CGExprScalar.cpp revision 035cf4294319271ad19ddcc5ba327c8365f3575e
1//===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenFunction.h"
15#include "CodeGenModule.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/StmtVisitor.h"
19#include "clang/Basic/TargetInfo.h"
20#include "llvm/Constants.h"
21#include "llvm/Function.h"
22#include "llvm/GlobalVariable.h"
23#include "llvm/Intrinsics.h"
24#include "llvm/Support/Compiler.h"
25#include <cstdarg>
26
27using namespace clang;
28using namespace CodeGen;
29using llvm::Value;
30
31//===----------------------------------------------------------------------===//
32//                         Scalar Expression Emitter
33//===----------------------------------------------------------------------===//
34
35struct BinOpInfo {
36  Value *LHS;
37  Value *RHS;
38  QualType Ty;  // Computation Type.
39  const BinaryOperator *E;
40};
41
42namespace {
43class VISIBILITY_HIDDEN ScalarExprEmitter
44  : public StmtVisitor<ScalarExprEmitter, Value*> {
45  CodeGenFunction &CGF;
46  CGBuilderTy &Builder;
47
48public:
49
50  ScalarExprEmitter(CodeGenFunction &cgf) : CGF(cgf),
51    Builder(CGF.Builder) {
52  }
53
54  //===--------------------------------------------------------------------===//
55  //                               Utilities
56  //===--------------------------------------------------------------------===//
57
58  const llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
59  LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
60
61  Value *EmitLoadOfLValue(LValue LV, QualType T) {
62    return CGF.EmitLoadOfLValue(LV, T).getScalarVal();
63  }
64
65  /// EmitLoadOfLValue - Given an expression with complex type that represents a
66  /// value l-value, this method emits the address of the l-value, then loads
67  /// and returns the result.
68  Value *EmitLoadOfLValue(const Expr *E) {
69    // FIXME: Volatile
70    return EmitLoadOfLValue(EmitLValue(E), E->getType());
71  }
72
73  /// EmitConversionToBool - Convert the specified expression value to a
74  /// boolean (i1) truth value.  This is equivalent to "Val != 0".
75  Value *EmitConversionToBool(Value *Src, QualType DstTy);
76
77  /// EmitScalarConversion - Emit a conversion from the specified type to the
78  /// specified destination type, both of which are LLVM scalar types.
79  Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);
80
81  /// EmitComplexToScalarConversion - Emit a conversion from the specified
82  /// complex type to the specified destination type, where the destination
83  /// type is an LLVM scalar type.
84  Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
85                                       QualType SrcTy, QualType DstTy);
86
87  //===--------------------------------------------------------------------===//
88  //                            Visitor Methods
89  //===--------------------------------------------------------------------===//
90
91  Value *VisitStmt(Stmt *S) {
92    S->dump(CGF.getContext().getSourceManager());
93    assert(0 && "Stmt can't have complex result type!");
94    return 0;
95  }
96  Value *VisitExpr(Expr *S);
97  Value *VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr()); }
98
99  // Leaves.
100  Value *VisitIntegerLiteral(const IntegerLiteral *E) {
101    return llvm::ConstantInt::get(E->getValue());
102  }
103  Value *VisitFloatingLiteral(const FloatingLiteral *E) {
104    return llvm::ConstantFP::get(E->getValue());
105  }
106  Value *VisitCharacterLiteral(const CharacterLiteral *E) {
107    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
108  }
109  Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
110    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
111  }
112  Value *VisitCXXZeroInitValueExpr(const CXXZeroInitValueExpr *E) {
113    return llvm::Constant::getNullValue(ConvertType(E->getType()));
114  }
115  Value *VisitTypesCompatibleExpr(const TypesCompatibleExpr *E) {
116    return llvm::ConstantInt::get(ConvertType(E->getType()),
117                                  CGF.getContext().typesAreCompatible(
118                                    E->getArgType1(), E->getArgType2()));
119  }
120  Value *VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E);
121  Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
122    llvm::Value *V =
123      llvm::ConstantInt::get(llvm::Type::Int32Ty,
124                             CGF.GetIDForAddrOfLabel(E->getLabel()));
125
126    return Builder.CreateIntToPtr(V, ConvertType(E->getType()));
127  }
128
129  // l-values.
130  Value *VisitDeclRefExpr(DeclRefExpr *E) {
131    if (const EnumConstantDecl *EC = dyn_cast<EnumConstantDecl>(E->getDecl()))
132      return llvm::ConstantInt::get(EC->getInitVal());
133    return EmitLoadOfLValue(E);
134  }
135  Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
136    return CGF.EmitObjCSelectorExpr(E);
137  }
138  Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
139    return CGF.EmitObjCProtocolExpr(E);
140  }
141  Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
142    return EmitLoadOfLValue(E);
143  }
144  Value *VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
145    return EmitLoadOfLValue(E);
146  }
147  Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
148    return CGF.EmitObjCMessageExpr(E).getScalarVal();
149  }
150
151  Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
152  Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
153  Value *VisitMemberExpr(Expr *E)           { return EmitLoadOfLValue(E); }
154  Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
155  Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
156    return EmitLoadOfLValue(E);
157  }
158  Value *VisitStringLiteral(Expr *E)  { return EmitLValue(E).getAddress(); }
159  Value *VisitPredefinedExpr(Expr *E) { return EmitLValue(E).getAddress(); }
160
161  Value *VisitInitListExpr(InitListExpr *E) {
162    unsigned NumInitElements = E->getNumInits();
163
164    const llvm::VectorType *VType =
165      dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
166
167    // We have a scalar in braces. Just use the first element.
168    if (!VType)
169      return Visit(E->getInit(0));
170
171    if (E->hadDesignators()) {
172      CGF.ErrorUnsupported(E, "initializer list with designators");
173      return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
174    }
175
176    unsigned NumVectorElements = VType->getNumElements();
177    const llvm::Type *ElementType = VType->getElementType();
178
179    // Emit individual vector element stores.
