InterpC-x86.c revision 5387824f19033ed51a945fbc8c2b574998404b3d
1/* 2 * This file was generated automatically by gen-mterp.py for 'x86'. 3 * 4 * --> DO NOT EDIT <-- 5 */ 6 7/* File: c/header.c */ 8/* 9 * Copyright (C) 2008 The Android Open Source Project 10 * 11 * Licensed under the Apache License, Version 2.0 (the "License"); 12 * you may not use this file except in compliance with the License. 13 * You may obtain a copy of the License at 14 * 15 * http://www.apache.org/licenses/LICENSE-2.0 16 * 17 * Unless required by applicable law or agreed to in writing, software 18 * distributed under the License is distributed on an "AS IS" BASIS, 19 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 20 * See the License for the specific language governing permissions and 21 * limitations under the License. 22 */ 23 24/* common includes */ 25#include "Dalvik.h" 26#include "interp/InterpDefs.h" 27#include "mterp/Mterp.h" 28#include <math.h> // needed for fmod, fmodf 29#include "mterp/common/FindInterface.h" 30 31/* 32 * Configuration defines. These affect the C implementations, i.e. the 33 * portable interpreter(s) and C stubs. 34 * 35 * Some defines are controlled by the Makefile, e.g.: 36 * WITH_PROFILER 37 * WITH_DEBUGGER 38 * WITH_INSTR_CHECKS 39 * WITH_TRACKREF_CHECKS 40 * EASY_GDB 41 * NDEBUG 42 * 43 * If THREADED_INTERP is not defined, we use a classic "while true / switch" 44 * interpreter. If it is defined, then the tail end of each instruction 45 * handler fetches the next instruction and jumps directly to the handler. 46 * This increases the size of the "Std" interpreter by about 10%, but 47 * provides a speedup of about the same magnitude. 48 * 49 * There's a "hybrid" approach that uses a goto table instead of a switch 50 * statement, avoiding the "is the opcode in range" tests required for switch. 51 * The performance is close to the threaded version, and without the 10% 52 * size increase, but the benchmark results are off enough that it's not 53 * worth adding as a third option. 54 */ 55#define THREADED_INTERP /* threaded vs. while-loop interpreter */ 56 57#ifdef WITH_INSTR_CHECKS /* instruction-level paranoia (slow!) */ 58# define CHECK_BRANCH_OFFSETS 59# define CHECK_REGISTER_INDICES 60#endif 61 62/* 63 * ARM EABI requires 64-bit alignment for access to 64-bit data types. We 64 * can't just use pointers to copy 64-bit values out of our interpreted 65 * register set, because gcc will generate ldrd/strd. 66 * 67 * The __UNION version copies data in and out of a union. The __MEMCPY 68 * version uses a memcpy() call to do the transfer; gcc is smart enough to 69 * not actually call memcpy(). The __UNION version is very bad on ARM; 70 * it only uses one more instruction than __MEMCPY, but for some reason 71 * gcc thinks it needs separate storage for every instance of the union. 72 * On top of that, it feels the need to zero them out at the start of the 73 * method. Net result is we zero out ~700 bytes of stack space at the top 74 * of the interpreter using ARM STM instructions. 75 */ 76#if defined(__ARM_EABI__) 77//# define NO_UNALIGN_64__UNION 78# define NO_UNALIGN_64__MEMCPY 79#endif 80 81//#define LOG_INSTR /* verbose debugging */ 82/* set and adjust ANDROID_LOG_TAGS='*:i jdwp:i dalvikvm:i dalvikvmi:i' */ 83 84/* 85 * Keep a tally of accesses to fields. Currently only works if full DEX 86 * optimization is disabled. 87 */ 88#ifdef PROFILE_FIELD_ACCESS 89# define UPDATE_FIELD_GET(_field) { (_field)->gets++; } 90# define UPDATE_FIELD_PUT(_field) { (_field)->puts++; } 91#else 92# define UPDATE_FIELD_GET(_field) ((void)0) 93# define UPDATE_FIELD_PUT(_field) ((void)0) 94#endif 95 96/* 97 * Export another copy of the PC on every instruction; this is largely 98 * redundant with EXPORT_PC and the debugger code. This value can be 99 * compared against what we have stored on the stack with EXPORT_PC to 100 * help ensure that we aren't missing any export calls. 101 */ 102#if WITH_EXTRA_GC_CHECKS > 1 103# define EXPORT_EXTRA_PC() (self->currentPc2 = pc) 104#else 105# define EXPORT_EXTRA_PC() 106#endif 107 108/* 109 * Adjust the program counter. "_offset" is a signed int, in 16-bit units. 110 * 111 * Assumes the existence of "const u2* pc" and "const u2* curMethod->insns". 112 * 113 * We don't advance the program counter until we finish an instruction or 114 * branch, because we do want to have to unroll the PC if there's an 115 * exception. 116 */ 117#ifdef CHECK_BRANCH_OFFSETS 118# define ADJUST_PC(_offset) do { \ 119 int myoff = _offset; /* deref only once */ \ 120 if (pc + myoff < curMethod->insns || \ 121 pc + myoff >= curMethod->insns + dvmGetMethodInsnsSize(curMethod)) \ 122 { \ 123 char* desc; \ 124 desc = dexProtoCopyMethodDescriptor(&curMethod->prototype); \ 125 LOGE("Invalid branch %d at 0x%04x in %s.%s %s\n", \ 126 myoff, (int) (pc - curMethod->insns), \ 127 curMethod->clazz->descriptor, curMethod->name, desc); \ 128 free(desc); \ 129 dvmAbort(); \ 130 } \ 131 pc += myoff; \ 132 EXPORT_EXTRA_PC(); \ 133 } while (false) 134#else 135# define ADJUST_PC(_offset) do { \ 136 pc += _offset; \ 137 EXPORT_EXTRA_PC(); \ 138 } while (false) 139#endif 140 141/* 142 * If enabled, log instructions as we execute them. 143 */ 144#ifdef LOG_INSTR 145# define ILOGD(...) ILOG(LOG_DEBUG, __VA_ARGS__) 146# define ILOGV(...) ILOG(LOG_VERBOSE, __VA_ARGS__) 147# define ILOG(_level, ...) do { \ 148 char debugStrBuf[128]; \ 149 snprintf(debugStrBuf, sizeof(debugStrBuf), __VA_ARGS__); \ 150 if (curMethod != NULL) \ 151 LOG(_level, LOG_TAG"i", "%-2d|%04x%s\n", \ 152 self->threadId, (int)(pc - curMethod->insns), debugStrBuf); \ 153 else \ 154 LOG(_level, LOG_TAG"i", "%-2d|####%s\n", \ 155 self->threadId, debugStrBuf); \ 156 } while(false) 157void dvmDumpRegs(const Method* method, const u4* framePtr, bool inOnly); 158# define DUMP_REGS(_meth, _frame, _inOnly) dvmDumpRegs(_meth, _frame, _inOnly) 159static const char kSpacing[] = " "; 160#else 161# define ILOGD(...) ((void)0) 162# define ILOGV(...) ((void)0) 163# define DUMP_REGS(_meth, _frame, _inOnly) ((void)0) 164#endif 165 166/* get a long from an array of u4 */ 167static inline s8 getLongFromArray(const u4* ptr, int idx) 168{ 169#if defined(NO_UNALIGN_64__UNION) 170 union { s8 ll; u4 parts[2]; } conv; 171 172 ptr += idx; 173 conv.parts[0] = ptr[0]; 174 conv.parts[1] = ptr[1]; 175 return conv.ll; 176#elif defined(NO_UNALIGN_64__MEMCPY) 177 s8 val; 178 memcpy(&val, &ptr[idx], 8); 179 return val; 180#else 181 return *((s8*) &ptr[idx]); 182#endif 183} 184 185/* store a long into an array of u4 */ 186static inline void putLongToArray(u4* ptr, int idx, s8 val) 187{ 188#if defined(NO_UNALIGN_64__UNION) 189 union { s8 ll; u4 parts[2]; } conv; 190 191 ptr += idx; 192 conv.ll = val; 193 ptr[0] = conv.parts[0]; 194 ptr[1] = conv.parts[1]; 195#elif defined(NO_UNALIGN_64__MEMCPY) 196 memcpy(&ptr[idx], &val, 8); 197#else 198 *((s8*) &ptr[idx]) = val; 199#endif 200} 201 202/* get a double from an array of u4 */ 203static inline double getDoubleFromArray(const u4* ptr, int idx) 204{ 205#if defined(NO_UNALIGN_64__UNION) 206 union { double d; u4 parts[2]; } conv; 207 208 ptr += idx; 209 conv.parts[0] = ptr[0]; 210 conv.parts[1] = ptr[1]; 211 return conv.d; 212#elif defined(NO_UNALIGN_64__MEMCPY) 213 double dval; 214 memcpy(&dval, &ptr[idx], 8); 215 return dval; 216#else 217 return *((double*) &ptr[idx]); 218#endif 219} 220 221/* store a double into an array of u4 */ 222static inline void putDoubleToArray(u4* ptr, int idx, double dval) 223{ 224#if defined(NO_UNALIGN_64__UNION) 225 union { double d; u4 parts[2]; } conv; 226 227 ptr += idx; 228 conv.d = dval; 229 ptr[0] = conv.parts[0]; 230 ptr[1] = conv.parts[1]; 231#elif defined(NO_UNALIGN_64__MEMCPY) 232 memcpy(&ptr[idx], &dval, 8); 233#else 234 *((double*) &ptr[idx]) = dval; 235#endif 236} 237 238/* 239 * If enabled, validate the register number on every access. Otherwise, 240 * just do an array access. 241 * 242 * Assumes the existence of "u4* fp". 243 * 244 * "_idx" may be referenced more than once. 245 */ 246#ifdef CHECK_REGISTER_INDICES 247# define GET_REGISTER(_idx) \ 248 ( (_idx) < curMethod->registersSize ? \ 249 (fp[(_idx)]) : (assert(!"bad reg"),1969) ) 250# define SET_REGISTER(_idx, _val) \ 251 ( (_idx) < curMethod->registersSize ? \ 252 (fp[(_idx)] = (u4)(_val)) : (assert(!"bad reg"),1969) ) 253# define GET_REGISTER_AS_OBJECT(_idx) ((Object *)GET_REGISTER(_idx)) 254# define SET_REGISTER_AS_OBJECT(_idx, _val) SET_REGISTER(_idx, (s4)_val) 255# define GET_REGISTER_INT(_idx) ((s4) GET_REGISTER(_idx)) 256# define SET_REGISTER_INT(_idx, _val) SET_REGISTER(_idx, (s4)_val) 257# define GET_REGISTER_WIDE(_idx) \ 258 ( (_idx) < curMethod->registersSize-1 ? \ 259 getLongFromArray(fp, (_idx)) : (assert(!"bad reg"),1969) ) 260# define SET_REGISTER_WIDE(_idx, _val) \ 261 ( (_idx) < curMethod->registersSize-1 ? \ 262 putLongToArray(fp, (_idx), (_val)) : (assert(!"bad reg"),1969) ) 263# define GET_REGISTER_FLOAT(_idx) \ 264 ( (_idx) < curMethod->registersSize ? \ 265 (*((float*) &fp[(_idx)])) : (assert(!"bad reg"),1969.0f) ) 266# define SET_REGISTER_FLOAT(_idx, _val) \ 267 ( (_idx) < curMethod->registersSize ? \ 268 (*((float*) &fp[(_idx)]) = (_val)) : (assert(!"bad reg"),1969.0f) ) 269# define GET_REGISTER_DOUBLE(_idx) \ 270 ( (_idx) < curMethod->registersSize-1 ? \ 271 getDoubleFromArray(fp, (_idx)) : (assert(!"bad reg"),1969.0) ) 272# define SET_REGISTER_DOUBLE(_idx, _val) \ 273 ( (_idx) < curMethod->registersSize-1 ? \ 274 putDoubleToArray(fp, (_idx), (_val)) : (assert(!"bad reg"),1969.0) ) 275#else 276# define GET_REGISTER(_idx) (fp[(_idx)]) 277# define SET_REGISTER(_idx, _val) (fp[(_idx)] = (_val)) 278# define GET_REGISTER_AS_OBJECT(_idx) ((Object*) fp[(_idx)]) 279# define SET_REGISTER_AS_OBJECT(_idx, _val) (fp[(_idx)] = (u4)(_val)) 280# define GET_REGISTER_INT(_idx) ((s4)GET_REGISTER(_idx)) 281# define SET_REGISTER_INT(_idx, _val) SET_REGISTER(_idx, (s4)_val) 282# define GET_REGISTER_WIDE(_idx) getLongFromArray(fp, (_idx)) 283# define SET_REGISTER_WIDE(_idx, _val) putLongToArray(fp, (_idx), (_val)) 284# define GET_REGISTER_FLOAT(_idx) (*((float*) &fp[(_idx)])) 285# define SET_REGISTER_FLOAT(_idx, _val) (*((float*) &fp[(_idx)]) = (_val)) 286# define GET_REGISTER_DOUBLE(_idx) getDoubleFromArray(fp, (_idx)) 287# define SET_REGISTER_DOUBLE(_idx, _val) putDoubleToArray(fp, (_idx), (_val)) 288#endif 289 290/* 291 * Get 16 bits from the specified offset of the program counter. We always 292 * want to load 16 bits at a time from the instruction stream -- it's more 293 * efficient than 8 and won't have the alignment problems that 32 might. 