InterpC-x86.c revision 6ed1a0f396a1857c31b486d3e93ee2dbeb49a6cd
1/* 2 * This file was generated automatically by gen-mterp.py for 'x86'. 3 * 4 * --> DO NOT EDIT <-- 5 */ 6 7/* File: c/header.c */ 8/* 9 * Copyright (C) 2008 The Android Open Source Project 10 * 11 * Licensed under the Apache License, Version 2.0 (the "License"); 12 * you may not use this file except in compliance with the License. 13 * You may obtain a copy of the License at 14 * 15 * http://www.apache.org/licenses/LICENSE-2.0 16 * 17 * Unless required by applicable law or agreed to in writing, software 18 * distributed under the License is distributed on an "AS IS" BASIS, 19 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 20 * See the License for the specific language governing permissions and 21 * limitations under the License. 22 */ 23 24/* common includes */ 25#include "Dalvik.h" 26#include "interp/InterpDefs.h" 27#include "mterp/Mterp.h" 28#include <math.h> // needed for fmod, fmodf 29#include "mterp/common/FindInterface.h" 30 31/* 32 * Configuration defines. These affect the C implementations, i.e. the 33 * portable interpreter(s) and C stubs. 34 * 35 * Some defines are controlled by the Makefile, e.g.: 36 * WITH_PROFILER 37 * WITH_DEBUGGER 38 * WITH_INSTR_CHECKS 39 * WITH_TRACKREF_CHECKS 40 * EASY_GDB 41 * NDEBUG 42 * 43 * If THREADED_INTERP is not defined, we use a classic "while true / switch" 44 * interpreter. If it is defined, then the tail end of each instruction 45 * handler fetches the next instruction and jumps directly to the handler. 46 * This increases the size of the "Std" interpreter by about 10%, but 47 * provides a speedup of about the same magnitude. 48 * 49 * There's a "hybrid" approach that uses a goto table instead of a switch 50 * statement, avoiding the "is the opcode in range" tests required for switch. 51 * The performance is close to the threaded version, and without the 10% 52 * size increase, but the benchmark results are off enough that it's not 53 * worth adding as a third option. 54 */ 55#define THREADED_INTERP /* threaded vs. while-loop interpreter */ 56 57#ifdef WITH_INSTR_CHECKS /* instruction-level paranoia (slow!) */ 58# define CHECK_BRANCH_OFFSETS 59# define CHECK_REGISTER_INDICES 60#endif 61 62/* 63 * ARM EABI requires 64-bit alignment for access to 64-bit data types. We 64 * can't just use pointers to copy 64-bit values out of our interpreted 65 * register set, because gcc will generate ldrd/strd. 66 * 67 * The __UNION version copies data in and out of a union. The __MEMCPY 68 * version uses a memcpy() call to do the transfer; gcc is smart enough to 69 * not actually call memcpy(). The __UNION version is very bad on ARM; 70 * it only uses one more instruction than __MEMCPY, but for some reason 71 * gcc thinks it needs separate storage for every instance of the union. 72 * On top of that, it feels the need to zero them out at the start of the 73 * method. Net result is we zero out ~700 bytes of stack space at the top 74 * of the interpreter using ARM STM instructions. 75 */ 76#if defined(__ARM_EABI__) 77//# define NO_UNALIGN_64__UNION 78# define NO_UNALIGN_64__MEMCPY 79#endif 80 81//#define LOG_INSTR /* verbose debugging */ 82/* set and adjust ANDROID_LOG_TAGS='*:i jdwp:i dalvikvm:i dalvikvmi:i' */ 83 84/* 85 * Keep a tally of accesses to fields. Currently only works if full DEX 86 * optimization is disabled. 87 */ 88#ifdef PROFILE_FIELD_ACCESS 89# define UPDATE_FIELD_GET(_field) { (_field)->gets++; } 90# define UPDATE_FIELD_PUT(_field) { (_field)->puts++; } 91#else 92# define UPDATE_FIELD_GET(_field) ((void)0) 93# define UPDATE_FIELD_PUT(_field) ((void)0) 94#endif 95 96/* 97 * Export another copy of the PC on every instruction; this is largely 98 * redundant with EXPORT_PC and the debugger code. This value can be 99 * compared against what we have stored on the stack with EXPORT_PC to 100 * help ensure that we aren't missing any export calls. 101 */ 102#if WITH_EXTRA_GC_CHECKS > 1 103# define EXPORT_EXTRA_PC() (self->currentPc2 = pc) 104#else 105# define EXPORT_EXTRA_PC() 106#endif 107 108/* 109 * Adjust the program counter. "_offset" is a signed int, in 16-bit units. 110 * 111 * Assumes the existence of "const u2* pc" and "const u2* curMethod->insns". 112 * 113 * We don't advance the program counter until we finish an instruction or 114 * branch, because we do want to have to unroll the PC if there's an 115 * exception. 116 */ 117#ifdef CHECK_BRANCH_OFFSETS 118# define ADJUST_PC(_offset) do { \ 119 int myoff = _offset; /* deref only once */ \ 120 if (pc + myoff < curMethod->insns || \ 121 pc + myoff >= curMethod->insns + dvmGetMethodInsnsSize(curMethod)) \ 122 { \ 123 char* desc; \ 124 desc = dexProtoCopyMethodDescriptor(&curMethod->prototype); \ 125 LOGE("Invalid branch %d at 0x%04x in %s.%s %s\n", \ 126 myoff, (int) (pc - curMethod->insns), \ 127 curMethod->clazz->descriptor, curMethod->name, desc); \ 128 free(desc); \ 129 dvmAbort(); \ 130 } \ 131 pc += myoff; \ 132 EXPORT_EXTRA_PC(); \ 133 } while (false) 134#else 135# define ADJUST_PC(_offset) do { \ 136 pc += _offset; \ 137 EXPORT_EXTRA_PC(); \ 138 } while (false) 139#endif 140 141/* 142 * If enabled, log instructions as we execute them. 143 */ 144#ifdef LOG_INSTR 145# define ILOGD(...) ILOG(LOG_DEBUG, __VA_ARGS__) 146# define ILOGV(...) ILOG(LOG_VERBOSE, __VA_ARGS__) 147# define ILOG(_level, ...) do { \ 148 char debugStrBuf[128]; \ 149 snprintf(debugStrBuf, sizeof(debugStrBuf), __VA_ARGS__); \ 150 if (curMethod != NULL) \ 151 LOG(_level, LOG_TAG"i", "%-2d|%04x%s\n", \ 152 self->threadId, (int)(pc - curMethod->insns), debugStrBuf); \ 153 else \ 154 LOG(_level, LOG_TAG"i", "%-2d|####%s\n", \ 155 self->threadId, debugStrBuf); \ 156 } while(false) 157void dvmDumpRegs(const Method* method, const u4* framePtr, bool inOnly); 158# define DUMP_REGS(_meth, _frame, _inOnly) dvmDumpRegs(_meth, _frame, _inOnly) 159static const char kSpacing[] = " "; 160#else 161# define ILOGD(...) ((void)0) 162# define ILOGV(...) ((void)0) 163# define DUMP_REGS(_meth, _frame, _inOnly) ((void)0) 164#endif 165 166/* get a long from an array of u4 */ 167static inline s8 getLongFromArray(const u4* ptr, int idx) 168{ 169#if defined(NO_UNALIGN_64__UNION) 170 union { s8 ll; u4 parts[2]; } conv; 171 172 ptr += idx; 173 conv.parts[0] = ptr[0]; 174 conv.parts[1] = ptr[1]; 175 return conv.ll; 176#elif defined(NO_UNALIGN_64__MEMCPY) 177 s8 val; 178 memcpy(&val, &ptr[idx], 8); 179 return val; 180#else 181 return *((s8*) &ptr[idx]); 182#endif 183} 184 185/* store a long into an array of u4 */ 186static inline void putLongToArray(u4* ptr, int idx, s8 val) 187{ 188#if defined(NO_UNALIGN_64__UNION) 189 union { s8 ll; u4 parts[2]; } conv; 190 191 ptr += idx; 192 conv.ll = val; 193 ptr[0] = conv.parts[0]; 194 ptr[1] = conv.parts[1]; 195#elif defined(NO_UNALIGN_64__MEMCPY) 196 memcpy(&ptr[idx], &val, 8); 197#else 198 *((s8*) &ptr[idx]) = val; 199#endif 200} 201 202/* get a double from an array of u4 */ 203static inline double getDoubleFromArray(const u4* ptr, int idx) 204{ 205#if defined(NO_UNALIGN_64__UNION) 206 union { double d; u4 parts[2]; } conv; 207 208 ptr += idx; 209 conv.parts[0] = ptr[0]; 210 conv.parts[1] = ptr[1]; 211 return conv.d; 212#elif defined(NO_UNALIGN_64__MEMCPY) 213 double dval; 214 memcpy(&dval, &ptr[idx], 8); 215 return dval; 216#else 217 return *((double*) &ptr[idx]); 218#endif 219} 220 221/* store a double into an array of u4 */ 222static inline void putDoubleToArray(u4* ptr, int idx, double dval) 223{ 224#if defined(NO_UNALIGN_64__UNION) 225 union { double d; u4 parts[2]; } conv; 226 227 ptr += idx; 228 conv.d = dval; 229 ptr[0] = conv.parts[0]; 230 ptr[1] = conv.parts[1]; 231#elif defined(NO_UNALIGN_64__MEMCPY) 232 memcpy(&ptr[idx], &dval, 8); 233#else 234 *((double*) &ptr[idx]) = dval; 235#endif 236} 237 238/* 239 * If enabled, validate the register number on every access. Otherwise, 240 * just do an array access. 241 * 242 * Assumes the existence of "u4* fp". 