CGExprScalar.cpp revision 112a0a8ddf23f6d25e0920002d5d4c1df0515f86
1//===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenFunction.h"
15#include "CodeGenModule.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/RecordLayout.h"
19#include "clang/AST/StmtVisitor.h"
20#include "clang/Basic/TargetInfo.h"
21#include "llvm/Constants.h"
22#include "llvm/Function.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/Intrinsics.h"
25#include "llvm/Module.h"
26#include "llvm/Support/Compiler.h"
27#include "llvm/Support/CFG.h"
28#include "llvm/Target/TargetData.h"
29#include <cstdarg>
30
31using namespace clang;
32using namespace CodeGen;
33using llvm::Value;
34
35//===----------------------------------------------------------------------===//
36//                         Scalar Expression Emitter
37//===----------------------------------------------------------------------===//
38
39struct BinOpInfo {
40  Value *LHS;
41  Value *RHS;
42  QualType Ty;  // Computation Type.
43  const BinaryOperator *E;
44};
45
46namespace {
47class VISIBILITY_HIDDEN ScalarExprEmitter
48  : public StmtVisitor<ScalarExprEmitter, Value*> {
49  CodeGenFunction &CGF;
50  CGBuilderTy &Builder;
51  bool IgnoreResultAssign;
52  llvm::LLVMContext &VMContext;
53public:
54
55  ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
56    : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
57      VMContext(cgf.getLLVMContext()) {
58  }
59
60  //===--------------------------------------------------------------------===//
61  //                               Utilities
62  //===--------------------------------------------------------------------===//
63
64  bool TestAndClearIgnoreResultAssign() {
65    bool I = IgnoreResultAssign;
66    IgnoreResultAssign = false;
67    return I;
68  }
69
70  const llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
71  LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
72
73  Value *EmitLoadOfLValue(LValue LV, QualType T) {
74    return CGF.EmitLoadOfLValue(LV, T).getScalarVal();
75  }
76
77  /// EmitLoadOfLValue - Given an expression with complex type that represents a
78  /// value l-value, this method emits the address of the l-value, then loads
79  /// and returns the result.
80  Value *EmitLoadOfLValue(const Expr *E) {
81    return EmitLoadOfLValue(EmitLValue(E), E->getType());
82  }
83
84  /// EmitConversionToBool - Convert the specified expression value to a
85  /// boolean (i1) truth value.  This is equivalent to "Val != 0".
86  Value *EmitConversionToBool(Value *Src, QualType DstTy);
87
88  /// EmitScalarConversion - Emit a conversion from the specified type to the
89  /// specified destination type, both of which are LLVM scalar types.
90  Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);
91
92  /// EmitComplexToScalarConversion - Emit a conversion from the specified
93  /// complex type to the specified destination type, where the destination
94  /// type is an LLVM scalar type.
95  Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
96                                       QualType SrcTy, QualType DstTy);
97
98  //===--------------------------------------------------------------------===//
99  //                            Visitor Methods
100  //===--------------------------------------------------------------------===//
101
102  Value *VisitStmt(Stmt *S) {
103    S->dump(CGF.getContext().getSourceManager());
104    assert(0 && "Stmt can't have complex result type!");
105    return 0;
106  }
107  Value *VisitExpr(Expr *S);
108  Value *VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr()); }
109
110  // Leaves.
111  Value *VisitIntegerLiteral(const IntegerLiteral *E) {
112    return llvm::ConstantInt::get(VMContext, E->getValue());
113  }
114  Value *VisitFloatingLiteral(const FloatingLiteral *E) {
115    return llvm::ConstantFP::get(VMContext, E->getValue());
116  }
117  Value *VisitCharacterLiteral(const CharacterLiteral *E) {
118    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
119  }
120  Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
121    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
122  }
123  Value *VisitCXXZeroInitValueExpr(const CXXZeroInitValueExpr *E) {
124    return llvm::Constant::getNullValue(ConvertType(E->getType()));
125  }
126  Value *VisitGNUNullExpr(const GNUNullExpr *E) {
127    return llvm::Constant::getNullValue(ConvertType(E->getType()));
128  }
129  Value *VisitTypesCompatibleExpr(const TypesCompatibleExpr *E) {
130    return llvm::ConstantInt::get(ConvertType(E->getType()),
131                                  CGF.getContext().typesAreCompatible(
132                                    E->getArgType1(), E->getArgType2()));
133  }
134  Value *VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E);
135  Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
136    llvm::Value *V =
137      llvm::ConstantInt::get(llvm::Type::Int32Ty,
138                             CGF.GetIDForAddrOfLabel(E->getLabel()));
139
140    return Builder.CreateIntToPtr(V, ConvertType(E->getType()));
141  }
142
143  // l-values.
144  Value *VisitDeclRefExpr(DeclRefExpr *E) {
145    if (const EnumConstantDecl *EC = dyn_cast<EnumConstantDecl>(E->getDecl()))
146      return llvm::ConstantInt::get(VMContext, EC->getInitVal());
147    return EmitLoadOfLValue(E);
148  }
149  Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
150    return CGF.EmitObjCSelectorExpr(E);
151  }
152  Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
153    return CGF.EmitObjCProtocolExpr(E);
154  }
155  Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
156    return EmitLoadOfLValue(E);
157  }
158  Value *VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
159    return EmitLoadOfLValue(E);
160  }
161  Value *VisitObjCKVCRefExpr(ObjCKVCRefExpr *E) {
162    return EmitLoadOfLValue(E);
163  }
164  Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
165    return CGF.EmitObjCMessageExpr(E).getScalarVal();
166  }
167
168  Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
169  Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
170  Value *VisitMemberExpr(Expr *E)           { return EmitLoadOfLValue(E); }
171  Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
172  Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
173    return EmitLoadOfLValue(E);
174  }
175  Value *VisitStringLiteral(Expr *E)  { return EmitLValue(E).getAddress(); }
176  Value *VisitObjCEncodeExpr(const ObjCEncodeExpr *E) {
177     return EmitLValue(E).getAddress();
178  }
179
180  Value *VisitPredefinedExpr(Expr *E) { return EmitLValue(E).getAddress(); }
181
182  Value *VisitInitListExpr(InitListExpr *E) {
183    bool Ignore = TestAndClearIgnoreResultAssign();
184    (void)Ignore;
185    assert (Ignore == false && "init list ignored");
186    unsigned NumInitElements = E->getNumInits();
187
188    if (E->hadArrayRangeDesignator()) {
189      CGF.ErrorUnsupported(E, "GNU array range designator extension");
190    }
191
192    const llvm::VectorType *VType =
193      dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
194
195    // We have a scalar in braces. Just use the first element.
196    if (!VType)
197      return Visit(E->getInit(0));
198
199    unsigned NumVectorElements = VType->getNumElements();
200    const llvm::Type *ElementType = VType->getElementType();
201
202    // Emit individual vector element stores.
203    llvm::Value *V = llvm::UndefValue::get(VType);
204
205    // Emit initializers
206    unsigned i;
207    for (i = 0; i < NumInitElements; ++i) {
208      Value *NewV = Visit(E->getInit(i));
209      Value *Idx = llvm::ConstantInt::get(llvm::Type::Int32Ty, i);
210      V = Builder.CreateInsertElement(V, NewV, Idx);
211    }
212
213    // Emit remaining default initializers
214    for (/* Do not initialize i*/; i < NumVectorElements; ++i) {
215      Value *Idx = llvm::ConstantInt::get(llvm::Type::Int32Ty, i);
216      llvm::Value *NewV = llvm::Constant::getNullValue(ElementType);
217      V = Builder.CreateInsertElement(V, NewV, Idx);
218    }
219
220    return V;
221  }
222
223  Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
224    return llvm::Constant::getNullValue(ConvertType(E->getType()));
225  }
226  Value *VisitImplicitCastExpr(const ImplicitCastExpr *E);
227  Value *VisitCastExpr(const CastExpr *E) {
228    // Make sure to evaluate VLA bounds now so that we have them for later.
