CGExprScalar.cpp revision 1de4d4e8cb2e9c88809fea8092bc6e835a5473d2
1//===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Frontend/CodeGenOptions.h"
15#include "CodeGenFunction.h"
16#include "CGCXXABI.h"
17#include "CGObjCRuntime.h"
18#include "CodeGenModule.h"
19#include "CGDebugInfo.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/DeclObjC.h"
22#include "clang/AST/RecordLayout.h"
23#include "clang/AST/StmtVisitor.h"
24#include "clang/Basic/TargetInfo.h"
25#include "llvm/Constants.h"
26#include "llvm/Function.h"
27#include "llvm/GlobalVariable.h"
28#include "llvm/Intrinsics.h"
29#include "llvm/Module.h"
30#include "llvm/Support/CFG.h"
31#include "llvm/Target/TargetData.h"
32#include <cstdarg>
33
34using namespace clang;
35using namespace CodeGen;
36using llvm::Value;
37
38//===----------------------------------------------------------------------===//
39//                         Scalar Expression Emitter
40//===----------------------------------------------------------------------===//
41
42namespace {
43struct BinOpInfo {
44  Value *LHS;
45  Value *RHS;
46  QualType Ty;  // Computation Type.
47  BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
48  const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
49};
50
51static bool MustVisitNullValue(const Expr *E) {
52  // If a null pointer expression's type is the C++0x nullptr_t, then
53  // it's not necessarily a simple constant and it must be evaluated
54  // for its potential side effects.
55  return E->getType()->isNullPtrType();
56}
57
58class ScalarExprEmitter
59  : public StmtVisitor<ScalarExprEmitter, Value*> {
60  CodeGenFunction &CGF;
61  CGBuilderTy &Builder;
62  bool IgnoreResultAssign;
63  llvm::LLVMContext &VMContext;
64public:
65
66  ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
67    : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
68      VMContext(cgf.getLLVMContext()) {
69  }
70
71  //===--------------------------------------------------------------------===//
72  //                               Utilities
73  //===--------------------------------------------------------------------===//
74
75  bool TestAndClearIgnoreResultAssign() {
76    bool I = IgnoreResultAssign;
77    IgnoreResultAssign = false;
78    return I;
79  }
80
81  const llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
82  LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
83  LValue EmitCheckedLValue(const Expr *E) { return CGF.EmitCheckedLValue(E); }
84
85  Value *EmitLoadOfLValue(LValue LV, QualType T) {
86    return CGF.EmitLoadOfLValue(LV, T).getScalarVal();
87  }
88
89  /// EmitLoadOfLValue - Given an expression with complex type that represents a
90  /// value l-value, this method emits the address of the l-value, then loads
91  /// and returns the result.
92  Value *EmitLoadOfLValue(const Expr *E) {
93    return EmitLoadOfLValue(EmitCheckedLValue(E), E->getType());
94  }
95
96  /// EmitConversionToBool - Convert the specified expression value to a
97  /// boolean (i1) truth value.  This is equivalent to "Val != 0".
98  Value *EmitConversionToBool(Value *Src, QualType DstTy);
99
100  /// EmitScalarConversion - Emit a conversion from the specified type to the
101  /// specified destination type, both of which are LLVM scalar types.
102  Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);
103
104  /// EmitComplexToScalarConversion - Emit a conversion from the specified
105  /// complex type to the specified destination type, where the destination type
106  /// is an LLVM scalar type.
107  Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
108                                       QualType SrcTy, QualType DstTy);
109
110  /// EmitNullValue - Emit a value that corresponds to null for the given type.
111  Value *EmitNullValue(QualType Ty);
112
113  /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
114  Value *EmitFloatToBoolConversion(Value *V) {
115    // Compare against 0.0 for fp scalars.
116    llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
117    return Builder.CreateFCmpUNE(V, Zero, "tobool");
118  }
119
120  /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
121  Value *EmitPointerToBoolConversion(Value *V) {
122    Value *Zero = llvm::ConstantPointerNull::get(
123                                      cast<llvm::PointerType>(V->getType()));
124    return Builder.CreateICmpNE(V, Zero, "tobool");
125  }
126
127  Value *EmitIntToBoolConversion(Value *V) {
128    // Because of the type rules of C, we often end up computing a
129    // logical value, then zero extending it to int, then wanting it
130    // as a logical value again.  Optimize this common case.
131    if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
132      if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
133        Value *Result = ZI->getOperand(0);
134        // If there aren't any more uses, zap the instruction to save space.
135        // Note that there can be more uses, for example if this
136        // is the result of an assignment.
137        if (ZI->use_empty())
138          ZI->eraseFromParent();
139        return Result;
140      }
141    }
142
143    const llvm::IntegerType *Ty = cast<llvm::IntegerType>(V->getType());
144    Value *Zero = llvm::ConstantInt::get(Ty, 0);
145    return Builder.CreateICmpNE(V, Zero, "tobool");
146  }
147
148  //===--------------------------------------------------------------------===//
149  //                            Visitor Methods
150  //===--------------------------------------------------------------------===//
151
152  Value *Visit(Expr *E) {
153    return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
154  }
155
156  Value *VisitStmt(Stmt *S) {
157    S->dump(CGF.getContext().getSourceManager());
158    assert(0 && "Stmt can't have complex result type!");
159    return 0;
160  }
161  Value *VisitExpr(Expr *S);
162
163  Value *VisitParenExpr(ParenExpr *PE) {
164    return Visit(PE->getSubExpr());
165  }
166
167  // Leaves.
168  Value *VisitIntegerLiteral(const IntegerLiteral *E) {
169    return llvm::ConstantInt::get(VMContext, E->getValue());
170  }
171  Value *VisitFloatingLiteral(const FloatingLiteral *E) {
172    return llvm::ConstantFP::get(VMContext, E->getValue());
173  }
174  Value *VisitCharacterLiteral(const CharacterLiteral *E) {
175    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
176  }
177  Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
178    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
179  }
180  Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
181    return EmitNullValue(E->getType());
182  }
183  Value *VisitGNUNullExpr(const GNUNullExpr *E) {
184    return EmitNullValue(E->getType());
185  }
186  Value *VisitOffsetOfExpr(OffsetOfExpr *E);
187  Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
188  Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
189    llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
190    return Builder.CreateBitCast(V, ConvertType(E->getType()));
191  }
192
193  Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
194    return llvm::ConstantInt::get(ConvertType(E->getType()),
195                                  E->getPackLength());
196  }
197
198  Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
199    if (E->isGLValue())
200      return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E), E->getType());
201
202    // Otherwise, assume the mapping is the scalar directly.
203    return CGF.getOpaqueRValueMapping(E).getScalarVal();
204  }
205
206  // l-values.
207  Value *VisitDeclRefExpr(DeclRefExpr *E) {
208    Expr::EvalResult Result;
209    if (!E->Evaluate(Result, CGF.getContext()))
210      return EmitLoadOfLValue(E);
211
212    assert(!Result.HasSideEffects && "Constant declref with side-effect?!");
213
214    llvm::Constant *C;
215    if (Result.Val.isInt()) {
216      C = llvm::ConstantInt::get(VMContext, Result.Val.getInt());
217    } else if (Result.Val.isFloat()) {
218      C = llvm::ConstantFP::get(VMContext, Result.Val.getFloat());
219    } else {
220      return EmitLoadOfLValue(E);
221    }
222
223    // Make sure we emit a debug reference to the global variable.
224    if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl())) {
225      if (!CGF.getContext().DeclMustBeEmitted(VD))
226        CGF.EmitDeclRefExprDbgValue(E, C);
227    } else if (isa<EnumConstantDecl>(E->getDecl())) {
228      CGF.EmitDeclRefExprDbgValue(E, C);
229    }
230
231    return C;
232  }
233  Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
234    return CGF.EmitObjCSelectorExpr(E);
235  }
236  Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
237    return CGF.EmitObjCProtocolExpr(E);
238  }
239  Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
240    return EmitLoadOfLValue(E);
241  }
242  Value *VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
243    assert(E->getObjectKind() == OK_Ordinary &&
244           "reached property reference without lvalue-to-rvalue");
245    return EmitLoadOfLValue(E);
246  }
247  Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
248    if (E->getMethodDecl() &&
249        E->getMethodDecl()->getResultType()->isReferenceType())
250      return EmitLoadOfLValue(E);
251    return CGF.EmitObjCMessageExpr(E).getScalarVal();
252  }
253
254  Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
255    LValue LV = CGF.EmitObjCIsaExpr(E);
256    Value *V = CGF.EmitLoadOfLValue(LV, E->getType()).getScalarVal();
257    return V;
258  }
259
260  Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
261  Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
262  Value *VisitMemberExpr(MemberExpr *E);
263  Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
264  Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
265    return EmitLoadOfLValue(E);
266  }
267
268  Value *VisitInitListExpr(InitListExpr *E);
269
270  Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
271    return CGF.CGM.EmitNullConstant(E->getType());
272  }
273  Value *VisitCastExpr(CastExpr *E) {
274    // Make sure to evaluate VLA bounds now so that we have them for later.
275    if (E->getType()->isVariablyModifiedType())
276      CGF.EmitVLASize(E->getType());
277
278    return EmitCastExpr(E);
279  }
280  Value *EmitCastExpr(CastExpr *E);
281
282  Value *VisitCallExpr(const CallExpr *E) {
283    if (E->getCallReturnType()->isReferenceType())
284      return EmitLoadOfLValue(E);
285
286    return CGF.EmitCallExpr(E).getScalarVal();
287  }
288
289  Value *VisitStmtExpr(const StmtExpr *E);
290
291  Value *VisitBlockDeclRefExpr(const BlockDeclRefExpr *E);
292
293  // Unary Operators.
294  Value *VisitUnaryPostDec(const UnaryOperator *E) {
295    LValue LV = EmitLValue(E->getSubExpr());
296    return EmitScalarPrePostIncDec(E, LV, false, false);
297  }
298  Value *VisitUnaryPostInc(const UnaryOperator *E) {
299    LValue LV = EmitLValue(E->getSubExpr());
300    return EmitScalarPrePostIncDec(E, LV, true, false);
301  }
302  Value *VisitUnaryPreDec(const UnaryOperator *E) {
303    LValue LV = EmitLValue(E->getSubExpr());
304    return EmitScalarPrePostIncDec(E, LV, false, true);
305  }
306  Value *VisitUnaryPreInc(const UnaryOperator *E) {
307    LValue LV = EmitLValue(E->getSubExpr());
308    return EmitScalarPrePostIncDec(E, LV, true, true);
309  }
310
311  llvm::Value *EmitAddConsiderOverflowBehavior(const UnaryOperator *E,
312                                               llvm::Value *InVal,
313                                               llvm::Value *NextVal,
314                                               bool IsInc);
315
316  llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
317                                       bool isInc, bool isPre);
318
319
320  Value *VisitUnaryAddrOf(const UnaryOperator *E) {
321    if (isa<MemberPointerType>(E->getType())) // never sugared
322      return CGF.CGM.getMemberPointerConstant(E);
323
324    return EmitLValue(E->getSubExpr()).getAddress();
325  }
326  Value *VisitUnaryDeref(const UnaryOperator *E) {
327    if (E->getType()->isVoidType())
328      return Visit(E->getSubExpr()); // the actual value should be unused
329    return EmitLoadOfLValue(E);
330  }
331  Value *VisitUnaryPlus(const UnaryOperator *E) {
332    // This differs from gcc, though, most likely due to a bug in gcc.
333    TestAndClearIgnoreResultAssign();
334    return Visit(E->getSubExpr());
335  }
336  Value *VisitUnaryMinus    (const UnaryOperator *E);
337  Value *VisitUnaryNot      (const UnaryOperator *E);
338  Value *VisitUnaryLNot     (const UnaryOperator *E);
339  Value *VisitUnaryReal     (const UnaryOperator *E);
340  Value *VisitUnaryImag     (const UnaryOperator *E);
341  Value *VisitUnaryExtension(const UnaryOperator *E) {
342    return Visit(E->getSubExpr());
343  }
344
345  // C++
346  Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
347    return Visit(DAE->getExpr());
348  }
349  Value *VisitCXXThisExpr(CXXThisExpr *TE) {
350    return CGF.LoadCXXThis();
351  }
352
353  Value *VisitExprWithCleanups(ExprWithCleanups *E) {
354    return CGF.EmitExprWithCleanups(E).getScalarVal();
355  }
356  Value *VisitCXXNewExpr(const CXXNewExpr *E) {
357    return CGF.EmitCXXNewExpr(E);
358  }
359  Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
360    CGF.EmitCXXDeleteExpr(E);
361    return 0;
362  }
363  Value *VisitUnaryTypeTraitExpr(const UnaryTypeTraitExpr *E) {
364    return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
365  }
366
367  Value *VisitBinaryTypeTraitExpr(const BinaryTypeTraitExpr *E) {
368    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
369  }
370
371  Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
372    // C++ [expr.pseudo]p1:
373    //   The result shall only be used as the operand for the function call
374    //   operator (), and the result of such a call has type void. The only
375    //   effect is the evaluation of the postfix-expression before the dot or
376    //   arrow.