180    llvm::Value *V = llvm::UndefValue::get(VType);
181
182    // Emit initializers
183    unsigned i;
184    for (i = 0; i < NumInitElements; ++i) {
185      Value *NewV = Visit(E->getInit(i));
186      Value *Idx = llvm::ConstantInt::get(llvm::Type::Int32Ty, i);
187      V = Builder.CreateInsertElement(V, NewV, Idx);
188    }
189
190    // Emit remaining default initializers
191    for (/* Do not initialize i*/; i < NumVectorElements; ++i) {
192      Value *Idx = llvm::ConstantInt::get(llvm::Type::Int32Ty, i);
193      llvm::Value *NewV = llvm::Constant::getNullValue(ElementType);
194      V = Builder.CreateInsertElement(V, NewV, Idx);
195    }
196
197    return V;
198  }
199
200  Value *VisitImplicitCastExpr(const ImplicitCastExpr *E);
201  Value *VisitCastExpr(const CastExpr *E) {
202    return EmitCastExpr(E->getSubExpr(), E->getType());
203  }
204  Value *EmitCastExpr(const Expr *E, QualType T);
205
206  Value *VisitCallExpr(const CallExpr *E) {
207    return CGF.EmitCallExpr(E).getScalarVal();
208  }
209
210  Value *VisitStmtExpr(const StmtExpr *E);
211
212  // Unary Operators.
213  Value *VisitPrePostIncDec(const UnaryOperator *E, bool isInc, bool isPre);
214  Value *VisitUnaryPostDec(const UnaryOperator *E) {
215    return VisitPrePostIncDec(E, false, false);
216  }
217  Value *VisitUnaryPostInc(const UnaryOperator *E) {
218    return VisitPrePostIncDec(E, true, false);
219  }
220  Value *VisitUnaryPreDec(const UnaryOperator *E) {
221    return VisitPrePostIncDec(E, false, true);
222  }
223  Value *VisitUnaryPreInc(const UnaryOperator *E) {
224    return VisitPrePostIncDec(E, true, true);
225  }
226  Value *VisitUnaryAddrOf(const UnaryOperator *E) {
227    return EmitLValue(E->getSubExpr()).getAddress();
228  }
229  Value *VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); }
230  Value *VisitUnaryPlus(const UnaryOperator *E) {
231    return Visit(E->getSubExpr());
232  }
233  Value *VisitUnaryMinus    (const UnaryOperator *E);
234  Value *VisitUnaryNot      (const UnaryOperator *E);
235  Value *VisitUnaryLNot     (const UnaryOperator *E);
236  Value *VisitUnaryReal     (const UnaryOperator *E);
237  Value *VisitUnaryImag     (const UnaryOperator *E);
238  Value *VisitUnaryExtension(const UnaryOperator *E) {
239    return Visit(E->getSubExpr());
240  }
241  Value *VisitUnaryOffsetOf(const UnaryOperator *E);
242  Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
243    return Visit(DAE->getExpr());
244  }
245
246  // Binary Operators.
247  Value *EmitMul(const BinOpInfo &Ops) {
248    return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
249  }
250  Value *EmitDiv(const BinOpInfo &Ops);
251  Value *EmitRem(const BinOpInfo &Ops);
252  Value *EmitAdd(const BinOpInfo &Ops);
253  Value *EmitSub(const BinOpInfo &Ops);
254  Value *EmitShl(const BinOpInfo &Ops);
255  Value *EmitShr(const BinOpInfo &Ops);
256  Value *EmitAnd(const BinOpInfo &Ops) {
257    return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
258  }
259  Value *EmitXor(const BinOpInfo &Ops) {
260    return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
261  }
262  Value *EmitOr (const BinOpInfo &Ops) {
263    return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
264  }
265
266  BinOpInfo EmitBinOps(const BinaryOperator *E);
267  Value *EmitCompoundAssign(const CompoundAssignOperator *E,
268                            Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
269
270  // Binary operators and binary compound assignment operators.
271#define HANDLEBINOP(OP) \
272  Value *VisitBin ## OP(const BinaryOperator *E) {                         \
273    return Emit ## OP(EmitBinOps(E));                                      \
274  }                                                                        \
275  Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
276    return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
277  }
278  HANDLEBINOP(Mul);
279  HANDLEBINOP(Div);
280  HANDLEBINOP(Rem);
281  HANDLEBINOP(Add);
282  HANDLEBINOP(Sub);
283  HANDLEBINOP(Shl);
284  HANDLEBINOP(Shr);
285  HANDLEBINOP(And);
286  HANDLEBINOP(Xor);
287  HANDLEBINOP(Or);
288#undef HANDLEBINOP
289
290  // Comparisons.
291  Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
292                     unsigned SICmpOpc, unsigned FCmpOpc);
293#define VISITCOMP(CODE, UI, SI, FP) \
294    Value *VisitBin##CODE(const BinaryOperator *E) { \
295      return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
296                         llvm::FCmpInst::FP); }
297  VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT);
298  VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT);
299  VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE);
300  VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE);
301  VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ);
302  VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE);
303#undef VISITCOMP
304
305  Value *VisitBinAssign     (const BinaryOperator *E);
306
307  Value *VisitBinLAnd       (const BinaryOperator *E);
308  Value *VisitBinLOr        (const BinaryOperator *E);
309  Value *VisitBinComma      (const BinaryOperator *E);
310
311  // Other Operators.
312  Value *VisitConditionalOperator(const ConditionalOperator *CO);
313  Value *VisitChooseExpr(ChooseExpr *CE);
314  Value *VisitOverloadExpr(OverloadExpr *OE);
315  Value *VisitVAArgExpr(VAArgExpr *VE);
316  Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
317    return CGF.EmitObjCStringLiteral(E);
318  }
319  Value *VisitObjCEncodeExpr(const ObjCEncodeExpr *E);
320};
321}  // end anonymous namespace.
322
323//===----------------------------------------------------------------------===//
324//                                Utilities
325//===----------------------------------------------------------------------===//
326
327/// EmitConversionToBool - Convert the specified expression value to a
328/// boolean (i1) truth value.  This is equivalent to "Val != 0".
329Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
330  assert(SrcType->isCanonical() && "EmitScalarConversion strips typedefs");
331
332  if (SrcType->isRealFloatingType()) {
333    // Compare against 0.0 for fp scalars.
334    llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType());
335    return Builder.CreateFCmpUNE(Src, Zero, "tobool");
336  }
337
338  assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
339         "Unknown scalar type to convert");
340
341  // Because of the type rules of C, we often end up computing a logical value,
342  // then zero extending it to int, then wanting it as a logical value again.
343  // Optimize this common case.
344  if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(Src)) {
345    if (ZI->getOperand(0)->getType() == llvm::Type::Int1Ty) {
346      Value *Result = ZI->getOperand(0);
347      // If there aren't any more uses, zap the instruction to save space.
