CGExprScalar.cpp revision 22711185f2368bea6325504b58cac021857eb0d7
1//===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenFunction.h"
15#include "CodeGenModule.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/StmtVisitor.h"
19#include "clang/Basic/TargetInfo.h"
20#include "llvm/Constants.h"
21#include "llvm/Function.h"
22#include "llvm/GlobalVariable.h"
23#include "llvm/Intrinsics.h"
24#include "llvm/Support/Compiler.h"
25#include <cstdarg>
26
27using namespace clang;
28using namespace CodeGen;
29using llvm::Value;
30
31//===----------------------------------------------------------------------===//
32//                         Scalar Expression Emitter
33//===----------------------------------------------------------------------===//
34
35struct BinOpInfo {
36  Value *LHS;
37  Value *RHS;
38  QualType Ty;  // Computation Type.
39  const BinaryOperator *E;
40};
41
42namespace {
43class VISIBILITY_HIDDEN ScalarExprEmitter
44  : public StmtVisitor<ScalarExprEmitter, Value*> {
45  CodeGenFunction &CGF;
46  llvm::IRBuilder<> &Builder;
47  CGObjCRuntime *Runtime;
48
49public:
50
51  ScalarExprEmitter(CodeGenFunction &cgf) : CGF(cgf),
52    Builder(CGF.Builder),
53    Runtime(0) {
54    if (CGF.CGM.hasObjCRuntime())
55      Runtime = &CGF.CGM.getObjCRuntime();
56  }
57
58  //===--------------------------------------------------------------------===//
59  //                               Utilities
60  //===--------------------------------------------------------------------===//
61
62  const llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
63  LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
64
65  Value *EmitLoadOfLValue(LValue LV, QualType T) {
66    return CGF.EmitLoadOfLValue(LV, T).getScalarVal();
67  }
68
69  /// EmitLoadOfLValue - Given an expression with complex type that represents a
70  /// value l-value, this method emits the address of the l-value, then loads
71  /// and returns the result.
72  Value *EmitLoadOfLValue(const Expr *E) {
73    // FIXME: Volatile
74    return EmitLoadOfLValue(EmitLValue(E), E->getType());
75  }
76
77  /// EmitConversionToBool - Convert the specified expression value to a
78  /// boolean (i1) truth value.  This is equivalent to "Val != 0".
79  Value *EmitConversionToBool(Value *Src, QualType DstTy);
80
81  /// EmitScalarConversion - Emit a conversion from the specified type to the
82  /// specified destination type, both of which are LLVM scalar types.
83  Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);
84
85  /// EmitComplexToScalarConversion - Emit a conversion from the specified
86  /// complex type to the specified destination type, where the destination
87  /// type is an LLVM scalar type.
88  Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
89                                       QualType SrcTy, QualType DstTy);
90
91  //===--------------------------------------------------------------------===//
92  //                            Visitor Methods
93  //===--------------------------------------------------------------------===//
94
95  Value *VisitStmt(Stmt *S) {
96    S->dump(CGF.getContext().getSourceManager());
97    assert(0 && "Stmt can't have complex result type!");
98    return 0;
99  }
100  Value *VisitExpr(Expr *S);
101  Value *VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr()); }
102
103  // Leaves.
104  Value *VisitIntegerLiteral(const IntegerLiteral *E) {
105    return llvm::ConstantInt::get(E->getValue());
106  }
107  Value *VisitFloatingLiteral(const FloatingLiteral *E) {
108    return llvm::ConstantFP::get(E->getValue());
109  }
110  Value *VisitCharacterLiteral(const CharacterLiteral *E) {
111    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
112  }
113  Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
114    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
115  }
116  Value *VisitTypesCompatibleExpr(const TypesCompatibleExpr *E) {
117    return llvm::ConstantInt::get(ConvertType(E->getType()),
118                                  CGF.getContext().typesAreCompatible(
119                                    E->getArgType1(), E->getArgType2()));
120  }
121  Value *VisitSizeOfAlignOfTypeExpr(const SizeOfAlignOfTypeExpr *E) {
122    return EmitSizeAlignOf(E->getArgumentType(), E->getType(), E->isSizeOf());
123  }
124  Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
125    Value *V = llvm::ConstantInt::get(llvm::Type::Int32Ty,
126                                      CGF.GetIDForAddrOfLabel(E->getLabel()));
127    return Builder.CreateIntToPtr(V,
128                                  llvm::PointerType::getUnqual(llvm::Type::Int8Ty));
129  }
130
131  // l-values.
132  Value *VisitDeclRefExpr(DeclRefExpr *E) {
133    if (const EnumConstantDecl *EC = dyn_cast<EnumConstantDecl>(E->getDecl()))
134      return llvm::ConstantInt::get(EC->getInitVal());
135    return EmitLoadOfLValue(E);
136  }
137  Value *VisitObjCMessageExpr(ObjCMessageExpr *E);
138  Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E);
139  Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E);
140  Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { return EmitLoadOfLValue(E);}
141  Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
142  Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
143  Value *VisitMemberExpr(Expr *E)           { return EmitLoadOfLValue(E); }
144  Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
145  Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { return EmitLoadOfLValue(E); }
146  Value *VisitStringLiteral(Expr *E)  { return EmitLValue(E).getAddress(); }
147  Value *VisitPredefinedExpr(Expr *E) { return EmitLValue(E).getAddress(); }
148
149  Value *VisitInitListExpr(InitListExpr *E) {
150    unsigned NumInitElements = E->getNumInits();
151
152    const llvm::VectorType *VType =
153      dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
154
155    // We have a scalar in braces. Just use the first element.
156    if (!VType)
157      return Visit(E->getInit(0));
158
159    unsigned NumVectorElements = VType->getNumElements();
160    const llvm::Type *ElementType = VType->getElementType();
161
162    // Emit individual vector element stores.
