1/*
2******************************************************************************
3*   Copyright (C) 1997-2008, International Business Machines
4*   Corporation and others.  All Rights Reserved.
5******************************************************************************
6*   file name:  nfrule.cpp
7*   encoding:   US-ASCII
8*   tab size:   8 (not used)
9*   indentation:4
10*
11* Modification history
12* Date        Name      Comments
13* 10/11/2001  Doug      Ported from ICU4J
14*/
15
16#include "nfrule.h"
17
18#if U_HAVE_RBNF
19
20#include "unicode/rbnf.h"
21#include "unicode/tblcoll.h"
22#include "unicode/coleitr.h"
23#include "unicode/uchar.h"
24#include "nfrs.h"
25#include "nfrlist.h"
26#include "nfsubs.h"
27
28#include "../common/util.h"
29
30U_NAMESPACE_BEGIN
31
32NFRule::NFRule(const RuleBasedNumberFormat* _rbnf)
33  : baseValue((int32_t)0)
34  , radix(0)
35  , exponent(0)
36  , ruleText()
37  , sub1(NULL)
38  , sub2(NULL)
39  , formatter(_rbnf)
40{
41}
42
43NFRule::~NFRule()
44{
45  delete sub1;
46  delete sub2;
47}
48
49static const UChar gLeftBracket = 0x005b;
50static const UChar gRightBracket = 0x005d;
51static const UChar gColon = 0x003a;
52static const UChar gZero = 0x0030;
53static const UChar gNine = 0x0039;
54static const UChar gSpace = 0x0020;
55static const UChar gSlash = 0x002f;
56static const UChar gGreaterThan = 0x003e;
57static const UChar gLessThan = 0x003c;
58static const UChar gComma = 0x002c;
59static const UChar gDot = 0x002e;
60static const UChar gTick = 0x0027;
61//static const UChar gMinus = 0x002d;
62static const UChar gSemicolon = 0x003b;
63
64static const UChar gMinusX[] =                  {0x2D, 0x78, 0};    /* "-x" */
65static const UChar gXDotX[] =                   {0x78, 0x2E, 0x78, 0}; /* "x.x" */
66static const UChar gXDotZero[] =                {0x78, 0x2E, 0x30, 0}; /* "x.0" */
67static const UChar gZeroDotX[] =                {0x30, 0x2E, 0x78, 0}; /* "0.x" */
68
69static const UChar gLessLess[] =                {0x3C, 0x3C, 0};    /* "<<" */
70static const UChar gLessPercent[] =             {0x3C, 0x25, 0};    /* "<%" */
71static const UChar gLessHash[] =                {0x3C, 0x23, 0};    /* "<#" */
72static const UChar gLessZero[] =                {0x3C, 0x30, 0};    /* "<0" */
73static const UChar gGreaterGreater[] =          {0x3E, 0x3E, 0};    /* ">>" */
74static const UChar gGreaterPercent[] =          {0x3E, 0x25, 0};    /* ">%" */
75static const UChar gGreaterHash[] =             {0x3E, 0x23, 0};    /* ">#" */
76static const UChar gGreaterZero[] =             {0x3E, 0x30, 0};    /* ">0" */
77static const UChar gEqualPercent[] =            {0x3D, 0x25, 0};    /* "=%" */
78static const UChar gEqualHash[] =               {0x3D, 0x23, 0};    /* "=#" */
79static const UChar gEqualZero[] =               {0x3D, 0x30, 0};    /* "=0" */
80static const UChar gEmptyString[] =             {0};                /* "" */
81static const UChar gGreaterGreaterGreater[] =   {0x3E, 0x3E, 0x3E, 0}; /* ">>>" */
82
83static const UChar * const tokenStrings[] = {
84    gLessLess, gLessPercent, gLessHash, gLessZero,
85    gGreaterGreater, gGreaterPercent,gGreaterHash, gGreaterZero,
86    gEqualPercent, gEqualHash, gEqualZero, NULL
87};
88
89void
90NFRule::makeRules(UnicodeString& description,
91                  const NFRuleSet *ruleSet,
92                  const NFRule *predecessor,
93                  const RuleBasedNumberFormat *rbnf,
94                  NFRuleList& rules,
95                  UErrorCode& status)
96{
97    // we know we're making at least one rule, so go ahead and
98    // new it up and initialize its basevalue and divisor
99    // (this also strips the rule descriptor, if any, off the
100    // descripton string)
101    NFRule* rule1 = new NFRule(rbnf);
102    /* test for NULL */
103    if (rule1 == 0) {
104        status = U_MEMORY_ALLOCATION_ERROR;
105        return;
106    }
107    rule1->parseRuleDescriptor(description, status);
108
109    // check the description to see whether there's text enclosed
110    // in brackets
111    int32_t brack1 = description.indexOf(gLeftBracket);
112    int32_t brack2 = description.indexOf(gRightBracket);
113
114    // if the description doesn't contain a matched pair of brackets,
115    // or if it's of a type that doesn't recognize bracketed text,
116    // then leave the description alone, initialize the rule's
117    // rule text and substitutions, and return that rule
118    if (brack1 == -1 || brack2 == -1 || brack1 > brack2
119        || rule1->getType() == kProperFractionRule
120        || rule1->getType() == kNegativeNumberRule) {
121        rule1->ruleText = description;
122        rule1->extractSubstitutions(ruleSet, predecessor, rbnf, status);
123        rules.add(rule1);
124    } else {
125        // if the description does contain a matched pair of brackets,
126        // then it's really shorthand for two rules (with one exception)
127        NFRule* rule2 = NULL;
128        UnicodeString sbuf;
129
130        // we'll actually only split the rule into two rules if its
131        // base value is an even multiple of its divisor (or it's one
132        // of the special rules)
133        if ((rule1->baseValue > 0
134            && (rule1->baseValue % util64_pow(rule1->radix, rule1->exponent)) == 0)
135            || rule1->getType() == kImproperFractionRule
136            || rule1->getType() == kMasterRule) {
137
138            // if it passes that test, new up the second rule.  If the
139            // rule set both rules will belong to is a fraction rule
140            // set, they both have the same base value; otherwise,
141            // increment the original rule's base value ("rule1" actually
142            // goes SECOND in the rule set's rule list)
143            rule2 = new NFRule(rbnf);
144            /* test for NULL */
145            if (rule2 == 0) {
146                status = U_MEMORY_ALLOCATION_ERROR;
147                return;
148            }
149            if (rule1->baseValue >= 0) {
150                rule2->baseValue = rule1->baseValue;
151                if (!ruleSet->isFractionRuleSet()) {
152                    ++rule1->baseValue;
153                }
154            }
155
156            // if the description began with "x.x" and contains bracketed
157            // text, it describes both the improper fraction rule and
158            // the proper fraction rule
159            else if (rule1->getType() == kImproperFractionRule) {
160                rule2->setType(kProperFractionRule);
161            }
162
163            // if the description began with "x.0" and contains bracketed
164            // text, it describes both the master rule and the
165            // improper fraction rule
166            else if (rule1->getType() == kMasterRule) {
167                rule2->baseValue = rule1->baseValue;
168                rule1->setType(kImproperFractionRule);
169            }
170
171            // both rules have the same radix and exponent (i.e., the
172            // same divisor)
173            rule2->radix = rule1->radix;
174            rule2->exponent = rule1->exponent;
175
176            // rule2's rule text omits the stuff in brackets: initalize
177            // its rule text and substitutions accordingly
178            sbuf.append(description, 0, brack1);
179            if (brack2 + 1 < description.length()) {
180                sbuf.append(description, brack2 + 1, description.length() - brack2 - 1);
181            }
182            rule2->ruleText.setTo(sbuf);
183            rule2->extractSubstitutions(ruleSet, predecessor, rbnf, status);
184        }
185
186        // rule1's text includes the text in the brackets but omits
187        // the brackets themselves: initialize _its_ rule text and
188        // substitutions accordingly
189        sbuf.setTo(description, 0, brack1);
190        sbuf.append(description, brack1 + 1, brack2 - brack1 - 1);
191        if (brack2 + 1 < description.length()) {
192            sbuf.append(description, brack2 + 1, description.length() - brack2 - 1);
193        }
194        rule1->ruleText.setTo(sbuf);
195        rule1->extractSubstitutions(ruleSet, predecessor, rbnf, status);
196
197        // if we only have one rule, return it; if we have two, return
198        // a two-element array containing them (notice that rule2 goes
199        // BEFORE rule1 in the list: in all cases, rule2 OMITS the
200        // material in the brackets and rule1 INCLUDES the material
201        // in the brackets)
202        if (rule2 != NULL) {
203            rules.add(rule2);
204        }
205        rules.add(rule1);
206    }
207}
208
209/**
210 * This function parses the rule's rule descriptor (i.e., the base
211 * value and/or other tokens that precede the rule's rule text
212 * in the description) and sets the rule's base value, radix, and
213 * exponent according to the descriptor.  (If the description doesn't
214 * include a rule descriptor, then this function sets everything to
215 * default values and the rule set sets the rule's real base value).
