1// Copyright (c) 1994-2006 Sun Microsystems Inc.
2// All Rights Reserved.
3//
4// Redistribution and use in source and binary forms, with or without
5// modification, are permitted provided that the following conditions are
6// met:
7//
8// - Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10//
11// - Redistribution in binary form must reproduce the above copyright
12// notice, this list of conditions and the following disclaimer in the
13// documentation and/or other materials provided with the distribution.
14//
15// - Neither the name of Sun Microsystems or the names of contributors may
16// be used to endorse or promote products derived from this software without
17// specific prior written permission.
18//
19// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
20// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
26// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
27// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31// The original source code covered by the above license above has been
32// modified significantly by Google Inc.
33// Copyright 2006-2009 the V8 project authors. All rights reserved.
34
35// A lightweight X64 Assembler.
36
37#ifndef V8_X64_ASSEMBLER_X64_H_
38#define V8_X64_ASSEMBLER_X64_H_
39
40#include "serialize.h"
41
42namespace v8 {
43namespace internal {
44
45// Utility functions
46
47// Test whether a 64-bit value is in a specific range.
48static inline bool is_uint32(int64_t x) {
49  static const int64_t kUInt32Mask = V8_INT64_C(0xffffffff);
50  return x == (x & kUInt32Mask);
51}
52
53static inline bool is_int32(int64_t x) {
54  static const int64_t kMinIntValue = V8_INT64_C(-0x80000000);
55  return is_uint32(x - kMinIntValue);
56}
57
58static inline bool uint_is_int32(uint64_t x) {
59  static const uint64_t kMaxIntValue = V8_UINT64_C(0x80000000);
60  return x < kMaxIntValue;
61}
62
63static inline bool is_uint32(uint64_t x) {
64  static const uint64_t kMaxUIntValue = V8_UINT64_C(0x100000000);
65  return x < kMaxUIntValue;
66}
67
68// CPU Registers.
69//
70// 1) We would prefer to use an enum, but enum values are assignment-
71// compatible with int, which has caused code-generation bugs.
72//
73// 2) We would prefer to use a class instead of a struct but we don't like
74// the register initialization to depend on the particular initialization
75// order (which appears to be different on OS X, Linux, and Windows for the
76// installed versions of C++ we tried). Using a struct permits C-style
77// "initialization". Also, the Register objects cannot be const as this
78// forces initialization stubs in MSVC, making us dependent on initialization
79// order.
80//
81// 3) By not using an enum, we are possibly preventing the compiler from
82// doing certain constant folds, which may significantly reduce the
83// code generated for some assembly instructions (because they boil down
84// to a few constants). If this is a problem, we could change the code
85// such that we use an enum in optimized mode, and the struct in debug
86// mode. This way we get the compile-time error checking in debug mode
87// and best performance in optimized code.
88//
89
90struct Register {
91  static Register toRegister(int code) {
92    Register r = { code };
93    return r;
94  }
95  bool is_valid() const  { return 0 <= code_ && code_ < 16; }
96  bool is(Register reg) const  { return code_ == reg.code_; }
97  int code() const  {
98    ASSERT(is_valid());
99    return code_;
100  }
101  int bit() const  {
102    return 1 << code_;
103  }
104
105  // Return the high bit of the register code as a 0 or 1.  Used often
106  // when constructing the REX prefix byte.
107  int high_bit() const {
108    return code_ >> 3;
109  }
110  // Return the 3 low bits of the register code.  Used when encoding registers
111  // in modR/M, SIB, and opcode bytes.
112  int low_bits() const {
113    return code_ & 0x7;
114  }
115
116  // Unfortunately we can't make this private in a struct when initializing
117  // by assignment.
118  int code_;
119};
120
121const Register rax = { 0 };
122const Register rcx = { 1 };
123const Register rdx = { 2 };
124const Register rbx = { 3 };
125const Register rsp = { 4 };
126const Register rbp = { 5 };
127const Register rsi = { 6 };
128const Register rdi = { 7 };
129const Register r8 = { 8 };
130const Register r9 = { 9 };
131const Register r10 = { 10 };
132const Register r11 = { 11 };
133const Register r12 = { 12 };
134const Register r13 = { 13 };
135const Register r14 = { 14 };
136const Register r15 = { 15 };
137const Register no_reg = { -1 };
138
139
140struct XMMRegister {
141  bool is_valid() const  { return 0 <= code_ && code_ < 16; }
142  int code() const  {
143    ASSERT(is_valid());
144    return code_;
145  }
146
147  // Return the high bit of the register code as a 0 or 1.  Used often
148  // when constructing the REX prefix byte.
149  int high_bit() const {
150    return code_ >> 3;
151  }
152  // Return the 3 low bits of the register code.  Used when encoding registers
153  // in modR/M, SIB, and opcode bytes.
154  int low_bits() const {
155    return code_ & 0x7;
156  }
157
158  int code_;
159};
160
161const XMMRegister xmm0 = { 0 };
162const XMMRegister xmm1 = { 1 };
163const XMMRegister xmm2 = { 2 };
164const XMMRegister xmm3 = { 3 };
165const XMMRegister xmm4 = { 4 };
166const XMMRegister xmm5 = { 5 };
167const XMMRegister xmm6 = { 6 };
168const XMMRegister xmm7 = { 7 };
169const XMMRegister xmm8 = { 8 };
170const XMMRegister xmm9 = { 9 };
171const XMMRegister xmm10 = { 10 };
172const XMMRegister xmm11 = { 11 };
173const XMMRegister xmm12 = { 12 };
174const XMMRegister xmm13 = { 13 };
175const XMMRegister xmm14 = { 14 };
176const XMMRegister xmm15 = { 15 };
177
178enum Condition {
179  // any value < 0 is considered no_condition
180  no_condition  = -1,
181
182  overflow      =  0,
183  no_overflow   =  1,
184  below         =  2,
185  above_equal   =  3,
186  equal         =  4,
187  not_equal     =  5,
188  below_equal   =  6,
189  above         =  7,
190  negative      =  8,
191  positive      =  9,
192  parity_even   = 10,
193  parity_odd    = 11,
194  less          = 12,
195  greater_equal = 13,
196  less_equal    = 14,
197  greater       = 15,
198
199  // Fake conditions that are handled by the
200  // opcodes using them.