377    CGF.EmitScalarExpr(E->getBase());
378    return 0;
379  }
380
381  Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
382    return EmitNullValue(E->getType());
383  }
384
385  Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
386    CGF.EmitCXXThrowExpr(E);
387    return 0;
388  }
389
390  Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
391    return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
392  }
393
394  // Binary Operators.
395  Value *EmitMul(const BinOpInfo &Ops) {
396    if (Ops.Ty->hasSignedIntegerRepresentation()) {
397      switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
398      case LangOptions::SOB_Undefined:
399        return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
400      case LangOptions::SOB_Defined:
401        return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
402      case LangOptions::SOB_Trapping:
403        return EmitOverflowCheckedBinOp(Ops);
404      }
405    }
406
407    if (Ops.LHS->getType()->isFPOrFPVectorTy())
408      return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
409    return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
410  }
411  bool isTrapvOverflowBehavior() {
412    return CGF.getContext().getLangOptions().getSignedOverflowBehavior()
413               == LangOptions::SOB_Trapping;
414  }
415  /// Create a binary op that checks for overflow.
416  /// Currently only supports +, - and *.
417  Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
418  // Emit the overflow BB when -ftrapv option is activated.
419  void EmitOverflowBB(llvm::BasicBlock *overflowBB) {
420    Builder.SetInsertPoint(overflowBB);
421    llvm::Function *Trap = CGF.CGM.getIntrinsic(llvm::Intrinsic::trap);
422    Builder.CreateCall(Trap);
423    Builder.CreateUnreachable();
424  }
425  // Check for undefined division and modulus behaviors.
426  void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
427                                                  llvm::Value *Zero,bool isDiv);
428  Value *EmitDiv(const BinOpInfo &Ops);
429  Value *EmitRem(const BinOpInfo &Ops);
430  Value *EmitAdd(const BinOpInfo &Ops);
431  Value *EmitSub(const BinOpInfo &Ops);
432  Value *EmitShl(const BinOpInfo &Ops);
433  Value *EmitShr(const BinOpInfo &Ops);
434  Value *EmitAnd(const BinOpInfo &Ops) {
435    return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
436  }
437  Value *EmitXor(const BinOpInfo &Ops) {
438    return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
439  }
440  Value *EmitOr (const BinOpInfo &Ops) {
441    return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
442  }
443
444  BinOpInfo EmitBinOps(const BinaryOperator *E);
445  LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
446                            Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
447                                  Value *&Result);
448
449  Value *EmitCompoundAssign(const CompoundAssignOperator *E,
450                            Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
451
452  // Binary operators and binary compound assignment operators.
453#define HANDLEBINOP(OP) \
454  Value *VisitBin ## OP(const BinaryOperator *E) {                         \
455    return Emit ## OP(EmitBinOps(E));                                      \
456  }                                                                        \
457  Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
458    return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
459  }
460  HANDLEBINOP(Mul)
461  HANDLEBINOP(Div)
462  HANDLEBINOP(Rem)
463  HANDLEBINOP(Add)
464  HANDLEBINOP(Sub)
465  HANDLEBINOP(Shl)
466  HANDLEBINOP(Shr)
467  HANDLEBINOP(And)
468  HANDLEBINOP(Xor)
469  HANDLEBINOP(Or)
470#undef HANDLEBINOP
471
472  // Comparisons.
473  Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
474                     unsigned SICmpOpc, unsigned FCmpOpc);
475#define VISITCOMP(CODE, UI, SI, FP) \
476    Value *VisitBin##CODE(const BinaryOperator *E) { \
477      return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
478                         llvm::FCmpInst::FP); }
479  VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
480  VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
481  VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
482  VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
483  VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
484  VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
485#undef VISITCOMP
486
487  Value *VisitBinAssign     (const BinaryOperator *E);
488
489  Value *VisitBinLAnd       (const BinaryOperator *E);
490  Value *VisitBinLOr        (const BinaryOperator *E);
491  Value *VisitBinComma      (const BinaryOperator *E);
492
493  Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
494  Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
495
496  // Other Operators.
497  Value *VisitBlockExpr(const BlockExpr *BE);
498  Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
499  Value *VisitChooseExpr(ChooseExpr *CE);
500  Value *VisitVAArgExpr(VAArgExpr *VE);
501  Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
502    return CGF.EmitObjCStringLiteral(E);
503  }
504};
505}  // end anonymous namespace.
506
507//===----------------------------------------------------------------------===//
508//                                Utilities
509//===----------------------------------------------------------------------===//
510
511/// EmitConversionToBool - Convert the specified expression value to a
512/// boolean (i1) truth value.  This is equivalent to "Val != 0".
513Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
514  assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
515
516  if (SrcType->isRealFloatingType())
517    return EmitFloatToBoolConversion(Src);
518
519  if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
520    return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
521
522  assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
523         "Unknown scalar type to convert");
524
525  if (isa<llvm::IntegerType>(Src->getType()))
526    return EmitIntToBoolConversion(Src);
527
528  assert(isa<llvm::PointerType>(Src->getType()));
529  return EmitPointerToBoolConversion(Src);
530}
531
532/// EmitScalarConversion - Emit a conversion from the specified type to the
533/// specified destination type, both of which are LLVM scalar types.
534Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
535                                               QualType DstType) {
536  SrcType = CGF.getContext().getCanonicalType(SrcType);
537  DstType = CGF.getContext().getCanonicalType(DstType);
538  if (SrcType == DstType) return Src;
539
540  if (DstType->isVoidType()) return 0;
541
542  // Handle conversions to bool first, they are special: comparisons against 0.
543  if (DstType->isBooleanType())
544    return EmitConversionToBool(Src, SrcType);
545
546  const llvm::Type *DstTy = ConvertType(DstType);
547
548  // Ignore conversions like int -> uint.
549  if (Src->getType() == DstTy)
550    return Src;
551
552  // Handle pointer conversions next: pointers can only be converted to/from
553  // other pointers and integers. Check for pointer types in terms of LLVM, as
554  // some native types (like Obj-C id) may map to a pointer type.
555  if (isa<llvm::PointerType>(DstTy)) {
556    // The source value may be an integer, or a pointer.
557    if (isa<llvm::PointerType>(Src->getType()))
558      return Builder.CreateBitCast(Src, DstTy, "conv");
559
560    assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
561    // First, convert to the correct width so that we control the kind of
562    // extension.
563    const llvm::Type *MiddleTy = CGF.IntPtrTy;
564    bool InputSigned = SrcType->isSignedIntegerType();
565    llvm::Value* IntResult =
566        Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
567    // Then, cast to pointer.
568    return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
569  }
570
571  if (isa<llvm::PointerType>(Src->getType())) {
572    // Must be an ptr to int cast.
573    assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
574    return Builder.CreatePtrToInt(Src, DstTy, "conv");
575  }
576
577  // A scalar can be splatted to an extended vector of the same element type
578  if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
579    // Cast the scalar to element type
580    QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType();
581    llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy);
582
583    // Insert the element in element zero of an undef vector
584    llvm::Value *UnV = llvm::UndefValue::get(DstTy);
585    llvm::Value *Idx = llvm::ConstantInt::get(CGF.Int32Ty, 0);
586    UnV = Builder.CreateInsertElement(UnV, Elt, Idx, "tmp");
587
588    // Splat the element across to all elements
589    llvm::SmallVector<llvm::Constant*, 16> Args;
590    unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
591    for (unsigned i = 0; i != NumElements; ++i)
592      Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty, 0));
593
594    llvm::Constant *Mask = llvm::ConstantVector::get(Args);
595    llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
596    return Yay;
597  }
598
599  // Allow bitcast from vector to integer/fp of the same size.
600  if (isa<llvm::VectorType>(Src->getType()) ||
601      isa<llvm::VectorType>(DstTy))
602    return Builder.CreateBitCast(Src, DstTy, "conv");
603
604  // Finally, we have the arithmetic types: real int/float.
605  if (isa<llvm::IntegerType>(Src->getType())) {
606    bool InputSigned = SrcType->isSignedIntegerType();
607    if (isa<llvm::IntegerType>(DstTy))
608      return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
609    else if (InputSigned)
610      return Builder.CreateSIToFP(Src, DstTy, "conv");
611    else
612      return Builder.CreateUIToFP(Src, DstTy, "conv");
613  }
614
615  assert(Src->getType()->isFloatingPointTy() && "Unknown real conversion");
616  if (isa<llvm::IntegerType>(DstTy)) {
617    if (DstType->isSignedIntegerType())
618      return Builder.CreateFPToSI(Src, DstTy, "conv");
619    else
620      return Builder.CreateFPToUI(Src, DstTy, "conv");
621  }
622
623  assert(DstTy->isFloatingPointTy() && "Unknown real conversion");
624  if (DstTy->getTypeID() < Src->getType()->getTypeID())
625    return Builder.CreateFPTrunc(Src, DstTy, "conv");
626  else
627    return Builder.CreateFPExt(Src, DstTy, "conv");
628}
629
630/// EmitComplexToScalarConversion - Emit a conversion from the specified complex
631/// type to the specified destination type, where the destination type is an
632/// LLVM scalar type.
633Value *ScalarExprEmitter::
634EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
635                              QualType SrcTy, QualType DstTy) {
636  // Get the source element type.
637  SrcTy = SrcTy->getAs<ComplexType>()->getElementType();
638
639  // Handle conversions to bool first, they are special: comparisons against 0.
640  if (DstTy->isBooleanType()) {
641    //  Complex != 0  -> (Real != 0) | (Imag != 0)
642    Src.first  = EmitScalarConversion(Src.first, SrcTy, DstTy);
643    Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
644    return Builder.CreateOr(Src.first, Src.second, "tobool");
645  }
646
647  // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
648  // the imaginary part of the complex value is discarded and the value of the
649  // real part is converted according to the conversion rules for the
650  // corresponding real type.
651  return EmitScalarConversion(Src.first, SrcTy, DstTy);
652}
653
654Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
655  if (const MemberPointerType *MPT = Ty->getAs<MemberPointerType>())
656    return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
657
658  return llvm::Constant::getNullValue(ConvertType(Ty));
659}
660
661//===----------------------------------------------------------------------===//
662//                            Visitor Methods
663//===----------------------------------------------------------------------===//
664
665Value *ScalarExprEmitter::VisitExpr(Expr *E) {
666  CGF.ErrorUnsupported(E, "scalar expression");
667  if (E->getType()->isVoidType())
668    return 0;
669  return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
670}
671
672Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
673  // Vector Mask Case
674  if (E->getNumSubExprs() == 2 ||
675      (E->getNumSubExprs() == 3 && E->getExpr(2)->getType()->isVectorType())) {
676    Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
677    Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
678    Value *Mask;
679
680    const llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
681    unsigned LHSElts = LTy->getNumElements();
682
683    if (E->getNumSubExprs() == 3) {
684      Mask = CGF.EmitScalarExpr(E->getExpr(2));
685
686      // Shuffle LHS & RHS into one input vector.
687      llvm::SmallVector<llvm::Constant*, 32> concat;
688      for (unsigned i = 0; i != LHSElts; ++i) {
689        concat.push_back(llvm::ConstantInt::get(CGF.Int32Ty, 2*i));
690        concat.push_back(llvm::ConstantInt::get(CGF.Int32Ty, 2*i+1));
691      }
692
693      Value* CV = llvm::ConstantVector::get(concat);
694      LHS = Builder.CreateShuffleVector(LHS, RHS, CV, "concat");
695      LHSElts *= 2;
696    } else {
697      Mask = RHS;
698    }
699
700    const llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
701    llvm::Constant* EltMask;
702
703    // Treat vec3 like vec4.
