CGExprScalar.cpp revision 0785570af3ef5f8c5a0377129e41efe6f3f8d770
1//===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenFunction.h"
15#include "CodeGenModule.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/RecordLayout.h"
19#include "clang/AST/StmtVisitor.h"
20#include "clang/Basic/TargetInfo.h"
21#include "llvm/Constants.h"
22#include "llvm/Function.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/Intrinsics.h"
25#include "llvm/Support/Compiler.h"
26#include "llvm/Support/CFG.h"
27#include <cstdarg>
28
29using namespace clang;
30using namespace CodeGen;
31using llvm::Value;
32
33//===----------------------------------------------------------------------===//
34//                         Scalar Expression Emitter
35//===----------------------------------------------------------------------===//
36
37struct BinOpInfo {
38  Value *LHS;
39  Value *RHS;
40  QualType Ty;  // Computation Type.
41  const BinaryOperator *E;
42};
43
44namespace {
45class VISIBILITY_HIDDEN ScalarExprEmitter
46  : public StmtVisitor<ScalarExprEmitter, Value*> {
47  CodeGenFunction &CGF;
48  CGBuilderTy &Builder;
49
50public:
51
52  ScalarExprEmitter(CodeGenFunction &cgf) : CGF(cgf),
53    Builder(CGF.Builder) {
54  }
55
56  //===--------------------------------------------------------------------===//
57  //                               Utilities
58  //===--------------------------------------------------------------------===//
59
60  const llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
61  LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
62
63  Value *EmitLoadOfLValue(LValue LV, QualType T) {
64    return CGF.EmitLoadOfLValue(LV, T).getScalarVal();
65  }
66
67  /// EmitLoadOfLValue - Given an expression with complex type that represents a
68  /// value l-value, this method emits the address of the l-value, then loads
69  /// and returns the result.
70  Value *EmitLoadOfLValue(const Expr *E) {
71    // FIXME: Volatile
72    return EmitLoadOfLValue(EmitLValue(E), E->getType());
73  }
74
75  /// EmitConversionToBool - Convert the specified expression value to a
76  /// boolean (i1) truth value.  This is equivalent to "Val != 0".
77  Value *EmitConversionToBool(Value *Src, QualType DstTy);
78
79  /// EmitScalarConversion - Emit a conversion from the specified type to the
80  /// specified destination type, both of which are LLVM scalar types.
81  Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);
82
83  /// EmitComplexToScalarConversion - Emit a conversion from the specified
84  /// complex type to the specified destination type, where the destination
85  /// type is an LLVM scalar type.
86  Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
87                                       QualType SrcTy, QualType DstTy);
88
89  //===--------------------------------------------------------------------===//
90  //                            Visitor Methods
91  //===--------------------------------------------------------------------===//
92
93  Value *VisitStmt(Stmt *S) {
94    S->dump(CGF.getContext().getSourceManager());
95    assert(0 && "Stmt can't have complex result type!");
96    return 0;
97  }
98  Value *VisitExpr(Expr *S);
99  Value *VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr()); }
100
101  // Leaves.
102  Value *VisitIntegerLiteral(const IntegerLiteral *E) {
103    return llvm::ConstantInt::get(E->getValue());
104  }
105  Value *VisitFloatingLiteral(const FloatingLiteral *E) {
106    return llvm::ConstantFP::get(E->getValue());
107  }
108  Value *VisitCharacterLiteral(const CharacterLiteral *E) {
109    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
110  }
111  Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
112    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
113  }
114  Value *VisitCXXZeroInitValueExpr(const CXXZeroInitValueExpr *E) {
115    return llvm::Constant::getNullValue(ConvertType(E->getType()));
116  }
117  Value *VisitGNUNullExpr(const GNUNullExpr *E) {
118    return llvm::Constant::getNullValue(ConvertType(E->getType()));
119  }
120  Value *VisitTypesCompatibleExpr(const TypesCompatibleExpr *E) {
121    return llvm::ConstantInt::get(ConvertType(E->getType()),
122                                  CGF.getContext().typesAreCompatible(
123                                    E->getArgType1(), E->getArgType2()));
124  }
125  Value *VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E);
126  Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
127    llvm::Value *V =
128      llvm::ConstantInt::get(llvm::Type::Int32Ty,
129                             CGF.GetIDForAddrOfLabel(E->getLabel()));
130
131    return Builder.CreateIntToPtr(V, ConvertType(E->getType()));
132  }
133
134  // l-values.
135  Value *VisitDeclRefExpr(DeclRefExpr *E) {
136    if (const EnumConstantDecl *EC = dyn_cast<EnumConstantDecl>(E->getDecl()))
137      return llvm::ConstantInt::get(EC->getInitVal());
138    return EmitLoadOfLValue(E);
139  }
140  Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
141    return CGF.EmitObjCSelectorExpr(E);
142  }
143  Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
144    return CGF.EmitObjCProtocolExpr(E);
145  }
146  Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
147    return EmitLoadOfLValue(E);
148  }
149  Value *VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
150    return EmitLoadOfLValue(E);
151  }
152  Value *VisitObjCKVCRefExpr(ObjCKVCRefExpr *E) {
153    return EmitLoadOfLValue(E);
154  }
155  Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
156    return CGF.EmitObjCMessageExpr(E).getScalarVal();
157  }
158
159  Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
160  Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
161  Value *VisitMemberExpr(Expr *E)           { return EmitLoadOfLValue(E); }
162  Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
163  Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
164    return EmitLoadOfLValue(E);
165  }
166  Value *VisitStringLiteral(Expr *E)  { return EmitLValue(E).getAddress(); }
167  Value *VisitPredefinedExpr(Expr *E) { return EmitLValue(E).getAddress(); }
168
169  Value *VisitInitListExpr(InitListExpr *E) {
170    unsigned NumInitElements = E->getNumInits();
171
172    if (E->hadArrayRangeDesignator()) {
173      CGF.ErrorUnsupported(E, "GNU array range designator extension");
174    }
175
176    const llvm::VectorType *VType =
177      dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
178
179    // We have a scalar in braces. Just use the first element.
180    if (!VType)
181      return Visit(E->getInit(0));
182
183    unsigned NumVectorElements = VType->getNumElements();
184    const llvm::Type *ElementType = VType->getElementType();
185
186    // Emit individual vector element stores.
187    llvm::Value *V = llvm::UndefValue::get(VType);
188
189    // Emit initializers
190    unsigned i;
191    for (i = 0; i < NumInitElements; ++i) {
192      Value *NewV = Visit(E->getInit(i));
193      Value *Idx = llvm::ConstantInt::get(llvm::Type::Int32Ty, i);
194      V = Builder.CreateInsertElement(V, NewV, Idx);
195    }
196
197    // Emit remaining default initializers
198    for (/* Do not initialize i*/; i < NumVectorElements; ++i) {
199      Value *Idx = llvm::ConstantInt::get(llvm::Type::Int32Ty, i);
200      llvm::Value *NewV = llvm::Constant::getNullValue(ElementType);
201      V = Builder.CreateInsertElement(V, NewV, Idx);
202    }
203
204    return V;
205  }
206
207  Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
208    return llvm::Constant::getNullValue(ConvertType(E->getType()));
209  }
210  Value *VisitImplicitCastExpr(const ImplicitCastExpr *E);
211  Value *VisitCastExpr(const CastExpr *E) {
212    return EmitCastExpr(E->getSubExpr(), E->getType());
213  }
214  Value *EmitCastExpr(const Expr *E, QualType T);
215
216  Value *VisitCallExpr(const CallExpr *E) {
217    return CGF.EmitCallExpr(E).getScalarVal();
218  }
219
220  Value *VisitStmtExpr(const StmtExpr *E);
221
222  // Unary Operators.