201  always        = 16,
202  never         = 17,
203  // aliases
204  carry         = below,
205  not_carry     = above_equal,
206  zero          = equal,
207  not_zero      = not_equal,
208  sign          = negative,
209  not_sign      = positive,
210  last_condition = greater
211};
212
213
214// Returns the equivalent of !cc.
215// Negation of the default no_condition (-1) results in a non-default
216// no_condition value (-2). As long as tests for no_condition check
217// for condition < 0, this will work as expected.
218inline Condition NegateCondition(Condition cc);
219
220// Corresponds to transposing the operands of a comparison.
221inline Condition ReverseCondition(Condition cc) {
222  switch (cc) {
223    case below:
224      return above;
225    case above:
226      return below;
227    case above_equal:
228      return below_equal;
229    case below_equal:
230      return above_equal;
231    case less:
232      return greater;
233    case greater:
234      return less;
235    case greater_equal:
236      return less_equal;
237    case less_equal:
238      return greater_equal;
239    default:
240      return cc;
241  };
242}
243
244enum Hint {
245  no_hint = 0,
246  not_taken = 0x2e,
247  taken = 0x3e
248};
249
250// The result of negating a hint is as if the corresponding condition
251// were negated by NegateCondition.  That is, no_hint is mapped to
252// itself and not_taken and taken are mapped to each other.
253inline Hint NegateHint(Hint hint) {
254  return (hint == no_hint)
255      ? no_hint
256      : ((hint == not_taken) ? taken : not_taken);
257}
258
259
260// -----------------------------------------------------------------------------
261// Machine instruction Immediates
262
263class Immediate BASE_EMBEDDED {
264 public:
265  explicit Immediate(int32_t value) : value_(value) {}
266
267 private:
268  int32_t value_;
269
270  friend class Assembler;
271};
272
273
274// -----------------------------------------------------------------------------
275// Machine instruction Operands
276
277enum ScaleFactor {
278  times_1 = 0,
279  times_2 = 1,
280  times_4 = 2,
281  times_8 = 3,
282  times_int_size = times_4,
283  times_pointer_size = times_8
284};
285
286
287class Operand BASE_EMBEDDED {
288 public:
289  // [base + disp/r]
290  Operand(Register base, int32_t disp);
291
292  // [base + index*scale + disp/r]
293  Operand(Register base,
294          Register index,
295          ScaleFactor scale,
296          int32_t disp);
297
298  // [index*scale + disp/r]
299  Operand(Register index,
300          ScaleFactor scale,
301          int32_t disp);
302
303 private:
304  byte rex_;
305  byte buf_[10];
306  // The number of bytes in buf_.
307  unsigned int len_;
308  RelocInfo::Mode rmode_;
309
310  // Set the ModR/M byte without an encoded 'reg' register. The
311  // register is encoded later as part of the emit_operand operation.
312  // set_modrm can be called before or after set_sib and set_disp*.
313  inline void set_modrm(int mod, Register rm);
314
315  // Set the SIB byte if one is needed. Sets the length to 2 rather than 1.
316  inline void set_sib(ScaleFactor scale, Register index, Register base);
317
318  // Adds operand displacement fields (offsets added to the memory address).
319  // Needs to be called after set_sib, not before it.
320  inline void set_disp8(int disp);
321  inline void set_disp32(int disp);
322
323  friend class Assembler;
324};
325
326
327// CpuFeatures keeps track of which features are supported by the target CPU.
328// Supported features must be enabled by a Scope before use.
329// Example:
330//   if (CpuFeatures::IsSupported(SSE3)) {
331//     CpuFeatures::Scope fscope(SSE3);
332//     // Generate SSE3 floating point code.
333//   } else {
334//     // Generate standard x87 or SSE2 floating point code.
335//   }
336class CpuFeatures : public AllStatic {
337 public:
338  // Detect features of the target CPU. Set safe defaults if the serializer
339  // is enabled (snapshots must be portable).
340  static void Probe();
341  // Check whether a feature is supported by the target CPU.
342  static bool IsSupported(CpuFeature f) {
343    if (f == SSE2 && !FLAG_enable_sse2) return false;
344    if (f == SSE3 && !FLAG_enable_sse3) return false;
345    if (f == CMOV && !FLAG_enable_cmov) return false;
346    if (f == RDTSC && !FLAG_enable_rdtsc) return false;
347    if (f == SAHF && !FLAG_enable_sahf) return false;
348    return (supported_ & (V8_UINT64_C(1) << f)) != 0;
349  }
350  // Check whether a feature is currently enabled.
351  static bool IsEnabled(CpuFeature f) {
352    return (enabled_ & (V8_UINT64_C(1) << f)) != 0;
353  }
354  // Enable a specified feature within a scope.
355  class Scope BASE_EMBEDDED {
356#ifdef DEBUG
357   public:
358    explicit Scope(CpuFeature f) {
359      uint64_t mask = (V8_UINT64_C(1) << f);
360      ASSERT(CpuFeatures::IsSupported(f));
361      ASSERT(!Serializer::enabled() || (found_by_runtime_probing_ & mask) == 0);
362      old_enabled_ = CpuFeatures::enabled_;
363      CpuFeatures::enabled_ |= mask;
364    }
365    ~Scope() { CpuFeatures::enabled_ = old_enabled_; }
366   private:
367    uint64_t old_enabled_;
368#else
369   public:
370    explicit Scope(CpuFeature f) {}
371#endif
372  };
373 private:
374  // Safe defaults include SSE2 and CMOV for X64. It is always available, if
375  // anyone checks, but they shouldn't need to check.
376  static const uint64_t kDefaultCpuFeatures = (1 << SSE2 | 1 << CMOV);
377  static uint64_t supported_;
378  static uint64_t enabled_;
379  static uint64_t found_by_runtime_probing_;
380};
381
382
383class Assembler : public Malloced {
384 private:
385  // We check before assembling an instruction that there is sufficient
386  // space to write an instruction and its relocation information.
387  // The relocation writer's position must be kGap bytes above the end of
388  // the generated instructions. This leaves enough space for the
389  // longest possible x64 instruction, 15 bytes, and the longest possible
390  // relocation information encoding, RelocInfoWriter::kMaxLength == 16.