216 * @param description The rule's description
217 * @return If "description" included a rule descriptor, this is
218 * "description" with the descriptor and any trailing whitespace
219 * stripped off.  Otherwise; it's "descriptor" unchangd.
220 */
221void
222NFRule::parseRuleDescriptor(UnicodeString& description, UErrorCode& status)
223{
224    // the description consists of a rule descriptor and a rule body,
225    // separated by a colon.  The rule descriptor is optional.  If
226    // it's omitted, just set the base value to 0.
227    int32_t p = description.indexOf(gColon);
228    if (p == -1) {
229        setBaseValue((int32_t)0, status);
230    } else {
231        // copy the descriptor out into its own string and strip it,
232        // along with any trailing whitespace, out of the original
233        // description
234        UnicodeString descriptor;
235        descriptor.setTo(description, 0, p);
236
237        ++p;
238        while (p < description.length() && uprv_isRuleWhiteSpace(description.charAt(p))) {
239            ++p;
240        }
241        description.removeBetween(0, p);
242
243        // check first to see if the rule descriptor matches the token
244        // for one of the special rules.  If it does, set the base
245        // value to the correct identfier value
246        if (descriptor == gMinusX) {
247            setType(kNegativeNumberRule);
248        }
249        else if (descriptor == gXDotX) {
250            setType(kImproperFractionRule);
251        }
252        else if (descriptor == gZeroDotX) {
253            setType(kProperFractionRule);
254        }
255        else if (descriptor == gXDotZero) {
256            setType(kMasterRule);
257        }
258
259        // if the rule descriptor begins with a digit, it's a descriptor
260        // for a normal rule
261        // since we don't have Long.parseLong, and this isn't much work anyway,
262        // just build up the value as we encounter the digits.
263        else if (descriptor.charAt(0) >= gZero && descriptor.charAt(0) <= gNine) {
264            int64_t val = 0;
265            p = 0;
266            UChar c = gSpace;
267
268            // begin parsing the descriptor: copy digits
269            // into "tempValue", skip periods, commas, and spaces,
270            // stop on a slash or > sign (or at the end of the string),
271            // and throw an exception on any other character
272            int64_t ll_10 = 10;
273            while (p < descriptor.length()) {
274                c = descriptor.charAt(p);
275                if (c >= gZero && c <= gNine) {
276                    val = val * ll_10 + (int32_t)(c - gZero);
277                }
278                else if (c == gSlash || c == gGreaterThan) {
279                    break;
280                }
281                else if (uprv_isRuleWhiteSpace(c) || c == gComma || c == gDot) {
282                }
283                else {
284                    // throw new IllegalArgumentException("Illegal character in rule descriptor");
285                    status = U_PARSE_ERROR;
286                    return;
287                }
288                ++p;
289            }
290
291            // we have the base value, so set it
292            setBaseValue(val, status);
293
294            // if we stopped the previous loop on a slash, we're
295            // now parsing the rule's radix.  Again, accumulate digits
296            // in tempValue, skip punctuation, stop on a > mark, and
297            // throw an exception on anything else
298            if (c == gSlash) {
299                val = 0;
300                ++p;
301                int64_t ll_10 = 10;
302                while (p < descriptor.length()) {
303                    c = descriptor.charAt(p);
304                    if (c >= gZero && c <= gNine) {
305                        val = val * ll_10 + (int32_t)(c - gZero);
306                    }
307                    else if (c == gGreaterThan) {
308                        break;
309                    }
310                    else if (uprv_isRuleWhiteSpace(c) || c == gComma || c == gDot) {
311                    }
312                    else {
313                        // throw new IllegalArgumentException("Illegal character is rule descriptor");
314                        status = U_PARSE_ERROR;
315                        return;
316                    }
317                    ++p;
318                }
319
320                // tempValue now contain's the rule's radix.  Set it
321                // accordingly, and recalculate the rule's exponent
322                radix = (int32_t)val;
323                if (radix == 0) {
324                    // throw new IllegalArgumentException("Rule can't have radix of 0");
325                    status = U_PARSE_ERROR;
326                }
327
328                exponent = expectedExponent();
329            }
330
331            // if we stopped the previous loop on a > sign, then continue
332            // for as long as we still see > signs.  For each one,
333            // decrement the exponent (unless the exponent is already 0).
334            // If we see another character before reaching the end of
335            // the descriptor, that's also a syntax error.
336            if (c == gGreaterThan) {
337                while (p < descriptor.length()) {
338                    c = descriptor.charAt(p);
339                    if (c == gGreaterThan && exponent > 0) {
340                        --exponent;
341                    } else {
342                        // throw new IllegalArgumentException("Illegal character in rule descriptor");
343                        status = U_PARSE_ERROR;
344                        return;
345                    }
346                    ++p;
347                }
348            }
349        }
350    }
351
352    // finally, if the rule body begins with an apostrophe, strip it off
353    // (this is generally used to put whitespace at the beginning of
354    // a rule's rule text)
355    if (description.length() > 0 && description.charAt(0) == gTick) {
356        description.removeBetween(0, 1);
357    }
358
359    // return the description with all the stuff we've just waded through
360    // stripped off the front.  It now contains just the rule body.
