1/* libs/pixelflinger/scanline.cpp
2**
3** Copyright 2006-2011, The Android Open Source Project
4**
5** Licensed under the Apache License, Version 2.0 (the "License");
6** you may not use this file except in compliance with the License.
7** You may obtain a copy of the License at
8**
9**     http://www.apache.org/licenses/LICENSE-2.0
10**
11** Unless required by applicable law or agreed to in writing, software
12** distributed under the License is distributed on an "AS IS" BASIS,
13** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14** See the License for the specific language governing permissions and
15** limitations under the License.
16*/
17
18
19#define LOG_TAG "pixelflinger"
20
21#include <assert.h>
22#include <stdlib.h>
23#include <stdio.h>
24#include <string.h>
25
26#include <cutils/memory.h>
27#include <cutils/log.h>
28
29#include "buffer.h"
30#include "scanline.h"
31
32#include "codeflinger/CodeCache.h"
33#include "codeflinger/GGLAssembler.h"
34#include "codeflinger/ARMAssembler.h"
35//#include "codeflinger/ARMAssemblerOptimizer.h"
36
37// ----------------------------------------------------------------------------
38
39#define ANDROID_CODEGEN_GENERIC     0   // force generic pixel pipeline
40#define ANDROID_CODEGEN_C           1   // hand-written C, fallback generic
41#define ANDROID_CODEGEN_ASM         2   // hand-written asm, fallback generic
42#define ANDROID_CODEGEN_GENERATED   3   // hand-written asm, fallback codegen
43
44#ifdef NDEBUG
45#   define ANDROID_RELEASE
46#   define ANDROID_CODEGEN      ANDROID_CODEGEN_GENERATED
47#else
48#   define ANDROID_DEBUG
49#   define ANDROID_CODEGEN      ANDROID_CODEGEN_GENERATED
50#endif
51
52#if defined(__arm__)
53#   define ANDROID_ARM_CODEGEN  1
54#else
55#   define ANDROID_ARM_CODEGEN  0
56#endif
57
58#define DEBUG__CODEGEN_ONLY     0
59
60/* Set to 1 to dump to the log the states that need a new
61 * code-generated scanline callback, i.e. those that don't
62 * have a corresponding shortcut function.
63 */
64#define DEBUG_NEEDS  0
65
66#define ASSEMBLY_SCRATCH_SIZE   2048
67
68// ----------------------------------------------------------------------------
69namespace android {
70// ----------------------------------------------------------------------------
71
72static void init_y(context_t*, int32_t);
73static void init_y_noop(context_t*, int32_t);
74static void init_y_packed(context_t*, int32_t);
75static void init_y_error(context_t*, int32_t);
76
77static void step_y__generic(context_t* c);
78static void step_y__nop(context_t*);
79static void step_y__smooth(context_t* c);
80static void step_y__tmu(context_t* c);
81static void step_y__w(context_t* c);
82
83static void scanline(context_t* c);
84static void scanline_perspective(context_t* c);
85static void scanline_perspective_single(context_t* c);
86static void scanline_t32cb16blend(context_t* c);
87static void scanline_t32cb16blend_dither(context_t* c);
88static void scanline_t32cb16blend_srca(context_t* c);
89static void scanline_t32cb16blend_clamp(context_t* c);
90static void scanline_t32cb16blend_clamp_dither(context_t* c);
91static void scanline_t32cb16blend_clamp_mod(context_t* c);
92static void scanline_x32cb16blend_clamp_mod(context_t* c);
93static void scanline_t32cb16blend_clamp_mod_dither(context_t* c);
94static void scanline_x32cb16blend_clamp_mod_dither(context_t* c);
95static void scanline_t32cb16(context_t* c);
96static void scanline_t32cb16_dither(context_t* c);
97static void scanline_t32cb16_clamp(context_t* c);
98static void scanline_t32cb16_clamp_dither(context_t* c);
99static void scanline_col32cb16blend(context_t* c);
100static void scanline_t16cb16_clamp(context_t* c);
101static void scanline_t16cb16blend_clamp_mod(context_t* c);
102static void scanline_memcpy(context_t* c);
103static void scanline_memset8(context_t* c);
104static void scanline_memset16(context_t* c);
105static void scanline_memset32(context_t* c);
106static void scanline_noop(context_t* c);
107static void scanline_set(context_t* c);
108static void scanline_clear(context_t* c);
109
110static void rect_generic(context_t* c, size_t yc);
111static void rect_memcpy(context_t* c, size_t yc);
112
113extern "C" void scanline_t32cb16blend_arm(uint16_t*, uint32_t*, size_t);
114extern "C" void scanline_t32cb16_arm(uint16_t *dst, uint32_t *src, size_t ct);
115extern "C" void scanline_col32cb16blend_neon(uint16_t *dst, uint32_t *col, size_t ct);
116extern "C" void scanline_col32cb16blend_arm(uint16_t *dst, uint32_t col, size_t ct);
117
118// ----------------------------------------------------------------------------
119
120static inline uint16_t  convertAbgr8888ToRgb565(uint32_t  pix)
121{
122    return uint16_t( ((pix << 8) & 0xf800) |
123                      ((pix >> 5) & 0x07e0) |
124                      ((pix >> 19) & 0x001f) );
125}
126
127struct shortcut_t {
128    needs_filter_t  filter;
129    const char*     desc;
130    void            (*scanline)(context_t*);
131    void            (*init_y)(context_t*, int32_t);
132};
133
134// Keep in sync with needs
135
136/* To understand the values here, have a look at:
137 *     system/core/include/private/pixelflinger/ggl_context.h
138 *
139 * Especially the lines defining and using GGL_RESERVE_NEEDS
140 *
141 * Quick reminders:
142 *   - the last nibble of the first value is the destination buffer format.
143 *   - the last nibble of the third value is the source texture format
144 *   - formats: 4=rgb565 1=abgr8888 2=xbgr8888
145 *
146 * In the descriptions below:
147 *
148 *   SRC      means we copy the source pixels to the destination
149 *
150 *   SRC_OVER means we blend the source pixels to the destination
151 *            with dstFactor = 1-srcA, srcFactor=1  (premultiplied source).
152 *            This mode is otherwise called 'blend'.
153 *
154 *   SRCA_OVER means we blend the source pixels to the destination
155 *             with dstFactor=srcA*(1-srcA) srcFactor=srcA (non-premul source).
156 *             This mode is otherwise called 'blend_srca'
157 *
158 *   clamp    means we fetch source pixels from a texture with u/v clamping
159 *
160 *   mod      means the source pixels are modulated (multiplied) by the
161 *            a/r/g/b of the current context's color. Typically used for
162 *            fade-in / fade-out.
163 *
164 *   dither   means we dither 32 bit values to 16 bits
165 */
166static shortcut_t shortcuts[] = {
167    { { { 0x03515104, 0x00000077, { 0x00000A01, 0x00000000 } },
168        { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
169        "565 fb, 8888 tx, blend SRC_OVER", scanline_t32cb16blend, init_y_noop },
170    { { { 0x03010104, 0x00000077, { 0x00000A01, 0x00000000 } },
171        { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
172        "565 fb, 8888 tx, SRC", scanline_t32cb16, init_y_noop  },
173    /* same as first entry, but with dithering */
174    { { { 0x03515104, 0x00000177, { 0x00000A01, 0x00000000 } },
175        { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
176        "565 fb, 8888 tx, blend SRC_OVER dither", scanline_t32cb16blend_dither, init_y_noop },
177    /* same as second entry, but with dithering */
178    { { { 0x03010104, 0x00000177, { 0x00000A01, 0x00000000 } },
179        { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
180        "565 fb, 8888 tx, SRC dither", scanline_t32cb16_dither, init_y_noop  },
181    /* this is used during the boot animation - CHEAT: ignore dithering */
182    { { { 0x03545404, 0x00000077, { 0x00000A01, 0x00000000 } },
183        { 0xFFFFFFFF, 0xFFFFFEFF, { 0xFFFFFFFF, 0x0000003F } } },
184        "565 fb, 8888 tx, blend dst:ONE_MINUS_SRCA src:SRCA", scanline_t32cb16blend_srca, init_y_noop },
185    /* special case for arbitrary texture coordinates (think scaling) */
186    { { { 0x03515104, 0x00000077, { 0x00000001, 0x00000000 } },
187        { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
188        "565 fb, 8888 tx, SRC_OVER clamp", scanline_t32cb16blend_clamp, init_y },
189    { { { 0x03515104, 0x00000177, { 0x00000001, 0x00000000 } },
190        { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
191        "565 fb, 8888 tx, SRC_OVER clamp dither", scanline_t32cb16blend_clamp_dither, init_y },
192    /* another case used during emulation */
193    { { { 0x03515104, 0x00000077, { 0x00001001, 0x00000000 } },
194        { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
195        "565 fb, 8888 tx, SRC_OVER clamp modulate", scanline_t32cb16blend_clamp_mod, init_y },
196    /* and this */
197    { { { 0x03515104, 0x00000077, { 0x00001002, 0x00000000 } },
198        { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
199        "565 fb, x888 tx, SRC_OVER clamp modulate", scanline_x32cb16blend_clamp_mod, init_y },
200    { { { 0x03515104, 0x00000177, { 0x00001001, 0x00000000 } },
201        { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
202        "565 fb, 8888 tx, SRC_OVER clamp modulate dither", scanline_t32cb16blend_clamp_mod_dither, init_y },
203    { { { 0x03515104, 0x00000177, { 0x00001002, 0x00000000 } },
204        { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
205        "565 fb, x888 tx, SRC_OVER clamp modulate dither", scanline_x32cb16blend_clamp_mod_dither, init_y },
206    { { { 0x03010104, 0x00000077, { 0x00000001, 0x00000000 } },
207        { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
208        "565 fb, 8888 tx, SRC clamp", scanline_t32cb16_clamp, init_y  },
209    { { { 0x03010104, 0x00000077, { 0x00000002, 0x00000000 } },
210        { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
211        "565 fb, x888 tx, SRC clamp", scanline_t32cb16_clamp, init_y  },
212    { { { 0x03010104, 0x00000177, { 0x00000001, 0x00000000 } },
213        { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
214        "565 fb, 8888 tx, SRC clamp dither", scanline_t32cb16_clamp_dither, init_y  },
215    { { { 0x03010104, 0x00000177, { 0x00000002, 0x00000000 } },
216        { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
217        "565 fb, x888 tx, SRC clamp dither", scanline_t32cb16_clamp_dither, init_y  },
218    { { { 0x03010104, 0x00000077, { 0x00000004, 0x00000000 } },
219        { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
220        "565 fb, 565 tx, SRC clamp", scanline_t16cb16_clamp, init_y  },
221    { { { 0x03515104, 0x00000077, { 0x00001004, 0x00000000 } },
222        { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
223        "565 fb, 565 tx, SRC_OVER clamp", scanline_t16cb16blend_clamp_mod, init_y  },
224    { { { 0x03515104, 0x00000077, { 0x00000000, 0x00000000 } },
225        { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0xFFFFFFFF } } },
226        "565 fb, 8888 fixed color", scanline_col32cb16blend, init_y_packed  },
227    { { { 0x00000000, 0x00000000, { 0x00000000, 0x00000000 } },
228        { 0x00000000, 0x00000007, { 0x00000000, 0x00000000 } } },
229        "(nop) alpha test", scanline_noop, init_y_noop },
230    { { { 0x00000000, 0x00000000, { 0x00000000, 0x00000000 } },
231        { 0x00000000, 0x00000070, { 0x00000000, 0x00000000 } } },
232        "(nop) depth test", scanline_noop, init_y_noop },
233    { { { 0x05000000, 0x00000000, { 0x00000000, 0x00000000 } },
234        { 0x0F000000, 0x00000080, { 0x00000000, 0x00000000 } } },
235        "(nop) logic_op", scanline_noop, init_y_noop },
236    { { { 0xF0000000, 0x00000000, { 0x00000000, 0x00000000 } },
237        { 0xF0000000, 0x00000080, { 0x00000000, 0x00000000 } } },
238        "(nop) color mask", scanline_noop, init_y_noop },
239    { { { 0x0F000000, 0x00000077, { 0x00000000, 0x00000000 } },
240        { 0xFF000000, 0x000000F7, { 0x00000000, 0x00000000 } } },
241        "(set) logic_op", scanline_set, init_y_noop },
242    { { { 0x00000000, 0x00000077, { 0x00000000, 0x00000000 } },
243        { 0xFF000000, 0x000000F7, { 0x00000000, 0x00000000 } } },
244        "(clear) logic_op", scanline_clear, init_y_noop },
245    { { { 0x03000000, 0x00000077, { 0x00000000, 0x00000000 } },
246        { 0xFFFFFF00, 0x000000F7, { 0x00000000, 0x00000000 } } },
247        "(clear) blending 0/0", scanline_clear, init_y_noop },
248    { { { 0x00000000, 0x00000000, { 0x00000000, 0x00000000 } },
249        { 0x0000003F, 0x00000000, { 0x00000000, 0x00000000 } } },
250        "(error) invalid color-buffer format", scanline_noop, init_y_error },
251};
252static const needs_filter_t noblend1to1 = {
253        // (disregard dithering, see below)
254        { 0x03010100, 0x00000077, { 0x00000A00, 0x00000000 } },
255        { 0xFFFFFFC0, 0xFFFFFEFF, { 0xFFFFFFC0, 0x0000003F } }
256};
257static  const needs_filter_t fill16noblend = {
258        { 0x03010100, 0x00000077, { 0x00000000, 0x00000000 } },
259        { 0xFFFFFFC0, 0xFFFFFFFF, { 0x0000003F, 0x0000003F } }
260};
261
262// ----------------------------------------------------------------------------
263
264#if ANDROID_ARM_CODEGEN
265static CodeCache gCodeCache(12 * 1024);
266
267class ScanlineAssembly : public Assembly {
268    AssemblyKey<needs_t> mKey;
269public:
270    ScanlineAssembly(needs_t needs, size_t size)
271        : Assembly(size), mKey(needs) { }
272    const AssemblyKey<needs_t>& key() const { return mKey; }
273};
274#endif
275
276// ----------------------------------------------------------------------------
277
278void ggl_init_scanline(context_t* c)
279{
280    c->init_y = init_y;
281    c->step_y = step_y__generic;
282    c->scanline = scanline;
283}
284
285void ggl_uninit_scanline(context_t* c)
286{
287    if (c->state.buffers.coverage)
288        free(c->state.buffers.coverage);
289#if ANDROID_ARM_CODEGEN
290    if (c->scanline_as)
291        c->scanline_as->decStrong(c);
292#endif
293}
294
295// ----------------------------------------------------------------------------
296
297static void pick_scanline(context_t* c)
298{
299#if (!defined(DEBUG__CODEGEN_ONLY) || (DEBUG__CODEGEN_ONLY == 0))
300
301#if ANDROID_CODEGEN == ANDROID_CODEGEN_GENERIC
302    c->init_y = init_y;
303    c->step_y = step_y__generic;
304    c->scanline = scanline;
305    return;
306#endif
307
308    //printf("*** needs [%08lx:%08lx:%08lx:%08lx]\n",
309    //    c->state.needs.n, c->state.needs.p,
310    //    c->state.needs.t[0], c->state.needs.t[1]);
311
312    // first handle the special case that we cannot test with a filter
313    const uint32_t cb_format = GGL_READ_NEEDS(CB_FORMAT, c->state.needs.n);
314    if (GGL_READ_NEEDS(T_FORMAT, c->state.needs.t[0]) == cb_format) {
315        if (c->state.needs.match(noblend1to1)) {
316            // this will match regardless of dithering state, since both
317            // src and dest have the same format anyway, there is no dithering
318            // to be done.