348      // Note that there can be more uses, for example if this
349      // is the result of an assignment.
350      if (ZI->use_empty())
351        ZI->eraseFromParent();
352      return Result;
353    }
354  }
355
356  // Compare against an integer or pointer null.
357  llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType());
358  return Builder.CreateICmpNE(Src, Zero, "tobool");
359}
360
361/// EmitScalarConversion - Emit a conversion from the specified type to the
362/// specified destination type, both of which are LLVM scalar types.
363Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
364                                               QualType DstType) {
365  SrcType = CGF.getContext().getCanonicalType(SrcType);
366  DstType = CGF.getContext().getCanonicalType(DstType);
367  if (SrcType == DstType) return Src;
368
369  if (DstType->isVoidType()) return 0;
370
371  // Handle conversions to bool first, they are special: comparisons against 0.
372  if (DstType->isBooleanType())
373    return EmitConversionToBool(Src, SrcType);
374
375  const llvm::Type *DstTy = ConvertType(DstType);
376
377  // Ignore conversions like int -> uint.
378  if (Src->getType() == DstTy)
379    return Src;
380
381  // Handle pointer conversions next: pointers can only be converted
382  // to/from other pointers and integers. Check for pointer types in
383  // terms of LLVM, as some native types (like Obj-C id) may map to a
384  // pointer type.
385  if (isa<llvm::PointerType>(DstTy)) {
386    // The source value may be an integer, or a pointer.
387    if (isa<llvm::PointerType>(Src->getType()))
388      return Builder.CreateBitCast(Src, DstTy, "conv");
389    assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
390    return Builder.CreateIntToPtr(Src, DstTy, "conv");
391  }
392
393  if (isa<llvm::PointerType>(Src->getType())) {
394    // Must be an ptr to int cast.
395    assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
396    return Builder.CreatePtrToInt(Src, DstTy, "conv");
397  }
398
399  // A scalar can be splatted to an extended vector of the same element type
400  if (DstType->isExtVectorType() && !isa<VectorType>(SrcType) &&
401      cast<llvm::VectorType>(DstTy)->getElementType() == Src->getType())
402    return CGF.EmitVector(&Src, DstType->getAsVectorType()->getNumElements(),
403                          true);
404
405  // Allow bitcast from vector to integer/fp of the same size.
406  if (isa<llvm::VectorType>(Src->getType()) ||
407      isa<llvm::VectorType>(DstTy))
408    return Builder.CreateBitCast(Src, DstTy, "conv");
409
410  // Finally, we have the arithmetic types: real int/float.
411  if (isa<llvm::IntegerType>(Src->getType())) {
412    bool InputSigned = SrcType->isSignedIntegerType();
413    if (isa<llvm::IntegerType>(DstTy))
414      return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
415    else if (InputSigned)
416      return Builder.CreateSIToFP(Src, DstTy, "conv");
417    else
418      return Builder.CreateUIToFP(Src, DstTy, "conv");
419  }
420
421  assert(Src->getType()->isFloatingPoint() && "Unknown real conversion");
422  if (isa<llvm::IntegerType>(DstTy)) {
423    if (DstType->isSignedIntegerType())
424      return Builder.CreateFPToSI(Src, DstTy, "conv");
425    else
426      return Builder.CreateFPToUI(Src, DstTy, "conv");
427  }
428
429  assert(DstTy->isFloatingPoint() && "Unknown real conversion");
430  if (DstTy->getTypeID() < Src->getType()->getTypeID())
431    return Builder.CreateFPTrunc(Src, DstTy, "conv");
432  else
433    return Builder.CreateFPExt(Src, DstTy, "conv");
434}
435
436/// EmitComplexToScalarConversion - Emit a conversion from the specified
437/// complex type to the specified destination type, where the destination
438/// type is an LLVM scalar type.
439Value *ScalarExprEmitter::
440EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
441                              QualType SrcTy, QualType DstTy) {
442  // Get the source element type.
443  SrcTy = SrcTy->getAsComplexType()->getElementType();
444
445  // Handle conversions to bool first, they are special: comparisons against 0.
446  if (DstTy->isBooleanType()) {
447    //  Complex != 0  -> (Real != 0) | (Imag != 0)
448    Src.first  = EmitScalarConversion(Src.first, SrcTy, DstTy);
449    Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
450    return Builder.CreateOr(Src.first, Src.second, "tobool");
451  }
452
453  // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
454  // the imaginary part of the complex value is discarded and the value of the
455  // real part is converted according to the conversion rules for the
456  // corresponding real type.
457  return EmitScalarConversion(Src.first, SrcTy, DstTy);
458}
459
460
461//===----------------------------------------------------------------------===//
462//                            Visitor Methods
463//===----------------------------------------------------------------------===//
464
465Value *ScalarExprEmitter::VisitExpr(Expr *E) {
466  CGF.ErrorUnsupported(E, "scalar expression");
467  if (E->getType()->isVoidType())
468    return 0;
469  return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
470}
471
472Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
473  llvm::SmallVector<llvm::Constant*, 32> indices;
474  for (unsigned i = 2; i < E->getNumSubExprs(); i++) {
475    indices.push_back(cast<llvm::Constant>(CGF.EmitScalarExpr(E->getExpr(i))));
476  }
477  Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
478  Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
479  Value* SV = llvm::ConstantVector::get(indices.begin(), indices.size());
480  return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
481}
482
483Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
484  // Emit subscript expressions in rvalue context's.  For most cases, this just
485  // loads the lvalue formed by the subscript expr.  However, we have to be
486  // careful, because the base of a vector subscript is occasionally an rvalue,
487  // so we can't get it as an lvalue.
488  if (!E->getBase()->getType()->isVectorType())
489    return EmitLoadOfLValue(E);
490
491  // Handle the vector case.  The base must be a vector, the index must be an
492  // integer value.
493  Value *Base = Visit(E->getBase());
494  Value *Idx  = Visit(E->getIdx());
495
496  // FIXME: Convert Idx to i32 type.
497  return Builder.CreateExtractElement(Base, Idx, "vecext");
498}
499
500/// VisitImplicitCastExpr - Implicit casts are the same as normal casts, but
501/// also handle things like function to pointer-to-function decay, and array to
502/// pointer decay.
503Value *ScalarExprEmitter::VisitImplicitCastExpr(const ImplicitCastExpr *E) {
504  const Expr *Op = E->getSubExpr();
505
506  // If this is due to array->pointer conversion, emit the array expression as
507  // an l-value.