223  Value *VisitPrePostIncDec(const UnaryOperator *E, bool isInc, bool isPre);
224  Value *VisitUnaryPostDec(const UnaryOperator *E) {
225    return VisitPrePostIncDec(E, false, false);
226  }
227  Value *VisitUnaryPostInc(const UnaryOperator *E) {
228    return VisitPrePostIncDec(E, true, false);
229  }
230  Value *VisitUnaryPreDec(const UnaryOperator *E) {
231    return VisitPrePostIncDec(E, false, true);
232  }
233  Value *VisitUnaryPreInc(const UnaryOperator *E) {
234    return VisitPrePostIncDec(E, true, true);
235  }
236  Value *VisitUnaryAddrOf(const UnaryOperator *E) {
237    return EmitLValue(E->getSubExpr()).getAddress();
238  }
239  Value *VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); }
240  Value *VisitUnaryPlus(const UnaryOperator *E) {
241    return Visit(E->getSubExpr());
242  }
243  Value *VisitUnaryMinus    (const UnaryOperator *E);
244  Value *VisitUnaryNot      (const UnaryOperator *E);
245  Value *VisitUnaryLNot     (const UnaryOperator *E);
246  Value *VisitUnaryReal     (const UnaryOperator *E);
247  Value *VisitUnaryImag     (const UnaryOperator *E);
248  Value *VisitUnaryExtension(const UnaryOperator *E) {
249    return Visit(E->getSubExpr());
250  }
251  Value *VisitUnaryOffsetOf(const UnaryOperator *E);
252  Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
253    return Visit(DAE->getExpr());
254  }
255
256  // Binary Operators.
257  Value *EmitMul(const BinOpInfo &Ops) {
258    return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
259  }
260  Value *EmitDiv(const BinOpInfo &Ops);
261  Value *EmitRem(const BinOpInfo &Ops);
262  Value *EmitAdd(const BinOpInfo &Ops);
263  Value *EmitSub(const BinOpInfo &Ops);
264  Value *EmitShl(const BinOpInfo &Ops);
265  Value *EmitShr(const BinOpInfo &Ops);
266  Value *EmitAnd(const BinOpInfo &Ops) {
267    return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
268  }
269  Value *EmitXor(const BinOpInfo &Ops) {
270    return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
271  }
272  Value *EmitOr (const BinOpInfo &Ops) {
273    return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
274  }
275
276  BinOpInfo EmitBinOps(const BinaryOperator *E);
277  Value *EmitCompoundAssign(const CompoundAssignOperator *E,
278                            Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
279
280  // Binary operators and binary compound assignment operators.
281#define HANDLEBINOP(OP) \
282  Value *VisitBin ## OP(const BinaryOperator *E) {                         \
283    return Emit ## OP(EmitBinOps(E));                                      \
284  }                                                                        \
285  Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
286    return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
287  }
288  HANDLEBINOP(Mul);
289  HANDLEBINOP(Div);
290  HANDLEBINOP(Rem);
291  HANDLEBINOP(Add);
292  HANDLEBINOP(Sub);
293  HANDLEBINOP(Shl);
294  HANDLEBINOP(Shr);
295  HANDLEBINOP(And);
296  HANDLEBINOP(Xor);
297  HANDLEBINOP(Or);
298#undef HANDLEBINOP
299
300  // Comparisons.
301  Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
302                     unsigned SICmpOpc, unsigned FCmpOpc);
303#define VISITCOMP(CODE, UI, SI, FP) \
304    Value *VisitBin##CODE(const BinaryOperator *E) { \
305      return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
306                         llvm::FCmpInst::FP); }
307  VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT);
308  VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT);
309  VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE);
310  VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE);
311  VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ);
312  VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE);
313#undef VISITCOMP
314
315  Value *VisitBinAssign     (const BinaryOperator *E);
316
317  Value *VisitBinLAnd       (const BinaryOperator *E);
318  Value *VisitBinLOr        (const BinaryOperator *E);
319  Value *VisitBinComma      (const BinaryOperator *E);
320
321  // Other Operators.
322  Value *VisitBlockExpr(const BlockExpr *BE) {
323    CGF.ErrorUnsupported(BE, "block expression");
324    return llvm::UndefValue::get(CGF.ConvertType(BE->getType()));
325  }
326
327  Value *VisitConditionalOperator(const ConditionalOperator *CO);
328  Value *VisitChooseExpr(ChooseExpr *CE);
329  Value *VisitOverloadExpr(OverloadExpr *OE);
330  Value *VisitVAArgExpr(VAArgExpr *VE);
331  Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
332    return CGF.EmitObjCStringLiteral(E);
333  }
334  Value *VisitObjCEncodeExpr(const ObjCEncodeExpr *E);
335};
336}  // end anonymous namespace.
337
338//===----------------------------------------------------------------------===//
339//                                Utilities
340//===----------------------------------------------------------------------===//
341
342/// EmitConversionToBool - Convert the specified expression value to a
343/// boolean (i1) truth value.  This is equivalent to "Val != 0".
344Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
345  assert(SrcType->isCanonical() && "EmitScalarConversion strips typedefs");
346
347  if (SrcType->isRealFloatingType()) {
348    // Compare against 0.0 for fp scalars.
349    llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType());
350    return Builder.CreateFCmpUNE(Src, Zero, "tobool");
351  }
352
353  assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
354         "Unknown scalar type to convert");
355
356  // Because of the type rules of C, we often end up computing a logical value,
357  // then zero extending it to int, then wanting it as a logical value again.
358  // Optimize this common case.
359  if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(Src)) {
360    if (ZI->getOperand(0)->getType() == llvm::Type::Int1Ty) {
361      Value *Result = ZI->getOperand(0);
362      // If there aren't any more uses, zap the instruction to save space.
363      // Note that there can be more uses, for example if this
364      // is the result of an assignment.
365      if (ZI->use_empty())
366        ZI->eraseFromParent();
367      return Result;
368    }
369  }
370
371  // Compare against an integer or pointer null.
372  llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType());
373  return Builder.CreateICmpNE(Src, Zero, "tobool");
374}
375
376/// EmitScalarConversion - Emit a conversion from the specified type to the
377/// specified destination type, both of which are LLVM scalar types.
378Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
379                                               QualType DstType) {
380  SrcType = CGF.getContext().getCanonicalType(SrcType);
381  DstType = CGF.getContext().getCanonicalType(DstType);
382  if (SrcType == DstType) return Src;
383
384  if (DstType->isVoidType()) return 0;
385
386  // Handle conversions to bool first, they are special: comparisons against 0.