163    llvm::Value *V = llvm::UndefValue::get(VType);
164
165    // Emit initializers
166    unsigned i;
167    for (i = 0; i < NumInitElements; ++i) {
168      Value *NewV = Visit(E->getInit(i));
169      Value *Idx = llvm::ConstantInt::get(llvm::Type::Int32Ty, i);
170      V = Builder.CreateInsertElement(V, NewV, Idx);
171    }
172
173    // Emit remaining default initializers
174    for (/* Do not initialize i*/; i < NumVectorElements; ++i) {
175      Value *Idx = llvm::ConstantInt::get(llvm::Type::Int32Ty, i);
176      llvm::Value *NewV = llvm::Constant::getNullValue(ElementType);
177      V = Builder.CreateInsertElement(V, NewV, Idx);
178    }
179
180    return V;
181  }
182
183  Value *VisitImplicitCastExpr(const ImplicitCastExpr *E);
184  Value *VisitCastExpr(const CastExpr *E) {
185    return EmitCastExpr(E->getSubExpr(), E->getType());
186  }
187  Value *EmitCastExpr(const Expr *E, QualType T);
188
189  Value *VisitCallExpr(const CallExpr *E) {
190    return CGF.EmitCallExpr(E).getScalarVal();
191  }
192
193  Value *VisitStmtExpr(const StmtExpr *E);
194
195  // Unary Operators.
196  Value *VisitPrePostIncDec(const UnaryOperator *E, bool isInc, bool isPre);
197  Value *VisitUnaryPostDec(const UnaryOperator *E) {
198    return VisitPrePostIncDec(E, false, false);
199  }
200  Value *VisitUnaryPostInc(const UnaryOperator *E) {
201    return VisitPrePostIncDec(E, true, false);
202  }
203  Value *VisitUnaryPreDec(const UnaryOperator *E) {
204    return VisitPrePostIncDec(E, false, true);
205  }
206  Value *VisitUnaryPreInc(const UnaryOperator *E) {
207    return VisitPrePostIncDec(E, true, true);
208  }
209  Value *VisitUnaryAddrOf(const UnaryOperator *E) {
210    return EmitLValue(E->getSubExpr()).getAddress();
211  }
212  Value *VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); }
213  Value *VisitUnaryPlus(const UnaryOperator *E) {
214    return Visit(E->getSubExpr());
215  }
216  Value *VisitUnaryMinus    (const UnaryOperator *E);
217  Value *VisitUnaryNot      (const UnaryOperator *E);
218  Value *VisitUnaryLNot     (const UnaryOperator *E);
219  Value *VisitUnarySizeOf   (const UnaryOperator *E) {
220    return EmitSizeAlignOf(E->getSubExpr()->getType(), E->getType(), true);
221  }
222  Value *VisitUnaryAlignOf  (const UnaryOperator *E) {
223    return EmitSizeAlignOf(E->getSubExpr()->getType(), E->getType(), false);
224  }
225  Value *EmitSizeAlignOf(QualType TypeToSize, QualType RetType,
226                         bool isSizeOf);
227  Value *VisitUnaryReal     (const UnaryOperator *E);
228  Value *VisitUnaryImag     (const UnaryOperator *E);
229  Value *VisitUnaryExtension(const UnaryOperator *E) {
230    return Visit(E->getSubExpr());
231  }
232  Value *VisitUnaryOffsetOf(const UnaryOperator *E);
233  Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
234    return Visit(DAE->getExpr());
235  }
236
237  // Binary Operators.
238  Value *EmitMul(const BinOpInfo &Ops) {
239    return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
240  }
241  Value *EmitDiv(const BinOpInfo &Ops);
242  Value *EmitRem(const BinOpInfo &Ops);
243  Value *EmitAdd(const BinOpInfo &Ops);
244  Value *EmitSub(const BinOpInfo &Ops);
245  Value *EmitShl(const BinOpInfo &Ops);
246  Value *EmitShr(const BinOpInfo &Ops);
247  Value *EmitAnd(const BinOpInfo &Ops) {
248    return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
249  }
250  Value *EmitXor(const BinOpInfo &Ops) {
251    return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
252  }
253  Value *EmitOr (const BinOpInfo &Ops) {
254    return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
255  }
256
257  BinOpInfo EmitBinOps(const BinaryOperator *E);
258  Value *EmitCompoundAssign(const CompoundAssignOperator *E,
259                            Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
260
261  // Binary operators and binary compound assignment operators.
262#define HANDLEBINOP(OP) \
263  Value *VisitBin ## OP(const BinaryOperator *E) {                         \
264    return Emit ## OP(EmitBinOps(E));                                      \
265  }                                                                        \
266  Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
267    return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
268  }
269  HANDLEBINOP(Mul);
270  HANDLEBINOP(Div);
271  HANDLEBINOP(Rem);
272  HANDLEBINOP(Add);
273  HANDLEBINOP(Sub);
274  HANDLEBINOP(Shl);
275  HANDLEBINOP(Shr);
276  HANDLEBINOP(And);
277  HANDLEBINOP(Xor);
278  HANDLEBINOP(Or);
279#undef HANDLEBINOP
280
281  // Comparisons.
282  Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
283                     unsigned SICmpOpc, unsigned FCmpOpc);
284#define VISITCOMP(CODE, UI, SI, FP) \
285    Value *VisitBin##CODE(const BinaryOperator *E) { \
286      return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
287                         llvm::FCmpInst::FP); }
288  VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT);
289  VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT);
290  VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE);
291  VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE);
292  VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ);
293  VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE);
294#undef VISITCOMP
295
296  Value *VisitBinAssign     (const BinaryOperator *E);
297
298  Value *VisitBinLAnd       (const BinaryOperator *E);
299  Value *VisitBinLOr        (const BinaryOperator *E);
300  Value *VisitBinComma      (const BinaryOperator *E);
301
302  // Other Operators.
303  Value *VisitConditionalOperator(const ConditionalOperator *CO);
304  Value *VisitChooseExpr(ChooseExpr *CE);
305  Value *VisitOverloadExpr(OverloadExpr *OE);
306  Value *VisitVAArgExpr(VAArgExpr *VE);
307  Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
308    return CGF.EmitObjCStringLiteral(E);
309  }
310  Value *VisitObjCEncodeExpr(const ObjCEncodeExpr *E);
311};
312}  // end anonymous namespace.
313
314//===----------------------------------------------------------------------===//
315//                                Utilities
316//===----------------------------------------------------------------------===//
317
318/// EmitConversionToBool - Convert the specified expression value to a
319/// boolean (i1) truth value.  This is equivalent to "Val != 0".
320Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
321  assert(SrcType->isCanonical() && "EmitScalarConversion strips typedefs");
322
323  if (SrcType->isRealFloatingType()) {
324    // Compare against 0.0 for fp scalars.
325    llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType());
326    return Builder.CreateFCmpUNE(Src, Zero, "tobool");
327  }
328
329  assert((SrcType->isIntegerType() || SrcType->isPointerType()) &&
330         "Unknown scalar type to convert");
331
332  // Because of the type rules of C, we often end up computing a logical value,
333  // then zero extending it to int, then wanting it as a logical value again.