243 * 244 * "_idx" may be referenced more than once. 245 */ 246#ifdef CHECK_REGISTER_INDICES 247# define GET_REGISTER(_idx) \ 248 ( (_idx) < curMethod->registersSize ? \ 249 (fp[(_idx)]) : (assert(!"bad reg"),1969) ) 250# define SET_REGISTER(_idx, _val) \ 251 ( (_idx) < curMethod->registersSize ? \ 252 (fp[(_idx)] = (u4)(_val)) : (assert(!"bad reg"),1969) ) 253# define GET_REGISTER_AS_OBJECT(_idx) ((Object *)GET_REGISTER(_idx)) 254# define SET_REGISTER_AS_OBJECT(_idx, _val) SET_REGISTER(_idx, (s4)_val) 255# define GET_REGISTER_INT(_idx) ((s4) GET_REGISTER(_idx)) 256# define SET_REGISTER_INT(_idx, _val) SET_REGISTER(_idx, (s4)_val) 257# define GET_REGISTER_WIDE(_idx) \ 258 ( (_idx) < curMethod->registersSize-1 ? \ 259 getLongFromArray(fp, (_idx)) : (assert(!"bad reg"),1969) ) 260# define SET_REGISTER_WIDE(_idx, _val) \ 261 ( (_idx) < curMethod->registersSize-1 ? \ 262 putLongToArray(fp, (_idx), (_val)) : (assert(!"bad reg"),1969) ) 263# define GET_REGISTER_FLOAT(_idx) \ 264 ( (_idx) < curMethod->registersSize ? \ 265 (*((float*) &fp[(_idx)])) : (assert(!"bad reg"),1969.0f) ) 266# define SET_REGISTER_FLOAT(_idx, _val) \ 267 ( (_idx) < curMethod->registersSize ? \ 268 (*((float*) &fp[(_idx)]) = (_val)) : (assert(!"bad reg"),1969.0f) ) 269# define GET_REGISTER_DOUBLE(_idx) \ 270 ( (_idx) < curMethod->registersSize-1 ? \ 271 getDoubleFromArray(fp, (_idx)) : (assert(!"bad reg"),1969.0) ) 272# define SET_REGISTER_DOUBLE(_idx, _val) \ 273 ( (_idx) < curMethod->registersSize-1 ? \ 274 putDoubleToArray(fp, (_idx), (_val)) : (assert(!"bad reg"),1969.0) ) 275#else 276# define GET_REGISTER(_idx) (fp[(_idx)]) 277# define SET_REGISTER(_idx, _val) (fp[(_idx)] = (_val)) 278# define GET_REGISTER_AS_OBJECT(_idx) ((Object*) fp[(_idx)]) 279# define SET_REGISTER_AS_OBJECT(_idx, _val) (fp[(_idx)] = (u4)(_val)) 280# define GET_REGISTER_INT(_idx) ((s4)GET_REGISTER(_idx)) 281# define SET_REGISTER_INT(_idx, _val) SET_REGISTER(_idx, (s4)_val) 282# define GET_REGISTER_WIDE(_idx) getLongFromArray(fp, (_idx)) 283# define SET_REGISTER_WIDE(_idx, _val) putLongToArray(fp, (_idx), (_val)) 284# define GET_REGISTER_FLOAT(_idx) (*((float*) &fp[(_idx)])) 285# define SET_REGISTER_FLOAT(_idx, _val) (*((float*) &fp[(_idx)]) = (_val)) 286# define GET_REGISTER_DOUBLE(_idx) getDoubleFromArray(fp, (_idx)) 287# define SET_REGISTER_DOUBLE(_idx, _val) putDoubleToArray(fp, (_idx), (_val)) 288#endif 289 290/* 291 * Get 16 bits from the specified offset of the program counter. We always 292 * want to load 16 bits at a time from the instruction stream -- it's more 293 * efficient than 8 and won't have the alignment problems that 32 might. 294 * 295 * Assumes existence of "const u2* pc". 296 */ 297#define FETCH(_offset) (pc[(_offset)]) 298 299/* 300 * Extract instruction byte from 16-bit fetch (_inst is a u2). 301 */ 302#define INST_INST(_inst) ((_inst) & 0xff) 303 304/* 305 * Extract the "vA, vB" 4-bit registers from the instruction word (_inst is u2). 306 */ 307#define INST_A(_inst) (((_inst) >> 8) & 0x0f) 308#define INST_B(_inst) ((_inst) >> 12) 309 310/* 311 * Get the 8-bit "vAA" 8-bit register index from the instruction word. 312 * (_inst is u2) 313 */ 314#define INST_AA(_inst) ((_inst) >> 8) 315 316/* 317 * The current PC must be available to Throwable constructors, e.g. 318 * those created by dvmThrowException(), so that the exception stack 319 * trace can be generated correctly. If we don't do this, the offset 320 * within the current method won't be shown correctly. See the notes 321 * in Exception.c. 322 * 323 * This is also used to determine the address for precise GC. 324 * 325 * Assumes existence of "u4* fp" and "const u2* pc". 326 */ 327#define EXPORT_PC() (SAVEAREA_FROM_FP(fp)->xtra.currentPc = pc) 328 329/* 330 * Determine if we need to switch to a different interpreter. "_current" 331 * is either INTERP_STD or INTERP_DBG. It should be fixed for a given 332 * interpreter generation file, which should remove the outer conditional 333 * from the following. 334 * 335 * If we're building without debug and profiling support, we never switch. 336 */ 337#if defined(WITH_PROFILER) || defined(WITH_DEBUGGER) 338#if defined(WITH_JIT) 339# define NEED_INTERP_SWITCH(_current) ( \ 340 (_current == INTERP_STD) ? \ 341 dvmJitDebuggerOrProfilerActive(interpState->jitState) : \ 342 !dvmJitDebuggerOrProfilerActive(interpState->jitState) ) 343#else 344# define NEED_INTERP_SWITCH(_current) ( \ 345 (_current == INTERP_STD) ? \ 346 dvmDebuggerOrProfilerActive() : !dvmDebuggerOrProfilerActive() ) 347#endif 348#else 349# define NEED_INTERP_SWITCH(_current) (false) 350#endif 351 352/* 353 * Check to see if "obj" is NULL. If so, throw an exception. Assumes the 354 * pc has already been exported to the stack. 355 * 356 * Perform additional checks on debug builds. 357 * 358 * Use this to check for NULL when the instruction handler calls into 359 * something that could throw an exception (so we have already called 360 * EXPORT_PC at the top). 361 */ 362static inline bool checkForNull(Object* obj) 363{ 364 if (obj == NULL) { 365 dvmThrowException("Ljava/lang/NullPointerException;", NULL); 366 return false; 367 } 368#ifdef WITH_EXTRA_OBJECT_VALIDATION 369 if (!dvmIsValidObject(obj)) { 370 LOGE("Invalid object %p\n", obj); 371 dvmAbort(); 372 } 373#endif 374#ifndef NDEBUG 375 if (obj->clazz == NULL || ((u4) obj->clazz) <= 65536) { 376 /* probable heap corruption */ 377 LOGE("Invalid object class %p (in %p)\n", obj->clazz, obj); 378 dvmAbort(); 379 } 380#endif 381 return true; 382} 383 384/* 385 * Check to see if "obj" is NULL. If so, export the PC into the stack 386 * frame and throw an exception. 387 * 388 * Perform additional checks on debug builds. 389 * 390 * Use this to check for NULL when the instruction handler doesn't do 391 * anything else that can throw an exception. 392 */ 393static inline bool checkForNullExportPC(Object* obj, u4* fp, const u2* pc) 394{ 395 if (obj == NULL) { 396 EXPORT_PC(); 397 dvmThrowException("Ljava/lang/NullPointerException;", NULL); 398 return false; 399 } 400#ifdef WITH_EXTRA_OBJECT_VALIDATION 401 if (!dvmIsValidObject(obj)) { 402 LOGE("Invalid object %p\n", obj); 403 dvmAbort(); 404 } 405#endif 406#ifndef NDEBUG 407 if (obj->clazz == NULL || ((u4) obj->clazz) <= 65536) { 408 /* probable heap corruption */ 409 LOGE("Invalid object class %p (in %p)\n", obj->clazz, obj); 410 dvmAbort(); 411 } 412#endif 413 return true; 414} 415 416/* File: cstubs/stubdefs.c */ 417/* this is a standard (no debug support) interpreter */ 418#define INTERP_TYPE INTERP_STD 419#define CHECK_DEBUG_AND_PROF() ((void)0) 420# define CHECK_TRACKED_REFS() ((void)0) 421 422/* 423 * In the C mterp stubs, "goto" is a function call followed immediately 424 * by a return. 425 */ 426 427#define GOTO_TARGET_DECL(_target, ...) \ 428 void dvmMterp_##_target(MterpGlue* glue, ## __VA_ARGS__); 429 430#define GOTO_TARGET(_target, ...) \ 431 void dvmMterp_##_target(MterpGlue* glue, ## __VA_ARGS__) { \ 432 u2 ref, vsrc1, vsrc2, vdst; \ 433 u2 inst = FETCH(0); \ 434 const Method* methodToCall; \ 435 StackSaveArea* debugSaveArea; 436 437#define GOTO_TARGET_END } 438 439/* 440 * Redefine what used to be local variable accesses into MterpGlue struct 441 * references. (These are undefined down in "footer.c".) 442 */ 443#define retval glue->retval 444#define pc glue->pc 445#define fp glue->fp 446#define curMethod glue->method 447#define methodClassDex glue->methodClassDex 448#define self glue->self 449#define debugTrackedRefStart glue->debugTrackedRefStart 450 451/* ugh */ 452#define STUB_HACK(x) x 453 454 455/* 456 * Opcode handler framing macros. Here, each opcode is a separate function 457 * that takes a "glue" argument and returns void. We can't declare 458 * these "static" because they may be called from an assembly stub. 459 */ 460#define HANDLE_OPCODE(_op) \ 461 void dvmMterp_##_op(MterpGlue* glue) { \ 462 u2 ref, vsrc1, vsrc2, vdst; \ 463 u2 inst = FETCH(0); 464 465#define OP_END } 466 467/* 468 * Like the "portable" FINISH, but don't reload "inst", and return to caller 469 * when done. 470 */ 471#define FINISH(_offset) { \ 472 ADJUST_PC(_offset); \ 473 CHECK_DEBUG_AND_PROF(); \ 474 CHECK_TRACKED_REFS(); \ 475 return; \ 476 } 477 478 479/* 480 * The "goto label" statements turn into function calls followed by 481 * return statements. Some of the functions take arguments, which in the 482 * portable interpreter are handled by assigning values to globals. 483 */ 484 485#define GOTO_exceptionThrown() \ 486 do { \ 487 dvmMterp_exceptionThrown(glue); \ 488 return; \ 489 } while(false) 490 491#define GOTO_returnFromMethod() \ 492 do { \ 493 dvmMterp_returnFromMethod(glue); \ 494 return; \ 495 } while(false) 496 497#define GOTO_invoke(_target, _methodCallRange) \ 498 do { \ 499 dvmMterp_##_target(glue, _methodCallRange); \ 500 return; \ 501 } while(false) 502 503#define GOTO_invokeMethod(_methodCallRange, _methodToCall, _vsrc1, _vdst) \ 504 do { \ 505 dvmMterp_invokeMethod(glue, _methodCallRange, _methodToCall, \ 506 _vsrc1, _vdst); \ 507 return; \ 508 } while(false) 509 510/* 511 * As a special case, "goto bail" turns into a longjmp. Use "bail_switch" 512 * if we need to switch to the other interpreter upon our return. 513 */ 514#define GOTO_bail() \ 515 dvmMterpStdBail(glue, false); 516#define GOTO_bail_switch() \ 517 dvmMterpStdBail(glue, true); 518 519/* 520 * Periodically check for thread suspension. 521 * 522 * While we're at it, see if a debugger has attached or the profiler has 523 * started. If so, switch to a different "goto" table. 