391  // (There is a 15 byte limit on x64 instruction length that rules out some
392  // otherwise valid instructions.)
393  // This allows for a single, fast space check per instruction.
394  static const int kGap = 32;
395
396 public:
397  // Create an assembler. Instructions and relocation information are emitted
398  // into a buffer, with the instructions starting from the beginning and the
399  // relocation information starting from the end of the buffer. See CodeDesc
400  // for a detailed comment on the layout (globals.h).
401  //
402  // If the provided buffer is NULL, the assembler allocates and grows its own
403  // buffer, and buffer_size determines the initial buffer size. The buffer is
404  // owned by the assembler and deallocated upon destruction of the assembler.
405  //
406  // If the provided buffer is not NULL, the assembler uses the provided buffer
407  // for code generation and assumes its size to be buffer_size. If the buffer
408  // is too small, a fatal error occurs. No deallocation of the buffer is done
409  // upon destruction of the assembler.
410  Assembler(void* buffer, int buffer_size);
411  ~Assembler();
412
413  // GetCode emits any pending (non-emitted) code and fills the descriptor
414  // desc. GetCode() is idempotent; it returns the same result if no other
415  // Assembler functions are invoked in between GetCode() calls.
416  void GetCode(CodeDesc* desc);
417
418  // Read/Modify the code target in the relative branch/call instruction at pc.
419  // On the x64 architecture, we use relative jumps with a 32-bit displacement
420  // to jump to other Code objects in the Code space in the heap.
421  // Jumps to C functions are done indirectly through a 64-bit register holding
422  // the absolute address of the target.
423  // These functions convert between absolute Addresses of Code objects and
424  // the relative displacements stored in the code.
425  static inline Address target_address_at(Address pc);
426  static inline void set_target_address_at(Address pc, Address target);
427
428  // This sets the branch destination (which is in the instruction on x64).
429  // This is for calls and branches within generated code.
430  inline static void set_target_at(Address instruction_payload,
431                                   Address target) {
432    set_target_address_at(instruction_payload, target);
433  }
434
435  // This sets the branch destination (which is a load instruction on x64).
436  // This is for calls and branches to runtime code.
437  inline static void set_external_target_at(Address instruction_payload,
438                                            Address target) {
439    *reinterpret_cast<Address*>(instruction_payload) = target;
440  }
441
442  inline Handle<Object> code_target_object_handle_at(Address pc);
443  // Number of bytes taken up by the branch target in the code.
444  static const int kCallTargetSize = 4;      // Use 32-bit displacement.
445  static const int kExternalTargetSize = 8;  // Use 64-bit absolute.
446  // Distance between the address of the code target in the call instruction
447  // and the return address pushed on the stack.
448  static const int kCallTargetAddressOffset = 4;  // Use 32-bit displacement.
449  // Distance between the start of the JS return sequence and where the
450  // 32-bit displacement of a near call would be, relative to the pushed
451  // return address.  TODO: Use return sequence length instead.
452  // Should equal Debug::kX64JSReturnSequenceLength - kCallTargetAddressOffset;
453  static const int kPatchReturnSequenceAddressOffset = 13 - 4;
454  // TODO(X64): Rename this, removing the "Real", after changing the above.
455  static const int kRealPatchReturnSequenceAddressOffset = 2;
456
457  // The x64 JS return sequence is padded with int3 to make it large
458  // enough to hold a call instruction when the debugger patches it.
459  static const int kCallInstructionLength = 13;
460  static const int kJSReturnSequenceLength = 13;
461
462  // ---------------------------------------------------------------------------
463  // Code generation
464  //
465  // Function names correspond one-to-one to x64 instruction mnemonics.
466  // Unless specified otherwise, instructions operate on 64-bit operands.
467  //
468  // If we need versions of an assembly instruction that operate on different
469  // width arguments, we add a single-letter suffix specifying the width.
470  // This is done for the following instructions: mov, cmp, inc, dec,
471  // add, sub, and test.
472  // There are no versions of these instructions without the suffix.
473  // - Instructions on 8-bit (byte) operands/registers have a trailing 'b'.
474  // - Instructions on 16-bit (word) operands/registers have a trailing 'w'.
475  // - Instructions on 32-bit (doubleword) operands/registers use 'l'.
476  // - Instructions on 64-bit (quadword) operands/registers use 'q'.
477  //
478  // Some mnemonics, such as "and", are the same as C++ keywords.
479  // Naming conflicts with C++ keywords are resolved by adding a trailing '_'.
480
481  // Insert the smallest number of nop instructions
482  // possible to align the pc offset to a multiple
483  // of m. m must be a power of 2.
484  void Align(int m);
485
486  // Stack
487  void pushfq();
488  void popfq();
489
490  void push(Immediate value);
491  void push(Register src);
492  void push(const Operand& src);
493  void push(Label* label, RelocInfo::Mode relocation_mode);
494
495  void pop(Register dst);
496  void pop(const Operand& dst);
497
498  void enter(Immediate size);
499  void leave();
500
501  // Moves
502  void movb(Register dst, const Operand& src);
503  void movb(Register dst, Immediate imm);
504  void movb(const Operand& dst, Register src);
505
506  // Move the low 16 bits of a 64-bit register value to a 16-bit
507  // memory location.
508  void movw(const Operand& dst, Register src);
509
510  void movl(Register dst, Register src);
511  void movl(Register dst, const Operand& src);
512  void movl(const Operand& dst, Register src);
513  void movl(const Operand& dst, Immediate imm);
514  // Load a 32-bit immediate value, zero-extended to 64 bits.
515  void movl(Register dst, Immediate imm32);
516
517  // Move 64 bit register value to 64-bit memory location.
518  void movq(const Operand& dst, Register src);
519  // Move 64 bit memory location to 64-bit register value.
520  void movq(Register dst, const Operand& src);
521  void movq(Register dst, Register src);
522  // Sign extends immediate 32-bit value to 64 bits.
523  void movq(Register dst, Immediate x);
524  // Move the offset of the label location relative to the current
525  // position (after the move) to the destination.
526  void movl(const Operand& dst, Label* src);
527
528  // Move sign extended immediate to memory location.
529  void movq(const Operand& dst, Immediate value);
530  // New x64 instructions to load a 64-bit immediate into a register.