319            const GGLFormat* f =
320                &(c->formats[GGL_READ_NEEDS(T_FORMAT, c->state.needs.t[0])]);
321            if ((f->components == GGL_RGB) ||
322                (f->components == GGL_RGBA) ||
323                (f->components == GGL_LUMINANCE) ||
324                (f->components == GGL_LUMINANCE_ALPHA))
325            {
326                // format must have all of RGB components
327                // (so the current color doesn't show through)
328                c->scanline = scanline_memcpy;
329                c->init_y = init_y_noop;
330                return;
331            }
332        }
333    }
334
335    if (c->state.needs.match(fill16noblend)) {
336        c->init_y = init_y_packed;
337        switch (c->formats[cb_format].size) {
338        case 1: c->scanline = scanline_memset8;  return;
339        case 2: c->scanline = scanline_memset16; return;
340        case 4: c->scanline = scanline_memset32; return;
341        }
342    }
343
344    const int numFilters = sizeof(shortcuts)/sizeof(shortcut_t);
345    for (int i=0 ; i<numFilters ; i++) {
346        if (c->state.needs.match(shortcuts[i].filter)) {
347            c->scanline = shortcuts[i].scanline;
348            c->init_y = shortcuts[i].init_y;
349            return;
350        }
351    }
352
353#if DEBUG_NEEDS
354    LOGI("Needs: n=0x%08x p=0x%08x t0=0x%08x t1=0x%08x",
355         c->state.needs.n, c->state.needs.p,
356         c->state.needs.t[0], c->state.needs.t[1]);
357#endif
358
359#endif // DEBUG__CODEGEN_ONLY
360
361    c->init_y = init_y;
362    c->step_y = step_y__generic;
363
364#if ANDROID_ARM_CODEGEN
365    // we're going to have to generate some code...
366    // here, generate code for our pixel pipeline
367    const AssemblyKey<needs_t> key(c->state.needs);
368    sp<Assembly> assembly = gCodeCache.lookup(key);
369    if (assembly == 0) {
370        // create a new assembly region
371        sp<ScanlineAssembly> a = new ScanlineAssembly(c->state.needs,
372                ASSEMBLY_SCRATCH_SIZE);
373        // initialize our assembler
374        GGLAssembler assembler( new ARMAssembler(a) );
375        //GGLAssembler assembler(
376        //        new ARMAssemblerOptimizer(new ARMAssembler(a)) );
377        // generate the scanline code for the given needs
378        int err = assembler.scanline(c->state.needs, c);
379        if (ggl_likely(!err)) {
380            // finally, cache this assembly
381            err = gCodeCache.cache(a->key(), a);
382        }
383        if (ggl_unlikely(err)) {
384            LOGE("error generating or caching assembly. Reverting to NOP.");
385            c->scanline = scanline_noop;
386            c->init_y = init_y_noop;
387            c->step_y = step_y__nop;
388            return;
389        }
390        assembly = a;
391    }
392
393    // release the previous assembly
394    if (c->scanline_as) {
395        c->scanline_as->decStrong(c);
396    }
397
398    //LOGI("using generated pixel-pipeline");
399    c->scanline_as = assembly.get();
400    c->scanline_as->incStrong(c); //  hold on to assembly
401    c->scanline = (void(*)(context_t* c))assembly->base();
402#else
403//    LOGW("using generic (slow) pixel-pipeline");
404    c->scanline = scanline;
405#endif
406}
407
408void ggl_pick_scanline(context_t* c)
409{
410    pick_scanline(c);
411    if ((c->state.enables & GGL_ENABLE_W) &&
412        (c->state.enables & GGL_ENABLE_TMUS))
413    {
414        c->span = c->scanline;
415        c->scanline = scanline_perspective;
416        if (!(c->state.enabled_tmu & (c->state.enabled_tmu - 1))) {
417            // only one TMU enabled
418            c->scanline = scanline_perspective_single;
419        }
420    }
421}
422
423// ----------------------------------------------------------------------------
424
425static void blending(context_t* c, pixel_t* fragment, pixel_t* fb);
426static void blend_factor(context_t* c, pixel_t* r, uint32_t factor,
427        const pixel_t* src, const pixel_t* dst);
428static void rescale(uint32_t& u, uint8_t& su, uint32_t& v, uint8_t& sv);
429
430#if ANDROID_ARM_CODEGEN && (ANDROID_CODEGEN == ANDROID_CODEGEN_GENERATED)
431
432// no need to compile the generic-pipeline, it can't be reached
433void scanline(context_t*)
434{
435}
436
437#else
438
439void rescale(uint32_t& u, uint8_t& su, uint32_t& v, uint8_t& sv)
440{
441    if (su && sv) {
442        if (su > sv) {
443            v = ggl_expand(v, sv, su);
444            sv = su;
445        } else if (su < sv) {
446            u = ggl_expand(u, su, sv);
447            su = sv;
448        }
449    }
450}
451
452void blending(context_t* c, pixel_t* fragment, pixel_t* fb)
453{
454    rescale(fragment->c[0], fragment->s[0], fb->c[0], fb->s[0]);
455    rescale(fragment->c[1], fragment->s[1], fb->c[1], fb->s[1]);
456    rescale(fragment->c[2], fragment->s[2], fb->c[2], fb->s[2]);
457    rescale(fragment->c[3], fragment->s[3], fb->c[3], fb->s[3]);
458
459    pixel_t sf, df;
460    blend_factor(c, &sf, c->state.blend.src, fragment, fb);
461    blend_factor(c, &df, c->state.blend.dst, fragment, fb);
462
463    fragment->c[1] =
464            gglMulAddx(fragment->c[1], sf.c[1], gglMulx(fb->c[1], df.c[1]));
465    fragment->c[2] =
466            gglMulAddx(fragment->c[2], sf.c[2], gglMulx(fb->c[2], df.c[2]));
467    fragment->c[3] =
468            gglMulAddx(fragment->c[3], sf.c[3], gglMulx(fb->c[3], df.c[3]));
469
470    if (c->state.blend.alpha_separate) {
471        blend_factor(c, &sf, c->state.blend.src_alpha, fragment, fb);
472        blend_factor(c, &df, c->state.blend.dst_alpha, fragment, fb);
473    }
474
475    fragment->c[0] =
476            gglMulAddx(fragment->c[0], sf.c[0], gglMulx(fb->c[0], df.c[0]));
477
478    // clamp to 1.0
479    if (fragment->c[0] >= (1LU<<fragment->s[0]))
480        fragment->c[0] = (1<<fragment->s[0])-1;
481    if (fragment->c[1] >= (1LU<<fragment->s[1]))
482        fragment->c[1] = (1<<fragment->s[1])-1;
483    if (fragment->c[2] >= (1LU<<fragment->s[2]))
484        fragment->c[2] = (1<<fragment->s[2])-1;
485    if (fragment->c[3] >= (1LU<<fragment->s[3]))
486        fragment->c[3] = (1<<fragment->s[3])-1;
487}
488
489static inline int blendfactor(uint32_t x, uint32_t size, uint32_t def = 0)
490{
491    if (!size)
492        return def;
493
494    // scale to 16 bits
495    if (size > 16) {
496        x >>= (size - 16);
497    } else if (size < 16) {
498        x = ggl_expand(x, size, 16);
499    }
500    x += x >> 15;
501    return x;
502}
503
504void blend_factor(context_t* c, pixel_t* r,
505        uint32_t factor, const pixel_t* src, const pixel_t* dst)
506{
507    switch (factor) {
508        case GGL_ZERO:
509            r->c[1] =
510            r->c[2] =
511            r->c[3] =
512            r->c[0] = 0;
513            break;
514        case GGL_ONE:
515            r->c[1] =
516            r->c[2] =
517            r->c[3] =
518            r->c[0] = FIXED_ONE;
519            break;
520        case GGL_DST_COLOR:
521            r->c[1] = blendfactor(dst->c[1], dst->s[1]);
522            r->c[2] = blendfactor(dst->c[2], dst->s[2]);
523            r->c[3] = blendfactor(dst->c[3], dst->s[3]);
524            r->c[0] = blendfactor(dst->c[0], dst->s[0]);
525            break;
526        case GGL_SRC_COLOR:
527            r->c[1] = blendfactor(src->c[1], src->s[1]);
528            r->c[2] = blendfactor(src->c[2], src->s[2]);
529            r->c[3] = blendfactor(src->c[3], src->s[3]);
530            r->c[0] = blendfactor(src->c[0], src->s[0]);
531            break;
532        case GGL_ONE_MINUS_DST_COLOR:
533            r->c[1] = FIXED_ONE - blendfactor(dst->c[1], dst->s[1]);
534            r->c[2] = FIXED_ONE - blendfactor(dst->c[2], dst->s[2]);
535            r->c[3] = FIXED_ONE - blendfactor(dst->c[3], dst->s[3]);
536            r->c[0] = FIXED_ONE - blendfactor(dst->c[0], dst->s[0]);
537            break;
538        case GGL_ONE_MINUS_SRC_COLOR:
539            r->c[1] = FIXED_ONE - blendfactor(src->c[1], src->s[1]);
540            r->c[2] = FIXED_ONE - blendfactor(src->c[2], src->s[2]);
541            r->c[3] = FIXED_ONE - blendfactor(src->c[3], src->s[3]);
542            r->c[0] = FIXED_ONE - blendfactor(src->c[0], src->s[0]);
543            break;
544        case GGL_SRC_ALPHA:
545            r->c[1] =
546            r->c[2] =
547            r->c[3] =
548            r->c[0] = blendfactor(src->c[0], src->s[0], FIXED_ONE);
549            break;
550        case GGL_ONE_MINUS_SRC_ALPHA:
551            r->c[1] =
552            r->c[2] =
553            r->c[3] =
554            r->c[0] = FIXED_ONE - blendfactor(src->c[0], src->s[0], FIXED_ONE);
555            break;
556        case GGL_DST_ALPHA:
557            r->c[1] =
558            r->c[2] =
559            r->c[3] =
560            r->c[0] = blendfactor(dst->c[0], dst->s[0], FIXED_ONE);
561            break;
562        case GGL_ONE_MINUS_DST_ALPHA:
563            r->c[1] =
564            r->c[2] =
565            r->c[3] =
566            r->c[0] = FIXED_ONE - blendfactor(dst->c[0], dst->s[0], FIXED_ONE);
567            break;
568        case GGL_SRC_ALPHA_SATURATE:
569            // XXX: GGL_SRC_ALPHA_SATURATE
570            break;
571    }
572}
573
574static GGLfixed wrapping(int32_t coord, uint32_t size, int tx_wrap)
575{
576    GGLfixed d;
577    if (tx_wrap == GGL_REPEAT) {
578        d = (uint32_t(coord)>>16) * size;
579    } else if (tx_wrap == GGL_CLAMP) { // CLAMP_TO_EDGE semantics
580        const GGLfixed clamp_min = FIXED_HALF;
581        const GGLfixed clamp_max = (size << 16) - FIXED_HALF;
582        if (coord < clamp_min)     coord = clamp_min;
583        if (coord > clamp_max)     coord = clamp_max;
584        d = coord;
585    } else { // 1:1
586        const GGLfixed clamp_min = 0;
587        const GGLfixed clamp_max = (size << 16);
588        if (coord < clamp_min)     coord = clamp_min;
589        if (coord > clamp_max)     coord = clamp_max;
590        d = coord;
591    }
592    return d;
593}
594
595static inline
596GGLcolor ADJUST_COLOR_ITERATOR(GGLcolor v, GGLcolor dvdx, int len)
597{
598    const int32_t end = dvdx * (len-1) + v;
599    if (end < 0)
600        v -= end;
601    v &= ~(v>>31);
602    return v;
603}
604
605void scanline(context_t* c)
606{
607    const uint32_t enables = c->state.enables;
608    const int xs = c->iterators.xl;
609    const int x1 = c->iterators.xr;
610	int xc = x1 - xs;
611    const int16_t* covPtr = c->state.buffers.coverage + xs;
612
613    // All iterated values are sampled at the pixel center
614
615    // reset iterators for that scanline...