524 */ 525#define PERIODIC_CHECKS(_entryPoint, _pcadj) { \ 526 if (dvmCheckSuspendQuick(self)) { \ 527 EXPORT_PC(); /* need for precise GC */ \ 528 dvmCheckSuspendPending(self); \ 529 } \ 530 if (NEED_INTERP_SWITCH(INTERP_TYPE)) { \ 531 ADJUST_PC(_pcadj); \ 532 glue->entryPoint = _entryPoint; \ 533 LOGVV("threadid=%d: switch to STD ep=%d adj=%d\n", \ 534 self->threadId, (_entryPoint), (_pcadj)); \ 535 GOTO_bail_switch(); \ 536 } \ 537 } 538 539 540/* File: c/opcommon.c */ 541/* forward declarations of goto targets */ 542GOTO_TARGET_DECL(filledNewArray, bool methodCallRange); 543GOTO_TARGET_DECL(invokeVirtual, bool methodCallRange); 544GOTO_TARGET_DECL(invokeSuper, bool methodCallRange); 545GOTO_TARGET_DECL(invokeInterface, bool methodCallRange); 546GOTO_TARGET_DECL(invokeDirect, bool methodCallRange); 547GOTO_TARGET_DECL(invokeStatic, bool methodCallRange); 548GOTO_TARGET_DECL(invokeVirtualQuick, bool methodCallRange); 549GOTO_TARGET_DECL(invokeSuperQuick, bool methodCallRange); 550GOTO_TARGET_DECL(invokeMethod, bool methodCallRange, const Method* methodToCall, 551 u2 count, u2 regs); 552GOTO_TARGET_DECL(returnFromMethod); 553GOTO_TARGET_DECL(exceptionThrown); 554 555/* 556 * =========================================================================== 557 * 558 * What follows are opcode definitions shared between multiple opcodes with 559 * minor substitutions handled by the C pre-processor. These should probably 560 * use the mterp substitution mechanism instead, with the code here moved 561 * into common fragment files (like the asm "binop.S"), although it's hard 562 * to give up the C preprocessor in favor of the much simpler text subst. 563 * 564 * =========================================================================== 565 */ 566 567#define HANDLE_NUMCONV(_opcode, _opname, _fromtype, _totype) \ 568 HANDLE_OPCODE(_opcode /*vA, vB*/) \ 569 vdst = INST_A(inst); \ 570 vsrc1 = INST_B(inst); \ 571 ILOGV("|%s v%d,v%d", (_opname), vdst, vsrc1); \ 572 SET_REGISTER##_totype(vdst, \ 573 GET_REGISTER##_fromtype(vsrc1)); \ 574 FINISH(1); 575 576#define HANDLE_FLOAT_TO_INT(_opcode, _opname, _fromvtype, _fromrtype, \ 577 _tovtype, _tortype) \ 578 HANDLE_OPCODE(_opcode /*vA, vB*/) \ 579 { \ 580 /* spec defines specific handling for +/- inf and NaN values */ \ 581 _fromvtype val; \ 582 _tovtype intMin, intMax, result; \ 583 vdst = INST_A(inst); \ 584 vsrc1 = INST_B(inst); \ 585 ILOGV("|%s v%d,v%d", (_opname), vdst, vsrc1); \ 586 val = GET_REGISTER##_fromrtype(vsrc1); \ 587 intMin = (_tovtype) 1 << (sizeof(_tovtype) * 8 -1); \ 588 intMax = ~intMin; \ 589 result = (_tovtype) val; \ 590 if (val >= intMax) /* +inf */ \ 591 result = intMax; \ 592 else if (val <= intMin) /* -inf */ \ 593 result = intMin; \ 594 else if (val != val) /* NaN */ \ 595 result = 0; \ 596 else \ 597 result = (_tovtype) val; \ 598 SET_REGISTER##_tortype(vdst, result); \ 599 } \ 600 FINISH(1); 601 602#define HANDLE_INT_TO_SMALL(_opcode, _opname, _type) \ 603 HANDLE_OPCODE(_opcode /*vA, vB*/) \ 604 vdst = INST_A(inst); \ 605 vsrc1 = INST_B(inst); \ 606 ILOGV("|int-to-%s v%d,v%d", (_opname), vdst, vsrc1); \ 607 SET_REGISTER(vdst, (_type) GET_REGISTER(vsrc1)); \ 608 FINISH(1); 609 610/* NOTE: the comparison result is always a signed 4-byte integer */ 611#define HANDLE_OP_CMPX(_opcode, _opname, _varType, _type, _nanVal) \ 612 HANDLE_OPCODE(_opcode /*vAA, vBB, vCC*/) \ 613 { \ 614 int result; \ 615 u2 regs; \ 616 _varType val1, val2; \ 617 vdst = INST_AA(inst); \ 618 regs = FETCH(1); \ 619 vsrc1 = regs & 0xff; \ 620 vsrc2 = regs >> 8; \ 621 ILOGV("|cmp%s v%d,v%d,v%d", (_opname), vdst, vsrc1, vsrc2); \ 622 val1 = GET_REGISTER##_type(vsrc1); \ 623 val2 = GET_REGISTER##_type(vsrc2); \ 624 if (val1 == val2) \ 625 result = 0; \ 626 else if (val1 < val2) \ 627 result = -1; \ 628 else if (val1 > val2) \ 629 result = 1; \ 630 else \ 631 result = (_nanVal); \ 632 ILOGV("+ result=%d\n", result); \ 633 SET_REGISTER(vdst, result); \ 634 } \ 635 FINISH(2); 636 637#define HANDLE_OP_IF_XX(_opcode, _opname, _cmp) \ 638 HANDLE_OPCODE(_opcode /*vA, vB, +CCCC*/) \ 639 vsrc1 = INST_A(inst); \ 640 vsrc2 = INST_B(inst); \ 641 if ((s4) GET_REGISTER(vsrc1) _cmp (s4) GET_REGISTER(vsrc2)) { \ 642 int branchOffset = (s2)FETCH(1); /* sign-extended */ \ 643 ILOGV("|if-%s v%d,v%d,+0x%04x", (_opname), vsrc1, vsrc2, \ 644 branchOffset); \ 645 ILOGV("> branch taken"); \ 646 if (branchOffset < 0) \ 647 PERIODIC_CHECKS(kInterpEntryInstr, branchOffset); \ 648 FINISH(branchOffset); \ 649 } else { \ 650 ILOGV("|if-%s v%d,v%d,-", (_opname), vsrc1, vsrc2); \ 651 FINISH(2); \ 652 } 653 654#define HANDLE_OP_IF_XXZ(_opcode, _opname, _cmp) \ 655 HANDLE_OPCODE(_opcode /*vAA, +BBBB*/) \ 656 vsrc1 = INST_AA(inst); \ 657 if ((s4) GET_REGISTER(vsrc1) _cmp 0) { \ 658 int branchOffset = (s2)FETCH(1); /* sign-extended */ \ 659 ILOGV("|if-%s v%d,+0x%04x", (_opname), vsrc1, branchOffset); \ 660 ILOGV("> branch taken"); \ 661 if (branchOffset < 0) \ 662 PERIODIC_CHECKS(kInterpEntryInstr, branchOffset); \ 663 FINISH(branchOffset); \ 664 } else { \ 665 ILOGV("|if-%s v%d,-", (_opname), vsrc1); \ 666 FINISH(2); \ 667 } 668 669#define HANDLE_UNOP(_opcode, _opname, _pfx, _sfx, _type) \ 670 HANDLE_OPCODE(_opcode /*vA, vB*/) \ 671 vdst = INST_A(inst); \ 672 vsrc1 = INST_B(inst); \ 673 ILOGV("|%s v%d,v%d", (_opname), vdst, vsrc1); \ 674 SET_REGISTER##_type(vdst, _pfx GET_REGISTER##_type(vsrc1) _sfx); \ 675 FINISH(1); 676 677#define HANDLE_OP_X_INT(_opcode, _opname, _op, _chkdiv) \ 678 HANDLE_OPCODE(_opcode /*vAA, vBB, vCC*/) \ 679 { \ 680 u2 srcRegs; \ 681 vdst = INST_AA(inst); \ 682 srcRegs = FETCH(1); \ 683 vsrc1 = srcRegs & 0xff; \ 684 vsrc2 = srcRegs >> 8; \ 685 ILOGV("|%s-int v%d,v%d", (_opname), vdst, vsrc1); \ 686 if (_chkdiv != 0) { \ 687 s4 firstVal, secondVal, result; \ 688 firstVal = GET_REGISTER(vsrc1); \ 689 secondVal = GET_REGISTER(vsrc2); \ 690 if (secondVal == 0) { \ 691 EXPORT_PC(); \ 692 dvmThrowException("Ljava/lang/ArithmeticException;", \ 693 "divide by zero"); \ 694 GOTO_exceptionThrown(); \ 695 } \ 696 if ((u4)firstVal == 0x80000000 && secondVal == -1) { \ 697 if (_chkdiv == 1) \ 698 result = firstVal; /* division */ \ 699 else \ 700 result = 0; /* remainder */ \ 701 } else { \ 702 result = firstVal _op secondVal; \ 703 } \ 704 SET_REGISTER(vdst, result); \ 705 } else { \ 706 /* non-div/rem case */ \ 707 SET_REGISTER(vdst, \ 708 (s4) GET_REGISTER(vsrc1) _op (s4) GET_REGISTER(vsrc2)); \ 709 } \ 710 } \ 711 FINISH(2); 712 713#define HANDLE_OP_SHX_INT(_opcode, _opname, _cast, _op) \ 714 HANDLE_OPCODE(_opcode /*vAA, vBB, vCC*/) \ 715 { \ 716 u2 srcRegs; \ 717 vdst = INST_AA(inst); \ 718 srcRegs = FETCH(1); \ 719 vsrc1 = srcRegs & 0xff; \ 720 vsrc2 = srcRegs >> 8; \ 721 ILOGV("|%s-int v%d,v%d", (_opname), vdst, vsrc1); \ 722 SET_REGISTER(vdst, \ 723 _cast GET_REGISTER(vsrc1) _op (GET_REGISTER(vsrc2) & 0x1f)); \ 724 } \ 725 FINISH(2); 726 727#define HANDLE_OP_X_INT_LIT16(_opcode, _opname, _op, _chkdiv) \ 728 HANDLE_OPCODE(_opcode /*vA, vB, #+CCCC*/) \ 729 vdst = INST_A(inst); \ 730 vsrc1 = INST_B(inst); \ 731 vsrc2 = FETCH(1); \ 732 ILOGV("|%s-int/lit16 v%d,v%d,#+0x%04x", \ 733 (_opname), vdst, vsrc1, vsrc2); \ 734 if (_chkdiv != 0) { \ 735 s4 firstVal, result; \ 736 firstVal = GET_REGISTER(vsrc1); \ 737 if ((s2) vsrc2 == 0) { \ 738 EXPORT_PC(); \ 739 dvmThrowException("Ljava/lang/ArithmeticException;", \ 740 "divide by zero"); \ 741 GOTO_exceptionThrown(); \ 742 } \ 743 if ((u4)firstVal == 0x80000000 && ((s2) vsrc2) == -1) { \ 744 /* won't generate /lit16 instr for this; check anyway */ \ 745 if (_chkdiv == 1) \ 746 result = firstVal; /* division */ \ 747 else \ 748 result = 0; /* remainder */ \ 749 } else { \ 750 result = firstVal _op (s2) vsrc2; \ 751 } \ 752 SET_REGISTER(vdst, result); \ 753 } else { \ 754 /* non-div/rem case */ \ 755 SET_REGISTER(vdst, GET_REGISTER(vsrc1) _op (s2) vsrc2); \ 756 } \ 757 FINISH(2); 758 759#define HANDLE_OP_X_INT_LIT8(_opcode, _opname, _op, _chkdiv) \ 760 HANDLE_OPCODE(_opcode /*vAA, vBB, #+CC*/) \ 761 { \ 762 u2 litInfo; \ 763 vdst = INST_AA(inst); \ 764 litInfo = FETCH(1); \ 765 vsrc1 = litInfo & 0xff; \ 766 vsrc2 = litInfo >> 8; /* constant */ \ 767 ILOGV("|%s-int/lit8 v%d,v%d,#+0x%02x", \ 768 (_opname), vdst, vsrc1, vsrc2); \ 769 if (_chkdiv != 0) { \ 770 s4 firstVal, result; \ 771 firstVal = GET_REGISTER(vsrc1); \ 772 if ((s1) vsrc2 == 0) { \ 773 EXPORT_PC(); \ 774 dvmThrowException("Ljava/lang/ArithmeticException;", \ 775 "divide by zero"); \ 776 GOTO_exceptionThrown(); \ 777 } \ 778 if ((u4)firstVal == 0x80000000 && ((s1) vsrc2) == -1) { \ 779 if (_chkdiv == 1) \ 780 result = firstVal; /* division */ \ 781 else \ 782 result = 0; /* remainder */ \ 783 } else { \ 784 result = firstVal _op ((s1) vsrc2); \ 785 } \ 786 SET_REGISTER(vdst, result); \ 787 } else { \ 788 SET_REGISTER(vdst, \ 789 (s4) GET_REGISTER(vsrc1) _op (s1) vsrc2); \ 790 } \ 791 } \ 792 FINISH(2); 793 794#define HANDLE_OP_SHX_INT_LIT8(_opcode, _opname, _cast, _op) \ 795 HANDLE_OPCODE(_opcode /*vAA, vBB, #+CC*/) \ 796 { \ 797 u2 litInfo; \ 798 vdst = INST_AA(inst); \ 799 litInfo = FETCH(1); \ 800 vsrc1 = litInfo & 0xff; \ 801 vsrc2 = litInfo >> 8; /* constant */ \ 802 ILOGV("|%s-int/lit8 v%d,v%d,#+0x%02x", \ 803 (_opname), vdst, vsrc1, vsrc2); \ 