334  // Optimize this common case.
335  if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(Src)) {
336    if (ZI->getOperand(0)->getType() == llvm::Type::Int1Ty) {
337      Value *Result = ZI->getOperand(0);
338      // If there aren't any more uses, zap the instruction to save space.
339      // Note that there can be more uses, for example if this
340      // is the result of an assignment.
341      if (ZI->use_empty())
342        ZI->eraseFromParent();
343      return Result;
344    }
345  }
346
347  // Compare against an integer or pointer null.
348  llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType());
349  return Builder.CreateICmpNE(Src, Zero, "tobool");
350}
351
352/// EmitScalarConversion - Emit a conversion from the specified type to the
353/// specified destination type, both of which are LLVM scalar types.
354Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
355                                               QualType DstType) {
356  SrcType = CGF.getContext().getCanonicalType(SrcType);
357  DstType = CGF.getContext().getCanonicalType(DstType);
358  if (SrcType == DstType) return Src;
359
360  if (DstType->isVoidType()) return 0;
361
362  // Handle conversions to bool first, they are special: comparisons against 0.
363  if (DstType->isBooleanType())
364    return EmitConversionToBool(Src, SrcType);
365
366  const llvm::Type *DstTy = ConvertType(DstType);
367
368  // Ignore conversions like int -> uint.
369  if (Src->getType() == DstTy)
370    return Src;
371
372  // Handle pointer conversions next: pointers can only be converted to/from
373  // other pointers and integers.
374  if (isa<PointerType>(DstType)) {
375    // The source value may be an integer, or a pointer.
376    if (isa<llvm::PointerType>(Src->getType()))
377      return Builder.CreateBitCast(Src, DstTy, "conv");
378    assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
379    return Builder.CreateIntToPtr(Src, DstTy, "conv");
380  }
381
382  if (isa<PointerType>(SrcType)) {
383    // Must be an ptr to int cast.
384    assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
385    return Builder.CreatePtrToInt(Src, DstTy, "conv");
386  }
387
388  // A scalar can be splatted to an extended vector of the same element type
389  if (DstType->isExtVectorType() && !isa<VectorType>(SrcType) &&
390      cast<llvm::VectorType>(DstTy)->getElementType() == Src->getType())
391    return CGF.EmitVector(&Src, DstType->getAsVectorType()->getNumElements(),
392                          true);
393
394  // Allow bitcast from vector to integer/fp of the same size.
395  if (isa<llvm::VectorType>(Src->getType()) ||
396      isa<llvm::VectorType>(DstTy))
397    return Builder.CreateBitCast(Src, DstTy, "conv");
398
399  // Finally, we have the arithmetic types: real int/float.
400  if (isa<llvm::IntegerType>(Src->getType())) {
401    bool InputSigned = SrcType->isSignedIntegerType();
402    if (isa<llvm::IntegerType>(DstTy))
403      return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
404    else if (InputSigned)
405      return Builder.CreateSIToFP(Src, DstTy, "conv");
406    else
407      return Builder.CreateUIToFP(Src, DstTy, "conv");
408  }
409
410  assert(Src->getType()->isFloatingPoint() && "Unknown real conversion");
411  if (isa<llvm::IntegerType>(DstTy)) {
412    if (DstType->isSignedIntegerType())
413      return Builder.CreateFPToSI(Src, DstTy, "conv");
414    else
415      return Builder.CreateFPToUI(Src, DstTy, "conv");
416  }
417
418  assert(DstTy->isFloatingPoint() && "Unknown real conversion");
419  if (DstTy->getTypeID() < Src->getType()->getTypeID())
420    return Builder.CreateFPTrunc(Src, DstTy, "conv");
421  else
422    return Builder.CreateFPExt(Src, DstTy, "conv");
423}
424
425/// EmitComplexToScalarConversion - Emit a conversion from the specified
426/// complex type to the specified destination type, where the destination
427/// type is an LLVM scalar type.
428Value *ScalarExprEmitter::
429EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
430                              QualType SrcTy, QualType DstTy) {
431  // Get the source element type.
432  SrcTy = SrcTy->getAsComplexType()->getElementType();
433
434  // Handle conversions to bool first, they are special: comparisons against 0.
435  if (DstTy->isBooleanType()) {
436    //  Complex != 0  -> (Real != 0) | (Imag != 0)
437    Src.first  = EmitScalarConversion(Src.first, SrcTy, DstTy);
438    Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
439    return Builder.CreateOr(Src.first, Src.second, "tobool");
440  }
441
442  // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
443  // the imaginary part of the complex value is discarded and the value of the
444  // real part is converted according to the conversion rules for the
445  // corresponding real type.
446  return EmitScalarConversion(Src.first, SrcTy, DstTy);
447}
448
449
450//===----------------------------------------------------------------------===//
451//                            Visitor Methods
452//===----------------------------------------------------------------------===//
453
454Value *ScalarExprEmitter::VisitExpr(Expr *E) {
455  CGF.WarnUnsupported(E, "scalar expression");
456  if (E->getType()->isVoidType())
457    return 0;
458  return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
459}
460
461Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
462  llvm::SmallVector<llvm::Constant*, 32> indices;
463  for (unsigned i = 2; i < E->getNumSubExprs(); i++) {
464    indices.push_back(cast<llvm::Constant>(CGF.EmitScalarExpr(E->getExpr(i))));
465  }
466  Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
467  Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
468  Value* SV = llvm::ConstantVector::get(indices.begin(), indices.size());
469  return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
470}
471
472Value *ScalarExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) {
473  // Only the lookup mechanism and first two arguments of the method
474  // implementation vary between runtimes.  We can get the receiver and
475  // arguments in generic code.
476
477  // Find the receiver
478  llvm::Value *Receiver = CGF.EmitScalarExpr(E->getReceiver());
479
480  // Process the arguments
481  unsigned ArgC = E->getNumArgs();
482  llvm::SmallVector<llvm::Value*, 16> Args;
483  for (unsigned i = 0; i != ArgC; ++i) {
484    Expr *ArgExpr = E->getArg(i);
485    QualType ArgTy = ArgExpr->getType();
486    if (!CGF.hasAggregateLLVMType(ArgTy)) {
487      // Scalar argument is passed by-value.