531  // All 64-bit immediates must have a relocation mode.
532  void movq(Register dst, void* ptr, RelocInfo::Mode rmode);
533  void movq(Register dst, int64_t value, RelocInfo::Mode rmode);
534  void movq(Register dst, const char* s, RelocInfo::Mode rmode);
535  // Moves the address of the external reference into the register.
536  void movq(Register dst, ExternalReference ext);
537  void movq(Register dst, Handle<Object> handle, RelocInfo::Mode rmode);
538
539  void movsxbq(Register dst, const Operand& src);
540  void movsxwq(Register dst, const Operand& src);
541  void movsxlq(Register dst, Register src);
542  void movsxlq(Register dst, const Operand& src);
543  void movzxbq(Register dst, const Operand& src);
544  void movzxbl(Register dst, const Operand& src);
545  void movzxwq(Register dst, const Operand& src);
546  void movzxwl(Register dst, const Operand& src);
547
548  // Repeated moves.
549
550  void repmovsb();
551  void repmovsw();
552  void repmovsl();
553  void repmovsq();
554
555  // New x64 instruction to load from an immediate 64-bit pointer into RAX.
556  void load_rax(void* ptr, RelocInfo::Mode rmode);
557  void load_rax(ExternalReference ext);
558
559  // Conditional moves.
560  void cmovq(Condition cc, Register dst, Register src);
561  void cmovq(Condition cc, Register dst, const Operand& src);
562  void cmovl(Condition cc, Register dst, Register src);
563  void cmovl(Condition cc, Register dst, const Operand& src);
564
565  // Exchange two registers
566  void xchg(Register dst, Register src);
567
568  // Arithmetics
569  void addl(Register dst, Register src) {
570    if (dst.low_bits() == 4) {  // Forces SIB byte.
571      arithmetic_op_32(0x01, src, dst);
572    } else {
573      arithmetic_op_32(0x03, dst, src);
574    }
575  }
576
577  void addl(Register dst, Immediate src) {
578    immediate_arithmetic_op_32(0x0, dst, src);
579  }
580
581  void addl(Register dst, const Operand& src) {
582    arithmetic_op_32(0x03, dst, src);
583  }
584
585  void addl(const Operand& dst, Immediate src) {
586    immediate_arithmetic_op_32(0x0, dst, src);
587  }
588
589  void addq(Register dst, Register src) {
590    arithmetic_op(0x03, dst, src);
591  }
592
593  void addq(Register dst, const Operand& src) {
594    arithmetic_op(0x03, dst, src);
595  }
596
597  void addq(const Operand& dst, Register src) {
598    arithmetic_op(0x01, src, dst);
599  }
600
601  void addq(Register dst, Immediate src) {
602    immediate_arithmetic_op(0x0, dst, src);
603  }
604
605  void addq(const Operand& dst, Immediate src) {
606    immediate_arithmetic_op(0x0, dst, src);
607  }
608
609  void cmpb(Register dst, Immediate src) {
610    immediate_arithmetic_op_8(0x7, dst, src);
611  }
612
613  void cmpb_al(Immediate src);
614
615  void cmpb(Register dst, Register src) {
616    arithmetic_op(0x3A, dst, src);
617  }
618
619  void cmpb(Register dst, const Operand& src) {
620    arithmetic_op(0x3A, dst, src);
621  }
622
623  void cmpb(const Operand& dst, Register src) {
624    arithmetic_op(0x38, src, dst);
625  }
626
627  void cmpb(const Operand& dst, Immediate src) {
628    immediate_arithmetic_op_8(0x7, dst, src);
629  }
630
631  void cmpw(const Operand& dst, Immediate src) {
632    immediate_arithmetic_op_16(0x7, dst, src);
633  }
634
635  void cmpw(Register dst, Immediate src) {
636    immediate_arithmetic_op_16(0x7, dst, src);
637  }
638
639  void cmpw(Register dst, const Operand& src) {
640    arithmetic_op_16(0x3B, dst, src);
641  }
642
643  void cmpw(Register dst, Register src) {
644    arithmetic_op_16(0x3B, dst, src);
645  }
646
647  void cmpw(const Operand& dst, Register src) {
648    arithmetic_op_16(0x39, src, dst);
649  }
650
651  void cmpl(Register dst, Register src) {
652    arithmetic_op_32(0x3B, dst, src);
653  }
654
655  void cmpl(Register dst, const Operand& src) {
656    arithmetic_op_32(0x3B, dst, src);
657  }
658
659  void cmpl(const Operand& dst, Register src) {
660    arithmetic_op_32(0x39, src, dst);
661  }
662
663  void cmpl(Register dst, Immediate src) {
664    immediate_arithmetic_op_32(0x7, dst, src);
665  }
666
667  void cmpl(const Operand& dst, Immediate src) {
668    immediate_arithmetic_op_32(0x7, dst, src);
669  }
670
671  void cmpq(Register dst, Register src) {
672    arithmetic_op(0x3B, dst, src);
673  }
674
675  void cmpq(Register dst, const Operand& src) {
676    arithmetic_op(0x3B, dst, src);
677  }
678
679  void cmpq(const Operand& dst, Register src) {
680    arithmetic_op(0x39, src, dst);
681  }
682
683  void cmpq(Register dst, Immediate src) {
684    immediate_arithmetic_op(0x7, dst, src);
685  }
686
687  void cmpq(const Operand& dst, Immediate src) {
688    immediate_arithmetic_op(0x7, dst, src);
689  }
690
691  void and_(Register dst, Register src) {
692    arithmetic_op(0x23, dst, src);
693  }
694
695  void and_(Register dst, const Operand& src) {
696    arithmetic_op(0x23, dst, src);
697  }
698
699  void and_(const Operand& dst, Register src) {
700    arithmetic_op(0x21, src, dst);
701  }
702
703  void and_(Register dst, Immediate src) {
704    immediate_arithmetic_op(0x4, dst, src);
705  }
706
707  void and_(const Operand& dst, Immediate src) {
708    immediate_arithmetic_op(0x4, dst, src);
709  }
710
711  void andl(Register dst, Immediate src) {
712    immediate_arithmetic_op_32(0x4, dst, src);
713  }
714
715  void andl(Register dst, Register src) {
716    arithmetic_op_32(0x23, dst, src);
717  }
718
719  void andb(Register dst, Immediate src) {
720    immediate_arithmetic_op_8(0x4, dst, src);
721  }
722
723  void decq(Register dst);
724  void decq(const Operand& dst);
725  void decl(Register dst);
726  void decl(const Operand& dst);
727  void decb(Register dst);
728  void decb(const Operand& dst);
729
730  // Sign-extends rax into rdx:rax.