229    if (E->getType()->isVariablyModifiedType())
230      CGF.EmitVLASize(E->getType());
231
232    return EmitCastExpr(E->getSubExpr(), E->getType());
233  }
234  Value *EmitCastExpr(const Expr *E, QualType T);
235
236  Value *VisitCallExpr(const CallExpr *E) {
237    if (E->getCallReturnType()->isReferenceType())
238      return EmitLoadOfLValue(E);
239
240    return CGF.EmitCallExpr(E).getScalarVal();
241  }
242
243  Value *VisitStmtExpr(const StmtExpr *E);
244
245  Value *VisitBlockDeclRefExpr(const BlockDeclRefExpr *E);
246
247  // Unary Operators.
248  Value *VisitPrePostIncDec(const UnaryOperator *E, bool isInc, bool isPre);
249  Value *VisitUnaryPostDec(const UnaryOperator *E) {
250    return VisitPrePostIncDec(E, false, false);
251  }
252  Value *VisitUnaryPostInc(const UnaryOperator *E) {
253    return VisitPrePostIncDec(E, true, false);
254  }
255  Value *VisitUnaryPreDec(const UnaryOperator *E) {
256    return VisitPrePostIncDec(E, false, true);
257  }
258  Value *VisitUnaryPreInc(const UnaryOperator *E) {
259    return VisitPrePostIncDec(E, true, true);
260  }
261  Value *VisitUnaryAddrOf(const UnaryOperator *E) {
262    return EmitLValue(E->getSubExpr()).getAddress();
263  }
264  Value *VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); }
265  Value *VisitUnaryPlus(const UnaryOperator *E) {
266    // This differs from gcc, though, most likely due to a bug in gcc.
267    TestAndClearIgnoreResultAssign();
268    return Visit(E->getSubExpr());
269  }
270  Value *VisitUnaryMinus    (const UnaryOperator *E);
271  Value *VisitUnaryNot      (const UnaryOperator *E);
272  Value *VisitUnaryLNot     (const UnaryOperator *E);
273  Value *VisitUnaryReal     (const UnaryOperator *E);
274  Value *VisitUnaryImag     (const UnaryOperator *E);
275  Value *VisitUnaryExtension(const UnaryOperator *E) {
276    return Visit(E->getSubExpr());
277  }
278  Value *VisitUnaryOffsetOf(const UnaryOperator *E);
279
280  // C++
281  Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
282    return Visit(DAE->getExpr());
283  }
284  Value *VisitCXXThisExpr(CXXThisExpr *TE) {
285    return CGF.LoadCXXThis();
286  }
287
288  Value *VisitCXXExprWithTemporaries(CXXExprWithTemporaries *E) {
289    return CGF.EmitCXXExprWithTemporaries(E).getScalarVal();
290  }
291  Value *VisitCXXNewExpr(const CXXNewExpr *E) {
292    return CGF.EmitCXXNewExpr(E);
293  }
294
295  // Binary Operators.
296  Value *EmitMul(const BinOpInfo &Ops) {
297    if (CGF.getContext().getLangOptions().OverflowChecking
298        && Ops.Ty->isSignedIntegerType())
299      return EmitOverflowCheckedBinOp(Ops);
300    if (Ops.LHS->getType()->isFPOrFPVector())
301      return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
302    return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
303  }
304  /// Create a binary op that checks for overflow.
305  /// Currently only supports +, - and *.
306  Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
307  Value *EmitDiv(const BinOpInfo &Ops);
308  Value *EmitRem(const BinOpInfo &Ops);
309  Value *EmitAdd(const BinOpInfo &Ops);
310  Value *EmitSub(const BinOpInfo &Ops);
311  Value *EmitShl(const BinOpInfo &Ops);
312  Value *EmitShr(const BinOpInfo &Ops);
313  Value *EmitAnd(const BinOpInfo &Ops) {
314    return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
315  }
316  Value *EmitXor(const BinOpInfo &Ops) {
317    return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
318  }
319  Value *EmitOr (const BinOpInfo &Ops) {
320    return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
321  }
322
323  BinOpInfo EmitBinOps(const BinaryOperator *E);
324  Value *EmitCompoundAssign(const CompoundAssignOperator *E,
325                            Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
326
327  // Binary operators and binary compound assignment operators.
328#define HANDLEBINOP(OP) \
329  Value *VisitBin ## OP(const BinaryOperator *E) {                         \
330    return Emit ## OP(EmitBinOps(E));                                      \
331  }                                                                        \
332  Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
333    return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
334  }
335  HANDLEBINOP(Mul);
336  HANDLEBINOP(Div);
337  HANDLEBINOP(Rem);
338  HANDLEBINOP(Add);
339  HANDLEBINOP(Sub);
340  HANDLEBINOP(Shl);
341  HANDLEBINOP(Shr);
342  HANDLEBINOP(And);
343  HANDLEBINOP(Xor);
344  HANDLEBINOP(Or);
345#undef HANDLEBINOP
346
347  // Comparisons.
348  Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
349                     unsigned SICmpOpc, unsigned FCmpOpc);
350#define VISITCOMP(CODE, UI, SI, FP) \
351    Value *VisitBin##CODE(const BinaryOperator *E) { \
352      return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
353                         llvm::FCmpInst::FP); }
354  VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT);
355  VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT);
356  VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE);
357  VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE);
358  VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ);
359  VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE);
360#undef VISITCOMP
361
362  Value *VisitBinAssign     (const BinaryOperator *E);
363
364  Value *VisitBinLAnd       (const BinaryOperator *E);
365  Value *VisitBinLOr        (const BinaryOperator *E);
366  Value *VisitBinComma      (const BinaryOperator *E);
367
368  // Other Operators.
369  Value *VisitBlockExpr(const BlockExpr *BE);
370  Value *VisitConditionalOperator(const ConditionalOperator *CO);
371  Value *VisitChooseExpr(ChooseExpr *CE);
372  Value *VisitVAArgExpr(VAArgExpr *VE);
373  Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
374    return CGF.EmitObjCStringLiteral(E);
375  }
376};
377}  // end anonymous namespace.
378
379//===----------------------------------------------------------------------===//
380//                                Utilities
381//===----------------------------------------------------------------------===//
382
383/// EmitConversionToBool - Convert the specified expression value to a
384/// boolean (i1) truth value.  This is equivalent to "Val != 0".
385Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
386  assert(SrcType->isCanonical() && "EmitScalarConversion strips typedefs");
387
388  if (SrcType->isRealFloatingType()) {
389    // Compare against 0.0 for fp scalars.
390    llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType());
391    return Builder.CreateFCmpUNE(Src, Zero, "tobool");
392  }
393
394  assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
395         "Unknown scalar type to convert");
396
397  // Because of the type rules of C, we often end up computing a logical value,
398  // then zero extending it to int, then wanting it as a logical value again.
399  // Optimize this common case.
400  if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(Src)) {
401    if (ZI->getOperand(0)->getType() == llvm::Type::Int1Ty) {
402      Value *Result = ZI->getOperand(0);
403      // If there aren't any more uses, zap the instruction to save space.
404      // Note that there can be more uses, for example if this
405      // is the result of an assignment.
406      if (ZI->use_empty())
407        ZI->eraseFromParent();
408      return Result;
409    }
410  }
411
412  // Compare against an integer or pointer null.
413  llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType());
414  return Builder.CreateICmpNE(Src, Zero, "tobool");
415}
416
417/// EmitScalarConversion - Emit a conversion from the specified type to the
418/// specified destination type, both of which are LLVM scalar types.
419Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
420                                               QualType DstType) {
421  SrcType = CGF.getContext().getCanonicalType(SrcType);
422  DstType = CGF.getContext().getCanonicalType(DstType);
423  if (SrcType == DstType) return Src;
424
425  if (DstType->isVoidType()) return 0;
426
427  // Handle conversions to bool first, they are special: comparisons against 0.
428  if (DstType->isBooleanType())
429    return EmitConversionToBool(Src, SrcType);
430
431  const llvm::Type *DstTy = ConvertType(DstType);
432
433  // Ignore conversions like int -> uint.
434  if (Src->getType() == DstTy)
435    return Src;
436
437  // Handle pointer conversions next: pointers can only be converted
438  // to/from other pointers and integers. Check for pointer types in
439  // terms of LLVM, as some native types (like Obj-C id) may map to a
440  // pointer type.
441  if (isa<llvm::PointerType>(DstTy)) {
442    // The source value may be an integer, or a pointer.