387  if (DstType->isBooleanType())
388    return EmitConversionToBool(Src, SrcType);
389
390  const llvm::Type *DstTy = ConvertType(DstType);
391
392  // Ignore conversions like int -> uint.
393  if (Src->getType() == DstTy)
394    return Src;
395
396  // Handle pointer conversions next: pointers can only be converted
397  // to/from other pointers and integers. Check for pointer types in
398  // terms of LLVM, as some native types (like Obj-C id) may map to a
399  // pointer type.
400  if (isa<llvm::PointerType>(DstTy)) {
401    // The source value may be an integer, or a pointer.
402    if (isa<llvm::PointerType>(Src->getType()))
403      return Builder.CreateBitCast(Src, DstTy, "conv");
404    assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
405    return Builder.CreateIntToPtr(Src, DstTy, "conv");
406  }
407
408  if (isa<llvm::PointerType>(Src->getType())) {
409    // Must be an ptr to int cast.
410    assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
411    return Builder.CreatePtrToInt(Src, DstTy, "conv");
412  }
413
414  // A scalar can be splatted to an extended vector of the same element type
415  if (DstType->isExtVectorType() && !isa<VectorType>(SrcType)) {
416    // Cast the scalar to element type
417    QualType EltTy = DstType->getAsExtVectorType()->getElementType();
418    llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy);
419
420    // Insert the element in element zero of an undef vector
421    llvm::Value *UnV = llvm::UndefValue::get(DstTy);
422    llvm::Value *Idx = llvm::ConstantInt::get(llvm::Type::Int32Ty, 0);
423    UnV = Builder.CreateInsertElement(UnV, Elt, Idx, "tmp");
424
425    // Splat the element across to all elements
426    llvm::SmallVector<llvm::Constant*, 16> Args;
427    unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
428    for (unsigned i = 0; i < NumElements; i++)
429      Args.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, 0));
430
431    llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements);
432    llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
433    return Yay;
434  }
435
436  // Allow bitcast from vector to integer/fp of the same size.
437  if (isa<llvm::VectorType>(Src->getType()) ||
438      isa<llvm::VectorType>(DstTy))
439    return Builder.CreateBitCast(Src, DstTy, "conv");
440
441  // Finally, we have the arithmetic types: real int/float.
442  if (isa<llvm::IntegerType>(Src->getType())) {
443    bool InputSigned = SrcType->isSignedIntegerType();
444    if (isa<llvm::IntegerType>(DstTy))
445      return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
446    else if (InputSigned)
447      return Builder.CreateSIToFP(Src, DstTy, "conv");
448    else
449      return Builder.CreateUIToFP(Src, DstTy, "conv");
450  }
451
452  assert(Src->getType()->isFloatingPoint() && "Unknown real conversion");
453  if (isa<llvm::IntegerType>(DstTy)) {
454    if (DstType->isSignedIntegerType())
455      return Builder.CreateFPToSI(Src, DstTy, "conv");
456    else
457      return Builder.CreateFPToUI(Src, DstTy, "conv");
458  }
459
460  assert(DstTy->isFloatingPoint() && "Unknown real conversion");
461  if (DstTy->getTypeID() < Src->getType()->getTypeID())
462    return Builder.CreateFPTrunc(Src, DstTy, "conv");
463  else
464    return Builder.CreateFPExt(Src, DstTy, "conv");
465}
466
467/// EmitComplexToScalarConversion - Emit a conversion from the specified
468/// complex type to the specified destination type, where the destination
469/// type is an LLVM scalar type.
470Value *ScalarExprEmitter::
471EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
472                              QualType SrcTy, QualType DstTy) {
473  // Get the source element type.
474  SrcTy = SrcTy->getAsComplexType()->getElementType();
475
476  // Handle conversions to bool first, they are special: comparisons against 0.
477  if (DstTy->isBooleanType()) {
478    //  Complex != 0  -> (Real != 0) | (Imag != 0)
479    Src.first  = EmitScalarConversion(Src.first, SrcTy, DstTy);
480    Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
481    return Builder.CreateOr(Src.first, Src.second, "tobool");
482  }
483
484  // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
485  // the imaginary part of the complex value is discarded and the value of the
486  // real part is converted according to the conversion rules for the
487  // corresponding real type.
488  return EmitScalarConversion(Src.first, SrcTy, DstTy);
489}
490
491
492//===----------------------------------------------------------------------===//
493//                            Visitor Methods
494//===----------------------------------------------------------------------===//
495
496Value *ScalarExprEmitter::VisitExpr(Expr *E) {
497  CGF.ErrorUnsupported(E, "scalar expression");
498  if (E->getType()->isVoidType())
499    return 0;
500  return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
501}
502
503Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
504  llvm::SmallVector<llvm::Constant*, 32> indices;
505  for (unsigned i = 2; i < E->getNumSubExprs(); i++) {
506    indices.push_back(cast<llvm::Constant>(CGF.EmitScalarExpr(E->getExpr(i))));
507  }
508  Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
509  Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
510  Value* SV = llvm::ConstantVector::get(indices.begin(), indices.size());
511  return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
512}
513
514Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
515  // Emit subscript expressions in rvalue context's.  For most cases, this just
516  // loads the lvalue formed by the subscript expr.  However, we have to be
517  // careful, because the base of a vector subscript is occasionally an rvalue,
518  // so we can't get it as an lvalue.
519  if (!E->getBase()->getType()->isVectorType())
520    return EmitLoadOfLValue(E);
521
522  // Handle the vector case.  The base must be a vector, the index must be an
523  // integer value.
524  Value *Base = Visit(E->getBase());
525  Value *Idx  = Visit(E->getIdx());
526
527  // FIXME: Convert Idx to i32 type.
528  return Builder.CreateExtractElement(Base, Idx, "vecext");
529}
530
531/// VisitImplicitCastExpr - Implicit casts are the same as normal casts, but
532/// also handle things like function to pointer-to-function decay, and array to
533/// pointer decay.
534Value *ScalarExprEmitter::VisitImplicitCastExpr(const ImplicitCastExpr *E) {
535  const Expr *Op = E->getSubExpr();
536
537  // If this is due to array->pointer conversion, emit the array expression as
538  // an l-value.
539  if (Op->getType()->isArrayType()) {
540    // FIXME: For now we assume that all source arrays map to LLVM arrays.  This
541    // will not true when we add support for VLAs.
542    Value *V = EmitLValue(Op).getAddress();  // Bitfields can't be arrays.
543
544    if (!Op->getType()->isVariableArrayType()) {
545      assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer");
546      assert(isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType())
547                                 ->getElementType()) &&
548             "Expected pointer to array");
549      V = Builder.CreateStructGEP(V, 0, "arraydecay");
550    }
551
552    // The resultant pointer type can be implicitly casted to other pointer
553    // types as well (e.g. void*) and can be implicitly converted to integer.