616    GGLcolor r, g, b, a;
617    iterators_t& ci = c->iterators;
618    if (enables & GGL_ENABLE_SMOOTH) {
619        r = (xs * c->shade.drdx) + ci.ydrdy;
620        g = (xs * c->shade.dgdx) + ci.ydgdy;
621        b = (xs * c->shade.dbdx) + ci.ydbdy;
622        a = (xs * c->shade.dadx) + ci.ydady;
623        r = ADJUST_COLOR_ITERATOR(r, c->shade.drdx, xc);
624        g = ADJUST_COLOR_ITERATOR(g, c->shade.dgdx, xc);
625        b = ADJUST_COLOR_ITERATOR(b, c->shade.dbdx, xc);
626        a = ADJUST_COLOR_ITERATOR(a, c->shade.dadx, xc);
627    } else {
628        r = ci.ydrdy;
629        g = ci.ydgdy;
630        b = ci.ydbdy;
631        a = ci.ydady;
632    }
633
634    // z iterators are 1.31
635    GGLfixed z = (xs * c->shade.dzdx) + ci.ydzdy;
636    GGLfixed f = (xs * c->shade.dfdx) + ci.ydfdy;
637
638    struct {
639        GGLfixed s, t;
640    } tc[GGL_TEXTURE_UNIT_COUNT];
641    if (enables & GGL_ENABLE_TMUS) {
642        for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; ++i) {
643            if (c->state.texture[i].enable) {
644                texture_iterators_t& ti = c->state.texture[i].iterators;
645                if (enables & GGL_ENABLE_W) {
646                    tc[i].s = ti.ydsdy;
647                    tc[i].t = ti.ydtdy;
648                } else {
649                    tc[i].s = (xs * ti.dsdx) + ti.ydsdy;
650                    tc[i].t = (xs * ti.dtdx) + ti.ydtdy;
651                }
652            }
653        }
654    }
655
656    pixel_t fragment;
657    pixel_t texel;
658    pixel_t fb;
659
660	uint32_t x = xs;
661	uint32_t y = c->iterators.y;
662
663	while (xc--) {
664
665        { // just a scope
666
667		// read color (convert to 8 bits by keeping only the integer part)
668        fragment.s[1] = fragment.s[2] =
669        fragment.s[3] = fragment.s[0] = 8;
670        fragment.c[1] = r >> (GGL_COLOR_BITS-8);
671        fragment.c[2] = g >> (GGL_COLOR_BITS-8);
672        fragment.c[3] = b >> (GGL_COLOR_BITS-8);
673        fragment.c[0] = a >> (GGL_COLOR_BITS-8);
674
675		// texturing
676        if (enables & GGL_ENABLE_TMUS) {
677            for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; ++i) {
678                texture_t& tx = c->state.texture[i];
679                if (!tx.enable)
680                    continue;
681                texture_iterators_t& ti = tx.iterators;
682                int32_t u, v;
683
684                // s-coordinate
685                if (tx.s_coord != GGL_ONE_TO_ONE) {
686                    const int w = tx.surface.width;
687                    u = wrapping(tc[i].s, w, tx.s_wrap);
688                    tc[i].s += ti.dsdx;
689                } else {
690                    u = (((tx.shade.is0>>16) + x)<<16) + FIXED_HALF;
691                }
692
693                // t-coordinate
694                if (tx.t_coord != GGL_ONE_TO_ONE) {
695                    const int h = tx.surface.height;
696                    v = wrapping(tc[i].t, h, tx.t_wrap);
697                    tc[i].t += ti.dtdx;
698                } else {
699                    v = (((tx.shade.it0>>16) + y)<<16) + FIXED_HALF;
700                }
701
702                // read texture
703                if (tx.mag_filter == GGL_NEAREST &&
704                    tx.min_filter == GGL_NEAREST)
705                {
706                    u >>= 16;
707                    v >>= 16;
708                    tx.surface.read(&tx.surface, c, u, v, &texel);
709                } else {
710                    const int w = tx.surface.width;
711                    const int h = tx.surface.height;
712                    u -= FIXED_HALF;
713                    v -= FIXED_HALF;
714                    int u0 = u >> 16;
715                    int v0 = v >> 16;
716                    int u1 = u0 + 1;
717                    int v1 = v0 + 1;
718                    if (tx.s_wrap == GGL_REPEAT) {
719                        if (u0<0)  u0 += w;
720                        if (u1<0)  u1 += w;
721                        if (u0>=w) u0 -= w;
722                        if (u1>=w) u1 -= w;
723                    } else {
724                        if (u0<0)  u0 = 0;
725                        if (u1<0)  u1 = 0;
726                        if (u0>=w) u0 = w-1;
727                        if (u1>=w) u1 = w-1;
728                    }
729                    if (tx.t_wrap == GGL_REPEAT) {
730                        if (v0<0)  v0 += h;
731                        if (v1<0)  v1 += h;
732                        if (v0>=h) v0 -= h;
733                        if (v1>=h) v1 -= h;
734                    } else {
735                        if (v0<0)  v0 = 0;
736                        if (v1<0)  v1 = 0;
737                        if (v0>=h) v0 = h-1;
738                        if (v1>=h) v1 = h-1;
739                    }
740                    pixel_t texels[4];
741                    uint32_t mm[4];
742                    tx.surface.read(&tx.surface, c, u0, v0, &texels[0]);
743                    tx.surface.read(&tx.surface, c, u0, v1, &texels[1]);
744                    tx.surface.read(&tx.surface, c, u1, v0, &texels[2]);
745                    tx.surface.read(&tx.surface, c, u1, v1, &texels[3]);
746                    u = (u >> 12) & 0xF;
747                    v = (v >> 12) & 0xF;
748                    u += u>>3;
749                    v += v>>3;
750                    mm[0] = (0x10 - u) * (0x10 - v);
751                    mm[1] = (0x10 - u) * v;
752                    mm[2] = u * (0x10 - v);
753                    mm[3] = 0x100 - (mm[0] + mm[1] + mm[2]);
754                    for (int j=0 ; j<4 ; j++) {
755                        texel.s[j] = texels[0].s[j];
756                        if (!texel.s[j]) continue;
757                        texel.s[j] += 8;
758                        texel.c[j] =    texels[0].c[j]*mm[0] +
759                                        texels[1].c[j]*mm[1] +
760                                        texels[2].c[j]*mm[2] +
761                                        texels[3].c[j]*mm[3] ;
762                    }
763                }
764
765                // Texture environnement...