704    if ((LHSElts == 6) && (E->getNumSubExprs() == 3))
705      EltMask = llvm::ConstantInt::get(MTy->getElementType(),
706                                       (1 << llvm::Log2_32(LHSElts+2))-1);
707    else if ((LHSElts == 3) && (E->getNumSubExprs() == 2))
708      EltMask = llvm::ConstantInt::get(MTy->getElementType(),
709                                       (1 << llvm::Log2_32(LHSElts+1))-1);
710    else
711      EltMask = llvm::ConstantInt::get(MTy->getElementType(),
712                                       (1 << llvm::Log2_32(LHSElts))-1);
713
714    // Mask off the high bits of each shuffle index.
715    llvm::SmallVector<llvm::Constant *, 32> MaskV;
716    for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i)
717      MaskV.push_back(EltMask);
718
719    Value* MaskBits = llvm::ConstantVector::get(MaskV);
720    Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
721
722    // newv = undef
723    // mask = mask & maskbits
724    // for each elt
725    //   n = extract mask i
726    //   x = extract val n
727    //   newv = insert newv, x, i
728    const llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
729                                                        MTy->getNumElements());
730    Value* NewV = llvm::UndefValue::get(RTy);
731    for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
732      Value *Indx = llvm::ConstantInt::get(CGF.Int32Ty, i);
733      Indx = Builder.CreateExtractElement(Mask, Indx, "shuf_idx");
734      Indx = Builder.CreateZExt(Indx, CGF.Int32Ty, "idx_zext");
735
736      // Handle vec3 special since the index will be off by one for the RHS.
737      if ((LHSElts == 6) && (E->getNumSubExprs() == 3)) {
738        Value *cmpIndx, *newIndx;
739        cmpIndx = Builder.CreateICmpUGT(Indx,
740                                        llvm::ConstantInt::get(CGF.Int32Ty, 3),
741                                        "cmp_shuf_idx");
742        newIndx = Builder.CreateSub(Indx, llvm::ConstantInt::get(CGF.Int32Ty,1),
743                                    "shuf_idx_adj");
744        Indx = Builder.CreateSelect(cmpIndx, newIndx, Indx, "sel_shuf_idx");
745      }
746      Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
747      NewV = Builder.CreateInsertElement(NewV, VExt, Indx, "shuf_ins");
748    }
749    return NewV;
750  }
751
752  Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
753  Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
754
755  // Handle vec3 special since the index will be off by one for the RHS.
756  llvm::SmallVector<llvm::Constant*, 32> indices;
757  for (unsigned i = 2; i < E->getNumSubExprs(); i++) {
758    llvm::Constant *C = cast<llvm::Constant>(CGF.EmitScalarExpr(E->getExpr(i)));
759    const llvm::VectorType *VTy = cast<llvm::VectorType>(V1->getType());
760    if (VTy->getNumElements() == 3) {
761      if (llvm::ConstantInt *CI = dyn_cast<llvm::ConstantInt>(C)) {
762        uint64_t cVal = CI->getZExtValue();
763        if (cVal > 3) {
764          C = llvm::ConstantInt::get(C->getType(), cVal-1);
765        }
766      }
767    }
768    indices.push_back(C);
769  }
770
771  Value *SV = llvm::ConstantVector::get(indices);
772  return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
773}
774Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
775  Expr::EvalResult Result;
776  if (E->Evaluate(Result, CGF.getContext()) && Result.Val.isInt()) {
777    if (E->isArrow())
778      CGF.EmitScalarExpr(E->getBase());
779    else
780      EmitLValue(E->getBase());
781    return llvm::ConstantInt::get(VMContext, Result.Val.getInt());
782  }
783
784  // Emit debug info for aggregate now, if it was delayed to reduce
785  // debug info size.
786  CGDebugInfo *DI = CGF.getDebugInfo();
787  if (DI && CGF.CGM.getCodeGenOpts().LimitDebugInfo) {
788    QualType PQTy = E->getBase()->IgnoreParenImpCasts()->getType();
789    if (const PointerType * PTy = dyn_cast<PointerType>(PQTy))
790      if (FieldDecl *M = dyn_cast<FieldDecl>(E->getMemberDecl()))
791        DI->getOrCreateRecordType(PTy->getPointeeType(),
792                                  M->getParent()->getLocation());
793  }
794  return EmitLoadOfLValue(E);
795}
796
797Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
798  TestAndClearIgnoreResultAssign();
799
800  // Emit subscript expressions in rvalue context's.  For most cases, this just
801  // loads the lvalue formed by the subscript expr.  However, we have to be
802  // careful, because the base of a vector subscript is occasionally an rvalue,
803  // so we can't get it as an lvalue.
804  if (!E->getBase()->getType()->isVectorType())
805    return EmitLoadOfLValue(E);
806
807  // Handle the vector case.  The base must be a vector, the index must be an
808  // integer value.
809  Value *Base = Visit(E->getBase());
810  Value *Idx  = Visit(E->getIdx());
811  bool IdxSigned = E->getIdx()->getType()->isSignedIntegerType();
812  Idx = Builder.CreateIntCast(Idx, CGF.Int32Ty, IdxSigned, "vecidxcast");
813  return Builder.CreateExtractElement(Base, Idx, "vecext");
814}
815
816static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
817                                  unsigned Off, const llvm::Type *I32Ty) {
818  int MV = SVI->getMaskValue(Idx);
819  if (MV == -1)
820    return llvm::UndefValue::get(I32Ty);
821  return llvm::ConstantInt::get(I32Ty, Off+MV);
822}
823
824Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
825  bool Ignore = TestAndClearIgnoreResultAssign();
826  (void)Ignore;
827  assert (Ignore == false && "init list ignored");
828  unsigned NumInitElements = E->getNumInits();
829
830  if (E->hadArrayRangeDesignator())
831    CGF.ErrorUnsupported(E, "GNU array range designator extension");
832
833  const llvm::VectorType *VType =
834    dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
835
836  // We have a scalar in braces. Just use the first element.
837  if (!VType)
838    return Visit(E->getInit(0));
839
840  unsigned ResElts = VType->getNumElements();
841
842  // Loop over initializers collecting the Value for each, and remembering
843  // whether the source was swizzle (ExtVectorElementExpr).  This will allow
844  // us to fold the shuffle for the swizzle into the shuffle for the vector
845  // initializer, since LLVM optimizers generally do not want to touch
846  // shuffles.
847  unsigned CurIdx = 0;
848  bool VIsUndefShuffle = false;
849  llvm::Value *V = llvm::UndefValue::get(VType);
850  for (unsigned i = 0; i != NumInitElements; ++i) {
851    Expr *IE = E->getInit(i);
852    Value *Init = Visit(IE);
853    llvm::SmallVector<llvm::Constant*, 16> Args;
854
855    const llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
856
857    // Handle scalar elements.  If the scalar initializer is actually one
858    // element of a different vector of the same width, use shuffle instead of
859    // extract+insert.
860    if (!VVT) {
861      if (isa<ExtVectorElementExpr>(IE)) {
862        llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
863
864        if (EI->getVectorOperandType()->getNumElements() == ResElts) {
865          llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
866          Value *LHS = 0, *RHS = 0;
867          if (CurIdx == 0) {
868            // insert into undef -> shuffle (src, undef)
869            Args.push_back(C);
870            for (unsigned j = 1; j != ResElts; ++j)
871              Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
872
873            LHS = EI->getVectorOperand();
874            RHS = V;
875            VIsUndefShuffle = true;
876          } else if (VIsUndefShuffle) {
877            // insert into undefshuffle && size match -> shuffle (v, src)
878            llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
879            for (unsigned j = 0; j != CurIdx; ++j)
880              Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
881            Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty,
882                                                  ResElts + C->getZExtValue()));
883            for (unsigned j = CurIdx + 1; j != ResElts; ++j)
884              Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
885
886            LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
887            RHS = EI->getVectorOperand();
888            VIsUndefShuffle = false;
889          }
890          if (!Args.empty()) {
891            llvm::Constant *Mask = llvm::ConstantVector::get(Args);
892            V = Builder.CreateShuffleVector(LHS, RHS, Mask);
893            ++CurIdx;
894            continue;
895          }
896        }
897      }
898      Value *Idx = llvm::ConstantInt::get(CGF.Int32Ty, CurIdx);
899      V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
900      VIsUndefShuffle = false;
901      ++CurIdx;
902      continue;
903    }
904
905    unsigned InitElts = VVT->getNumElements();
906
907    // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
908    // input is the same width as the vector being constructed, generate an
909    // optimized shuffle of the swizzle input into the result.
910    unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
911    if (isa<ExtVectorElementExpr>(IE)) {
912      llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
913      Value *SVOp = SVI->getOperand(0);
914      const llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
915
916      if (OpTy->getNumElements() == ResElts) {
917        for (unsigned j = 0; j != CurIdx; ++j) {
918          // If the current vector initializer is a shuffle with undef, merge
919          // this shuffle directly into it.
920          if (VIsUndefShuffle) {
921            Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
922                                      CGF.Int32Ty));
923          } else {
924            Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty, j));
925          }
926        }
927        for (unsigned j = 0, je = InitElts; j != je; ++j)
928          Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
929        for (unsigned j = CurIdx + InitElts; j != ResElts; ++j)
930          Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
931
932        if (VIsUndefShuffle)
933          V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
934
935        Init = SVOp;
936      }
937    }
938
939    // Extend init to result vector length, and then shuffle its contribution
940    // to the vector initializer into V.
941    if (Args.empty()) {
942      for (unsigned j = 0; j != InitElts; ++j)
943        Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty, j));
944      for (unsigned j = InitElts; j != ResElts; ++j)
945        Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
946      llvm::Constant *Mask = llvm::ConstantVector::get(Args);
947      Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
948                                         Mask, "vext");
949
950      Args.clear();
951      for (unsigned j = 0; j != CurIdx; ++j)
952        Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty, j));
953      for (unsigned j = 0; j != InitElts; ++j)
954        Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty, j+Offset));
955      for (unsigned j = CurIdx + InitElts; j != ResElts; ++j)
956        Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
957    }
958
959    // If V is undef, make sure it ends up on the RHS of the shuffle to aid
960    // merging subsequent shuffles into this one.
961    if (CurIdx == 0)
962      std::swap(V, Init);
963    llvm::Constant *Mask = llvm::ConstantVector::get(Args);
964    V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
965    VIsUndefShuffle = isa<llvm::UndefValue>(Init);
966    CurIdx += InitElts;
967  }
968
969  // FIXME: evaluate codegen vs. shuffling against constant null vector.
970  // Emit remaining default initializers.
971  const llvm::Type *EltTy = VType->getElementType();
972
973  // Emit remaining default initializers
974  for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
975    Value *Idx = llvm::ConstantInt::get(CGF.Int32Ty, CurIdx);
976    llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
977    V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
978  }
979  return V;
980}
981
982static bool ShouldNullCheckClassCastValue(const CastExpr *CE) {
983  const Expr *E = CE->getSubExpr();
984
985  if (CE->getCastKind() == CK_UncheckedDerivedToBase)
986    return false;
987
988  if (isa<CXXThisExpr>(E)) {
989    // We always assume that 'this' is never null.
990    return false;
991  }
992
993  if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
994    // And that glvalue casts are never null.
995    if (ICE->getValueKind() != VK_RValue)
996      return false;
997  }
998
999  return true;
1000}
1001
1002// VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
1003// have to handle a more broad range of conversions than explicit casts, as they
1004// handle things like function to ptr-to-function decay etc.
1005Value *ScalarExprEmitter::EmitCastExpr(CastExpr *CE) {
1006  Expr *E = CE->getSubExpr();
1007  QualType DestTy = CE->getType();
1008  CastKind Kind = CE->getCastKind();
1009
1010  if (!DestTy->isVoidType())
1011    TestAndClearIgnoreResultAssign();
1012
1013  // Since almost all cast kinds apply to scalars, this switch doesn't have
1014  // a default case, so the compiler will warn on a missing case.  The cases
1015  // are in the same order as in the CastKind enum.