804 SET_REGISTER(vdst, \ 805 _cast GET_REGISTER(vsrc1) _op (vsrc2 & 0x1f)); \ 806 } \ 807 FINISH(2); 808 809#define HANDLE_OP_X_INT_2ADDR(_opcode, _opname, _op, _chkdiv) \ 810 HANDLE_OPCODE(_opcode /*vA, vB*/) \ 811 vdst = INST_A(inst); \ 812 vsrc1 = INST_B(inst); \ 813 ILOGV("|%s-int-2addr v%d,v%d", (_opname), vdst, vsrc1); \ 814 if (_chkdiv != 0) { \ 815 s4 firstVal, secondVal, result; \ 816 firstVal = GET_REGISTER(vdst); \ 817 secondVal = GET_REGISTER(vsrc1); \ 818 if (secondVal == 0) { \ 819 EXPORT_PC(); \ 820 dvmThrowException("Ljava/lang/ArithmeticException;", \ 821 "divide by zero"); \ 822 GOTO_exceptionThrown(); \ 823 } \ 824 if ((u4)firstVal == 0x80000000 && secondVal == -1) { \ 825 if (_chkdiv == 1) \ 826 result = firstVal; /* division */ \ 827 else \ 828 result = 0; /* remainder */ \ 829 } else { \ 830 result = firstVal _op secondVal; \ 831 } \ 832 SET_REGISTER(vdst, result); \ 833 } else { \ 834 SET_REGISTER(vdst, \ 835 (s4) GET_REGISTER(vdst) _op (s4) GET_REGISTER(vsrc1)); \ 836 } \ 837 FINISH(1); 838 839#define HANDLE_OP_SHX_INT_2ADDR(_opcode, _opname, _cast, _op) \ 840 HANDLE_OPCODE(_opcode /*vA, vB*/) \ 841 vdst = INST_A(inst); \ 842 vsrc1 = INST_B(inst); \ 843 ILOGV("|%s-int-2addr v%d,v%d", (_opname), vdst, vsrc1); \ 844 SET_REGISTER(vdst, \ 845 _cast GET_REGISTER(vdst) _op (GET_REGISTER(vsrc1) & 0x1f)); \ 846 FINISH(1); 847 848#define HANDLE_OP_X_LONG(_opcode, _opname, _op, _chkdiv) \ 849 HANDLE_OPCODE(_opcode /*vAA, vBB, vCC*/) \ 850 { \ 851 u2 srcRegs; \ 852 vdst = INST_AA(inst); \ 853 srcRegs = FETCH(1); \ 854 vsrc1 = srcRegs & 0xff; \ 855 vsrc2 = srcRegs >> 8; \ 856 ILOGV("|%s-long v%d,v%d,v%d", (_opname), vdst, vsrc1, vsrc2); \ 857 if (_chkdiv != 0) { \ 858 s8 firstVal, secondVal, result; \ 859 firstVal = GET_REGISTER_WIDE(vsrc1); \ 860 secondVal = GET_REGISTER_WIDE(vsrc2); \ 861 if (secondVal == 0LL) { \ 862 EXPORT_PC(); \ 863 dvmThrowException("Ljava/lang/ArithmeticException;", \ 864 "divide by zero"); \ 865 GOTO_exceptionThrown(); \ 866 } \ 867 if ((u8)firstVal == 0x8000000000000000ULL && \ 868 secondVal == -1LL) \ 869 { \ 870 if (_chkdiv == 1) \ 871 result = firstVal; /* division */ \ 872 else \ 873 result = 0; /* remainder */ \ 874 } else { \ 875 result = firstVal _op secondVal; \ 876 } \ 877 SET_REGISTER_WIDE(vdst, result); \ 878 } else { \ 879 SET_REGISTER_WIDE(vdst, \ 880 (s8) GET_REGISTER_WIDE(vsrc1) _op (s8) GET_REGISTER_WIDE(vsrc2)); \ 881 } \ 882 } \ 883 FINISH(2); 884 885#define HANDLE_OP_SHX_LONG(_opcode, _opname, _cast, _op) \ 886 HANDLE_OPCODE(_opcode /*vAA, vBB, vCC*/) \ 887 { \ 888 u2 srcRegs; \ 889 vdst = INST_AA(inst); \ 890 srcRegs = FETCH(1); \ 891 vsrc1 = srcRegs & 0xff; \ 892 vsrc2 = srcRegs >> 8; \ 893 ILOGV("|%s-long v%d,v%d,v%d", (_opname), vdst, vsrc1, vsrc2); \ 894 SET_REGISTER_WIDE(vdst, \ 895 _cast GET_REGISTER_WIDE(vsrc1) _op (GET_REGISTER(vsrc2) & 0x3f)); \ 896 } \ 897 FINISH(2); 898 899#define HANDLE_OP_X_LONG_2ADDR(_opcode, _opname, _op, _chkdiv) \ 900 HANDLE_OPCODE(_opcode /*vA, vB*/) \ 901 vdst = INST_A(inst); \ 902 vsrc1 = INST_B(inst); \ 903 ILOGV("|%s-long-2addr v%d,v%d", (_opname), vdst, vsrc1); \ 904 if (_chkdiv != 0) { \ 905 s8 firstVal, secondVal, result; \ 906 firstVal = GET_REGISTER_WIDE(vdst); \ 907 secondVal = GET_REGISTER_WIDE(vsrc1); \ 908 if (secondVal == 0LL) { \ 909 EXPORT_PC(); \ 910 dvmThrowException("Ljava/lang/ArithmeticException;", \ 911 "divide by zero"); \ 912 GOTO_exceptionThrown(); \ 913 } \ 914 if ((u8)firstVal == 0x8000000000000000ULL && \ 915 secondVal == -1LL) \ 916 { \ 917 if (_chkdiv == 1) \ 918 result = firstVal; /* division */ \ 919 else \ 920 result = 0; /* remainder */ \ 921 } else { \ 922 result = firstVal _op secondVal; \ 923 } \ 924 SET_REGISTER_WIDE(vdst, result); \ 925 } else { \ 926 SET_REGISTER_WIDE(vdst, \ 927 (s8) GET_REGISTER_WIDE(vdst) _op (s8)GET_REGISTER_WIDE(vsrc1));\ 928 } \ 929 FINISH(1); 930 931#define HANDLE_OP_SHX_LONG_2ADDR(_opcode, _opname, _cast, _op) \ 932 HANDLE_OPCODE(_opcode /*vA, vB*/) \ 933 vdst = INST_A(inst); \ 934 vsrc1 = INST_B(inst); \ 935 ILOGV("|%s-long-2addr v%d,v%d", (_opname), vdst, vsrc1); \ 936 SET_REGISTER_WIDE(vdst, \ 937 _cast GET_REGISTER_WIDE(vdst) _op (GET_REGISTER(vsrc1) & 0x3f)); \ 938 FINISH(1); 939 940#define HANDLE_OP_X_FLOAT(_opcode, _opname, _op) \ 941 HANDLE_OPCODE(_opcode /*vAA, vBB, vCC*/) \ 942 { \ 943 u2 srcRegs; \ 944 vdst = INST_AA(inst); \ 945 srcRegs = FETCH(1); \ 946 vsrc1 = srcRegs & 0xff; \ 947 vsrc2 = srcRegs >> 8; \ 948 ILOGV("|%s-float v%d,v%d,v%d", (_opname), vdst, vsrc1, vsrc2); \ 949 SET_REGISTER_FLOAT(vdst, \ 950 GET_REGISTER_FLOAT(vsrc1) _op GET_REGISTER_FLOAT(vsrc2)); \ 951 } \ 952 FINISH(2); 953 954#define HANDLE_OP_X_DOUBLE(_opcode, _opname, _op) \ 955 HANDLE_OPCODE(_opcode /*vAA, vBB, vCC*/) \ 956 { \ 957 u2 srcRegs; \ 958 vdst = INST_AA(inst); \ 959 srcRegs = FETCH(1); \ 960 vsrc1 = srcRegs & 0xff; \ 961 vsrc2 = srcRegs >> 8; \ 962 ILOGV("|%s-double v%d,v%d,v%d", (_opname), vdst, vsrc1, vsrc2); \ 963 SET_REGISTER_DOUBLE(vdst, \ 964 GET_REGISTER_DOUBLE(vsrc1) _op GET_REGISTER_DOUBLE(vsrc2)); \ 965 } \ 966 FINISH(2); 967 968#define HANDLE_OP_X_FLOAT_2ADDR(_opcode, _opname, _op) \ 969 HANDLE_OPCODE(_opcode /*vA, vB*/) \ 970 vdst = INST_A(inst); \ 971 vsrc1 = INST_B(inst); \ 972 ILOGV("|%s-float-2addr v%d,v%d", (_opname), vdst, vsrc1); \ 973 SET_REGISTER_FLOAT(vdst, \ 974 GET_REGISTER_FLOAT(vdst) _op GET_REGISTER_FLOAT(vsrc1)); \ 975 FINISH(1); 976 977#define HANDLE_OP_X_DOUBLE_2ADDR(_opcode, _opname, _op) \ 978 HANDLE_OPCODE(_opcode /*vA, vB*/) \ 979 vdst = INST_A(inst); \ 980 vsrc1 = INST_B(inst); \ 981 ILOGV("|%s-double-2addr v%d,v%d", (_opname), vdst, vsrc1); \ 982 SET_REGISTER_DOUBLE(vdst, \ 983 GET_REGISTER_DOUBLE(vdst) _op GET_REGISTER_DOUBLE(vsrc1)); \ 984 FINISH(1); 985 986#define HANDLE_OP_AGET(_opcode, _opname, _type, _regsize) \ 987 HANDLE_OPCODE(_opcode /*vAA, vBB, vCC*/) \ 988 { \ 989 ArrayObject* arrayObj; \ 990 u2 arrayInfo; \ 991 EXPORT_PC(); \ 992 vdst = INST_AA(inst); \ 993 arrayInfo = FETCH(1); \ 994 vsrc1 = arrayInfo & 0xff; /* array ptr */ \ 995 vsrc2 = arrayInfo >> 8; /* index */ \ 996 ILOGV("|aget%s v%d,v%d,v%d", (_opname), vdst, vsrc1, vsrc2); \ 997 arrayObj = (ArrayObject*) GET_REGISTER(vsrc1); \ 998 if (!checkForNull((Object*) arrayObj)) \ 999 GOTO_exceptionThrown(); \ 1000 if (GET_REGISTER(vsrc2) >= arrayObj->length) { \ 1001 LOGV("Invalid array access: %p %d (len=%d)\n", \ 1002 arrayObj, vsrc2, arrayObj->length); \ 1003 dvmThrowException("Ljava/lang/ArrayIndexOutOfBoundsException;", \ 1004 NULL); \ 1005 GOTO_exceptionThrown(); \ 1006 } \ 1007 SET_REGISTER##_regsize(vdst, \ 1008 ((_type*) arrayObj->contents)[GET_REGISTER(vsrc2)]); \ 1009 ILOGV("+ AGET[%d]=0x%x", GET_REGISTER(vsrc2), GET_REGISTER(vdst)); \ 1010 } \ 1011 FINISH(2); 1012 1013#define HANDLE_OP_APUT(_opcode, _opname, _type, _regsize) \ 1014 HANDLE_OPCODE(_opcode /*vAA, vBB, vCC*/) \ 1015 { \ 1016 ArrayObject* arrayObj; \ 1017 u2 arrayInfo; \ 1018 EXPORT_PC(); \ 1019 vdst = INST_AA(inst); /* AA: source value */ \ 1020 arrayInfo = FETCH(1); \ 1021 vsrc1 = arrayInfo & 0xff; /* BB: array ptr */ \ 1022 vsrc2 = arrayInfo >> 8; /* CC: index */ \ 1023 ILOGV("|aput%s v%d,v%d,v%d", (_opname), vdst, vsrc1, vsrc2); \ 1024 arrayObj = (ArrayObject*) GET_REGISTER(vsrc1); \ 1025 if (!checkForNull((Object*) arrayObj)) \ 1026 GOTO_exceptionThrown(); \ 1027 if (GET_REGISTER(vsrc2) >= arrayObj->length) { \ 1028 dvmThrowException("Ljava/lang/ArrayIndexOutOfBoundsException;", \ 1029 NULL); \ 1030 GOTO_exceptionThrown(); \ 1031 } \ 1032 ILOGV("+ APUT[%d]=0x%08x", GET_REGISTER(vsrc2), GET_REGISTER(vdst));\ 1033 ((_type*) arrayObj->contents)[GET_REGISTER(vsrc2)] = \ 1034 GET_REGISTER##_regsize(vdst); \ 1035 } \ 1036 FINISH(2); 1037 1038/* 1039 * It's possible to get a bad value out of a field with sub-32-bit stores 1040 * because the -quick versions always operate on 32 bits. Consider: 1041 * short foo = -1 (sets a 32-bit register to 0xffffffff) 1042 * iput-quick foo (writes all 32 bits to the field) 1043 * short bar = 1 (sets a 32-bit register to 0x00000001) 1044 * iput-short (writes the low 16 bits to the field) 1045 * iget-quick foo (reads all 32 bits from the field, yielding 0xffff0001) 1046 * This can only happen when optimized and non-optimized code has interleaved 1047 * access to the same field. This is unlikely but possible. 1048 * 1049 * The easiest way to fix this is to always read/write 32 bits at a time. On 1050 * a device with a 16-bit data bus this is sub-optimal. (The alternative 1051 * approach is to have sub-int versions of iget-quick, but now we're wasting 1052 * Dalvik instruction space and making it less likely that handler code will 1053 * already be in the CPU i-cache.) 