361    // return description;
362}
363
364/**
365* Searches the rule's rule text for the substitution tokens,
366* creates the substitutions, and removes the substitution tokens
367* from the rule's rule text.
368* @param owner The rule set containing this rule
369* @param predecessor The rule preseding this one in "owners" rule list
370* @param ownersOwner The RuleBasedFormat that owns this rule
371*/
372void
373NFRule::extractSubstitutions(const NFRuleSet* ruleSet,
374                             const NFRule* predecessor,
375                             const RuleBasedNumberFormat* rbnf,
376                             UErrorCode& status)
377{
378    if (U_SUCCESS(status)) {
379        sub1 = extractSubstitution(ruleSet, predecessor, rbnf, status);
380        sub2 = extractSubstitution(ruleSet, predecessor, rbnf, status);
381    }
382}
383
384/**
385* Searches the rule's rule text for the first substitution token,
386* creates a substitution based on it, and removes the token from
387* the rule's rule text.
388* @param owner The rule set containing this rule
389* @param predecessor The rule preceding this one in the rule set's
390* rule list
391* @param ownersOwner The RuleBasedNumberFormat that owns this rule
392* @return The newly-created substitution.  This is never null; if
393* the rule text doesn't contain any substitution tokens, this will
394* be a NullSubstitution.
395*/
396NFSubstitution *
397NFRule::extractSubstitution(const NFRuleSet* ruleSet,
398                            const NFRule* predecessor,
399                            const RuleBasedNumberFormat* rbnf,
400                            UErrorCode& status)
401{
402    NFSubstitution* result = NULL;
403
404    // search the rule's rule text for the first two characters of
405    // a substitution token
406    int32_t subStart = indexOfAny(tokenStrings);
407    int32_t subEnd = subStart;
408
409    // if we didn't find one, create a null substitution positioned
410    // at the end of the rule text
411    if (subStart == -1) {
412        return NFSubstitution::makeSubstitution(ruleText.length(), this, predecessor,
413            ruleSet, rbnf, gEmptyString, status);
414    }
415
416    // special-case the ">>>" token, since searching for the > at the
417    // end will actually find the > in the middle
418    if (ruleText.indexOf(gGreaterGreaterGreater) == subStart) {
419        subEnd = subStart + 2;
420
421        // otherwise the substitution token ends with the same character
422        // it began with
423    } else {
424        UChar c = ruleText.charAt(subStart);
425        subEnd = ruleText.indexOf(c, subStart + 1);
426        // special case for '<%foo<<'
427        if (c == gLessThan && subEnd != -1 && subEnd < ruleText.length() - 1 && ruleText.charAt(subEnd+1) == c) {
428            // ordinals use "=#,##0==%abbrev=" as their rule.  Notice that the '==' in the middle
429            // occurs because of the juxtaposition of two different rules.  The check for '<' is a hack
430            // to get around this.  Having the duplicate at the front would cause problems with
431            // rules like "<<%" to format, say, percents...
432            ++subEnd;
433        }
434   }
435
436    // if we don't find the end of the token (i.e., if we're on a single,
437    // unmatched token character), create a null substitution positioned
438    // at the end of the rule
439    if (subEnd == -1) {
440        return NFSubstitution::makeSubstitution(ruleText.length(), this, predecessor,
441            ruleSet, rbnf, gEmptyString, status);
442    }
443
444    // if we get here, we have a real substitution token (or at least
445    // some text bounded by substitution token characters).  Use
446    // makeSubstitution() to create the right kind of substitution
447    UnicodeString subToken;
448    subToken.setTo(ruleText, subStart, subEnd + 1 - subStart);
449    result = NFSubstitution::makeSubstitution(subStart, this, predecessor, ruleSet,
450        rbnf, subToken, status);
451
452    // remove the substitution from the rule text
453    ruleText.removeBetween(subStart, subEnd+1);
454
455    return result;
456}
457
458/**
459 * Sets the rule's base value, and causes the radix and exponent
460 * to be recalculated.  This is used during construction when we
461 * don't know the rule's base value until after it's been
462 * constructed.  It should be used at any other time.
463 * @param The new base value for the rule.
464 */
465void
466NFRule::setBaseValue(int64_t newBaseValue, UErrorCode& status)
467{
468    // set the base value
469    baseValue = newBaseValue;
470
471    // if this isn't a special rule, recalculate the radix and exponent
472    // (the radix always defaults to 10; if it's supposed to be something
473    // else, it's cleaned up by the caller and the exponent is
474    // recalculated again-- the only function that does this is
475    // NFRule.parseRuleDescriptor() )
476    if (baseValue >= 1) {
477        radix = 10;
478        exponent = expectedExponent();
479
480        // this function gets called on a fully-constructed rule whose
481        // description didn't specify a base value.  This means it
482        // has substitutions, and some substitutions hold on to copies
483        // of the rule's divisor.  Fix their copies of the divisor.
484        if (sub1 != NULL) {
485            sub1->setDivisor(radix, exponent, status);
486        }
487        if (sub2 != NULL) {
488            sub2->setDivisor(radix, exponent, status);
489        }
490
491        // if this is a special rule, its radix and exponent are basically
492        // ignored.  Set them to "safe" default values
493    } else {
494        radix = 10;
495        exponent = 0;
496    }
497}
498
499/**
500* This calculates the rule's exponent based on its radix and base
501* value.  This will be the highest power the radix can be raised to
502* and still produce a result less than or equal to the base value.
503*/
504int16_t
505NFRule::expectedExponent() const
506{
507    // since the log of 0, or the log base 0 of something, causes an
508    // error, declare the exponent in these cases to be 0 (we also
509    // deal with the special-rule identifiers here)
510    if (radix == 0 || baseValue < 1) {
511        return 0;
512    }
513
514    // we get rounding error in some cases-- for example, log 1000 / log 10
515    // gives us 1.9999999996 instead of 2.  The extra logic here is to take
516    // that into account
517    int16_t tempResult = (int16_t)(uprv_log((double)baseValue) / uprv_log((double)radix));
518    int64_t temp = util64_pow(radix, tempResult + 1);
519    if (temp <= baseValue) {
520        tempResult += 1;
521    }
522    return tempResult;
523}
524
525/**
526 * Searches the rule's rule text for any of the specified strings.
527 * @param strings An array of strings to search the rule's rule
528 * text for
529 * @return The index of the first match in the rule's rule text
530 * (i.e., the first substring in the rule's rule text that matches
531 * _any_ of the strings in "strings").  If none of the strings in
532 * "strings" is found in the rule's rule text, returns -1.
533 */
534int32_t
535NFRule::indexOfAny(const UChar* const strings[]) const
536{
537    int result = -1;
538    for (int i = 0; strings[i]; i++) {
539        int32_t pos = ruleText.indexOf(*strings[i]);
540        if (pos != -1 && (result == -1 || pos < result)) {
541            result = pos;
542        }
543    }
544    return result;
545}
546
547//-----------------------------------------------------------------------
548// boilerplate
549//-----------------------------------------------------------------------
550
551/**
552* Tests two rules for equality.