443    if (isa<llvm::PointerType>(Src->getType())) {
444      // Some heavy lifting for derived to base conversion.
445      if (const CXXRecordDecl *ClassDecl =
446            SrcType->getCXXRecordDeclForPointerType())
447        if (const CXXRecordDecl *BaseClassDecl =
448              DstType->getCXXRecordDeclForPointerType())
449          Src = CGF.AddressCXXOfBaseClass(Src, ClassDecl, BaseClassDecl);
450      return Builder.CreateBitCast(Src, DstTy, "conv");
451    }
452    assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
453    // First, convert to the correct width so that we control the kind of
454    // extension.
455    const llvm::Type *MiddleTy = llvm::IntegerType::get(CGF.LLVMPointerWidth);
456    bool InputSigned = SrcType->isSignedIntegerType();
457    llvm::Value* IntResult =
458        Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
459    // Then, cast to pointer.
460    return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
461  }
462
463  if (isa<llvm::PointerType>(Src->getType())) {
464    // Must be an ptr to int cast.
465    assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
466    return Builder.CreatePtrToInt(Src, DstTy, "conv");
467  }
468
469  // A scalar can be splatted to an extended vector of the same element type
470  if (DstType->isExtVectorType() && !isa<VectorType>(SrcType)) {
471    // Cast the scalar to element type
472    QualType EltTy = DstType->getAsExtVectorType()->getElementType();
473    llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy);
474
475    // Insert the element in element zero of an undef vector
476    llvm::Value *UnV = llvm::UndefValue::get(DstTy);
477    llvm::Value *Idx = llvm::ConstantInt::get(llvm::Type::Int32Ty, 0);
478    UnV = Builder.CreateInsertElement(UnV, Elt, Idx, "tmp");
479
480    // Splat the element across to all elements
481    llvm::SmallVector<llvm::Constant*, 16> Args;
482    unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
483    for (unsigned i = 0; i < NumElements; i++)
484      Args.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, 0));
485
486    llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements);
487    llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
488    return Yay;
489  }
490
491  // Allow bitcast from vector to integer/fp of the same size.
492  if (isa<llvm::VectorType>(Src->getType()) ||
493      isa<llvm::VectorType>(DstTy))
494    return Builder.CreateBitCast(Src, DstTy, "conv");
495
496  // Finally, we have the arithmetic types: real int/float.
497  if (isa<llvm::IntegerType>(Src->getType())) {
498    bool InputSigned = SrcType->isSignedIntegerType();
499    if (isa<llvm::IntegerType>(DstTy))
500      return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
501    else if (InputSigned)
502      return Builder.CreateSIToFP(Src, DstTy, "conv");
503    else
504      return Builder.CreateUIToFP(Src, DstTy, "conv");
505  }
506
507  assert(Src->getType()->isFloatingPoint() && "Unknown real conversion");
508  if (isa<llvm::IntegerType>(DstTy)) {
509    if (DstType->isSignedIntegerType())
510      return Builder.CreateFPToSI(Src, DstTy, "conv");
511    else
512      return Builder.CreateFPToUI(Src, DstTy, "conv");
513  }
514
515  assert(DstTy->isFloatingPoint() && "Unknown real conversion");
516  if (DstTy->getTypeID() < Src->getType()->getTypeID())
517    return Builder.CreateFPTrunc(Src, DstTy, "conv");
518  else
519    return Builder.CreateFPExt(Src, DstTy, "conv");
520}
521
522/// EmitComplexToScalarConversion - Emit a conversion from the specified
523/// complex type to the specified destination type, where the destination
524/// type is an LLVM scalar type.
525Value *ScalarExprEmitter::
526EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
527                              QualType SrcTy, QualType DstTy) {
528  // Get the source element type.
529  SrcTy = SrcTy->getAsComplexType()->getElementType();
530
531  // Handle conversions to bool first, they are special: comparisons against 0.
532  if (DstTy->isBooleanType()) {
533    //  Complex != 0  -> (Real != 0) | (Imag != 0)
534    Src.first  = EmitScalarConversion(Src.first, SrcTy, DstTy);
535    Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
536    return Builder.CreateOr(Src.first, Src.second, "tobool");
537  }
538
539  // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
540  // the imaginary part of the complex value is discarded and the value of the
541  // real part is converted according to the conversion rules for the
542  // corresponding real type.
543  return EmitScalarConversion(Src.first, SrcTy, DstTy);
544}
545
546
547//===----------------------------------------------------------------------===//
548//                            Visitor Methods
549//===----------------------------------------------------------------------===//
550
551Value *ScalarExprEmitter::VisitExpr(Expr *E) {
552  CGF.ErrorUnsupported(E, "scalar expression");
553  if (E->getType()->isVoidType())
554    return 0;
555  return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
556}
557
558Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
559  llvm::SmallVector<llvm::Constant*, 32> indices;
560  for (unsigned i = 2; i < E->getNumSubExprs(); i++) {
561    indices.push_back(cast<llvm::Constant>(CGF.EmitScalarExpr(E->getExpr(i))));
562  }
563  Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
564  Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
565  Value* SV = llvm::ConstantVector::get(indices.begin(), indices.size());
566  return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
567}
568
569Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
570  TestAndClearIgnoreResultAssign();
571
572  // Emit subscript expressions in rvalue context's.  For most cases, this just
573  // loads the lvalue formed by the subscript expr.  However, we have to be
574  // careful, because the base of a vector subscript is occasionally an rvalue,
575  // so we can't get it as an lvalue.
576  if (!E->getBase()->getType()->isVectorType())
577    return EmitLoadOfLValue(E);
578
579  // Handle the vector case.  The base must be a vector, the index must be an
580  // integer value.
581  Value *Base = Visit(E->getBase());
582  Value *Idx  = Visit(E->getIdx());
583  bool IdxSigned = E->getIdx()->getType()->isSignedIntegerType();
584  Idx = Builder.CreateIntCast(Idx, llvm::Type::Int32Ty, IdxSigned,
585                              "vecidxcast");
586  return Builder.CreateExtractElement(Base, Idx, "vecext");
587}
588
589/// VisitImplicitCastExpr - Implicit casts are the same as normal casts, but
590/// also handle things like function to pointer-to-function decay, and array to
591/// pointer decay.
592Value *ScalarExprEmitter::VisitImplicitCastExpr(const ImplicitCastExpr *E) {
593  const Expr *Op = E->getSubExpr();
594
595  // If this is due to array->pointer conversion, emit the array expression as
596  // an l-value.
597  if (Op->getType()->isArrayType()) {
598    assert(E->getCastKind() == CastExpr::CK_ArrayToPointerDecay);
599    Value *V = EmitLValue(Op).getAddress();  // Bitfields can't be arrays.
600
601    // Note that VLA pointers are always decayed, so we don't need to do
602    // anything here.
603    if (!Op->getType()->isVariableArrayType()) {
604      assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer");
605      assert(isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType())
606                                 ->getElementType()) &&
607             "Expected pointer to array");
608      V = Builder.CreateStructGEP(V, 0, "arraydecay");
609    }
610
611    // The resultant pointer type can be implicitly casted to other pointer
612    // types as well (e.g. void*) and can be implicitly converted to integer.
613    const llvm::Type *DestTy = ConvertType(E->getType());
614    if (V->getType() != DestTy) {
615      if (isa<llvm::PointerType>(DestTy))
616        V = Builder.CreateBitCast(V, DestTy, "ptrconv");
617      else {
618        assert(isa<llvm::IntegerType>(DestTy) && "Unknown array decay");
619        V = Builder.CreatePtrToInt(V, DestTy, "ptrconv");
620      }
621    }
622    return V;
623  }
624
625  return EmitCastExpr(Op, E->getType());
626}
627
628
629// VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
630// have to handle a more broad range of conversions than explicit casts, as they
631// handle things like function to ptr-to-function decay etc.
632Value *ScalarExprEmitter::EmitCastExpr(const Expr *E, QualType DestTy) {
633  if (!DestTy->isVoidType())
634    TestAndClearIgnoreResultAssign();
635
636  // Handle cases where the source is an non-complex type.