731  void cqo();
732  // Sign-extends eax into edx:eax.
733  void cdq();
734
735  // Divide rdx:rax by src.  Quotient in rax, remainder in rdx.
736  void idivq(Register src);
737  // Divide edx:eax by lower 32 bits of src.  Quotient in eax, rem. in edx.
738  void idivl(Register src);
739
740  // Signed multiply instructions.
741  void imul(Register src);                               // rdx:rax = rax * src.
742  void imul(Register dst, Register src);                 // dst = dst * src.
743  void imul(Register dst, const Operand& src);           // dst = dst * src.
744  void imul(Register dst, Register src, Immediate imm);  // dst = src * imm.
745  // Multiply 32 bit registers
746  void imull(Register dst, Register src);                // dst = dst * src.
747
748  void incq(Register dst);
749  void incq(const Operand& dst);
750  void incl(const Operand& dst);
751
752  void lea(Register dst, const Operand& src);
753
754  // Multiply rax by src, put the result in rdx:rax.
755  void mul(Register src);
756
757  void neg(Register dst);
758  void neg(const Operand& dst);
759  void negl(Register dst);
760
761  void not_(Register dst);
762  void not_(const Operand& dst);
763
764  void or_(Register dst, Register src) {
765    arithmetic_op(0x0B, dst, src);
766  }
767
768  void orl(Register dst, Register src) {
769    arithmetic_op_32(0x0B, dst, src);
770  }
771
772  void or_(Register dst, const Operand& src) {
773    arithmetic_op(0x0B, dst, src);
774  }
775
776  void or_(const Operand& dst, Register src) {
777    arithmetic_op(0x09, src, dst);
778  }
779
780  void or_(Register dst, Immediate src) {
781    immediate_arithmetic_op(0x1, dst, src);
782  }
783
784  void orl(Register dst, Immediate src) {
785    immediate_arithmetic_op_32(0x1, dst, src);
786  }
787
788  void or_(const Operand& dst, Immediate src) {
789    immediate_arithmetic_op(0x1, dst, src);
790  }
791
792  void orl(const Operand& dst, Immediate src) {
793    immediate_arithmetic_op_32(0x1, dst, src);
794  }
795
796
797  void rcl(Register dst, Immediate imm8) {
798    shift(dst, imm8, 0x2);
799  }
800
801  void rol(Register dst, Immediate imm8) {
802    shift(dst, imm8, 0x0);
803  }
804
805  void rcr(Register dst, Immediate imm8) {
806    shift(dst, imm8, 0x3);
807  }
808
809  void ror(Register dst, Immediate imm8) {
810    shift(dst, imm8, 0x1);
811  }
812
813  // Shifts dst:src left by cl bits, affecting only dst.
814  void shld(Register dst, Register src);
815
816  // Shifts src:dst right by cl bits, affecting only dst.
817  void shrd(Register dst, Register src);
818
819  // Shifts dst right, duplicating sign bit, by shift_amount bits.
820  // Shifting by 1 is handled efficiently.
821  void sar(Register dst, Immediate shift_amount) {
822    shift(dst, shift_amount, 0x7);
823  }
824
825  // Shifts dst right, duplicating sign bit, by shift_amount bits.
826  // Shifting by 1 is handled efficiently.
827  void sarl(Register dst, Immediate shift_amount) {
828    shift_32(dst, shift_amount, 0x7);
829  }
830
831  // Shifts dst right, duplicating sign bit, by cl % 64 bits.
832  void sar_cl(Register dst) {
833    shift(dst, 0x7);
834  }
835
836  // Shifts dst right, duplicating sign bit, by cl % 64 bits.
837  void sarl_cl(Register dst) {
838    shift_32(dst, 0x7);
839  }
840
841  void shl(Register dst, Immediate shift_amount) {
842    shift(dst, shift_amount, 0x4);
843  }
844
845  void shl_cl(Register dst) {
846    shift(dst, 0x4);
847  }
848
849  void shll_cl(Register dst) {
850    shift_32(dst, 0x4);
851  }
852
853  void shll(Register dst, Immediate shift_amount) {
854    shift_32(dst, shift_amount, 0x4);
855  }
856
857  void shr(Register dst, Immediate shift_amount) {
858    shift(dst, shift_amount, 0x5);
859  }
860
861  void shr_cl(Register dst) {
862    shift(dst, 0x5);
863  }
864
865  void shrl_cl(Register dst) {
866    shift_32(dst, 0x5);
867  }
868
869  void shrl(Register dst, Immediate shift_amount) {
870    shift_32(dst, shift_amount, 0x5);
871  }
872
873  void store_rax(void* dst, RelocInfo::Mode mode);
874  void store_rax(ExternalReference ref);
875
876  void subq(Register dst, Register src) {
877    arithmetic_op(0x2B, dst, src);
878  }
879
880  void subq(Register dst, const Operand& src) {
881    arithmetic_op(0x2B, dst, src);
882  }
883
884  void subq(const Operand& dst, Register src) {
885    arithmetic_op(0x29, src, dst);
886  }
887
888  void subq(Register dst, Immediate src) {
889    immediate_arithmetic_op(0x5, dst, src);
890  }
891
892  void subq(const Operand& dst, Immediate src) {
893    immediate_arithmetic_op(0x5, dst, src);
894  }
895
896  void subl(Register dst, Register src) {
897    arithmetic_op_32(0x2B, dst, src);
898  }
899
900  void subl(Register dst, const Operand& src) {
901    arithmetic_op_32(0x2B, dst, src);
902  }
903
904  void subl(const Operand& dst, Immediate src) {
905    immediate_arithmetic_op_32(0x5, dst, src);
906  }
907
908  void subl(Register dst, Immediate src) {
909    immediate_arithmetic_op_32(0x5, dst, src);
910  }
911
912  void subb(Register dst, Immediate src) {
913    immediate_arithmetic_op_8(0x5, dst, src);
914  }
915
916  void testb(Register dst, Register src);
917  void testb(Register reg, Immediate mask);
918  void testb(const Operand& op, Immediate mask);
919  void testb(const Operand& op, Register reg);
920  void testl(Register dst, Register src);
921  void testl(Register reg, Immediate mask);
922  void testl(const Operand& op, Immediate mask);
923  void testq(const Operand& op, Register reg);
924  void testq(Register dst, Register src);
925  void testq(Register dst, Immediate mask);
926
927  void xor_(Register dst, Register src) {
928    if (dst.code() == src.code()) {
929      arithmetic_op_32(0x33, dst, src);
930    } else {
931      arithmetic_op(0x33, dst, src);
932    }
933  }
934
935  void xorl(Register dst, Register src) {
936    arithmetic_op_32(0x33, dst, src);
937  }
938
939  void xor_(Register dst, const Operand& src) {
940    arithmetic_op(0x33, dst, src);
941  }
942
943  void xor_(const Operand& dst, Register src) {
944    arithmetic_op(0x31, src, dst);
945  }
946
947  void xor_(Register dst, Immediate src) {
948    immediate_arithmetic_op(0x6, dst, src);
949  }
950
951  void xor_(const Operand& dst, Immediate src) {
952    immediate_arithmetic_op(0x6, dst, src);
953  }
954
955  // Bit operations.