1054 */ 1055#define HANDLE_IGET_X(_opcode, _opname, _ftype, _regsize) \ 1056 HANDLE_OPCODE(_opcode /*vA, vB, field@CCCC*/) \ 1057 { \ 1058 InstField* ifield; \ 1059 Object* obj; \ 1060 EXPORT_PC(); \ 1061 vdst = INST_A(inst); \ 1062 vsrc1 = INST_B(inst); /* object ptr */ \ 1063 ref = FETCH(1); /* field ref */ \ 1064 ILOGV("|iget%s v%d,v%d,field@0x%04x", (_opname), vdst, vsrc1, ref); \ 1065 obj = (Object*) GET_REGISTER(vsrc1); \ 1066 if (!checkForNull(obj)) \ 1067 GOTO_exceptionThrown(); \ 1068 ifield = (InstField*) dvmDexGetResolvedField(methodClassDex, ref); \ 1069 if (ifield == NULL) { \ 1070 ifield = dvmResolveInstField(curMethod->clazz, ref); \ 1071 if (ifield == NULL) \ 1072 GOTO_exceptionThrown(); \ 1073 } \ 1074 SET_REGISTER##_regsize(vdst, \ 1075 dvmGetField##_ftype(obj, ifield->byteOffset)); \ 1076 ILOGV("+ IGET '%s'=0x%08llx", ifield->field.name, \ 1077 (u8) GET_REGISTER##_regsize(vdst)); \ 1078 UPDATE_FIELD_GET(&ifield->field); \ 1079 } \ 1080 FINISH(2); 1081 1082#define HANDLE_IGET_X_QUICK(_opcode, _opname, _ftype, _regsize) \ 1083 HANDLE_OPCODE(_opcode /*vA, vB, field@CCCC*/) \ 1084 { \ 1085 Object* obj; \ 1086 vdst = INST_A(inst); \ 1087 vsrc1 = INST_B(inst); /* object ptr */ \ 1088 ref = FETCH(1); /* field offset */ \ 1089 ILOGV("|iget%s-quick v%d,v%d,field@+%u", \ 1090 (_opname), vdst, vsrc1, ref); \ 1091 obj = (Object*) GET_REGISTER(vsrc1); \ 1092 if (!checkForNullExportPC(obj, fp, pc)) \ 1093 GOTO_exceptionThrown(); \ 1094 SET_REGISTER##_regsize(vdst, dvmGetField##_ftype(obj, ref)); \ 1095 ILOGV("+ IGETQ %d=0x%08llx", ref, \ 1096 (u8) GET_REGISTER##_regsize(vdst)); \ 1097 } \ 1098 FINISH(2); 1099 1100#define HANDLE_IPUT_X(_opcode, _opname, _ftype, _regsize) \ 1101 HANDLE_OPCODE(_opcode /*vA, vB, field@CCCC*/) \ 1102 { \ 1103 InstField* ifield; \ 1104 Object* obj; \ 1105 EXPORT_PC(); \ 1106 vdst = INST_A(inst); \ 1107 vsrc1 = INST_B(inst); /* object ptr */ \ 1108 ref = FETCH(1); /* field ref */ \ 1109 ILOGV("|iput%s v%d,v%d,field@0x%04x", (_opname), vdst, vsrc1, ref); \ 1110 obj = (Object*) GET_REGISTER(vsrc1); \ 1111 if (!checkForNull(obj)) \ 1112 GOTO_exceptionThrown(); \ 1113 ifield = (InstField*) dvmDexGetResolvedField(methodClassDex, ref); \ 1114 if (ifield == NULL) { \ 1115 ifield = dvmResolveInstField(curMethod->clazz, ref); \ 1116 if (ifield == NULL) \ 1117 GOTO_exceptionThrown(); \ 1118 } \ 1119 dvmSetField##_ftype(obj, ifield->byteOffset, \ 1120 GET_REGISTER##_regsize(vdst)); \ 1121 ILOGV("+ IPUT '%s'=0x%08llx", ifield->field.name, \ 1122 (u8) GET_REGISTER##_regsize(vdst)); \ 1123 UPDATE_FIELD_PUT(&ifield->field); \ 1124 } \ 1125 FINISH(2); 1126 1127#define HANDLE_IPUT_X_QUICK(_opcode, _opname, _ftype, _regsize) \ 1128 HANDLE_OPCODE(_opcode /*vA, vB, field@CCCC*/) \ 1129 { \ 1130 Object* obj; \ 1131 vdst = INST_A(inst); \ 1132 vsrc1 = INST_B(inst); /* object ptr */ \ 1133 ref = FETCH(1); /* field offset */ \ 1134 ILOGV("|iput%s-quick v%d,v%d,field@0x%04x", \ 1135 (_opname), vdst, vsrc1, ref); \ 1136 obj = (Object*) GET_REGISTER(vsrc1); \ 1137 if (!checkForNullExportPC(obj, fp, pc)) \ 1138 GOTO_exceptionThrown(); \ 1139 dvmSetField##_ftype(obj, ref, GET_REGISTER##_regsize(vdst)); \ 1140 ILOGV("+ IPUTQ %d=0x%08llx", ref, \ 1141 (u8) GET_REGISTER##_regsize(vdst)); \ 1142 } \ 1143 FINISH(2); 1144 1145#define HANDLE_SGET_X(_opcode, _opname, _ftype, _regsize) \ 1146 HANDLE_OPCODE(_opcode /*vAA, field@BBBB*/) \ 1147 { \ 1148 StaticField* sfield; \ 1149 vdst = INST_AA(inst); \ 1150 ref = FETCH(1); /* field ref */ \ 1151 ILOGV("|sget%s v%d,sfield@0x%04x", (_opname), vdst, ref); \ 1152 sfield = (StaticField*)dvmDexGetResolvedField(methodClassDex, ref); \ 1153 if (sfield == NULL) { \ 1154 EXPORT_PC(); \ 1155 sfield = dvmResolveStaticField(curMethod->clazz, ref); \ 1156 if (sfield == NULL) \ 1157 GOTO_exceptionThrown(); \ 1158 } \ 1159 SET_REGISTER##_regsize(vdst, dvmGetStaticField##_ftype(sfield)); \ 1160 ILOGV("+ SGET '%s'=0x%08llx", \ 1161 sfield->field.name, (u8)GET_REGISTER##_regsize(vdst)); \ 1162 UPDATE_FIELD_GET(&sfield->field); \ 1163 } \ 1164 FINISH(2); 1165 1166#define HANDLE_SPUT_X(_opcode, _opname, _ftype, _regsize) \ 1167 HANDLE_OPCODE(_opcode /*vAA, field@BBBB*/) \ 1168 { \ 1169 StaticField* sfield; \ 1170 vdst = INST_AA(inst); \ 1171 ref = FETCH(1); /* field ref */ \ 1172 ILOGV("|sput%s v%d,sfield@0x%04x", (_opname), vdst, ref); \ 1173 sfield = (StaticField*)dvmDexGetResolvedField(methodClassDex, ref); \ 1174 if (sfield == NULL) { \ 1175 EXPORT_PC(); \ 1176 sfield = dvmResolveStaticField(curMethod->clazz, ref); \ 1177 if (sfield == NULL) \ 1178 GOTO_exceptionThrown(); \ 1179 } \ 1180 dvmSetStaticField##_ftype(sfield, GET_REGISTER##_regsize(vdst)); \ 1181 ILOGV("+ SPUT '%s'=0x%08llx", \ 1182 sfield->field.name, (u8)GET_REGISTER##_regsize(vdst)); \ 1183 UPDATE_FIELD_PUT(&sfield->field); \ 1184 } \ 1185 FINISH(2); 1186 1187 1188/* File: c/gotoTargets.c */ 1189/* 1190 * C footer. This has some common code shared by the various targets. 1191 */ 1192 1193/* 1194 * Everything from here on is a "goto target". In the basic interpreter 1195 * we jump into these targets and then jump directly to the handler for 1196 * next instruction. Here, these are subroutines that return to the caller. 1197 */ 1198 1199GOTO_TARGET(filledNewArray, bool methodCallRange) 1200 { 1201 ClassObject* arrayClass; 1202 ArrayObject* newArray; 1203 u4* contents; 1204 char typeCh; 1205 int i; 1206 u4 arg5; 1207 1208 EXPORT_PC(); 1209 1210 ref = FETCH(1); /* class ref */ 1211 vdst = FETCH(2); /* first 4 regs -or- range base */ 1212 1213 if (methodCallRange) { 1214 vsrc1 = INST_AA(inst); /* #of elements */ 1215 arg5 = -1; /* silence compiler warning */ 1216 ILOGV("|filled-new-array-range args=%d @0x%04x {regs=v%d-v%d}", 1217 vsrc1, ref, vdst, vdst+vsrc1-1); 1218 } else { 1219 arg5 = INST_A(inst); 1220 vsrc1 = INST_B(inst); /* #of elements */ 1221 ILOGV("|filled-new-array args=%d @0x%04x {regs=0x%04x %x}", 1222 vsrc1, ref, vdst, arg5); 1223 } 1224 1225 /* 1226 * Resolve the array class. 1227 */ 1228 arrayClass = dvmDexGetResolvedClass(methodClassDex, ref); 1229 if (arrayClass == NULL) { 1230 arrayClass = dvmResolveClass(curMethod->clazz, ref, false); 1231 if (arrayClass == NULL) 1232 GOTO_exceptionThrown(); 1233 } 1234 /* 1235 if (!dvmIsArrayClass(arrayClass)) { 1236 dvmThrowException("Ljava/lang/RuntimeError;", 1237 "filled-new-array needs array class"); 1238 GOTO_exceptionThrown(); 1239 } 1240 */ 1241 /* verifier guarantees this is an array class */ 1242 assert(dvmIsArrayClass(arrayClass)); 1243 assert(dvmIsClassInitialized(arrayClass)); 1244 1245 /* 1246 * Create an array of the specified type. 1247 */ 1248 LOGVV("+++ filled-new-array type is '%s'\n", arrayClass->descriptor); 1249 typeCh = arrayClass->descriptor[1]; 1250 if (typeCh == 'D' || typeCh == 'J') { 1251 /* category 2 primitives not allowed */ 1252 dvmThrowException("Ljava/lang/RuntimeError;", 1253 "bad filled array req"); 1254 GOTO_exceptionThrown(); 1255 } else if (typeCh != 'L' && typeCh != '[' && typeCh != 'I') { 1256 /* TODO: requires multiple "fill in" loops with different widths */ 1257 LOGE("non-int primitives not implemented\n"); 1258 dvmThrowException("Ljava/lang/InternalError;", 1259 "filled-new-array not implemented for anything but 'int'"); 1260 GOTO_exceptionThrown(); 1261 } 1262 1263 newArray = dvmAllocArrayByClass(arrayClass, vsrc1, ALLOC_DONT_TRACK); 1264 if (newArray == NULL) 1265 GOTO_exceptionThrown(); 1266 1267 /* 1268 * Fill in the elements. It's legal for vsrc1 to be zero. 1269 */ 1270 contents = (u4*) newArray->contents; 1271 if (methodCallRange) { 1272 for (i = 0; i < vsrc1; i++) 1273 contents[i] = GET_REGISTER(vdst+i); 1274 } else { 1275 assert(vsrc1 <= 5); 1276 if (vsrc1 == 5) { 1277 contents[4] = GET_REGISTER(arg5); 1278 vsrc1--; 1279 } 1280 for (i = 0; i < vsrc1; i++) { 1281 contents[i] = GET_REGISTER(vdst & 0x0f); 1282 vdst >>= 4; 1283 } 1284 } 1285 1286 retval.l = newArray; 1287 } 1288 FINISH(3); 1289GOTO_TARGET_END 1290 1291 1292GOTO_TARGET(invokeVirtual, bool methodCallRange) 1293 { 1294 Method* baseMethod; 1295 Object* thisPtr; 1296 1297 EXPORT_PC(); 1298 1299 vsrc1 = INST_AA(inst); /* AA (count) or BA (count + arg 5) */ 1300 ref = FETCH(1); /* method ref */ 1301 vdst = FETCH(2); /* 4 regs -or- first reg */ 1302 1303 /* 1304 * The object against which we are executing a method is always 1305 * in the first argument. 1306 */ 1307 if (methodCallRange) { 1308 assert(vsrc1 > 0); 1309 ILOGV("|invoke-virtual-range args=%d @0x%04x {regs=v%d-v%d}", 1310 vsrc1, ref, vdst, vdst+vsrc1-1); 1311 thisPtr = (Object*) GET_REGISTER(vdst); 1312 } else { 1313 assert((vsrc1>>4) > 0); 1314 ILOGV("|invoke-virtual args=%d @0x%04x {regs=0x%04x %x}", 1315 vsrc1 >> 4, ref, vdst, vsrc1 & 0x0f); 1316 thisPtr = (Object*) GET_REGISTER(vdst & 0x0f); 1317 } 1318 1319 if (!checkForNull(thisPtr)) 1320 GOTO_exceptionThrown(); 1321 1322 /* 1323 * Resolve the method. This is the correct method for the static 1324 * type of the object. We also verify access permissions here. 1325 */ 1326 baseMethod = dvmDexGetResolvedMethod(methodClassDex, ref); 1327 if (baseMethod == NULL) { 1328 baseMethod = dvmResolveMethod(curMethod->clazz, ref,METHOD_VIRTUAL); 1329 if (baseMethod == NULL) { 1330 ILOGV("+ unknown method or access denied\n"); 1331 GOTO_exceptionThrown(); 1332 } 1333 } 1334 1335 /* 1336 * Combine the object we found with the vtable offset in the 1337 * method. 