553* @param that The rule to compare this one against
554* @return True is the two rules are functionally equivalent
555*/
556UBool
557NFRule::operator==(const NFRule& rhs) const
558{
559    return baseValue == rhs.baseValue
560        && radix == rhs.radix
561        && exponent == rhs.exponent
562        && ruleText == rhs.ruleText
563        && *sub1 == *rhs.sub1
564        && *sub2 == *rhs.sub2;
565}
566
567/**
568* Returns a textual representation of the rule.  This won't
569* necessarily be the same as the description that this rule
570* was created with, but it will produce the same result.
571* @return A textual description of the rule
572*/
573static void util_append64(UnicodeString& result, int64_t n)
574{
575    UChar buffer[256];
576    int32_t len = util64_tou(n, buffer, sizeof(buffer));
577    UnicodeString temp(buffer, len);
578    result.append(temp);
579}
580
581void
582NFRule::_appendRuleText(UnicodeString& result) const
583{
584    switch (getType()) {
585    case kNegativeNumberRule: result.append(gMinusX); break;
586    case kImproperFractionRule: result.append(gXDotX); break;
587    case kProperFractionRule: result.append(gZeroDotX); break;
588    case kMasterRule: result.append(gXDotZero); break;
589    default:
590        // for a normal rule, write out its base value, and if the radix is
591        // something other than 10, write out the radix (with the preceding
592        // slash, of course).  Then calculate the expected exponent and if
593        // if isn't the same as the actual exponent, write an appropriate
594        // number of > signs.  Finally, terminate the whole thing with
595        // a colon.
596        util_append64(result, baseValue);
597        if (radix != 10) {
598            result.append(gSlash);
599            util_append64(result, radix);
600        }
601        int numCarets = expectedExponent() - exponent;
602        for (int i = 0; i < numCarets; i++) {
603            result.append(gGreaterThan);
604        }
605        break;
606    }
607    result.append(gColon);
608    result.append(gSpace);
609
610    // if the rule text begins with a space, write an apostrophe
611    // (whitespace after the rule descriptor is ignored; the
612    // apostrophe is used to make the whitespace significant)
613    if (ruleText.startsWith(gSpace) && sub1->getPos() != 0) {
614        result.append(gTick);
615    }
616
617    // now, write the rule's rule text, inserting appropriate
618    // substitution tokens in the appropriate places
619    UnicodeString ruleTextCopy;
620    ruleTextCopy.setTo(ruleText);
621
622    UnicodeString temp;
623    sub2->toString(temp);
624    ruleTextCopy.insert(sub2->getPos(), temp);
625    sub1->toString(temp);
626    ruleTextCopy.insert(sub1->getPos(), temp);
627
628    result.append(ruleTextCopy);
629
630    // and finally, top the whole thing off with a semicolon and
631    // return the result
632    result.append(gSemicolon);
633}
634
635//-----------------------------------------------------------------------
636// formatting
637//-----------------------------------------------------------------------
638
639/**
640* Formats the number, and inserts the resulting text into
641* toInsertInto.
642* @param number The number being formatted
643* @param toInsertInto The string where the resultant text should
644* be inserted
645* @param pos The position in toInsertInto where the resultant text
646* should be inserted
647*/
648void
649NFRule::doFormat(int64_t number, UnicodeString& toInsertInto, int32_t pos) const
650{
651    // first, insert the rule's rule text into toInsertInto at the
652    // specified position, then insert the results of the substitutions
653    // into the right places in toInsertInto (notice we do the
654    // substitutions in reverse order so that the offsets don't get
655    // messed up)
656    toInsertInto.insert(pos, ruleText);
657    sub2->doSubstitution(number, toInsertInto, pos);
658    sub1->doSubstitution(number, toInsertInto, pos);
659}
660
661/**
662* Formats the number, and inserts the resulting text into
663* toInsertInto.
664* @param number The number being formatted
665* @param toInsertInto The string where the resultant text should
666* be inserted
667* @param pos The position in toInsertInto where the resultant text
668* should be inserted
669*/
670void
671NFRule::doFormat(double number, UnicodeString& toInsertInto, int32_t pos) const
672{
673    // first, insert the rule's rule text into toInsertInto at the
674    // specified position, then insert the results of the substitutions
675    // into the right places in toInsertInto
676    // [again, we have two copies of this routine that do the same thing
677    // so that we don't sacrifice precision in a long by casting it
678    // to a double]
679    toInsertInto.insert(pos, ruleText);
680    sub2->doSubstitution(number, toInsertInto, pos);
681    sub1->doSubstitution(number, toInsertInto, pos);
682}
683
684/**
685* Used by the owning rule set to determine whether to invoke the
686* rollback rule (i.e., whether this rule or the one that precedes
687* it in the rule set's list should be used to format the number)
688* @param The number being formatted
689* @return True if the rule set should use the rule that precedes
690* this one in its list; false if it should use this rule
691*/
692UBool
693NFRule::shouldRollBack(double number) const
694{
695    // we roll back if the rule contains a modulus substitution,
696    // the number being formatted is an even multiple of the rule's
697    // divisor, and the rule's base value is NOT an even multiple
698    // of its divisor
699    // In other words, if the original description had
700    //    100: << hundred[ >>];
701    // that expands into
702    //    100: << hundred;
703    //    101: << hundred >>;
704    // internally.  But when we're formatting 200, if we use the rule
705    // at 101, which would normally apply, we get "two hundred zero".
706    // To prevent this, we roll back and use the rule at 100 instead.
707    // This is the logic that makes this happen: the rule at 101 has
708    // a modulus substitution, its base value isn't an even multiple
709    // of 100, and the value we're trying to format _is_ an even
710    // multiple of 100.  This is called the "rollback rule."
711    if ((sub1->isModulusSubstitution()) || (sub2->isModulusSubstitution())) {
712        int64_t re = util64_pow(radix, exponent);
713        return uprv_fmod(number, (double)re) == 0 && (baseValue % re) != 0;
714    }
715    return FALSE;
716}
717
718//-----------------------------------------------------------------------
719// parsing
720//-----------------------------------------------------------------------
721
722/**
723* Attempts to parse the string with this rule.
724* @param text The string being parsed
725* @param parsePosition On entry, the value is ignored and assumed to
726* be 0. On exit, this has been updated with the position of the first
727* character not consumed by matching the text against this rule
728* (if this rule doesn't match the text at all, the parse position
729* if left unchanged (presumably at 0) and the function returns
730* new Long(0)).
731* @param isFractionRule True if this rule is contained within a
732* fraction rule set.  This is only used if the rule has no
733* substitutions.
734* @return If this rule matched the text, this is the rule's base value
735* combined appropriately with the results of parsing the substitutions.
736* If nothing matched, this is new Long(0) and the parse position is
737* left unchanged.  The result will be an instance of Long if the
738* result is an integer and Double otherwise.  The result is never null.