956  void bt(const Operand& dst, Register src);
957  void bts(const Operand& dst, Register src);
958
959  // Miscellaneous
960  void clc();
961  void cpuid();
962  void hlt();
963  void int3();
964  void nop();
965  void nop(int n);
966  void rdtsc();
967  void ret(int imm16);
968  void setcc(Condition cc, Register reg);
969
970  // Label operations & relative jumps (PPUM Appendix D)
971  //
972  // Takes a branch opcode (cc) and a label (L) and generates
973  // either a backward branch or a forward branch and links it
974  // to the label fixup chain. Usage:
975  //
976  // Label L;    // unbound label
977  // j(cc, &L);  // forward branch to unbound label
978  // bind(&L);   // bind label to the current pc
979  // j(cc, &L);  // backward branch to bound label
980  // bind(&L);   // illegal: a label may be bound only once
981  //
982  // Note: The same Label can be used for forward and backward branches
983  // but it may be bound only once.
984
985  void bind(Label* L);  // binds an unbound label L to the current code position
986
987  // Calls
988  // Call near relative 32-bit displacement, relative to next instruction.
989  void call(Label* L);
990  void call(Handle<Code> target, RelocInfo::Mode rmode);
991
992  // Call near absolute indirect, address in register
993  void call(Register adr);
994
995  // Call near indirect
996  void call(const Operand& operand);
997
998  // Jumps
999  // Jump short or near relative.
1000  // Use a 32-bit signed displacement.
1001  void jmp(Label* L);  // unconditional jump to L
1002  void jmp(Handle<Code> target, RelocInfo::Mode rmode);
1003
1004  // Jump near absolute indirect (r64)
1005  void jmp(Register adr);
1006
1007  // Jump near absolute indirect (m64)
1008  void jmp(const Operand& src);
1009
1010  // Conditional jumps
1011  void j(Condition cc, Label* L);
1012  void j(Condition cc, Handle<Code> target, RelocInfo::Mode rmode);
1013
1014  // Floating-point operations
1015  void fld(int i);
1016
1017  void fld1();
1018  void fldz();
1019
1020  void fld_s(const Operand& adr);
1021  void fld_d(const Operand& adr);
1022
1023  void fstp_s(const Operand& adr);
1024  void fstp_d(const Operand& adr);
1025  void fstp(int index);
1026
1027  void fild_s(const Operand& adr);
1028  void fild_d(const Operand& adr);
1029
1030  void fist_s(const Operand& adr);
1031
1032  void fistp_s(const Operand& adr);
1033  void fistp_d(const Operand& adr);
1034
1035  void fisttp_s(const Operand& adr);
1036  void fisttp_d(const Operand& adr);
1037
1038  void fabs();
1039  void fchs();
1040
1041  void fadd(int i);
1042  void fsub(int i);
1043  void fmul(int i);
1044  void fdiv(int i);
1045
1046  void fisub_s(const Operand& adr);
1047
1048  void faddp(int i = 1);
1049  void fsubp(int i = 1);
1050  void fsubrp(int i = 1);
1051  void fmulp(int i = 1);
1052  void fdivp(int i = 1);
1053  void fprem();
1054  void fprem1();
1055
1056  void fxch(int i = 1);
1057  void fincstp();
1058  void ffree(int i = 0);
1059
1060  void ftst();
1061  void fucomp(int i);
1062  void fucompp();
1063  void fucomi(int i);
1064  void fucomip();
1065
1066  void fcompp();
1067  void fnstsw_ax();
1068  void fwait();
1069  void fnclex();
1070
1071  void fsin();
1072  void fcos();
1073
1074  void frndint();
1075
1076  void sahf();
1077
1078  // SSE2 instructions
1079  void movsd(const Operand& dst, XMMRegister src);
1080  void movsd(XMMRegister src, XMMRegister dst);
1081  void movsd(XMMRegister src, const Operand& dst);
1082
1083  void cvttss2si(Register dst, const Operand& src);
1084  void cvttsd2si(Register dst, const Operand& src);
1085
1086  void cvtlsi2sd(XMMRegister dst, const Operand& src);
1087  void cvtlsi2sd(XMMRegister dst, Register src);
1088  void cvtqsi2sd(XMMRegister dst, const Operand& src);
1089  void cvtqsi2sd(XMMRegister dst, Register src);
1090
1091  void addsd(XMMRegister dst, XMMRegister src);
1092  void subsd(XMMRegister dst, XMMRegister src);
1093  void mulsd(XMMRegister dst, XMMRegister src);
1094  void divsd(XMMRegister dst, XMMRegister src);
1095
1096  void xorpd(XMMRegister dst, XMMRegister src);
1097
1098  void comisd(XMMRegister dst, XMMRegister src);
1099  void ucomisd(XMMRegister dst, XMMRegister src);
1100
1101  void emit_sse_operand(XMMRegister dst, XMMRegister src);
1102  void emit_sse_operand(XMMRegister reg, const Operand& adr);
1103  void emit_sse_operand(XMMRegister dst, Register src);
1104
1105  // Use either movsd or movlpd.
