
569 * We are not allowed to GC when the debugger has suspended the VM, which
570 * is awkward because debugger requests can cause allocations.  The easiest
571 * way to enforce this is to refuse to GC on an allocation made by the
572 * JDWP thread -- we have to expand the heap or fail.
573 */
574void dvmCollectGarbageInternal(bool clearSoftRefs, GcReason reason)
575{
576    GcHeap *gcHeap = gDvm.gcHeap;
577    u4 rootSuspend, rootSuspendTime, rootStart, rootEnd;
578    u4 dirtySuspend, dirtyStart, dirtyEnd;
579    u4 totalTime;
580    size_t numObjectsFreed, numBytesFreed;
581    size_t currAllocated, currFootprint;
582    size_t extAllocated, extLimit;
583    size_t percentFree;
584    GcMode gcMode;
585    int oldThreadPriority = kInvalidPriority;
586
587    /* The heap lock must be held.
588     */
589
590    if (gcHeap->gcRunning) {
591        LOGW_HEAP("Attempted recursive GC\n");
592        return;
593    }
594
595    gcMode = (reason == GC_FOR_MALLOC) ? GC_PARTIAL : GC_FULL;
596    gcHeap->gcRunning = true;
597
598    rootSuspend = dvmGetRelativeTimeMsec();
599    dvmSuspendAllThreads(SUSPEND_FOR_GC);
600    rootStart = dvmGetRelativeTimeMsec();
601    rootSuspendTime = rootStart - rootSuspend;
602
603    /*
604     * If we are not marking concurrently raise the priority of the
605     * thread performing the garbage collection.
606     */
607    if (reason != GC_CONCURRENT) {
608        /* Get the priority (the "nice" value) of the current thread.  The
609         * getpriority() call can legitimately return -1, so we have to
610         * explicitly test errno.
611         */
612        errno = 0;
613        int priorityResult = getpriority(PRIO_PROCESS, 0);
614        if (errno != 0) {
615            LOGI_HEAP("getpriority(self) failed: %s\n", strerror(errno));
616        } else if (priorityResult > ANDROID_PRIORITY_NORMAL) {
617            /* Current value is numerically greater than "normal", which
618             * in backward UNIX terms means lower priority.
619             */
620
621            if (priorityResult >= ANDROID_PRIORITY_BACKGROUND) {
622                set_sched_policy(dvmGetSysThreadId(), SP_FOREGROUND);
623            }
624
625            if (setpriority(PRIO_PROCESS, 0, ANDROID_PRIORITY_NORMAL) != 0) {
626                LOGI_HEAP("Unable to elevate priority from %d to %d\n",
627                          priorityResult, ANDROID_PRIORITY_NORMAL);
628            } else {
629                /* priority elevated; save value so we can restore it later */
630                LOGD_HEAP("Elevating priority from %d to %d\n",
631                          priorityResult, ANDROID_PRIORITY_NORMAL);
632                oldThreadPriority = priorityResult;
633            }
634        }
635    }
636
637    /* Wait for the HeapWorker thread to block.
638     * (It may also already be suspended in interp code,
639     * in which case it's not holding heapWorkerLock.)
640     */
641    dvmLockMutex(&gDvm.heapWorkerLock);
642
643    /* Make sure that the HeapWorker thread hasn't become
644     * wedged inside interp code.  If it has, this call will
645     * print a message and abort the VM.
646     */
647    dvmAssertHeapWorkerThreadRunning();
648
649    /* Lock the pendingFinalizationRefs list.
650     *
651     * Acquire the lock after suspending so the finalizer
652     * thread can't block in the RUNNING state while
653     * we try to suspend.
654     */
655    dvmLockMutex(&gDvm.heapWorkerListLock);
656
657    if (gDvm.preVerify) {
658        LOGV_HEAP("Verifying roots and heap before GC");
659        verifyRootsAndHeap();
660    }
661
662    dvmMethodTraceGCBegin();
663
664#if WITH_HPROF
665
666/* Set DUMP_HEAP_ON_DDMS_UPDATE to 1 to enable heap dumps
667 * whenever DDMS requests a heap update (HPIF chunk).
668 * The output files will appear in /data/misc, which must
669 * already exist.
670 * You must define "WITH_HPROF := true" in your buildspec.mk
671 * and recompile libdvm for this to work.
672 *
673 * To enable stack traces for each allocation, define
674 * "WITH_HPROF_STACK := true" in buildspec.mk.  This option slows down
675 * allocations and also requires 8 additional bytes per object on the
676 * GC heap.