766                for (int j=0 ; j<4 ; j++) {
767                    uint32_t& Cf = fragment.c[j];
768                    uint32_t& Ct = texel.c[j];
769                    uint8_t& sf  = fragment.s[j];
770                    uint8_t& st  = texel.s[j];
771                    uint32_t At = texel.c[0];
772                    uint8_t sat = texel.s[0];
773                    switch (tx.env) {
774                    case GGL_REPLACE:
775                        if (st) {
776                            Cf = Ct;
777                            sf = st;
778                        }
779                        break;
780                    case GGL_MODULATE:
781                        if (st) {
782                            uint32_t factor = Ct + (Ct>>(st-1));
783                            Cf = (Cf * factor) >> st;
784                        }
785                        break;
786                    case GGL_DECAL:
787                        if (sat) {
788                            rescale(Cf, sf, Ct, st);
789                            Cf += ((Ct - Cf) * (At + (At>>(sat-1)))) >> sat;
790                        }
791                        break;
792                    case GGL_BLEND:
793                        if (st) {
794                            uint32_t Cc = tx.env_color[i];
795                            if (sf>8)       Cc = (Cc * ((1<<sf)-1))>>8;
796                            else if (sf<8)  Cc = (Cc - (Cc>>(8-sf)))>>(8-sf);
797                            uint32_t factor = Ct + (Ct>>(st-1));
798                            Cf = ((((1<<st) - factor) * Cf) + Ct*Cc)>>st;
799                        }
800                        break;
801                    case GGL_ADD:
802                        if (st) {
803                            rescale(Cf, sf, Ct, st);
804                            Cf += Ct;
805                        }
806                        break;
807                    }
808                }
809            }
810		}
811
812        // coverage application
813        if (enables & GGL_ENABLE_AA) {
814            int16_t cf = *covPtr++;
815            fragment.c[0] = (int64_t(fragment.c[0]) * cf) >> 15;
816        }
817
818        // alpha-test
819        if (enables & GGL_ENABLE_ALPHA_TEST) {
820            GGLcolor ref = c->state.alpha_test.ref;
821            GGLcolor alpha = (uint64_t(fragment.c[0]) *
822                    ((1<<GGL_COLOR_BITS)-1)) / ((1<<fragment.s[0])-1);
823            switch (c->state.alpha_test.func) {
824            case GGL_NEVER:     goto discard;
825            case GGL_LESS:      if (alpha<ref)  break; goto discard;
826            case GGL_EQUAL:     if (alpha==ref) break; goto discard;
827            case GGL_LEQUAL:    if (alpha<=ref) break; goto discard;
828            case GGL_GREATER:   if (alpha>ref)  break; goto discard;
829            case GGL_NOTEQUAL:  if (alpha!=ref) break; goto discard;
830            case GGL_GEQUAL:    if (alpha>=ref) break; goto discard;
831            }
832        }
833
834        // depth test
835        if (c->state.buffers.depth.format) {
836            if (enables & GGL_ENABLE_DEPTH_TEST) {
837                surface_t* cb = &(c->state.buffers.depth);
838                uint16_t* p = (uint16_t*)(cb->data)+(x+(cb->stride*y));
839                uint16_t zz = uint32_t(z)>>(16);
840                uint16_t depth = *p;
841                switch (c->state.depth_test.func) {
842                case GGL_NEVER:     goto discard;
843                case GGL_LESS:      if (zz<depth)    break; goto discard;
844                case GGL_EQUAL:     if (zz==depth)   break; goto discard;
845                case GGL_LEQUAL:    if (zz<=depth)   break; goto discard;
846                case GGL_GREATER:   if (zz>depth)    break; goto discard;
847                case GGL_NOTEQUAL:  if (zz!=depth)   break; goto discard;
848                case GGL_GEQUAL:    if (zz>=depth)   break; goto discard;
849                }
850                // depth buffer is not enabled, if depth-test is not enabled
851/*
852        fragment.s[1] = fragment.s[2] =
853        fragment.s[3] = fragment.s[0] = 8;
854        fragment.c[1] =
855        fragment.c[2] =
856        fragment.c[3] =
857        fragment.c[0] = 255 - (zz>>8);
858*/
859                if (c->state.mask.depth) {
860                    *p = zz;
861                }
862            }
863        }
864
865        // fog
866        if (enables & GGL_ENABLE_FOG) {
867            for (int i=1 ; i<=3 ; i++) {
868                GGLfixed fc = (c->state.fog.color[i] * 0x10000) / 0xFF;
869                uint32_t& c = fragment.c[i];
870                uint8_t& s  = fragment.s[i];
871                c = (c * 0x10000) / ((1<<s)-1);
872                c = gglMulAddx(c, f, gglMulx(fc, 0x10000 - f));
873                s = 16;
874            }
875        }
876
877        // blending
878        if (enables & GGL_ENABLE_BLENDING) {
879            fb.c[1] = fb.c[2] = fb.c[3] = fb.c[0] = 0; // placate valgrind
880            fb.s[1] = fb.s[2] = fb.s[3] = fb.s[0] = 0;
881            c->state.buffers.color.read(
882                    &(c->state.buffers.color), c, x, y, &fb);
883            blending( c, &fragment, &fb );
884        }
885
886		// write
887        c->state.buffers.color.write(
888                &(c->state.buffers.color), c, x, y, &fragment);
889        }
890
891discard:
892		// iterate...
893        x += 1;
894        if (enables & GGL_ENABLE_SMOOTH) {
895            r += c->shade.drdx;
896            g += c->shade.dgdx;
897            b += c->shade.dbdx;
898            a += c->shade.dadx;
899        }
900        z += c->shade.dzdx;
901        f += c->shade.dfdx;
902	}
903}
904
905#endif // ANDROID_ARM_CODEGEN && (ANDROID_CODEGEN == ANDROID_CODEGEN_GENERATED)
906
907// ----------------------------------------------------------------------------
908#if 0
909#pragma mark -
910#pragma mark Scanline
911#endif
912
913/* Used to parse a 32-bit source texture linearly. Usage is:
914 *
915 * horz_iterator32  hi(context);
916 * while (...) {
917 *    uint32_t  src_pixel = hi.get_pixel32();
918 *    ...
919 * }
920 *
921 * Use only for one-to-one texture mapping.
922 */
923struct horz_iterator32 {
924    horz_iterator32(context_t* c) {
925        const int x = c->iterators.xl;
926        const int y = c->iterators.y;
927        texture_t& tx = c->state.texture[0];
928        const int32_t u = (tx.shade.is0>>16) + x;
929        const int32_t v = (tx.shade.it0>>16) + y;
930        m_src = reinterpret_cast<uint32_t*>(tx.surface.data)+(u+(tx.surface.stride*v));
931    }
932    uint32_t  get_pixel32() {
933        return *m_src++;
934    }
935protected:
936    uint32_t* m_src;
937};
938
939/* A variant for 16-bit source textures. */
940struct horz_iterator16 {
941    horz_iterator16(context_t* c) {
942        const int x = c->iterators.xl;
943        const int y = c->iterators.y;
944        texture_t& tx = c->state.texture[0];
945        const int32_t u = (tx.shade.is0>>16) + x;
946        const int32_t v = (tx.shade.it0>>16) + y;
947        m_src = reinterpret_cast<uint16_t*>(tx.surface.data)+(u+(tx.surface.stride*v));
948    }
949    uint16_t  get_pixel16() {
950        return *m_src++;
951    }
952protected:
953    uint16_t* m_src;
954};
955
956/* A clamp iterator is used to iterate inside a texture with GGL_CLAMP.
957 * After initialization, call get_src16() or get_src32() to get the current
958 * texture pixel value.
959 */
960struct clamp_iterator {
961    clamp_iterator(context_t* c) {
962        const int xs = c->iterators.xl;
963        texture_t& tx = c->state.texture[0];
964        texture_iterators_t& ti = tx.iterators;
965        m_s = (xs * ti.dsdx) + ti.ydsdy;
966        m_t = (xs * ti.dtdx) + ti.ydtdy;
967        m_ds = ti.dsdx;
968        m_dt = ti.dtdx;
969        m_width_m1 = tx.surface.width - 1;
970        m_height_m1 = tx.surface.height - 1;
971        m_data = tx.surface.data;
972        m_stride = tx.surface.stride;
973    }
974    uint16_t get_pixel16() {
975        int  u, v;
976        get_uv(u, v);
977        uint16_t* src = reinterpret_cast<uint16_t*>(m_data) + (u + (m_stride*v));
978        return src[0];
979    }
980    uint32_t get_pixel32() {
981        int  u, v;
982        get_uv(u, v);
983        uint32_t* src = reinterpret_cast<uint32_t*>(m_data) + (u + (m_stride*v));
984        return src[0];
985    }
986private:
987    void   get_uv(int& u, int& v) {
988        int  uu = m_s >> 16;
989        int  vv = m_t >> 16;
990        if (uu < 0)
991            uu = 0;
992        if (uu > m_width_m1)
993            uu = m_width_m1;
994        if (vv < 0)
995            vv = 0;
996        if (vv > m_height_m1)
997            vv = m_height_m1;
998        u = uu;
999        v = vv;
1000        m_s += m_ds;
1001        m_t += m_dt;
1002    }
1003
1004    GGLfixed  m_s, m_t;
1005    GGLfixed  m_ds, m_dt;
1006    int       m_width_m1, m_height_m1;
1007    uint8_t*  m_data;
1008    int       m_stride;
1009};
1010
1011/*
1012 * The 'horizontal clamp iterator' variant corresponds to the case where
1013 * the 'v' coordinate doesn't change. This is useful to avoid one mult and
1014 * extra adds / checks per pixels, if the blending/processing operation after
1015 * this is very fast.
1016 */
1017static int is_context_horizontal(const context_t* c) {
1018    return (c->state.texture[0].iterators.dtdx == 0);
1019}
1020
1021struct horz_clamp_iterator {
1022    uint16_t  get_pixel16() {
1023        int  u = m_s >> 16;
1024        m_s += m_ds;
1025        if (u < 0)
1026            u = 0;
1027        if (u > m_width_m1)
1028            u = m_width_m1;
1029        const uint16_t* src = reinterpret_cast<const uint16_t*>(m_data);
1030        return src[u];
1031    }
1032    uint32_t  get_pixel32() {
1033        int  u = m_s >> 16;
1034        m_s += m_ds;
1035        if (u < 0)
1036            u = 0;
1037        if (u > m_width_m1)
1038            u = m_width_m1;
1039        const uint32_t* src = reinterpret_cast<const uint32_t*>(m_data);
1040        return src[u];
1041    }
1042protected:
1043    void init(const context_t* c, int shift);
1044    GGLfixed       m_s;
1045    GGLfixed       m_ds;
1046    int            m_width_m1;
1047    const uint8_t* m_data;
1048};
1049
1050void horz_clamp_iterator::init(const context_t* c, int shift)
1051{
1052    const int xs = c->iterators.xl;
1053    const texture_t& tx = c->state.texture[0];
1054    const texture_iterators_t& ti = tx.iterators;
1055    m_s = (xs * ti.dsdx) + ti.ydsdy;
1056    m_ds = ti.dsdx;
1057    m_width_m1 = tx.surface.width-1;
1058    m_data = tx.surface.data;
1059
1060    GGLfixed t = (xs * ti.dtdx) + ti.ydtdy;
1061    int      v = t >> 16;
1062    if (v < 0)
1063        v = 0;
1064    else if (v >= (int)tx.surface.height)
1065        v = (int)tx.surface.height-1;
1066
1067    m_data += (tx.surface.stride*v) << shift;
1068}
1069
1070struct horz_clamp_iterator16 : horz_clamp_iterator {
1071    horz_clamp_iterator16(const context_t* c) {
1072        init(c,1);
1073    };
1074};
1075
1076struct horz_clamp_iterator32 : horz_clamp_iterator {
1077    horz_clamp_iterator32(context_t* c) {
1078        init(c,2);
1079    };
1080};
1081
1082/* This is used to perform dithering operations.
1083 */
1084struct ditherer {
1085    ditherer(const context_t* c) {
1086        const int x = c->iterators.xl;
1087        const int y = c->iterators.y;
1088        m_line = &c->ditherMatrix[ ((y & GGL_DITHER_MASK)<<GGL_DITHER_ORDER_SHIFT) ];
1089        m_index = x & GGL_DITHER_MASK;
1090    }
1091    void step(void) {
1092        m_index++;
1093    }
1094    int  get_value(void) {
1095        int ret = m_line[m_index & GGL_DITHER_MASK];
1096        m_index++;
1097        return ret;
1098    }
1099    uint16_t abgr8888ToRgb565(uint32_t s) {
1100        uint32_t r = s & 0xff;
1101        uint32_t g = (s >> 8) & 0xff;
1102        uint32_t b = (s >> 16) & 0xff;
1103        return rgb888ToRgb565(r,g,b);
1104    }
1105    /* The following assumes that r/g/b are in the 0..255 range each */
1106    uint16_t rgb888ToRgb565(uint32_t& r, uint32_t& g, uint32_t &b) {
1107        int threshold = get_value();
1108        /* dither in on GGL_DITHER_BITS, and each of r, g, b is on 8 bits */
1109        r += (threshold >> (GGL_DITHER_BITS-8 +5));
1110        g += (threshold >> (GGL_DITHER_BITS-8 +6));
1111        b += (threshold >> (GGL_DITHER_BITS-8 +5));
1112        if (r > 0xff)
1113            r = 0xff;
1114        if (g > 0xff)
1115            g = 0xff;
1116        if (b > 0xff)
1117            b = 0xff;
1118        return uint16_t(((r & 0xf8) << 8) | ((g & 0xfc) << 3) | (b >> 3));
1119    }
1120protected:
1121    const uint8_t* m_line;
1122    int            m_index;
1123};
1124
1125/* This structure is used to blend (SRC_OVER) 32-bit source pixels
1126 * onto 16-bit destination ones. Usage is simply:
1127 *
1128 *   blender.blend(<32-bit-src-pixel-value>,<ptr-to-16-bit-dest-pixel>)
1129 */
1130struct blender_32to16 {
1131    blender_32to16(context_t* c) { }
1132    void write(uint32_t s, uint16_t* dst) {
1133        if (s == 0)
1134            return;
1135        s = GGL_RGBA_TO_HOST(s);
1136        int sA = (s>>24);
1137        if (sA == 0xff) {
1138            *dst = convertAbgr8888ToRgb565(s);
1139        } else {
1140            int f = 0x100 - (sA + (sA>>7));
1141            int sR = (s >> (   3))&0x1F;
1142            int sG = (s >> ( 8+2))&0x3F;
1143            int sB = (s >> (16+3))&0x1F;
1144            uint16_t d = *dst;
1145            int dR = (d>>11)&0x1f;
1146            int dG = (d>>5)&0x3f;
1147            int dB = (d)&0x1f;
1148            sR += (f*dR)>>8;
1149            sG += (f*dG)>>8;
1150            sB += (f*dB)>>8;
1151            *dst = uint16_t((sR<<11)|(sG<<5)|sB);
1152        }
1153    }
1154    void write(uint32_t s, uint16_t* dst, ditherer& di) {
1155        if (s == 0) {
1156            di.step();
1157            return;
1158        }
1159        s = GGL_RGBA_TO_HOST(s);
1160        int sA = (s>>24);
1161        if (sA == 0xff) {
1162            *dst = di.abgr8888ToRgb565(s);
1163        } else {
1164            int threshold = di.get_value() << (8 - GGL_DITHER_BITS);
1165            int f = 0x100 - (sA + (sA>>7));
1166            int sR = (s >> (   3))&0x1F;
1167            int sG = (s >> ( 8+2))&0x3F;
1168            int sB = (s >> (16+3))&0x1F;
1169            uint16_t d = *dst;
1170            int dR = (d>>11)&0x1f;
1171            int dG = (d>>5)&0x3f;
1172            int dB = (d)&0x1f;
1173            sR = ((sR << 8) + f*dR + threshold)>>8;
1174            sG = ((sG << 8) + f*dG + threshold)>>8;
1175            sB = ((sB << 8) + f*dB + threshold)>>8;
1176            if (sR > 0x1f) sR = 0x1f;
1177            if (sG > 0x3f) sG = 0x3f;
1178            if (sB > 0x1f) sB = 0x1f;
1179            *dst = uint16_t((sR<<11)|(sG<<5)|sB);
1180        }
1181    }
1182};
1183
1184/* This blender does the same for the 'blend_srca' operation.