294 * 295 * Assumes existence of "const u2* pc". 296 */ 297#define FETCH(_offset) (pc[(_offset)]) 298 299/* 300 * Extract instruction byte from 16-bit fetch (_inst is a u2). 301 */ 302#define INST_INST(_inst) ((_inst) & 0xff) 303 304/* 305 * Replace the opcode (used when handling breakpoints). _opcode is a u1. 306 */ 307#define INST_REPLACE_OP(_inst, _opcode) (((_inst) & 0xff00) | _opcode) 308 309/* 310 * Extract the "vA, vB" 4-bit registers from the instruction word (_inst is u2). 311 */ 312#define INST_A(_inst) (((_inst) >> 8) & 0x0f) 313#define INST_B(_inst) ((_inst) >> 12) 314 315/* 316 * Get the 8-bit "vAA" 8-bit register index from the instruction word. 317 * (_inst is u2) 318 */ 319#define INST_AA(_inst) ((_inst) >> 8) 320 321/* 322 * The current PC must be available to Throwable constructors, e.g. 323 * those created by dvmThrowException(), so that the exception stack 324 * trace can be generated correctly. If we don't do this, the offset 325 * within the current method won't be shown correctly. See the notes 326 * in Exception.c. 327 * 328 * This is also used to determine the address for precise GC. 329 * 330 * Assumes existence of "u4* fp" and "const u2* pc". 331 */ 332#define EXPORT_PC() (SAVEAREA_FROM_FP(fp)->xtra.currentPc = pc) 333 334/* 335 * Determine if we need to switch to a different interpreter. "_current" 336 * is either INTERP_STD or INTERP_DBG. It should be fixed for a given 337 * interpreter generation file, which should remove the outer conditional 338 * from the following. 339 * 340 * If we're building without debug and profiling support, we never switch. 341 */ 342#if defined(WITH_PROFILER) || defined(WITH_DEBUGGER) 343#if defined(WITH_JIT) 344# define NEED_INTERP_SWITCH(_current) ( \ 345 (_current == INTERP_STD) ? \ 346 dvmJitDebuggerOrProfilerActive() : !dvmJitDebuggerOrProfilerActive() ) 347#else 348# define NEED_INTERP_SWITCH(_current) ( \ 349 (_current == INTERP_STD) ? \ 350 dvmDebuggerOrProfilerActive() : !dvmDebuggerOrProfilerActive() ) 351#endif 352#else 353# define NEED_INTERP_SWITCH(_current) (false) 354#endif 355 356/* 357 * Check to see if "obj" is NULL. If so, throw an exception. Assumes the 358 * pc has already been exported to the stack. 359 * 360 * Perform additional checks on debug builds. 361 * 362 * Use this to check for NULL when the instruction handler calls into 363 * something that could throw an exception (so we have already called 364 * EXPORT_PC at the top). 365 */ 366static inline bool checkForNull(Object* obj) 367{ 368 if (obj == NULL) { 369 dvmThrowException("Ljava/lang/NullPointerException;", NULL); 370 return false; 371 } 372#ifdef WITH_EXTRA_OBJECT_VALIDATION 373 if (!dvmIsValidObject(obj)) { 374 LOGE("Invalid object %p\n", obj); 375 dvmAbort(); 376 } 377#endif 378#ifndef NDEBUG 379 if (obj->clazz == NULL || ((u4) obj->clazz) <= 65536) { 380 /* probable heap corruption */ 381 LOGE("Invalid object class %p (in %p)\n", obj->clazz, obj); 382 dvmAbort(); 383 } 384#endif 385 return true; 386} 387 388/* 389 * Check to see if "obj" is NULL. If so, export the PC into the stack 390 * frame and throw an exception. 391 * 392 * Perform additional checks on debug builds. 393 * 394 * Use this to check for NULL when the instruction handler doesn't do 395 * anything else that can throw an exception. 396 */ 397static inline bool checkForNullExportPC(Object* obj, u4* fp, const u2* pc) 398{ 399 if (obj == NULL) { 400 EXPORT_PC(); 401 dvmThrowException("Ljava/lang/NullPointerException;", NULL); 402 return false; 403 } 404#ifdef WITH_EXTRA_OBJECT_VALIDATION 405 if (!dvmIsValidObject(obj)) { 406 LOGE("Invalid object %p\n", obj); 407 dvmAbort(); 408 } 409#endif 410#ifndef NDEBUG 411 if (obj->clazz == NULL || ((u4) obj->clazz) <= 65536) { 412 /* probable heap corruption */ 413 LOGE("Invalid object class %p (in %p)\n", obj->clazz, obj); 414 dvmAbort(); 415 } 416#endif 417 return true; 418} 419 420/* File: cstubs/stubdefs.c */ 421/* this is a standard (no debug support) interpreter */ 422#define INTERP_TYPE INTERP_STD 423#define CHECK_DEBUG_AND_PROF() ((void)0) 424# define CHECK_TRACKED_REFS() ((void)0) 425#if defined(WITH_JIT) 426#define CHECK_JIT() (0) 427#define ABORT_JIT_TSELECT() ((void)0) 428#endif 429 430/* 431 * In the C mterp stubs, "goto" is a function call followed immediately 432 * by a return. 433 */ 434 435#define GOTO_TARGET_DECL(_target, ...) \ 436 void dvmMterp_##_target(MterpGlue* glue, ## __VA_ARGS__); 437 438#define GOTO_TARGET(_target, ...) \ 439 void dvmMterp_##_target(MterpGlue* glue, ## __VA_ARGS__) { \ 440 u2 ref, vsrc1, vsrc2, vdst; \ 441 u2 inst = FETCH(0); \ 442 const Method* methodToCall; \ 443 StackSaveArea* debugSaveArea; 444 445#define GOTO_TARGET_END } 446 447/* 448 * Redefine what used to be local variable accesses into MterpGlue struct 449 * references. (These are undefined down in "footer.c".) 450 */ 451#define retval glue->retval 452#define pc glue->pc 453#define fp glue->fp 454#define curMethod glue->method 455#define methodClassDex glue->methodClassDex 456#define self glue->self 457#define debugTrackedRefStart glue->debugTrackedRefStart 458 459/* ugh */ 460#define STUB_HACK(x) x 461 462 463/* 464 * Opcode handler framing macros. Here, each opcode is a separate function 465 * that takes a "glue" argument and returns void. We can't declare 466 * these "static" because they may be called from an assembly stub. 467 */ 468#define HANDLE_OPCODE(_op) \ 469 void dvmMterp_##_op(MterpGlue* glue) { \ 470 u2 ref, vsrc1, vsrc2, vdst; \ 471 u2 inst = FETCH(0); 472 473#define OP_END } 474 475/* 476 * Like the "portable" FINISH, but don't reload "inst", and return to caller 477 * when done. 478 */ 479#define FINISH(_offset) { \ 480 ADJUST_PC(_offset); \ 481 CHECK_DEBUG_AND_PROF(); \ 482 CHECK_TRACKED_REFS(); \ 483 return; \ 484 } 485 486 487/* 488 * The "goto label" statements turn into function calls followed by 489 * return statements. Some of the functions take arguments, which in the 490 * portable interpreter are handled by assigning values to globals. 491 */ 492 493#define GOTO_exceptionThrown() \ 494 do { \ 495 dvmMterp_exceptionThrown(glue); \ 496 return; \ 497 } while(false) 498 499#define GOTO_returnFromMethod() \ 500 do { \ 501 dvmMterp_returnFromMethod(glue); \ 502 return; \ 503 } while(false) 504 505#define GOTO_invoke(_target, _methodCallRange) \ 506 do { \ 507 dvmMterp_##_target(glue, _methodCallRange); \ 508 return; \ 509 } while(false) 510 511#define GOTO_invokeMethod(_methodCallRange, _methodToCall, _vsrc1, _vdst) \ 512 do { \ 513 dvmMterp_invokeMethod(glue, _methodCallRange, _methodToCall, \ 514 _vsrc1, _vdst); \ 515 return; \ 516 } while(false) 517 518/* 519 * As a special case, "goto bail" turns into a longjmp. Use "bail_switch" 520 * if we need to switch to the other interpreter upon our return. 521 */ 522#define GOTO_bail() \ 523 dvmMterpStdBail(glue, false); 524#define GOTO_bail_switch() \ 525 dvmMterpStdBail(glue, true); 526 527/* 528 * Periodically check for thread suspension. 529 * 530 * While we're at it, see if a debugger has attached or the profiler has 531 * started. If so, switch to a different "goto" table. 532 */ 533#define PERIODIC_CHECKS(_entryPoint, _pcadj) { \ 534 if (dvmCheckSuspendQuick(self)) { \ 535 EXPORT_PC(); /* need for precise GC */ \ 536 dvmCheckSuspendPending(self); \ 537 } \ 538 if (NEED_INTERP_SWITCH(INTERP_TYPE)) { \ 539 ADJUST_PC(_pcadj); \ 540 glue->entryPoint = _entryPoint; \ 541 LOGVV("threadid=%d: switch to STD ep=%d adj=%d\n", \ 542 self->threadId, (_entryPoint), (_pcadj)); \ 543 GOTO_bail_switch(); \ 544 } \ 545 } 546 547/* File: c/opcommon.c */ 548/* forward declarations of goto targets */ 549GOTO_TARGET_DECL(filledNewArray, bool methodCallRange); 550GOTO_TARGET_DECL(invokeVirtual, bool methodCallRange); 551GOTO_TARGET_DECL(invokeSuper, bool methodCallRange); 552GOTO_TARGET_DECL(invokeInterface, bool methodCallRange); 553GOTO_TARGET_DECL(invokeDirect, bool methodCallRange); 554GOTO_TARGET_DECL(invokeStatic, bool methodCallRange); 555GOTO_TARGET_DECL(invokeVirtualQuick, bool methodCallRange); 556GOTO_TARGET_DECL(invokeSuperQuick, bool methodCallRange); 557GOTO_TARGET_DECL(invokeMethod, bool methodCallRange, const Method* methodToCall, 558 u2 count, u2 regs); 559GOTO_TARGET_DECL(returnFromMethod); 560GOTO_TARGET_DECL(exceptionThrown); 561 562/* 563 * =========================================================================== 564 * 565 * What follows are opcode definitions shared between multiple opcodes with 566 * minor substitutions handled by the C pre-processor. These should probably 567 * use the mterp substitution mechanism instead, with the code here moved 568 * into common fragment files (like the asm "binop.S"), although it's hard 569 * to give up the C preprocessor in favor of the much simpler text subst. 