637
638  if (!CGF.hasAggregateLLVMType(E->getType())) {
639    Value *Src = Visit(const_cast<Expr*>(E));
640
641    // Use EmitScalarConversion to perform the conversion.
642    return EmitScalarConversion(Src, E->getType(), DestTy);
643  }
644
645  if (E->getType()->isAnyComplexType()) {
646    // Handle cases where the source is a complex type.
647    bool IgnoreImag = true;
648    bool IgnoreImagAssign = true;
649    bool IgnoreReal = IgnoreResultAssign;
650    bool IgnoreRealAssign = IgnoreResultAssign;
651    if (DestTy->isBooleanType())
652      IgnoreImagAssign = IgnoreImag = false;
653    else if (DestTy->isVoidType()) {
654      IgnoreReal = IgnoreImag = false;
655      IgnoreRealAssign = IgnoreImagAssign = true;
656    }
657    CodeGenFunction::ComplexPairTy V
658      = CGF.EmitComplexExpr(E, IgnoreReal, IgnoreImag, IgnoreRealAssign,
659                            IgnoreImagAssign);
660    return EmitComplexToScalarConversion(V, E->getType(), DestTy);
661  }
662
663  // Okay, this is a cast from an aggregate.  It must be a cast to void.  Just
664  // evaluate the result and return.
665  CGF.EmitAggExpr(E, 0, false, true);
666  return 0;
667}
668
669Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
670  return CGF.EmitCompoundStmt(*E->getSubStmt(),
671                              !E->getType()->isVoidType()).getScalarVal();
672}
673
674Value *ScalarExprEmitter::VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) {
675  return Builder.CreateLoad(CGF.GetAddrOfBlockDecl(E), false, "tmp");
676}
677
678//===----------------------------------------------------------------------===//
679//                             Unary Operators
680//===----------------------------------------------------------------------===//
681
682Value *ScalarExprEmitter::VisitPrePostIncDec(const UnaryOperator *E,
683                                             bool isInc, bool isPre) {
684  LValue LV = EmitLValue(E->getSubExpr());
685  QualType ValTy = E->getSubExpr()->getType();
686  Value *InVal = CGF.EmitLoadOfLValue(LV, ValTy).getScalarVal();
687
688  int AmountVal = isInc ? 1 : -1;
689
690  if (ValTy->isPointerType() &&
691      ValTy->getAs<PointerType>()->isVariableArrayType()) {
692    // The amount of the addition/subtraction needs to account for the VLA size
693    CGF.ErrorUnsupported(E, "VLA pointer inc/dec");
694  }
695
696  Value *NextVal;
697  if (const llvm::PointerType *PT =
698         dyn_cast<llvm::PointerType>(InVal->getType())) {
699    llvm::Constant *Inc =
700      llvm::ConstantInt::get(llvm::Type::Int32Ty, AmountVal);
701    if (!isa<llvm::FunctionType>(PT->getElementType())) {
702      QualType PTEE = ValTy->getPointeeType();
703      if (const ObjCInterfaceType *OIT =
704          dyn_cast<ObjCInterfaceType>(PTEE)) {
705        // Handle interface types, which are not represented with a concrete type.
706        int size = CGF.getContext().getTypeSize(OIT) / 8;
707        if (!isInc)
708          size = -size;
709        Inc = llvm::ConstantInt::get(Inc->getType(), size);
710        const llvm::Type *i8Ty =
711          llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
712        InVal = Builder.CreateBitCast(InVal, i8Ty);
713        NextVal = Builder.CreateGEP(InVal, Inc, "add.ptr");
714        llvm::Value *lhs = LV.getAddress();
715        lhs = Builder.CreateBitCast(lhs, llvm::PointerType::getUnqual(i8Ty));
716        LV = LValue::MakeAddr(lhs, ValTy.getCVRQualifiers(),
717                              CGF.getContext().getObjCGCAttrKind(ValTy));
718      } else
719        NextVal = Builder.CreateGEP(InVal, Inc, "ptrincdec");
720    } else {
721      const llvm::Type *i8Ty =
722        llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
723      NextVal = Builder.CreateBitCast(InVal, i8Ty, "tmp");
724      NextVal = Builder.CreateGEP(NextVal, Inc, "ptrincdec");
725      NextVal = Builder.CreateBitCast(NextVal, InVal->getType());
726    }
727  } else if (InVal->getType() == llvm::Type::Int1Ty && isInc) {
728    // Bool++ is an interesting case, due to promotion rules, we get:
729    // Bool++ -> Bool = Bool+1 -> Bool = (int)Bool+1 ->
730    // Bool = ((int)Bool+1) != 0
731    // An interesting aspect of this is that increment is always true.
732    // Decrement does not have this property.
733    NextVal = llvm::ConstantInt::getTrue(VMContext);
734  } else if (isa<llvm::IntegerType>(InVal->getType())) {
735    NextVal = llvm::ConstantInt::get(InVal->getType(), AmountVal);
736    NextVal = Builder.CreateAdd(InVal, NextVal, isInc ? "inc" : "dec");
737  } else {
738    // Add the inc/dec to the real part.
739    if (InVal->getType() == llvm::Type::FloatTy)
740      NextVal =
741        llvm::ConstantFP::get(VMContext,
742                              llvm::APFloat(static_cast<float>(AmountVal)));
743    else if (InVal->getType() == llvm::Type::DoubleTy)
744      NextVal =
745        llvm::ConstantFP::get(VMContext,
746                              llvm::APFloat(static_cast<double>(AmountVal)));
747    else {
748      llvm::APFloat F(static_cast<float>(AmountVal));
749      bool ignored;
750      F.convert(CGF.Target.getLongDoubleFormat(), llvm::APFloat::rmTowardZero,
751                &ignored);
752      NextVal = llvm::ConstantFP::get(VMContext, F);
753    }
754    NextVal = Builder.CreateFAdd(InVal, NextVal, isInc ? "inc" : "dec");
755  }
756
757  // Store the updated result through the lvalue.
758  if (LV.isBitfield())
759    CGF.EmitStoreThroughBitfieldLValue(RValue::get(NextVal), LV, ValTy,
760                                       &NextVal);
761  else
762    CGF.EmitStoreThroughLValue(RValue::get(NextVal), LV, ValTy);
763
764  // If this is a postinc, return the value read from memory, otherwise use the
765  // updated value.
766  return isPre ? NextVal : InVal;
767}
768
769
770Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
771  TestAndClearIgnoreResultAssign();
772  Value *Op = Visit(E->getSubExpr());
773  if (Op->getType()->isFPOrFPVector())
774    return Builder.CreateFNeg(Op, "neg");
775  return Builder.CreateNeg(Op, "neg");
776}
777
778Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
779  TestAndClearIgnoreResultAssign();
780  Value *Op = Visit(E->getSubExpr());
781  return Builder.CreateNot(Op, "neg");
782}
783
784Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
785  // Compare operand to zero.
786  Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
787
788  // Invert value.
789  // TODO: Could dynamically modify easy computations here.  For example, if
790  // the operand is an icmp ne, turn into icmp eq.
791  BoolVal = Builder.CreateNot(BoolVal, "lnot");
792
793  // ZExt result to the expr type.
794  return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
795}
796
797/// VisitSizeOfAlignOfExpr - Return the size or alignment of the type of
798/// argument of the sizeof expression as an integer.
799Value *
800ScalarExprEmitter::VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E) {
801  QualType TypeToSize = E->getTypeOfArgument();
802  if (E->isSizeOf()) {
803    if (const VariableArrayType *VAT =
804          CGF.getContext().getAsVariableArrayType(TypeToSize)) {
805      if (E->isArgumentType()) {
806        // sizeof(type) - make sure to emit the VLA size.
807        CGF.EmitVLASize(TypeToSize);
808      } else {
809        // C99 6.5.3.4p2: If the argument is an expression of type
810        // VLA, it is evaluated.
811        CGF.EmitAnyExpr(E->getArgumentExpr());
812      }
813
814      return CGF.GetVLASize(VAT);
815    }
816  }
817
818  // If this isn't sizeof(vla), the result must be constant; use the
819  // constant folding logic so we don't have to duplicate it here.