739*/
740#ifdef RBNF_DEBUG
741#include <stdio.h>
742
743static void dumpUS(FILE* f, const UnicodeString& us) {
744  int len = us.length();
745  char* buf = (char *)uprv_malloc((len+1)*sizeof(char)); //new char[len+1];
746  if (buf != NULL) {
747	  us.extract(0, len, buf);
748	  buf[len] = 0;
749	  fprintf(f, "%s", buf);
750	  uprv_free(buf); //delete[] buf;
751  }
752}
753#endif
754
755UBool
756NFRule::doParse(const UnicodeString& text,
757                ParsePosition& parsePosition,
758                UBool isFractionRule,
759                double upperBound,
760                Formattable& resVal) const
761{
762    // internally we operate on a copy of the string being parsed
763    // (because we're going to change it) and use our own ParsePosition
764    ParsePosition pp;
765    UnicodeString workText(text);
766
767    // check to see whether the text before the first substitution
768    // matches the text at the beginning of the string being
769    // parsed.  If it does, strip that off the front of workText;
770    // otherwise, dump out with a mismatch
771    UnicodeString prefix;
772    prefix.setTo(ruleText, 0, sub1->getPos());
773
774#ifdef RBNF_DEBUG
775    fprintf(stderr, "doParse %x ", this);
776    {
777        UnicodeString rt;
778        _appendRuleText(rt);
779        dumpUS(stderr, rt);
780    }
781
782    fprintf(stderr, " text: '", this);
783    dumpUS(stderr, text);
784    fprintf(stderr, "' prefix: '");
785    dumpUS(stderr, prefix);
786#endif
787    stripPrefix(workText, prefix, pp);
788    int32_t prefixLength = text.length() - workText.length();
789
790#ifdef RBNF_DEBUG
791    fprintf(stderr, "' pl: %d ppi: %d s1p: %d\n", prefixLength, pp.getIndex(), sub1->getPos());
792#endif
793
794    if (pp.getIndex() == 0 && sub1->getPos() != 0) {
795        // commented out because ParsePosition doesn't have error index in 1.1.x
796        // restored for ICU4C port
797        parsePosition.setErrorIndex(pp.getErrorIndex());
798        resVal.setLong(0);
799        return TRUE;
800    }
801
802    // this is the fun part.  The basic guts of the rule-matching
803    // logic is matchToDelimiter(), which is called twice.  The first
804    // time it searches the input string for the rule text BETWEEN
805    // the substitutions and tries to match the intervening text
806    // in the input string with the first substitution.  If that
807    // succeeds, it then calls it again, this time to look for the
808    // rule text after the second substitution and to match the
809    // intervening input text against the second substitution.
810    //
811    // For example, say we have a rule that looks like this:
812    //    first << middle >> last;
813    // and input text that looks like this:
814    //    first one middle two last
815    // First we use stripPrefix() to match "first " in both places and
816    // strip it off the front, leaving
817    //    one middle two last
818    // Then we use matchToDelimiter() to match " middle " and try to
819    // match "one" against a substitution.  If it's successful, we now
820    // have
821    //    two last
822    // We use matchToDelimiter() a second time to match " last" and
823    // try to match "two" against a substitution.  If "two" matches
824    // the substitution, we have a successful parse.
825    //
826    // Since it's possible in many cases to find multiple instances
827    // of each of these pieces of rule text in the input string,
828    // we need to try all the possible combinations of these
829    // locations.  This prevents us from prematurely declaring a mismatch,
830    // and makes sure we match as much input text as we can.
831    int highWaterMark = 0;
832    double result = 0;
833    int start = 0;
834    double tempBaseValue = (double)(baseValue <= 0 ? 0 : baseValue);
835
836    UnicodeString temp;
837    do {
838        // our partial parse result starts out as this rule's base
839        // value.  If it finds a successful match, matchToDelimiter()
840        // will compose this in some way with what it gets back from
841        // the substitution, giving us a new partial parse result
842        pp.setIndex(0);
843
844        temp.setTo(ruleText, sub1->getPos(), sub2->getPos() - sub1->getPos());
845        double partialResult = matchToDelimiter(workText, start, tempBaseValue,
846            temp, pp, sub1,
847            upperBound);
848
849        // if we got a successful match (or were trying to match a
850        // null substitution), pp is now pointing at the first unmatched
851        // character.  Take note of that, and try matchToDelimiter()
852        // on the input text again
853        if (pp.getIndex() != 0 || sub1->isNullSubstitution()) {
854            start = pp.getIndex();
855
856            UnicodeString workText2;
857            workText2.setTo(workText, pp.getIndex(), workText.length() - pp.getIndex());
858            ParsePosition pp2;
859
860            // the second matchToDelimiter() will compose our previous
861            // partial result with whatever it gets back from its
862            // substitution if there's a successful match, giving us
863            // a real result
864            temp.setTo(ruleText, sub2->getPos(), ruleText.length() - sub2->getPos());
865            partialResult = matchToDelimiter(workText2, 0, partialResult,
866                temp, pp2, sub2,
867                upperBound);
868
869            // if we got a successful match on this second
870            // matchToDelimiter() call, update the high-water mark
871            // and result (if necessary)
872            if (pp2.getIndex() != 0 || sub2->isNullSubstitution()) {
873                if (prefixLength + pp.getIndex() + pp2.getIndex() > highWaterMark) {
874                    highWaterMark = prefixLength + pp.getIndex() + pp2.getIndex();
875                    result = partialResult;
876                }
877            }
878            // commented out because ParsePosition doesn't have error index in 1.1.x
879            // restored for ICU4C port
880            else {
881                int32_t temp = pp2.getErrorIndex() + sub1->getPos() + pp.getIndex();
882                if (temp> parsePosition.getErrorIndex()) {
883                    parsePosition.setErrorIndex(temp);
884                }
885            }
886        }
887        // commented out because ParsePosition doesn't have error index in 1.1.x
888        // restored for ICU4C port
889        else {
890            int32_t temp = sub1->getPos() + pp.getErrorIndex();
891            if (temp > parsePosition.getErrorIndex()) {
892                parsePosition.setErrorIndex(temp);
893            }
894        }
895        // keep trying to match things until the outer matchToDelimiter()
896        // call fails to make a match (each time, it picks up where it
897        // left off the previous time)
898    } while (sub1->getPos() != sub2->getPos()
899        && pp.getIndex() > 0
900        && pp.getIndex() < workText.length()
901        && pp.getIndex() != start);
902
903    // update the caller's ParsePosition with our high-water mark
904    // (i.e., it now points at the first character this function
905    // didn't match-- the ParsePosition is therefore unchanged if
906    // we didn't match anything)
907    parsePosition.setIndex(highWaterMark);
908    // commented out because ParsePosition doesn't have error index in 1.1.x
909    // restored for ICU4C port
910    if (highWaterMark > 0) {
911        parsePosition.setErrorIndex(0);
912    }
913
914    // this is a hack for one unusual condition: Normally, whether this
915    // rule belong to a fraction rule set or not is handled by its
916    // substitutions.  But if that rule HAS NO substitutions, then
917    // we have to account for it here.  By definition, if the matching
918    // rule in a fraction rule set has no substitutions, its numerator
919    // is 1, and so the result is the reciprocal of its base value.
920    if (isFractionRule &&
921        highWaterMark > 0 &&
922        sub1->isNullSubstitution()) {
923        result = 1 / result;
924    }
925
926    resVal.setDouble(result);
927    return TRUE; // ??? do we need to worry if it is a long or a double?