508  if (Op->getType()->isArrayType()) {
509    // FIXME: For now we assume that all source arrays map to LLVM arrays.  This
510    // will not true when we add support for VLAs.
511    Value *V = EmitLValue(Op).getAddress();  // Bitfields can't be arrays.
512
513    if (!(isa<llvm::PointerType>(V->getType()) &&
514          isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType())
515                               ->getElementType()))) {
516      CGF.ErrorUnsupported(E, "variable-length array cast", true);
517      if (E->getType()->isVoidType())
518        return 0;
519      return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
520    }
521    V = Builder.CreateStructGEP(V, 0, "arraydecay");
522
523    // The resultant pointer type can be implicitly casted to other pointer
524    // types as well (e.g. void*) and can be implicitly converted to integer.
525    const llvm::Type *DestTy = ConvertType(E->getType());
526    if (V->getType() != DestTy) {
527      if (isa<llvm::PointerType>(DestTy))
528        V = Builder.CreateBitCast(V, DestTy, "ptrconv");
529      else {
530        assert(isa<llvm::IntegerType>(DestTy) && "Unknown array decay");
531        V = Builder.CreatePtrToInt(V, DestTy, "ptrconv");
532      }
533    }
534    return V;
535
536  } else if (E->getType()->isReferenceType()) {
537    return EmitLValue(Op).getAddress();
538  }
539
540  return EmitCastExpr(Op, E->getType());
541}
542
543
544// VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
545// have to handle a more broad range of conversions than explicit casts, as they
546// handle things like function to ptr-to-function decay etc.
547Value *ScalarExprEmitter::EmitCastExpr(const Expr *E, QualType DestTy) {
548  // Handle cases where the source is an non-complex type.
549
550  if (!CGF.hasAggregateLLVMType(E->getType())) {
551    Value *Src = Visit(const_cast<Expr*>(E));
552
553    // Use EmitScalarConversion to perform the conversion.
554    return EmitScalarConversion(Src, E->getType(), DestTy);
555  }
556
557  if (E->getType()->isAnyComplexType()) {
558    // Handle cases where the source is a complex type.
559    return EmitComplexToScalarConversion(CGF.EmitComplexExpr(E), E->getType(),
560                                         DestTy);
561  }
562
563  // Okay, this is a cast from an aggregate.  It must be a cast to void.  Just
564  // evaluate the result and return.
565  CGF.EmitAggExpr(E, 0, false);
566  return 0;
567}
568
569Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
570  return CGF.EmitCompoundStmt(*E->getSubStmt(),
571                              !E->getType()->isVoidType()).getScalarVal();
572}
573
574
575//===----------------------------------------------------------------------===//
576//                             Unary Operators
577//===----------------------------------------------------------------------===//
578
579Value *ScalarExprEmitter::VisitPrePostIncDec(const UnaryOperator *E,
580                                             bool isInc, bool isPre) {
581  LValue LV = EmitLValue(E->getSubExpr());
582  // FIXME: Handle volatile!
583  Value *InVal = CGF.EmitLoadOfLValue(LV, // false
584                                     E->getSubExpr()->getType()).getScalarVal();
585
586  int AmountVal = isInc ? 1 : -1;
587
588  Value *NextVal;
589  if (isa<llvm::PointerType>(InVal->getType())) {
590    // FIXME: This isn't right for VLAs.
591    NextVal = llvm::ConstantInt::get(llvm::Type::Int32Ty, AmountVal);
592    NextVal = Builder.CreateGEP(InVal, NextVal, "ptrincdec");
593  } else {
594    // Add the inc/dec to the real part.
595    if (isa<llvm::IntegerType>(InVal->getType()))
596      NextVal = llvm::ConstantInt::get(InVal->getType(), AmountVal);
597    else if (InVal->getType() == llvm::Type::FloatTy)
598      NextVal =
599        llvm::ConstantFP::get(llvm::APFloat(static_cast<float>(AmountVal)));
600    else if (InVal->getType() == llvm::Type::DoubleTy)
601      NextVal =
602        llvm::ConstantFP::get(llvm::APFloat(static_cast<double>(AmountVal)));
603    else {
604      llvm::APFloat F(static_cast<float>(AmountVal));
605      bool ignored;
606      F.convert(CGF.Target.getLongDoubleFormat(), llvm::APFloat::rmTowardZero,
607                &ignored);
608      NextVal = llvm::ConstantFP::get(F);
609    }
610    NextVal = Builder.CreateAdd(InVal, NextVal, isInc ? "inc" : "dec");
611  }
612
613  // Store the updated result through the lvalue.
614  CGF.EmitStoreThroughLValue(RValue::get(NextVal), LV,
615                             E->getSubExpr()->getType());
616
617  // If this is a postinc, return the value read from memory, otherwise use the
618  // updated value.
619  return isPre ? NextVal : InVal;
620}
621
622
623Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
624  Value *Op = Visit(E->getSubExpr());
625  return Builder.CreateNeg(Op, "neg");
626}
627
628Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
629  Value *Op = Visit(E->getSubExpr());
630  return Builder.CreateNot(Op, "neg");
631}
632
633Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
634  // Compare operand to zero.
635  Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
636
637  // Invert value.
638  // TODO: Could dynamically modify easy computations here.  For example, if
639  // the operand is an icmp ne, turn into icmp eq.
640  BoolVal = Builder.CreateNot(BoolVal, "lnot");
641
642  // ZExt result to int.
643  return Builder.CreateZExt(BoolVal, CGF.LLVMIntTy, "lnot.ext");
644}
645
646/// VisitSizeOfAlignOfExpr - Return the size or alignment of the type of
647/// argument of the sizeof expression as an integer.
648Value *
649ScalarExprEmitter::VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E) {
650  QualType RetType = E->getType();
651  assert(RetType->isIntegerType() && "Result type must be an integer!");
652  uint32_t ResultWidth =
653    static_cast<uint32_t>(CGF.getContext().getTypeSize(RetType));
654
655  QualType TypeToSize = E->getTypeOfArgument();
656  // sizeof(void) and __alignof__(void) = 1 as a gcc extension. Also
657  // for function types.
658  // FIXME: what is alignof a function type in gcc?
659  if (TypeToSize->isVoidType() || TypeToSize->isFunctionType())
660    return llvm::ConstantInt::get(llvm::APInt(ResultWidth, 1));
661
662  /// FIXME: This doesn't handle VLAs yet!