820  Expr::EvalResult Result;
821  E->Evaluate(Result, CGF.getContext());
822  return llvm::ConstantInt::get(VMContext, Result.Val.getInt());
823}
824
825Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
826  Expr *Op = E->getSubExpr();
827  if (Op->getType()->isAnyComplexType())
828    return CGF.EmitComplexExpr(Op, false, true, false, true).first;
829  return Visit(Op);
830}
831Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
832  Expr *Op = E->getSubExpr();
833  if (Op->getType()->isAnyComplexType())
834    return CGF.EmitComplexExpr(Op, true, false, true, false).second;
835
836  // __imag on a scalar returns zero.  Emit the subexpr to ensure side
837  // effects are evaluated, but not the actual value.
838  if (E->isLvalue(CGF.getContext()) == Expr::LV_Valid)
839    CGF.EmitLValue(Op);
840  else
841    CGF.EmitScalarExpr(Op, true);
842  return llvm::Constant::getNullValue(ConvertType(E->getType()));
843}
844
845Value *ScalarExprEmitter::VisitUnaryOffsetOf(const UnaryOperator *E)
846{
847  Value* ResultAsPtr = EmitLValue(E->getSubExpr()).getAddress();
848  const llvm::Type* ResultType = ConvertType(E->getType());
849  return Builder.CreatePtrToInt(ResultAsPtr, ResultType, "offsetof");
850}
851
852//===----------------------------------------------------------------------===//
853//                           Binary Operators
854//===----------------------------------------------------------------------===//
855
856BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
857  TestAndClearIgnoreResultAssign();
858  BinOpInfo Result;
859  Result.LHS = Visit(E->getLHS());
860  Result.RHS = Visit(E->getRHS());
861  Result.Ty  = E->getType();
862  Result.E = E;
863  return Result;
864}
865
866Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
867                      Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
868  bool Ignore = TestAndClearIgnoreResultAssign();
869  QualType LHSTy = E->getLHS()->getType(), RHSTy = E->getRHS()->getType();
870
871  BinOpInfo OpInfo;
872
873  if (E->getComputationResultType()->isAnyComplexType()) {
874    // This needs to go through the complex expression emitter, but
875    // it's a tad complicated to do that... I'm leaving it out for now.
876    // (Note that we do actually need the imaginary part of the RHS for
877    // multiplication and division.)
878    CGF.ErrorUnsupported(E, "complex compound assignment");
879    return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
880  }
881
882  // Emit the RHS first.  __block variables need to have the rhs evaluated
883  // first, plus this should improve codegen a little.
884  OpInfo.RHS = Visit(E->getRHS());
885  OpInfo.Ty = E->getComputationResultType();
886  OpInfo.E = E;
887  // Load/convert the LHS.
888  LValue LHSLV = EmitLValue(E->getLHS());
889  OpInfo.LHS = EmitLoadOfLValue(LHSLV, LHSTy);
890  OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy,
891                                    E->getComputationLHSType());
892
893  // Expand the binary operator.
894  Value *Result = (this->*Func)(OpInfo);
895
896  // Convert the result back to the LHS type.
897  Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy);
898
899  // Store the result value into the LHS lvalue. Bit-fields are
900  // handled specially because the result is altered by the store,
901  // i.e., [C99 6.5.16p1] 'An assignment expression has the value of
902  // the left operand after the assignment...'.
903  if (LHSLV.isBitfield()) {
904    if (!LHSLV.isVolatileQualified()) {
905      CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, LHSTy,
906                                         &Result);
907      return Result;
908    } else
909      CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, LHSTy);
910  } else
911    CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV, LHSTy);
912  if (Ignore)
913    return 0;
914  return EmitLoadOfLValue(LHSLV, E->getType());
915}
916
917
918Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
919  if (Ops.LHS->getType()->isFPOrFPVector())
920    return Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
921  else if (Ops.Ty->isUnsignedIntegerType())
922    return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
923  else
924    return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
925}
926
927Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
928  // Rem in C can't be a floating point type: C99 6.5.5p2.
929  if (Ops.Ty->isUnsignedIntegerType())
930    return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
931  else
932    return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
933}
934
935Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
936  unsigned IID;
937  unsigned OpID = 0;
938
939  switch (Ops.E->getOpcode()) {
940  case BinaryOperator::Add:
941  case BinaryOperator::AddAssign:
942    OpID = 1;
943    IID = llvm::Intrinsic::sadd_with_overflow;
944    break;
945  case BinaryOperator::Sub:
946  case BinaryOperator::SubAssign:
947    OpID = 2;
948    IID = llvm::Intrinsic::ssub_with_overflow;
949    break;
950  case BinaryOperator::Mul:
951  case BinaryOperator::MulAssign:
952    OpID = 3;
953    IID = llvm::Intrinsic::smul_with_overflow;
954    break;
955  default:
956    assert(false && "Unsupported operation for overflow detection");
957    IID = 0;
958  }
959  OpID <<= 1;
960  OpID |= 1;
961
962  const llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
963
964  llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, &opTy, 1);
965
966  Value *resultAndOverflow = Builder.CreateCall2(intrinsic, Ops.LHS, Ops.RHS);
967  Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
968  Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
969
970  // Branch in case of overflow.
971  llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
972  llvm::BasicBlock *overflowBB =
973    CGF.createBasicBlock("overflow", CGF.CurFn);
974  llvm::BasicBlock *continueBB =
975    CGF.createBasicBlock("overflow.continue", CGF.CurFn);
976
977  Builder.CreateCondBr(overflow, overflowBB, continueBB);
978
979  // Handle overflow
980
981  Builder.SetInsertPoint(overflowBB);
982
983  // Handler is:
984  // long long *__overflow_handler)(long long a, long long b, char op,
985  // char width)
986  std::vector<const llvm::Type*> handerArgTypes;
987  handerArgTypes.push_back(llvm::Type::Int64Ty);
988  handerArgTypes.push_back(llvm::Type::Int64Ty);
989  handerArgTypes.push_back(llvm::Type::Int8Ty);
990  handerArgTypes.push_back(llvm::Type::Int8Ty);
991  llvm::FunctionType *handlerTy = llvm::FunctionType::get(llvm::Type::Int64Ty,
992      handerArgTypes, false);
993  llvm::Value *handlerFunction =
994    CGF.CGM.getModule().getOrInsertGlobal("__overflow_handler",
995        llvm::PointerType::getUnqual(handlerTy));
996  handlerFunction = Builder.CreateLoad(handlerFunction);
997
998  llvm::Value *handlerResult = Builder.CreateCall4(handlerFunction,
999      Builder.CreateSExt(Ops.LHS, llvm::Type::Int64Ty),
1000      Builder.CreateSExt(Ops.RHS, llvm::Type::Int64Ty),
1001      llvm::ConstantInt::get(llvm::Type::Int8Ty, OpID),
1002      llvm::ConstantInt::get(llvm::Type::Int8Ty,
1003        cast<llvm::IntegerType>(opTy)->getBitWidth()));
1004
1005  handlerResult = Builder.CreateTrunc(handlerResult, opTy);
1006
1007  Builder.CreateBr(continueBB);
1008
1009  // Set up the continuation
1010  Builder.SetInsertPoint(continueBB);
1011  // Get the correct result
1012  llvm::PHINode *phi = Builder.CreatePHI(opTy);
1013  phi->reserveOperandSpace(2);
1014  phi->addIncoming(result, initialBB);
1015  phi->addIncoming(handlerResult, overflowBB);
1016
1017  return phi;
1018}
1019
1020Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &Ops) {
1021  if (!Ops.Ty->isAnyPointerType()) {
1022    if (CGF.getContext().getLangOptions().OverflowChecking &&
1023        Ops.Ty->isSignedIntegerType())
1024      return EmitOverflowCheckedBinOp(Ops);
1025
1026    if (Ops.LHS->getType()->isFPOrFPVector())
1027      return Builder.CreateFAdd(Ops.LHS, Ops.RHS, "add");
1028
1029    return Builder.CreateAdd(Ops.LHS, Ops.RHS, "add");
1030  }
1031
1032  if (Ops.Ty->isPointerType() &&
1033      Ops.Ty->getAs<PointerType>()->isVariableArrayType()) {
1034    // The amount of the addition needs to account for the VLA size
1035    CGF.ErrorUnsupported(Ops.E, "VLA pointer addition");
1036  }
1037  Value *Ptr, *Idx;
1038  Expr *IdxExp;
1039  const PointerType *PT = Ops.E->getLHS()->getType()->getAs<PointerType>();
1040  const ObjCObjectPointerType *OPT =
1041    Ops.E->getLHS()->getType()->getAsObjCObjectPointerType();
1042  if (PT || OPT) {
1043    Ptr = Ops.LHS;
1044    Idx = Ops.RHS;
1045    IdxExp = Ops.E->getRHS();
1046  } else {  // int + pointer
1047    PT = Ops.E->getRHS()->getType()->getAs<PointerType>();
1048    OPT = Ops.E->getRHS()->getType()->getAsObjCObjectPointerType();
1049    assert((PT || OPT) && "Invalid add expr");
1050    Ptr = Ops.RHS;
1051    Idx = Ops.LHS;
1052    IdxExp = Ops.E->getLHS();
1053  }
1054
1055  unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
1056  if (Width < CGF.LLVMPointerWidth) {
1057    // Zero or sign extend the pointer value based on whether the index is
1058    // signed or not.