677 */
678#define DUMP_HEAP_ON_DDMS_UPDATE 0
679#if DUMP_HEAP_ON_DDMS_UPDATE
680    gcHeap->hprofDumpOnGc |= (gcHeap->ddmHpifWhen != 0);
681#endif
682
683    if (gcHeap->hprofDumpOnGc) {
684        char nameBuf[128];
685
686        gcHeap->hprofResult = -1;
687
688        if (gcHeap->hprofFileName == NULL) {
689            /* no filename was provided; invent one */
690            sprintf(nameBuf, "/data/misc/heap-dump-tm%d-pid%d.hprof",
691                (int) time(NULL), (int) getpid());
692            gcHeap->hprofFileName = nameBuf;
693        }
694        gcHeap->hprofContext = hprofStartup(gcHeap->hprofFileName,
695                gcHeap->hprofFd, gcHeap->hprofDirectToDdms);
696        if (gcHeap->hprofContext != NULL) {
697            hprofStartHeapDump(gcHeap->hprofContext);
698        }
699        gcHeap->hprofDumpOnGc = false;
700        gcHeap->hprofFileName = NULL;
701    }
702#endif
703
704    /* Set up the marking context.
705     */
706    if (!dvmHeapBeginMarkStep(gcMode)) {
707        LOGE_HEAP("dvmHeapBeginMarkStep failed; aborting\n");
708        dvmAbort();
709    }
710
711    /* Mark the set of objects that are strongly reachable from the roots.
712     */
713    LOGD_HEAP("Marking...");
714    dvmHeapMarkRootSet();
715
716    /* dvmHeapScanMarkedObjects() will build the lists of known
717     * instances of the Reference classes.
718     */
719    gcHeap->softReferences = NULL;
720    gcHeap->weakReferences = NULL;
721    gcHeap->phantomReferences = NULL;
722
723    if (reason == GC_CONCURRENT) {
724        /*
725         * Resume threads while tracing from the roots.  We unlock the
726         * heap to allow mutator threads to allocate from free space.
727         */
728        rootEnd = dvmGetRelativeTimeMsec();
729        dvmClearCardTable();
730        dvmUnlockHeap();
731        dvmResumeAllThreads(SUSPEND_FOR_GC);
732    }
733
734    /* Recursively mark any objects that marked objects point to strongly.
735     * If we're not collecting soft references, soft-reachable
736     * objects will also be marked.
737     */
738    LOGD_HEAP("Recursing...");
739    dvmHeapScanMarkedObjects();
740
741    if (reason == GC_CONCURRENT) {
742        /*
743         * Re-acquire the heap lock and perform the final thread
744         * suspension.
745         */
746        dvmLockHeap();
747        dirtySuspend = dvmGetRelativeTimeMsec();
748        dvmSuspendAllThreads(SUSPEND_FOR_GC);
749        dirtyStart = dvmGetRelativeTimeMsec();
750        /*
751         * As no barrier intercepts root updates, we conservatively
752         * assume all roots may be gray and re-mark them.
753         */
754        dvmHeapReMarkRootSet();
755        /*
756         * With the exception of reference objects and weak interned
757         * strings, all gray objects should now be on dirty cards.
758         */
759        if (gDvm.verifyCardTable) {
760            dvmVerifyCardTable();
761        }
762        /*
763         * Recursively mark gray objects pointed to by the roots or by
764         * heap objects dirtied during the concurrent mark.
765         */
766        dvmHeapReScanMarkedObjects();
767    }
768
769    /* All strongly-reachable objects have now been marked.
770     */
771    LOGD_HEAP("Handling soft references...");
772    if (!clearSoftRefs) {
773        dvmHandleSoftRefs(&gcHeap->softReferences);
774    }
775    dvmClearWhiteRefs(&gcHeap->softReferences);
776
777    LOGD_HEAP("Handling weak references...");
778    dvmClearWhiteRefs(&gcHeap->weakReferences);
779
780    /* Once all weak-reachable objects have been taken
781     * care of, any remaining unmarked objects can be finalized.
782     */
783    LOGD_HEAP("Finding finalizations...");
784    dvmHeapScheduleFinalizations();
785
786    LOGD_HEAP("Handling f-reachable soft references...");
787    dvmClearWhiteRefs(&gcHeap->softReferences);
788
789    LOGD_HEAP("Handling f-reachable weak references...");
790    dvmClearWhiteRefs(&gcHeap->weakReferences);
791
792    /* Any remaining objects that are not pending finalization
793     * could be phantom-reachable.  This will mark any phantom-reachable
794     * objects, as well as enqueue their references.