1106  // void movdbl(XMMRegister dst, const Operand& src);
1107  // void movdbl(const Operand& dst, XMMRegister src);
1108
1109  // Debugging
1110  void Print();
1111
1112  // Check the code size generated from label to here.
1113  int SizeOfCodeGeneratedSince(Label* l) { return pc_offset() - l->pos(); }
1114
1115  // Mark address of the ExitJSFrame code.
1116  void RecordJSReturn();
1117
1118  // Record a comment relocation entry that can be used by a disassembler.
1119  // Use --debug_code to enable.
1120  void RecordComment(const char* msg);
1121
1122  void RecordPosition(int pos);
1123  void RecordStatementPosition(int pos);
1124  void WriteRecordedPositions();
1125
1126  int pc_offset() const  { return static_cast<int>(pc_ - buffer_); }
1127  int current_statement_position() const { return current_statement_position_; }
1128  int current_position() const  { return current_position_; }
1129
1130  // Check if there is less than kGap bytes available in the buffer.
1131  // If this is the case, we need to grow the buffer before emitting
1132  // an instruction or relocation information.
1133  inline bool buffer_overflow() const {
1134    return pc_ >= reloc_info_writer.pos() - kGap;
1135  }
1136
1137  // Get the number of bytes available in the buffer.
1138  inline int available_space() const {
1139    return static_cast<int>(reloc_info_writer.pos() - pc_);
1140  }
1141
1142  // Avoid overflows for displacements etc.
1143  static const int kMaximalBufferSize = 512*MB;
1144  static const int kMinimalBufferSize = 4*KB;
1145
1146 private:
1147  byte* addr_at(int pos)  { return buffer_ + pos; }
1148  byte byte_at(int pos)  { return buffer_[pos]; }
1149  uint32_t long_at(int pos)  {
1150    return *reinterpret_cast<uint32_t*>(addr_at(pos));
1151  }
1152  void long_at_put(int pos, uint32_t x)  {
1153    *reinterpret_cast<uint32_t*>(addr_at(pos)) = x;
1154  }
1155
1156  // code emission
1157  void GrowBuffer();
1158
1159  void emit(byte x) { *pc_++ = x; }
1160  inline void emitl(uint32_t x);
1161  inline void emitq(uint64_t x, RelocInfo::Mode rmode);
1162  inline void emitw(uint16_t x);
1163  inline void emit_code_target(Handle<Code> target, RelocInfo::Mode rmode);
1164  void emit(Immediate x) { emitl(x.value_); }
1165
1166  // Emits a REX prefix that encodes a 64-bit operand size and
1167  // the top bit of both register codes.
1168  // High bit of reg goes to REX.R, high bit of rm_reg goes to REX.B.
1169  // REX.W is set.
1170  inline void emit_rex_64(Register reg, Register rm_reg);
1171  inline void emit_rex_64(XMMRegister reg, Register rm_reg);
1172
1173  // Emits a REX prefix that encodes a 64-bit operand size and
1174  // the top bit of the destination, index, and base register codes.
1175  // The high bit of reg is used for REX.R, the high bit of op's base
1176  // register is used for REX.B, and the high bit of op's index register
1177  // is used for REX.X.  REX.W is set.
1178  inline void emit_rex_64(Register reg, const Operand& op);
1179  inline void emit_rex_64(XMMRegister reg, const Operand& op);
1180
1181  // Emits a REX prefix that encodes a 64-bit operand size and
1182  // the top bit of the register code.
1183  // The high bit of register is used for REX.B.
1184  // REX.W is set and REX.R and REX.X are clear.
1185  inline void emit_rex_64(Register rm_reg);
1186
1187  // Emits a REX prefix that encodes a 64-bit operand size and
1188  // the top bit of the index and base register codes.
1189  // The high bit of op's base register is used for REX.B, and the high
1190  // bit of op's index register is used for REX.X.
1191  // REX.W is set and REX.R clear.
1192  inline void emit_rex_64(const Operand& op);
1193
1194  // Emit a REX prefix that only sets REX.W to choose a 64-bit operand size.
1195  void emit_rex_64() { emit(0x48); }
1196
1197  // High bit of reg goes to REX.R, high bit of rm_reg goes to REX.B.
1198  // REX.W is clear.
1199  inline void emit_rex_32(Register reg, Register rm_reg);
1200
1201  // The high bit of reg is used for REX.R, the high bit of op's base
1202  // register is used for REX.B, and the high bit of op's index register
1203  // is used for REX.X.  REX.W is cleared.
1204  inline void emit_rex_32(Register reg, const Operand& op);
1205
1206  // High bit of rm_reg goes to REX.B.
1207  // REX.W, REX.R and REX.X are clear.
1208  inline void emit_rex_32(Register rm_reg);
1209
1210  // High bit of base goes to REX.B and high bit of index to REX.X.
1211  // REX.W and REX.R are clear.
1212  inline void emit_rex_32(const Operand& op);
1213
1214  // High bit of reg goes to REX.R, high bit of rm_reg goes to REX.B.
1215  // REX.W is cleared.  If no REX bits are set, no byte is emitted.
1216  inline void emit_optional_rex_32(Register reg, Register rm_reg);
1217
1218  // The high bit of reg is used for REX.R, the high bit of op's base
1219  // register is used for REX.B, and the high bit of op's index register
1220  // is used for REX.X.  REX.W is cleared.  If no REX bits are set, nothing
1221  // is emitted.
1222  inline void emit_optional_rex_32(Register reg, const Operand& op);
1223
1224  // As for emit_optional_rex_32(Register, Register), except that
1225  // the registers are XMM registers.
1226  inline void emit_optional_rex_32(XMMRegister reg, XMMRegister base);
1227
1228  // As for emit_optional_rex_32(Register, Register), except that
1229  // the registers are XMM registers.
1230  inline void emit_optional_rex_32(XMMRegister reg, Register base);
1231
1232  // As for emit_optional_rex_32(Register, const Operand&), except that
1233  // the register is an XMM register.