554    const llvm::Type *DestTy = ConvertType(E->getType());
555    if (V->getType() != DestTy) {
556      if (isa<llvm::PointerType>(DestTy))
557        V = Builder.CreateBitCast(V, DestTy, "ptrconv");
558      else {
559        assert(isa<llvm::IntegerType>(DestTy) && "Unknown array decay");
560        V = Builder.CreatePtrToInt(V, DestTy, "ptrconv");
561      }
562    }
563    return V;
564
565  } else if (E->getType()->isReferenceType()) {
566    return EmitLValue(Op).getAddress();
567  }
568
569  return EmitCastExpr(Op, E->getType());
570}
571
572
573// VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
574// have to handle a more broad range of conversions than explicit casts, as they
575// handle things like function to ptr-to-function decay etc.
576Value *ScalarExprEmitter::EmitCastExpr(const Expr *E, QualType DestTy) {
577  // Handle cases where the source is an non-complex type.
578
579  if (!CGF.hasAggregateLLVMType(E->getType())) {
580    Value *Src = Visit(const_cast<Expr*>(E));
581
582    // Use EmitScalarConversion to perform the conversion.
583    return EmitScalarConversion(Src, E->getType(), DestTy);
584  }
585
586  if (E->getType()->isAnyComplexType()) {
587    // Handle cases where the source is a complex type.
588    return EmitComplexToScalarConversion(CGF.EmitComplexExpr(E), E->getType(),
589                                         DestTy);
590  }
591
592  // Okay, this is a cast from an aggregate.  It must be a cast to void.  Just
593  // evaluate the result and return.
594  CGF.EmitAggExpr(E, 0, false);
595  return 0;
596}
597
598Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
599  return CGF.EmitCompoundStmt(*E->getSubStmt(),
600                              !E->getType()->isVoidType()).getScalarVal();
601}
602
603
604//===----------------------------------------------------------------------===//
605//                             Unary Operators
606//===----------------------------------------------------------------------===//
607
608Value *ScalarExprEmitter::VisitPrePostIncDec(const UnaryOperator *E,
609                                             bool isInc, bool isPre) {
610  LValue LV = EmitLValue(E->getSubExpr());
611  // FIXME: Handle volatile!
612  Value *InVal = CGF.EmitLoadOfLValue(LV, // false
613                                     E->getSubExpr()->getType()).getScalarVal();
614
615  int AmountVal = isInc ? 1 : -1;
616
617  Value *NextVal;
618  if (isa<llvm::PointerType>(InVal->getType())) {
619    // FIXME: This isn't right for VLAs.
620    NextVal = llvm::ConstantInt::get(llvm::Type::Int32Ty, AmountVal);
621    NextVal = Builder.CreateGEP(InVal, NextVal, "ptrincdec");
622  } else if (InVal->getType() == llvm::Type::Int1Ty && isInc) {
623    // Bool++ is an interesting case, due to promotion rules, we get:
624    // Bool++ -> Bool = Bool+1 -> Bool = (int)Bool+1 ->
625    // Bool = ((int)Bool+1) != 0
626    // An interesting aspect of this is that increment is always true.
627    // Decrement does not have this property.
628    NextVal = llvm::ConstantInt::getTrue();
629  } else {
630    // Add the inc/dec to the real part.
631    if (isa<llvm::IntegerType>(InVal->getType()))
632      NextVal = llvm::ConstantInt::get(InVal->getType(), AmountVal);
633    else if (InVal->getType() == llvm::Type::FloatTy)
634      NextVal =
635        llvm::ConstantFP::get(llvm::APFloat(static_cast<float>(AmountVal)));
636    else if (InVal->getType() == llvm::Type::DoubleTy)
637      NextVal =
638        llvm::ConstantFP::get(llvm::APFloat(static_cast<double>(AmountVal)));
639    else {
640      llvm::APFloat F(static_cast<float>(AmountVal));
641      bool ignored;
642      F.convert(CGF.Target.getLongDoubleFormat(), llvm::APFloat::rmTowardZero,
643                &ignored);
644      NextVal = llvm::ConstantFP::get(F);
645    }
646    NextVal = Builder.CreateAdd(InVal, NextVal, isInc ? "inc" : "dec");
647  }
648
649  // Store the updated result through the lvalue.
650  CGF.EmitStoreThroughLValue(RValue::get(NextVal), LV,
651                             E->getSubExpr()->getType());
652
653  // If this is a postinc, return the value read from memory, otherwise use the
654  // updated value.
655  return isPre ? NextVal : InVal;
656}
657
658
659Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
660  Value *Op = Visit(E->getSubExpr());
661  return Builder.CreateNeg(Op, "neg");
662}
663
664Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
665  Value *Op = Visit(E->getSubExpr());
666  return Builder.CreateNot(Op, "neg");
667}
668
669Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
670  // Compare operand to zero.
671  Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
672
673  // Invert value.
674  // TODO: Could dynamically modify easy computations here.  For example, if
675  // the operand is an icmp ne, turn into icmp eq.
676  BoolVal = Builder.CreateNot(BoolVal, "lnot");
677
678  // ZExt result to int.
679  return Builder.CreateZExt(BoolVal, CGF.LLVMIntTy, "lnot.ext");
680}
681
682/// VisitSizeOfAlignOfExpr - Return the size or alignment of the type of
683/// argument of the sizeof expression as an integer.
684Value *
685ScalarExprEmitter::VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E) {
686  QualType TypeToSize = E->getTypeOfArgument();
687  if (E->isSizeOf()) {
688    if (const VariableArrayType *VAT =
689          CGF.getContext().getAsVariableArrayType(TypeToSize)) {
690      if (E->isArgumentType()) {
691        // sizeof(type) - make sure to emit the VLA size.
692        CGF.EmitVLASize(TypeToSize);
693      }
694
695      return CGF.GetVLASize(VAT);
696    }
697  }
698
699  // If this isn't sizeof(vla), the result must be constant; use the
700  // constant folding logic so we don't have to duplicate it here.
701  Expr::EvalResult Result;
702  E->Evaluate(Result, CGF.getContext());
703  return llvm::ConstantInt::get(Result.Val.getInt());
704}
705
706Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
707  Expr *Op = E->getSubExpr();
708  if (Op->getType()->isAnyComplexType())
709    return CGF.EmitComplexExpr(Op).first;
710  return Visit(Op);
711}
712Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
713  Expr *Op = E->getSubExpr();
714  if (Op->getType()->isAnyComplexType())
715    return CGF.EmitComplexExpr(Op).second;
716
717  // __imag on a scalar returns zero.  Emit it the subexpr to ensure side
718  // effects are evaluated.
719  CGF.EmitScalarExpr(Op);
720  return llvm::Constant::getNullValue(ConvertType(E->getType()));
721}
722
723Value *ScalarExprEmitter::VisitUnaryOffsetOf(const UnaryOperator *E)
724{
725  const Expr* SubExpr = E->getSubExpr();
726  const llvm::Type* ResultType = ConvertType(E->getType());
727  llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
728  while (!isa<CompoundLiteralExpr>(SubExpr)) {
729    if (const MemberExpr *ME = dyn_cast<MemberExpr>(SubExpr)) {
730      SubExpr = ME->getBase();
731      QualType Ty = SubExpr->getType();
732
733      RecordDecl *RD = Ty->getAsRecordType()->getDecl();
734      const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
735      FieldDecl *FD = cast<FieldDecl>(ME->getMemberDecl());
736
737      // FIXME: This is linear time. And the fact that we're indexing
738      // into the layout by position in the record means that we're
739      // either stuck numbering the fields in the AST or we have to keep
740      // the linear search (yuck and yuck).