663  std::pair<uint64_t, unsigned> Info = CGF.getContext().getTypeInfo(TypeToSize);
664
665  uint64_t Val = E->isSizeOf() ? Info.first : Info.second;
666  Val /= 8;  // Return size in bytes, not bits.
667
668  return llvm::ConstantInt::get(llvm::APInt(ResultWidth, Val));
669}
670
671Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
672  Expr *Op = E->getSubExpr();
673  if (Op->getType()->isAnyComplexType())
674    return CGF.EmitComplexExpr(Op).first;
675  return Visit(Op);
676}
677Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
678  Expr *Op = E->getSubExpr();
679  if (Op->getType()->isAnyComplexType())
680    return CGF.EmitComplexExpr(Op).second;
681
682  // __imag on a scalar returns zero.  Emit it the subexpr to ensure side
683  // effects are evaluated.
684  CGF.EmitScalarExpr(Op);
685  return llvm::Constant::getNullValue(ConvertType(E->getType()));
686}
687
688Value *ScalarExprEmitter::VisitUnaryOffsetOf(const UnaryOperator *E)
689{
690  int64_t Val = E->evaluateOffsetOf(CGF.getContext());
691
692  assert(E->getType()->isIntegerType() && "Result type must be an integer!");
693
694  uint32_t ResultWidth =
695    static_cast<uint32_t>(CGF.getContext().getTypeSize(E->getType()));
696  return llvm::ConstantInt::get(llvm::APInt(ResultWidth, Val));
697}
698
699//===----------------------------------------------------------------------===//
700//                           Binary Operators
701//===----------------------------------------------------------------------===//
702
703BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
704  BinOpInfo Result;
705  Result.LHS = Visit(E->getLHS());
706  Result.RHS = Visit(E->getRHS());
707  Result.Ty  = E->getType();
708  Result.E = E;
709  return Result;
710}
711
712Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
713                      Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
714  QualType LHSTy = E->getLHS()->getType(), RHSTy = E->getRHS()->getType();
715
716  BinOpInfo OpInfo;
717
718  // Load the LHS and RHS operands.
719  LValue LHSLV = EmitLValue(E->getLHS());
720  OpInfo.LHS = EmitLoadOfLValue(LHSLV, LHSTy);
721
722  // Determine the computation type.  If the RHS is complex, then this is one of
723  // the add/sub/mul/div operators.  All of these operators can be computed in
724  // with just their real component even though the computation domain really is
725  // complex.
726  QualType ComputeType = E->getComputationType();
727
728  // If the computation type is complex, then the RHS is complex.  Emit the RHS.
729  if (const ComplexType *CT = ComputeType->getAsComplexType()) {
730    ComputeType = CT->getElementType();
731
732    // Emit the RHS, only keeping the real component.
733    OpInfo.RHS = CGF.EmitComplexExpr(E->getRHS()).first;
734    RHSTy = RHSTy->getAsComplexType()->getElementType();
735  } else {
736    // Otherwise the RHS is a simple scalar value.
737    OpInfo.RHS = Visit(E->getRHS());
738  }
739
740  QualType LComputeTy, RComputeTy, ResultTy;
741
742  // Compound assignment does not contain enough information about all
743  // the types involved for pointer arithmetic cases. Figure it out
744  // here for now.
745  if (E->getLHS()->getType()->isPointerType()) {
746    // Pointer arithmetic cases: ptr +=,-= int and ptr -= ptr,
747    assert((E->getOpcode() == BinaryOperator::AddAssign ||
748            E->getOpcode() == BinaryOperator::SubAssign) &&
749           "Invalid compound assignment operator on pointer type.");
750    LComputeTy = E->getLHS()->getType();
751
752    if (E->getRHS()->getType()->isPointerType()) {
753      // Degenerate case of (ptr -= ptr) allowed by GCC implicit cast
754      // extension, the conversion from the pointer difference back to
755      // the LHS type is handled at the end.
756      assert(E->getOpcode() == BinaryOperator::SubAssign &&
757             "Invalid compound assignment operator on pointer type.");
758      RComputeTy = E->getLHS()->getType();
759      ResultTy = CGF.getContext().getPointerDiffType();
760    } else {
761      RComputeTy = E->getRHS()->getType();
762      ResultTy = LComputeTy;
763    }
764  } else if (E->getRHS()->getType()->isPointerType()) {
765    // Degenerate case of (int += ptr) allowed by GCC implicit cast
766    // extension.
767    assert(E->getOpcode() == BinaryOperator::AddAssign &&
768           "Invalid compound assignment operator on pointer type.");
769    LComputeTy = E->getLHS()->getType();
770    RComputeTy = E->getRHS()->getType();
771    ResultTy = RComputeTy;
772  } else {
773    LComputeTy = RComputeTy = ResultTy = ComputeType;
774  }
775
776  // Convert the LHS/RHS values to the computation type.
777  OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy, LComputeTy);
778  OpInfo.RHS = EmitScalarConversion(OpInfo.RHS, RHSTy, RComputeTy);
779  OpInfo.Ty = ResultTy;
780  OpInfo.E = E;
781
782  // Expand the binary operator.
783  Value *Result = (this->*Func)(OpInfo);
784
785  // Convert the result back to the LHS type.
786  Result = EmitScalarConversion(Result, ResultTy, LHSTy);
787
788  // Store the result value into the LHS lvalue.
789  CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV, LHSTy);
790
791  // For bitfields, we need the value in the bitfield. Note that
792  // property references do not reload their value (even though the
793  // setter may have changed it).
794  // FIXME: This adds an extra bitfield load
795  if (LHSLV.isBitfield())
796    Result = EmitLoadOfLValue(LHSLV, LHSTy);
797  return Result;
798}
799
800
801Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
802  if (Ops.LHS->getType()->isFPOrFPVector())
803    return Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
804  else if (Ops.Ty->isUnsignedIntegerType())
805    return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
806  else
807    return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
808}
809
810Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
811  // Rem in C can't be a floating point type: C99 6.5.5p2.
812  if (Ops.Ty->isUnsignedIntegerType())
813    return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
814  else
815    return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
816}
817
818
819Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &Ops) {
820  if (!Ops.Ty->isPointerType())
821    return Builder.CreateAdd(Ops.LHS, Ops.RHS, "add");
822
823  // FIXME: What about a pointer to a VLA?