1016  switch (Kind) {
1017  case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
1018
1019  case CK_LValueBitCast:
1020  case CK_ObjCObjectLValueCast: {
1021    Value *V = EmitLValue(E).getAddress();
1022    V = Builder.CreateBitCast(V,
1023                          ConvertType(CGF.getContext().getPointerType(DestTy)));
1024    return EmitLoadOfLValue(CGF.MakeAddrLValue(V, DestTy), DestTy);
1025  }
1026
1027  case CK_AnyPointerToObjCPointerCast:
1028  case CK_AnyPointerToBlockPointerCast:
1029  case CK_BitCast: {
1030    Value *Src = Visit(const_cast<Expr*>(E));
1031    return Builder.CreateBitCast(Src, ConvertType(DestTy));
1032  }
1033  case CK_NoOp:
1034  case CK_UserDefinedConversion:
1035    return Visit(const_cast<Expr*>(E));
1036
1037  case CK_BaseToDerived: {
1038    const CXXRecordDecl *DerivedClassDecl =
1039      DestTy->getCXXRecordDeclForPointerType();
1040
1041    return CGF.GetAddressOfDerivedClass(Visit(E), DerivedClassDecl,
1042                                        CE->path_begin(), CE->path_end(),
1043                                        ShouldNullCheckClassCastValue(CE));
1044  }
1045  case CK_UncheckedDerivedToBase:
1046  case CK_DerivedToBase: {
1047    const RecordType *DerivedClassTy =
1048      E->getType()->getAs<PointerType>()->getPointeeType()->getAs<RecordType>();
1049    CXXRecordDecl *DerivedClassDecl =
1050      cast<CXXRecordDecl>(DerivedClassTy->getDecl());
1051
1052    return CGF.GetAddressOfBaseClass(Visit(E), DerivedClassDecl,
1053                                     CE->path_begin(), CE->path_end(),
1054                                     ShouldNullCheckClassCastValue(CE));
1055  }
1056  case CK_Dynamic: {
1057    Value *V = Visit(const_cast<Expr*>(E));
1058    const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
1059    return CGF.EmitDynamicCast(V, DCE);
1060  }
1061
1062  case CK_ArrayToPointerDecay: {
1063    assert(E->getType()->isArrayType() &&
1064           "Array to pointer decay must have array source type!");
1065
1066    Value *V = EmitLValue(E).getAddress();  // Bitfields can't be arrays.
1067
1068    // Note that VLA pointers are always decayed, so we don't need to do
1069    // anything here.
1070    if (!E->getType()->isVariableArrayType()) {
1071      assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer");
1072      assert(isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType())
1073                                 ->getElementType()) &&
1074             "Expected pointer to array");
1075      V = Builder.CreateStructGEP(V, 0, "arraydecay");
1076    }
1077
1078    return V;
1079  }
1080  case CK_FunctionToPointerDecay:
1081    return EmitLValue(E).getAddress();
1082
1083  case CK_NullToPointer:
1084    if (MustVisitNullValue(E))
1085      (void) Visit(E);
1086
1087    return llvm::ConstantPointerNull::get(
1088                               cast<llvm::PointerType>(ConvertType(DestTy)));
1089
1090  case CK_NullToMemberPointer: {
1091    if (MustVisitNullValue(E))
1092      (void) Visit(E);
1093
1094    const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
1095    return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
1096  }
1097
1098  case CK_BaseToDerivedMemberPointer:
1099  case CK_DerivedToBaseMemberPointer: {
1100    Value *Src = Visit(E);
1101
1102    // Note that the AST doesn't distinguish between checked and
1103    // unchecked member pointer conversions, so we always have to
1104    // implement checked conversions here.  This is inefficient when
1105    // actual control flow may be required in order to perform the
1106    // check, which it is for data member pointers (but not member
1107    // function pointers on Itanium and ARM).
1108    return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
1109  }
1110
1111  case CK_FloatingRealToComplex:
1112  case CK_FloatingComplexCast:
1113  case CK_IntegralRealToComplex:
1114  case CK_IntegralComplexCast:
1115  case CK_IntegralComplexToFloatingComplex:
1116  case CK_FloatingComplexToIntegralComplex:
1117  case CK_ConstructorConversion:
1118  case CK_ToUnion:
1119    llvm_unreachable("scalar cast to non-scalar value");
1120    break;
1121
1122  case CK_GetObjCProperty: {
1123    assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
1124    assert(E->isGLValue() && E->getObjectKind() == OK_ObjCProperty &&
1125           "CK_GetObjCProperty for non-lvalue or non-ObjCProperty");
1126    RValue RV = CGF.EmitLoadOfLValue(CGF.EmitLValue(E), E->getType());
1127    return RV.getScalarVal();
1128  }
1129
1130  case CK_ResolveUnknownAnyType:
1131    return EmitLoadOfLValue(CE);
1132
1133  case CK_LValueToRValue:
1134    assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
1135    assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
1136    return Visit(const_cast<Expr*>(E));
1137
1138  case CK_IntegralToPointer: {
1139    Value *Src = Visit(const_cast<Expr*>(E));
1140
1141    // First, convert to the correct width so that we control the kind of
1142    // extension.
1143    const llvm::Type *MiddleTy = CGF.IntPtrTy;
1144    bool InputSigned = E->getType()->isSignedIntegerType();
1145    llvm::Value* IntResult =
1146      Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1147
1148    return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy));
1149  }
1150  case CK_PointerToIntegral: {
1151    Value *Src = Visit(const_cast<Expr*>(E));
1152
1153    // Handle conversion to bool correctly.
1154    if (DestTy->isBooleanType())
1155      return EmitScalarConversion(Src, E->getType(), DestTy);
1156
1157    return Builder.CreatePtrToInt(Src, ConvertType(DestTy));
1158  }
1159  case CK_ToVoid: {
1160    CGF.EmitIgnoredExpr(E);
1161    return 0;
1162  }
1163  case CK_VectorSplat: {
1164    const llvm::Type *DstTy = ConvertType(DestTy);
1165    Value *Elt = Visit(const_cast<Expr*>(E));
1166
1167    // Insert the element in element zero of an undef vector
1168    llvm::Value *UnV = llvm::UndefValue::get(DstTy);
1169    llvm::Value *Idx = llvm::ConstantInt::get(CGF.Int32Ty, 0);
1170    UnV = Builder.CreateInsertElement(UnV, Elt, Idx, "tmp");
1171
1172    // Splat the element across to all elements
1173    llvm::SmallVector<llvm::Constant*, 16> Args;
1174    unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
1175    llvm::Constant *Zero = llvm::ConstantInt::get(CGF.Int32Ty, 0);
1176    for (unsigned i = 0; i < NumElements; i++)
1177      Args.push_back(Zero);
1178
1179    llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1180    llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
1181    return Yay;
1182  }
1183
1184  case CK_IntegralCast:
1185  case CK_IntegralToFloating:
1186  case CK_FloatingToIntegral:
1187  case CK_FloatingCast:
1188    return EmitScalarConversion(Visit(E), E->getType(), DestTy);
1189
1190  case CK_IntegralToBoolean:
1191    return EmitIntToBoolConversion(Visit(E));
1192  case CK_PointerToBoolean:
1193    return EmitPointerToBoolConversion(Visit(E));
1194  case CK_FloatingToBoolean:
1195    return EmitFloatToBoolConversion(Visit(E));
1196  case CK_MemberPointerToBoolean: {
1197    llvm::Value *MemPtr = Visit(E);
1198    const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
1199    return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
1200  }
1201
1202  case CK_FloatingComplexToReal:
1203  case CK_IntegralComplexToReal:
1204    return CGF.EmitComplexExpr(E, false, true).first;
1205
1206  case CK_FloatingComplexToBoolean:
1207  case CK_IntegralComplexToBoolean: {
1208    CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
1209
1210    // TODO: kill this function off, inline appropriate case here
1211    return EmitComplexToScalarConversion(V, E->getType(), DestTy);
1212  }
1213
1214  }
1215
1216  llvm_unreachable("unknown scalar cast");
1217  return 0;
1218}
1219
1220Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
1221  CodeGenFunction::StmtExprEvaluation eval(CGF);
1222  return CGF.EmitCompoundStmt(*E->getSubStmt(), !E->getType()->isVoidType())
1223    .getScalarVal();
1224}
1225
1226Value *ScalarExprEmitter::VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) {
1227  LValue LV = CGF.EmitBlockDeclRefLValue(E);
1228  return CGF.EmitLoadOfLValue(LV, E->getType()).getScalarVal();
1229}
1230
1231//===----------------------------------------------------------------------===//
1232//                             Unary Operators
1233//===----------------------------------------------------------------------===//
1234
1235llvm::Value *ScalarExprEmitter::
1236EmitAddConsiderOverflowBehavior(const UnaryOperator *E,
1237                                llvm::Value *InVal,
1238                                llvm::Value *NextVal, bool IsInc) {
1239  switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
1240  case LangOptions::SOB_Undefined:
1241    return Builder.CreateNSWAdd(InVal, NextVal, IsInc ? "inc" : "dec");
1242    break;
1243  case LangOptions::SOB_Defined:
1244    return Builder.CreateAdd(InVal, NextVal, IsInc ? "inc" : "dec");
1245    break;
1246  case LangOptions::SOB_Trapping:
1247    BinOpInfo BinOp;
1248    BinOp.LHS = InVal;
1249    BinOp.RHS = NextVal;
1250    BinOp.Ty = E->getType();
1251    BinOp.Opcode = BO_Add;
1252    BinOp.E = E;
1253    return EmitOverflowCheckedBinOp(BinOp);
1254    break;
1255  }
1256  assert(false && "Unknown SignedOverflowBehaviorTy");
1257  return 0;
1258}
1259
1260llvm::Value *
1261ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1262                                           bool isInc, bool isPre) {
1263
1264  QualType type = E->getSubExpr()->getType();
1265  llvm::Value *value = EmitLoadOfLValue(LV, type);
1266  llvm::Value *input = value;
1267
1268  int amount = (isInc ? 1 : -1);
1269
1270  // Special case of integer increment that we have to check first: bool++.
1271  // Due to promotion rules, we get:
1272  //   bool++ -> bool = bool + 1
1273  //          -> bool = (int)bool + 1
1274  //          -> bool = ((int)bool + 1 != 0)
1275  // An interesting aspect of this is that increment is always true.
1276  // Decrement does not have this property.
1277  if (isInc && type->isBooleanType()) {
1278    value = Builder.getTrue();
1279
1280  // Most common case by far: integer increment.
1281  } else if (type->isIntegerType()) {
1282
1283    llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
1284
1285    // Note that signed integer inc/dec with width less than int can't
1286    // overflow because of promotion rules; we're just eliding a few steps here.
1287    if (type->isSignedIntegerType() &&
1288        value->getType()->getPrimitiveSizeInBits() >=
1289            CGF.CGM.IntTy->getBitWidth())
1290      value = EmitAddConsiderOverflowBehavior(E, value, amt, isInc);
1291    else
1292      value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1293
1294  // Next most common: pointer increment.
1295  } else if (const PointerType *ptr = type->getAs<PointerType>()) {
1296    QualType type = ptr->getPointeeType();
1297
1298    // VLA types don't have constant size.
1299    if (type->isVariableArrayType()) {
1300      llvm::Value *vlaSize =
1301        CGF.GetVLASize(CGF.getContext().getAsVariableArrayType(type));
1302      value = CGF.EmitCastToVoidPtr(value);
1303      if (!isInc) vlaSize = Builder.CreateNSWNeg(vlaSize, "vla.negsize");
1304      if (CGF.getContext().getLangOptions().isSignedOverflowDefined())
1305        value = Builder.CreateGEP(value, vlaSize, "vla.inc");
1306      else
1307        value = Builder.CreateInBoundsGEP(value, vlaSize, "vla.inc");
1308      value = Builder.CreateBitCast(value, input->getType());
1309
1310    // Arithmetic on function pointers (!) is just +-1.
1311    } else if (type->isFunctionType()) {
1312      llvm::Value *amt = llvm::ConstantInt::get(CGF.Int32Ty, amount);
1313
1314      value = CGF.EmitCastToVoidPtr(value);
1315      if (CGF.getContext().getLangOptions().isSignedOverflowDefined())
1316        value = Builder.CreateGEP(value, amt, "incdec.funcptr");
1317      else
1318        value = Builder.CreateInBoundsGEP(value, amt, "incdec.funcptr");
1319      value = Builder.CreateBitCast(value, input->getType());
1320
1321    // For everything else, we can just do a simple increment.
1322    } else {
1323      llvm::Value *amt = llvm::ConstantInt::get(CGF.Int32Ty, amount);
1324      if (CGF.getContext().getLangOptions().isSignedOverflowDefined())
1325        value = Builder.CreateGEP(value, amt, "incdec.ptr");
1326      else
1327        value = Builder.CreateInBoundsGEP(value, amt, "incdec.ptr");
1328    }
1329
1330  // Vector increment/decrement.
1331  } else if (type->isVectorType()) {
1332    if (type->hasIntegerRepresentation()) {
1333      llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
1334
1335      if (type->hasSignedIntegerRepresentation())
1336        value = EmitAddConsiderOverflowBehavior(E, value, amt, isInc);
1337      else
1338        value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1339    } else {
1340      value = Builder.CreateFAdd(
1341                  value,
1342                  llvm::ConstantFP::get(value->getType(), amount),
1343                  isInc ? "inc" : "dec");
1344    }
1345
1346  // Floating point.
