CGExprScalar.cpp revision 348f16fc7c71f0d9b651cb79fd1012843073493f
1//===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Frontend/CodeGenOptions.h"
15#include "CodeGenFunction.h"
16#include "CGCXXABI.h"
17#include "CGObjCRuntime.h"
18#include "CodeGenModule.h"
19#include "CGDebugInfo.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/DeclObjC.h"
22#include "clang/AST/RecordLayout.h"
23#include "clang/AST/StmtVisitor.h"
24#include "clang/Basic/TargetInfo.h"
25#include "llvm/Constants.h"
26#include "llvm/Function.h"
27#include "llvm/GlobalVariable.h"
28#include "llvm/Intrinsics.h"
29#include "llvm/Module.h"
30#include "llvm/Support/CFG.h"
31#include "llvm/Target/TargetData.h"
32#include <cstdarg>
33
34using namespace clang;
35using namespace CodeGen;
36using llvm::Value;
37
38//===----------------------------------------------------------------------===//
39//                         Scalar Expression Emitter
40//===----------------------------------------------------------------------===//
41
42namespace {
43struct BinOpInfo {
44  Value *LHS;
45  Value *RHS;
46  QualType Ty;  // Computation Type.
47  BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
48  const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
49};
50
51static bool MustVisitNullValue(const Expr *E) {
52  // If a null pointer expression's type is the C++0x nullptr_t, then
53  // it's not necessarily a simple constant and it must be evaluated
54  // for its potential side effects.
55  return E->getType()->isNullPtrType();
56}
57
58class ScalarExprEmitter
59  : public StmtVisitor<ScalarExprEmitter, Value*> {
60  CodeGenFunction &CGF;
61  CGBuilderTy &Builder;
62  bool IgnoreResultAssign;
63  llvm::LLVMContext &VMContext;
64public:
65
66  ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
67    : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
68      VMContext(cgf.getLLVMContext()) {
69  }
70
71  //===--------------------------------------------------------------------===//
72  //                               Utilities
73  //===--------------------------------------------------------------------===//
74
75  bool TestAndClearIgnoreResultAssign() {
76    bool I = IgnoreResultAssign;
77    IgnoreResultAssign = false;
78    return I;
79  }
80
81  llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
82  LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
83  LValue EmitCheckedLValue(const Expr *E) { return CGF.EmitCheckedLValue(E); }
84
85  Value *EmitLoadOfLValue(LValue LV) {
86    return CGF.EmitLoadOfLValue(LV).getScalarVal();
87  }
88
89  /// EmitLoadOfLValue - Given an expression with complex type that represents a
90  /// value l-value, this method emits the address of the l-value, then loads
91  /// and returns the result.
92  Value *EmitLoadOfLValue(const Expr *E) {
93    return EmitLoadOfLValue(EmitCheckedLValue(E));
94  }
95
96  /// EmitConversionToBool - Convert the specified expression value to a
97  /// boolean (i1) truth value.  This is equivalent to "Val != 0".
98  Value *EmitConversionToBool(Value *Src, QualType DstTy);
99
100  /// EmitScalarConversion - Emit a conversion from the specified type to the
101  /// specified destination type, both of which are LLVM scalar types.
102  Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);
103
104  /// EmitComplexToScalarConversion - Emit a conversion from the specified
105  /// complex type to the specified destination type, where the destination type
106  /// is an LLVM scalar type.
107  Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
108                                       QualType SrcTy, QualType DstTy);
109
110  /// EmitNullValue - Emit a value that corresponds to null for the given type.
111  Value *EmitNullValue(QualType Ty);
112
113  /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
114  Value *EmitFloatToBoolConversion(Value *V) {
115    // Compare against 0.0 for fp scalars.
116    llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
117    return Builder.CreateFCmpUNE(V, Zero, "tobool");
118  }
119
120  /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
121  Value *EmitPointerToBoolConversion(Value *V) {
122    Value *Zero = llvm::ConstantPointerNull::get(
123                                      cast<llvm::PointerType>(V->getType()));
124    return Builder.CreateICmpNE(V, Zero, "tobool");
125  }
126
127  Value *EmitIntToBoolConversion(Value *V) {
128    // Because of the type rules of C, we often end up computing a
129    // logical value, then zero extending it to int, then wanting it
130    // as a logical value again.  Optimize this common case.
131    if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
132      if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
133        Value *Result = ZI->getOperand(0);
134        // If there aren't any more uses, zap the instruction to save space.
135        // Note that there can be more uses, for example if this
136        // is the result of an assignment.