795     */
796    LOGD_HEAP("Handling phantom references...");
797    dvmClearWhiteRefs(&gcHeap->phantomReferences);
798
799#if defined(WITH_JIT)
800    /*
801     * Patching a chaining cell is very cheap as it only updates 4 words. It's
802     * the overhead of stopping all threads and synchronizing the I/D cache
803     * that makes it expensive.
804     *
805     * Therefore we batch those work orders in a queue and go through them
806     * when threads are suspended for GC.
807     */
808    dvmCompilerPerformSafePointChecks();
809#endif
810
811    LOGD_HEAP("Sweeping...");
812
813    dvmHeapSweepSystemWeaks();
814
815    /*
816     * Live objects have a bit set in the mark bitmap, swap the mark
817     * and live bitmaps.  The sweep can proceed concurrently viewing
818     * the new live bitmap as the old mark bitmap, and vice versa.
819     */
820    dvmHeapSourceSwapBitmaps();
821
822    if (gDvm.postVerify) {
823        LOGV_HEAP("Verifying roots and heap after GC");
824        verifyRootsAndHeap();
825    }
826
827    if (reason == GC_CONCURRENT) {
828        dirtyEnd = dvmGetRelativeTimeMsec();
829        dvmUnlockHeap();
830        dvmResumeAllThreads(SUSPEND_FOR_GC);
831    }
832    dvmHeapSweepUnmarkedObjects(gcMode, reason == GC_CONCURRENT,
833                                &numObjectsFreed, &numBytesFreed);
834    LOGD_HEAP("Cleaning up...");
835    dvmHeapFinishMarkStep();
836    if (reason == GC_CONCURRENT) {
837        dvmLockHeap();
838    }
839
840    LOGD_HEAP("Done.");
841
842    /* Now's a good time to adjust the heap size, since
843     * we know what our utilization is.
844     *
845     * This doesn't actually resize any memory;
846     * it just lets the heap grow more when necessary.
847     */
848    if (reason != GC_EXTERNAL_ALLOC) {
849        dvmHeapSourceGrowForUtilization();
850    }
851
852    currAllocated = dvmHeapSourceGetValue(HS_BYTES_ALLOCATED, NULL, 0);
853    currFootprint = dvmHeapSourceGetValue(HS_FOOTPRINT, NULL, 0);
854
855#if WITH_HPROF
856    if (gcHeap->hprofContext != NULL) {
857        hprofFinishHeapDump(gcHeap->hprofContext);
858//TODO: write a HEAP_SUMMARY record
859        if (hprofShutdown(gcHeap->hprofContext))
860            gcHeap->hprofResult = 0;    /* indicate success */
861        gcHeap->hprofContext = NULL;
862    }
863#endif
864
865    /* Now that we've freed up the GC heap, return any large
866     * free chunks back to the system.  They'll get paged back
867     * in the next time they're used.  Don't do it immediately,
868     * though;  if the process is still allocating a bunch of
869     * memory, we'll be taking a ton of page faults that we don't
870     * necessarily need to.
871     *
872     * Cancel any old scheduled trims, and schedule a new one.
873     */
874    dvmScheduleHeapSourceTrim(5);  // in seconds
875
876    dvmMethodTraceGCEnd();
877    LOGV_HEAP("GC finished");
878
879    gcHeap->gcRunning = false;
880
881    LOGV_HEAP("Resuming threads");
882    dvmUnlockMutex(&gDvm.heapWorkerListLock);
883    dvmUnlockMutex(&gDvm.heapWorkerLock);
884
885    if (reason == GC_CONCURRENT) {
886        /*
887         * Wake-up any threads that blocked after a failed allocation
888         * request.