1347  } else if (type->isRealFloatingType()) {
1348    // Add the inc/dec to the real part.
1349    llvm::Value *amt;
1350    if (value->getType()->isFloatTy())
1351      amt = llvm::ConstantFP::get(VMContext,
1352                                  llvm::APFloat(static_cast<float>(amount)));
1353    else if (value->getType()->isDoubleTy())
1354      amt = llvm::ConstantFP::get(VMContext,
1355                                  llvm::APFloat(static_cast<double>(amount)));
1356    else {
1357      llvm::APFloat F(static_cast<float>(amount));
1358      bool ignored;
1359      F.convert(CGF.Target.getLongDoubleFormat(), llvm::APFloat::rmTowardZero,
1360                &ignored);
1361      amt = llvm::ConstantFP::get(VMContext, F);
1362    }
1363    value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
1364
1365  // Objective-C pointer types.
1366  } else {
1367    const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
1368    value = CGF.EmitCastToVoidPtr(value);
1369
1370    CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
1371    if (!isInc) size = -size;
1372    llvm::Value *sizeValue =
1373      llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
1374
1375    if (CGF.getContext().getLangOptions().isSignedOverflowDefined())
1376      value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
1377    else
1378      value = Builder.CreateInBoundsGEP(value, sizeValue, "incdec.objptr");
1379    value = Builder.CreateBitCast(value, input->getType());
1380  }
1381
1382  // Store the updated result through the lvalue.
1383  if (LV.isBitField())
1384    CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, type, &value);
1385  else
1386    CGF.EmitStoreThroughLValue(RValue::get(value), LV, type);
1387
1388  // If this is a postinc, return the value read from memory, otherwise use the
1389  // updated value.
1390  return isPre ? value : input;
1391}
1392
1393
1394
1395Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
1396  TestAndClearIgnoreResultAssign();
1397  // Emit unary minus with EmitSub so we handle overflow cases etc.
1398  BinOpInfo BinOp;
1399  BinOp.RHS = Visit(E->getSubExpr());
1400
1401  if (BinOp.RHS->getType()->isFPOrFPVectorTy())
1402    BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType());
1403  else
1404    BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
1405  BinOp.Ty = E->getType();
1406  BinOp.Opcode = BO_Sub;
1407  BinOp.E = E;
1408  return EmitSub(BinOp);
1409}
1410
1411Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
1412  TestAndClearIgnoreResultAssign();
1413  Value *Op = Visit(E->getSubExpr());
1414  return Builder.CreateNot(Op, "neg");
1415}
1416
1417Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
1418  // Compare operand to zero.
1419  Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
1420
1421  // Invert value.
1422  // TODO: Could dynamically modify easy computations here.  For example, if
1423  // the operand is an icmp ne, turn into icmp eq.
1424  BoolVal = Builder.CreateNot(BoolVal, "lnot");
1425
1426  // ZExt result to the expr type.
1427  return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
1428}
1429
1430Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
1431  // Try folding the offsetof to a constant.
1432  Expr::EvalResult EvalResult;
1433  if (E->Evaluate(EvalResult, CGF.getContext()))
1434    return llvm::ConstantInt::get(VMContext, EvalResult.Val.getInt());
1435
1436  // Loop over the components of the offsetof to compute the value.
1437  unsigned n = E->getNumComponents();
1438  const llvm::Type* ResultType = ConvertType(E->getType());
1439  llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
1440  QualType CurrentType = E->getTypeSourceInfo()->getType();
1441  for (unsigned i = 0; i != n; ++i) {
1442    OffsetOfExpr::OffsetOfNode ON = E->getComponent(i);
1443    llvm::Value *Offset = 0;
1444    switch (ON.getKind()) {
1445    case OffsetOfExpr::OffsetOfNode::Array: {
1446      // Compute the index
1447      Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
1448      llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
1449      bool IdxSigned = IdxExpr->getType()->isSignedIntegerType();
1450      Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
1451
1452      // Save the element type
1453      CurrentType =
1454          CGF.getContext().getAsArrayType(CurrentType)->getElementType();
1455
1456      // Compute the element size
1457      llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
1458          CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
1459
1460      // Multiply out to compute the result
1461      Offset = Builder.CreateMul(Idx, ElemSize);
1462      break;
1463    }
1464
1465    case OffsetOfExpr::OffsetOfNode::Field: {
1466      FieldDecl *MemberDecl = ON.getField();
1467      RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1468      const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1469
1470      // Compute the index of the field in its parent.
1471      unsigned i = 0;
1472      // FIXME: It would be nice if we didn't have to loop here!
1473      for (RecordDecl::field_iterator Field = RD->field_begin(),
1474                                      FieldEnd = RD->field_end();
1475           Field != FieldEnd; (void)++Field, ++i) {
1476        if (*Field == MemberDecl)
1477          break;
1478      }
1479      assert(i < RL.getFieldCount() && "offsetof field in wrong type");
1480
1481      // Compute the offset to the field
1482      int64_t OffsetInt = RL.getFieldOffset(i) /
1483                          CGF.getContext().getCharWidth();
1484      Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
1485
1486      // Save the element type.
1487      CurrentType = MemberDecl->getType();
1488      break;
1489    }
1490
1491    case OffsetOfExpr::OffsetOfNode::Identifier:
1492      llvm_unreachable("dependent __builtin_offsetof");
1493
1494    case OffsetOfExpr::OffsetOfNode::Base: {
1495      if (ON.getBase()->isVirtual()) {
1496        CGF.ErrorUnsupported(E, "virtual base in offsetof");
1497        continue;
1498      }
1499
1500      RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1501      const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1502
1503      // Save the element type.
1504      CurrentType = ON.getBase()->getType();
1505
1506      // Compute the offset to the base.
1507      const RecordType *BaseRT = CurrentType->getAs<RecordType>();
1508      CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
1509      int64_t OffsetInt = RL.getBaseClassOffsetInBits(BaseRD) /
1510                          CGF.getContext().getCharWidth();
1511      Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
1512      break;
1513    }
1514    }
1515    Result = Builder.CreateAdd(Result, Offset);
1516  }
1517  return Result;
1518}
1519
1520/// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
1521/// argument of the sizeof expression as an integer.
1522Value *
1523ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
1524                              const UnaryExprOrTypeTraitExpr *E) {
1525  QualType TypeToSize = E->getTypeOfArgument();
1526  if (E->getKind() == UETT_SizeOf) {
1527    if (const VariableArrayType *VAT =
1528          CGF.getContext().getAsVariableArrayType(TypeToSize)) {
1529      if (E->isArgumentType()) {
1530        // sizeof(type) - make sure to emit the VLA size.
1531        CGF.EmitVLASize(TypeToSize);
1532      } else {
1533        // C99 6.5.3.4p2: If the argument is an expression of type
1534        // VLA, it is evaluated.
1535        CGF.EmitIgnoredExpr(E->getArgumentExpr());
1536      }
1537
1538      return CGF.GetVLASize(VAT);
1539    }
1540  }
1541
1542  // If this isn't sizeof(vla), the result must be constant; use the constant
1543  // folding logic so we don't have to duplicate it here.
1544  Expr::EvalResult Result;
1545  E->Evaluate(Result, CGF.getContext());
1546  return llvm::ConstantInt::get(VMContext, Result.Val.getInt());
1547}
1548
1549Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
1550  Expr *Op = E->getSubExpr();
1551  if (Op->getType()->isAnyComplexType()) {
1552    // If it's an l-value, load through the appropriate subobject l-value.
1553    // Note that we have to ask E because Op might be an l-value that
1554    // this won't work for, e.g. an Obj-C property.
1555    if (E->isGLValue())
1556      return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), E->getType())
1557                .getScalarVal();
1558
1559    // Otherwise, calculate and project.
1560    return CGF.EmitComplexExpr(Op, false, true).first;
1561  }
1562
1563  return Visit(Op);
1564}
1565
1566Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
1567  Expr *Op = E->getSubExpr();
1568  if (Op->getType()->isAnyComplexType()) {
1569    // If it's an l-value, load through the appropriate subobject l-value.
1570    // Note that we have to ask E because Op might be an l-value that
1571    // this won't work for, e.g. an Obj-C property.
1572    if (Op->isGLValue())
1573      return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), E->getType())
1574                .getScalarVal();
1575
1576    // Otherwise, calculate and project.
1577    return CGF.EmitComplexExpr(Op, true, false).second;
1578  }
1579
1580  // __imag on a scalar returns zero.  Emit the subexpr to ensure side
1581  // effects are evaluated, but not the actual value.
1582  CGF.EmitScalarExpr(Op, true);
1583  return llvm::Constant::getNullValue(ConvertType(E->getType()));
1584}
1585
1586//===----------------------------------------------------------------------===//
1587//                           Binary Operators
1588//===----------------------------------------------------------------------===//
1589
1590BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
1591  TestAndClearIgnoreResultAssign();
1592  BinOpInfo Result;
1593  Result.LHS = Visit(E->getLHS());
1594  Result.RHS = Visit(E->getRHS());
1595  Result.Ty  = E->getType();
1596  Result.Opcode = E->getOpcode();
1597  Result.E = E;
1598  return Result;
1599}
1600
1601LValue ScalarExprEmitter::EmitCompoundAssignLValue(
1602                                              const CompoundAssignOperator *E,
1603                        Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
1604                                                   Value *&Result) {
1605  QualType LHSTy = E->getLHS()->getType();
1606  BinOpInfo OpInfo;
1607
1608  if (E->getComputationResultType()->isAnyComplexType()) {
1609    // This needs to go through the complex expression emitter, but it's a tad
1610    // complicated to do that... I'm leaving it out for now.  (Note that we do
1611    // actually need the imaginary part of the RHS for multiplication and
1612    // division.)
1613    CGF.ErrorUnsupported(E, "complex compound assignment");
1614    Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1615    return LValue();
1616  }
1617
1618  // Emit the RHS first.  __block variables need to have the rhs evaluated
1619  // first, plus this should improve codegen a little.
1620  OpInfo.RHS = Visit(E->getRHS());
1621  OpInfo.Ty = E->getComputationResultType();
1622  OpInfo.Opcode = E->getOpcode();
1623  OpInfo.E = E;
1624  // Load/convert the LHS.
1625  LValue LHSLV = EmitCheckedLValue(E->getLHS());
1626  OpInfo.LHS = EmitLoadOfLValue(LHSLV, LHSTy);
1627  OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy,
1628                                    E->getComputationLHSType());
1629
1630  // Expand the binary operator.
1631  Result = (this->*Func)(OpInfo);
1632
1633  // Convert the result back to the LHS type.
1634  Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy);
1635
1636  // Store the result value into the LHS lvalue. Bit-fields are handled
1637  // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
1638  // 'An assignment expression has the value of the left operand after the
1639  // assignment...'.
1640  if (LHSLV.isBitField())
1641    CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, LHSTy,
1642                                       &Result);
1643  else
1644    CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV, LHSTy);
1645
1646  return LHSLV;
1647}
1648
1649Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
1650                      Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
1651  bool Ignore = TestAndClearIgnoreResultAssign();
1652  Value *RHS;
1653  LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
1654
1655  // If the result is clearly ignored, return now.
1656  if (Ignore)
1657    return 0;
1658
1659  // The result of an assignment in C is the assigned r-value.
1660  if (!CGF.getContext().getLangOptions().CPlusPlus)
1661    return RHS;
1662
1663  // Objective-C property assignment never reloads the value following a store.
1664  if (LHS.isPropertyRef())
1665    return RHS;
1666
1667  // If the lvalue is non-volatile, return the computed value of the assignment.
1668  if (!LHS.isVolatileQualified())
1669    return RHS;
1670
1671  // Otherwise, reload the value.