137        if (ZI->use_empty())
138          ZI->eraseFromParent();
139        return Result;
140      }
141    }
142
143    return Builder.CreateIsNotNull(V, "tobool");
144  }
145
146  //===--------------------------------------------------------------------===//
147  //                            Visitor Methods
148  //===--------------------------------------------------------------------===//
149
150  Value *Visit(Expr *E) {
151    return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
152  }
153
154  Value *VisitStmt(Stmt *S) {
155    S->dump(CGF.getContext().getSourceManager());
156    llvm_unreachable("Stmt can't have complex result type!");
157  }
158  Value *VisitExpr(Expr *S);
159
160  Value *VisitParenExpr(ParenExpr *PE) {
161    return Visit(PE->getSubExpr());
162  }
163  Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
164    return Visit(E->getReplacement());
165  }
166  Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
167    return Visit(GE->getResultExpr());
168  }
169
170  // Leaves.
171  Value *VisitIntegerLiteral(const IntegerLiteral *E) {
172    return Builder.getInt(E->getValue());
173  }
174  Value *VisitFloatingLiteral(const FloatingLiteral *E) {
175    return llvm::ConstantFP::get(VMContext, E->getValue());
176  }
177  Value *VisitCharacterLiteral(const CharacterLiteral *E) {
178    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
179  }
180  Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
181    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
182  }
183  Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
184    return EmitNullValue(E->getType());
185  }
186  Value *VisitGNUNullExpr(const GNUNullExpr *E) {
187    return EmitNullValue(E->getType());
188  }
189  Value *VisitOffsetOfExpr(OffsetOfExpr *E);
190  Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
191  Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
192    llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
193    return Builder.CreateBitCast(V, ConvertType(E->getType()));
194  }
195
196  Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
197    return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
198  }
199
200  Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
201    if (E->isGLValue())
202      return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E));
203
204    // Otherwise, assume the mapping is the scalar directly.
205    return CGF.getOpaqueRValueMapping(E).getScalarVal();
206  }
207
208  // l-values.
209  Value *VisitDeclRefExpr(DeclRefExpr *E) {
210    Expr::EvalResult Result;
211    if (!E->Evaluate(Result, CGF.getContext()))
212      return EmitLoadOfLValue(E);
213
214    assert(!Result.HasSideEffects && "Constant declref with side-effect?!");
215
216    llvm::Constant *C;
217    if (Result.Val.isInt())
218      C = Builder.getInt(Result.Val.getInt());
219    else if (Result.Val.isFloat())
220      C = llvm::ConstantFP::get(VMContext, Result.Val.getFloat());
221    else
222      return EmitLoadOfLValue(E);
223
224    // Make sure we emit a debug reference to the global variable.
225    if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl())) {
226      if (!CGF.getContext().DeclMustBeEmitted(VD))
227        CGF.EmitDeclRefExprDbgValue(E, C);
228    } else if (isa<EnumConstantDecl>(E->getDecl())) {
229      CGF.EmitDeclRefExprDbgValue(E, C);
230    }
231
232    return C;
233  }
234  Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
235    return CGF.EmitObjCSelectorExpr(E);
236  }
237  Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
238    return CGF.EmitObjCProtocolExpr(E);
239  }
240  Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
241    return EmitLoadOfLValue(E);
242  }
243  Value *VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
244    assert(E->getObjectKind() == OK_Ordinary &&
245           "reached property reference without lvalue-to-rvalue");
246    return EmitLoadOfLValue(E);
247  }
248  Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
249    if (E->getMethodDecl() &&
250        E->getMethodDecl()->getResultType()->isReferenceType())
251      return EmitLoadOfLValue(E);
252    return CGF.EmitObjCMessageExpr(E).getScalarVal();
253  }
254
255  Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
256    LValue LV = CGF.EmitObjCIsaExpr(E);
257    Value *V = CGF.EmitLoadOfLValue(LV).getScalarVal();
258    return V;
259  }
260
261  Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
262  Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
263  Value *VisitMemberExpr(MemberExpr *E);
264  Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
265  Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
266    return EmitLoadOfLValue(E);
267  }
268
269  Value *VisitInitListExpr(InitListExpr *E);
270
271  Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
272    return CGF.CGM.EmitNullConstant(E->getType());
273  }
274  Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
275    if (E->getType()->isVariablyModifiedType())
276      CGF.EmitVariablyModifiedType(E->getType());
277    return VisitCastExpr(E);
278  }
279  Value *VisitCastExpr(CastExpr *E);
280
281  Value *VisitCallExpr(const CallExpr *E) {
282    if (E->getCallReturnType()->isReferenceType())
283      return EmitLoadOfLValue(E);
284
285    return CGF.EmitCallExpr(E).getScalarVal();
286  }
287
288  Value *VisitStmtExpr(const StmtExpr *E);
289
290  Value *VisitBlockDeclRefExpr(const BlockDeclRefExpr *E);
291
292  // Unary Operators.