570 * 571 * =========================================================================== 572 */ 573 574#define HANDLE_NUMCONV(_opcode, _opname, _fromtype, _totype) \ 575 HANDLE_OPCODE(_opcode /*vA, vB*/) \ 576 vdst = INST_A(inst); \ 577 vsrc1 = INST_B(inst); \ 578 ILOGV("|%s v%d,v%d", (_opname), vdst, vsrc1); \ 579 SET_REGISTER##_totype(vdst, \ 580 GET_REGISTER##_fromtype(vsrc1)); \ 581 FINISH(1); 582 583#define HANDLE_FLOAT_TO_INT(_opcode, _opname, _fromvtype, _fromrtype, \ 584 _tovtype, _tortype) \ 585 HANDLE_OPCODE(_opcode /*vA, vB*/) \ 586 { \ 587 /* spec defines specific handling for +/- inf and NaN values */ \ 588 _fromvtype val; \ 589 _tovtype intMin, intMax, result; \ 590 vdst = INST_A(inst); \ 591 vsrc1 = INST_B(inst); \ 592 ILOGV("|%s v%d,v%d", (_opname), vdst, vsrc1); \ 593 val = GET_REGISTER##_fromrtype(vsrc1); \ 594 intMin = (_tovtype) 1 << (sizeof(_tovtype) * 8 -1); \ 595 intMax = ~intMin; \ 596 result = (_tovtype) val; \ 597 if (val >= intMax) /* +inf */ \ 598 result = intMax; \ 599 else if (val <= intMin) /* -inf */ \ 600 result = intMin; \ 601 else if (val != val) /* NaN */ \ 602 result = 0; \ 603 else \ 604 result = (_tovtype) val; \ 605 SET_REGISTER##_tortype(vdst, result); \ 606 } \ 607 FINISH(1); 608 609#define HANDLE_INT_TO_SMALL(_opcode, _opname, _type) \ 610 HANDLE_OPCODE(_opcode /*vA, vB*/) \ 611 vdst = INST_A(inst); \ 612 vsrc1 = INST_B(inst); \ 613 ILOGV("|int-to-%s v%d,v%d", (_opname), vdst, vsrc1); \ 614 SET_REGISTER(vdst, (_type) GET_REGISTER(vsrc1)); \ 615 FINISH(1); 616 617/* NOTE: the comparison result is always a signed 4-byte integer */ 618#define HANDLE_OP_CMPX(_opcode, _opname, _varType, _type, _nanVal) \ 619 HANDLE_OPCODE(_opcode /*vAA, vBB, vCC*/) \ 620 { \ 621 int result; \ 622 u2 regs; \ 623 _varType val1, val2; \ 624 vdst = INST_AA(inst); \ 625 regs = FETCH(1); \ 626 vsrc1 = regs & 0xff; \ 627 vsrc2 = regs >> 8; \ 628 ILOGV("|cmp%s v%d,v%d,v%d", (_opname), vdst, vsrc1, vsrc2); \ 629 val1 = GET_REGISTER##_type(vsrc1); \ 630 val2 = GET_REGISTER##_type(vsrc2); \ 631 if (val1 == val2) \ 632 result = 0; \ 633 else if (val1 < val2) \ 634 result = -1; \ 635 else if (val1 > val2) \ 636 result = 1; \ 637 else \ 638 result = (_nanVal); \ 639 ILOGV("+ result=%d\n", result); \ 640 SET_REGISTER(vdst, result); \ 641 } \ 642 FINISH(2); 643 644#define HANDLE_OP_IF_XX(_opcode, _opname, _cmp) \ 645 HANDLE_OPCODE(_opcode /*vA, vB, +CCCC*/) \ 646 vsrc1 = INST_A(inst); \ 647 vsrc2 = INST_B(inst); \ 648 if ((s4) GET_REGISTER(vsrc1) _cmp (s4) GET_REGISTER(vsrc2)) { \ 649 int branchOffset = (s2)FETCH(1); /* sign-extended */ \ 650 ILOGV("|if-%s v%d,v%d,+0x%04x", (_opname), vsrc1, vsrc2, \ 651 branchOffset); \ 652 ILOGV("> branch taken"); \ 653 if (branchOffset < 0) \ 654 PERIODIC_CHECKS(kInterpEntryInstr, branchOffset); \ 655 FINISH(branchOffset); \ 656 } else { \ 657 ILOGV("|if-%s v%d,v%d,-", (_opname), vsrc1, vsrc2); \ 658 FINISH(2); \ 659 } 660 661#define HANDLE_OP_IF_XXZ(_opcode, _opname, _cmp) \ 662 HANDLE_OPCODE(_opcode /*vAA, +BBBB*/) \ 663 vsrc1 = INST_AA(inst); \ 664 if ((s4) GET_REGISTER(vsrc1) _cmp 0) { \ 665 int branchOffset = (s2)FETCH(1); /* sign-extended */ \ 666 ILOGV("|if-%s v%d,+0x%04x", (_opname), vsrc1, branchOffset); \ 667 ILOGV("> branch taken"); \ 668 if (branchOffset < 0) \ 669 PERIODIC_CHECKS(kInterpEntryInstr, branchOffset); \ 670 FINISH(branchOffset); \ 671 } else { \ 672 ILOGV("|if-%s v%d,-", (_opname), vsrc1); \ 673 FINISH(2); \ 674 } 675 676#define HANDLE_UNOP(_opcode, _opname, _pfx, _sfx, _type) \ 677 HANDLE_OPCODE(_opcode /*vA, vB*/) \ 678 vdst = INST_A(inst); \ 679 vsrc1 = INST_B(inst); \ 680 ILOGV("|%s v%d,v%d", (_opname), vdst, vsrc1); \ 681 SET_REGISTER##_type(vdst, _pfx GET_REGISTER##_type(vsrc1) _sfx); \ 682 FINISH(1); 683 684#define HANDLE_OP_X_INT(_opcode, _opname, _op, _chkdiv) \ 685 HANDLE_OPCODE(_opcode /*vAA, vBB, vCC*/) \ 686 { \ 687 u2 srcRegs; \ 688 vdst = INST_AA(inst); \ 689 srcRegs = FETCH(1); \ 690 vsrc1 = srcRegs & 0xff; \ 691 vsrc2 = srcRegs >> 8; \ 692 ILOGV("|%s-int v%d,v%d", (_opname), vdst, vsrc1); \ 693 if (_chkdiv != 0) { \ 694 s4 firstVal, secondVal, result; \ 695 firstVal = GET_REGISTER(vsrc1); \ 696 secondVal = GET_REGISTER(vsrc2); \ 697 if (secondVal == 0) { \ 698 EXPORT_PC(); \ 699 dvmThrowException("Ljava/lang/ArithmeticException;", \ 700 "divide by zero"); \ 701 GOTO_exceptionThrown(); \ 702 } \ 703 if ((u4)firstVal == 0x80000000 && secondVal == -1) { \ 704 if (_chkdiv == 1) \ 705 result = firstVal; /* division */ \ 706 else \ 707 result = 0; /* remainder */ \ 708 } else { \ 709 result = firstVal _op secondVal; \ 710 } \ 711 SET_REGISTER(vdst, result); \ 712 } else { \ 713 /* non-div/rem case */ \ 714 SET_REGISTER(vdst, \ 715 (s4) GET_REGISTER(vsrc1) _op (s4) GET_REGISTER(vsrc2)); \ 716 } \ 717 } \ 718 FINISH(2); 719 720#define HANDLE_OP_SHX_INT(_opcode, _opname, _cast, _op) \ 721 HANDLE_OPCODE(_opcode /*vAA, vBB, vCC*/) \ 722 { \ 723 u2 srcRegs; \ 724 vdst = INST_AA(inst); \ 725 srcRegs = FETCH(1); \ 726 vsrc1 = srcRegs & 0xff; \ 727 vsrc2 = srcRegs >> 8; \ 728 ILOGV("|%s-int v%d,v%d", (_opname), vdst, vsrc1); \ 729 SET_REGISTER(vdst, \ 730 _cast GET_REGISTER(vsrc1) _op (GET_REGISTER(vsrc2) & 0x1f)); \ 731 } \ 732 FINISH(2); 733 734#define HANDLE_OP_X_INT_LIT16(_opcode, _opname, _op, _chkdiv) \ 735 HANDLE_OPCODE(_opcode /*vA, vB, #+CCCC*/) \ 736 vdst = INST_A(inst); \ 737 vsrc1 = INST_B(inst); \ 738 vsrc2 = FETCH(1); \ 739 ILOGV("|%s-int/lit16 v%d,v%d,#+0x%04x", \ 740 (_opname), vdst, vsrc1, vsrc2); \ 741 if (_chkdiv != 0) { \ 742 s4 firstVal, result; \ 743 firstVal = GET_REGISTER(vsrc1); \ 744 if ((s2) vsrc2 == 0) { \ 745 EXPORT_PC(); \ 746 dvmThrowException("Ljava/lang/ArithmeticException;", \ 747 "divide by zero"); \ 748 GOTO_exceptionThrown(); \ 749 } \ 750 if ((u4)firstVal == 0x80000000 && ((s2) vsrc2) == -1) { \ 751 /* won't generate /lit16 instr for this; check anyway */ \ 752 if (_chkdiv == 1) \ 753 result = firstVal; /* division */ \ 754 else \ 755 result = 0; /* remainder */ \ 756 } else { \ 757 result = firstVal _op (s2) vsrc2; \ 758 } \ 759 SET_REGISTER(vdst, result); \ 760 } else { \ 761 /* non-div/rem case */ \ 762 SET_REGISTER(vdst, GET_REGISTER(vsrc1) _op (s2) vsrc2); \ 763 } \ 764 FINISH(2); 765 766#define HANDLE_OP_X_INT_LIT8(_opcode, _opname, _op, _chkdiv) \ 767 HANDLE_OPCODE(_opcode /*vAA, vBB, #+CC*/) \ 768 { \ 769 u2 litInfo; \ 770 vdst = INST_AA(inst); \ 771 litInfo = FETCH(1); \ 772 vsrc1 = litInfo & 0xff; \ 773 vsrc2 = litInfo >> 8; /* constant */ \ 774 ILOGV("|%s-int/lit8 v%d,v%d,#+0x%02x", \ 775 (_opname), vdst, vsrc1, vsrc2); \ 776 if (_chkdiv != 0) { \ 777 s4 firstVal, result; \ 778 firstVal = GET_REGISTER(vsrc1); \ 779 if ((s1) vsrc2 == 0) { \ 780 EXPORT_PC(); \ 781 dvmThrowException("Ljava/lang/ArithmeticException;", \ 782 "divide by zero"); \ 783 GOTO_exceptionThrown(); \ 784 } \ 785 if ((u4)firstVal == 0x80000000 && ((s1) vsrc2) == -1) { \ 786 if (_chkdiv == 1) \ 787 result = firstVal; /* division */ \ 788 else \ 789 result = 0; /* remainder */ \ 790 } else { \ 791 result = firstVal _op ((s1) vsrc2); \ 792 } \ 793 SET_REGISTER(vdst, result); \ 794 } else { \ 795 SET_REGISTER(vdst, \ 796 (s4) GET_REGISTER(vsrc1) _op (s1) vsrc2); \ 797 } \ 798 } \ 799 FINISH(2); 800 801#define HANDLE_OP_SHX_INT_LIT8(_opcode, _opname, _cast, _op) \ 802 HANDLE_OPCODE(_opcode /*vAA, vBB, #+CC*/) \ 803 { \ 804 u2 litInfo; \ 805 vdst = INST_AA(inst); \ 806 litInfo = FETCH(1); \ 807 vsrc1 = litInfo & 0xff; \ 808 vsrc2 = litInfo >> 8; /* constant */ \ 809 ILOGV("|%s-int/lit8 v%d,v%d,#+0x%02x", \ 810 (_opname), vdst, vsrc1, vsrc2); \ 811 SET_REGISTER(vdst, \ 812 _cast GET_REGISTER(vsrc1) _op (vsrc2 & 0x1f)); \ 813 } \ 814 FINISH(2); 815 816#define HANDLE_OP_X_INT_2ADDR(_opcode, _opname, _op, _chkdiv) \ 817 HANDLE_OPCODE(_opcode /*vA, vB*/) \ 818 vdst = INST_A(inst); \ 819 vsrc1 = INST_B(inst); \ 820 ILOGV("|%s-int-2addr v%d,v%d", (_opname), vdst, vsrc1); \ 821 if (_chkdiv != 0) { \ 822 s4 firstVal, secondVal, result; \ 823 firstVal = GET_REGISTER(vdst); \ 824 secondVal = GET_REGISTER(vsrc1); \ 825 if (secondVal == 0) { \ 826 EXPORT_PC(); \ 827 dvmThrowException("Ljava/lang/ArithmeticException;", \ 828 "divide by zero"); \ 829 GOTO_exceptionThrown(); \ 830 } \ 831 if ((u4)firstVal == 0x80000000 && secondVal == -1) { \ 832 if (_chkdiv == 1) \ 833 result = firstVal; /* division */ \ 834 else \ 835 result = 0; /* remainder */ \ 836 } else { \ 837 result = firstVal _op secondVal; \ 838 } \ 839 SET_REGISTER(vdst, result); \ 840 } else { \ 841 SET_REGISTER(vdst, \ 842 (s4) GET_REGISTER(vdst) _op (s4) GET_REGISTER(vsrc1)); \ 843 } \ 844 FINISH(1); 845 846#define HANDLE_OP_SHX_INT_2ADDR(_opcode, _opname, _cast, _op) \ 847 HANDLE_OPCODE(_opcode /*vA, vB*/) \ 848 vdst = INST_A(inst); \ 849 vsrc1 = INST_B(inst); \ 850 ILOGV("|%s-int-2addr v%d,v%d", (_opname), vdst, vsrc1); \ 851 SET_REGISTER(vdst, \ 852 _cast GET_REGISTER(vdst) _op (GET_REGISTER(vsrc1) & 0x1f)); \ 853 FINISH(1); 854 855#define HANDLE_OP_X_LONG(_opcode, _opname, _op, _chkdiv) \ 856 HANDLE_OPCODE(_opcode /*vAA, vBB, vCC*/) \ 857 { \ 858 u2 srcRegs; \ 859 vdst = INST_AA(inst); \ 860 srcRegs = FETCH(1); \ 861 vsrc1 = srcRegs & 0xff; \ 862 vsrc2 = srcRegs >> 8; \ 863 ILOGV("|%s-long v%d,v%d,v%d", (_opname), vdst, vsrc1, vsrc2); \ 864 if (_chkdiv != 0) { \ 865 s8 firstVal, secondVal, result; \ 866 firstVal = GET_REGISTER_WIDE(vsrc1); \ 867 secondVal = GET_REGISTER_WIDE(vsrc2); \ 868 if (secondVal == 0LL) { \ 869 EXPORT_PC(); \ 870 dvmThrowException("Ljava/lang/ArithmeticException;", \ 871 "divide by zero"); \ 872 GOTO_exceptionThrown(); \ 873 } \ 874 if ((u8)firstVal == 0x8000000000000000ULL && \ 875 secondVal == -1LL) \ 876 { \ 877 if (_chkdiv == 1) \ 878 result = firstVal; /* division */ \ 879 else \ 880 result = 0; /* remainder */ \ 881 } else { \ 882 result = firstVal _op secondVal; \ 883 } \ 884 SET_REGISTER_WIDE(vdst, result); \ 885 } else { \ 886 SET_REGISTER_WIDE(vdst, \ 887 (s8) GET_REGISTER_WIDE(vsrc1) _op (s8) GET_REGISTER_WIDE(vsrc2)); \ 888 } \ 889 } \ 890 FINISH(2); 891 892#define HANDLE_OP_SHX_LONG(_opcode, _opname, _cast, _op) \ 893 HANDLE_OPCODE(_opcode /*vAA, vBB, vCC*/) \ 894 { \ 895 u2 srcRegs; \ 896 vdst = INST_AA(inst); \ 897 srcRegs = FETCH(1); \ 898 vsrc1 = srcRegs & 0xff; \ 899 vsrc2 = srcRegs >> 8; \ 900 ILOGV("|%s-long v%d,v%d,v%d", (_opname), vdst, vsrc1, vsrc2); \ 901 SET_REGISTER_WIDE(vdst, \ 902 _cast GET_REGISTER_WIDE(vsrc1) _op (GET_REGISTER(vsrc2) & 0x3f)); \ 903 } \ 904 FINISH(2); 905 906#define HANDLE_OP_X_LONG_2ADDR(_opcode, _opname, _op, _chkdiv) \ 907 HANDLE_OPCODE(_opcode /*vA, vB*/) \ 908 vdst = INST_A(inst); \ 909 vsrc1 = INST_B(inst); \ 910 ILOGV("|%s-long-2addr v%d,v%d", (_opname), vdst, vsrc1); \ 911 if (_chkdiv != 0) { \ 912 s8 firstVal, secondVal, result; \ 913 firstVal = GET_REGISTER_WIDE(vdst); \ 914 secondVal = GET_REGISTER_WIDE(vsrc1); \ 915 if (secondVal == 0LL) { \ 916 EXPORT_PC(); \ 917 dvmThrowException("Ljava/lang/ArithmeticException;", \ 918 "divide by zero"); \ 919 GOTO_exceptionThrown(); \ 920 } \ 921 if ((u8)firstVal == 0x8000000000000000ULL && \ 922 secondVal == -1LL) \ 923 { \ 924 if (_chkdiv == 1) \ 925 result = firstVal; /* division */ \ 926 else \ 927 result = 0; /* remainder */ \ 928 } else { \ 929 result = firstVal _op secondVal; \ 930 } \ 931 SET_REGISTER_WIDE(vdst, result); \ 932 } else { \ 933 SET_REGISTER_WIDE(vdst, \ 934 (s8) GET_REGISTER_WIDE(vdst) _op (s8)GET_REGISTER_WIDE(vsrc1));\ 935 } \ 936 FINISH(1); 937 938#define HANDLE_OP_SHX_LONG_2ADDR(_opcode, _opname, _cast, _op) \ 939 HANDLE_OPCODE(_opcode /*vA, vB*/) \ 940 vdst = INST_A(inst); \ 941 vsrc1 = INST_B(inst); \ 942 ILOGV("|%s-long-2addr v%d,v%d", (_opname), vdst, vsrc1); \ 943 SET_REGISTER_WIDE(vdst, \ 944 _cast GET_REGISTER_WIDE(vdst) _op (GET_REGISTER(vsrc1) & 0x3f)); \ 945 FINISH(1); 946 947#define HANDLE_OP_X_FLOAT(_opcode, _opname, _op) \ 948 HANDLE_OPCODE(_opcode /*vAA, vBB, vCC*/) \ 949 { \ 950 u2 srcRegs; \ 951 vdst = INST_AA(inst); \ 952 srcRegs = FETCH(1); \ 953 vsrc1 = srcRegs & 0xff; \ 954 vsrc2 = srcRegs >> 8; \ 955 ILOGV("|%s-float v%d,v%d,v%d", (_opname), vdst, vsrc1, vsrc2); \ 956 SET_REGISTER_FLOAT(vdst, \ 957 GET_REGISTER_FLOAT(vsrc1) _op GET_REGISTER_FLOAT(vsrc2)); \ 958 } \ 959 FINISH(2); 960 961#define HANDLE_OP_X_DOUBLE(_opcode, _opname, _op) \ 962 HANDLE_OPCODE(_opcode /*vAA, vBB, vCC*/) \ 963 { \ 964 u2 srcRegs; \ 965 vdst = INST_AA(inst); \ 966 srcRegs = FETCH(1); \ 967 vsrc1 = srcRegs & 0xff; \ 968 vsrc2 = srcRegs >> 8; \ 969 ILOGV("|%s-double v%d,v%d,v%d", (_opname), vdst, vsrc1, vsrc2); \ 970 SET_REGISTER_DOUBLE(vdst, \ 971 GET_REGISTER_DOUBLE(vsrc1) _op GET_REGISTER_DOUBLE(vsrc2)); \ 972 } \ 973 FINISH(2); 974 975#define HANDLE_OP_X_FLOAT_2ADDR(_opcode, _opname, _op) \ 976 HANDLE_OPCODE(_opcode /*vA, vB*/) \ 977 vdst = INST_A(inst); \ 978 vsrc1 = INST_B(inst); \ 979 ILOGV("|%s-float-2addr v%d,v%d", (_opname), vdst, vsrc1); \ 980 SET_REGISTER_FLOAT(vdst, \ 981 GET_REGISTER_FLOAT(vdst) _op GET_REGISTER_FLOAT(vsrc1)); \ 982 FINISH(1); 983 984#define HANDLE_OP_X_DOUBLE_2ADDR(_opcode, _opname, _op) \ 985 HANDLE_OPCODE(_opcode /*vA, vB*/) \ 986 vdst = INST_A(inst); \ 987 vsrc1 = INST_B(inst); \ 988 ILOGV("|%s-double-2addr v%d,v%d", (_opname), vdst, vsrc1); \ 989 SET_REGISTER_DOUBLE(vdst, \ 990 GET_REGISTER_DOUBLE(vdst) _op GET_REGISTER_DOUBLE(vsrc1)); \ 991 FINISH(1); 992 993#define HANDLE_OP_AGET(_opcode, _opname, _type, _regsize) \ 994 HANDLE_OPCODE(_opcode /*vAA, vBB, vCC*/) \ 995 { \ 996 ArrayObject* arrayObj; \ 997 u2 arrayInfo; \ 998 EXPORT_PC(); \ 999 vdst = INST_AA(inst); \ 1000 arrayInfo = FETCH(1); \ 1001 vsrc1 = arrayInfo & 0xff; /* array ptr */ \ 1002 vsrc2 = arrayInfo >> 8; /* index */ \ 1003 ILOGV("|aget%s v%d,v%d,v%d", (_opname), vdst, vsrc1, vsrc2); \ 1004 arrayObj = (ArrayObject*) GET_REGISTER(vsrc1); \ 1005 if (!checkForNull((Object*) arrayObj)) \ 1006 GOTO_exceptionThrown(); \ 1007 if (GET_REGISTER(vsrc2) >= arrayObj->length) { \ 1008 LOGV("Invalid array access: %p %d (len=%d)\n", \ 1009 arrayObj, vsrc2, arrayObj->length); \ 1010 dvmThrowException("Ljava/lang/ArrayIndexOutOfBoundsException;", \ 1011 NULL); \ 1012 GOTO_exceptionThrown(); \ 1013 } \ 1014 SET_REGISTER##_regsize(vdst, \ 1015 ((_type*) arrayObj->contents)[GET_REGISTER(vsrc2)]); \ 1016 ILOGV("+ AGET[%d]=0x%x", GET_REGISTER(vsrc2), GET_REGISTER(vdst)); \ 1017 } \ 1018 FINISH(2); 1019 1020#define HANDLE_OP_APUT(_opcode, _opname, _type, _regsize) \ 1021 HANDLE_OPCODE(_opcode /*vAA, vBB, vCC*/) \ 1022 { \ 1023 ArrayObject* arrayObj; \ 1024 u2 arrayInfo; \ 1025 EXPORT_PC(); \ 1026 vdst = INST_AA(inst); /* AA: source value */ \ 1027 arrayInfo = FETCH(1); \ 1028 vsrc1 = arrayInfo & 0xff; /* BB: array ptr */ \ 1029 vsrc2 = arrayInfo >> 8; /* CC: index */ \ 1030 ILOGV("|aput%s v%d,v%d,v%d", (_opname), vdst, vsrc1, vsrc2); \ 1031 arrayObj = (ArrayObject*) GET_REGISTER(vsrc1); \ 1032 if (!checkForNull((Object*) arrayObj)) \ 1033 GOTO_exceptionThrown(); \ 1034 if (GET_REGISTER(vsrc2) >= arrayObj->length) { \ 1035 dvmThrowException("Ljava/lang/ArrayIndexOutOfBoundsException;", \ 1036 NULL); \ 1037 GOTO_exceptionThrown(); \ 1038 } \ 1039 ILOGV("+ APUT[%d]=0x%08x", GET_REGISTER(vsrc2), GET_REGISTER(vdst));\ 1040 ((_type*) arrayObj->contents)[GET_REGISTER(vsrc2)] = \ 1041 GET_REGISTER##_regsize(vdst); \ 1042 } \ 1043 FINISH(2); 1044 1045/* 1046 * It's possible to get a bad value out of a field with sub-32-bit stores 1047 * because the -quick versions always operate on 32 bits. Consider: 1048 * short foo = -1 (sets a 32-bit register to 0xffffffff) 1049 * iput-quick foo (writes all 32 bits to the field) 1050 * short bar = 1 (sets a 32-bit register to 0x00000001) 1051 * iput-short (writes the low 16 bits to the field) 1052 * iget-quick foo (reads all 32 bits from the field, yielding 0xffff0001) 1053 * This can only happen when optimized and non-optimized code has interleaved 1054 * access to the same field. This is unlikely but possible. 1055 * 1056 * The easiest way to fix this is to always read/write 32 bits at a time. On 1057 * a device with a 16-bit data bus this is sub-optimal. (The alternative 1058 * approach is to have sub-int versions of iget-quick, but now we're wasting 1059 * Dalvik instruction space and making it less likely that handler code will 1060 * already be in the CPU i-cache.) 1061 */ 1062#define HANDLE_IGET_X(_opcode, _opname, _ftype, _regsize) \ 1063 HANDLE_OPCODE(_opcode /*vA, vB, field@CCCC*/) \ 1064 { \ 1065 InstField* ifield; \ 1066 Object* obj; \ 1067 EXPORT_PC(); \ 1068 vdst = INST_A(inst); \ 1069 vsrc1 = INST_B(inst); /* object ptr */ \ 1070 ref = FETCH(1); /* field ref */ \ 1071 ILOGV("|iget%s v%d,v%d,field@0x%04x", (_opname), vdst, vsrc1, ref); \ 1072 obj = (Object*) GET_REGISTER(vsrc1); \ 1073 if (!checkForNull(obj)) \ 1074 GOTO_exceptionThrown(); \ 1075 ifield = (InstField*) dvmDexGetResolvedField(methodClassDex, ref); \ 1076 if (ifield == NULL) { \ 1077 ifield = dvmResolveInstField(curMethod->clazz, ref); \ 1078 if (ifield == NULL) \ 1079 GOTO_exceptionThrown(); \ 1080 } \ 1081 SET_REGISTER##_regsize(vdst, \ 1082 dvmGetField##_ftype(obj, ifield->byteOffset)); \ 1083 ILOGV("+ IGET '%s'=0x%08llx", ifield->field.name, \ 1084 (u8) GET_REGISTER##_regsize(vdst)); \ 1085 UPDATE_FIELD_GET(&ifield->field); \ 1086 } \ 1087 FINISH(2); 1088 1089#define HANDLE_IGET_X_QUICK(_opcode, _opname, _ftype, _regsize) \ 1090 HANDLE_OPCODE(_opcode /*vA, vB, field@CCCC*/) \ 1091 { \ 1092 Object* obj; \ 1093 vdst = INST_A(inst); \ 1094 vsrc1 = INST_B(inst); /* object ptr */ \ 1095 ref = FETCH(1); /* field offset */ \ 1096 ILOGV("|iget%s-quick v%d,v%d,field@+%u", \ 1097 (_opname), vdst, vsrc1, ref); \ 1098 obj = (Object*) GET_REGISTER(vsrc1); \ 1099 if (!checkForNullExportPC(obj, fp, pc)) \ 1100 GOTO_exceptionThrown(); \ 1101 SET_REGISTER##_regsize(vdst, dvmGetField##_ftype(obj, ref)); \ 