741      unsigned i = 0;
742      for (RecordDecl::field_iterator Field = RD->field_begin(),
743                                   FieldEnd = RD->field_end();
744           Field != FieldEnd; (void)++Field, ++i) {
745        if (*Field == FD)
746          break;
747      }
748
749      llvm::Value* Offset =
750          llvm::ConstantInt::get(ResultType, RL.getFieldOffset(i) / 8);
751      Result = Builder.CreateAdd(Result, Offset);
752    } else if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(SubExpr)) {
753      SubExpr = ASE->getBase();
754      int64_t size = CGF.getContext().getTypeSize(ASE->getType()) / 8;
755      llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType, size);
756      llvm::Value* ElemIndex = CGF.EmitScalarExpr(ASE->getIdx());
757      bool IndexSigned = ASE->getIdx()->getType()->isSignedIntegerType();
758      ElemIndex = Builder.CreateIntCast(ElemIndex, ResultType, IndexSigned);
759      llvm::Value* Offset = Builder.CreateMul(ElemSize, ElemIndex);
760      Result = Builder.CreateAdd(Result, Offset);
761    } else {
762      assert(0 && "This should be impossible!");
763    }
764  }
765  return Result;
766}
767
768//===----------------------------------------------------------------------===//
769//                           Binary Operators
770//===----------------------------------------------------------------------===//
771
772BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
773  BinOpInfo Result;
774  Result.LHS = Visit(E->getLHS());
775  Result.RHS = Visit(E->getRHS());
776  Result.Ty  = E->getType();
777  Result.E = E;
778  return Result;
779}
780
781Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
782                      Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
783  QualType LHSTy = E->getLHS()->getType(), RHSTy = E->getRHS()->getType();
784
785  BinOpInfo OpInfo;
786
787  // Load the LHS and RHS operands.
788  LValue LHSLV = EmitLValue(E->getLHS());
789  OpInfo.LHS = EmitLoadOfLValue(LHSLV, LHSTy);
790
791  // Determine the computation type.  If the RHS is complex, then this is one of
792  // the add/sub/mul/div operators.  All of these operators can be computed in
793  // with just their real component even though the computation domain really is
794  // complex.
795  QualType ComputeType = E->getComputationType();
796
797  // If the computation type is complex, then the RHS is complex.  Emit the RHS.
798  if (const ComplexType *CT = ComputeType->getAsComplexType()) {
799    ComputeType = CT->getElementType();
800
801    // Emit the RHS, only keeping the real component.
802    OpInfo.RHS = CGF.EmitComplexExpr(E->getRHS()).first;
803    RHSTy = RHSTy->getAsComplexType()->getElementType();
804  } else {
805    // Otherwise the RHS is a simple scalar value.
806    OpInfo.RHS = Visit(E->getRHS());
807  }
808
809  QualType LComputeTy, RComputeTy, ResultTy;
810
811  // Compound assignment does not contain enough information about all
812  // the types involved for pointer arithmetic cases. Figure it out
813  // here for now.
814  if (E->getLHS()->getType()->isPointerType()) {
815    // Pointer arithmetic cases: ptr +=,-= int and ptr -= ptr,
816    assert((E->getOpcode() == BinaryOperator::AddAssign ||
817            E->getOpcode() == BinaryOperator::SubAssign) &&
818           "Invalid compound assignment operator on pointer type.");
819    LComputeTy = E->getLHS()->getType();
820
821    if (E->getRHS()->getType()->isPointerType()) {
822      // Degenerate case of (ptr -= ptr) allowed by GCC implicit cast
823      // extension, the conversion from the pointer difference back to
824      // the LHS type is handled at the end.
825      assert(E->getOpcode() == BinaryOperator::SubAssign &&
826             "Invalid compound assignment operator on pointer type.");
827      RComputeTy = E->getLHS()->getType();
828      ResultTy = CGF.getContext().getPointerDiffType();
829    } else {
830      RComputeTy = E->getRHS()->getType();
831      ResultTy = LComputeTy;
832    }
833  } else if (E->getRHS()->getType()->isPointerType()) {
834    // Degenerate case of (int += ptr) allowed by GCC implicit cast
835    // extension.
836    assert(E->getOpcode() == BinaryOperator::AddAssign &&
837           "Invalid compound assignment operator on pointer type.");
838    LComputeTy = E->getLHS()->getType();
839    RComputeTy = E->getRHS()->getType();
840    ResultTy = RComputeTy;
841  } else {
842    LComputeTy = RComputeTy = ResultTy = ComputeType;
843  }
844
845  // Convert the LHS/RHS values to the computation type.
846  OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy, LComputeTy);
847  OpInfo.RHS = EmitScalarConversion(OpInfo.RHS, RHSTy, RComputeTy);
848  OpInfo.Ty = ResultTy;
849  OpInfo.E = E;
850
851  // Expand the binary operator.
852  Value *Result = (this->*Func)(OpInfo);
853
854  // Convert the result back to the LHS type.
855  Result = EmitScalarConversion(Result, ResultTy, LHSTy);
856
857  // Store the result value into the LHS lvalue. Bit-fields are
858  // handled specially because the result is altered by the store,
859  // i.e., [C99 6.5.16p1] 'An assignment expression has the value of
860  // the left operand after the assignment...'.
861  if (LHSLV.isBitfield())
862    CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, LHSTy,
863                                       &Result);
864  else
865    CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV, LHSTy);
866
867  return Result;
868}
869
870
871Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
872  if (Ops.LHS->getType()->isFPOrFPVector())
873    return Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
874  else if (Ops.Ty->isUnsignedIntegerType())
875    return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
876  else
877    return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
878}
879
880Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
881  // Rem in C can't be a floating point type: C99 6.5.5p2.
882  if (Ops.Ty->isUnsignedIntegerType())
883    return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
884  else
885    return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
886}
887
888
889Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &Ops) {
890  if (!Ops.Ty->isPointerType())
891    return Builder.CreateAdd(Ops.LHS, Ops.RHS, "add");
892
893  // FIXME: What about a pointer to a VLA?
894  Value *Ptr, *Idx;
895  Expr *IdxExp;
896  const PointerType *PT;
897  if ((PT = Ops.E->getLHS()->getType()->getAsPointerType())) {
898    Ptr = Ops.LHS;
899    Idx = Ops.RHS;
900    IdxExp = Ops.E->getRHS();
901  } else {                                           // int + pointer
902    PT = Ops.E->getRHS()->getType()->getAsPointerType();
903    assert(PT && "Invalid add expr");
904    Ptr = Ops.RHS;
905    Idx = Ops.LHS;
906    IdxExp = Ops.E->getLHS();
907  }
908
909  unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
910  if (Width < CGF.LLVMPointerWidth) {
911    // Zero or sign extend the pointer value based on whether the index is
912    // signed or not.