1185 * where dstFactor=srcA*(1-srcA) srcFactor=srcA
1186 */
1187struct blender_32to16_srcA {
1188    blender_32to16_srcA(const context_t* c) { }
1189    void write(uint32_t s, uint16_t* dst) {
1190        if (!s) {
1191            return;
1192        }
1193        uint16_t d = *dst;
1194        s = GGL_RGBA_TO_HOST(s);
1195        int sR = (s >> (   3))&0x1F;
1196        int sG = (s >> ( 8+2))&0x3F;
1197        int sB = (s >> (16+3))&0x1F;
1198        int sA = (s>>24);
1199        int f1 = (sA + (sA>>7));
1200        int f2 = 0x100-f1;
1201        int dR = (d>>11)&0x1f;
1202        int dG = (d>>5)&0x3f;
1203        int dB = (d)&0x1f;
1204        sR = (f1*sR + f2*dR)>>8;
1205        sG = (f1*sG + f2*dG)>>8;
1206        sB = (f1*sB + f2*dB)>>8;
1207        *dst = uint16_t((sR<<11)|(sG<<5)|sB);
1208    }
1209};
1210
1211/* Common init code the modulating blenders */
1212struct blender_modulate {
1213    void init(const context_t* c) {
1214        const int r = c->iterators.ydrdy >> (GGL_COLOR_BITS-8);
1215        const int g = c->iterators.ydgdy >> (GGL_COLOR_BITS-8);
1216        const int b = c->iterators.ydbdy >> (GGL_COLOR_BITS-8);
1217        const int a = c->iterators.ydady >> (GGL_COLOR_BITS-8);
1218        m_r = r + (r >> 7);
1219        m_g = g + (g >> 7);
1220        m_b = b + (b >> 7);
1221        m_a = a + (a >> 7);
1222    }
1223protected:
1224    int m_r, m_g, m_b, m_a;
1225};
1226
1227/* This blender does a normal blend after modulation.
1228 */
1229struct blender_32to16_modulate : blender_modulate {
1230    blender_32to16_modulate(const context_t* c) {
1231        init(c);
1232    }
1233    void write(uint32_t s, uint16_t* dst) {
1234        // blend source and destination
1235        if (!s) {
1236            return;
1237        }
1238        s = GGL_RGBA_TO_HOST(s);
1239
1240        /* We need to modulate s */
1241        uint32_t  sA = (s >> 24);
1242        uint32_t  sB = (s >> 16) & 0xff;
1243        uint32_t  sG = (s >> 8) & 0xff;
1244        uint32_t  sR = s & 0xff;
1245
1246        sA = (sA*m_a) >> 8;
1247        /* Keep R/G/B scaled to 5.8 or 6.8 fixed float format */
1248        sR = (sR*m_r) >> (8 - 5);
1249        sG = (sG*m_g) >> (8 - 6);
1250        sB = (sB*m_b) >> (8 - 5);
1251
1252        /* Now do a normal blend */
1253        int f = 0x100 - (sA + (sA>>7));
1254        uint16_t d = *dst;
1255        int dR = (d>>11)&0x1f;
1256        int dG = (d>>5)&0x3f;
1257        int dB = (d)&0x1f;
1258        sR = (sR + f*dR)>>8;
1259        sG = (sG + f*dG)>>8;
1260        sB = (sB + f*dB)>>8;
1261        *dst = uint16_t((sR<<11)|(sG<<5)|sB);
1262    }
1263    void write(uint32_t s, uint16_t* dst, ditherer& di) {
1264        // blend source and destination
1265        if (!s) {
1266            di.step();
1267            return;
1268        }
1269        s = GGL_RGBA_TO_HOST(s);
1270
1271        /* We need to modulate s */
1272        uint32_t  sA = (s >> 24);
1273        uint32_t  sB = (s >> 16) & 0xff;
1274        uint32_t  sG = (s >> 8) & 0xff;
1275        uint32_t  sR = s & 0xff;
1276
1277        sA = (sA*m_a) >> 8;
1278        /* keep R/G/B scaled to 5.8 or 6.8 fixed float format */
1279        sR = (sR*m_r) >> (8 - 5);
1280        sG = (sG*m_g) >> (8 - 6);
1281        sB = (sB*m_b) >> (8 - 5);
1282
1283        /* Scale threshold to 0.8 fixed float format */
1284        int threshold = di.get_value() << (8 - GGL_DITHER_BITS);
1285        int f = 0x100 - (sA + (sA>>7));
1286        uint16_t d = *dst;
1287        int dR = (d>>11)&0x1f;
1288        int dG = (d>>5)&0x3f;
1289        int dB = (d)&0x1f;
1290        sR = (sR + f*dR + threshold)>>8;
1291        sG = (sG + f*dG + threshold)>>8;
1292        sB = (sB + f*dB + threshold)>>8;
1293        if (sR > 0x1f) sR = 0x1f;
1294        if (sG > 0x3f) sG = 0x3f;
1295        if (sB > 0x1f) sB = 0x1f;
1296        *dst = uint16_t((sR<<11)|(sG<<5)|sB);
1297    }
1298};
1299
1300/* same as 32to16_modulate, except that the input is xRGB, instead of ARGB */
1301struct blender_x32to16_modulate : blender_modulate {
1302    blender_x32to16_modulate(const context_t* c) {
1303        init(c);
1304    }
1305    void write(uint32_t s, uint16_t* dst) {
1306        s = GGL_RGBA_TO_HOST(s);
1307
1308        uint32_t  sB = (s >> 16) & 0xff;
1309        uint32_t  sG = (s >> 8) & 0xff;
1310        uint32_t  sR = s & 0xff;
1311
1312        /* Keep R/G/B in 5.8 or 6.8 format */
1313        sR = (sR*m_r) >> (8 - 5);
1314        sG = (sG*m_g) >> (8 - 6);
1315        sB = (sB*m_b) >> (8 - 5);
1316
1317        int f = 0x100 - m_a;
1318        uint16_t d = *dst;
1319        int dR = (d>>11)&0x1f;
1320        int dG = (d>>5)&0x3f;
1321        int dB = (d)&0x1f;
1322        sR = (sR + f*dR)>>8;
1323        sG = (sG + f*dG)>>8;
1324        sB = (sB + f*dB)>>8;
1325        *dst = uint16_t((sR<<11)|(sG<<5)|sB);
1326    }
1327    void write(uint32_t s, uint16_t* dst, ditherer& di) {
1328        s = GGL_RGBA_TO_HOST(s);
1329
1330        uint32_t  sB = (s >> 16) & 0xff;
1331        uint32_t  sG = (s >> 8) & 0xff;
1332        uint32_t  sR = s & 0xff;
1333
1334        sR = (sR*m_r) >> (8 - 5);
1335        sG = (sG*m_g) >> (8 - 6);
1336        sB = (sB*m_b) >> (8 - 5);
1337
1338        /* Now do a normal blend */
1339        int threshold = di.get_value() << (8 - GGL_DITHER_BITS);
1340        int f = 0x100 - m_a;
1341        uint16_t d = *dst;
1342        int dR = (d>>11)&0x1f;
1343        int dG = (d>>5)&0x3f;
1344        int dB = (d)&0x1f;
1345        sR = (sR + f*dR + threshold)>>8;
1346        sG = (sG + f*dG + threshold)>>8;
1347        sB = (sB + f*dB + threshold)>>8;
1348        if (sR > 0x1f) sR = 0x1f;
1349        if (sG > 0x3f) sG = 0x3f;
1350        if (sB > 0x1f) sB = 0x1f;
1351        *dst = uint16_t((sR<<11)|(sG<<5)|sB);
1352    }
1353};
1354
1355/* Same as above, but source is 16bit rgb565 */
1356struct blender_16to16_modulate : blender_modulate {
1357    blender_16to16_modulate(const context_t* c) {
1358        init(c);
1359    }
1360    void write(uint16_t s16, uint16_t* dst) {
1361        uint32_t  s = s16;
1362
1363        uint32_t  sR = s >> 11;
1364        uint32_t  sG = (s >> 5) & 0x3f;
1365        uint32_t  sB = s & 0x1f;
1366
1367        sR = (sR*m_r);
1368        sG = (sG*m_g);
1369        sB = (sB*m_b);
1370
1371        int f = 0x100 - m_a;
1372        uint16_t d = *dst;
1373        int dR = (d>>11)&0x1f;
1374        int dG = (d>>5)&0x3f;
1375        int dB = (d)&0x1f;
1376        sR = (sR + f*dR)>>8;
1377        sG = (sG + f*dG)>>8;
1378        sB = (sB + f*dB)>>8;
1379        *dst = uint16_t((sR<<11)|(sG<<5)|sB);
1380    }
1381};
1382
1383/* This is used to iterate over a 16-bit destination color buffer.