488      Args.push_back(CGF.EmitScalarExpr(ArgExpr));
489    } else if (ArgTy->isAnyComplexType()) {
490      // Make a temporary alloca to pass the argument.
491      llvm::Value *DestMem = CGF.CreateTempAlloca(ConvertType(ArgTy));
492      CGF.EmitComplexExprIntoAddr(ArgExpr, DestMem, false);
493      Args.push_back(DestMem);
494    } else {
495      llvm::Value *DestMem = CGF.CreateTempAlloca(ConvertType(ArgTy));
496      CGF.EmitAggExpr(ArgExpr, DestMem, false);
497      Args.push_back(DestMem);
498    }
499  }
500
501  return Runtime->GenerateMessageSend(Builder, ConvertType(E->getType()),
502                                      Receiver, E->getSelector(),
503                                      &Args[0], Args.size());
504}
505
506Value *ScalarExprEmitter::VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
507  return Runtime->GetSelector(Builder, E->getSelector());
508}
509
510Value *ScalarExprEmitter::VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
511  // FIXME: This should pass the Decl not the name.
512  return Runtime->GenerateProtocolRef(Builder, E->getProtocol()->getName());
513}
514
515Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
516  // Emit subscript expressions in rvalue context's.  For most cases, this just
517  // loads the lvalue formed by the subscript expr.  However, we have to be
518  // careful, because the base of a vector subscript is occasionally an rvalue,
519  // so we can't get it as an lvalue.
520  if (!E->getBase()->getType()->isVectorType())
521    return EmitLoadOfLValue(E);
522
523  // Handle the vector case.  The base must be a vector, the index must be an
524  // integer value.
525  Value *Base = Visit(E->getBase());
526  Value *Idx  = Visit(E->getIdx());
527
528  // FIXME: Convert Idx to i32 type.
529  return Builder.CreateExtractElement(Base, Idx, "vecext");
530}
531
532/// VisitImplicitCastExpr - Implicit casts are the same as normal casts, but
533/// also handle things like function to pointer-to-function decay, and array to
534/// pointer decay.
535Value *ScalarExprEmitter::VisitImplicitCastExpr(const ImplicitCastExpr *E) {
536  const Expr *Op = E->getSubExpr();
537
538  // If this is due to array->pointer conversion, emit the array expression as
539  // an l-value.
540  if (Op->getType()->isArrayType()) {
541    // FIXME: For now we assume that all source arrays map to LLVM arrays.  This
542    // will not true when we add support for VLAs.
543    Value *V = EmitLValue(Op).getAddress();  // Bitfields can't be arrays.
544
545    assert(isa<llvm::PointerType>(V->getType()) &&
546           isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType())
547                                ->getElementType()) &&
548           "Doesn't support VLAs yet!");
549    V = Builder.CreateStructGEP(V, 0, "arraydecay");
550
551    // The resultant pointer type can be implicitly casted to other pointer
552    // types as well (e.g. void*) and can be implicitly converted to integer.
553    const llvm::Type *DestTy = ConvertType(E->getType());
554    if (V->getType() != DestTy) {
555      if (isa<llvm::PointerType>(DestTy))
556        V = Builder.CreateBitCast(V, DestTy, "ptrconv");
557      else {
558        assert(isa<llvm::IntegerType>(DestTy) && "Unknown array decay");
559        V = Builder.CreatePtrToInt(V, DestTy, "ptrconv");
560      }
561    }
562    return V;
563
564  } else if (E->getType()->isReferenceType()) {
565    return EmitLValue(Op).getAddress();
566  }
567
568  return EmitCastExpr(Op, E->getType());
569}
570
571
572// VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
573// have to handle a more broad range of conversions than explicit casts, as they
574// handle things like function to ptr-to-function decay etc.
575Value *ScalarExprEmitter::EmitCastExpr(const Expr *E, QualType DestTy) {
576  // Handle cases where the source is an non-complex type.
577
578  if (!CGF.hasAggregateLLVMType(E->getType())) {
579    Value *Src = Visit(const_cast<Expr*>(E));
580
581    // Use EmitScalarConversion to perform the conversion.
582    return EmitScalarConversion(Src, E->getType(), DestTy);
583  }
584
585  if (E->getType()->isAnyComplexType()) {
586    // Handle cases where the source is a complex type.
587    return EmitComplexToScalarConversion(CGF.EmitComplexExpr(E), E->getType(),
588                                         DestTy);
589  }
590
591  // Okay, this is a cast from an aggregate.  It must be a cast to void.  Just
592  // evaluate the result and return.
593  CGF.EmitAggExpr(E, 0, false);
594  return 0;
595}
596
597Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
598  return CGF.EmitCompoundStmt(*E->getSubStmt(),
599                              !E->getType()->isVoidType()).getScalarVal();
600}
601
602
603//===----------------------------------------------------------------------===//
604//                             Unary Operators
605//===----------------------------------------------------------------------===//
606
607Value *ScalarExprEmitter::VisitPrePostIncDec(const UnaryOperator *E,
608                                             bool isInc, bool isPre) {
609  LValue LV = EmitLValue(E->getSubExpr());
610  // FIXME: Handle volatile!
611  Value *InVal = CGF.EmitLoadOfLValue(LV, // false
612                                     E->getSubExpr()->getType()).getScalarVal();
613
614  int AmountVal = isInc ? 1 : -1;
615
616  Value *NextVal;
617  if (isa<llvm::PointerType>(InVal->getType())) {
618    // FIXME: This isn't right for VLAs.
619    NextVal = llvm::ConstantInt::get(llvm::Type::Int32Ty, AmountVal);
620    NextVal = Builder.CreateGEP(InVal, NextVal, "ptrincdec");
621  } else {
622    // Add the inc/dec to the real part.
623    if (isa<llvm::IntegerType>(InVal->getType()))
624      NextVal = llvm::ConstantInt::get(InVal->getType(), AmountVal);
625    else if (InVal->getType() == llvm::Type::FloatTy)
626      NextVal =
627        llvm::ConstantFP::get(llvm::APFloat(static_cast<float>(AmountVal)));
628    else if (InVal->getType() == llvm::Type::DoubleTy)
629      NextVal =
630        llvm::ConstantFP::get(llvm::APFloat(static_cast<double>(AmountVal)));
631    else {
632      llvm::APFloat F(static_cast<float>(AmountVal));
633      F.convert(CGF.Target.getLongDoubleFormat(), llvm::APFloat::rmTowardZero);
634      NextVal = llvm::ConstantFP::get(F);
635    }
636    NextVal = Builder.CreateAdd(InVal, NextVal, isInc ? "inc" : "dec");
637  }
638
639  // Store the updated result through the lvalue.