1672  return EmitLoadOfLValue(LHS, E->getType());
1673}
1674
1675void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
1676     					    const BinOpInfo &Ops,
1677				     	    llvm::Value *Zero, bool isDiv) {
1678  llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
1679  llvm::BasicBlock *contBB =
1680    CGF.createBasicBlock(isDiv ? "div.cont" : "rem.cont", CGF.CurFn);
1681
1682  const llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
1683
1684  if (Ops.Ty->hasSignedIntegerRepresentation()) {
1685    llvm::Value *IntMin =
1686      llvm::ConstantInt::get(VMContext,
1687                             llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
1688    llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
1689
1690    llvm::Value *Cond1 = Builder.CreateICmpEQ(Ops.RHS, Zero);
1691    llvm::Value *LHSCmp = Builder.CreateICmpEQ(Ops.LHS, IntMin);
1692    llvm::Value *RHSCmp = Builder.CreateICmpEQ(Ops.RHS, NegOne);
1693    llvm::Value *Cond2 = Builder.CreateAnd(LHSCmp, RHSCmp, "and");
1694    Builder.CreateCondBr(Builder.CreateOr(Cond1, Cond2, "or"),
1695                         overflowBB, contBB);
1696  } else {
1697    CGF.Builder.CreateCondBr(Builder.CreateICmpEQ(Ops.RHS, Zero),
1698                             overflowBB, contBB);
1699  }
1700  EmitOverflowBB(overflowBB);
1701  Builder.SetInsertPoint(contBB);
1702}
1703
1704Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
1705  if (isTrapvOverflowBehavior()) {
1706    llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
1707
1708    if (Ops.Ty->isIntegerType())
1709      EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
1710    else if (Ops.Ty->isRealFloatingType()) {
1711      llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow",
1712                                                          CGF.CurFn);
1713      llvm::BasicBlock *DivCont = CGF.createBasicBlock("div.cont", CGF.CurFn);
1714      CGF.Builder.CreateCondBr(Builder.CreateFCmpOEQ(Ops.RHS, Zero),
1715                               overflowBB, DivCont);
1716      EmitOverflowBB(overflowBB);
1717      Builder.SetInsertPoint(DivCont);
1718    }
1719  }
1720  if (Ops.LHS->getType()->isFPOrFPVectorTy())
1721    return Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
1722  else if (Ops.Ty->hasUnsignedIntegerRepresentation())
1723    return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
1724  else
1725    return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
1726}
1727
1728Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
1729  // Rem in C can't be a floating point type: C99 6.5.5p2.
1730  if (isTrapvOverflowBehavior()) {
1731    llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
1732
1733    if (Ops.Ty->isIntegerType())
1734      EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
1735  }
1736
1737  if (Ops.Ty->isUnsignedIntegerType())
1738    return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
1739  else
1740    return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
1741}
1742
1743Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
1744  unsigned IID;
1745  unsigned OpID = 0;
1746
1747  switch (Ops.Opcode) {
1748  case BO_Add:
1749  case BO_AddAssign:
1750    OpID = 1;
1751    IID = llvm::Intrinsic::sadd_with_overflow;
1752    break;
1753  case BO_Sub:
1754  case BO_SubAssign:
1755    OpID = 2;
1756    IID = llvm::Intrinsic::ssub_with_overflow;
1757    break;
1758  case BO_Mul:
1759  case BO_MulAssign:
1760    OpID = 3;
1761    IID = llvm::Intrinsic::smul_with_overflow;
1762    break;
1763  default:
1764    assert(false && "Unsupported operation for overflow detection");
1765    IID = 0;
1766  }
1767  OpID <<= 1;
1768  OpID |= 1;
1769
1770  const llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
1771
1772  llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, &opTy, 1);
1773
1774  Value *resultAndOverflow = Builder.CreateCall2(intrinsic, Ops.LHS, Ops.RHS);
1775  Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
1776  Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
1777
1778  // Branch in case of overflow.
1779  llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
1780  llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
1781  llvm::BasicBlock *continueBB = CGF.createBasicBlock("nooverflow", CGF.CurFn);
1782
1783  Builder.CreateCondBr(overflow, overflowBB, continueBB);
1784
1785  // Handle overflow with llvm.trap.
1786  const std::string *handlerName =
1787    &CGF.getContext().getLangOptions().OverflowHandler;
1788  if (handlerName->empty()) {
1789    EmitOverflowBB(overflowBB);
1790    Builder.SetInsertPoint(continueBB);
1791    return result;
1792  }
1793
1794  // If an overflow handler is set, then we want to call it and then use its
1795  // result, if it returns.
1796  Builder.SetInsertPoint(overflowBB);
1797
1798  // Get the overflow handler.
1799  const llvm::Type *Int8Ty = llvm::Type::getInt8Ty(VMContext);
1800  std::vector<const llvm::Type*> argTypes;
1801  argTypes.push_back(CGF.Int64Ty); argTypes.push_back(CGF.Int64Ty);
1802  argTypes.push_back(Int8Ty); argTypes.push_back(Int8Ty);
1803  llvm::FunctionType *handlerTy =
1804      llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
1805  llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
1806
1807  // Sign extend the args to 64-bit, so that we can use the same handler for
1808  // all types of overflow.
1809  llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
1810  llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
1811
1812  // Call the handler with the two arguments, the operation, and the size of
1813  // the result.
1814  llvm::Value *handlerResult = Builder.CreateCall4(handler, lhs, rhs,
1815      Builder.getInt8(OpID),
1816      Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth()));
1817
1818  // Truncate the result back to the desired size.
1819  handlerResult = Builder.CreateTrunc(handlerResult, opTy);
1820  Builder.CreateBr(continueBB);
1821
1822  Builder.SetInsertPoint(continueBB);
1823  llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
1824  phi->addIncoming(result, initialBB);
1825  phi->addIncoming(handlerResult, overflowBB);
1826
1827  return phi;
1828}
1829
1830Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &Ops) {
1831  if (!Ops.Ty->isAnyPointerType()) {
1832    if (Ops.Ty->hasSignedIntegerRepresentation()) {
1833      switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
1834      case LangOptions::SOB_Undefined:
1835        return Builder.CreateNSWAdd(Ops.LHS, Ops.RHS, "add");
1836      case LangOptions::SOB_Defined:
1837        return Builder.CreateAdd(Ops.LHS, Ops.RHS, "add");
1838      case LangOptions::SOB_Trapping:
1839        return EmitOverflowCheckedBinOp(Ops);
1840      }
1841    }
1842
1843    if (Ops.LHS->getType()->isFPOrFPVectorTy())
1844      return Builder.CreateFAdd(Ops.LHS, Ops.RHS, "add");
1845
1846    return Builder.CreateAdd(Ops.LHS, Ops.RHS, "add");
1847  }
1848
1849  // Must have binary (not unary) expr here.  Unary pointer decrement doesn't
1850  // use this path.
1851  const BinaryOperator *BinOp = cast<BinaryOperator>(Ops.E);
1852
1853  if (Ops.Ty->isPointerType() &&
1854      Ops.Ty->getAs<PointerType>()->isVariableArrayType()) {
1855    // The amount of the addition needs to account for the VLA size
1856    CGF.ErrorUnsupported(BinOp, "VLA pointer addition");
1857  }
1858
1859  Value *Ptr, *Idx;
1860  Expr *IdxExp;
1861  const PointerType *PT = BinOp->getLHS()->getType()->getAs<PointerType>();
1862  const ObjCObjectPointerType *OPT =
1863    BinOp->getLHS()->getType()->getAs<ObjCObjectPointerType>();
1864  if (PT || OPT) {
1865    Ptr = Ops.LHS;
1866    Idx = Ops.RHS;
1867    IdxExp = BinOp->getRHS();
1868  } else {  // int + pointer
1869    PT = BinOp->getRHS()->getType()->getAs<PointerType>();
1870    OPT = BinOp->getRHS()->getType()->getAs<ObjCObjectPointerType>();
1871    assert((PT || OPT) && "Invalid add expr");
1872    Ptr = Ops.RHS;
1873    Idx = Ops.LHS;
1874    IdxExp = BinOp->getLHS();
1875  }
1876
1877  unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
1878  if (Width < CGF.PointerWidthInBits) {
1879    // Zero or sign extend the pointer value based on whether the index is
1880    // signed or not.
1881    const llvm::Type *IdxType = CGF.IntPtrTy;
1882    if (IdxExp->getType()->isSignedIntegerType())
1883      Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
1884    else
1885      Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
1886  }
1887  const QualType ElementType = PT ? PT->getPointeeType() : OPT->getPointeeType();
1888  // Handle interface types, which are not represented with a concrete type.
1889  if (const ObjCObjectType *OIT = ElementType->getAs<ObjCObjectType>()) {
1890    llvm::Value *InterfaceSize =
1891      llvm::ConstantInt::get(Idx->getType(),
1892          CGF.getContext().getTypeSizeInChars(OIT).getQuantity());
1893    Idx = Builder.CreateMul(Idx, InterfaceSize);
1894    const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1895    Value *Casted = Builder.CreateBitCast(Ptr, i8Ty);
1896    Value *Res = Builder.CreateGEP(Casted, Idx, "add.ptr");
1897    return Builder.CreateBitCast(Res, Ptr->getType());
1898  }
1899
1900  // Explicitly handle GNU void* and function pointer arithmetic extensions. The
1901  // GNU void* casts amount to no-ops since our void* type is i8*, but this is
1902  // future proof.
1903  if (ElementType->isVoidType() || ElementType->isFunctionType()) {
1904    const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1905    Value *Casted = Builder.CreateBitCast(Ptr, i8Ty);
1906    Value *Res = Builder.CreateGEP(Casted, Idx, "add.ptr");
1907    return Builder.CreateBitCast(Res, Ptr->getType());
1908  }
1909
1910  if (CGF.getContext().getLangOptions().isSignedOverflowDefined())
1911    return Builder.CreateGEP(Ptr, Idx, "add.ptr");
1912  return Builder.CreateInBoundsGEP(Ptr, Idx, "add.ptr");
1913}
1914
1915Value *ScalarExprEmitter::EmitSub(const BinOpInfo &Ops) {
1916  if (!isa<llvm::PointerType>(Ops.LHS->getType())) {
1917    if (Ops.Ty->hasSignedIntegerRepresentation()) {
1918      switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
1919      case LangOptions::SOB_Undefined:
1920        return Builder.CreateNSWSub(Ops.LHS, Ops.RHS, "sub");
1921      case LangOptions::SOB_Defined:
1922        return Builder.CreateSub(Ops.LHS, Ops.RHS, "sub");
1923      case LangOptions::SOB_Trapping:
1924        return EmitOverflowCheckedBinOp(Ops);
1925      }
1926    }
1927
1928    if (Ops.LHS->getType()->isFPOrFPVectorTy())
1929      return Builder.CreateFSub(Ops.LHS, Ops.RHS, "sub");
1930
1931    return Builder.CreateSub(Ops.LHS, Ops.RHS, "sub");
1932  }
1933
1934  // Must have binary (not unary) expr here.  Unary pointer increment doesn't
1935  // use this path.
1936  const BinaryOperator *BinOp = cast<BinaryOperator>(Ops.E);
1937
1938  if (BinOp->getLHS()->getType()->isPointerType() &&
1939      BinOp->getLHS()->getType()->getAs<PointerType>()->isVariableArrayType()) {
1940    // The amount of the addition needs to account for the VLA size for
1941    // ptr-int
1942    // The amount of the division needs to account for the VLA size for
1943    // ptr-ptr.
1944    CGF.ErrorUnsupported(BinOp, "VLA pointer subtraction");
1945  }
1946
1947  const QualType LHSType = BinOp->getLHS()->getType();
1948  const QualType LHSElementType = LHSType->getPointeeType();
1949  if (!isa<llvm::PointerType>(Ops.RHS->getType())) {
1950    // pointer - int
1951    Value *Idx = Ops.RHS;
1952    unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
1953    if (Width < CGF.PointerWidthInBits) {
1954      // Zero or sign extend the pointer value based on whether the index is
1955      // signed or not.
1956      const llvm::Type *IdxType = CGF.IntPtrTy;
1957      if (BinOp->getRHS()->getType()->isSignedIntegerType())
1958        Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
1959      else
1960        Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
1961    }
1962    Idx = Builder.CreateNeg(Idx, "sub.ptr.neg");
1963
1964    // Handle interface types, which are not represented with a concrete type.
1965    if (const ObjCObjectType *OIT = LHSElementType->getAs<ObjCObjectType>()) {
1966      llvm::Value *InterfaceSize =
1967        llvm::ConstantInt::get(Idx->getType(),
1968                               CGF.getContext().
1969                                 getTypeSizeInChars(OIT).getQuantity());
1970      Idx = Builder.CreateMul(Idx, InterfaceSize);
1971      const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1972      Value *LHSCasted = Builder.CreateBitCast(Ops.LHS, i8Ty);
1973      Value *Res = Builder.CreateGEP(LHSCasted, Idx, "add.ptr");
1974      return Builder.CreateBitCast(Res, Ops.LHS->getType());
1975    }
1976
1977    // Explicitly handle GNU void* and function pointer arithmetic
1978    // extensions. The GNU void* casts amount to no-ops since our void* type is
1979    // i8*, but this is future proof.