1384 * Usage is:
1385 *
1386 *   dst_iterator16  di(context);
1387 *   while (di.count--) {
1388 *       <do stuff with dest pixel at di.dst>
1389 *       di.dst++;
1390 *   }
1391 */
1392struct dst_iterator16 {
1393    dst_iterator16(const context_t* c) {
1394        const int x = c->iterators.xl;
1395        const int width = c->iterators.xr - x;
1396        const int32_t y = c->iterators.y;
1397        const surface_t* cb = &(c->state.buffers.color);
1398        count = width;
1399        dst = reinterpret_cast<uint16_t*>(cb->data) + (x+(cb->stride*y));
1400    }
1401    int        count;
1402    uint16_t*  dst;
1403};
1404
1405
1406static void scanline_t32cb16_clamp(context_t* c)
1407{
1408    dst_iterator16  di(c);
1409
1410    if (is_context_horizontal(c)) {
1411        /* Special case for simple horizontal scaling */
1412        horz_clamp_iterator32 ci(c);
1413        while (di.count--) {
1414            uint32_t s = ci.get_pixel32();
1415            *di.dst++ = convertAbgr8888ToRgb565(s);
1416        }
1417    } else {
1418        /* General case */
1419        clamp_iterator ci(c);
1420        while (di.count--) {
1421            uint32_t s = ci.get_pixel32();
1422            *di.dst++ = convertAbgr8888ToRgb565(s);
1423        }
1424    }
1425}
1426
1427static void scanline_t32cb16_dither(context_t* c)
1428{
1429    horz_iterator32 si(c);
1430    dst_iterator16  di(c);
1431    ditherer        dither(c);
1432
1433    while (di.count--) {
1434        uint32_t s = si.get_pixel32();
1435        *di.dst++ = dither.abgr8888ToRgb565(s);
1436    }
1437}
1438
1439static void scanline_t32cb16_clamp_dither(context_t* c)
1440{
1441    dst_iterator16  di(c);
1442    ditherer        dither(c);
1443
1444    if (is_context_horizontal(c)) {
1445        /* Special case for simple horizontal scaling */
1446        horz_clamp_iterator32 ci(c);
1447        while (di.count--) {
1448            uint32_t s = ci.get_pixel32();
1449            *di.dst++ = dither.abgr8888ToRgb565(s);
1450        }
1451    } else {
1452        /* General case */
1453        clamp_iterator ci(c);
1454        while (di.count--) {
1455            uint32_t s = ci.get_pixel32();
1456            *di.dst++ = dither.abgr8888ToRgb565(s);
1457        }
1458    }
1459}
1460
1461static void scanline_t32cb16blend_dither(context_t* c)
1462{
1463    dst_iterator16 di(c);
1464    ditherer       dither(c);
1465    blender_32to16 bl(c);
1466    horz_iterator32  hi(c);
1467    while (di.count--) {
1468        uint32_t s = hi.get_pixel32();
1469        bl.write(s, di.dst, dither);
1470        di.dst++;
1471    }
1472}
1473
1474static void scanline_t32cb16blend_clamp(context_t* c)
1475{
1476    dst_iterator16  di(c);
1477    blender_32to16  bl(c);
1478
1479    if (is_context_horizontal(c)) {
1480        horz_clamp_iterator32 ci(c);
1481        while (di.count--) {
1482            uint32_t s = ci.get_pixel32();
1483            bl.write(s, di.dst);
1484            di.dst++;
1485        }
1486    } else {
1487        clamp_iterator ci(c);
1488        while (di.count--) {
1489            uint32_t s = ci.get_pixel32();
1490            bl.write(s, di.dst);
1491            di.dst++;
1492        }
1493    }
1494}
1495
1496static void scanline_t32cb16blend_clamp_dither(context_t* c)
1497{
1498    dst_iterator16 di(c);
1499    ditherer       dither(c);
1500    blender_32to16 bl(c);
1501
1502    clamp_iterator ci(c);
1503    while (di.count--) {
1504        uint32_t s = ci.get_pixel32();
1505        bl.write(s, di.dst, dither);
1506        di.dst++;
1507    }
1508}
1509
1510void scanline_t32cb16blend_clamp_mod(context_t* c)
1511{
1512    dst_iterator16 di(c);
1513    blender_32to16_modulate bl(c);
1514
1515    clamp_iterator ci(c);
1516    while (di.count--) {
1517        uint32_t s = ci.get_pixel32();
1518        bl.write(s, di.dst);
1519        di.dst++;
1520    }
1521}
1522
1523void scanline_t32cb16blend_clamp_mod_dither(context_t* c)
1524{
1525    dst_iterator16 di(c);
1526    blender_32to16_modulate bl(c);
1527    ditherer dither(c);
1528
1529    clamp_iterator ci(c);
1530    while (di.count--) {
1531        uint32_t s = ci.get_pixel32();
1532        bl.write(s, di.dst, dither);
1533        di.dst++;
1534    }
1535}
1536
1537/* Variant of scanline_t32cb16blend_clamp_mod with a xRGB texture */
1538void scanline_x32cb16blend_clamp_mod(context_t* c)
1539{
1540    dst_iterator16 di(c);
1541    blender_x32to16_modulate  bl(c);
1542
1543    clamp_iterator ci(c);
1544    while (di.count--) {
1545        uint32_t s = ci.get_pixel32();
1546        bl.write(s, di.dst);
1547        di.dst++;
1548    }
1549}
1550
1551void scanline_x32cb16blend_clamp_mod_dither(context_t* c)
1552{
1553    dst_iterator16 di(c);
1554    blender_x32to16_modulate  bl(c);
1555    ditherer dither(c);
1556
1557    clamp_iterator ci(c);
1558    while (di.count--) {
1559        uint32_t s = ci.get_pixel32();
1560        bl.write(s, di.dst, dither);
1561        di.dst++;
1562    }
1563}
1564
1565void scanline_t16cb16_clamp(context_t* c)
1566{
1567    dst_iterator16  di(c);
1568
1569    /* Special case for simple horizontal scaling */
1570    if (is_context_horizontal(c)) {
1571        horz_clamp_iterator16 ci(c);
1572        while (di.count--) {
1573            *di.dst++ = ci.get_pixel16();
1574        }
1575    } else {
1576        clamp_iterator ci(c);
1577        while (di.count--) {
1578            *di.dst++ = ci.get_pixel16();
1579        }
1580    }
1581}
1582
1583
1584
1585template <typename T, typename U>
1586static inline __attribute__((const))
1587T interpolate(int y, T v0, U dvdx, U dvdy) {
1588    // interpolates in pixel's centers
1589    // v = v0 + (y + 0.5) * dvdy + (0.5 * dvdx)
1590    return (y * dvdy) + (v0 + ((dvdy + dvdx) >> 1));
1591}
1592
1593// ----------------------------------------------------------------------------
1594#if 0
1595#pragma mark -
1596#endif
1597
1598void init_y(context_t* c, int32_t ys)
1599{
1600    const uint32_t enables = c->state.enables;
1601
1602    // compute iterators...
1603    iterators_t& ci = c->iterators;
1604
1605    // sample in the center
1606    ci.y = ys;
1607
1608    if (enables & (GGL_ENABLE_DEPTH_TEST|GGL_ENABLE_W|GGL_ENABLE_FOG)) {
1609        ci.ydzdy = interpolate(ys, c->shade.z0, c->shade.dzdx, c->shade.dzdy);
1610        ci.ydwdy = interpolate(ys, c->shade.w0, c->shade.dwdx, c->shade.dwdy);
1611        ci.ydfdy = interpolate(ys, c->shade.f0, c->shade.dfdx, c->shade.dfdy);
1612    }
1613
1614    if (ggl_unlikely(enables & GGL_ENABLE_SMOOTH)) {
1615        ci.ydrdy = interpolate(ys, c->shade.r0, c->shade.drdx, c->shade.drdy);
1616        ci.ydgdy = interpolate(ys, c->shade.g0, c->shade.dgdx, c->shade.dgdy);
1617        ci.ydbdy = interpolate(ys, c->shade.b0, c->shade.dbdx, c->shade.dbdy);
1618        ci.ydady = interpolate(ys, c->shade.a0, c->shade.dadx, c->shade.dady);
1619        c->step_y = step_y__smooth;
1620    } else {
1621        ci.ydrdy = c->shade.r0;
1622        ci.ydgdy = c->shade.g0;
1623        ci.ydbdy = c->shade.b0;
1624        ci.ydady = c->shade.a0;
1625        // XXX: do only if needed, or make sure this is fast
1626        c->packed = ggl_pack_color(c, c->state.buffers.color.format,
1627                ci.ydrdy, ci.ydgdy, ci.ydbdy, ci.ydady);
1628        c->packed8888 = ggl_pack_color(c, GGL_PIXEL_FORMAT_RGBA_8888,
1629                ci.ydrdy, ci.ydgdy, ci.ydbdy, ci.ydady);
1630    }
1631
1632    // initialize the variables we need in the shader
1633    generated_vars_t& gen = c->generated_vars;
1634    gen.argb[GGLFormat::ALPHA].c  = ci.ydady;
1635    gen.argb[GGLFormat::ALPHA].dx = c->shade.dadx;
1636    gen.argb[GGLFormat::RED  ].c  = ci.ydrdy;
1637    gen.argb[GGLFormat::RED  ].dx = c->shade.drdx;
1638    gen.argb[GGLFormat::GREEN].c  = ci.ydgdy;
1639    gen.argb[GGLFormat::GREEN].dx = c->shade.dgdx;
1640    gen.argb[GGLFormat::BLUE ].c  = ci.ydbdy;
1641    gen.argb[GGLFormat::BLUE ].dx = c->shade.dbdx;
1642    gen.dzdx = c->shade.dzdx;
1643    gen.f    = ci.ydfdy;
1644    gen.dfdx = c->shade.dfdx;
1645
1646    if (enables & GGL_ENABLE_TMUS) {
1647        for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; ++i) {
1648            texture_t& t = c->state.texture[i];
1649            if (!t.enable) continue;
1650
1651            texture_iterators_t& ti = t.iterators;
1652            if (t.s_coord == GGL_ONE_TO_ONE && t.t_coord == GGL_ONE_TO_ONE) {
1653                // we need to set all of these to 0 because in some cases
1654                // step_y__generic() or step_y__tmu() will be used and
1655                // therefore will update dtdy, however, in 1:1 mode
1656                // this is always done by the scanline rasterizer.
1657                ti.dsdx = ti.dsdy = ti.dtdx = ti.dtdy = 0;
1658                ti.ydsdy = t.shade.is0;
1659                ti.ydtdy = t.shade.it0;
1660            } else {
1661                const int adjustSWrap = ((t.s_wrap==GGL_CLAMP)?0:16);
1662                const int adjustTWrap = ((t.t_wrap==GGL_CLAMP)?0:16);
1663                ti.sscale = t.shade.sscale + adjustSWrap;
1664                ti.tscale = t.shade.tscale + adjustTWrap;
1665                if (!(enables & GGL_ENABLE_W)) {
1666                    // S coordinate
1667                    const int32_t sscale = ti.sscale;
1668                    const int32_t sy = interpolate(ys,
1669                            t.shade.is0, t.shade.idsdx, t.shade.idsdy);
1670                    if (sscale>=0) {
1671                        ti.ydsdy= sy            << sscale;
1672                        ti.dsdx = t.shade.idsdx << sscale;
1673                        ti.dsdy = t.shade.idsdy << sscale;
1674                    } else {
1675                        ti.ydsdy= sy            >> -sscale;
1676                        ti.dsdx = t.shade.idsdx >> -sscale;
1677                        ti.dsdy = t.shade.idsdy >> -sscale;
1678                    }
1679                    // T coordinate
1680                    const int32_t tscale = ti.tscale;
1681                    const int32_t ty = interpolate(ys,
1682                            t.shade.it0, t.shade.idtdx, t.shade.idtdy);
1683                    if (tscale>=0) {
1684                        ti.ydtdy= ty            << tscale;
1685                        ti.dtdx = t.shade.idtdx << tscale;
1686                        ti.dtdy = t.shade.idtdy << tscale;
1687                    } else {
1688                        ti.ydtdy= ty            >> -tscale;
1689                        ti.dtdx = t.shade.idtdx >> -tscale;
1690                        ti.dtdy = t.shade.idtdy >> -tscale;
1691                    }
1692                }
1693            }
1694            // mirror for generated code...