640  CGF.EmitStoreThroughLValue(RValue::get(NextVal), LV,
641                             E->getSubExpr()->getType());
642
643  // If this is a postinc, return the value read from memory, otherwise use the
644  // updated value.
645  return isPre ? NextVal : InVal;
646}
647
648
649Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
650  Value *Op = Visit(E->getSubExpr());
651  return Builder.CreateNeg(Op, "neg");
652}
653
654Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
655  Value *Op = Visit(E->getSubExpr());
656  return Builder.CreateNot(Op, "neg");
657}
658
659Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
660  // Compare operand to zero.
661  Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
662
663  // Invert value.
664  // TODO: Could dynamically modify easy computations here.  For example, if
665  // the operand is an icmp ne, turn into icmp eq.
666  BoolVal = Builder.CreateNot(BoolVal, "lnot");
667
668  // ZExt result to int.
669  return Builder.CreateZExt(BoolVal, CGF.LLVMIntTy, "lnot.ext");
670}
671
672/// EmitSizeAlignOf - Return the size or alignment of the 'TypeToSize' type as
673/// an integer (RetType).
674Value *ScalarExprEmitter::EmitSizeAlignOf(QualType TypeToSize,
675                                          QualType RetType,bool isSizeOf){
676  assert(RetType->isIntegerType() && "Result type must be an integer!");
677  uint32_t ResultWidth =
678    static_cast<uint32_t>(CGF.getContext().getTypeSize(RetType));
679
680  // sizeof(void) and __alignof__(void) = 1 as a gcc extension. Also
681  // for function types.
682  // FIXME: what is alignof a function type in gcc?
683  if (TypeToSize->isVoidType() || TypeToSize->isFunctionType())
684    return llvm::ConstantInt::get(llvm::APInt(ResultWidth, 1));
685
686  /// FIXME: This doesn't handle VLAs yet!
687  std::pair<uint64_t, unsigned> Info = CGF.getContext().getTypeInfo(TypeToSize);
688
689  uint64_t Val = isSizeOf ? Info.first : Info.second;
690  Val /= 8;  // Return size in bytes, not bits.
691
692  return llvm::ConstantInt::get(llvm::APInt(ResultWidth, Val));
693}
694
695Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
696  Expr *Op = E->getSubExpr();
697  if (Op->getType()->isAnyComplexType())
698    return CGF.EmitComplexExpr(Op).first;
699  return Visit(Op);
700}
701Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
702  Expr *Op = E->getSubExpr();
703  if (Op->getType()->isAnyComplexType())
704    return CGF.EmitComplexExpr(Op).second;
705
706  // __imag on a scalar returns zero.  Emit it the subexpr to ensure side
707  // effects are evaluated.
708  CGF.EmitScalarExpr(Op);
709  return llvm::Constant::getNullValue(ConvertType(E->getType()));
710}
711
712Value *ScalarExprEmitter::VisitUnaryOffsetOf(const UnaryOperator *E)
713{
714  int64_t Val = E->evaluateOffsetOf(CGF.getContext());
715
716  assert(E->getType()->isIntegerType() && "Result type must be an integer!");
717
718  uint32_t ResultWidth =
719    static_cast<uint32_t>(CGF.getContext().getTypeSize(E->getType()));
720  return llvm::ConstantInt::get(llvm::APInt(ResultWidth, Val));
721}
722
723//===----------------------------------------------------------------------===//
724//                           Binary Operators
725//===----------------------------------------------------------------------===//
726
727BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
728  BinOpInfo Result;
729  Result.LHS = Visit(E->getLHS());
730  Result.RHS = Visit(E->getRHS());
731  Result.Ty  = E->getType();
732  Result.E = E;
733  return Result;
734}
735
736Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
737                      Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
738  QualType LHSTy = E->getLHS()->getType(), RHSTy = E->getRHS()->getType();
739
740  BinOpInfo OpInfo;
741
742  // Load the LHS and RHS operands.
743  LValue LHSLV = EmitLValue(E->getLHS());
744  OpInfo.LHS = EmitLoadOfLValue(LHSLV, LHSTy);
745
746  // Determine the computation type.  If the RHS is complex, then this is one of
747  // the add/sub/mul/div operators.  All of these operators can be computed in
748  // with just their real component even though the computation domain really is
749  // complex.
750  QualType ComputeType = E->getComputationType();
751
752  // If the computation type is complex, then the RHS is complex.  Emit the RHS.
753  if (const ComplexType *CT = ComputeType->getAsComplexType()) {
754    ComputeType = CT->getElementType();
755
756    // Emit the RHS, only keeping the real component.
757    OpInfo.RHS = CGF.EmitComplexExpr(E->getRHS()).first;
758    RHSTy = RHSTy->getAsComplexType()->getElementType();
759  } else {
760    // Otherwise the RHS is a simple scalar value.
761    OpInfo.RHS = Visit(E->getRHS());
762  }
763
764  QualType LComputeTy, RComputeTy, ResultTy;
765
766  // Compound assignment does not contain enough information about all
767  // the types involved for pointer arithmetic cases. Figure it out
768  // here for now.
769  if (E->getLHS()->getType()->isPointerType()) {
770    // Pointer arithmetic cases: ptr +=,-= int and ptr -= ptr,
771    assert((E->getOpcode() == BinaryOperator::AddAssign ||
772            E->getOpcode() == BinaryOperator::SubAssign) &&
773           "Invalid compound assignment operator on pointer type.");
774    LComputeTy = E->getLHS()->getType();
775
776    if (E->getRHS()->getType()->isPointerType()) {
777      // Degenerate case of (ptr -= ptr) allowed by GCC implicit cast
778      // extension, the conversion from the pointer difference back to
779      // the LHS type is handled at the end.
780      assert(E->getOpcode() == BinaryOperator::SubAssign &&
781             "Invalid compound assignment operator on pointer type.");
782      RComputeTy = E->getLHS()->getType();
783      ResultTy = CGF.getContext().getPointerDiffType();
784    } else {
785      RComputeTy = E->getRHS()->getType();
786      ResultTy = LComputeTy;
787    }
788  } else if (E->getRHS()->getType()->isPointerType()) {
789    // Degenerate case of (int += ptr) allowed by GCC implicit cast
790    // extension.