928}
929
930/**
931* This function is used by parse() to match the text being parsed
932* against a possible prefix string.  This function
933* matches characters from the beginning of the string being parsed
934* to characters from the prospective prefix.  If they match, pp is
935* updated to the first character not matched, and the result is
936* the unparsed part of the string.  If they don't match, the whole
937* string is returned, and pp is left unchanged.
938* @param text The string being parsed
939* @param prefix The text to match against
940* @param pp On entry, ignored and assumed to be 0.  On exit, points
941* to the first unmatched character (assuming the whole prefix matched),
942* or is unchanged (if the whole prefix didn't match).
943* @return If things match, this is the unparsed part of "text";
944* if they didn't match, this is "text".
945*/
946void
947NFRule::stripPrefix(UnicodeString& text, const UnicodeString& prefix, ParsePosition& pp) const
948{
949    // if the prefix text is empty, dump out without doing anything
950    if (prefix.length() != 0) {
951    	UErrorCode status = U_ZERO_ERROR;
952        // use prefixLength() to match the beginning of
953        // "text" against "prefix".  This function returns the
954        // number of characters from "text" that matched (or 0 if
955        // we didn't match the whole prefix)
956        int32_t pfl = prefixLength(text, prefix, status);
957        if (U_FAILURE(status)) { // Memory allocation error.
958        	return;
959        }
960        if (pfl != 0) {
961            // if we got a successful match, update the parse position
962            // and strip the prefix off of "text"
963            pp.setIndex(pp.getIndex() + pfl);
964            text.remove(0, pfl);
965        }
966    }
967}
968
969/**
970* Used by parse() to match a substitution and any following text.
971* "text" is searched for instances of "delimiter".  For each instance
972* of delimiter, the intervening text is tested to see whether it
973* matches the substitution.  The longest match wins.
974* @param text The string being parsed
975* @param startPos The position in "text" where we should start looking
976* for "delimiter".
977* @param baseValue A partial parse result (often the rule's base value),
978* which is combined with the result from matching the substitution
979* @param delimiter The string to search "text" for.
980* @param pp Ignored and presumed to be 0 on entry.  If there's a match,
981* on exit this will point to the first unmatched character.
982* @param sub If we find "delimiter" in "text", this substitution is used
983* to match the text between the beginning of the string and the
984* position of "delimiter."  (If "delimiter" is the empty string, then
985* this function just matches against this substitution and updates
986* everything accordingly.)
987* @param upperBound When matching the substitution, it will only
988* consider rules with base values lower than this value.
989* @return If there's a match, this is the result of composing
990* baseValue with the result of matching the substitution.  Otherwise,
991* this is new Long(0).  It's never null.  If the result is an integer,
992* this will be an instance of Long; otherwise, it's an instance of
993* Double.
994*
995* !!! note {dlf} in point of fact, in the java code the caller always converts
996* the result to a double, so we might as well return one.
997*/
998double
999NFRule::matchToDelimiter(const UnicodeString& text,
1000                         int32_t startPos,
1001                         double _baseValue,
1002                         const UnicodeString& delimiter,
1003                         ParsePosition& pp,
1004                         const NFSubstitution* sub,
1005                         double upperBound) const
1006{
1007	UErrorCode status = U_ZERO_ERROR;
1008    // if "delimiter" contains real (i.e., non-ignorable) text, search
1009    // it for "delimiter" beginning at "start".  If that succeeds, then
1010    // use "sub"'s doParse() method to match the text before the
1011    // instance of "delimiter" we just found.
1012    if (!allIgnorable(delimiter, status)) {
1013    	if (U_FAILURE(status)) { //Memory allocation error.
1014    		return 0;
1015    	}
1016        ParsePosition tempPP;
1017        Formattable result;
1018
1019        // use findText() to search for "delimiter".  It returns a two-
1020        // element array: element 0 is the position of the match, and
1021        // element 1 is the number of characters that matched
1022        // "delimiter".
1023        int32_t dLen;
1024        int32_t dPos = findText(text, delimiter, startPos, &dLen);
1025
1026        // if findText() succeeded, isolate the text preceding the
1027        // match, and use "sub" to match that text
1028        while (dPos >= 0) {
1029            UnicodeString subText;
1030            subText.setTo(text, 0, dPos);
1031            if (subText.length() > 0) {
1032                UBool success = sub->doParse(subText, tempPP, _baseValue, upperBound,
1033#if UCONFIG_NO_COLLATION
1034                    FALSE,
1035#else
1036                    formatter->isLenient(),
1037#endif
1038                    result);
1039
1040                // if the substitution could match all the text up to
1041                // where we found "delimiter", then this function has
1042                // a successful match.  Bump the caller's parse position
1043                // to point to the first character after the text
1044                // that matches "delimiter", and return the result
1045                // we got from parsing the substitution.
1046                if (success && tempPP.getIndex() == dPos) {
1047                    pp.setIndex(dPos + dLen);
1048                    return result.getDouble();
1049                }
1050                // commented out because ParsePosition doesn't have error index in 1.1.x
1051                // restored for ICU4C port
1052                else {
1053                    if (tempPP.getErrorIndex() > 0) {
1054                        pp.setErrorIndex(tempPP.getErrorIndex());
1055                    } else {
1056                        pp.setErrorIndex(tempPP.getIndex());
1057                    }
1058                }
1059            }
1060
1061            // if we didn't match the substitution, search for another
1062            // copy of "delimiter" in "text" and repeat the loop if
1063            // we find it
1064            tempPP.setIndex(0);
1065            dPos = findText(text, delimiter, dPos + dLen, &dLen);
1066        }
1067        // if we make it here, this was an unsuccessful match, and we
1068        // leave pp unchanged and return 0
1069        pp.setIndex(0);
1070        return 0;
1071
1072        // if "delimiter" is empty, or consists only of ignorable characters
1073        // (i.e., is semantically empty), thwe we obviously can't search
1074        // for "delimiter".  Instead, just use "sub" to parse as much of
1075        // "text" as possible.
1076    } else {
1077        ParsePosition tempPP;
1078        Formattable result;
1079
1080        // try to match the whole string against the substitution
1081        UBool success = sub->doParse(text, tempPP, _baseValue, upperBound,
1082#if UCONFIG_NO_COLLATION
1083            FALSE,
1084#else
1085            formatter->isLenient(),
1086#endif
1087            result);
1088        if (success && (tempPP.getIndex() != 0 || sub->isNullSubstitution())) {
1089            // if there's a successful match (or it's a null
1090            // substitution), update pp to point to the first
1091            // character we didn't match, and pass the result from
1092            // sub.doParse() on through to the caller
1093            pp.setIndex(tempPP.getIndex());
1094            return result.getDouble();
1095        }
1096        // commented out because ParsePosition doesn't have error index in 1.1.x
1097        // restored for ICU4C port
1098        else {
1099            pp.setErrorIndex(tempPP.getErrorIndex());
1100        }
1101
1102        // and if we get to here, then nothing matched, so we return
1103        // 0 and leave pp alone
1104        return 0;
1105    }
1106}
1107
1108/**
1109* Used by stripPrefix() to match characters.  If lenient parse mode
1110* is off, this just calls startsWith().  If lenient parse mode is on,
1111* this function uses CollationElementIterators to match characters in
1112* the strings (only primary-order differences are significant in
1113* determining whether there's a match).