824  Value *Ptr, *Idx;
825  Expr *IdxExp;
826  if (isa<llvm::PointerType>(Ops.LHS->getType())) {  // pointer + int
827    Ptr = Ops.LHS;
828    Idx = Ops.RHS;
829    IdxExp = Ops.E->getRHS();
830  } else {                                           // int + pointer
831    Ptr = Ops.RHS;
832    Idx = Ops.LHS;
833    IdxExp = Ops.E->getLHS();
834  }
835
836  unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
837  if (Width < CGF.LLVMPointerWidth) {
838    // Zero or sign extend the pointer value based on whether the index is
839    // signed or not.
840    const llvm::Type *IdxType = llvm::IntegerType::get(CGF.LLVMPointerWidth);
841    if (IdxExp->getType()->isSignedIntegerType())
842      Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
843    else
844      Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
845  }
846
847  return Builder.CreateGEP(Ptr, Idx, "add.ptr");
848}
849
850Value *ScalarExprEmitter::EmitSub(const BinOpInfo &Ops) {
851  if (!isa<llvm::PointerType>(Ops.LHS->getType()))
852    return Builder.CreateSub(Ops.LHS, Ops.RHS, "sub");
853
854  if (!isa<llvm::PointerType>(Ops.RHS->getType())) {
855    // pointer - int
856    Value *Idx = Ops.RHS;
857    unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
858    if (Width < CGF.LLVMPointerWidth) {
859      // Zero or sign extend the pointer value based on whether the index is
860      // signed or not.
861      const llvm::Type *IdxType = llvm::IntegerType::get(CGF.LLVMPointerWidth);
862      if (Ops.E->getRHS()->getType()->isSignedIntegerType())
863        Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
864      else
865        Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
866    }
867    Idx = Builder.CreateNeg(Idx, "sub.ptr.neg");
868
869    // FIXME: The pointer could point to a VLA.
870    // The GNU void* - int case is automatically handled here because
871    // our LLVM type for void* is i8*.
872    return Builder.CreateGEP(Ops.LHS, Idx, "sub.ptr");
873  } else {
874    // pointer - pointer
875    Value *LHS = Ops.LHS;
876    Value *RHS = Ops.RHS;
877
878    const QualType LHSType = Ops.E->getLHS()->getType();
879    const QualType LHSElementType = LHSType->getAsPointerType()->getPointeeType();
880    uint64_t ElementSize;
881
882    // Handle GCC extension for pointer arithmetic on void* types.
883    if (LHSElementType->isVoidType()) {
884      ElementSize = 1;
885    } else {
886      ElementSize = CGF.getContext().getTypeSize(LHSElementType) / 8;
887    }
888
889    const llvm::Type *ResultType = ConvertType(Ops.Ty);
890    LHS = Builder.CreatePtrToInt(LHS, ResultType, "sub.ptr.lhs.cast");
891    RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
892    Value *BytesBetween = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
893
894    // HACK: LLVM doesn't have an divide instruction that 'knows' there is no
895    // remainder.  As such, we handle common power-of-two cases here to generate
896    // better code. See PR2247.
897    if (llvm::isPowerOf2_64(ElementSize)) {
898      Value *ShAmt =
899        llvm::ConstantInt::get(ResultType, llvm::Log2_64(ElementSize));
900      return Builder.CreateAShr(BytesBetween, ShAmt, "sub.ptr.shr");
901    }
902
903    // Otherwise, do a full sdiv.
904    Value *BytesPerElt = llvm::ConstantInt::get(ResultType, ElementSize);
905    return Builder.CreateSDiv(BytesBetween, BytesPerElt, "sub.ptr.div");
906  }
907}
908
909Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
910  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
911  // RHS to the same size as the LHS.
912  Value *RHS = Ops.RHS;
913  if (Ops.LHS->getType() != RHS->getType())
914    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
915
916  return Builder.CreateShl(Ops.LHS, RHS, "shl");
917}
918
919Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
920  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
921  // RHS to the same size as the LHS.
922  Value *RHS = Ops.RHS;
923  if (Ops.LHS->getType() != RHS->getType())
924    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
925
926  if (Ops.Ty->isUnsignedIntegerType())
927    return Builder.CreateLShr(Ops.LHS, RHS, "shr");
928  return Builder.CreateAShr(Ops.LHS, RHS, "shr");
929}
930
931Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
932                                      unsigned SICmpOpc, unsigned FCmpOpc) {
933  Value *Result;
934  QualType LHSTy = E->getLHS()->getType();
935  if (!LHSTy->isAnyComplexType() && !LHSTy->isVectorType()) {
936    Value *LHS = Visit(E->getLHS());
937    Value *RHS = Visit(E->getRHS());
938
939    if (LHS->getType()->isFloatingPoint()) {
940      Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
941                                  LHS, RHS, "cmp");
942    } else if (LHSTy->isSignedIntegerType()) {
943      Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
944                                  LHS, RHS, "cmp");
945    } else {
946      // Unsigned integers and pointers.
947      Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
948                                  LHS, RHS, "cmp");
949    }
950  } else if (LHSTy->isVectorType()) {
951    Value *LHS = Visit(E->getLHS());
952    Value *RHS = Visit(E->getRHS());
953
954    if (LHS->getType()->isFPOrFPVector()) {
955      Result = Builder.CreateVFCmp((llvm::CmpInst::Predicate)FCmpOpc,
956                                  LHS, RHS, "cmp");
957    } else if (LHSTy->isUnsignedIntegerType()) {
958      Result = Builder.CreateVICmp((llvm::CmpInst::Predicate)UICmpOpc,
959                                  LHS, RHS, "cmp");
960    } else {
961      // Signed integers and pointers.
962      Result = Builder.CreateVICmp((llvm::CmpInst::Predicate)SICmpOpc,
963                                  LHS, RHS, "cmp");
964    }
965    return Result;
966  } else {
967    // Complex Comparison: can only be an equality comparison.
968    CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS());
969    CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS());
970
971    QualType CETy = LHSTy->getAsComplexType()->getElementType();
972
973    Value *ResultR, *ResultI;
974    if (CETy->isRealFloatingType()) {
975      ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
976                                   LHS.first, RHS.first, "cmp.r");
977      ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
978                                   LHS.second, RHS.second, "cmp.i");
979    } else {
980      // Complex comparisons can only be equality comparisons.  As such, signed
981      // and unsigned opcodes are the same.