791    assert(E->getOpcode() == BinaryOperator::AddAssign &&
792           "Invalid compound assignment operator on pointer type.");
793    LComputeTy = E->getLHS()->getType();
794    RComputeTy = E->getRHS()->getType();
795    ResultTy = RComputeTy;
796  } else {
797    LComputeTy = RComputeTy = ResultTy = ComputeType;
798  }
799
800  // Convert the LHS/RHS values to the computation type.
801  OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy, LComputeTy);
802  OpInfo.RHS = EmitScalarConversion(OpInfo.RHS, RHSTy, RComputeTy);
803  OpInfo.Ty = ResultTy;
804  OpInfo.E = E;
805
806  // Expand the binary operator.
807  Value *Result = (this->*Func)(OpInfo);
808
809  // Convert the result back to the LHS type.
810  Result = EmitScalarConversion(Result, ResultTy, LHSTy);
811
812  // Store the result value into the LHS lvalue.
813  CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV, LHSTy);
814
815  // For bitfields, we need the value in the bitfield
816  // FIXME: This adds an extra bitfield load
817  if (LHSLV.isBitfield())
818    Result = EmitLoadOfLValue(LHSLV, LHSTy);
819
820  return Result;
821}
822
823
824Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
825  if (Ops.LHS->getType()->isFPOrFPVector())
826    return Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
827  else if (Ops.Ty->isUnsignedIntegerType())
828    return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
829  else
830    return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
831}
832
833Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
834  // Rem in C can't be a floating point type: C99 6.5.5p2.
835  if (Ops.Ty->isUnsignedIntegerType())
836    return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
837  else
838    return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
839}
840
841
842Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &Ops) {
843  if (!Ops.Ty->isPointerType())
844    return Builder.CreateAdd(Ops.LHS, Ops.RHS, "add");
845
846  // FIXME: What about a pointer to a VLA?
847  Value *Ptr, *Idx;
848  Expr *IdxExp;
849  if (isa<llvm::PointerType>(Ops.LHS->getType())) {  // pointer + int
850    Ptr = Ops.LHS;
851    Idx = Ops.RHS;
852    IdxExp = Ops.E->getRHS();
853  } else {                                           // int + pointer
854    Ptr = Ops.RHS;
855    Idx = Ops.LHS;
856    IdxExp = Ops.E->getLHS();
857  }
858
859  unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
860  if (Width < CGF.LLVMPointerWidth) {
861    // Zero or sign extend the pointer value based on whether the index is
862    // signed or not.
863    const llvm::Type *IdxType = llvm::IntegerType::get(CGF.LLVMPointerWidth);
864    if (IdxExp->getType()->isSignedIntegerType())
865      Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
866    else
867      Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
868  }
869
870  return Builder.CreateGEP(Ptr, Idx, "add.ptr");
871}
872
873Value *ScalarExprEmitter::EmitSub(const BinOpInfo &Ops) {
874  if (!isa<llvm::PointerType>(Ops.LHS->getType()))
875    return Builder.CreateSub(Ops.LHS, Ops.RHS, "sub");
876
877  if (!isa<llvm::PointerType>(Ops.RHS->getType())) {
878    // pointer - int
879    Value *Idx = Ops.RHS;
880    unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
881    if (Width < CGF.LLVMPointerWidth) {
882      // Zero or sign extend the pointer value based on whether the index is
883      // signed or not.
884      const llvm::Type *IdxType = llvm::IntegerType::get(CGF.LLVMPointerWidth);
885      if (Ops.E->getRHS()->getType()->isSignedIntegerType())
886        Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
887      else
888        Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
889    }
890    Idx = Builder.CreateNeg(Idx, "sub.ptr.neg");
891
892    // FIXME: The pointer could point to a VLA.
893    // The GNU void* - int case is automatically handled here because
894    // our LLVM type for void* is i8*.
895    return Builder.CreateGEP(Ops.LHS, Idx, "sub.ptr");
896  } else {
897    // pointer - pointer
898    Value *LHS = Ops.LHS;
899    Value *RHS = Ops.RHS;
900
901    const QualType LHSType = Ops.E->getLHS()->getType();
902    const QualType LHSElementType = LHSType->getAsPointerType()->getPointeeType();
903    uint64_t ElementSize;
904
905    // Handle GCC extension for pointer arithmetic on void* types.
906    if (LHSElementType->isVoidType()) {
907      ElementSize = 1;
908    } else {
909      ElementSize = CGF.getContext().getTypeSize(LHSElementType) / 8;
910    }
911
912    const llvm::Type *ResultType = ConvertType(Ops.Ty);
913    LHS = Builder.CreatePtrToInt(LHS, ResultType, "sub.ptr.lhs.cast");
914    RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
915    Value *BytesBetween = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
916
917    // HACK: LLVM doesn't have an divide instruction that 'knows' there is no
918    // remainder.  As such, we handle common power-of-two cases here to generate
919    // better code. See PR2247.
920    if (llvm::isPowerOf2_64(ElementSize)) {
921      Value *ShAmt =
922        llvm::ConstantInt::get(ResultType, llvm::Log2_64(ElementSize));
923      return Builder.CreateAShr(BytesBetween, ShAmt, "sub.ptr.shr");
924    }
925
926    // Otherwise, do a full sdiv.
927    Value *BytesPerElt = llvm::ConstantInt::get(ResultType, ElementSize);
928    return Builder.CreateSDiv(BytesBetween, BytesPerElt, "sub.ptr.div");
929  }
930}
931
932Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
933  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
934  // RHS to the same size as the LHS.
935  Value *RHS = Ops.RHS;
936  if (Ops.LHS->getType() != RHS->getType())
937    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
938
939  return Builder.CreateShl(Ops.LHS, RHS, "shl");
940}
941
942Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
943  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
944  // RHS to the same size as the LHS.
945  Value *RHS = Ops.RHS;
946  if (Ops.LHS->getType() != RHS->getType())
947    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
948
949  if (Ops.Ty->isUnsignedIntegerType())
950    return Builder.CreateLShr(Ops.LHS, RHS, "shr");
951  return Builder.CreateAShr(Ops.LHS, RHS, "shr");
952}
953
954Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
955                                      unsigned SICmpOpc, unsigned FCmpOpc) {
956  Value *Result;
957  QualType LHSTy = E->getLHS()->getType();
958  if (!LHSTy->isAnyComplexType() && !LHSTy->isVectorType()) {
959    Value *LHS = Visit(E->getLHS());
960    Value *RHS = Visit(E->getRHS());
961
962    if (LHS->getType()->isFloatingPoint()) {
963      Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
964                                  LHS, RHS, "cmp");
965    } else if (LHSTy->isSignedIntegerType()) {
966      Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
967                                  LHS, RHS, "cmp");
968    } else {
969      // Unsigned integers and pointers.