1114* @param str The string being tested
1115* @param prefix The text we're hoping to see at the beginning
1116* of "str"
1117* @return If "prefix" is found at the beginning of "str", this
1118* is the number of characters in "str" that were matched (this
1119* isn't necessarily the same as the length of "prefix" when matching
1120* text with a collator).  If there's no match, this is 0.
1121*/
1122int32_t
1123NFRule::prefixLength(const UnicodeString& str, const UnicodeString& prefix, UErrorCode& status) const
1124{
1125    // if we're looking for an empty prefix, it obviously matches
1126    // zero characters.  Just go ahead and return 0.
1127    if (prefix.length() == 0) {
1128        return 0;
1129    }
1130
1131#if !UCONFIG_NO_COLLATION
1132    // go through all this grief if we're in lenient-parse mode
1133    if (formatter->isLenient()) {
1134        // get the formatter's collator and use it to create two
1135        // collation element iterators, one over the target string
1136        // and another over the prefix (right now, we'll throw an
1137        // exception if the collator we get back from the formatter
1138        // isn't a RuleBasedCollator, because RuleBasedCollator defines
1139        // the CollationElementIterator protocol.  Hopefully, this
1140        // will change someday.)
1141        RuleBasedCollator* collator = (RuleBasedCollator*)formatter->getCollator();
1142        CollationElementIterator* strIter = collator->createCollationElementIterator(str);
1143        CollationElementIterator* prefixIter = collator->createCollationElementIterator(prefix);
1144        // Check for memory allocation error.
1145        if (collator == NULL || strIter == NULL || prefixIter == NULL) {
1146        	delete collator;
1147        	delete strIter;
1148        	delete prefixIter;
1149        	status = U_MEMORY_ALLOCATION_ERROR;
1150        	return 0;
1151        }
1152
1153        UErrorCode err = U_ZERO_ERROR;
1154
1155        // The original code was problematic.  Consider this match:
1156        // prefix = "fifty-"
1157        // string = " fifty-7"
1158        // The intent is to match string up to the '7', by matching 'fifty-' at position 1
1159        // in the string.  Unfortunately, we were getting a match, and then computing where
1160        // the match terminated by rematching the string.  The rematch code was using as an
1161        // initial guess the substring of string between 0 and prefix.length.  Because of
1162        // the leading space and trailing hyphen (both ignorable) this was succeeding, leaving
1163        // the position before the hyphen in the string.  Recursing down, we then parsed the
1164        // remaining string '-7' as numeric.  The resulting number turned out as 43 (50 - 7).
1165        // This was not pretty, especially since the string "fifty-7" parsed just fine.
1166        //
1167        // We have newer APIs now, so we can use calls on the iterator to determine what we
1168        // matched up to.  If we terminate because we hit the last element in the string,
1169        // our match terminates at this length.  If we terminate because we hit the last element
1170        // in the target, our match terminates at one before the element iterator position.
1171
1172        // match collation elements between the strings
1173        int32_t oStr = strIter->next(err);
1174        int32_t oPrefix = prefixIter->next(err);
1175
1176        while (oPrefix != CollationElementIterator::NULLORDER) {
1177            // skip over ignorable characters in the target string
1178            while (CollationElementIterator::primaryOrder(oStr) == 0
1179                && oStr != CollationElementIterator::NULLORDER) {
1180                oStr = strIter->next(err);
1181            }
1182
1183            // skip over ignorable characters in the prefix
1184            while (CollationElementIterator::primaryOrder(oPrefix) == 0
1185                && oPrefix != CollationElementIterator::NULLORDER) {
1186                oPrefix = prefixIter->next(err);
1187            }
1188
1189            // dlf: move this above following test, if we consume the
1190            // entire target, aren't we ok even if the source was also
1191            // entirely consumed?
1192
1193            // if skipping over ignorables brought to the end of
1194            // the prefix, we DID match: drop out of the loop
1195            if (oPrefix == CollationElementIterator::NULLORDER) {
1196                break;
1197            }
1198
1199            // if skipping over ignorables brought us to the end
1200            // of the target string, we didn't match and return 0
1201            if (oStr == CollationElementIterator::NULLORDER) {
1202                delete prefixIter;
1203                delete strIter;
1204                return 0;
1205            }
1206
1207            // match collation elements from the two strings
1208            // (considering only primary differences).  If we
1209            // get a mismatch, dump out and return 0
1210            if (CollationElementIterator::primaryOrder(oStr)
1211                != CollationElementIterator::primaryOrder(oPrefix)) {
1212                delete prefixIter;
1213                delete strIter;
1214                return 0;
1215
1216                // otherwise, advance to the next character in each string
1217                // and loop (we drop out of the loop when we exhaust
1218                // collation elements in the prefix)
1219            } else {
1220                oStr = strIter->next(err);
1221                oPrefix = prefixIter->next(err);
1222            }
1223        }
1224
1225        int32_t result = strIter->getOffset();
1226        if (oStr != CollationElementIterator::NULLORDER) {
1227            --result; // back over character that we don't want to consume;
1228        }
1229
1230#ifdef RBNF_DEBUG
1231        fprintf(stderr, "prefix length: %d\n", result);
1232#endif
1233        delete prefixIter;
1234        delete strIter;
1235
1236        return result;
1237#if 0
1238        //----------------------------------------------------------------
1239        // JDK 1.2-specific API call
1240        // return strIter.getOffset();
1241        //----------------------------------------------------------------
1242        // JDK 1.1 HACK (take out for 1.2-specific code)
1243
1244        // if we make it to here, we have a successful match.  Now we
1245        // have to find out HOW MANY characters from the target string
1246        // matched the prefix (there isn't necessarily a one-to-one
1247        // mapping between collation elements and characters).
1248        // In JDK 1.2, there's a simple getOffset() call we can use.
1249        // In JDK 1.1, on the other hand, we have to go through some
1250        // ugly contortions.  First, use the collator to compare the
1251        // same number of characters from the prefix and target string.
1252        // If they're equal, we're done.
1253        collator->setStrength(Collator::PRIMARY);
1254        if (str.length() >= prefix.length()) {
1255            UnicodeString temp;
1256            temp.setTo(str, 0, prefix.length());
1257            if (collator->equals(temp, prefix)) {
1258#ifdef RBNF_DEBUG
1259                fprintf(stderr, "returning: %d\n", prefix.length());
1260#endif
1261                return prefix.length();
1262            }
1263        }
1264
1265        // if they're not equal, then we have to compare successively
1266        // larger and larger substrings of the target string until we
1267        // get to one that matches the prefix.  At that point, we know
1268        // how many characters matched the prefix, and we can return.
1269        int32_t p = 1;
1270        while (p <= str.length()) {
1271            UnicodeString temp;
1272            temp.setTo(str, 0, p);
1273            if (collator->equals(temp, prefix)) {
1274                return p;
1275            } else {
1276                ++p;
1277            }
1278        }
1279
1280        // SHOULD NEVER GET HERE!!!