293  Value *VisitUnaryPostDec(const UnaryOperator *E) {
294    LValue LV = EmitLValue(E->getSubExpr());
295    return EmitScalarPrePostIncDec(E, LV, false, false);
296  }
297  Value *VisitUnaryPostInc(const UnaryOperator *E) {
298    LValue LV = EmitLValue(E->getSubExpr());
299    return EmitScalarPrePostIncDec(E, LV, true, false);
300  }
301  Value *VisitUnaryPreDec(const UnaryOperator *E) {
302    LValue LV = EmitLValue(E->getSubExpr());
303    return EmitScalarPrePostIncDec(E, LV, false, true);
304  }
305  Value *VisitUnaryPreInc(const UnaryOperator *E) {
306    LValue LV = EmitLValue(E->getSubExpr());
307    return EmitScalarPrePostIncDec(E, LV, true, true);
308  }
309
310  llvm::Value *EmitAddConsiderOverflowBehavior(const UnaryOperator *E,
311                                               llvm::Value *InVal,
312                                               llvm::Value *NextVal,
313                                               bool IsInc);
314
315  llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
316                                       bool isInc, bool isPre);
317
318
319  Value *VisitUnaryAddrOf(const UnaryOperator *E) {
320    if (isa<MemberPointerType>(E->getType())) // never sugared
321      return CGF.CGM.getMemberPointerConstant(E);
322
323    return EmitLValue(E->getSubExpr()).getAddress();
324  }
325  Value *VisitUnaryDeref(const UnaryOperator *E) {
326    if (E->getType()->isVoidType())
327      return Visit(E->getSubExpr()); // the actual value should be unused
328    return EmitLoadOfLValue(E);
329  }
330  Value *VisitUnaryPlus(const UnaryOperator *E) {
331    // This differs from gcc, though, most likely due to a bug in gcc.
332    TestAndClearIgnoreResultAssign();
333    return Visit(E->getSubExpr());
334  }
335  Value *VisitUnaryMinus    (const UnaryOperator *E);
336  Value *VisitUnaryNot      (const UnaryOperator *E);
337  Value *VisitUnaryLNot     (const UnaryOperator *E);
338  Value *VisitUnaryReal     (const UnaryOperator *E);
339  Value *VisitUnaryImag     (const UnaryOperator *E);
340  Value *VisitUnaryExtension(const UnaryOperator *E) {
341    return Visit(E->getSubExpr());
342  }
343
344  // C++
345  Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
346    return EmitLoadOfLValue(E);
347  }
348
349  Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
350    return Visit(DAE->getExpr());
351  }
352  Value *VisitCXXThisExpr(CXXThisExpr *TE) {
353    return CGF.LoadCXXThis();
354  }
355
356  Value *VisitExprWithCleanups(ExprWithCleanups *E) {
357    return CGF.EmitExprWithCleanups(E).getScalarVal();
358  }
359  Value *VisitCXXNewExpr(const CXXNewExpr *E) {
360    return CGF.EmitCXXNewExpr(E);
361  }
362  Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
363    CGF.EmitCXXDeleteExpr(E);
364    return 0;
365  }
366  Value *VisitUnaryTypeTraitExpr(const UnaryTypeTraitExpr *E) {
367    return Builder.getInt1(E->getValue());
368  }
369
370  Value *VisitBinaryTypeTraitExpr(const BinaryTypeTraitExpr *E) {
371    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
372  }
373
374  Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
375    return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
376  }
377
378  Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
379    return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
380  }
381
382  Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
383    // C++ [expr.pseudo]p1:
384    //   The result shall only be used as the operand for the function call
385    //   operator (), and the result of such a call has type void. The only
386    //   effect is the evaluation of the postfix-expression before the dot or
387    //   arrow.
388    CGF.EmitScalarExpr(E->getBase());
389    return 0;
390  }
391
392  Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
393    return EmitNullValue(E->getType());
394  }
395
396  Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
397    CGF.EmitCXXThrowExpr(E);
398    return 0;
399  }
400
401  Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
402    return Builder.getInt1(E->getValue());
403  }
404
405  // Binary Operators.