982      ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
983                                   LHS.first, RHS.first, "cmp.r");
984      ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
985                                   LHS.second, RHS.second, "cmp.i");
986    }
987
988    if (E->getOpcode() == BinaryOperator::EQ) {
989      Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
990    } else {
991      assert(E->getOpcode() == BinaryOperator::NE &&
992             "Complex comparison other than == or != ?");
993      Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
994    }
995  }
996
997  // ZExt result to int.
998  return Builder.CreateZExt(Result, CGF.LLVMIntTy, "cmp.ext");
999}
1000
1001Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
1002  LValue LHS = EmitLValue(E->getLHS());
1003  Value *RHS = Visit(E->getRHS());
1004
1005  // Store the value into the LHS.
1006  // FIXME: Volatility!
1007  CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS, E->getType());
1008
1009  // For bitfields, we need the value in the bitfield. Note that
1010  // property references do not reload their value (even though the
1011  // setter may have changed it).
1012  // FIXME: This adds an extra bitfield load
1013  if (LHS.isBitfield())
1014    return EmitLoadOfLValue(LHS, E->getLHS()->getType());
1015
1016  // Return the RHS.
1017  return RHS;
1018}
1019
1020Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
1021  Value *LHSCond = CGF.EvaluateExprAsBool(E->getLHS());
1022
1023  if (llvm::ConstantInt *LHSCst = dyn_cast<llvm::ConstantInt>(LHSCond)) {
1024    // If we have 0 && RHS, see if we can elide RHS, if so, just return LHSCond.
1025    if (LHSCst->isZero()) {
1026      if (!CGF.ContainsLabel(E->getRHS()))
1027        // Elide RHS, return 0
1028        return llvm::Constant::getNullValue(CGF.LLVMIntTy);
1029    } else {
1030      // If we have 1 && X, just emit X without inserting the control flow.
1031      Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1032      // ZExt result to int.
1033      return Builder.CreateZExt(RHSCond, CGF.LLVMIntTy, "land.ext");
1034    }
1035  }
1036
1037  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land_cont");
1038  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land_rhs");
1039
1040  llvm::BasicBlock *OrigBlock = Builder.GetInsertBlock();
1041  Builder.CreateCondBr(LHSCond, RHSBlock, ContBlock);
1042
1043  CGF.EmitBlock(RHSBlock);
1044  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1045
1046  // Reaquire the RHS block, as there may be subblocks inserted.
1047  RHSBlock = Builder.GetInsertBlock();
1048  CGF.EmitBlock(ContBlock);
1049
1050  // Create a PHI node.  If we just evaluted the LHS condition, the result is
1051  // false.  If we evaluated both, the result is the RHS condition.
1052  llvm::PHINode *PN = Builder.CreatePHI(llvm::Type::Int1Ty, "land");
1053  PN->reserveOperandSpace(2);
1054  PN->addIncoming(llvm::ConstantInt::getFalse(), OrigBlock);
1055  PN->addIncoming(RHSCond, RHSBlock);
1056
1057  // ZExt result to int.
1058  return Builder.CreateZExt(PN, CGF.LLVMIntTy, "land.ext");
1059}
1060
1061Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
1062  Value *LHSCond = CGF.EvaluateExprAsBool(E->getLHS());
1063
1064  if (llvm::ConstantInt *LHSCst = dyn_cast<llvm::ConstantInt>(LHSCond)) {
1065    // If we have 1 || RHS, see if we can elide RHS, if so, just return LHSCond.
1066    if (!LHSCst->isZero()) {
1067      if (!CGF.ContainsLabel(E->getRHS()))
1068        // Elide RHS, return 1
1069        return llvm::ConstantInt::get(CGF.LLVMIntTy, 1);
1070    } else {
1071      // If we have 0 || X, just emit X without inserting the control flow.
1072      Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1073      // ZExt result to int.
1074      return Builder.CreateZExt(RHSCond, CGF.LLVMIntTy, "lor.ext");
1075    }
1076  }
1077
1078  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor_cont");
1079  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor_rhs");
1080
1081  llvm::BasicBlock *OrigBlock = Builder.GetInsertBlock();
1082  Builder.CreateCondBr(LHSCond, ContBlock, RHSBlock);
1083
1084  CGF.EmitBlock(RHSBlock);
1085  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1086
1087  // Reaquire the RHS block, as there may be subblocks inserted.
1088  RHSBlock = Builder.GetInsertBlock();
1089  CGF.EmitBlock(ContBlock);
1090
1091  // Create a PHI node.  If we just evaluted the LHS condition, the result is
1092  // true.  If we evaluated both, the result is the RHS condition.
1093  llvm::PHINode *PN = Builder.CreatePHI(llvm::Type::Int1Ty, "lor");
1094  PN->reserveOperandSpace(2);
1095  PN->addIncoming(llvm::ConstantInt::getTrue(), OrigBlock);
1096  PN->addIncoming(RHSCond, RHSBlock);
1097
1098  // ZExt result to int.
1099  return Builder.CreateZExt(PN, CGF.LLVMIntTy, "lor.ext");
1100}
1101
1102Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
1103  CGF.EmitStmt(E->getLHS());
1104  CGF.EnsureInsertPoint();
1105  return Visit(E->getRHS());
1106}
1107
1108//===----------------------------------------------------------------------===//
1109//                             Other Operators
1110//===----------------------------------------------------------------------===//
1111
1112Value *ScalarExprEmitter::
1113VisitConditionalOperator(const ConditionalOperator *E) {
1114  // If the condition constant folds and can be elided, try to avoid emitting
1115  // the condition and the dead arm.
1116  if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getCond())){
1117    Expr *Live = E->getLHS(), *Dead = E->getRHS();
1118    if (Cond == -1)
1119      std::swap(Live, Dead);
1120
1121    // If the dead side doesn't have labels we need, and if the Live side isn't
1122    // the gnu missing ?: extension (which we could handle, but don't bother
1123    // to), just emit the Live part.
1124    if ((!Dead || !CGF.ContainsLabel(Dead)) &&  // No labels in dead part
1125        Live)                                   // Live part isn't missing.
1126      return Visit(Live);
1127  }
1128
1129  llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.?");
1130  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.:");
1131  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.cont");
1132  Value *CondVal = 0;
1133
1134  // If we have the GNU missing condition extension, evaluate the conditional
1135  // and then convert it to bool the hard way.  We do this explicitly
1136  // because we need the unconverted value for the missing middle value of
1137  // the ?:.