1102 ILOGV("+ IGETQ %d=0x%08llx", ref, \ 1103 (u8) GET_REGISTER##_regsize(vdst)); \ 1104 } \ 1105 FINISH(2); 1106 1107#define HANDLE_IPUT_X(_opcode, _opname, _ftype, _regsize) \ 1108 HANDLE_OPCODE(_opcode /*vA, vB, field@CCCC*/) \ 1109 { \ 1110 InstField* ifield; \ 1111 Object* obj; \ 1112 EXPORT_PC(); \ 1113 vdst = INST_A(inst); \ 1114 vsrc1 = INST_B(inst); /* object ptr */ \ 1115 ref = FETCH(1); /* field ref */ \ 1116 ILOGV("|iput%s v%d,v%d,field@0x%04x", (_opname), vdst, vsrc1, ref); \ 1117 obj = (Object*) GET_REGISTER(vsrc1); \ 1118 if (!checkForNull(obj)) \ 1119 GOTO_exceptionThrown(); \ 1120 ifield = (InstField*) dvmDexGetResolvedField(methodClassDex, ref); \ 1121 if (ifield == NULL) { \ 1122 ifield = dvmResolveInstField(curMethod->clazz, ref); \ 1123 if (ifield == NULL) \ 1124 GOTO_exceptionThrown(); \ 1125 } \ 1126 dvmSetField##_ftype(obj, ifield->byteOffset, \ 1127 GET_REGISTER##_regsize(vdst)); \ 1128 ILOGV("+ IPUT '%s'=0x%08llx", ifield->field.name, \ 1129 (u8) GET_REGISTER##_regsize(vdst)); \ 1130 UPDATE_FIELD_PUT(&ifield->field); \ 1131 } \ 1132 FINISH(2); 1133 1134#define HANDLE_IPUT_X_QUICK(_opcode, _opname, _ftype, _regsize) \ 1135 HANDLE_OPCODE(_opcode /*vA, vB, field@CCCC*/) \ 1136 { \ 1137 Object* obj; \ 1138 vdst = INST_A(inst); \ 1139 vsrc1 = INST_B(inst); /* object ptr */ \ 1140 ref = FETCH(1); /* field offset */ \ 1141 ILOGV("|iput%s-quick v%d,v%d,field@0x%04x", \ 1142 (_opname), vdst, vsrc1, ref); \ 1143 obj = (Object*) GET_REGISTER(vsrc1); \ 1144 if (!checkForNullExportPC(obj, fp, pc)) \ 1145 GOTO_exceptionThrown(); \ 1146 dvmSetField##_ftype(obj, ref, GET_REGISTER##_regsize(vdst)); \ 1147 ILOGV("+ IPUTQ %d=0x%08llx", ref, \ 1148 (u8) GET_REGISTER##_regsize(vdst)); \ 1149 } \ 1150 FINISH(2); 1151 1152#define HANDLE_SGET_X(_opcode, _opname, _ftype, _regsize) \ 1153 HANDLE_OPCODE(_opcode /*vAA, field@BBBB*/) \ 1154 { \ 1155 StaticField* sfield; \ 1156 vdst = INST_AA(inst); \ 1157 ref = FETCH(1); /* field ref */ \ 1158 ILOGV("|sget%s v%d,sfield@0x%04x", (_opname), vdst, ref); \ 1159 sfield = (StaticField*)dvmDexGetResolvedField(methodClassDex, ref); \ 1160 if (sfield == NULL) { \ 1161 EXPORT_PC(); \ 1162 sfield = dvmResolveStaticField(curMethod->clazz, ref); \ 1163 if (sfield == NULL) \ 1164 GOTO_exceptionThrown(); \ 1165 } \ 1166 SET_REGISTER##_regsize(vdst, dvmGetStaticField##_ftype(sfield)); \ 1167 ILOGV("+ SGET '%s'=0x%08llx", \ 1168 sfield->field.name, (u8)GET_REGISTER##_regsize(vdst)); \ 1169 UPDATE_FIELD_GET(&sfield->field); \ 1170 } \ 1171 FINISH(2); 1172 1173#define HANDLE_SPUT_X(_opcode, _opname, _ftype, _regsize) \ 1174 HANDLE_OPCODE(_opcode /*vAA, field@BBBB*/) \ 1175 { \ 1176 StaticField* sfield; \ 1177 vdst = INST_AA(inst); \ 1178 ref = FETCH(1); /* field ref */ \ 1179 ILOGV("|sput%s v%d,sfield@0x%04x", (_opname), vdst, ref); \ 1180 sfield = (StaticField*)dvmDexGetResolvedField(methodClassDex, ref); \ 1181 if (sfield == NULL) { \ 1182 EXPORT_PC(); \ 1183 sfield = dvmResolveStaticField(curMethod->clazz, ref); \ 1184 if (sfield == NULL) \ 1185 GOTO_exceptionThrown(); \ 1186 } \ 1187 dvmSetStaticField##_ftype(sfield, GET_REGISTER##_regsize(vdst)); \ 1188 ILOGV("+ SPUT '%s'=0x%08llx", \ 1189 sfield->field.name, (u8)GET_REGISTER##_regsize(vdst)); \ 1190 UPDATE_FIELD_PUT(&sfield->field); \ 1191 } \ 1192 FINISH(2); 1193 1194 1195/* File: c/OP_IGET_WIDE_VOLATILE.c */ 1196HANDLE_IGET_X(OP_IGET_WIDE_VOLATILE, "-wide-volatile", Long, _WIDE) 1197OP_END 1198 1199/* File: c/OP_IPUT_WIDE_VOLATILE.c */ 1200HANDLE_IPUT_X(OP_IPUT_WIDE_VOLATILE, "-wide-volatile", Long, _WIDE) 1201OP_END 1202 1203/* File: c/OP_SGET_WIDE_VOLATILE.c */ 1204HANDLE_SGET_X(OP_SGET_WIDE_VOLATILE, "-wide-volatile", Long, _WIDE) 1205OP_END 1206 1207/* File: c/OP_SPUT_WIDE_VOLATILE.c */ 1208HANDLE_SPUT_X(OP_SPUT_WIDE_VOLATILE, "-wide-volatile", Long, _WIDE) 1209OP_END 1210 1211/* File: c/OP_EXECUTE_INLINE_RANGE.c */ 1212HANDLE_OPCODE(OP_EXECUTE_INLINE_RANGE /*{vCCCC..v(CCCC+AA-1)}, inline@BBBB*/) 1213 { 1214 u4 arg0, arg1, arg2, arg3; 1215 arg0 = arg1 = arg2 = arg3 = 0; /* placate gcc */ 1216 1217 EXPORT_PC(); 1218 1219 vsrc1 = INST_AA(inst); /* #of args */ 1220 ref = FETCH(1); /* inline call "ref" */ 1221 vdst = FETCH(2); /* range base */ 1222 ILOGV("|execute-inline-range args=%d @%d {regs=v%d-v%d}", 1223 vsrc1, ref, vdst, vdst+vsrc1-1); 1224 1225 assert((vdst >> 16) == 0); // 16-bit type -or- high 16 bits clear 1226 assert(vsrc1 <= 4); 1227 1228 switch (vsrc1) { 1229 case 4: 1230 arg3 = GET_REGISTER(vdst+3); 1231 /* fall through */ 1232 case 3: 1233 arg2 = GET_REGISTER(vdst+2); 1234 /* fall through */ 1235 case 2: 1236 arg1 = GET_REGISTER(vdst+1); 1237 /* fall through */ 1238 case 1: 1239 arg0 = GET_REGISTER(vdst+0); 1240 /* fall through */ 1241 default: // case 0 1242 ; 1243 } 1244 1245#if INTERP_TYPE == INTERP_DBG 1246 if (!dvmPerformInlineOp4Dbg(arg0, arg1, arg2, arg3, &retval, ref)) 1247 GOTO_exceptionThrown(); 1248#else 1249 if (!dvmPerformInlineOp4Std(arg0, arg1, arg2, arg3, &retval, ref)) 1250 GOTO_exceptionThrown(); 1251#endif 1252 } 1253 FINISH(3); 1254OP_END 1255 1256/* File: c/gotoTargets.c */ 1257/* 1258 * C footer. This has some common code shared by the various targets. 1259 */ 1260 1261/* 1262 * Everything from here on is a "goto target". In the basic interpreter 1263 * we jump into these targets and then jump directly to the handler for 1264 * next instruction. Here, these are subroutines that return to the caller. 1265 */ 1266 1267GOTO_TARGET(filledNewArray, bool methodCallRange) 1268 { 1269 ClassObject* arrayClass; 1270 ArrayObject* newArray; 1271 u4* contents; 1272 char typeCh; 1273 int i; 1274 u4 arg5; 1275 1276 EXPORT_PC(); 1277 1278 ref = FETCH(1); /* class ref */ 1279 vdst = FETCH(2); /* first 4 regs -or- range base */ 1280 1281 if (methodCallRange) { 1282 vsrc1 = INST_AA(inst); /* #of elements */ 1283 arg5 = -1; /* silence compiler warning */ 1284 ILOGV("|filled-new-array-range args=%d @0x%04x {regs=v%d-v%d}", 1285 vsrc1, ref, vdst, vdst+vsrc1-1); 1286 } else { 1287 arg5 = INST_A(inst); 1288 vsrc1 = INST_B(inst); /* #of elements */ 1289 ILOGV("|filled-new-array args=%d @0x%04x {regs=0x%04x %x}", 1290 vsrc1, ref, vdst, arg5); 1291 } 1292 1293 /* 1294 * Resolve the array class. 1295 */ 1296 arrayClass = dvmDexGetResolvedClass(methodClassDex, ref); 1297 if (arrayClass == NULL) { 1298 arrayClass = dvmResolveClass(curMethod->clazz, ref, false); 1299 if (arrayClass == NULL) 1300 GOTO_exceptionThrown(); 1301 } 1302 /* 1303 if (!dvmIsArrayClass(arrayClass)) { 1304 dvmThrowException("Ljava/lang/RuntimeError;", 1305 "filled-new-array needs array class"); 1306 GOTO_exceptionThrown(); 1307 } 1308 */ 1309 /* verifier guarantees this is an array class */ 1310 assert(dvmIsArrayClass(arrayClass)); 1311 assert(dvmIsClassInitialized(arrayClass)); 1312 1313 /* 1314 * Create an array of the specified type. 1315 */ 1316 LOGVV("+++ filled-new-array type is '%s'\n", arrayClass->descriptor); 1317 typeCh = arrayClass->descriptor[1]; 1318 if (typeCh == 'D' || typeCh == 'J') { 1319 /* category 2 primitives not allowed */ 1320 dvmThrowException("Ljava/lang/RuntimeError;", 1321 "bad filled array req"); 1322 GOTO_exceptionThrown(); 1323 } else if (typeCh != 'L' && typeCh != '[' && typeCh != 'I') { 1324 /* TODO: requires multiple "fill in" loops with different widths */ 1325 LOGE("non-int primitives not implemented\n"); 1326 dvmThrowException("Ljava/lang/InternalError;", 1327 "filled-new-array not implemented for anything but 'int'"); 1328 GOTO_exceptionThrown(); 1329 } 1330 1331 newArray = dvmAllocArrayByClass(arrayClass, vsrc1, ALLOC_DONT_TRACK); 1332 if (newArray == NULL) 1333 GOTO_exceptionThrown(); 1334 1335 /* 1336 * Fill in the elements. It's legal for vsrc1 to be zero. 1337 */ 1338 contents = (u4*) newArray->contents; 1339 if (methodCallRange) { 1340 for (i = 0; i < vsrc1; i++) 1341 contents[i] = GET_REGISTER(vdst+i); 1342 } else { 1343 assert(vsrc1 <= 5); 1344 if (vsrc1 == 5) { 1345 contents[4] = GET_REGISTER(arg5); 1346 vsrc1--; 1347 } 1348 for (i = 0; i < vsrc1; i++) { 1349 contents[i] = GET_REGISTER(vdst & 0x0f); 1350 vdst >>= 4; 1351 } 1352 } 1353 1354 retval.l = newArray; 1355 } 1356 FINISH(3); 1357GOTO_TARGET_END 1358 1359 1360GOTO_TARGET(invokeVirtual, bool methodCallRange) 1361 { 1362 Method* baseMethod; 1363 Object* thisPtr; 1364 1365 EXPORT_PC(); 1366 1367 vsrc1 = INST_AA(inst); /* AA (count) or BA (count + arg 5) */ 1368 ref = FETCH(1); /* method ref */ 1369 vdst = FETCH(2); /* 4 regs -or- first reg */ 1370 1371 /* 1372 * The object against which we are executing a method is always 1373 * in the first argument. 1374 */ 1375 if (methodCallRange) { 1376 assert(vsrc1 > 0); 1377 ILOGV("|invoke-virtual-range args=%d @0x%04x {regs=v%d-v%d}", 1378 vsrc1, ref, vdst, vdst+vsrc1-1); 1379 thisPtr = (Object*) GET_REGISTER(vdst); 1380 } else { 1381 assert((vsrc1>>4) > 0); 1382 ILOGV("|invoke-virtual args=%d @0x%04x {regs=0x%04x %x}", 1383 vsrc1 >> 4, ref, vdst, vsrc1 & 0x0f); 1384 thisPtr = (Object*) GET_REGISTER(vdst & 0x0f); 1385 } 1386 1387 if (!checkForNull(thisPtr)) 1388 GOTO_exceptionThrown(); 1389 1390 /* 1391 * Resolve the method. This is the correct method for the static 1392 * type of the object. We also verify access permissions here. 1393 */ 1394 baseMethod = dvmDexGetResolvedMethod(methodClassDex, ref); 1395 if (baseMethod == NULL) { 1396 baseMethod = dvmResolveMethod(curMethod->clazz, ref,METHOD_VIRTUAL); 1397 if (baseMethod == NULL) { 1398 ILOGV("+ unknown method or access denied\n"); 1399 GOTO_exceptionThrown(); 1400 } 1401 } 1402 1403 /* 1404 * Combine the object we found with the vtable offset in the 1405 * method. 