1234  inline void emit_optional_rex_32(XMMRegister reg, const Operand& op);
1235
1236  // Optionally do as emit_rex_32(Register) if the register number has
1237  // the high bit set.
1238  inline void emit_optional_rex_32(Register rm_reg);
1239
1240  // Optionally do as emit_rex_32(const Operand&) if the operand register
1241  // numbers have a high bit set.
1242  inline void emit_optional_rex_32(const Operand& op);
1243
1244
1245  // Emit the ModR/M byte, and optionally the SIB byte and
1246  // 1- or 4-byte offset for a memory operand.  Also encodes
1247  // the second operand of the operation, a register or operation
1248  // subcode, into the reg field of the ModR/M byte.
1249  void emit_operand(Register reg, const Operand& adr) {
1250    emit_operand(reg.low_bits(), adr);
1251  }
1252
1253  // Emit the ModR/M byte, and optionally the SIB byte and
1254  // 1- or 4-byte offset for a memory operand.  Also used to encode
1255  // a three-bit opcode extension into the ModR/M byte.
1256  void emit_operand(int rm, const Operand& adr);
1257
1258  // Emit a ModR/M byte with registers coded in the reg and rm_reg fields.
1259  void emit_modrm(Register reg, Register rm_reg) {
1260    emit(0xC0 | reg.low_bits() << 3 | rm_reg.low_bits());
1261  }
1262
1263  // Emit a ModR/M byte with an operation subcode in the reg field and
1264  // a register in the rm_reg field.
1265  void emit_modrm(int code, Register rm_reg) {
1266    ASSERT(is_uint3(code));
1267    emit(0xC0 | code << 3 | rm_reg.low_bits());
1268  }
1269
1270  // Emit the code-object-relative offset of the label's position
1271  inline void emit_code_relative_offset(Label* label);
1272
1273  // Emit machine code for one of the operations ADD, ADC, SUB, SBC,
1274  // AND, OR, XOR, or CMP.  The encodings of these operations are all
1275  // similar, differing just in the opcode or in the reg field of the
1276  // ModR/M byte.
1277  void arithmetic_op_16(byte opcode, Register reg, Register rm_reg);
1278  void arithmetic_op_16(byte opcode, Register reg, const Operand& rm_reg);
1279  void arithmetic_op_32(byte opcode, Register reg, Register rm_reg);
1280  void arithmetic_op_32(byte opcode, Register reg, const Operand& rm_reg);
1281  void arithmetic_op(byte opcode, Register reg, Register rm_reg);
1282  void arithmetic_op(byte opcode, Register reg, const Operand& rm_reg);
1283  void immediate_arithmetic_op(byte subcode, Register dst, Immediate src);
1284  void immediate_arithmetic_op(byte subcode, const Operand& dst, Immediate src);
1285  // Operate on a byte in memory or register.
1286  void immediate_arithmetic_op_8(byte subcode,
1287                                 Register dst,
1288                                 Immediate src);
1289  void immediate_arithmetic_op_8(byte subcode,
1290                                 const Operand& dst,
1291                                 Immediate src);
1292  // Operate on a word in memory or register.
1293  void immediate_arithmetic_op_16(byte subcode,
1294                                  Register dst,
1295                                  Immediate src);
1296  void immediate_arithmetic_op_16(byte subcode,
1297                                  const Operand& dst,
1298                                  Immediate src);
1299  // Operate on a 32-bit word in memory or register.
1300  void immediate_arithmetic_op_32(byte subcode,
1301                                  Register dst,
1302                                  Immediate src);
1303  void immediate_arithmetic_op_32(byte subcode,
1304                                  const Operand& dst,
1305                                  Immediate src);
1306
1307  // Emit machine code for a shift operation.
1308  void shift(Register dst, Immediate shift_amount, int subcode);
1309  void shift_32(Register dst, Immediate shift_amount, int subcode);
1310  // Shift dst by cl % 64 bits.
1311  void shift(Register dst, int subcode);
1312  void shift_32(Register dst, int subcode);
1313
1314  void emit_farith(int b1, int b2, int i);
1315
1316  // labels
1317  // void print(Label* L);
1318  void bind_to(Label* L, int pos);
1319  void link_to(Label* L, Label* appendix);
1320
1321  // record reloc info for current pc_
1322  void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0);
1323
1324  friend class CodePatcher;
1325  friend class EnsureSpace;
1326  friend class RegExpMacroAssemblerX64;
1327
1328  // Code buffer:
1329  // The buffer into which code and relocation info are generated.
1330  byte* buffer_;
1331  int buffer_size_;
1332  // True if the assembler owns the buffer, false if buffer is external.
1333  bool own_buffer_;
1334  // A previously allocated buffer of kMinimalBufferSize bytes, or NULL.
1335  static byte* spare_buffer_;
1336
1337  // code generation
1338  byte* pc_;  // the program counter; moves forward
1339  RelocInfoWriter reloc_info_writer;
1340
1341  List< Handle<Code> > code_targets_;
1342  // push-pop elimination
1343  byte* last_pc_;
1344
1345  // source position information
1346  int current_statement_position_;
1347  int current_position_;
1348  int written_statement_position_;
1349  int written_position_;
1350};
1351
1352
1353// Helper class that ensures that there is enough space for generating
1354// instructions and relocation information.  The constructor makes
1355// sure that there is enough space and (in debug mode) the destructor
1356// checks that we did not generate too much.
1357class EnsureSpace BASE_EMBEDDED {
1358 public:
1359  explicit EnsureSpace(Assembler* assembler) : assembler_(assembler) {
1360    if (assembler_->buffer_overflow()) assembler_->GrowBuffer();
1361#ifdef DEBUG
1362    space_before_ = assembler_->available_space();
1363#endif
1364  }
1365
1366#ifdef DEBUG
1367  ~EnsureSpace() {
1368    int bytes_generated = space_before_ - assembler_->available_space();
1369    ASSERT(bytes_generated < assembler_->kGap);
1370  }
1371#endif
1372
1373 private:
1374  Assembler* assembler_;
1375#ifdef DEBUG
1376  int space_before_;
1377#endif
1378};
1379
1380} }  // namespace v8::internal
1381
1382#endif  // V8_X64_ASSEMBLER_X64_H_
1383