913    const llvm::Type *IdxType = llvm::IntegerType::get(CGF.LLVMPointerWidth);
914    if (IdxExp->getType()->isSignedIntegerType())
915      Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
916    else
917      Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
918  }
919
920  // Explicitly handle GNU void* and function pointer arithmetic
921  // extensions. The GNU void* casts amount to no-ops since our void*
922  // type is i8*, but this is future proof.
923  const QualType ElementType = PT->getPointeeType();
924  if (ElementType->isVoidType() || ElementType->isFunctionType()) {
925    const llvm::Type *i8Ty = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
926    Value *Casted = Builder.CreateBitCast(Ptr, i8Ty);
927    Value *Res = Builder.CreateGEP(Casted, Idx, "sub.ptr");
928    return Builder.CreateBitCast(Res, Ptr->getType());
929  }
930
931  return Builder.CreateGEP(Ptr, Idx, "add.ptr");
932}
933
934Value *ScalarExprEmitter::EmitSub(const BinOpInfo &Ops) {
935  if (!isa<llvm::PointerType>(Ops.LHS->getType()))
936    return Builder.CreateSub(Ops.LHS, Ops.RHS, "sub");
937
938  const QualType LHSType = Ops.E->getLHS()->getType();
939  const QualType LHSElementType = LHSType->getAsPointerType()->getPointeeType();
940  if (!isa<llvm::PointerType>(Ops.RHS->getType())) {
941    // pointer - int
942    Value *Idx = Ops.RHS;
943    unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
944    if (Width < CGF.LLVMPointerWidth) {
945      // Zero or sign extend the pointer value based on whether the index is
946      // signed or not.
947      const llvm::Type *IdxType = llvm::IntegerType::get(CGF.LLVMPointerWidth);
948      if (Ops.E->getRHS()->getType()->isSignedIntegerType())
949        Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
950      else
951        Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
952    }
953    Idx = Builder.CreateNeg(Idx, "sub.ptr.neg");
954
955    // FIXME: The pointer could point to a VLA.
956
957    // Explicitly handle GNU void* and function pointer arithmetic
958    // extensions. The GNU void* casts amount to no-ops since our
959    // void* type is i8*, but this is future proof.
960    if (LHSElementType->isVoidType() || LHSElementType->isFunctionType()) {
961      const llvm::Type *i8Ty = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
962      Value *LHSCasted = Builder.CreateBitCast(Ops.LHS, i8Ty);
963      Value *Res = Builder.CreateGEP(LHSCasted, Idx, "sub.ptr");
964      return Builder.CreateBitCast(Res, Ops.LHS->getType());
965    }
966
967    return Builder.CreateGEP(Ops.LHS, Idx, "sub.ptr");
968  } else {
969    // pointer - pointer
970    Value *LHS = Ops.LHS;
971    Value *RHS = Ops.RHS;
972
973    uint64_t ElementSize;
974
975    // Handle GCC extension for pointer arithmetic on void* and function pointer
976    // types.
977    if (LHSElementType->isVoidType() || LHSElementType->isFunctionType()) {
978      ElementSize = 1;
979    } else {
980      ElementSize = CGF.getContext().getTypeSize(LHSElementType) / 8;
981    }
982
983    const llvm::Type *ResultType = ConvertType(Ops.Ty);
984    LHS = Builder.CreatePtrToInt(LHS, ResultType, "sub.ptr.lhs.cast");
985    RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
986    Value *BytesBetween = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
987
988    // Optimize out the shift for element size of 1.
989    if (ElementSize == 1)
990      return BytesBetween;
991
992    // HACK: LLVM doesn't have an divide instruction that 'knows' there is no
993    // remainder.  As such, we handle common power-of-two cases here to generate
994    // better code. See PR2247.
995    if (llvm::isPowerOf2_64(ElementSize)) {
996      Value *ShAmt =
997        llvm::ConstantInt::get(ResultType, llvm::Log2_64(ElementSize));
998      return Builder.CreateAShr(BytesBetween, ShAmt, "sub.ptr.shr");
999    }
1000
1001    // Otherwise, do a full sdiv.
1002    Value *BytesPerElt = llvm::ConstantInt::get(ResultType, ElementSize);
1003    return Builder.CreateSDiv(BytesBetween, BytesPerElt, "sub.ptr.div");
1004  }
1005}
1006
1007Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
1008  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
1009  // RHS to the same size as the LHS.
1010  Value *RHS = Ops.RHS;
1011  if (Ops.LHS->getType() != RHS->getType())
1012    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
1013
1014  return Builder.CreateShl(Ops.LHS, RHS, "shl");
1015}
1016
1017Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
1018  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
1019  // RHS to the same size as the LHS.
1020  Value *RHS = Ops.RHS;
1021  if (Ops.LHS->getType() != RHS->getType())
1022    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
1023
1024  if (Ops.Ty->isUnsignedIntegerType())
1025    return Builder.CreateLShr(Ops.LHS, RHS, "shr");
1026  return Builder.CreateAShr(Ops.LHS, RHS, "shr");
1027}
1028
1029Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
1030                                      unsigned SICmpOpc, unsigned FCmpOpc) {
1031  Value *Result;
1032  QualType LHSTy = E->getLHS()->getType();
1033  if (!LHSTy->isAnyComplexType() && !LHSTy->isVectorType()) {
1034    Value *LHS = Visit(E->getLHS());
1035    Value *RHS = Visit(E->getRHS());
1036
1037    if (LHS->getType()->isFloatingPoint()) {
1038      Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
1039                                  LHS, RHS, "cmp");
1040    } else if (LHSTy->isSignedIntegerType()) {
1041      Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
1042                                  LHS, RHS, "cmp");
1043    } else {
1044      // Unsigned integers and pointers.
1045      Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1046                                  LHS, RHS, "cmp");
1047    }
1048  } else if (LHSTy->isVectorType()) {
1049    Value *LHS = Visit(E->getLHS());
1050    Value *RHS = Visit(E->getRHS());
1051
1052    if (LHS->getType()->isFPOrFPVector()) {
1053      Result = Builder.CreateVFCmp((llvm::CmpInst::Predicate)FCmpOpc,
1054                                  LHS, RHS, "cmp");
1055    } else if (LHSTy->isUnsignedIntegerType()) {
1056      Result = Builder.CreateVICmp((llvm::CmpInst::Predicate)UICmpOpc,
1057                                  LHS, RHS, "cmp");
1058    } else {
1059      // Signed integers and pointers.
1060      Result = Builder.CreateVICmp((llvm::CmpInst::Predicate)SICmpOpc,
1061                                  LHS, RHS, "cmp");
1062    }
1063    return Result;
1064  } else {
1065    // Complex Comparison: can only be an equality comparison.
1066    CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS());
1067    CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS());
1068
1069    QualType CETy = LHSTy->getAsComplexType()->getElementType();
1070
1071    Value *ResultR, *ResultI;
1072    if (CETy->isRealFloatingType()) {
1073      ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
1074                                   LHS.first, RHS.first, "cmp.r");
1075      ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
1076                                   LHS.second, RHS.second, "cmp.i");
1077    } else {
1078      // Complex comparisons can only be equality comparisons.  As such, signed
1079      // and unsigned opcodes are the same.