1338 */ 1339 assert(baseMethod->methodIndex < thisPtr->clazz->vtableCount); 1340 methodToCall = thisPtr->clazz->vtable[baseMethod->methodIndex]; 1341 1342#if 0 1343 if (dvmIsAbstractMethod(methodToCall)) { 1344 /* 1345 * This can happen if you create two classes, Base and Sub, where 1346 * Sub is a sub-class of Base. Declare a protected abstract 1347 * method foo() in Base, and invoke foo() from a method in Base. 1348 * Base is an "abstract base class" and is never instantiated 1349 * directly. Now, Override foo() in Sub, and use Sub. This 1350 * Works fine unless Sub stops providing an implementation of 1351 * the method. 1352 */ 1353 dvmThrowException("Ljava/lang/AbstractMethodError;", 1354 "abstract method not implemented"); 1355 GOTO_exceptionThrown(); 1356 } 1357#else 1358 assert(!dvmIsAbstractMethod(methodToCall) || 1359 methodToCall->nativeFunc != NULL); 1360#endif 1361 1362 LOGVV("+++ base=%s.%s virtual[%d]=%s.%s\n", 1363 baseMethod->clazz->descriptor, baseMethod->name, 1364 (u4) baseMethod->methodIndex, 1365 methodToCall->clazz->descriptor, methodToCall->name); 1366 assert(methodToCall != NULL); 1367 1368#if 0 1369 if (vsrc1 != methodToCall->insSize) { 1370 LOGW("WRONG METHOD: base=%s.%s virtual[%d]=%s.%s\n", 1371 baseMethod->clazz->descriptor, baseMethod->name, 1372 (u4) baseMethod->methodIndex, 1373 methodToCall->clazz->descriptor, methodToCall->name); 1374 //dvmDumpClass(baseMethod->clazz); 1375 //dvmDumpClass(methodToCall->clazz); 1376 dvmDumpAllClasses(0); 1377 } 1378#endif 1379 1380 GOTO_invokeMethod(methodCallRange, methodToCall, vsrc1, vdst); 1381 } 1382GOTO_TARGET_END 1383 1384GOTO_TARGET(invokeSuper, bool methodCallRange) 1385 { 1386 Method* baseMethod; 1387 u2 thisReg; 1388 1389 EXPORT_PC(); 1390 1391 vsrc1 = INST_AA(inst); /* AA (count) or BA (count + arg 5) */ 1392 ref = FETCH(1); /* method ref */ 1393 vdst = FETCH(2); /* 4 regs -or- first reg */ 1394 1395 if (methodCallRange) { 1396 ILOGV("|invoke-super-range args=%d @0x%04x {regs=v%d-v%d}", 1397 vsrc1, ref, vdst, vdst+vsrc1-1); 1398 thisReg = vdst; 1399 } else { 1400 ILOGV("|invoke-super args=%d @0x%04x {regs=0x%04x %x}", 1401 vsrc1 >> 4, ref, vdst, vsrc1 & 0x0f); 1402 thisReg = vdst & 0x0f; 1403 } 1404 /* impossible in well-formed code, but we must check nevertheless */ 1405 if (!checkForNull((Object*) GET_REGISTER(thisReg))) 1406 GOTO_exceptionThrown(); 1407 1408 /* 1409 * Resolve the method. This is the correct method for the static 1410 * type of the object. We also verify access permissions here. 1411 * The first arg to dvmResolveMethod() is just the referring class 1412 * (used for class loaders and such), so we don't want to pass 1413 * the superclass into the resolution call. 1414 */ 1415 baseMethod = dvmDexGetResolvedMethod(methodClassDex, ref); 1416 if (baseMethod == NULL) { 1417 baseMethod = dvmResolveMethod(curMethod->clazz, ref,METHOD_VIRTUAL); 1418 if (baseMethod == NULL) { 1419 ILOGV("+ unknown method or access denied\n"); 1420 GOTO_exceptionThrown(); 1421 } 1422 } 1423 1424 /* 1425 * Combine the object we found with the vtable offset in the 1426 * method's class. 1427 * 1428 * We're using the current method's class' superclass, not the 1429 * superclass of "this". This is because we might be executing 1430 * in a method inherited from a superclass, and we want to run 1431 * in that class' superclass. 1432 */ 1433 if (baseMethod->methodIndex >= curMethod->clazz->super->vtableCount) { 1434 /* 1435 * Method does not exist in the superclass. Could happen if 1436 * superclass gets updated. 1437 */ 1438 dvmThrowException("Ljava/lang/NoSuchMethodError;", 1439 baseMethod->name); 1440 GOTO_exceptionThrown(); 1441 } 1442 methodToCall = curMethod->clazz->super->vtable[baseMethod->methodIndex]; 1443#if 0 1444 if (dvmIsAbstractMethod(methodToCall)) { 1445 dvmThrowException("Ljava/lang/AbstractMethodError;", 1446 "abstract method not implemented"); 1447 GOTO_exceptionThrown(); 1448 } 1449#else 1450 assert(!dvmIsAbstractMethod(methodToCall) || 1451 methodToCall->nativeFunc != NULL); 1452#endif 1453 LOGVV("+++ base=%s.%s super-virtual=%s.%s\n", 1454 baseMethod->clazz->descriptor, baseMethod->name, 1455 methodToCall->clazz->descriptor, methodToCall->name); 1456 assert(methodToCall != NULL); 1457 1458 GOTO_invokeMethod(methodCallRange, methodToCall, vsrc1, vdst); 1459 } 1460GOTO_TARGET_END 1461 1462GOTO_TARGET(invokeInterface, bool methodCallRange) 1463 { 1464 Object* thisPtr; 1465 ClassObject* thisClass; 1466 1467 EXPORT_PC(); 1468 1469 vsrc1 = INST_AA(inst); /* AA (count) or BA (count + arg 5) */ 1470 ref = FETCH(1); /* method ref */ 1471 vdst = FETCH(2); /* 4 regs -or- first reg */ 1472 1473 /* 1474 * The object against which we are executing a method is always 1475 * in the first argument. 1476 */ 1477 if (methodCallRange) { 1478 assert(vsrc1 > 0); 1479 ILOGV("|invoke-interface-range args=%d @0x%04x {regs=v%d-v%d}", 1480 vsrc1, ref, vdst, vdst+vsrc1-1); 1481 thisPtr = (Object*) GET_REGISTER(vdst); 1482 } else { 1483 assert((vsrc1>>4) > 0); 1484 ILOGV("|invoke-interface args=%d @0x%04x {regs=0x%04x %x}", 1485 vsrc1 >> 4, ref, vdst, vsrc1 & 0x0f); 1486 thisPtr = (Object*) GET_REGISTER(vdst & 0x0f); 1487 } 1488 if (!checkForNull(thisPtr)) 1489 GOTO_exceptionThrown(); 1490 1491 thisClass = thisPtr->clazz; 1492 1493 /* 1494 * Given a class and a method index, find the Method* with the 1495 * actual code we want to execute. 1496 */ 1497 methodToCall = dvmFindInterfaceMethodInCache(thisClass, ref, curMethod, 1498 methodClassDex); 1499 if (methodToCall == NULL) { 1500 assert(dvmCheckException(self)); 1501 GOTO_exceptionThrown(); 1502 } 1503 1504 GOTO_invokeMethod(methodCallRange, methodToCall, vsrc1, vdst); 1505 } 1506GOTO_TARGET_END 1507 1508GOTO_TARGET(invokeDirect, bool methodCallRange) 1509 { 1510 u2 thisReg; 1511 1512 vsrc1 = INST_AA(inst); /* AA (count) or BA (count + arg 5) */ 1513 ref = FETCH(1); /* method ref */ 1514 vdst = FETCH(2); /* 4 regs -or- first reg */ 1515 1516 EXPORT_PC(); 1517 1518 if (methodCallRange) { 1519 ILOGV("|invoke-direct-range args=%d @0x%04x {regs=v%d-v%d}", 1520 vsrc1, ref, vdst, vdst+vsrc1-1); 1521 thisReg = vdst; 1522 } else { 1523 ILOGV("|invoke-direct args=%d @0x%04x {regs=0x%04x %x}", 1524 vsrc1 >> 4, ref, vdst, vsrc1 & 0x0f); 1525 thisReg = vdst & 0x0f; 1526 } 1527 if (!checkForNull((Object*) GET_REGISTER(thisReg))) 1528 GOTO_exceptionThrown(); 1529 1530 methodToCall = dvmDexGetResolvedMethod(methodClassDex, ref); 1531 if (methodToCall == NULL) { 1532 methodToCall = dvmResolveMethod(curMethod->clazz, ref, 1533 METHOD_DIRECT); 1534 if (methodToCall == NULL) { 1535 ILOGV("+ unknown direct method\n"); // should be impossible 1536 GOTO_exceptionThrown(); 1537 } 1538 } 1539 GOTO_invokeMethod(methodCallRange, methodToCall, vsrc1, vdst); 1540 } 1541GOTO_TARGET_END 1542 1543GOTO_TARGET(invokeStatic, bool methodCallRange) 1544 vsrc1 = INST_AA(inst); /* AA (count) or BA (count + arg 5) */ 1545 ref = FETCH(1); /* method ref */ 1546 vdst = FETCH(2); /* 4 regs -or- first reg */ 1547 1548 EXPORT_PC(); 1549 1550 if (methodCallRange) 1551 ILOGV("|invoke-static-range args=%d @0x%04x {regs=v%d-v%d}", 1552 vsrc1, ref, vdst, vdst+vsrc1-1); 1553 else 1554 ILOGV("|invoke-static args=%d @0x%04x {regs=0x%04x %x}", 1555 vsrc1 >> 4, ref, vdst, vsrc1 & 0x0f); 1556 1557 methodToCall = dvmDexGetResolvedMethod(methodClassDex, ref); 1558 if (methodToCall == NULL) { 1559 methodToCall = dvmResolveMethod(curMethod->clazz, ref, METHOD_STATIC); 1560 if (methodToCall == NULL) { 1561 ILOGV("+ unknown method\n"); 1562 GOTO_exceptionThrown(); 1563 } 1564 } 1565 GOTO_invokeMethod(methodCallRange, methodToCall, vsrc1, vdst); 1566GOTO_TARGET_END 1567 1568GOTO_TARGET(invokeVirtualQuick, bool methodCallRange) 1569 { 1570 Object* thisPtr; 1571 1572 EXPORT_PC(); 1573 1574 vsrc1 = INST_AA(inst); /* AA (count) or BA (count + arg 5) */ 1575 ref = FETCH(1); /* vtable index */ 1576 vdst = FETCH(2); /* 4 regs -or- first reg */ 1577 1578 /* 1579 * The object against which we are executing a method is always 1580 * in the first argument. 1581 */ 1582 if (methodCallRange) { 1583 assert(vsrc1 > 0); 1584 ILOGV("|invoke-virtual-quick-range args=%d @0x%04x {regs=v%d-v%d}", 1585 vsrc1, ref, vdst, vdst+vsrc1-1); 1586 thisPtr = (Object*) GET_REGISTER(vdst); 1587 } else { 1588 assert((vsrc1>>4) > 0); 1589 ILOGV("|invoke-virtual-quick args=%d @0x%04x {regs=0x%04x %x}", 1590 vsrc1 >> 4, ref, vdst, vsrc1 & 0x0f); 1591 thisPtr = (Object*) GET_REGISTER(vdst & 0x0f); 1592 } 1593 1594 if (!checkForNull(thisPtr)) 1595 GOTO_exceptionThrown(); 1596 1597 /* 1598 * Combine the object we found with the vtable offset in the 1599 * method. 