1059    const llvm::Type *IdxType = llvm::IntegerType::get(CGF.LLVMPointerWidth);
1060    if (IdxExp->getType()->isSignedIntegerType())
1061      Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
1062    else
1063      Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
1064  }
1065  const QualType ElementType = PT ? PT->getPointeeType() : OPT->getPointeeType();
1066  // Handle interface types, which are not represented with a concrete
1067  // type.
1068  if (const ObjCInterfaceType *OIT = dyn_cast<ObjCInterfaceType>(ElementType)) {
1069    llvm::Value *InterfaceSize =
1070      llvm::ConstantInt::get(Idx->getType(),
1071                             CGF.getContext().getTypeSize(OIT) / 8);
1072    Idx = Builder.CreateMul(Idx, InterfaceSize);
1073    const llvm::Type *i8Ty = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
1074    Value *Casted = Builder.CreateBitCast(Ptr, i8Ty);
1075    Value *Res = Builder.CreateGEP(Casted, Idx, "add.ptr");
1076    return Builder.CreateBitCast(Res, Ptr->getType());
1077  }
1078
1079  // Explicitly handle GNU void* and function pointer arithmetic
1080  // extensions. The GNU void* casts amount to no-ops since our void*
1081  // type is i8*, but this is future proof.
1082  if (ElementType->isVoidType() || ElementType->isFunctionType()) {
1083    const llvm::Type *i8Ty = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
1084    Value *Casted = Builder.CreateBitCast(Ptr, i8Ty);
1085    Value *Res = Builder.CreateGEP(Casted, Idx, "add.ptr");
1086    return Builder.CreateBitCast(Res, Ptr->getType());
1087  }
1088
1089  return Builder.CreateGEP(Ptr, Idx, "add.ptr");
1090}
1091
1092Value *ScalarExprEmitter::EmitSub(const BinOpInfo &Ops) {
1093  if (!isa<llvm::PointerType>(Ops.LHS->getType())) {
1094    if (CGF.getContext().getLangOptions().OverflowChecking
1095        && Ops.Ty->isSignedIntegerType())
1096      return EmitOverflowCheckedBinOp(Ops);
1097
1098    if (Ops.LHS->getType()->isFPOrFPVector())
1099      return Builder.CreateFSub(Ops.LHS, Ops.RHS, "sub");
1100    return Builder.CreateSub(Ops.LHS, Ops.RHS, "sub");
1101  }
1102
1103  if (Ops.E->getLHS()->getType()->isPointerType() &&
1104      Ops.E->getLHS()->getType()->getAs<PointerType>()->isVariableArrayType()) {
1105    // The amount of the addition needs to account for the VLA size for
1106    // ptr-int
1107    // The amount of the division needs to account for the VLA size for
1108    // ptr-ptr.
1109    CGF.ErrorUnsupported(Ops.E, "VLA pointer subtraction");
1110  }
1111
1112  const QualType LHSType = Ops.E->getLHS()->getType();
1113  const QualType LHSElementType = LHSType->getPointeeType();
1114  if (!isa<llvm::PointerType>(Ops.RHS->getType())) {
1115    // pointer - int
1116    Value *Idx = Ops.RHS;
1117    unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
1118    if (Width < CGF.LLVMPointerWidth) {
1119      // Zero or sign extend the pointer value based on whether the index is
1120      // signed or not.
1121      const llvm::Type *IdxType = llvm::IntegerType::get(CGF.LLVMPointerWidth);
1122      if (Ops.E->getRHS()->getType()->isSignedIntegerType())
1123        Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
1124      else
1125        Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
1126    }
1127    Idx = Builder.CreateNeg(Idx, "sub.ptr.neg");
1128
1129    // Handle interface types, which are not represented with a concrete
1130    // type.
1131    if (const ObjCInterfaceType *OIT =
1132        dyn_cast<ObjCInterfaceType>(LHSElementType)) {
1133      llvm::Value *InterfaceSize =
1134        llvm::ConstantInt::get(Idx->getType(),
1135                               CGF.getContext().getTypeSize(OIT) / 8);
1136      Idx = Builder.CreateMul(Idx, InterfaceSize);
1137      const llvm::Type *i8Ty =
1138        llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
1139      Value *LHSCasted = Builder.CreateBitCast(Ops.LHS, i8Ty);
1140      Value *Res = Builder.CreateGEP(LHSCasted, Idx, "add.ptr");
1141      return Builder.CreateBitCast(Res, Ops.LHS->getType());
1142    }
1143
1144    // Explicitly handle GNU void* and function pointer arithmetic
1145    // extensions. The GNU void* casts amount to no-ops since our
1146    // void* type is i8*, but this is future proof.
1147    if (LHSElementType->isVoidType() || LHSElementType->isFunctionType()) {
1148      const llvm::Type *i8Ty =
1149        llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
1150      Value *LHSCasted = Builder.CreateBitCast(Ops.LHS, i8Ty);
1151      Value *Res = Builder.CreateGEP(LHSCasted, Idx, "sub.ptr");
1152      return Builder.CreateBitCast(Res, Ops.LHS->getType());
1153    }
1154
1155    return Builder.CreateGEP(Ops.LHS, Idx, "sub.ptr");
1156  } else {
1157    // pointer - pointer
1158    Value *LHS = Ops.LHS;
1159    Value *RHS = Ops.RHS;
1160
1161    uint64_t ElementSize;
1162
1163    // Handle GCC extension for pointer arithmetic on void* and function pointer
1164    // types.
1165    if (LHSElementType->isVoidType() || LHSElementType->isFunctionType()) {
1166      ElementSize = 1;
1167    } else {
1168      ElementSize = CGF.getContext().getTypeSize(LHSElementType) / 8;
1169    }
1170
1171    const llvm::Type *ResultType = ConvertType(Ops.Ty);
1172    LHS = Builder.CreatePtrToInt(LHS, ResultType, "sub.ptr.lhs.cast");
1173    RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
1174    Value *BytesBetween = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
1175
1176    // Optimize out the shift for element size of 1.
1177    if (ElementSize == 1)
1178      return BytesBetween;
1179
1180    // HACK: LLVM doesn't have an divide instruction that 'knows' there is no
1181    // remainder.  As such, we handle common power-of-two cases here to generate
1182    // better code. See PR2247.
1183    if (llvm::isPowerOf2_64(ElementSize)) {
1184      Value *ShAmt =
1185        llvm::ConstantInt::get(ResultType, llvm::Log2_64(ElementSize));
1186      return Builder.CreateAShr(BytesBetween, ShAmt, "sub.ptr.shr");
1187    }
1188
1189    // Otherwise, do a full sdiv.
1190    Value *BytesPerElt = llvm::ConstantInt::get(ResultType, ElementSize);
1191    return Builder.CreateSDiv(BytesBetween, BytesPerElt, "sub.ptr.div");
1192  }
1193}
1194
1195Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
1196  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
1197  // RHS to the same size as the LHS.
1198  Value *RHS = Ops.RHS;
1199  if (Ops.LHS->getType() != RHS->getType())
1200    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
1201
1202  return Builder.CreateShl(Ops.LHS, RHS, "shl");
1203}
1204
1205Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
1206  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
1207  // RHS to the same size as the LHS.