1695            generated_tex_vars_t& gen = c->generated_vars.texture[i];
1696            gen.width   = t.surface.width;
1697            gen.height  = t.surface.height;
1698            gen.stride  = t.surface.stride;
1699            gen.data    = int32_t(t.surface.data);
1700            gen.dsdx = ti.dsdx;
1701            gen.dtdx = ti.dtdx;
1702        }
1703    }
1704
1705    // choose the y-stepper
1706    c->step_y = step_y__nop;
1707    if (enables & GGL_ENABLE_FOG) {
1708        c->step_y = step_y__generic;
1709    } else if (enables & GGL_ENABLE_TMUS) {
1710        if (enables & GGL_ENABLE_SMOOTH) {
1711            c->step_y = step_y__generic;
1712        } else if (enables & GGL_ENABLE_W) {
1713            c->step_y = step_y__w;
1714        } else {
1715            c->step_y = step_y__tmu;
1716        }
1717    } else {
1718        if (enables & GGL_ENABLE_SMOOTH) {
1719            c->step_y = step_y__smooth;
1720        }
1721    }
1722
1723    // choose the rectangle blitter
1724    c->rect = rect_generic;
1725    if ((c->step_y == step_y__nop) &&
1726        (c->scanline == scanline_memcpy))
1727    {
1728        c->rect = rect_memcpy;
1729    }
1730}
1731
1732void init_y_packed(context_t* c, int32_t y0)
1733{
1734    uint8_t f = c->state.buffers.color.format;
1735    c->packed = ggl_pack_color(c, f,
1736            c->shade.r0, c->shade.g0, c->shade.b0, c->shade.a0);
1737    c->packed8888 = ggl_pack_color(c, GGL_PIXEL_FORMAT_RGBA_8888,
1738            c->shade.r0, c->shade.g0, c->shade.b0, c->shade.a0);
1739    c->iterators.y = y0;
1740    c->step_y = step_y__nop;
1741    // choose the rectangle blitter
1742    c->rect = rect_generic;
1743    if (c->scanline == scanline_memcpy) {
1744        c->rect = rect_memcpy;
1745    }
1746}
1747
1748void init_y_noop(context_t* c, int32_t y0)
1749{
1750    c->iterators.y = y0;
1751    c->step_y = step_y__nop;
1752    // choose the rectangle blitter
1753    c->rect = rect_generic;
1754    if (c->scanline == scanline_memcpy) {
1755        c->rect = rect_memcpy;
1756    }
1757}
1758
1759void init_y_error(context_t* c, int32_t y0)
1760{
1761    // woooops, shoud never happen,
1762    // fail gracefully (don't display anything)
1763    init_y_noop(c, y0);
1764    LOGE("color-buffer has an invalid format!");
1765}
1766
1767// ----------------------------------------------------------------------------
1768#if 0
1769#pragma mark -
1770#endif
1771
1772void step_y__generic(context_t* c)
1773{
1774    const uint32_t enables = c->state.enables;
1775
1776    // iterate...
1777    iterators_t& ci = c->iterators;
1778    ci.y += 1;
1779
1780    if (enables & GGL_ENABLE_SMOOTH) {
1781        ci.ydrdy += c->shade.drdy;
1782        ci.ydgdy += c->shade.dgdy;
1783        ci.ydbdy += c->shade.dbdy;
1784        ci.ydady += c->shade.dady;
1785    }
1786
1787    const uint32_t mask =
1788            GGL_ENABLE_DEPTH_TEST |
1789            GGL_ENABLE_W |
1790            GGL_ENABLE_FOG;
1791    if (enables & mask) {
1792        ci.ydzdy += c->shade.dzdy;
1793        ci.ydwdy += c->shade.dwdy;
1794        ci.ydfdy += c->shade.dfdy;
1795    }
1796
1797    if ((enables & GGL_ENABLE_TMUS) && (!(enables & GGL_ENABLE_W))) {
1798        for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; ++i) {
1799            if (c->state.texture[i].enable) {
1800                texture_iterators_t& ti = c->state.texture[i].iterators;
1801                ti.ydsdy += ti.dsdy;
1802                ti.ydtdy += ti.dtdy;
1803            }
1804        }
1805    }
1806}
1807
1808void step_y__nop(context_t* c)
1809{
1810    c->iterators.y += 1;
1811    c->iterators.ydzdy += c->shade.dzdy;
1812}
1813
1814void step_y__smooth(context_t* c)
1815{
1816    iterators_t& ci = c->iterators;
1817    ci.y += 1;
1818    ci.ydrdy += c->shade.drdy;
1819    ci.ydgdy += c->shade.dgdy;
1820    ci.ydbdy += c->shade.dbdy;
1821    ci.ydady += c->shade.dady;
1822    ci.ydzdy += c->shade.dzdy;
1823}
1824
1825void step_y__w(context_t* c)
1826{
1827    iterators_t& ci = c->iterators;
1828    ci.y += 1;
1829    ci.ydzdy += c->shade.dzdy;
1830    ci.ydwdy += c->shade.dwdy;
1831}
1832
1833void step_y__tmu(context_t* c)
1834{
1835    iterators_t& ci = c->iterators;
1836    ci.y += 1;
1837    ci.ydzdy += c->shade.dzdy;
1838    for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; ++i) {
1839        if (c->state.texture[i].enable) {
1840            texture_iterators_t& ti = c->state.texture[i].iterators;
1841            ti.ydsdy += ti.dsdy;
1842            ti.ydtdy += ti.dtdy;
1843        }
1844    }
1845}
1846
1847// ----------------------------------------------------------------------------
1848#if 0
1849#pragma mark -
1850#endif
1851
1852void scanline_perspective(context_t* c)
1853{
1854    struct {
1855        union {
1856            struct {
1857                int32_t s, sq;
1858                int32_t t, tq;
1859            };
1860            struct {
1861                int32_t v, q;
1862            } st[2];
1863        };
1864    } tc[GGL_TEXTURE_UNIT_COUNT] __attribute__((aligned(16)));
1865
1866    // XXX: we should have a special case when dwdx = 0
1867
1868    // 32 pixels spans works okay. 16 is a lot better,
1869    // but hey, it's a software renderer...
1870    const uint32_t SPAN_BITS = 5;
1871    const uint32_t ys = c->iterators.y;
1872    const uint32_t xs = c->iterators.xl;
1873    const uint32_t x1 = c->iterators.xr;
1874	const uint32_t xc = x1 - xs;
1875    uint32_t remainder = xc & ((1<<SPAN_BITS)-1);
1876    uint32_t numSpans = xc >> SPAN_BITS;
1877
1878    const iterators_t& ci = c->iterators;
1879    int32_t w0 = (xs * c->shade.dwdx) + ci.ydwdy;
1880    int32_t q0 = gglRecipQ(w0, 30);
1881    const int iwscale = 32 - gglClz(q0);
1882
1883    const int32_t dwdx = c->shade.dwdx << SPAN_BITS;
1884    int32_t xl = c->iterators.xl;
1885
1886    // We process s & t with a loop to reduce the code size
1887    // (and i-cache pressure).
1888
1889    for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; ++i) {
1890        const texture_t& tmu = c->state.texture[i];
1891        if (!tmu.enable) continue;
1892        int32_t s =   tmu.shade.is0 +
1893                     (tmu.shade.idsdy * ys) + (tmu.shade.idsdx * xs) +
1894                     ((tmu.shade.idsdx + tmu.shade.idsdy)>>1);
1895        int32_t t =   tmu.shade.it0 +
1896                     (tmu.shade.idtdy * ys) + (tmu.shade.idtdx * xs) +
1897                     ((tmu.shade.idtdx + tmu.shade.idtdy)>>1);
1898        tc[i].s  = s;
1899        tc[i].t  = t;
1900        tc[i].sq = gglMulx(s, q0, iwscale);
1901        tc[i].tq = gglMulx(t, q0, iwscale);
1902    }
1903
1904    int32_t span = 0;
1905    do {
1906        int32_t w1;
1907        if (ggl_likely(numSpans)) {
1908            w1 = w0 + dwdx;
1909        } else {
1910            if (remainder) {
1911                // finish off the scanline...
1912                span = remainder;
1913                w1 = (c->shade.dwdx * span) + w0;
1914            } else {
1915                break;
1916            }
1917        }
1918        int32_t q1 = gglRecipQ(w1, 30);
1919        for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; ++i) {
1920            texture_t& tmu = c->state.texture[i];
1921            if (!tmu.enable) continue;
1922            texture_iterators_t& ti = tmu.iterators;
1923
1924            for (int j=0 ; j<2 ; j++) {
1925                int32_t v = tc[i].st[j].v;
1926                if (span)   v += (tmu.shade.st[j].dx)*span;
1927                else        v += (tmu.shade.st[j].dx)<<SPAN_BITS;
1928                const int32_t v0 = tc[i].st[j].q;
1929                const int32_t v1 = gglMulx(v, q1, iwscale);
1930                int32_t dvdx = v1 - v0;
1931                if (span)   dvdx /= span;
1932                else        dvdx >>= SPAN_BITS;
1933                tc[i].st[j].v = v;
1934                tc[i].st[j].q = v1;
1935
1936                const int scale = ti.st[j].scale + (iwscale - 30);
1937                if (scale >= 0) {
1938                    ti.st[j].ydvdy = v0   << scale;
1939                    ti.st[j].dvdx  = dvdx << scale;
1940                } else {
1941                    ti.st[j].ydvdy = v0   >> -scale;
1942                    ti.st[j].dvdx  = dvdx >> -scale;
1943                }
1944            }
1945            generated_tex_vars_t& gen = c->generated_vars.texture[i];
1946            gen.dsdx = ti.st[0].dvdx;
1947            gen.dtdx = ti.st[1].dvdx;
1948        }
1949        c->iterators.xl = xl;
1950        c->iterators.xr = xl = xl + (span ? span : (1<<SPAN_BITS));
1951        w0 = w1;
1952        q0 = q1;
1953        c->span(c);
1954    } while(numSpans--);
1955}
1956
1957void scanline_perspective_single(context_t* c)
1958{
1959    // 32 pixels spans works okay. 16 is a lot better,
1960    // but hey, it's a software renderer...