1600 */ 1601 assert(ref < thisPtr->clazz->vtableCount); 1602 methodToCall = thisPtr->clazz->vtable[ref]; 1603 1604#if 0 1605 if (dvmIsAbstractMethod(methodToCall)) { 1606 dvmThrowException("Ljava/lang/AbstractMethodError;", 1607 "abstract method not implemented"); 1608 GOTO_exceptionThrown(); 1609 } 1610#else 1611 assert(!dvmIsAbstractMethod(methodToCall) || 1612 methodToCall->nativeFunc != NULL); 1613#endif 1614 1615 LOGVV("+++ virtual[%d]=%s.%s\n", 1616 ref, methodToCall->clazz->descriptor, methodToCall->name); 1617 assert(methodToCall != NULL); 1618 1619 GOTO_invokeMethod(methodCallRange, methodToCall, vsrc1, vdst); 1620 } 1621GOTO_TARGET_END 1622 1623GOTO_TARGET(invokeSuperQuick, bool methodCallRange) 1624 { 1625 u2 thisReg; 1626 1627 EXPORT_PC(); 1628 1629 vsrc1 = INST_AA(inst); /* AA (count) or BA (count + arg 5) */ 1630 ref = FETCH(1); /* vtable index */ 1631 vdst = FETCH(2); /* 4 regs -or- first reg */ 1632 1633 if (methodCallRange) { 1634 ILOGV("|invoke-super-quick-range args=%d @0x%04x {regs=v%d-v%d}", 1635 vsrc1, ref, vdst, vdst+vsrc1-1); 1636 thisReg = vdst; 1637 } else { 1638 ILOGV("|invoke-super-quick args=%d @0x%04x {regs=0x%04x %x}", 1639 vsrc1 >> 4, ref, vdst, vsrc1 & 0x0f); 1640 thisReg = vdst & 0x0f; 1641 } 1642 /* impossible in well-formed code, but we must check nevertheless */ 1643 if (!checkForNull((Object*) GET_REGISTER(thisReg))) 1644 GOTO_exceptionThrown(); 1645 1646#if 0 /* impossible in optimized + verified code */ 1647 if (ref >= curMethod->clazz->super->vtableCount) { 1648 dvmThrowException("Ljava/lang/NoSuchMethodError;", NULL); 1649 GOTO_exceptionThrown(); 1650 } 1651#else 1652 assert(ref < curMethod->clazz->super->vtableCount); 1653#endif 1654 1655 /* 1656 * Combine the object we found with the vtable offset in the 1657 * method's class. 1658 * 1659 * We're using the current method's class' superclass, not the 1660 * superclass of "this". This is because we might be executing 1661 * in a method inherited from a superclass, and we want to run 1662 * in the method's class' superclass. 1663 */ 1664 methodToCall = curMethod->clazz->super->vtable[ref]; 1665 1666#if 0 1667 if (dvmIsAbstractMethod(methodToCall)) { 1668 dvmThrowException("Ljava/lang/AbstractMethodError;", 1669 "abstract method not implemented"); 1670 GOTO_exceptionThrown(); 1671 } 1672#else 1673 assert(!dvmIsAbstractMethod(methodToCall) || 1674 methodToCall->nativeFunc != NULL); 1675#endif 1676 LOGVV("+++ super-virtual[%d]=%s.%s\n", 1677 ref, methodToCall->clazz->descriptor, methodToCall->name); 1678 assert(methodToCall != NULL); 1679 1680 GOTO_invokeMethod(methodCallRange, methodToCall, vsrc1, vdst); 1681 } 1682GOTO_TARGET_END 1683 1684 1685 1686 /* 1687 * General handling for return-void, return, and return-wide. Put the 1688 * return value in "retval" before jumping here. 1689 */ 1690GOTO_TARGET(returnFromMethod) 1691 { 1692 StackSaveArea* saveArea; 1693 1694 /* 1695 * We must do this BEFORE we pop the previous stack frame off, so 1696 * that the GC can see the return value (if any) in the local vars. 1697 * 1698 * Since this is now an interpreter switch point, we must do it before 1699 * we do anything at all. 1700 */ 1701 PERIODIC_CHECKS(kInterpEntryReturn, 0); 1702 1703 ILOGV("> retval=0x%llx (leaving %s.%s %s)", 1704 retval.j, curMethod->clazz->descriptor, curMethod->name, 1705 curMethod->shorty); 1706 //DUMP_REGS(curMethod, fp); 1707 1708 saveArea = SAVEAREA_FROM_FP(fp); 1709 1710#ifdef EASY_GDB 1711 debugSaveArea = saveArea; 1712#endif 1713#if (INTERP_TYPE == INTERP_DBG) && defined(WITH_PROFILER) 1714 TRACE_METHOD_EXIT(self, curMethod); 1715#endif 1716 1717 /* back up to previous frame and see if we hit a break */ 1718 fp = saveArea->prevFrame; 1719 assert(fp != NULL); 1720 if (dvmIsBreakFrame(fp)) { 1721 /* bail without popping the method frame from stack */ 1722 LOGVV("+++ returned into break frame\n"); 1723 GOTO_bail(); 1724 } 1725 1726 /* update thread FP, and reset local variables */ 1727 self->curFrame = fp; 1728 curMethod = SAVEAREA_FROM_FP(fp)->method; 1729 //methodClass = curMethod->clazz; 1730 methodClassDex = curMethod->clazz->pDvmDex; 1731 pc = saveArea->savedPc; 1732 ILOGD("> (return to %s.%s %s)", curMethod->clazz->descriptor, 1733 curMethod->name, curMethod->shorty); 1734 1735 /* use FINISH on the caller's invoke instruction */ 1736 //u2 invokeInstr = INST_INST(FETCH(0)); 1737 if (true /*invokeInstr >= OP_INVOKE_VIRTUAL && 1738 invokeInstr <= OP_INVOKE_INTERFACE*/) 1739 { 1740 FINISH(3); 1741 } else { 1742 //LOGE("Unknown invoke instr %02x at %d\n", 1743 // invokeInstr, (int) (pc - curMethod->insns)); 1744 assert(false); 1745 } 1746 } 1747GOTO_TARGET_END 1748 1749 1750 /* 1751 * Jump here when the code throws an exception. 1752 * 1753 * By the time we get here, the Throwable has been created and the stack 1754 * trace has been saved off. 1755 */ 1756GOTO_TARGET(exceptionThrown) 1757 { 1758 Object* exception; 1759 int catchRelPc; 1760 1761 /* 1762 * Since this is now an interpreter switch point, we must do it before 1763 * we do anything at all. 1764 */ 1765 PERIODIC_CHECKS(kInterpEntryThrow, 0); 1766 1767 /* 1768 * We save off the exception and clear the exception status. While 1769 * processing the exception we might need to load some Throwable 1770 * classes, and we don't want class loader exceptions to get 1771 * confused with this one. 1772 */ 1773 assert(dvmCheckException(self)); 1774 exception = dvmGetException(self); 1775 dvmAddTrackedAlloc(exception, self); 1776 dvmClearException(self); 1777 1778 LOGV("Handling exception %s at %s:%d\n", 1779 exception->clazz->descriptor, curMethod->name, 1780 dvmLineNumFromPC(curMethod, pc - curMethod->insns)); 1781 1782#if (INTERP_TYPE == INTERP_DBG) && defined(WITH_DEBUGGER) 1783 /* 1784 * Tell the debugger about it. 1785 * 1786 * TODO: if the exception was thrown by interpreted code, control 1787 * fell through native, and then back to us, we will report the 1788 * exception at the point of the throw and again here. We can avoid 1789 * this by not reporting exceptions when we jump here directly from 1790 * the native call code above, but then we won't report exceptions 1791 * that were thrown *from* the JNI code (as opposed to *through* it). 1792 * 1793 * The correct solution is probably to ignore from-native exceptions 1794 * here, and have the JNI exception code do the reporting to the 1795 * debugger. 1796 */ 1797 if (gDvm.debuggerActive) { 1798 void* catchFrame; 1799 catchRelPc = dvmFindCatchBlock(self, pc - curMethod->insns, 1800 exception, true, &catchFrame); 1801 dvmDbgPostException(fp, pc - curMethod->insns, catchFrame, 1802 catchRelPc, exception); 1803 } 1804#endif 1805 1806 /* 1807 * We need to unroll to the catch block or the nearest "break" 1808 * frame. 1809 * 1810 * A break frame could indicate that we have reached an intermediate 1811 * native call, or have gone off the top of the stack and the thread 1812 * needs to exit. Either way, we return from here, leaving the 1813 * exception raised. 1814 * 1815 * If we do find a catch block, we want to transfer execution to 1816 * that point. 1817 */ 1818 catchRelPc = dvmFindCatchBlock(self, pc - curMethod->insns, 1819 exception, false, (void*)&fp); 1820 1821 /* 1822 * Restore the stack bounds after an overflow. This isn't going to 1823 * be correct in all circumstances, e.g. if JNI code devours the 1824 * exception this won't happen until some other exception gets 1825 * thrown. If the code keeps pushing the stack bounds we'll end 1826 * up aborting the VM. 1827 * 1828 * Note we want to do this *after* the call to dvmFindCatchBlock, 1829 * because that may need extra stack space to resolve exception 1830 * classes (e.g. through a class loader). 1831 */ 1832 if (self->stackOverflowed) 1833 dvmCleanupStackOverflow(self); 1834 1835 if (catchRelPc < 0) { 1836 /* falling through to JNI code or off the bottom of the stack */ 1837#if DVM_SHOW_EXCEPTION >= 2 1838 LOGD("Exception %s from %s:%d not caught locally\n", 1839 exception->clazz->descriptor, dvmGetMethodSourceFile(curMethod), 1840 dvmLineNumFromPC(curMethod, pc - curMethod->insns)); 1841#endif 1842 dvmSetException(self, exception); 1843 dvmReleaseTrackedAlloc(exception, self); 1844 GOTO_bail(); 1845 } 1846 1847#if DVM_SHOW_EXCEPTION >= 3 1848 { 1849 const Method* catchMethod = SAVEAREA_FROM_FP(fp)->method; 1850 LOGD("Exception %s thrown from %s:%d to %s:%d\n", 1851 exception->clazz->descriptor, dvmGetMethodSourceFile(curMethod), 1852 dvmLineNumFromPC(curMethod, pc - curMethod->insns), 1853 dvmGetMethodSourceFile(catchMethod), 1854 dvmLineNumFromPC(catchMethod, catchRelPc)); 1855 } 1856#endif 1857 1858 /* 1859 * Adjust local variables to match self->curFrame and the 1860 * updated PC. 1861 */ 1862 //fp = (u4*) self->curFrame; 1863 curMethod = SAVEAREA_FROM_FP(fp)->method; 1864 //methodClass = curMethod->clazz; 1865 methodClassDex = curMethod->clazz->pDvmDex; 1866 pc = curMethod->insns + catchRelPc; 1867 ILOGV("> pc <-- %s.