1208  Value *RHS = Ops.RHS;
1209  if (Ops.LHS->getType() != RHS->getType())
1210    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
1211
1212  if (Ops.Ty->isUnsignedIntegerType())
1213    return Builder.CreateLShr(Ops.LHS, RHS, "shr");
1214  return Builder.CreateAShr(Ops.LHS, RHS, "shr");
1215}
1216
1217Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
1218                                      unsigned SICmpOpc, unsigned FCmpOpc) {
1219  TestAndClearIgnoreResultAssign();
1220  Value *Result;
1221  QualType LHSTy = E->getLHS()->getType();
1222  if (!LHSTy->isAnyComplexType()) {
1223    Value *LHS = Visit(E->getLHS());
1224    Value *RHS = Visit(E->getRHS());
1225
1226    if (LHS->getType()->isFPOrFPVector()) {
1227      Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
1228                                  LHS, RHS, "cmp");
1229    } else if (LHSTy->isSignedIntegerType()) {
1230      Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
1231                                  LHS, RHS, "cmp");
1232    } else {
1233      // Unsigned integers and pointers.
1234      Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1235                                  LHS, RHS, "cmp");
1236    }
1237
1238    // If this is a vector comparison, sign extend the result to the appropriate
1239    // vector integer type and return it (don't convert to bool).
1240    if (LHSTy->isVectorType())
1241      return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
1242
1243  } else {
1244    // Complex Comparison: can only be an equality comparison.
1245    CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS());
1246    CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS());
1247
1248    QualType CETy = LHSTy->getAsComplexType()->getElementType();
1249
1250    Value *ResultR, *ResultI;
1251    if (CETy->isRealFloatingType()) {
1252      ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
1253                                   LHS.first, RHS.first, "cmp.r");
1254      ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
1255                                   LHS.second, RHS.second, "cmp.i");
1256    } else {
1257      // Complex comparisons can only be equality comparisons.  As such, signed
1258      // and unsigned opcodes are the same.
1259      ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1260                                   LHS.first, RHS.first, "cmp.r");
1261      ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1262                                   LHS.second, RHS.second, "cmp.i");
1263    }
1264
1265    if (E->getOpcode() == BinaryOperator::EQ) {
1266      Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
1267    } else {
1268      assert(E->getOpcode() == BinaryOperator::NE &&
1269             "Complex comparison other than == or != ?");
1270      Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
1271    }
1272  }
1273
1274  return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
1275}
1276
1277Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
1278  bool Ignore = TestAndClearIgnoreResultAssign();
1279
1280  // __block variables need to have the rhs evaluated first, plus this should
1281  // improve codegen just a little.
1282  Value *RHS = Visit(E->getRHS());
1283  LValue LHS = EmitLValue(E->getLHS());
1284
1285  // Store the value into the LHS.  Bit-fields are handled specially
1286  // because the result is altered by the store, i.e., [C99 6.5.16p1]
1287  // 'An assignment expression has the value of the left operand after
1288  // the assignment...'.
1289  if (LHS.isBitfield()) {
1290    if (!LHS.isVolatileQualified()) {
1291      CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, E->getType(),
1292                                         &RHS);
1293      return RHS;
1294    } else
1295      CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, E->getType());
1296  } else
1297    CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS, E->getType());
1298  if (Ignore)
1299    return 0;
1300  return EmitLoadOfLValue(LHS, E->getType());
1301}
1302
1303Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
1304  // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
1305  // If we have 1 && X, just emit X without inserting the control flow.
1306  if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getLHS())) {
1307    if (Cond == 1) { // If we have 1 && X, just emit X.
1308      Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1309      // ZExt result to int.
1310      return Builder.CreateZExt(RHSCond, CGF.LLVMIntTy, "land.ext");
1311    }
1312
1313    // 0 && RHS: If it is safe, just elide the RHS, and return 0.
1314    if (!CGF.ContainsLabel(E->getRHS()))
1315      return llvm::Constant::getNullValue(CGF.LLVMIntTy);
1316  }
1317
1318  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
1319  llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
1320
1321  // Branch on the LHS first.  If it is false, go to the failure (cont) block.
1322  CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock);
1323
1324  // Any edges into the ContBlock are now from an (indeterminate number of)
1325  // edges from this first condition.  All of these values will be false.  Start
1326  // setting up the PHI node in the Cont Block for this.
1327  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::Int1Ty, "", ContBlock);
1328  PN->reserveOperandSpace(2);  // Normal case, two inputs.
1329  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
1330       PI != PE; ++PI)
1331    PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
1332
1333  CGF.PushConditionalTempDestruction();
1334  CGF.EmitBlock(RHSBlock);
1335  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1336  CGF.PopConditionalTempDestruction();
1337
1338  // Reaquire the RHS block, as there may be subblocks inserted.
1339  RHSBlock = Builder.GetInsertBlock();
1340
1341  // Emit an unconditional branch from this block to ContBlock.  Insert an entry
1342  // into the phi node for the edge with the value of RHSCond.
1343  CGF.EmitBlock(ContBlock);
1344  PN->addIncoming(RHSCond, RHSBlock);
1345
1346  // ZExt result to int.
1347  return Builder.CreateZExt(PN, CGF.LLVMIntTy, "land.ext");
1348}
1349
1350Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
1351  // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
1352  // If we have 0 || X, just emit X without inserting the control flow.
1353  if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getLHS())) {
1354    if (Cond == -1) { // If we have 0 || X, just emit X.
1355      Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1356      // ZExt result to int.
1357      return Builder.CreateZExt(RHSCond, CGF.LLVMIntTy, "lor.ext");
1358    }
1359
1360    // 1 || RHS: If it is safe, just elide the RHS, and return 1.
1361    if (!CGF.ContainsLabel(E->getRHS()))
1362      return llvm::ConstantInt::get(CGF.LLVMIntTy, 1);
1363  }
1364
1365  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
1366  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
1367
1368  // Branch on the LHS first.  If it is true, go to the success (cont) block.
1369  CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock);
1370
1371  // Any edges into the ContBlock are now from an (indeterminate number of)
1372  // edges from this first condition.  All of these values will be true.  Start
1373  // setting up the PHI node in the Cont Block for this.
1374  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::Int1Ty, "", ContBlock);
1375  PN->reserveOperandSpace(2);  // Normal case, two inputs.
1376  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
1377       PI != PE; ++PI)
1378    PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
1379
1380  CGF.PushConditionalTempDestruction();
1381
1382  // Emit the RHS condition as a bool value.
1383  CGF.EmitBlock(RHSBlock);
1384  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1385
1386  CGF.PopConditionalTempDestruction();
1387
1388  // Reaquire the RHS block, as there may be subblocks inserted.
1389  RHSBlock = Builder.GetInsertBlock();
1390
1391  // Emit an unconditional branch from this block to ContBlock.  Insert an entry
1392  // into the phi node for the edge with the value of RHSCond.
1393  CGF.EmitBlock(ContBlock);
1394  PN->addIncoming(RHSCond, RHSBlock);
1395
1396  // ZExt result to int.
1397  return Builder.CreateZExt(PN, CGF.LLVMIntTy, "lor.ext");
1398}
1399
1400Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
1401  CGF.EmitStmt(E->getLHS());
1402  CGF.EnsureInsertPoint();
1403  return Visit(E->getRHS());
1404}
1405
1406//===----------------------------------------------------------------------===//
1407//                             Other Operators
1408//===----------------------------------------------------------------------===//
1409
1410/// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
1411/// expression is cheap enough and side-effect-free enough to evaluate
1412/// unconditionally instead of conditionally.  This is used to convert control
1413/// flow into selects in some cases.
1414static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E) {
1415  if (const ParenExpr *PE = dyn_cast<ParenExpr>(E))
1416    return isCheapEnoughToEvaluateUnconditionally(PE->getSubExpr());
1417
1418  // TODO: Allow anything we can constant fold to an integer or fp constant.
1419  if (isa<IntegerLiteral>(E) || isa<CharacterLiteral>(E) ||
1420      isa<FloatingLiteral>(E))
1421    return true;
1422
1423  // Non-volatile automatic variables too, to get "cond ? X : Y" where
1424  // X and Y are local variables.