970      Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
971                                  LHS, RHS, "cmp");
972    }
973  } else if (LHSTy->isVectorType()) {
974    Value *LHS = Visit(E->getLHS());
975    Value *RHS = Visit(E->getRHS());
976
977    if (LHS->getType()->isFPOrFPVector()) {
978      Result = Builder.CreateVFCmp((llvm::CmpInst::Predicate)FCmpOpc,
979                                  LHS, RHS, "cmp");
980    } else if (LHSTy->isUnsignedIntegerType()) {
981      Result = Builder.CreateVICmp((llvm::CmpInst::Predicate)UICmpOpc,
982                                  LHS, RHS, "cmp");
983    } else {
984      // Signed integers and pointers.
985      Result = Builder.CreateVICmp((llvm::CmpInst::Predicate)SICmpOpc,
986                                  LHS, RHS, "cmp");
987    }
988    return Result;
989  } else {
990    // Complex Comparison: can only be an equality comparison.
991    CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS());
992    CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS());
993
994    QualType CETy = LHSTy->getAsComplexType()->getElementType();
995
996    Value *ResultR, *ResultI;
997    if (CETy->isRealFloatingType()) {
998      ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
999                                   LHS.first, RHS.first, "cmp.r");
1000      ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
1001                                   LHS.second, RHS.second, "cmp.i");
1002    } else {
1003      // Complex comparisons can only be equality comparisons.  As such, signed
1004      // and unsigned opcodes are the same.
1005      ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1006                                   LHS.first, RHS.first, "cmp.r");
1007      ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1008                                   LHS.second, RHS.second, "cmp.i");
1009    }
1010
1011    if (E->getOpcode() == BinaryOperator::EQ) {
1012      Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
1013    } else {
1014      assert(E->getOpcode() == BinaryOperator::NE &&
1015             "Complex comparison other than == or != ?");
1016      Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
1017    }
1018  }
1019
1020  // ZExt result to int.
1021  return Builder.CreateZExt(Result, CGF.LLVMIntTy, "cmp.ext");
1022}
1023
1024Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
1025  LValue LHS = EmitLValue(E->getLHS());
1026  Value *RHS = Visit(E->getRHS());
1027
1028  // Store the value into the LHS.
1029  // FIXME: Volatility!
1030  CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS, E->getType());
1031
1032  // For bitfields, we need the value in the bitfield
1033  // FIXME: This adds an extra bitfield load
1034  if (LHS.isBitfield())
1035    return EmitLoadOfLValue(LHS, E->getLHS()->getType());
1036  // Return the RHS.
1037  return RHS;
1038}
1039
1040Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
1041  Value *LHSCond = CGF.EvaluateExprAsBool(E->getLHS());
1042
1043  llvm::BasicBlock *ContBlock = llvm::BasicBlock::Create("land_cont");
1044  llvm::BasicBlock *RHSBlock = llvm::BasicBlock::Create("land_rhs");
1045
1046  llvm::BasicBlock *OrigBlock = Builder.GetInsertBlock();
1047  Builder.CreateCondBr(LHSCond, RHSBlock, ContBlock);
1048
1049  CGF.EmitBlock(RHSBlock);
1050  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1051
1052  // Reaquire the RHS block, as there may be subblocks inserted.
1053  RHSBlock = Builder.GetInsertBlock();
1054  CGF.EmitBlock(ContBlock);
1055
1056  // Create a PHI node.  If we just evaluted the LHS condition, the result is
1057  // false.  If we evaluated both, the result is the RHS condition.
1058  llvm::PHINode *PN = Builder.CreatePHI(llvm::Type::Int1Ty, "land");
1059  PN->reserveOperandSpace(2);
1060  PN->addIncoming(llvm::ConstantInt::getFalse(), OrigBlock);
1061  PN->addIncoming(RHSCond, RHSBlock);
1062
1063  // ZExt result to int.
1064  return Builder.CreateZExt(PN, CGF.LLVMIntTy, "land.ext");
1065}
1066
1067Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
1068  Value *LHSCond = CGF.EvaluateExprAsBool(E->getLHS());
1069
1070  llvm::BasicBlock *ContBlock = llvm::BasicBlock::Create("lor_cont");
1071  llvm::BasicBlock *RHSBlock = llvm::BasicBlock::Create("lor_rhs");
1072
1073  llvm::BasicBlock *OrigBlock = Builder.GetInsertBlock();
1074  Builder.CreateCondBr(LHSCond, ContBlock, RHSBlock);
1075
1076  CGF.EmitBlock(RHSBlock);
1077  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1078
1079  // Reaquire the RHS block, as there may be subblocks inserted.
1080  RHSBlock = Builder.GetInsertBlock();
1081  CGF.EmitBlock(ContBlock);
1082
1083  // Create a PHI node.  If we just evaluted the LHS condition, the result is
1084  // true.  If we evaluated both, the result is the RHS condition.
1085  llvm::PHINode *PN = Builder.CreatePHI(llvm::Type::Int1Ty, "lor");
1086  PN->reserveOperandSpace(2);
1087  PN->addIncoming(llvm::ConstantInt::getTrue(), OrigBlock);
1088  PN->addIncoming(RHSCond, RHSBlock);
1089
1090  // ZExt result to int.
1091  return Builder.CreateZExt(PN, CGF.LLVMIntTy, "lor.ext");
1092}
1093
1094Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
1095  CGF.EmitStmt(E->getLHS());
1096  return Visit(E->getRHS());
1097}
1098
1099//===----------------------------------------------------------------------===//
1100//                             Other Operators
1101//===----------------------------------------------------------------------===//
1102
1103Value *ScalarExprEmitter::
1104VisitConditionalOperator(const ConditionalOperator *E) {
1105  llvm::BasicBlock *LHSBlock = llvm::BasicBlock::Create("cond.?");
1106  llvm::BasicBlock *RHSBlock = llvm::BasicBlock::Create("cond.:");
1107  llvm::BasicBlock *ContBlock = llvm::BasicBlock::Create("cond.cont");
1108
1109  // Evaluate the conditional, then convert it to bool.  We do this explicitly
1110  // because we need the unconverted value if this is a GNU ?: expression with
1111  // missing middle value.