1080      ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1081                                   LHS.first, RHS.first, "cmp.r");
1082      ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1083                                   LHS.second, RHS.second, "cmp.i");
1084    }
1085
1086    if (E->getOpcode() == BinaryOperator::EQ) {
1087      Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
1088    } else {
1089      assert(E->getOpcode() == BinaryOperator::NE &&
1090             "Complex comparison other than == or != ?");
1091      Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
1092    }
1093  }
1094
1095  return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
1096}
1097
1098Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
1099  LValue LHS = EmitLValue(E->getLHS());
1100  Value *RHS = Visit(E->getRHS());
1101
1102  // Store the value into the LHS.  Bit-fields are handled specially
1103  // because the result is altered by the store, i.e., [C99 6.5.16p1]
1104  // 'An assignment expression has the value of the left operand after
1105  // the assignment...'.
1106  // FIXME: Volatility!
1107  if (LHS.isBitfield())
1108    CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, E->getType(),
1109                                       &RHS);
1110  else
1111    CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS, E->getType());
1112
1113  // Return the RHS.
1114  return RHS;
1115}
1116
1117Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
1118  // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
1119  // If we have 1 && X, just emit X without inserting the control flow.
1120  if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getLHS())) {
1121    if (Cond == 1) { // If we have 1 && X, just emit X.
1122      Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1123      // ZExt result to int.
1124      return Builder.CreateZExt(RHSCond, CGF.LLVMIntTy, "land.ext");
1125    }
1126
1127    // 0 && RHS: If it is safe, just elide the RHS, and return 0.
1128    if (!CGF.ContainsLabel(E->getRHS()))
1129      return llvm::Constant::getNullValue(CGF.LLVMIntTy);
1130  }
1131
1132  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
1133  llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
1134
1135  // Branch on the LHS first.  If it is false, go to the failure (cont) block.
1136  CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock);
1137
1138  // Any edges into the ContBlock are now from an (indeterminate number of)
1139  // edges from this first condition.  All of these values will be false.  Start
1140  // setting up the PHI node in the Cont Block for this.
1141  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::Int1Ty, "", ContBlock);
1142  PN->reserveOperandSpace(2);  // Normal case, two inputs.
1143  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
1144       PI != PE; ++PI)
1145    PN->addIncoming(llvm::ConstantInt::getFalse(), *PI);
1146
1147  CGF.EmitBlock(RHSBlock);
1148  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1149
1150  // Reaquire the RHS block, as there may be subblocks inserted.
1151  RHSBlock = Builder.GetInsertBlock();
1152
1153  // Emit an unconditional branch from this block to ContBlock.  Insert an entry
1154  // into the phi node for the edge with the value of RHSCond.
1155  CGF.EmitBlock(ContBlock);
1156  PN->addIncoming(RHSCond, RHSBlock);
1157
1158  // ZExt result to int.
1159  return Builder.CreateZExt(PN, CGF.LLVMIntTy, "land.ext");
1160}
1161
1162Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
1163  // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
1164  // If we have 0 || X, just emit X without inserting the control flow.
1165  if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getLHS())) {
1166    if (Cond == -1) { // If we have 0 || X, just emit X.
1167      Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1168      // ZExt result to int.
1169      return Builder.CreateZExt(RHSCond, CGF.LLVMIntTy, "lor.ext");
1170    }
1171
1172    // 1 || RHS: If it is safe, just elide the RHS, and return 1.
1173    if (!CGF.ContainsLabel(E->getRHS()))
1174      return llvm::ConstantInt::get(CGF.LLVMIntTy, 1);
1175  }
1176
1177  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
1178  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
1179
1180  // Branch on the LHS first.  If it is true, go to the success (cont) block.
1181  CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock);
1182
1183  // Any edges into the ContBlock are now from an (indeterminate number of)
1184  // edges from this first condition.  All of these values will be true.  Start
1185  // setting up the PHI node in the Cont Block for this.
1186  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::Int1Ty, "", ContBlock);
1187  PN->reserveOperandSpace(2);  // Normal case, two inputs.
1188  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
1189       PI != PE; ++PI)
1190    PN->addIncoming(llvm::ConstantInt::getTrue(), *PI);
1191
1192  // Emit the RHS condition as a bool value.
1193  CGF.EmitBlock(RHSBlock);
1194  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1195
1196  // Reaquire the RHS block, as there may be subblocks inserted.
1197  RHSBlock = Builder.GetInsertBlock();
1198
1199  // Emit an unconditional branch from this block to ContBlock.  Insert an entry
1200  // into the phi node for the edge with the value of RHSCond.
1201  CGF.EmitBlock(ContBlock);
1202  PN->addIncoming(RHSCond, RHSBlock);
1203
1204  // ZExt result to int.
1205  return Builder.CreateZExt(PN, CGF.LLVMIntTy, "lor.ext");
1206}
1207
1208Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
1209  CGF.EmitStmt(E->getLHS());
1210  CGF.EnsureInsertPoint();
1211  return Visit(E->getRHS());
1212}
1213
1214//===----------------------------------------------------------------------===//
1215//                             Other Operators
1216//===----------------------------------------------------------------------===//
1217
1218/// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
1219/// expression is cheap enough and side-effect-free enough to evaluate
1220/// unconditionally instead of conditionally.  This is used to convert control
1221/// flow into selects in some cases.
1222static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E) {
1223  if (const ParenExpr *PE = dyn_cast<ParenExpr>(E))
1224    return isCheapEnoughToEvaluateUnconditionally(PE->getSubExpr());
1225
1226  // TODO: Allow anything we can constant fold to an integer or fp constant.
1227  if (isa<IntegerLiteral>(E) || isa<CharacterLiteral>(E) ||
1228      isa<FloatingLiteral>(E))
1229    return true;
1230
1231  // Non-volatile automatic variables too, to get "cond ? X : Y" where
1232  // X and Y are local variables.
1233  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
1234    if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
1235      if (VD->hasLocalStorage() && !VD->getType().isVolatileQualified())
1236        return true;
1237
1238  return false;
1239}
1240
1241
1242Value *ScalarExprEmitter::
1243VisitConditionalOperator(const ConditionalOperator *E) {
1244  // If the condition constant folds and can be elided, try to avoid emitting
1245  // the condition and the dead arm.
1246  if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getCond())){
1247    Expr *Live = E->getLHS(), *Dead = E->getRHS();
1248    if (Cond == -1)
1249      std::swap(Live, Dead);
1250
1251    // If the dead side doesn't have labels we need, and if the Live side isn't
1252    // the gnu missing ?: extension (which we could handle, but don't bother
1253    // to), just emit the Live part.
1254    if ((!Dead || !CGF.ContainsLabel(Dead)) &&  // No labels in dead part
1255        Live)                                   // Live part isn't missing.
1256      return Visit(Live);
1257  }
1258
1259
1260  // If this is a really simple expression (like x ? 4 : 5), emit this as a
1261  // select instead of as control flow.  We can only do this if it is cheap and
1262  // safe to evaluate the LHS and RHS unconditionally.