1138  if (E->getLHS() == 0) {
1139    CondVal = CGF.EmitScalarExpr(E->getCond());
1140    Value *CondBoolVal =
1141      CGF.EmitScalarConversion(CondVal, E->getCond()->getType(),
1142                               CGF.getContext().BoolTy);
1143    Builder.CreateCondBr(CondBoolVal, LHSBlock, RHSBlock);
1144  } else {
1145    // Otherwise, just use EmitBranchOnBoolExpr to get small and simple code for
1146    // the branch on bool.
1147    CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock);
1148  }
1149
1150  CGF.EmitBlock(LHSBlock);
1151
1152  // Handle the GNU extension for missing LHS.
1153  Value *LHS;
1154  if (E->getLHS())
1155    LHS = Visit(E->getLHS());
1156  else    // Perform promotions, to handle cases like "short ?: int"
1157    LHS = EmitScalarConversion(CondVal, E->getCond()->getType(), E->getType());
1158
1159  LHSBlock = Builder.GetInsertBlock();
1160  CGF.EmitBranch(ContBlock);
1161
1162  CGF.EmitBlock(RHSBlock);
1163
1164  Value *RHS = Visit(E->getRHS());
1165  RHSBlock = Builder.GetInsertBlock();
1166  CGF.EmitBranch(ContBlock);
1167
1168  CGF.EmitBlock(ContBlock);
1169
1170  if (!LHS || !RHS) {
1171    assert(E->getType()->isVoidType() && "Non-void value should have a value");
1172    return 0;
1173  }
1174
1175  // Create a PHI node for the real part.
1176  llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), "cond");
1177  PN->reserveOperandSpace(2);
1178  PN->addIncoming(LHS, LHSBlock);
1179  PN->addIncoming(RHS, RHSBlock);
1180  return PN;
1181}
1182
1183Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
1184  // Emit the LHS or RHS as appropriate.
1185  return
1186    Visit(E->isConditionTrue(CGF.getContext()) ? E->getLHS() : E->getRHS());
1187}
1188
1189Value *ScalarExprEmitter::VisitOverloadExpr(OverloadExpr *E) {
1190  return CGF.EmitCallExpr(E->getFn(), E->arg_begin(),
1191                          E->arg_end(CGF.getContext())).getScalarVal();
1192}
1193
1194Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
1195  llvm::Value *ArgValue = EmitLValue(VE->getSubExpr()).getAddress();
1196
1197  llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
1198
1199  // If EmitVAArg fails, we fall back to the LLVM instruction.
1200  if (!ArgPtr)
1201    return Builder.CreateVAArg(ArgValue, ConvertType(VE->getType()));
1202
1203  // FIXME: volatile?
1204  return Builder.CreateLoad(ArgPtr);
1205}
1206
1207Value *ScalarExprEmitter::VisitObjCEncodeExpr(const ObjCEncodeExpr *E) {
1208  std::string str;
1209  CGF.getContext().getObjCEncodingForType(E->getEncodedType(), str);
1210
1211  llvm::Constant *C = llvm::ConstantArray::get(str);
1212  C = new llvm::GlobalVariable(C->getType(), true,
1213                               llvm::GlobalValue::InternalLinkage,
1214                               C, ".str", &CGF.CGM.getModule());
1215  llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty);
1216  llvm::Constant *Zeros[] = { Zero, Zero };
1217  C = llvm::ConstantExpr::getGetElementPtr(C, Zeros, 2);
1218
1219  return C;
1220}
1221
1222//===----------------------------------------------------------------------===//
1223//                         Entry Point into this File
1224//===----------------------------------------------------------------------===//
1225
1226/// EmitComplexExpr - Emit the computation of the specified expression of
1227/// complex type, ignoring the result.
1228Value *CodeGenFunction::EmitScalarExpr(const Expr *E) {
1229  assert(E && !hasAggregateLLVMType(E->getType()) &&
1230         "Invalid scalar expression to emit");
1231
1232  return ScalarExprEmitter(*this).Visit(const_cast<Expr*>(E));
1233}
1234
1235/// EmitScalarConversion - Emit a conversion from the specified type to the
1236/// specified destination type, both of which are LLVM scalar types.
1237Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
1238                                             QualType DstTy) {
1239  assert(!hasAggregateLLVMType(SrcTy) && !hasAggregateLLVMType(DstTy) &&
1240         "Invalid scalar expression to emit");
1241  return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
1242}
1243
1244/// EmitComplexToScalarConversion - Emit a conversion from the specified
1245/// complex type to the specified destination type, where the destination
1246/// type is an LLVM scalar type.
1247Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
1248                                                      QualType SrcTy,
1249                                                      QualType DstTy) {
1250  assert(SrcTy->isAnyComplexType() && !hasAggregateLLVMType(DstTy) &&
1251         "Invalid complex -> scalar conversion");
1252  return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy,
1253                                                                DstTy);
1254}
1255
1256Value *CodeGenFunction::EmitShuffleVector(Value* V1, Value *V2, ...) {
1257  assert(V1->getType() == V2->getType() &&
1258         "Vector operands must be of the same type");
1259  unsigned NumElements =
1260    cast<llvm::VectorType>(V1->getType())->getNumElements();
1261
1262  va_list va;
1263  va_start(va, V2);
1264
1265  llvm::SmallVector<llvm::Constant*, 16> Args;
1266  for (unsigned i = 0; i < NumElements; i++) {
1267    int n = va_arg(va, int);
1268    assert(n >= 0 && n < (int)NumElements * 2 &&
1269           "Vector shuffle index out of bounds!");
1270    Args.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, n));
1271  }
1272
1273  const char *Name = va_arg(va, const char *);
1274  va_end(va);
1275
1276  llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements);
1277
1278  return Builder.CreateShuffleVector(V1, V2, Mask, Name);
1279}
1280
1281llvm::Value *CodeGenFunction::EmitVector(llvm::Value * const *Vals,
1282                                         unsigned NumVals, bool isSplat) {
1283  llvm::Value *Vec
1284    = llvm::UndefValue::get(llvm::VectorType::get(Vals[0]->getType(), NumVals));
1285
1286  for (unsigned i = 0, e = NumVals; i != e; ++i) {
1287    llvm::Value *Val = isSplat ? Vals[0] : Vals[i];
1288    llvm::Value *Idx = llvm::ConstantInt::get(llvm::Type::Int32Ty, i);
1289    Vec = Builder.CreateInsertElement(Vec, Val, Idx, "tmp");
1290  }
1291
1292  return Vec;
1293}
1294