1980    if (LHSElementType->isVoidType() || LHSElementType->isFunctionType()) {
1981      const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1982      Value *LHSCasted = Builder.CreateBitCast(Ops.LHS, i8Ty);
1983      Value *Res = Builder.CreateGEP(LHSCasted, Idx, "sub.ptr");
1984      return Builder.CreateBitCast(Res, Ops.LHS->getType());
1985    }
1986
1987    if (CGF.getContext().getLangOptions().isSignedOverflowDefined())
1988      return Builder.CreateGEP(Ops.LHS, Idx, "sub.ptr");
1989    return Builder.CreateInBoundsGEP(Ops.LHS, Idx, "sub.ptr");
1990  }
1991
1992  // pointer - pointer
1993  Value *LHS = Ops.LHS;
1994  Value *RHS = Ops.RHS;
1995
1996  CharUnits ElementSize;
1997
1998  // Handle GCC extension for pointer arithmetic on void* and function pointer
1999  // types.
2000  if (LHSElementType->isVoidType() || LHSElementType->isFunctionType())
2001    ElementSize = CharUnits::One();
2002  else
2003    ElementSize = CGF.getContext().getTypeSizeInChars(LHSElementType);
2004
2005  const llvm::Type *ResultType = ConvertType(Ops.Ty);
2006  LHS = Builder.CreatePtrToInt(LHS, ResultType, "sub.ptr.lhs.cast");
2007  RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
2008  Value *BytesBetween = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
2009
2010  // Optimize out the shift for element size of 1.
2011  if (ElementSize.isOne())
2012    return BytesBetween;
2013
2014  // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
2015  // pointer difference in C is only defined in the case where both operands
2016  // are pointing to elements of an array.
2017  Value *BytesPerElt =
2018      llvm::ConstantInt::get(ResultType, ElementSize.getQuantity());
2019  return Builder.CreateExactSDiv(BytesBetween, BytesPerElt, "sub.ptr.div");
2020}
2021
2022Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
2023  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2024  // RHS to the same size as the LHS.
2025  Value *RHS = Ops.RHS;
2026  if (Ops.LHS->getType() != RHS->getType())
2027    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2028
2029  if (CGF.CatchUndefined
2030      && isa<llvm::IntegerType>(Ops.LHS->getType())) {
2031    unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth();
2032    llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
2033    CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS,
2034                                 llvm::ConstantInt::get(RHS->getType(), Width)),
2035                             Cont, CGF.getTrapBB());
2036    CGF.EmitBlock(Cont);
2037  }
2038
2039  return Builder.CreateShl(Ops.LHS, RHS, "shl");
2040}
2041
2042Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
2043  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2044  // RHS to the same size as the LHS.
2045  Value *RHS = Ops.RHS;
2046  if (Ops.LHS->getType() != RHS->getType())
2047    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2048
2049  if (CGF.CatchUndefined
2050      && isa<llvm::IntegerType>(Ops.LHS->getType())) {
2051    unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth();
2052    llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
2053    CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS,
2054                                 llvm::ConstantInt::get(RHS->getType(), Width)),
2055                             Cont, CGF.getTrapBB());
2056    CGF.EmitBlock(Cont);
2057  }
2058
2059  if (Ops.Ty->hasUnsignedIntegerRepresentation())
2060    return Builder.CreateLShr(Ops.LHS, RHS, "shr");
2061  return Builder.CreateAShr(Ops.LHS, RHS, "shr");
2062}
2063
2064enum IntrinsicType { VCMPEQ, VCMPGT };
2065// return corresponding comparison intrinsic for given vector type
2066static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
2067                                        BuiltinType::Kind ElemKind) {
2068  switch (ElemKind) {
2069  default: assert(0 && "unexpected element type");
2070  case BuiltinType::Char_U:
2071  case BuiltinType::UChar:
2072    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2073                            llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
2074    break;
2075  case BuiltinType::Char_S:
2076  case BuiltinType::SChar:
2077    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2078                            llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
2079    break;
2080  case BuiltinType::UShort:
2081    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2082                            llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
2083    break;
2084  case BuiltinType::Short:
2085    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2086                            llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
2087    break;
2088  case BuiltinType::UInt:
2089  case BuiltinType::ULong:
2090    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2091                            llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
2092    break;
2093  case BuiltinType::Int:
2094  case BuiltinType::Long:
2095    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2096                            llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
2097    break;
2098  case BuiltinType::Float:
2099    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
2100                            llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
2101    break;
2102  }
2103  return llvm::Intrinsic::not_intrinsic;
2104}
2105
2106Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
2107                                      unsigned SICmpOpc, unsigned FCmpOpc) {
2108  TestAndClearIgnoreResultAssign();
2109  Value *Result;
2110  QualType LHSTy = E->getLHS()->getType();
2111  if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
2112    assert(E->getOpcode() == BO_EQ ||
2113           E->getOpcode() == BO_NE);
2114    Value *LHS = CGF.EmitScalarExpr(E->getLHS());
2115    Value *RHS = CGF.EmitScalarExpr(E->getRHS());
2116    Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
2117                   CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
2118  } else if (!LHSTy->isAnyComplexType()) {
2119    Value *LHS = Visit(E->getLHS());
2120    Value *RHS = Visit(E->getRHS());
2121
2122    // If AltiVec, the comparison results in a numeric type, so we use
2123    // intrinsics comparing vectors and giving 0 or 1 as a result
2124    if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
2125      // constants for mapping CR6 register bits to predicate result
2126      enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
2127
2128      llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
2129
2130      // in several cases vector arguments order will be reversed
2131      Value *FirstVecArg = LHS,
2132            *SecondVecArg = RHS;
2133
2134      QualType ElTy = LHSTy->getAs<VectorType>()->getElementType();
2135      const BuiltinType *BTy = ElTy->getAs<BuiltinType>();
2136      BuiltinType::Kind ElementKind = BTy->getKind();
2137
2138      switch(E->getOpcode()) {
2139      default: assert(0 && "is not a comparison operation");
2140      case BO_EQ:
2141        CR6 = CR6_LT;
2142        ID = GetIntrinsic(VCMPEQ, ElementKind);
2143        break;
2144      case BO_NE:
2145        CR6 = CR6_EQ;
2146        ID = GetIntrinsic(VCMPEQ, ElementKind);
2147        break;
2148      case BO_LT:
2149        CR6 = CR6_LT;
2150        ID = GetIntrinsic(VCMPGT, ElementKind);
2151        std::swap(FirstVecArg, SecondVecArg);
2152        break;
2153      case BO_GT:
2154        CR6 = CR6_LT;
2155        ID = GetIntrinsic(VCMPGT, ElementKind);
2156        break;
2157      case BO_LE:
2158        if (ElementKind == BuiltinType::Float) {
2159          CR6 = CR6_LT;
2160          ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2161          std::swap(FirstVecArg, SecondVecArg);
2162        }
2163        else {
2164          CR6 = CR6_EQ;
2165          ID = GetIntrinsic(VCMPGT, ElementKind);
2166        }
2167        break;
2168      case BO_GE:
2169        if (ElementKind == BuiltinType::Float) {
2170          CR6 = CR6_LT;
2171          ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2172        }
2173        else {
2174          CR6 = CR6_EQ;
2175          ID = GetIntrinsic(VCMPGT, ElementKind);
2176          std::swap(FirstVecArg, SecondVecArg);
2177        }
2178        break;
2179      }
2180
2181      Value *CR6Param = llvm::ConstantInt::get(CGF.Int32Ty, CR6);
2182      llvm::Function *F = CGF.CGM.getIntrinsic(ID);
2183      Result = Builder.CreateCall3(F, CR6Param, FirstVecArg, SecondVecArg, "");
2184      return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
2185    }
2186
2187    if (LHS->getType()->isFPOrFPVectorTy()) {
2188      Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
2189                                  LHS, RHS, "cmp");
2190    } else if (LHSTy->hasSignedIntegerRepresentation()) {
2191      Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
2192                                  LHS, RHS, "cmp");
2193    } else {
2194      // Unsigned integers and pointers.
2195      Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2196                                  LHS, RHS, "cmp");
2197    }
2198
2199    // If this is a vector comparison, sign extend the result to the appropriate
2200    // vector integer type and return it (don't convert to bool).
2201    if (LHSTy->isVectorType())
2202      return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2203
2204  } else {
2205    // Complex Comparison: can only be an equality comparison.
2206    CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS());
2207    CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS());
2208
2209    QualType CETy = LHSTy->getAs<ComplexType>()->getElementType();
2210
2211    Value *ResultR, *ResultI;
2212    if (CETy->isRealFloatingType()) {
2213      ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
2214                                   LHS.first, RHS.first, "cmp.r");
2215      ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
2216                                   LHS.second, RHS.second, "cmp.i");
2217    } else {
2218      // Complex comparisons can only be equality comparisons.  As such, signed
2219      // and unsigned opcodes are the same.
2220      ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2221                                   LHS.first, RHS.first, "cmp.r");
2222      ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2223                                   LHS.second, RHS.second, "cmp.i");
2224    }
2225
2226    if (E->getOpcode() == BO_EQ) {
2227      Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
2228    } else {
2229      assert(E->getOpcode() == BO_NE &&
2230             "Complex comparison other than == or != ?");
2231      Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
2232    }
2233  }
2234
2235  return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
2236}
2237
2238Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
2239  bool Ignore = TestAndClearIgnoreResultAssign();
2240
2241  // __block variables need to have the rhs evaluated first, plus this should
2242  // improve codegen just a little.
2243  Value *RHS = Visit(E->getRHS());
2244  LValue LHS = EmitCheckedLValue(E->getLHS());
2245
2246  // Store the value into the LHS.  Bit-fields are handled specially
2247  // because the result is altered by the store, i.e., [C99 6.5.16p1]
2248  // 'An assignment expression has the value of the left operand after
2249  // the assignment...'.
2250  if (LHS.isBitField())
2251    CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, E->getType(),
2252                                       &RHS);
2253  else
2254    CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS, E->getType());
2255
2256  // If the result is clearly ignored, return now.
2257  if (Ignore)
2258    return 0;
2259
2260  // The result of an assignment in C is the assigned r-value.
2261  if (!CGF.getContext().getLangOptions().CPlusPlus)
2262    return RHS;
2263
2264  // Objective-C property assignment never reloads the value following a store.
2265  if (LHS.isPropertyRef())
2266    return RHS;
2267
2268  // If the lvalue is non-volatile, return the computed value of the assignment.
2269  if (!LHS.isVolatileQualified())
2270    return RHS;
2271
2272  // Otherwise, reload the value.
2273  return EmitLoadOfLValue(LHS, E->getType());
2274}
2275
2276Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
2277  const llvm::Type *ResTy = ConvertType(E->getType());
2278
2279  // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
2280  // If we have 1 && X, just emit X without inserting the control flow.
2281  bool LHSCondVal;
2282  if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
2283    if (LHSCondVal) { // If we have 1 && X, just emit X.
2284      Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2285      // ZExt result to int or bool.
2286      return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
2287    }
2288
2289    // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
2290    if (!CGF.ContainsLabel(E->getRHS()))
2291      return llvm::Constant::getNullValue(ResTy);
2292  }
2293
2294  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
2295  llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
2296
2297  CodeGenFunction::ConditionalEvaluation eval(CGF);
2298
2299  // Branch on the LHS first.  If it is false, go to the failure (cont) block.
2300  CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock);
2301
2302  // Any edges into the ContBlock are now from an (indeterminate number of)
2303  // edges from this first condition.  All of these values will be false.  Start
2304  // setting up the PHI node in the Cont Block for this.
2305  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
2306                                            "", ContBlock);
2307  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
2308       PI != PE; ++PI)
2309    PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
2310
2311  eval.begin(CGF);
2312  CGF.EmitBlock(RHSBlock);
2313  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2314  eval.end(CGF);
2315
2316  // Reaquire the RHS block, as there may be subblocks inserted.
2317  RHSBlock = Builder.GetInsertBlock();
2318
2319  // Emit an unconditional branch from this block to ContBlock.  Insert an entry
2320  // into the phi node for the edge with the value of RHSCond.
2321  if (CGF.getDebugInfo())
2322    // There is no need to emit line number for unconditional branch.
2323    Builder.SetCurrentDebugLocation(llvm::DebugLoc());
2324  CGF.EmitBlock(ContBlock);
2325  PN->addIncoming(RHSCond, RHSBlock);
2326
2327  // ZExt result to int.