1425  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
1426    if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
1427      if (VD->hasLocalStorage() && !VD->getType().isVolatileQualified())
1428        return true;
1429
1430  return false;
1431}
1432
1433
1434Value *ScalarExprEmitter::
1435VisitConditionalOperator(const ConditionalOperator *E) {
1436  TestAndClearIgnoreResultAssign();
1437  // If the condition constant folds and can be elided, try to avoid emitting
1438  // the condition and the dead arm.
1439  if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getCond())){
1440    Expr *Live = E->getLHS(), *Dead = E->getRHS();
1441    if (Cond == -1)
1442      std::swap(Live, Dead);
1443
1444    // If the dead side doesn't have labels we need, and if the Live side isn't
1445    // the gnu missing ?: extension (which we could handle, but don't bother
1446    // to), just emit the Live part.
1447    if ((!Dead || !CGF.ContainsLabel(Dead)) &&  // No labels in dead part
1448        Live)                                   // Live part isn't missing.
1449      return Visit(Live);
1450  }
1451
1452
1453  // If this is a really simple expression (like x ? 4 : 5), emit this as a
1454  // select instead of as control flow.  We can only do this if it is cheap and
1455  // safe to evaluate the LHS and RHS unconditionally.
1456  if (E->getLHS() && isCheapEnoughToEvaluateUnconditionally(E->getLHS()) &&
1457      isCheapEnoughToEvaluateUnconditionally(E->getRHS())) {
1458    llvm::Value *CondV = CGF.EvaluateExprAsBool(E->getCond());
1459    llvm::Value *LHS = Visit(E->getLHS());
1460    llvm::Value *RHS = Visit(E->getRHS());
1461    return Builder.CreateSelect(CondV, LHS, RHS, "cond");
1462  }
1463
1464
1465  llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
1466  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
1467  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
1468  Value *CondVal = 0;
1469
1470  // If we don't have the GNU missing condition extension, emit a branch on
1471  // bool the normal way.
1472  if (E->getLHS()) {
1473    // Otherwise, just use EmitBranchOnBoolExpr to get small and simple code for
1474    // the branch on bool.
1475    CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock);
1476  } else {
1477    // Otherwise, for the ?: extension, evaluate the conditional and then
1478    // convert it to bool the hard way.  We do this explicitly because we need
1479    // the unconverted value for the missing middle value of the ?:.
1480    CondVal = CGF.EmitScalarExpr(E->getCond());
1481
1482    // In some cases, EmitScalarConversion will delete the "CondVal" expression
1483    // if there are no extra uses (an optimization).  Inhibit this by making an
1484    // extra dead use, because we're going to add a use of CondVal later.  We
1485    // don't use the builder for this, because we don't want it to get optimized
1486    // away.  This leaves dead code, but the ?: extension isn't common.
1487    new llvm::BitCastInst(CondVal, CondVal->getType(), "dummy?:holder",
1488                          Builder.GetInsertBlock());
1489
1490    Value *CondBoolVal =
1491      CGF.EmitScalarConversion(CondVal, E->getCond()->getType(),
1492                               CGF.getContext().BoolTy);
1493    Builder.CreateCondBr(CondBoolVal, LHSBlock, RHSBlock);
1494  }
1495
1496  CGF.PushConditionalTempDestruction();
1497  CGF.EmitBlock(LHSBlock);
1498
1499  // Handle the GNU extension for missing LHS.
1500  Value *LHS;
1501  if (E->getLHS())
1502    LHS = Visit(E->getLHS());
1503  else    // Perform promotions, to handle cases like "short ?: int"
1504    LHS = EmitScalarConversion(CondVal, E->getCond()->getType(), E->getType());
1505
1506  CGF.PopConditionalTempDestruction();
1507  LHSBlock = Builder.GetInsertBlock();
1508  CGF.EmitBranch(ContBlock);
1509
1510  CGF.PushConditionalTempDestruction();
1511  CGF.EmitBlock(RHSBlock);
1512
1513  Value *RHS = Visit(E->getRHS());
1514  CGF.PopConditionalTempDestruction();
1515  RHSBlock = Builder.GetInsertBlock();
1516  CGF.EmitBranch(ContBlock);
1517
1518  CGF.EmitBlock(ContBlock);
1519
1520  if (!LHS || !RHS) {
1521    assert(E->getType()->isVoidType() && "Non-void value should have a value");
1522    return 0;
1523  }
1524
1525  // Create a PHI node for the real part.
1526  llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), "cond");
1527  PN->reserveOperandSpace(2);
1528  PN->addIncoming(LHS, LHSBlock);
1529  PN->addIncoming(RHS, RHSBlock);
1530  return PN;
1531}
1532
1533Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
1534  return Visit(E->getChosenSubExpr(CGF.getContext()));
1535}
1536
1537Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
1538  llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
1539  llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
1540
1541  // If EmitVAArg fails, we fall back to the LLVM instruction.
1542  if (!ArgPtr)
1543    return Builder.CreateVAArg(ArgValue, ConvertType(VE->getType()));
1544
1545  // FIXME Volatility.
1546  return Builder.CreateLoad(ArgPtr);
1547}
1548
1549Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *BE) {
1550  return CGF.BuildBlockLiteralTmp(BE);
1551}
1552
1553//===----------------------------------------------------------------------===//
1554//                         Entry Point into this File
1555//===----------------------------------------------------------------------===//
1556
1557/// EmitScalarExpr - Emit the computation of the specified expression of
1558/// scalar type, ignoring the result.
1559Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
1560  assert(E && !hasAggregateLLVMType(E->getType()) &&
1561         "Invalid scalar expression to emit");
1562
1563  return ScalarExprEmitter(*this, IgnoreResultAssign)
1564    .Visit(const_cast<Expr*>(E));
1565}
1566
1567/// EmitScalarConversion - Emit a conversion from the specified type to the
1568/// specified destination type, both of which are LLVM scalar types.
1569Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
1570                                             QualType DstTy) {
1571  assert(!hasAggregateLLVMType(SrcTy) && !hasAggregateLLVMType(DstTy) &&
1572         "Invalid scalar expression to emit");
1573  return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
1574}
1575
1576/// EmitComplexToScalarConversion - Emit a conversion from the specified
1577/// complex type to the specified destination type, where the destination
1578/// type is an LLVM scalar type.
1579Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
1580                                                      QualType SrcTy,
1581                                                      QualType DstTy) {
1582  assert(SrcTy->isAnyComplexType() && !hasAggregateLLVMType(DstTy) &&
1583         "Invalid complex -> scalar conversion");
1584  return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy,
1585                                                                DstTy);
1586}
1587
1588Value *CodeGenFunction::EmitShuffleVector(Value* V1, Value *V2, ...) {
1589  assert(V1->getType() == V2->getType() &&
1590         "Vector operands must be of the same type");
1591  unsigned NumElements =
1592    cast<llvm::VectorType>(V1->getType())->getNumElements();
1593
1594  va_list va;
1595  va_start(va, V2);
1596
1597  llvm::SmallVector<llvm::Constant*, 16> Args;
1598  for (unsigned i = 0; i < NumElements; i++) {
1599    int n = va_arg(va, int);
1600    assert(n >= 0 && n < (int)NumElements * 2 &&
1601           "Vector shuffle index out of bounds!");
1602    Args.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, n));
1603  }
1604
1605  const char *Name = va_arg(va, const char *);
1606  va_end(va);
1607
1608  llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements);
1609
1610  return Builder.CreateShuffleVector(V1, V2, Mask, Name);
1611}
1612
1613llvm::Value *CodeGenFunction::EmitVector(llvm::Value * const *Vals,
1614                                         unsigned NumVals, bool isSplat) {
1615  llvm::Value *Vec
1616    = llvm::UndefValue::get(llvm::VectorType::get(Vals[0]->getType(), NumVals));
1617
1618  for (unsigned i = 0, e = NumVals; i != e; ++i) {
1619    llvm::Value *Val = isSplat ? Vals[0] : Vals[i];
1620    llvm::Value *Idx = llvm::ConstantInt::get(llvm::Type::Int32Ty, i);
1621    Vec = Builder.CreateInsertElement(Vec, Val, Idx, "tmp");
1622  }
1623
1624  return Vec;
1625}
1626