1406 */ 1407 assert(baseMethod->methodIndex < thisPtr->clazz->vtableCount); 1408 methodToCall = thisPtr->clazz->vtable[baseMethod->methodIndex]; 1409 1410#if 0 1411 if (dvmIsAbstractMethod(methodToCall)) { 1412 /* 1413 * This can happen if you create two classes, Base and Sub, where 1414 * Sub is a sub-class of Base. Declare a protected abstract 1415 * method foo() in Base, and invoke foo() from a method in Base. 1416 * Base is an "abstract base class" and is never instantiated 1417 * directly. Now, Override foo() in Sub, and use Sub. This 1418 * Works fine unless Sub stops providing an implementation of 1419 * the method. 1420 */ 1421 dvmThrowException("Ljava/lang/AbstractMethodError;", 1422 "abstract method not implemented"); 1423 GOTO_exceptionThrown(); 1424 } 1425#else 1426 assert(!dvmIsAbstractMethod(methodToCall) || 1427 methodToCall->nativeFunc != NULL); 1428#endif 1429 1430 LOGVV("+++ base=%s.%s virtual[%d]=%s.%s\n", 1431 baseMethod->clazz->descriptor, baseMethod->name, 1432 (u4) baseMethod->methodIndex, 1433 methodToCall->clazz->descriptor, methodToCall->name); 1434 assert(methodToCall != NULL); 1435 1436#if 0 1437 if (vsrc1 != methodToCall->insSize) { 1438 LOGW("WRONG METHOD: base=%s.%s virtual[%d]=%s.%s\n", 1439 baseMethod->clazz->descriptor, baseMethod->name, 1440 (u4) baseMethod->methodIndex, 1441 methodToCall->clazz->descriptor, methodToCall->name); 1442 //dvmDumpClass(baseMethod->clazz); 1443 //dvmDumpClass(methodToCall->clazz); 1444 dvmDumpAllClasses(0); 1445 } 1446#endif 1447 1448 GOTO_invokeMethod(methodCallRange, methodToCall, vsrc1, vdst); 1449 } 1450GOTO_TARGET_END 1451 1452GOTO_TARGET(invokeSuper, bool methodCallRange) 1453 { 1454 Method* baseMethod; 1455 u2 thisReg; 1456 1457 EXPORT_PC(); 1458 1459 vsrc1 = INST_AA(inst); /* AA (count) or BA (count + arg 5) */ 1460 ref = FETCH(1); /* method ref */ 1461 vdst = FETCH(2); /* 4 regs -or- first reg */ 1462 1463 if (methodCallRange) { 1464 ILOGV("|invoke-super-range args=%d @0x%04x {regs=v%d-v%d}", 1465 vsrc1, ref, vdst, vdst+vsrc1-1); 1466 thisReg = vdst; 1467 } else { 1468 ILOGV("|invoke-super args=%d @0x%04x {regs=0x%04x %x}", 1469 vsrc1 >> 4, ref, vdst, vsrc1 & 0x0f); 1470 thisReg = vdst & 0x0f; 1471 } 1472 /* impossible in well-formed code, but we must check nevertheless */ 1473 if (!checkForNull((Object*) GET_REGISTER(thisReg))) 1474 GOTO_exceptionThrown(); 1475 1476 /* 1477 * Resolve the method. This is the correct method for the static 1478 * type of the object. We also verify access permissions here. 1479 * The first arg to dvmResolveMethod() is just the referring class 1480 * (used for class loaders and such), so we don't want to pass 1481 * the superclass into the resolution call. 1482 */ 1483 baseMethod = dvmDexGetResolvedMethod(methodClassDex, ref); 1484 if (baseMethod == NULL) { 1485 baseMethod = dvmResolveMethod(curMethod->clazz, ref,METHOD_VIRTUAL); 1486 if (baseMethod == NULL) { 1487 ILOGV("+ unknown method or access denied\n"); 1488 GOTO_exceptionThrown(); 1489 } 1490 } 1491 1492 /* 1493 * Combine the object we found with the vtable offset in the 1494 * method's class. 1495 * 1496 * We're using the current method's class' superclass, not the 1497 * superclass of "this". This is because we might be executing 1498 * in a method inherited from a superclass, and we want to run 1499 * in that class' superclass. 1500 */ 1501 if (baseMethod->methodIndex >= curMethod->clazz->super->vtableCount) { 1502 /* 1503 * Method does not exist in the superclass. Could happen if 1504 * superclass gets updated. 1505 */ 1506 dvmThrowException("Ljava/lang/NoSuchMethodError;", 1507 baseMethod->name); 1508 GOTO_exceptionThrown(); 1509 } 1510 methodToCall = curMethod->clazz->super->vtable[baseMethod->methodIndex]; 1511#if 0 1512 if (dvmIsAbstractMethod(methodToCall)) { 1513 dvmThrowException("Ljava/lang/AbstractMethodError;", 1514 "abstract method not implemented"); 1515 GOTO_exceptionThrown(); 1516 } 1517#else 1518 assert(!dvmIsAbstractMethod(methodToCall) || 1519 methodToCall->nativeFunc != NULL); 1520#endif 1521 LOGVV("+++ base=%s.%s super-virtual=%s.%s\n", 1522 baseMethod->clazz->descriptor, baseMethod->name, 1523 methodToCall->clazz->descriptor, methodToCall->name); 1524 assert(methodToCall != NULL); 1525 1526 GOTO_invokeMethod(methodCallRange, methodToCall, vsrc1, vdst); 1527 } 1528GOTO_TARGET_END 1529 1530GOTO_TARGET(invokeInterface, bool methodCallRange) 1531 { 1532 Object* thisPtr; 1533 ClassObject* thisClass; 1534 1535 EXPORT_PC(); 1536 1537 vsrc1 = INST_AA(inst); /* AA (count) or BA (count + arg 5) */ 1538 ref = FETCH(1); /* method ref */ 1539 vdst = FETCH(2); /* 4 regs -or- first reg */ 1540 1541 /* 1542 * The object against which we are executing a method is always 1543 * in the first argument. 1544 */ 1545 if (methodCallRange) { 1546 assert(vsrc1 > 0); 1547 ILOGV("|invoke-interface-range args=%d @0x%04x {regs=v%d-v%d}", 1548 vsrc1, ref, vdst, vdst+vsrc1-1); 1549 thisPtr = (Object*) GET_REGISTER(vdst); 1550 } else { 1551 assert((vsrc1>>4) > 0); 1552 ILOGV("|invoke-interface args=%d @0x%04x {regs=0x%04x %x}", 1553 vsrc1 >> 4, ref, vdst, vsrc1 & 0x0f); 1554 thisPtr = (Object*) GET_REGISTER(vdst & 0x0f); 1555 } 1556 if (!checkForNull(thisPtr)) 1557 GOTO_exceptionThrown(); 1558 1559 thisClass = thisPtr->clazz; 1560 1561 /* 1562 * Given a class and a method index, find the Method* with the 1563 * actual code we want to execute. 1564 */ 1565 methodToCall = dvmFindInterfaceMethodInCache(thisClass, ref, curMethod, 1566 methodClassDex); 1567 if (methodToCall == NULL) { 1568 assert(dvmCheckException(self)); 1569 GOTO_exceptionThrown(); 1570 } 1571 1572 GOTO_invokeMethod(methodCallRange, methodToCall, vsrc1, vdst); 1573 } 1574GOTO_TARGET_END 1575 1576GOTO_TARGET(invokeDirect, bool methodCallRange) 1577 { 1578 u2 thisReg; 1579 1580 vsrc1 = INST_AA(inst); /* AA (count) or BA (count + arg 5) */ 1581 ref = FETCH(1); /* method ref */ 1582 vdst = FETCH(2); /* 4 regs -or- first reg */ 1583 1584 EXPORT_PC(); 1585 1586 if (methodCallRange) { 1587 ILOGV("|invoke-direct-range args=%d @0x%04x {regs=v%d-v%d}", 1588 vsrc1, ref, vdst, vdst+vsrc1-1); 1589 thisReg = vdst; 1590 } else { 1591 ILOGV("|invoke-direct args=%d @0x%04x {regs=0x%04x %x}", 1592 vsrc1 >> 4, ref, vdst, vsrc1 & 0x0f); 1593 thisReg = vdst & 0x0f; 1594 } 1595 if (!checkForNull((Object*) GET_REGISTER(thisReg))) 1596 GOTO_exceptionThrown(); 1597 1598 methodToCall = dvmDexGetResolvedMethod(methodClassDex, ref); 1599 if (methodToCall == NULL) { 1600 methodToCall = dvmResolveMethod(curMethod->clazz, ref, 1601 METHOD_DIRECT); 1602 if (methodToCall == NULL) { 1603 ILOGV("+ unknown direct method\n"); // should be impossible 1604 GOTO_exceptionThrown(); 1605 } 1606 } 1607 GOTO_invokeMethod(methodCallRange, methodToCall, vsrc1, vdst); 1608 } 1609GOTO_TARGET_END 1610 1611GOTO_TARGET(invokeStatic, bool methodCallRange) 1612 vsrc1 = INST_AA(inst); /* AA (count) or BA (count + arg 5) */ 1613 ref = FETCH(1); /* method ref */ 1614 vdst = FETCH(2); /* 4 regs -or- first reg */ 1615 1616 EXPORT_PC(); 1617 1618 if (methodCallRange) 1619 ILOGV("|invoke-static-range args=%d @0x%04x {regs=v%d-v%d}", 1620 vsrc1, ref, vdst, vdst+vsrc1-1); 1621 else 1622 ILOGV("|invoke-static args=%d @0x%04x {regs=0x%04x %x}", 1623 vsrc1 >> 4, ref, vdst, vsrc1 & 0x0f); 1624 1625 methodToCall = dvmDexGetResolvedMethod(methodClassDex, ref); 1626 if (methodToCall == NULL) { 1627 methodToCall = dvmResolveMethod(curMethod->clazz, ref, METHOD_STATIC); 1628 if (methodToCall == NULL) { 1629 ILOGV("+ unknown method\n"); 1630 GOTO_exceptionThrown(); 1631 } 1632 } 1633 GOTO_invokeMethod(methodCallRange, methodToCall, vsrc1, vdst); 1634GOTO_TARGET_END 1635 1636GOTO_TARGET(invokeVirtualQuick, bool methodCallRange) 1637 { 1638 Object* thisPtr; 1639 1640 EXPORT_PC(); 1641 1642 vsrc1 = INST_AA(inst); /* AA (count) or BA (count + arg 5) */ 1643 ref = FETCH(1); /* vtable index */ 1644 vdst = FETCH(2); /* 4 regs -or- first reg */ 1645 1646 /* 1647 * The object against which we are executing a method is always 1648 * in the first argument. 1649 */ 1650 if (methodCallRange) { 1651 assert(vsrc1 > 0); 1652 ILOGV("|invoke-virtual-quick-range args=%d @0x%04x {regs=v%d-v%d}", 1653 vsrc1, ref, vdst, vdst+vsrc1-1); 1654 thisPtr = (Object*) GET_REGISTER(vdst); 1655 } else { 1656 assert((vsrc1>>4) > 0); 1657 ILOGV("|invoke-virtual-quick args=%d @0x%04x {regs=0x%04x %x}", 1658 vsrc1 >> 4, ref, vdst, vsrc1 & 0x0f); 1659 thisPtr = (Object*) GET_REGISTER(vdst & 0x0f); 1660 } 1661 1662 if (!checkForNull(thisPtr)) 1663 GOTO_exceptionThrown(); 1664 1665 /* 1666 * Combine the object we found with the vtable offset in the 1667 * method. 1668 */ 1669 assert(ref < thisPtr->clazz->vtableCount); 1670 methodToCall = thisPtr->clazz->vtable[ref]; 1671 1672#if 0 1673 if (dvmIsAbstractMethod(methodToCall)) { 1674 dvmThrowException("Ljava/lang/AbstractMethodError;", 1675 "abstract method not implemented"); 1676 GOTO_exceptionThrown(); 1677 } 1678#else 1679 assert(!dvmIsAbstractMethod(methodToCall) || 1680 methodToCall->nativeFunc != NULL); 1681#endif 1682 1683 LOGVV("+++ virtual[%d]=%s.