1263  if (E->getLHS() && isCheapEnoughToEvaluateUnconditionally(E->getLHS()) &&
1264      isCheapEnoughToEvaluateUnconditionally(E->getRHS())) {
1265    llvm::Value *CondV = CGF.EvaluateExprAsBool(E->getCond());
1266    llvm::Value *LHS = Visit(E->getLHS());
1267    llvm::Value *RHS = Visit(E->getRHS());
1268    return Builder.CreateSelect(CondV, LHS, RHS, "cond");
1269  }
1270
1271
1272  llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
1273  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
1274  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
1275  Value *CondVal = 0;
1276
1277  // If we have the GNU missing condition extension, evaluate the conditional
1278  // and then convert it to bool the hard way.  We do this explicitly
1279  // because we need the unconverted value for the missing middle value of
1280  // the ?:.
1281  if (E->getLHS() == 0) {
1282    CondVal = CGF.EmitScalarExpr(E->getCond());
1283    Value *CondBoolVal =
1284      CGF.EmitScalarConversion(CondVal, E->getCond()->getType(),
1285                               CGF.getContext().BoolTy);
1286    Builder.CreateCondBr(CondBoolVal, LHSBlock, RHSBlock);
1287  } else {
1288    // Otherwise, just use EmitBranchOnBoolExpr to get small and simple code for
1289    // the branch on bool.
1290    CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock);
1291  }
1292
1293  CGF.EmitBlock(LHSBlock);
1294
1295  // Handle the GNU extension for missing LHS.
1296  Value *LHS;
1297  if (E->getLHS())
1298    LHS = Visit(E->getLHS());
1299  else    // Perform promotions, to handle cases like "short ?: int"
1300    LHS = EmitScalarConversion(CondVal, E->getCond()->getType(), E->getType());
1301
1302  LHSBlock = Builder.GetInsertBlock();
1303  CGF.EmitBranch(ContBlock);
1304
1305  CGF.EmitBlock(RHSBlock);
1306
1307  Value *RHS = Visit(E->getRHS());
1308  RHSBlock = Builder.GetInsertBlock();
1309  CGF.EmitBranch(ContBlock);
1310
1311  CGF.EmitBlock(ContBlock);
1312
1313  if (!LHS || !RHS) {
1314    assert(E->getType()->isVoidType() && "Non-void value should have a value");
1315    return 0;
1316  }
1317
1318  // Create a PHI node for the real part.
1319  llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), "cond");
1320  PN->reserveOperandSpace(2);
1321  PN->addIncoming(LHS, LHSBlock);
1322  PN->addIncoming(RHS, RHSBlock);
1323  return PN;
1324}
1325
1326Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
1327  // Emit the LHS or RHS as appropriate.
1328  return
1329    Visit(E->isConditionTrue(CGF.getContext()) ? E->getLHS() : E->getRHS());
1330}
1331
1332Value *ScalarExprEmitter::VisitOverloadExpr(OverloadExpr *E) {
1333  return CGF.EmitCallExpr(E->getFn(), E->arg_begin(),
1334                          E->arg_end(CGF.getContext())).getScalarVal();
1335}
1336
1337Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
1338  llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
1339  llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
1340
1341  // If EmitVAArg fails, we fall back to the LLVM instruction.
1342  if (!ArgPtr)
1343    return Builder.CreateVAArg(ArgValue, ConvertType(VE->getType()));
1344
1345  // FIXME: volatile?
1346  return Builder.CreateLoad(ArgPtr);
1347}
1348
1349Value *ScalarExprEmitter::VisitObjCEncodeExpr(const ObjCEncodeExpr *E) {
1350  std::string str;
1351  CGF.getContext().getObjCEncodingForType(E->getEncodedType(), str);
1352
1353  llvm::Constant *C = llvm::ConstantArray::get(str);
1354  C = new llvm::GlobalVariable(C->getType(), true,
1355                               llvm::GlobalValue::InternalLinkage,
1356                               C, ".str", &CGF.CGM.getModule());
1357  llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty);
1358  llvm::Constant *Zeros[] = { Zero, Zero };
1359  C = llvm::ConstantExpr::getGetElementPtr(C, Zeros, 2);
1360
1361  return C;
1362}
1363
1364//===----------------------------------------------------------------------===//
1365//                         Entry Point into this File
1366//===----------------------------------------------------------------------===//
1367
1368/// EmitComplexExpr - Emit the computation of the specified expression of
1369/// complex type, ignoring the result.
1370Value *CodeGenFunction::EmitScalarExpr(const Expr *E) {
1371  assert(E && !hasAggregateLLVMType(E->getType()) &&
1372         "Invalid scalar expression to emit");
1373
1374  return ScalarExprEmitter(*this).Visit(const_cast<Expr*>(E));
1375}
1376
1377/// EmitScalarConversion - Emit a conversion from the specified type to the
1378/// specified destination type, both of which are LLVM scalar types.
1379Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
1380                                             QualType DstTy) {
1381  assert(!hasAggregateLLVMType(SrcTy) && !hasAggregateLLVMType(DstTy) &&
1382         "Invalid scalar expression to emit");
1383  return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
1384}
1385
1386/// EmitComplexToScalarConversion - Emit a conversion from the specified
1387/// complex type to the specified destination type, where the destination
1388/// type is an LLVM scalar type.
1389Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
1390                                                      QualType SrcTy,
1391                                                      QualType DstTy) {
1392  assert(SrcTy->isAnyComplexType() && !hasAggregateLLVMType(DstTy) &&
1393         "Invalid complex -> scalar conversion");
1394  return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy,
1395                                                                DstTy);
1396}
1397
1398Value *CodeGenFunction::EmitShuffleVector(Value* V1, Value *V2, ...) {
1399  assert(V1->getType() == V2->getType() &&
1400         "Vector operands must be of the same type");
1401  unsigned NumElements =
1402    cast<llvm::VectorType>(V1->getType())->getNumElements();
1403
1404  va_list va;
1405  va_start(va, V2);
1406
1407  llvm::SmallVector<llvm::Constant*, 16> Args;
1408  for (unsigned i = 0; i < NumElements; i++) {
1409    int n = va_arg(va, int);
1410    assert(n >= 0 && n < (int)NumElements * 2 &&
1411           "Vector shuffle index out of bounds!");
1412    Args.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, n));
1413  }
1414
1415  const char *Name = va_arg(va, const char *);
1416  va_end(va);
1417
1418  llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements);
1419
1420  return Builder.CreateShuffleVector(V1, V2, Mask, Name);
1421}
1422
1423llvm::Value *CodeGenFunction::EmitVector(llvm::Value * const *Vals,
1424                                         unsigned NumVals, bool isSplat) {
1425  llvm::Value *Vec
1426    = llvm::UndefValue::get(llvm::VectorType::get(Vals[0]->getType(), NumVals));
1427
1428  for (unsigned i = 0, e = NumVals; i != e; ++i) {
1429    llvm::Value *Val = isSplat ? Vals[0] : Vals[i];
1430    llvm::Value *Idx = llvm::ConstantInt::get(llvm::Type::Int32Ty, i);
1431    Vec = Builder.CreateInsertElement(Vec, Val, Idx, "tmp");
1432  }
1433
1434  return Vec;
1435}
1436