1961    const uint32_t SPAN_BITS = 5;
1962    const uint32_t ys = c->iterators.y;
1963    const uint32_t xs = c->iterators.xl;
1964    const uint32_t x1 = c->iterators.xr;
1965	const uint32_t xc = x1 - xs;
1966
1967    const iterators_t& ci = c->iterators;
1968    int32_t w = (xs * c->shade.dwdx) + ci.ydwdy;
1969    int32_t iw = gglRecipQ(w, 30);
1970    const int iwscale = 32 - gglClz(iw);
1971
1972    const int i = 31 - gglClz(c->state.enabled_tmu);
1973    generated_tex_vars_t& gen = c->generated_vars.texture[i];
1974    texture_t& tmu = c->state.texture[i];
1975    texture_iterators_t& ti = tmu.iterators;
1976    const int sscale = ti.sscale + (iwscale - 30);
1977    const int tscale = ti.tscale + (iwscale - 30);
1978    int32_t s =   tmu.shade.is0 +
1979                 (tmu.shade.idsdy * ys) + (tmu.shade.idsdx * xs) +
1980                 ((tmu.shade.idsdx + tmu.shade.idsdy)>>1);
1981    int32_t t =   tmu.shade.it0 +
1982                 (tmu.shade.idtdy * ys) + (tmu.shade.idtdx * xs) +
1983                 ((tmu.shade.idtdx + tmu.shade.idtdy)>>1);
1984    int32_t s0 = gglMulx(s, iw, iwscale);
1985    int32_t t0 = gglMulx(t, iw, iwscale);
1986    int32_t xl = c->iterators.xl;
1987
1988    int32_t sq, tq, dsdx, dtdx;
1989    int32_t premainder = xc & ((1<<SPAN_BITS)-1);
1990    uint32_t numSpans = xc >> SPAN_BITS;
1991    if (c->shade.dwdx == 0) {
1992        // XXX: we could choose to do this if the error is small enough
1993        numSpans = 0;
1994        premainder = xc;
1995        goto no_perspective;
1996    }
1997
1998    if (premainder) {
1999        w += c->shade.dwdx   * premainder;
2000        iw = gglRecipQ(w, 30);
2001no_perspective:
2002        s += tmu.shade.idsdx * premainder;
2003        t += tmu.shade.idtdx * premainder;
2004        sq = gglMulx(s, iw, iwscale);
2005        tq = gglMulx(t, iw, iwscale);
2006        dsdx = (sq - s0) / premainder;
2007        dtdx = (tq - t0) / premainder;
2008        c->iterators.xl = xl;
2009        c->iterators.xr = xl = xl + premainder;
2010        goto finish;
2011    }
2012
2013    while (numSpans--) {
2014        w += c->shade.dwdx   << SPAN_BITS;
2015        s += tmu.shade.idsdx << SPAN_BITS;
2016        t += tmu.shade.idtdx << SPAN_BITS;
2017        iw = gglRecipQ(w, 30);
2018        sq = gglMulx(s, iw, iwscale);
2019        tq = gglMulx(t, iw, iwscale);
2020        dsdx = (sq - s0) >> SPAN_BITS;
2021        dtdx = (tq - t0) >> SPAN_BITS;
2022        c->iterators.xl = xl;
2023        c->iterators.xr = xl = xl + (1<<SPAN_BITS);
2024finish:
2025        if (sscale >= 0) {
2026            ti.ydsdy = s0   << sscale;
2027            ti.dsdx  = dsdx << sscale;
2028        } else {
2029            ti.ydsdy = s0   >>-sscale;
2030            ti.dsdx  = dsdx >>-sscale;
2031        }
2032        if (tscale >= 0) {
2033            ti.ydtdy = t0   << tscale;
2034            ti.dtdx  = dtdx << tscale;
2035        } else {
2036            ti.ydtdy = t0   >>-tscale;
2037            ti.dtdx  = dtdx >>-tscale;
2038        }
2039        s0 = sq;
2040        t0 = tq;
2041        gen.dsdx = ti.dsdx;
2042        gen.dtdx = ti.dtdx;
2043        c->span(c);
2044    }
2045}
2046
2047// ----------------------------------------------------------------------------
2048
2049void scanline_col32cb16blend(context_t* c)
2050{
2051    int32_t x = c->iterators.xl;
2052    size_t ct = c->iterators.xr - x;
2053    int32_t y = c->iterators.y;
2054    surface_t* cb = &(c->state.buffers.color);
2055    union {
2056        uint16_t* dst;
2057        uint32_t* dst32;
2058    };
2059    dst = reinterpret_cast<uint16_t*>(cb->data) + (x+(cb->stride*y));
2060
2061#if ((ANDROID_CODEGEN >= ANDROID_CODEGEN_ASM) && defined(__arm__))
2062#if defined(__ARM_HAVE_NEON) && BYTE_ORDER == LITTLE_ENDIAN
2063    scanline_col32cb16blend_neon(dst, &(c->packed8888), ct);
2064#else  // defined(__ARM_HAVE_NEON) && BYTE_ORDER == LITTLE_ENDIAN
2065    scanline_col32cb16blend_arm(dst, GGL_RGBA_TO_HOST(c->packed8888), ct);
2066#endif // defined(__ARM_HAVE_NEON) && BYTE_ORDER == LITTLE_ENDIAN
2067#else
2068    uint32_t s = GGL_RGBA_TO_HOST(c->packed8888);
2069    int sA = (s>>24);
2070    int f = 0x100 - (sA + (sA>>7));
2071    while (ct--) {
2072        uint16_t d = *dst;
2073        int dR = (d>>11)&0x1f;
2074        int dG = (d>>5)&0x3f;
2075        int dB = (d)&0x1f;
2076        int sR = (s >> (   3))&0x1F;
2077        int sG = (s >> ( 8+2))&0x3F;
2078        int sB = (s >> (16+3))&0x1F;
2079        sR += (f*dR)>>8;
2080        sG += (f*dG)>>8;
2081        sB += (f*dB)>>8;
2082        *dst++ = uint16_t((sR<<11)|(sG<<5)|sB);
2083    }
2084#endif
2085
2086}
2087
2088void scanline_t32cb16(context_t* c)
2089{
2090    int32_t x = c->iterators.xl;
2091    size_t ct = c->iterators.xr - x;
2092    int32_t y = c->iterators.y;
2093    surface_t* cb = &(c->state.buffers.color);
2094    union {
2095        uint16_t* dst;
2096        uint32_t* dst32;
2097    };
2098    dst = reinterpret_cast<uint16_t*>(cb->data) + (x+(cb->stride*y));
2099
2100    surface_t* tex = &(c->state.texture[0].surface);
2101    const int32_t u = (c->state.texture[0].shade.is0>>16) + x;
2102    const int32_t v = (c->state.texture[0].shade.it0>>16) + y;
2103    uint32_t *src = reinterpret_cast<uint32_t*>(tex->data)+(u+(tex->stride*v));
2104    int sR, sG, sB;
2105    uint32_t s, d;
2106
2107    if (ct==1 || uint32_t(dst)&2) {
2108last_one:
2109        s = GGL_RGBA_TO_HOST( *src++ );
2110        *dst++ = convertAbgr8888ToRgb565(s);
2111        ct--;
2112    }
2113
2114    while (ct >= 2) {
2115#if BYTE_ORDER == BIG_ENDIAN
2116        s = GGL_RGBA_TO_HOST( *src++ );
2117        d = convertAbgr8888ToRgb565_hi16(s);
2118
2119        s = GGL_RGBA_TO_HOST( *src++ );
2120        d |= convertAbgr8888ToRgb565(s);
2121#else
2122        s = GGL_RGBA_TO_HOST( *src++ );
2123        d = convertAbgr8888ToRgb565(s);
2124
2125        s = GGL_RGBA_TO_HOST( *src++ );
2126        d |= convertAbgr8888ToRgb565(s) << 16;
2127#endif
2128        *dst32++ = d;
2129        ct -= 2;
2130    }
2131
2132    if (ct > 0) {
2133        goto last_one;
2134    }
2135}
2136
2137void scanline_t32cb16blend(context_t* c)
2138{
2139#if ((ANDROID_CODEGEN >= ANDROID_CODEGEN_ASM) && defined(__arm__))
2140    int32_t x = c->iterators.xl;
2141    size_t ct = c->iterators.xr - x;
2142    int32_t y = c->iterators.y;
2143    surface_t* cb = &(c->state.buffers.color);
2144    uint16_t* dst = reinterpret_cast<uint16_t*>(cb->data) + (x+(cb->stride*y));
2145
2146    surface_t* tex = &(c->state.texture[0].surface);
2147    const int32_t u = (c->state.texture[0].shade.is0>>16) + x;
2148    const int32_t v = (c->state.texture[0].shade.it0>>16) + y;
2149    uint32_t *src = reinterpret_cast<uint32_t*>(tex->data)+(u+(tex->stride*v));
2150
2151    scanline_t32cb16blend_arm(dst, src, ct);
2152#else
2153    dst_iterator16  di(c);
2154    horz_iterator32  hi(c);
2155    blender_32to16  bl(c);
2156    while (di.count--) {
2157        uint32_t s = hi.get_pixel32();
2158        bl.write(s, di.dst);
2159        di.dst++;
2160    }
2161#endif
2162}
2163
2164void scanline_t32cb16blend_srca(context_t* c)
2165{
2166    dst_iterator16  di(c);
2167    horz_iterator32  hi(c);
2168    blender_32to16_srcA  blender(c);
2169
2170    while (di.count--) {
2171        uint32_t s = hi.get_pixel32();
2172        blender.write(s,di.dst);
2173        di.dst++;
2174    }
2175}
2176
2177void scanline_t16cb16blend_clamp_mod(context_t* c)
2178{
2179    const int a = c->iterators.ydady >> (GGL_COLOR_BITS-8);
2180    if (a == 0) {
2181        return;
2182    }
2183
2184    if (a == 255) {
2185        scanline_t16cb16_clamp(c);
2186        return;
2187    }
2188
2189    dst_iterator16  di(c);
2190    blender_16to16_modulate  blender(c);
2191    clamp_iterator  ci(c);
2192
2193    while (di.count--) {
2194        uint16_t s = ci.get_pixel16();
2195        blender.write(s, di.dst);
2196        di.dst++;
2197    }
2198}
2199
2200void scanline_memcpy(context_t* c)
2201{
2202    int32_t x = c->iterators.xl;
2203    size_t ct = c->iterators.xr - x;
2204    int32_t y = c->iterators.y;
2205    surface_t* cb = &(c->state.buffers.color);
2206    const GGLFormat* fp = &(c->formats[cb->format]);
2207    uint8_t* dst = reinterpret_cast<uint8_t*>(cb->data) +
2208                            (x + (cb->stride * y)) * fp->size;
2209
2210    surface_t* tex = &(c->state.texture[0].surface);
2211    const int32_t u = (c->state.texture[0].shade.is0>>16) + x;
2212    const int32_t v = (c->state.texture[0].shade.it0>>16) + y;
2213    uint8_t *src = reinterpret_cast<uint8_t*>(tex->data) +
2214                            (u + (tex->stride * v)) * fp->size;
2215
2216    const size_t size = ct * fp->size;
2217    memcpy(dst, src, size);
2218}
2219
2220void scanline_memset8(context_t* c)
2221{
2222    int32_t x = c->iterators.xl;
2223    size_t ct = c->iterators.xr - x;
2224    int32_t y = c->iterators.y;
2225    surface_t* cb = &(c->state.buffers.color);
2226    uint8_t* dst = reinterpret_cast<uint8_t*>(cb->data) + (x+(cb->stride*y));
2227    uint32_t packed = c->packed;
2228    memset(dst, packed, ct);
2229}
2230
2231void scanline_memset16(context_t* c)
2232{
2233    int32_t x = c->iterators.xl;
2234    size_t ct = c->iterators.xr - x;
2235    int32_t y = c->iterators.y;
2236    surface_t* cb = &(c->state.buffers.color);
2237    uint16_t* dst = reinterpret_cast<uint16_t*>(cb->data) + (x+(cb->stride*y));
2238    uint32_t packed = c->packed;
2239    android_memset16(dst, packed, ct*2);
2240}
2241
2242void scanline_memset32(context_t* c)
2243{
2244    int32_t x = c->iterators.xl;
2245    size_t ct = c->iterators.xr - x;
2246    int32_t y = c->iterators.y;
2247    surface_t* cb = &(c->state.buffers.color);
2248    uint32_t* dst = reinterpret_cast<uint32_t*>(cb->data) + (x+(cb->stride*y));
2249    uint32_t packed = GGL_HOST_TO_RGBA(c->packed);
2250    android_memset32(dst, packed, ct*4);
2251}
2252
2253void scanline_clear(context_t* c)
2254{
2255    int32_t x = c->iterators.xl;
2256    size_t ct = c->iterators.xr - x;
2257    int32_t y = c->iterators.y;
2258    surface_t* cb = &(c->state.buffers.color);
2259    const GGLFormat* fp = &(c->formats[cb->format]);
2260    uint8_t* dst = reinterpret_cast<uint8_t*>(cb->data) +
2261                            (x + (cb->stride * y)) * fp->size;
2262    const size_t size = ct * fp->size;
2263    memset(dst, 0, size);
2264}
2265
2266void scanline_set(context_t* c)
2267{
2268    int32_t x = c->iterators.xl;
2269    size_t ct = c->iterators.xr - x;
2270    int32_t y = c->iterators.y;
2271    surface_t* cb = &(c->state.buffers.color);
2272    const GGLFormat* fp = &(c->formats[cb->format]);
2273    uint8_t* dst = reinterpret_cast<uint8_t*>(cb->data) +
2274                            (x + (cb->stride * y)) * fp->size;
2275    const size_t size = ct * fp->size;
2276    memset(dst, 0xFF, size);
2277}
2278
2279void scanline_noop(context_t* c)
2280{
2281}
2282
2283void rect_generic(context_t* c, size_t yc)
2284{
2285    do {
2286        c->scanline(c);
2287        c->step_y(c);
2288    } while (--yc);
2289}
2290
2291void rect_memcpy(context_t* c, size_t yc)
2292{
2293    int32_t x = c->iterators.xl;
2294    size_t ct = c->iterators.xr - x;
2295    int32_t y = c->iterators.y;
2296    surface_t* cb = &(c->state.buffers.color);
2297    const GGLFormat* fp = &(c->formats[cb->format]);
2298    uint8_t* dst = reinterpret_cast<uint8_t*>(cb->data) +
2299                            (x + (cb->stride * y)) * fp->size;
2300
2301    surface_t* tex = &(c->state.texture[0].surface);
2302    const int32_t u = (c->state.texture[0].shade.is0>>16) + x;
2303    const int32_t v = (c->state.texture[0].shade.it0>>16) + y;
2304    uint8_t *src = reinterpret_cast<uint8_t*>(tex->data) +
2305                            (u + (tex->stride * v)) * fp->size;
2306
2307    if (cb->stride == tex->stride && ct == size_t(cb->stride)) {
2308        memcpy(dst, src, ct * fp->size * yc);
2309    } else {
2310        const size_t size = ct * fp->size;
2311        const size_t dbpr = cb->stride  * fp->size;
2312        const size_t sbpr = tex->stride * fp->size;
2313        do {
2314            memcpy(dst, src, size);
2315            dst += dbpr;
2316            src += sbpr;
2317        } while (--yc);
2318    }
2319}
2320// ----------------------------------------------------------------------------
2321}; // namespace android
2322
2323