1112  Value *CondVal = CGF.EmitScalarExpr(E->getCond());
1113  Value *CondBoolVal =CGF.EmitScalarConversion(CondVal, E->getCond()->getType(),
1114                                               CGF.getContext().BoolTy);
1115  Builder.CreateCondBr(CondBoolVal, LHSBlock, RHSBlock);
1116
1117  CGF.EmitBlock(LHSBlock);
1118
1119  // Handle the GNU extension for missing LHS.
1120  Value *LHS;
1121  if (E->getLHS())
1122    LHS = Visit(E->getLHS());
1123  else    // Perform promotions, to handle cases like "short ?: int"
1124    LHS = EmitScalarConversion(CondVal, E->getCond()->getType(), E->getType());
1125
1126  Builder.CreateBr(ContBlock);
1127  LHSBlock = Builder.GetInsertBlock();
1128
1129  CGF.EmitBlock(RHSBlock);
1130
1131  Value *RHS = Visit(E->getRHS());
1132  Builder.CreateBr(ContBlock);
1133  RHSBlock = Builder.GetInsertBlock();
1134
1135  CGF.EmitBlock(ContBlock);
1136
1137  if (!LHS || !RHS) {
1138    assert(E->getType()->isVoidType() && "Non-void value should have a value");
1139    return 0;
1140  }
1141
1142  // Create a PHI node for the real part.
1143  llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), "cond");
1144  PN->reserveOperandSpace(2);
1145  PN->addIncoming(LHS, LHSBlock);
1146  PN->addIncoming(RHS, RHSBlock);
1147  return PN;
1148}
1149
1150Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
1151  // Emit the LHS or RHS as appropriate.
1152  return
1153    Visit(E->isConditionTrue(CGF.getContext()) ? E->getLHS() : E->getRHS());
1154}
1155
1156Value *ScalarExprEmitter::VisitOverloadExpr(OverloadExpr *E) {
1157  return CGF.EmitCallExpr(E->getFn(), E->arg_begin(),
1158                          E->arg_end(CGF.getContext())).getScalarVal();
1159}
1160
1161Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
1162  llvm::Value *ArgValue = EmitLValue(VE->getSubExpr()).getAddress();
1163
1164  llvm::Value *V = Builder.CreateVAArg(ArgValue, ConvertType(VE->getType()));
1165  return V;
1166}
1167
1168Value *ScalarExprEmitter::VisitObjCEncodeExpr(const ObjCEncodeExpr *E) {
1169  std::string str;
1170  llvm::SmallVector<const RecordType *, 8> EncodingRecordTypes;
1171  CGF.getContext().getObjCEncodingForType(E->getEncodedType(), str,
1172                                          EncodingRecordTypes);
1173
1174  llvm::Constant *C = llvm::ConstantArray::get(str);
1175  C = new llvm::GlobalVariable(C->getType(), true,
1176                               llvm::GlobalValue::InternalLinkage,
1177                               C, ".str", &CGF.CGM.getModule());
1178  llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty);
1179  llvm::Constant *Zeros[] = { Zero, Zero };
1180  C = llvm::ConstantExpr::getGetElementPtr(C, Zeros, 2);
1181
1182  return C;
1183}
1184
1185//===----------------------------------------------------------------------===//
1186//                         Entry Point into this File
1187//===----------------------------------------------------------------------===//
1188
1189/// EmitComplexExpr - Emit the computation of the specified expression of
1190/// complex type, ignoring the result.
1191Value *CodeGenFunction::EmitScalarExpr(const Expr *E) {
1192  assert(E && !hasAggregateLLVMType(E->getType()) &&
1193         "Invalid scalar expression to emit");
1194
1195  return ScalarExprEmitter(*this).Visit(const_cast<Expr*>(E));
1196}
1197
1198/// EmitScalarConversion - Emit a conversion from the specified type to the
1199/// specified destination type, both of which are LLVM scalar types.
1200Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
1201                                             QualType DstTy) {
1202  assert(!hasAggregateLLVMType(SrcTy) && !hasAggregateLLVMType(DstTy) &&
1203         "Invalid scalar expression to emit");
1204  return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
1205}
1206
1207/// EmitComplexToScalarConversion - Emit a conversion from the specified
1208/// complex type to the specified destination type, where the destination
1209/// type is an LLVM scalar type.
1210Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
1211                                                      QualType SrcTy,
1212                                                      QualType DstTy) {
1213  assert(SrcTy->isAnyComplexType() && !hasAggregateLLVMType(DstTy) &&
1214         "Invalid complex -> scalar conversion");
1215  return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy,
1216                                                                DstTy);
1217}
1218
1219Value *CodeGenFunction::EmitShuffleVector(Value* V1, Value *V2, ...) {
1220  assert(V1->getType() == V2->getType() &&
1221         "Vector operands must be of the same type");
1222  unsigned NumElements =
1223    cast<llvm::VectorType>(V1->getType())->getNumElements();
1224
1225  va_list va;
1226  va_start(va, V2);
1227
1228  llvm::SmallVector<llvm::Constant*, 16> Args;
1229  for (unsigned i = 0; i < NumElements; i++) {
1230    int n = va_arg(va, int);
1231    assert(n >= 0 && n < (int)NumElements * 2 &&
1232           "Vector shuffle index out of bounds!");
1233    Args.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, n));
1234  }
1235
1236  const char *Name = va_arg(va, const char *);
1237  va_end(va);
1238
1239  llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements);
1240
1241  return Builder.CreateShuffleVector(V1, V2, Mask, Name);
1242}
1243
1244llvm::Value *CodeGenFunction::EmitVector(llvm::Value * const *Vals,
1245                                         unsigned NumVals, bool isSplat) {
1246  llvm::Value *Vec
1247    = llvm::UndefValue::get(llvm::VectorType::get(Vals[0]->getType(), NumVals));
1248
1249  for (unsigned i = 0, e = NumVals; i != e; ++i) {
1250    llvm::Value *Val = isSplat ? Vals[0] : Vals[i];
1251    llvm::Value *Idx = llvm::ConstantInt::get(llvm::Type::Int32Ty, i);
1252    Vec = Builder.CreateInsertElement(Vec, Val, Idx, "tmp");
1253  }
1254
1255  return Vec;
1256}
1257