1281        return 0;
1282        //----------------------------------------------------------------
1283#endif
1284
1285        // If lenient parsing is turned off, forget all that crap above.
1286        // Just use String.startsWith() and be done with it.
1287  } else
1288#endif
1289  {
1290      if (str.startsWith(prefix)) {
1291          return prefix.length();
1292      } else {
1293          return 0;
1294      }
1295  }
1296}
1297
1298/**
1299* Searches a string for another string.  If lenient parsing is off,
1300* this just calls indexOf().  If lenient parsing is on, this function
1301* uses CollationElementIterator to match characters, and only
1302* primary-order differences are significant in determining whether
1303* there's a match.
1304* @param str The string to search
1305* @param key The string to search "str" for
1306* @param startingAt The index into "str" where the search is to
1307* begin
1308* @return A two-element array of ints.  Element 0 is the position
1309* of the match, or -1 if there was no match.  Element 1 is the
1310* number of characters in "str" that matched (which isn't necessarily
1311* the same as the length of "key")
1312*/
1313int32_t
1314NFRule::findText(const UnicodeString& str,
1315                 const UnicodeString& key,
1316                 int32_t startingAt,
1317                 int32_t* length) const
1318{
1319#if !UCONFIG_NO_COLLATION
1320    // if lenient parsing is turned off, this is easy: just call
1321    // String.indexOf() and we're done
1322    if (!formatter->isLenient()) {
1323        *length = key.length();
1324        return str.indexOf(key, startingAt);
1325
1326        // but if lenient parsing is turned ON, we've got some work
1327        // ahead of us
1328    } else
1329#endif
1330    {
1331        //----------------------------------------------------------------
1332        // JDK 1.1 HACK (take out of 1.2-specific code)
1333
1334        // in JDK 1.2, CollationElementIterator provides us with an
1335        // API to map between character offsets and collation elements
1336        // and we can do this by marching through the string comparing
1337        // collation elements.  We can't do that in JDK 1.1.  Insted,
1338        // we have to go through this horrible slow mess:
1339        int32_t p = startingAt;
1340        int32_t keyLen = 0;
1341
1342        // basically just isolate smaller and smaller substrings of
1343        // the target string (each running to the end of the string,
1344        // and with the first one running from startingAt to the end)
1345        // and then use prefixLength() to see if the search key is at
1346        // the beginning of each substring.  This is excruciatingly
1347        // slow, but it will locate the key and tell use how long the
1348        // matching text was.
1349        UnicodeString temp;
1350        UErrorCode status = U_ZERO_ERROR;
1351        while (p < str.length() && keyLen == 0) {
1352            temp.setTo(str, p, str.length() - p);
1353            keyLen = prefixLength(temp, key, status);
1354            if (U_FAILURE(status)) {
1355            	break;
1356            }
1357            if (keyLen != 0) {
1358                *length = keyLen;
1359                return p;
1360            }
1361            ++p;
1362        }
1363        // if we make it to here, we didn't find it.  Return -1 for the
1364        // location.  The length should be ignored, but set it to 0,
1365        // which should be "safe"
1366        *length = 0;
1367        return -1;
1368
1369        //----------------------------------------------------------------
1370        // JDK 1.2 version of this routine
1371        //RuleBasedCollator collator = (RuleBasedCollator)formatter.getCollator();
1372        //
1373        //CollationElementIterator strIter = collator.getCollationElementIterator(str);
1374        //CollationElementIterator keyIter = collator.getCollationElementIterator(key);
1375        //
1376        //int keyStart = -1;
1377        //
1378        //str.setOffset(startingAt);
1379        //
1380        //int oStr = strIter.next();
1381        //int oKey = keyIter.next();
1382        //while (oKey != CollationElementIterator.NULLORDER) {
1383        //    while (oStr != CollationElementIterator.NULLORDER &&
1384        //                CollationElementIterator.primaryOrder(oStr) == 0)
1385        //        oStr = strIter.next();
1386        //
1387        //    while (oKey != CollationElementIterator.NULLORDER &&
1388        //                CollationElementIterator.primaryOrder(oKey) == 0)
1389        //        oKey = keyIter.next();
1390        //
1391        //    if (oStr == CollationElementIterator.NULLORDER) {
1392        //        return new int[] { -1, 0 };
1393        //    }
1394        //
1395        //    if (oKey == CollationElementIterator.NULLORDER) {
1396        //        break;
1397        //    }
1398        //
1399        //    if (CollationElementIterator.primaryOrder(oStr) ==
1400        //            CollationElementIterator.primaryOrder(oKey)) {
1401        //        keyStart = strIter.getOffset();
1402        //        oStr = strIter.next();
1403        //        oKey = keyIter.next();
1404        //    } else {
1405        //        if (keyStart != -1) {
1406        //            keyStart = -1;
1407        //            keyIter.reset();
1408        //        } else {
1409        //            oStr = strIter.next();
1410        //        }
1411        //    }
1412        //}
1413        //
1414        //if (oKey == CollationElementIterator.NULLORDER) {
1415        //    return new int[] { keyStart, strIter.getOffset() - keyStart };
1416        //} else {
1417        //    return new int[] { -1, 0 };
1418        //}
1419    }
1420}
1421
1422/**
1423* Checks to see whether a string consists entirely of ignorable
1424* characters.
1425* @param str The string to test.
1426* @return true if the string is empty of consists entirely of
1427* characters that the number formatter's collator says are
1428* ignorable at the primary-order level.  false otherwise.
1429*/
1430UBool
1431NFRule::allIgnorable(const UnicodeString& str, UErrorCode& status) const
1432{
1433    // if the string is empty, we can just return true
1434    if (str.length() == 0) {
1435        return TRUE;
1436    }
1437
1438#if !UCONFIG_NO_COLLATION
1439    // if lenient parsing is turned on, walk through the string with
1440    // a collation element iterator and make sure each collation
1441    // element is 0 (ignorable) at the primary level
1442    if (formatter->isLenient()) {
1443        RuleBasedCollator* collator = (RuleBasedCollator*)(formatter->getCollator());
1444        CollationElementIterator* iter = collator->createCollationElementIterator(str);
1445
1446        // Memory allocation error check.
1447        if (collator == NULL || iter == NULL) {
1448        	delete collator;
1449        	delete iter;
1450        	status = U_MEMORY_ALLOCATION_ERROR;
1451        	return FALSE;
1452        }
1453
1454        UErrorCode err = U_ZERO_ERROR;
1455        int32_t o = iter->next(err);
1456        while (o != CollationElementIterator::NULLORDER
1457            && CollationElementIterator::primaryOrder(o) == 0) {
1458            o = iter->next(err);
1459        }
1460
1461        delete iter;
1462        return o == CollationElementIterator::NULLORDER;
1463    }
1464#endif
1465
1466    // if lenient parsing is turned off, there is no such thing as
1467    // an ignorable character: return true only if the string is empty
1468    return FALSE;
1469}
1470
1471U_NAMESPACE_END
1472
1473/* U_HAVE_RBNF */
1474#endif
1475
1476
1477