%s\n", 1684 ref, methodToCall->clazz->descriptor, methodToCall->name); 1685 assert(methodToCall != NULL); 1686 1687 GOTO_invokeMethod(methodCallRange, methodToCall, vsrc1, vdst); 1688 } 1689GOTO_TARGET_END 1690 1691GOTO_TARGET(invokeSuperQuick, bool methodCallRange) 1692 { 1693 u2 thisReg; 1694 1695 EXPORT_PC(); 1696 1697 vsrc1 = INST_AA(inst); /* AA (count) or BA (count + arg 5) */ 1698 ref = FETCH(1); /* vtable index */ 1699 vdst = FETCH(2); /* 4 regs -or- first reg */ 1700 1701 if (methodCallRange) { 1702 ILOGV("|invoke-super-quick-range args=%d @0x%04x {regs=v%d-v%d}", 1703 vsrc1, ref, vdst, vdst+vsrc1-1); 1704 thisReg = vdst; 1705 } else { 1706 ILOGV("|invoke-super-quick args=%d @0x%04x {regs=0x%04x %x}", 1707 vsrc1 >> 4, ref, vdst, vsrc1 & 0x0f); 1708 thisReg = vdst & 0x0f; 1709 } 1710 /* impossible in well-formed code, but we must check nevertheless */ 1711 if (!checkForNull((Object*) GET_REGISTER(thisReg))) 1712 GOTO_exceptionThrown(); 1713 1714#if 0 /* impossible in optimized + verified code */ 1715 if (ref >= curMethod->clazz->super->vtableCount) { 1716 dvmThrowException("Ljava/lang/NoSuchMethodError;", NULL); 1717 GOTO_exceptionThrown(); 1718 } 1719#else 1720 assert(ref < curMethod->clazz->super->vtableCount); 1721#endif 1722 1723 /* 1724 * Combine the object we found with the vtable offset in the 1725 * method's class. 1726 * 1727 * We're using the current method's class' superclass, not the 1728 * superclass of "this". This is because we might be executing 1729 * in a method inherited from a superclass, and we want to run 1730 * in the method's class' superclass. 1731 */ 1732 methodToCall = curMethod->clazz->super->vtable[ref]; 1733 1734#if 0 1735 if (dvmIsAbstractMethod(methodToCall)) { 1736 dvmThrowException("Ljava/lang/AbstractMethodError;", 1737 "abstract method not implemented"); 1738 GOTO_exceptionThrown(); 1739 } 1740#else 1741 assert(!dvmIsAbstractMethod(methodToCall) || 1742 methodToCall->nativeFunc != NULL); 1743#endif 1744 LOGVV("+++ super-virtual[%d]=%s.%s\n", 1745 ref, methodToCall->clazz->descriptor, methodToCall->name); 1746 assert(methodToCall != NULL); 1747 1748 GOTO_invokeMethod(methodCallRange, methodToCall, vsrc1, vdst); 1749 } 1750GOTO_TARGET_END 1751 1752 1753 1754 /* 1755 * General handling for return-void, return, and return-wide. Put the 1756 * return value in "retval" before jumping here. 1757 */ 1758GOTO_TARGET(returnFromMethod) 1759 { 1760 StackSaveArea* saveArea; 1761 1762 /* 1763 * We must do this BEFORE we pop the previous stack frame off, so 1764 * that the GC can see the return value (if any) in the local vars. 1765 * 1766 * Since this is now an interpreter switch point, we must do it before 1767 * we do anything at all. 1768 */ 1769 PERIODIC_CHECKS(kInterpEntryReturn, 0); 1770 1771 ILOGV("> retval=0x%llx (leaving %s.%s %s)", 1772 retval.j, curMethod->clazz->descriptor, curMethod->name, 1773 curMethod->shorty); 1774 //DUMP_REGS(curMethod, fp); 1775 1776 saveArea = SAVEAREA_FROM_FP(fp); 1777 1778#ifdef EASY_GDB 1779 debugSaveArea = saveArea; 1780#endif 1781#if (INTERP_TYPE == INTERP_DBG) && defined(WITH_PROFILER) 1782 TRACE_METHOD_EXIT(self, curMethod); 1783#endif 1784 1785 /* back up to previous frame and see if we hit a break */ 1786 fp = saveArea->prevFrame; 1787 assert(fp != NULL); 1788 if (dvmIsBreakFrame(fp)) { 1789 /* bail without popping the method frame from stack */ 1790 LOGVV("+++ returned into break frame\n"); 1791#if defined(WITH_JIT) 1792 /* Let the Jit know the return is terminating normally */ 1793 CHECK_JIT(); 1794#endif 1795 GOTO_bail(); 1796 } 1797 1798 /* update thread FP, and reset local variables */ 1799 self->curFrame = fp; 1800 curMethod = SAVEAREA_FROM_FP(fp)->method; 1801 //methodClass = curMethod->clazz; 1802 methodClassDex = curMethod->clazz->pDvmDex; 1803 pc = saveArea->savedPc; 1804 ILOGD("> (return to %s.%s %s)", curMethod->clazz->descriptor, 1805 curMethod->name, curMethod->shorty); 1806 1807 /* use FINISH on the caller's invoke instruction */ 1808 //u2 invokeInstr = INST_INST(FETCH(0)); 1809 if (true /*invokeInstr >= OP_INVOKE_VIRTUAL && 1810 invokeInstr <= OP_INVOKE_INTERFACE*/) 1811 { 1812 FINISH(3); 1813 } else { 1814 //LOGE("Unknown invoke instr %02x at %d\n", 1815 // invokeInstr, (int) (pc - curMethod->insns)); 1816 assert(false); 1817 } 1818 } 1819GOTO_TARGET_END 1820 1821 1822 /* 1823 * Jump here when the code throws an exception. 1824 * 1825 * By the time we get here, the Throwable has been created and the stack 1826 * trace has been saved off. 1827 */ 1828GOTO_TARGET(exceptionThrown) 1829 { 1830 Object* exception; 1831 int catchRelPc; 1832 1833 /* 1834 * Since this is now an interpreter switch point, we must do it before 1835 * we do anything at all. 1836 */ 1837 PERIODIC_CHECKS(kInterpEntryThrow, 0); 1838 1839#if defined(WITH_JIT) 1840 // Something threw during trace selection - abort the current trace 1841 ABORT_JIT_TSELECT(); 1842#endif 1843 /* 1844 * We save off the exception and clear the exception status. While 1845 * processing the exception we might need to load some Throwable 1846 * classes, and we don't want class loader exceptions to get 1847 * confused with this one. 1848 */ 1849 assert(dvmCheckException(self)); 1850 exception = dvmGetException(self); 1851 dvmAddTrackedAlloc(exception, self); 1852 dvmClearException(self); 1853 1854 LOGV("Handling exception %s at %s:%d\n", 1855 exception->clazz->descriptor, curMethod->name, 1856 dvmLineNumFromPC(curMethod, pc - curMethod->insns)); 1857 1858#if (INTERP_TYPE == INTERP_DBG) && defined(WITH_DEBUGGER) 1859 /* 1860 * Tell the debugger about it. 1861 * 1862 * TODO: if the exception was thrown by interpreted code, control 1863 * fell through native, and then back to us, we will report the 1864 * exception at the point of the throw and again here. We can avoid 1865 * this by not reporting exceptions when we jump here directly from 1866 * the native call code above, but then we won't report exceptions 1867 * that were thrown *from* the JNI code (as opposed to *through* it). 1868 * 1869 * The correct solution is probably to ignore from-native exceptions 1870 * here, and have the JNI exception code do the reporting to the 1871 * debugger. 1872 */ 1873 if (gDvm.debuggerActive) { 1874 void* catchFrame; 1875 catchRelPc = dvmFindCatchBlock(self, pc - curMethod->insns, 1876 exception, true, &catchFrame); 1877 dvmDbgPostException(fp, pc - curMethod->insns, catchFrame, 1878 catchRelPc, exception); 1879 } 1880#endif 1881 1882 /* 1883 * We need to unroll to the catch block or the nearest "break" 1884 * frame. 1885 * 1886 * A break frame could indicate that we have reached an intermediate 1887 * native call, or have gone off the top of the stack and the thread 1888 * needs to exit. Either way, we return from here, leaving the 1889 * exception raised. 1890 * 1891 * If we do find a catch block, we want to transfer execution to 1892 * that point. 1893 * 1894 * Note this can cause an exception while resolving classes in 1895 * the "catch" blocks. 1896 */ 1897 catchRelPc = dvmFindCatchBlock(self, pc - curMethod->insns, 1898 exception, false, (void*)&fp); 1899 1900 /* 1901 * Restore the stack bounds after an overflow. This isn't going to 1902 * be correct in all circumstances, e.g. if JNI code devours the 1903 * exception this won't happen until some other exception gets 1904 * thrown. If the code keeps pushing the stack bounds we'll end 1905 * up aborting the VM. 1906 * 1907 * Note we want to do this *after* the call to dvmFindCatchBlock, 1908 * because that may need extra stack space to resolve exception 1909 * classes (e.g. through a class loader). 1910 * 1911 * It's possible for the stack overflow handling to cause an 1912 * exception (specifically, class resolution in a "catch" block 1913 * during the call above), so we could see the thread's overflow 1914 * flag raised but actually be running in a "nested" interpreter 1915 * frame. We don't allow doubled-up StackOverflowErrors, so 1916 * we can check for this by just looking at the exception type 1917 * in the cleanup function. Also, we won't unroll past the SOE 1918 * point because the more-recent exception will hit a break frame 1919 * as it unrolls to here. 1920 */ 1921 if (self->stackOverflowed) 1922 dvmCleanupStackOverflow(self, exception); 1923 1924 if (catchRelPc < 0) { 1925 /* falling through to JNI code or off the bottom of the stack */ 1926#if DVM_SHOW_EXCEPTION >= 2 1927 LOGD("Exception %s from %s:%d not caught locally\n", 1928 exception->clazz->descriptor, dvmGetMethodSourceFile(curMethod), 1929 dvmLineNumFromPC(curMethod, pc - curMethod->insns)); 1930#endif 1931 dvmSetException(self, exception); 1932 dvmReleaseTrackedAlloc(exception, self); 1933 GOTO_bail(); 1934 } 1935 1936#if DVM_SHOW_EXCEPTION >= 3 1937 { 1938 const Method* catchMethod = SAVEAREA_FROM_FP(fp)->method; 1939 LOGD("Exception %s thrown from %s:%d to %s:%d\n", 1940 exception->clazz->descriptor, dvmGetMethodSourceFile(curMethod), 1941 dvmLineNumFromPC(curMethod, pc - curMethod->insns), 1942 dvmGetMethodSourceFile(catchMethod), 1943 dvmLineNumFromPC(catchMethod, catchRelPc)); 1944 } 1945#endif 1946 1947 /* 1948 * Adjust local variables to match self->curFrame and the 1949 * updated PC. 1950 */ 1951 //fp = (u4*) self->curFrame; 1952 curMethod = SAVEAREA_FROM_FP(fp)->method; 1953 //methodClass = curMethod->clazz; 1954 methodClassDex = curMethod->clazz->pDvmDex; 1955 pc = curMethod->insns + catchRelPc; 1956 ILOGV("> pc <-- %s.