2328  return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
2329}
2330
2331Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
2332  const llvm::Type *ResTy = ConvertType(E->getType());
2333
2334  // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
2335  // If we have 0 || X, just emit X without inserting the control flow.
2336  bool LHSCondVal;
2337  if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
2338    if (!LHSCondVal) { // If we have 0 || X, just emit X.
2339      Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2340      // ZExt result to int or bool.
2341      return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
2342    }
2343
2344    // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
2345    if (!CGF.ContainsLabel(E->getRHS()))
2346      return llvm::ConstantInt::get(ResTy, 1);
2347  }
2348
2349  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
2350  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
2351
2352  CodeGenFunction::ConditionalEvaluation eval(CGF);
2353
2354  // Branch on the LHS first.  If it is true, go to the success (cont) block.
2355  CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock);
2356
2357  // Any edges into the ContBlock are now from an (indeterminate number of)
2358  // edges from this first condition.  All of these values will be true.  Start
2359  // setting up the PHI node in the Cont Block for this.
2360  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
2361                                            "", ContBlock);
2362  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
2363       PI != PE; ++PI)
2364    PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
2365
2366  eval.begin(CGF);
2367
2368  // Emit the RHS condition as a bool value.
2369  CGF.EmitBlock(RHSBlock);
2370  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2371
2372  eval.end(CGF);
2373
2374  // Reaquire the RHS block, as there may be subblocks inserted.
2375  RHSBlock = Builder.GetInsertBlock();
2376
2377  // Emit an unconditional branch from this block to ContBlock.  Insert an entry
2378  // into the phi node for the edge with the value of RHSCond.
2379  CGF.EmitBlock(ContBlock);
2380  PN->addIncoming(RHSCond, RHSBlock);
2381
2382  // ZExt result to int.
2383  return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
2384}
2385
2386Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
2387  CGF.EmitIgnoredExpr(E->getLHS());
2388  CGF.EnsureInsertPoint();
2389  return Visit(E->getRHS());
2390}
2391
2392//===----------------------------------------------------------------------===//
2393//                             Other Operators
2394//===----------------------------------------------------------------------===//
2395
2396/// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
2397/// expression is cheap enough and side-effect-free enough to evaluate
2398/// unconditionally instead of conditionally.  This is used to convert control
2399/// flow into selects in some cases.
2400static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
2401                                                   CodeGenFunction &CGF) {
2402  if (const ParenExpr *PE = dyn_cast<ParenExpr>(E))
2403    return isCheapEnoughToEvaluateUnconditionally(PE->getSubExpr(), CGF);
2404
2405  // TODO: Allow anything we can constant fold to an integer or fp constant.
2406  if (isa<IntegerLiteral>(E) || isa<CharacterLiteral>(E) ||
2407      isa<FloatingLiteral>(E))
2408    return true;
2409
2410  // Non-volatile automatic variables too, to get "cond ? X : Y" where
2411  // X and Y are local variables.
2412  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
2413    if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
2414      if (VD->hasLocalStorage() && !(CGF.getContext()
2415                                     .getCanonicalType(VD->getType())
2416                                     .isVolatileQualified()))
2417        return true;
2418
2419  return false;
2420}
2421
2422
2423Value *ScalarExprEmitter::
2424VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
2425  TestAndClearIgnoreResultAssign();
2426
2427  // Bind the common expression if necessary.
2428  CodeGenFunction::OpaqueValueMapping binding(CGF, E);
2429
2430  Expr *condExpr = E->getCond();
2431  Expr *lhsExpr = E->getTrueExpr();
2432  Expr *rhsExpr = E->getFalseExpr();
2433
2434  // If the condition constant folds and can be elided, try to avoid emitting
2435  // the condition and the dead arm.
2436  bool CondExprBool;
2437  if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
2438    Expr *live = lhsExpr, *dead = rhsExpr;
2439    if (!CondExprBool) std::swap(live, dead);
2440
2441    // If the dead side doesn't have labels we need, and if the Live side isn't
2442    // the gnu missing ?: extension (which we could handle, but don't bother
2443    // to), just emit the Live part.
2444    if (!CGF.ContainsLabel(dead))
2445      return Visit(live);
2446  }
2447
2448  // OpenCL: If the condition is a vector, we can treat this condition like
2449  // the select function.
2450  if (CGF.getContext().getLangOptions().OpenCL
2451      && condExpr->getType()->isVectorType()) {
2452    llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
2453    llvm::Value *LHS = Visit(lhsExpr);
2454    llvm::Value *RHS = Visit(rhsExpr);
2455
2456    const llvm::Type *condType = ConvertType(condExpr->getType());
2457    const llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
2458
2459    unsigned numElem = vecTy->getNumElements();
2460    const llvm::Type *elemType = vecTy->getElementType();
2461
2462    std::vector<llvm::Constant*> Zvals;
2463    for (unsigned i = 0; i < numElem; ++i)
2464      Zvals.push_back(llvm::ConstantInt::get(elemType,0));
2465
2466    llvm::Value *zeroVec = llvm::ConstantVector::get(Zvals);
2467    llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
2468    llvm::Value *tmp = Builder.CreateSExt(TestMSB,
2469                                          llvm::VectorType::get(elemType,
2470                                                                numElem),
2471                                          "sext");
2472    llvm::Value *tmp2 = Builder.CreateNot(tmp);
2473
2474    // Cast float to int to perform ANDs if necessary.
2475    llvm::Value *RHSTmp = RHS;
2476    llvm::Value *LHSTmp = LHS;
2477    bool wasCast = false;
2478    const llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
2479    if (rhsVTy->getElementType()->isFloatTy()) {
2480      RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
2481      LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
2482      wasCast = true;
2483    }
2484
2485    llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
2486    llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
2487    llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
2488    if (wasCast)
2489      tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
2490
2491    return tmp5;
2492  }
2493
2494  // If this is a really simple expression (like x ? 4 : 5), emit this as a
2495  // select instead of as control flow.  We can only do this if it is cheap and
2496  // safe to evaluate the LHS and RHS unconditionally.
2497  if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
2498      isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
2499    llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
2500    llvm::Value *LHS = Visit(lhsExpr);
2501    llvm::Value *RHS = Visit(rhsExpr);
2502    return Builder.CreateSelect(CondV, LHS, RHS, "cond");
2503  }
2504
2505  llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
2506  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
2507  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
2508
2509  CodeGenFunction::ConditionalEvaluation eval(CGF);
2510  CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock);
2511
2512  CGF.EmitBlock(LHSBlock);
2513  eval.begin(CGF);
2514  Value *LHS = Visit(lhsExpr);
2515  eval.end(CGF);
2516
2517  LHSBlock = Builder.GetInsertBlock();
2518  Builder.CreateBr(ContBlock);
2519
2520  CGF.EmitBlock(RHSBlock);
2521  eval.begin(CGF);
2522  Value *RHS = Visit(rhsExpr);
2523  eval.end(CGF);
2524
2525  RHSBlock = Builder.GetInsertBlock();
2526  CGF.EmitBlock(ContBlock);
2527
2528  // If the LHS or RHS is a throw expression, it will be legitimately null.
2529  if (!LHS)
2530    return RHS;
2531  if (!RHS)
2532    return LHS;
2533
2534  // Create a PHI node for the real part.
2535  llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
2536  PN->addIncoming(LHS, LHSBlock);
2537  PN->addIncoming(RHS, RHSBlock);
2538  return PN;
2539}
2540
2541Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
2542  return Visit(E->getChosenSubExpr(CGF.getContext()));
2543}
2544
2545Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
2546  llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
2547  llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
2548
2549  // If EmitVAArg fails, we fall back to the LLVM instruction.
2550  if (!ArgPtr)
2551    return Builder.CreateVAArg(ArgValue, ConvertType(VE->getType()));
2552
2553  // FIXME Volatility.
2554  return Builder.CreateLoad(ArgPtr);
2555}
2556
2557Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
2558  return CGF.EmitBlockLiteral(block);
2559}
2560
2561//===----------------------------------------------------------------------===//
2562//                         Entry Point into this File
2563//===----------------------------------------------------------------------===//
2564
2565/// EmitScalarExpr - Emit the computation of the specified expression of scalar
2566/// type, ignoring the result.
2567Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
2568  assert(E && !hasAggregateLLVMType(E->getType()) &&
2569         "Invalid scalar expression to emit");
2570
2571  if (isa<CXXDefaultArgExpr>(E))
2572    disableDebugInfo();
2573  Value *V = ScalarExprEmitter(*this, IgnoreResultAssign)
2574    .Visit(const_cast<Expr*>(E));
2575  if (isa<CXXDefaultArgExpr>(E))
2576    enableDebugInfo();
2577  return V;
2578}
2579
2580/// EmitScalarConversion - Emit a conversion from the specified type to the
2581/// specified destination type, both of which are LLVM scalar types.
2582Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
2583                                             QualType DstTy) {
2584  assert(!hasAggregateLLVMType(SrcTy) && !hasAggregateLLVMType(DstTy) &&
2585         "Invalid scalar expression to emit");
2586  return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
2587}
2588
2589/// EmitComplexToScalarConversion - Emit a conversion from the specified complex
2590/// type to the specified destination type, where the destination type is an
2591/// LLVM scalar type.
2592Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
2593                                                      QualType SrcTy,
2594                                                      QualType DstTy) {
2595  assert(SrcTy->isAnyComplexType() && !hasAggregateLLVMType(DstTy) &&
2596         "Invalid complex -> scalar conversion");
2597  return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy,
2598                                                                DstTy);
2599}
2600
2601
2602llvm::Value *CodeGenFunction::
2603EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2604                        bool isInc, bool isPre) {
2605  return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
2606}
2607
2608LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
2609  llvm::Value *V;
2610  // object->isa or (*object).isa
2611  // Generate code as for: *(Class*)object
2612  // build Class* type
2613  const llvm::Type *ClassPtrTy = ConvertType(E->getType());
2614
2615  Expr *BaseExpr = E->getBase();
2616  if (BaseExpr->isRValue()) {
2617    V = CreateTempAlloca(ClassPtrTy, "resval");
2618    llvm::Value *Src = EmitScalarExpr(BaseExpr);
2619    Builder.CreateStore(Src, V);
2620    V = ScalarExprEmitter(*this).EmitLoadOfLValue(
2621      MakeAddrLValue(V, E->getType()), E->getType());
2622  } else {
2623    if (E->isArrow())
2624      V = ScalarExprEmitter(*this).EmitLoadOfLValue(BaseExpr);
2625    else
2626      V = EmitLValue(BaseExpr).getAddress();
2627  }
2628
2629  // build Class* type
2630  ClassPtrTy = ClassPtrTy->getPointerTo();
2631  V = Builder.CreateBitCast(V, ClassPtrTy);
2632  return MakeAddrLValue(V, E->getType());
2633}
2634
2635
2636LValue CodeGenFunction::EmitCompoundAssignmentLValue(
2637                                            const CompoundAssignOperator *E) {
2638  ScalarExprEmitter Scalar(*this);
2639  Value *Result = 0;
2640  switch (E->getOpcode()) {
2641#define COMPOUND_OP(Op)                                                       \
2642    case BO_##Op##Assign:                                                     \
2643      return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
2644                                             Result)
2645  COMPOUND_OP(Mul);
2646  COMPOUND_OP(Div);
2647  COMPOUND_OP(Rem);
2648  COMPOUND_OP(Add);
2649  COMPOUND_OP(Sub);
2650  COMPOUND_OP(Shl);
2651  COMPOUND_OP(Shr);
2652  COMPOUND_OP(And);
2653  COMPOUND_OP(Xor);
2654  COMPOUND_OP(Or);
2655#undef COMPOUND_OP
2656
2657  case BO_PtrMemD:
2658  case BO_PtrMemI:
2659  case BO_Mul:
2660  case BO_Div:
2661  case BO_Rem:
2662  case BO_Add:
2663  case BO_Sub:
2664  case BO_Shl:
2665  case BO_Shr:
2666  case BO_LT:
2667  case BO_GT:
2668  case BO_LE:
2669  case BO_GE:
2670  case BO_EQ:
2671  case BO_NE:
2672  case BO_And:
2673  case BO_Xor:
2674  case BO_Or:
2675  case BO_LAnd:
2676  case BO_LOr:
2677  case BO_Assign:
2678  case BO_Comma:
2679    assert(false && "Not valid compound assignment operators");
2680    break;
2681  }
2682
2683  llvm_unreachable("Unhandled compound assignment operator");
2684}
2685