%s %s", curMethod->clazz->descriptor, 1868 curMethod->name, curMethod->shorty); 1869 DUMP_REGS(curMethod, fp, false); // show all regs 1870 1871 /* 1872 * Restore the exception if the handler wants it. 1873 * 1874 * The Dalvik spec mandates that, if an exception handler wants to 1875 * do something with the exception, the first instruction executed 1876 * must be "move-exception". We can pass the exception along 1877 * through the thread struct, and let the move-exception instruction 1878 * clear it for us. 1879 * 1880 * If the handler doesn't call move-exception, we don't want to 1881 * finish here with an exception still pending. 1882 */ 1883 if (INST_INST(FETCH(0)) == OP_MOVE_EXCEPTION) 1884 dvmSetException(self, exception); 1885 1886 dvmReleaseTrackedAlloc(exception, self); 1887 FINISH(0); 1888 } 1889GOTO_TARGET_END 1890 1891 1892 /* 1893 * General handling for invoke-{virtual,super,direct,static,interface}, 1894 * including "quick" variants. 1895 * 1896 * Set "methodToCall" to the Method we're calling, and "methodCallRange" 1897 * depending on whether this is a "/range" instruction. 1898 * 1899 * For a range call: 1900 * "vsrc1" holds the argument count (8 bits) 1901 * "vdst" holds the first argument in the range 1902 * For a non-range call: 1903 * "vsrc1" holds the argument count (4 bits) and the 5th argument index 1904 * "vdst" holds four 4-bit register indices 1905 * 1906 * The caller must EXPORT_PC before jumping here, because any method 1907 * call can throw a stack overflow exception. 1908 */ 1909GOTO_TARGET(invokeMethod, bool methodCallRange, const Method* _methodToCall, 1910 u2 count, u2 regs) 1911 { 1912 STUB_HACK(vsrc1 = count; vdst = regs; methodToCall = _methodToCall;); 1913 1914 //printf("range=%d call=%p count=%d regs=0x%04x\n", 1915 // methodCallRange, methodToCall, count, regs); 1916 //printf(" --> %s.%s %s\n", methodToCall->clazz->descriptor, 1917 // methodToCall->name, methodToCall->shorty); 1918 1919 u4* outs; 1920 int i; 1921 1922 /* 1923 * Copy args. This may corrupt vsrc1/vdst. 1924 */ 1925 if (methodCallRange) { 1926 // could use memcpy or a "Duff's device"; most functions have 1927 // so few args it won't matter much 1928 assert(vsrc1 <= curMethod->outsSize); 1929 assert(vsrc1 == methodToCall->insSize); 1930 outs = OUTS_FROM_FP(fp, vsrc1); 1931 for (i = 0; i < vsrc1; i++) 1932 outs[i] = GET_REGISTER(vdst+i); 1933 } else { 1934 u4 count = vsrc1 >> 4; 1935 1936 assert(count <= curMethod->outsSize); 1937 assert(count == methodToCall->insSize); 1938 assert(count <= 5); 1939 1940 outs = OUTS_FROM_FP(fp, count); 1941#if 0 1942 if (count == 5) { 1943 outs[4] = GET_REGISTER(vsrc1 & 0x0f); 1944 count--; 1945 } 1946 for (i = 0; i < (int) count; i++) { 1947 outs[i] = GET_REGISTER(vdst & 0x0f); 1948 vdst >>= 4; 1949 } 1950#else 1951 // This version executes fewer instructions but is larger 1952 // overall. Seems to be a teensy bit faster. 1953 assert((vdst >> 16) == 0); // 16 bits -or- high 16 bits clear 1954 switch (count) { 1955 case 5: 1956 outs[4] = GET_REGISTER(vsrc1 & 0x0f); 1957 case 4: 1958 outs[3] = GET_REGISTER(vdst >> 12); 1959 case 3: 1960 outs[2] = GET_REGISTER((vdst & 0x0f00) >> 8); 1961 case 2: 1962 outs[1] = GET_REGISTER((vdst & 0x00f0) >> 4); 1963 case 1: 1964 outs[0] = GET_REGISTER(vdst & 0x0f); 1965 default: 1966 ; 1967 } 1968#endif 1969 } 1970 } 1971 1972 /* 1973 * (This was originally a "goto" target; I've kept it separate from the 1974 * stuff above in case we want to refactor things again.) 1975 * 1976 * At this point, we have the arguments stored in the "outs" area of 1977 * the current method's stack frame, and the method to call in 1978 * "methodToCall". Push a new stack frame. 1979 */ 1980 { 1981 StackSaveArea* newSaveArea; 1982 u4* newFp; 1983 1984 ILOGV("> %s%s.%s %s", 1985 dvmIsNativeMethod(methodToCall) ? "(NATIVE) " : "", 1986 methodToCall->clazz->descriptor, methodToCall->name, 1987 methodToCall->shorty); 1988 1989 newFp = (u4*) SAVEAREA_FROM_FP(fp) - methodToCall->registersSize; 1990 newSaveArea = SAVEAREA_FROM_FP(newFp); 1991 1992 /* verify that we have enough space */ 1993 if (true) { 1994 u1* bottom; 1995 bottom = (u1*) newSaveArea - methodToCall->outsSize * sizeof(u4); 1996 if (bottom < self->interpStackEnd) { 1997 /* stack overflow */ 1998 LOGV("Stack overflow on method call (start=%p end=%p newBot=%p(%d) size=%d '%s')\n", 1999 self->interpStackStart, self->interpStackEnd, bottom, 2000 (u1*) fp - bottom, self->interpStackSize, 2001 methodToCall->name); 2002 dvmHandleStackOverflow(self, methodToCall); 2003 assert(dvmCheckException(self)); 2004 GOTO_exceptionThrown(); 2005 } 2006 //LOGD("+++ fp=%p newFp=%p newSave=%p bottom=%p\n", 2007 // fp, newFp, newSaveArea, bottom); 2008 } 2009 2010#ifdef LOG_INSTR 2011 if (methodToCall->registersSize > methodToCall->insSize) { 2012 /* 2013 * This makes valgrind quiet when we print registers that 2014 * haven't been initialized. Turn it off when the debug 2015 * messages are disabled -- we want valgrind to report any 2016 * used-before-initialized issues. 2017 */ 2018 memset(newFp, 0xcc, 2019 (methodToCall->registersSize - methodToCall->insSize) * 4); 2020 } 2021#endif 2022 2023#ifdef EASY_GDB 2024 newSaveArea->prevSave = SAVEAREA_FROM_FP(fp); 2025#endif 2026 newSaveArea->prevFrame = fp; 2027 newSaveArea->savedPc = pc; 2028#if defined(WITH_JIT) 2029 newSaveArea->returnAddr = 0; 2030#endif 2031 newSaveArea->method = methodToCall; 2032 2033 if (!dvmIsNativeMethod(methodToCall)) { 2034 /* 2035 * "Call" interpreted code. Reposition the PC, update the 2036 * frame pointer and other local state, and continue. 2037 */ 2038 curMethod = methodToCall; 2039 methodClassDex = curMethod->clazz->pDvmDex; 2040 pc = methodToCall->insns; 2041 fp = self->curFrame = newFp; 2042#ifdef EASY_GDB 2043 debugSaveArea = SAVEAREA_FROM_FP(newFp); 2044#endif 2045#if INTERP_TYPE == INTERP_DBG 2046 debugIsMethodEntry = true; // profiling, debugging 2047#endif 2048 ILOGD("> pc <-- %s.%s %s", curMethod->clazz->descriptor, 2049 curMethod->name, curMethod->shorty); 2050 DUMP_REGS(curMethod, fp, true); // show input args 2051 FINISH(0); // jump to method start 2052 } else { 2053 /* set this up for JNI locals, even if not a JNI native */ 2054#ifdef USE_INDIRECT_REF 2055 newSaveArea->xtra.localRefCookie = self->jniLocalRefTable.segmentState.all; 2056#else 2057 newSaveArea->xtra.localRefCookie = self->jniLocalRefTable.nextEntry; 2058#endif 2059 2060 self->curFrame = newFp; 2061 2062 DUMP_REGS(methodToCall, newFp, true); // show input args 2063 2064#if (INTERP_TYPE == INTERP_DBG) && defined(WITH_DEBUGGER) 2065 if (gDvm.debuggerActive) { 2066 dvmDbgPostLocationEvent(methodToCall, -1, 2067 dvmGetThisPtr(curMethod, fp), DBG_METHOD_ENTRY); 2068 } 2069#endif 2070#if (INTERP_TYPE == INTERP_DBG) && defined(WITH_PROFILER) 2071 TRACE_METHOD_ENTER(self, methodToCall); 2072#endif 2073 2074 ILOGD("> native <-- %s.%s %s", methodToCall->clazz->descriptor, 2075 methodToCall->name, methodToCall->shorty); 2076 2077 /* 2078 * Jump through native call bridge. Because we leave no 2079 * space for locals on native calls, "newFp" points directly 2080 * to the method arguments. 2081 */ 2082 (*methodToCall->nativeFunc)(newFp, &retval, methodToCall, self); 2083 2084#if (INTERP_TYPE == INTERP_DBG) && defined(WITH_DEBUGGER) 2085 if (gDvm.debuggerActive) { 2086 dvmDbgPostLocationEvent(methodToCall, -1, 2087 dvmGetThisPtr(curMethod, fp), DBG_METHOD_EXIT); 2088 } 2089#endif 2090#if (INTERP_TYPE == INTERP_DBG) && defined(WITH_PROFILER) 2091 TRACE_METHOD_EXIT(self, methodToCall); 2092#endif 2093 2094 /* pop frame off */ 2095 dvmPopJniLocals(self, newSaveArea); 2096 self->curFrame = fp; 2097 2098 /* 2099 * If the native code threw an exception, or interpreted code 2100 * invoked by the native call threw one and nobody has cleared 2101 * it, jump to our local exception handling. 2102 */ 2103 if (dvmCheckException(self)) { 2104 LOGV("Exception thrown by/below native code\n"); 2105 GOTO_exceptionThrown(); 2106 } 2107 2108 ILOGD("> retval=0x%llx (leaving native)", retval.j); 2109 ILOGD("> (return from native %s.%s to %s.%s %s)", 2110 methodToCall->clazz->descriptor, methodToCall->name, 2111 curMethod->clazz->descriptor, curMethod->name, 2112 curMethod->shorty); 2113 2114 //u2 invokeInstr = INST_INST(FETCH(0)); 2115 if (true /*invokeInstr >= OP_INVOKE_VIRTUAL && 2116 invokeInstr <= OP_INVOKE_INTERFACE*/) 2117 { 2118 FINISH(3); 2119 } else { 2120 //LOGE("Unknown invoke instr %02x at %d\n", 2121 // invokeInstr, (int) (pc - curMethod->insns)); 2122 assert(false); 2123 } 2124 } 2125 } 2126 assert(false); // should not get here 2127GOTO_TARGET_END 2128 2129/* File: cstubs/enddefs.c */ 2130 2131/* undefine "magic" name remapping */ 2132#undef retval 2133#undef pc 2134#undef fp 2135#undef curMethod 2136#undef methodClassDex 2137#undef self 2138#undef debugTrackedRefStart 2139 2140