%s %s", curMethod->clazz->descriptor, 1957 curMethod->name, curMethod->shorty); 1958 DUMP_REGS(curMethod, fp, false); // show all regs 1959 1960 /* 1961 * Restore the exception if the handler wants it. 1962 * 1963 * The Dalvik spec mandates that, if an exception handler wants to 1964 * do something with the exception, the first instruction executed 1965 * must be "move-exception". We can pass the exception along 1966 * through the thread struct, and let the move-exception instruction 1967 * clear it for us. 1968 * 1969 * If the handler doesn't call move-exception, we don't want to 1970 * finish here with an exception still pending. 1971 */ 1972 if (INST_INST(FETCH(0)) == OP_MOVE_EXCEPTION) 1973 dvmSetException(self, exception); 1974 1975 dvmReleaseTrackedAlloc(exception, self); 1976 FINISH(0); 1977 } 1978GOTO_TARGET_END 1979 1980 1981 /* 1982 * General handling for invoke-{virtual,super,direct,static,interface}, 1983 * including "quick" variants. 1984 * 1985 * Set "methodToCall" to the Method we're calling, and "methodCallRange" 1986 * depending on whether this is a "/range" instruction. 1987 * 1988 * For a range call: 1989 * "vsrc1" holds the argument count (8 bits) 1990 * "vdst" holds the first argument in the range 1991 * For a non-range call: 1992 * "vsrc1" holds the argument count (4 bits) and the 5th argument index 1993 * "vdst" holds four 4-bit register indices 1994 * 1995 * The caller must EXPORT_PC before jumping here, because any method 1996 * call can throw a stack overflow exception. 1997 */ 1998GOTO_TARGET(invokeMethod, bool methodCallRange, const Method* _methodToCall, 1999 u2 count, u2 regs) 2000 { 2001 STUB_HACK(vsrc1 = count; vdst = regs; methodToCall = _methodToCall;); 2002 2003 //printf("range=%d call=%p count=%d regs=0x%04x\n", 2004 // methodCallRange, methodToCall, count, regs); 2005 //printf(" --> %s.%s %s\n", methodToCall->clazz->descriptor, 2006 // methodToCall->name, methodToCall->shorty); 2007 2008 u4* outs; 2009 int i; 2010 2011 /* 2012 * Copy args. This may corrupt vsrc1/vdst. 2013 */ 2014 if (methodCallRange) { 2015 // could use memcpy or a "Duff's device"; most functions have 2016 // so few args it won't matter much 2017 assert(vsrc1 <= curMethod->outsSize); 2018 assert(vsrc1 == methodToCall->insSize); 2019 outs = OUTS_FROM_FP(fp, vsrc1); 2020 for (i = 0; i < vsrc1; i++) 2021 outs[i] = GET_REGISTER(vdst+i); 2022 } else { 2023 u4 count = vsrc1 >> 4; 2024 2025 assert(count <= curMethod->outsSize); 2026 assert(count == methodToCall->insSize); 2027 assert(count <= 5); 2028 2029 outs = OUTS_FROM_FP(fp, count); 2030#if 0 2031 if (count == 5) { 2032 outs[4] = GET_REGISTER(vsrc1 & 0x0f); 2033 count--; 2034 } 2035 for (i = 0; i < (int) count; i++) { 2036 outs[i] = GET_REGISTER(vdst & 0x0f); 2037 vdst >>= 4; 2038 } 2039#else 2040 // This version executes fewer instructions but is larger 2041 // overall. Seems to be a teensy bit faster. 2042 assert((vdst >> 16) == 0); // 16 bits -or- high 16 bits clear 2043 switch (count) { 2044 case 5: 2045 outs[4] = GET_REGISTER(vsrc1 & 0x0f); 2046 case 4: 2047 outs[3] = GET_REGISTER(vdst >> 12); 2048 case 3: 2049 outs[2] = GET_REGISTER((vdst & 0x0f00) >> 8); 2050 case 2: 2051 outs[1] = GET_REGISTER((vdst & 0x00f0) >> 4); 2052 case 1: 2053 outs[0] = GET_REGISTER(vdst & 0x0f); 2054 default: 2055 ; 2056 } 2057#endif 2058 } 2059 } 2060 2061 /* 2062 * (This was originally a "goto" target; I've kept it separate from the 2063 * stuff above in case we want to refactor things again.) 2064 * 2065 * At this point, we have the arguments stored in the "outs" area of 2066 * the current method's stack frame, and the method to call in 2067 * "methodToCall". Push a new stack frame. 2068 */ 2069 { 2070 StackSaveArea* newSaveArea; 2071 u4* newFp; 2072 2073 ILOGV("> %s%s.%s %s", 2074 dvmIsNativeMethod(methodToCall) ? "(NATIVE) " : "", 2075 methodToCall->clazz->descriptor, methodToCall->name, 2076 methodToCall->shorty); 2077 2078 newFp = (u4*) SAVEAREA_FROM_FP(fp) - methodToCall->registersSize; 2079 newSaveArea = SAVEAREA_FROM_FP(newFp); 2080 2081 /* verify that we have enough space */ 2082 if (true) { 2083 u1* bottom; 2084 bottom = (u1*) newSaveArea - methodToCall->outsSize * sizeof(u4); 2085 if (bottom < self->interpStackEnd) { 2086 /* stack overflow */ 2087 LOGV("Stack overflow on method call (start=%p end=%p newBot=%p(%d) size=%d '%s')\n", 2088 self->interpStackStart, self->interpStackEnd, bottom, 2089 (u1*) fp - bottom, self->interpStackSize, 2090 methodToCall->name); 2091 dvmHandleStackOverflow(self, methodToCall); 2092 assert(dvmCheckException(self)); 2093 GOTO_exceptionThrown(); 2094 } 2095 //LOGD("+++ fp=%p newFp=%p newSave=%p bottom=%p\n", 2096 // fp, newFp, newSaveArea, bottom); 2097 } 2098 2099#ifdef LOG_INSTR 2100 if (methodToCall->registersSize > methodToCall->insSize) { 2101 /* 2102 * This makes valgrind quiet when we print registers that 2103 * haven't been initialized. Turn it off when the debug 2104 * messages are disabled -- we want valgrind to report any 2105 * used-before-initialized issues. 2106 */ 2107 memset(newFp, 0xcc, 2108 (methodToCall->registersSize - methodToCall->insSize) * 4); 2109 } 2110#endif 2111 2112#ifdef EASY_GDB 2113 newSaveArea->prevSave = SAVEAREA_FROM_FP(fp); 2114#endif 2115 newSaveArea->prevFrame = fp; 2116 newSaveArea->savedPc = pc; 2117#if defined(WITH_JIT) 2118 newSaveArea->returnAddr = 0; 2119#endif 2120 newSaveArea->method = methodToCall; 2121 2122 if (!dvmIsNativeMethod(methodToCall)) { 2123 /* 2124 * "Call" interpreted code. Reposition the PC, update the 2125 * frame pointer and other local state, and continue. 2126 */ 2127 curMethod = methodToCall; 2128 methodClassDex = curMethod->clazz->pDvmDex; 2129 pc = methodToCall->insns; 2130 fp = self->curFrame = newFp; 2131#ifdef EASY_GDB 2132 debugSaveArea = SAVEAREA_FROM_FP(newFp); 2133#endif 2134#if INTERP_TYPE == INTERP_DBG 2135 debugIsMethodEntry = true; // profiling, debugging 2136#endif 2137 ILOGD("> pc <-- %s.%s %s", curMethod->clazz->descriptor, 2138 curMethod->name, curMethod->shorty); 2139 DUMP_REGS(curMethod, fp, true); // show input args 2140 FINISH(0); // jump to method start 2141 } else { 2142 /* set this up for JNI locals, even if not a JNI native */ 2143#ifdef USE_INDIRECT_REF 2144 newSaveArea->xtra.localRefCookie = self->jniLocalRefTable.segmentState.all; 2145#else 2146 newSaveArea->xtra.localRefCookie = self->jniLocalRefTable.nextEntry; 2147#endif 2148 2149 self->curFrame = newFp; 2150 2151 DUMP_REGS(methodToCall, newFp, true); // show input args 2152 2153#if (INTERP_TYPE == INTERP_DBG) && defined(WITH_DEBUGGER) 2154 if (gDvm.debuggerActive) { 2155 dvmDbgPostLocationEvent(methodToCall, -1, 2156 dvmGetThisPtr(curMethod, fp), DBG_METHOD_ENTRY); 2157 } 2158#endif 2159#if (INTERP_TYPE == INTERP_DBG) && defined(WITH_PROFILER) 2160 TRACE_METHOD_ENTER(self, methodToCall); 2161#endif 2162 2163 ILOGD("> native <-- %s.%s %s", methodToCall->clazz->descriptor, 2164 methodToCall->name, methodToCall->shorty); 2165 2166#if defined(WITH_JIT) 2167 /* Allow the Jit to end any pending trace building */ 2168 CHECK_JIT(); 2169#endif 2170 2171 /* 2172 * Jump through native call bridge. Because we leave no 2173 * space for locals on native calls, "newFp" points directly 2174 * to the method arguments. 2175 */ 2176 (*methodToCall->nativeFunc)(newFp, &retval, methodToCall, self); 2177 2178#if (INTERP_TYPE == INTERP_DBG) && defined(WITH_DEBUGGER) 2179 if (gDvm.debuggerActive) { 2180 dvmDbgPostLocationEvent(methodToCall, -1, 2181 dvmGetThisPtr(curMethod, fp), DBG_METHOD_EXIT); 2182 } 2183#endif 2184#if (INTERP_TYPE == INTERP_DBG) && defined(WITH_PROFILER) 2185 TRACE_METHOD_EXIT(self, methodToCall); 2186#endif 2187 2188 /* pop frame off */ 2189 dvmPopJniLocals(self, newSaveArea); 2190 self->curFrame = fp; 2191 2192 /* 2193 * If the native code threw an exception, or interpreted code 2194 * invoked by the native call threw one and nobody has cleared 2195 * it, jump to our local exception handling. 2196 */ 2197 if (dvmCheckException(self)) { 2198 LOGV("Exception thrown by/below native code\n"); 2199 GOTO_exceptionThrown(); 2200 } 2201 2202 ILOGD("> retval=0x%llx (leaving native)", retval.j); 2203 ILOGD("> (return from native %s.%s to %s.%s %s)", 2204 methodToCall->clazz->descriptor, methodToCall->name, 2205 curMethod->clazz->descriptor, curMethod->name, 2206 curMethod->shorty); 2207 2208 //u2 invokeInstr = INST_INST(FETCH(0)); 2209 if (true /*invokeInstr >= OP_INVOKE_VIRTUAL && 2210 invokeInstr <= OP_INVOKE_INTERFACE*/) 2211 { 2212 FINISH(3); 2213 } else { 2214 //LOGE("Unknown invoke instr %02x at %d\n", 2215 // invokeInstr, (int) (pc - curMethod->insns)); 2216 assert(false); 2217 } 2218 } 2219 } 2220 assert(false); // should not get here 2221GOTO_TARGET_END 2222 2223/* File: cstubs/enddefs.c */ 2224 2225/* undefine "magic" name remapping */ 2226#undef retval 2227#undef pc 2228#undef fp 2229#undef curMethod 2230#undef methodClassDex 2231#undef self 2232#undef debugTrackedRefStart 2233 2234