889         */
890        dvmBroadcastCond(&gDvm.gcHeapCond);
891    }
892
893    if (reason != GC_CONCURRENT) {
894        dirtyEnd = dvmGetRelativeTimeMsec();
895        dvmResumeAllThreads(SUSPEND_FOR_GC);
896        if (oldThreadPriority != kInvalidPriority) {
897            if (setpriority(PRIO_PROCESS, 0, oldThreadPriority) != 0) {
898                LOGW_HEAP("Unable to reset priority to %d: %s\n",
899                          oldThreadPriority, strerror(errno));
900            } else {
901                LOGD_HEAP("Reset priority to %d\n", oldThreadPriority);
902            }
903
904            if (oldThreadPriority >= ANDROID_PRIORITY_BACKGROUND) {
905                set_sched_policy(dvmGetSysThreadId(), SP_BACKGROUND);
906            }
907        }
908    }
909
910    extAllocated = dvmHeapSourceGetValue(HS_EXTERNAL_BYTES_ALLOCATED, NULL, 0);
911    extLimit = dvmHeapSourceGetValue(HS_EXTERNAL_LIMIT, NULL, 0);
912    percentFree = 100 - (size_t)(100.0f * (float)currAllocated / currFootprint);
913    if (reason != GC_CONCURRENT) {
914        u4 markSweepTime = dirtyEnd - rootStart;
915        bool isSmall = numBytesFreed > 0 && numBytesFreed < 1024;
916        totalTime = rootSuspendTime + markSweepTime;
917        LOGD("%s freed %s%zdK, %d%% free %zdK/%zdK, external %zdK/%zdK, "
918             "paused %ums",
919             GcReasonStr[reason],
920             isSmall ? "<" : "",
921             numBytesFreed ? MAX(numBytesFreed / 1024, 1) : 0,
922             percentFree,
923             currAllocated / 1024, currFootprint / 1024,
924             extAllocated / 1024, extLimit / 1024,
925             markSweepTime);
926    } else {
927        u4 rootTime = rootEnd - rootStart;
928        u4 dirtySuspendTime = dirtyStart - dirtySuspend;
929        u4 dirtyTime = dirtyEnd - dirtyStart;
930        bool isSmall = numBytesFreed > 0 && numBytesFreed < 1024;
931        totalTime = rootSuspendTime + rootTime + dirtySuspendTime + dirtyTime;
932        LOGD("%s freed %s%zdK, %d%% free %zdK/%zdK, external %zdK/%zdK, "
933             "paused %ums+%ums",
934             GcReasonStr[reason],
935             isSmall ? "<" : "",
936             numBytesFreed ? MAX(numBytesFreed / 1024, 1) : 0,
937             percentFree,
938             currAllocated / 1024, currFootprint / 1024,
939             extAllocated / 1024, extLimit / 1024,
940             rootTime, dirtyTime);
941    }
942    dvmLogGcStats(numObjectsFreed, numBytesFreed, totalTime);
943    if (gcHeap->ddmHpifWhen != 0) {
944        LOGD_HEAP("Sending VM heap info to DDM\n");
945        dvmDdmSendHeapInfo(gcHeap->ddmHpifWhen, false);
946    }
947    if (gcHeap->ddmHpsgWhen != 0) {
948        LOGD_HEAP("Dumping VM heap to DDM\n");
949        dvmDdmSendHeapSegments(false, false);
950    }
951    if (gcHeap->ddmNhsgWhen != 0) {
952        LOGD_HEAP("Dumping native heap to DDM\n");
953        dvmDdmSendHeapSegments(false, true);
954    }
955}
956
957void dvmWaitForConcurrentGcToComplete(void)
958{
959    Thread *self = dvmThreadSelf();
960    ThreadStatus oldStatus;
961    assert(self != NULL);
962    oldStatus = dvmChangeStatus(self, THREAD_VMWAIT);
963    dvmWaitCond(&gDvm.gcHeapCond, &gDvm.gcHeapLock);
964    dvmChangeStatus(self, oldStatus);
965}
966
967#if WITH_HPROF
968/*
969 * Perform garbage collection, writing heap information to the specified file.
970 *
971 * If "fd" is >= 0, the output will be written to that file descriptor.
972 * Otherwise, "fileName" is used to create an output file.
973 *
974 * If "fileName" is NULL, a suitable name will be generated automatically.
975 * (TODO: remove this when the SIGUSR1 feature goes away)
976 *
977 * If "directToDdms" is set, the other arguments are ignored, and data is
978 * sent directly to DDMS.
979 *
980 * Returns 0 on success, or an error code on failure.
981 */
982int hprofDumpHeap(const char* fileName, int fd, bool directToDdms)
983{
984    int result;
985
986    dvmLockMutex(&gDvm.gcHeapLock);
987
988    gDvm.gcHeap->hprofDumpOnGc = true;
989    gDvm.gcHeap->hprofFileName = fileName;
990    gDvm.gcHeap->hprofFd = fd;
991    gDvm.gcHeap->hprofDirectToDdms = directToDdms;
992    dvmCollectGarbageInternal(false, GC_HPROF_DUMP_HEAP);
993    result = gDvm.gcHeap->hprofResult;
994
995    dvmUnlockMutex(&gDvm.gcHeapLock);
996
997    return result;
998}
999
1000void dvmHeapSetHprofGcScanState(hprof_heap_tag_t state, u4 threadSerialNumber)
1001{
1002    if (gDvm.gcHeap->hprofContext != NULL) {
1003        hprofSetGcScanState(gDvm.gcHeap->hprofContext, state,
1004                threadSerialNumber);
1005    }
1006}
1007#endif
1008