406  Value *EmitMul(const BinOpInfo &Ops) {
407    if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
408      switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
409      case LangOptions::SOB_Undefined:
410        return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
411      case LangOptions::SOB_Defined:
412        return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
413      case LangOptions::SOB_Trapping:
414        return EmitOverflowCheckedBinOp(Ops);
415      }
416    }
417
418    if (Ops.LHS->getType()->isFPOrFPVectorTy())
419      return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
420    return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
421  }
422  bool isTrapvOverflowBehavior() {
423    return CGF.getContext().getLangOptions().getSignedOverflowBehavior()
424               == LangOptions::SOB_Trapping;
425  }
426  /// Create a binary op that checks for overflow.
427  /// Currently only supports +, - and *.
428  Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
429  // Emit the overflow BB when -ftrapv option is activated.
430  void EmitOverflowBB(llvm::BasicBlock *overflowBB) {
431    Builder.SetInsertPoint(overflowBB);
432    llvm::Function *Trap = CGF.CGM.getIntrinsic(llvm::Intrinsic::trap);
433    Builder.CreateCall(Trap);
434    Builder.CreateUnreachable();
435  }
436  // Check for undefined division and modulus behaviors.
437  void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
438                                                  llvm::Value *Zero,bool isDiv);
439  Value *EmitDiv(const BinOpInfo &Ops);
440  Value *EmitRem(const BinOpInfo &Ops);
441  Value *EmitAdd(const BinOpInfo &Ops);
442  Value *EmitSub(const BinOpInfo &Ops);
443  Value *EmitShl(const BinOpInfo &Ops);
444  Value *EmitShr(const BinOpInfo &Ops);
445  Value *EmitAnd(const BinOpInfo &Ops) {
446    return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
447  }
448  Value *EmitXor(const BinOpInfo &Ops) {
449    return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
450  }
451  Value *EmitOr (const BinOpInfo &Ops) {
452    return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
453  }
454
455  BinOpInfo EmitBinOps(const BinaryOperator *E);
456  LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
457                            Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
458                                  Value *&Result);
459
460  Value *EmitCompoundAssign(const CompoundAssignOperator *E,
461                            Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
462
463  // Binary operators and binary compound assignment operators.
464#define HANDLEBINOP(OP) \
465  Value *VisitBin ## OP(const BinaryOperator *E) {                         \
466    return Emit ## OP(EmitBinOps(E));                                      \
467  }                                                                        \
468  Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
469    return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
470  }
471  HANDLEBINOP(Mul)
472  HANDLEBINOP(Div)
473  HANDLEBINOP(Rem)
474  HANDLEBINOP(Add)
475  HANDLEBINOP(Sub)
476  HANDLEBINOP(Shl)
477  HANDLEBINOP(Shr)
478  HANDLEBINOP(And)
479  HANDLEBINOP(Xor)
480  HANDLEBINOP(Or)
481#undef HANDLEBINOP
482
483  // Comparisons.
484  Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
485                     unsigned SICmpOpc, unsigned FCmpOpc);
486#define VISITCOMP(CODE, UI, SI, FP) \
487    Value *VisitBin##CODE(const BinaryOperator *E) { \
488      return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
489                         llvm::FCmpInst::FP); }
490  VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
491  VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
492  VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
493  VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
494  VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
495  VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
496#undef VISITCOMP
497
498  Value *VisitBinAssign     (const BinaryOperator *E);
499
500  Value *VisitBinLAnd       (const BinaryOperator *E);
501  Value *VisitBinLOr        (const BinaryOperator *E);
502  Value *VisitBinComma      (const BinaryOperator *E);
503
504  Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
505  Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
506
507  // Other Operators.
508  Value *VisitBlockExpr(const BlockExpr *BE);
509  Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
510  Value *VisitChooseExpr(ChooseExpr *CE);
511  Value *VisitVAArgExpr(VAArgExpr *VE);
512  Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
513    return CGF.EmitObjCStringLiteral(E);
514  }
515  Value *VisitAsTypeExpr(AsTypeExpr *CE);
516};
517}  // end anonymous namespace.
518
519//===----------------------------------------------------------------------===//
520//                                Utilities
521//===----------------------------------------------------------------------===//
522
523/// EmitConversionToBool - Convert the specified expression value to a
524/// boolean (i1) truth value.  This is equivalent to "Val != 0".
525Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
526  assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
527
528  if (SrcType->isRealFloatingType())
529    return EmitFloatToBoolConversion(Src);
530
531  if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
532    return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
533
534  assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
535         "Unknown scalar type to convert");
536
537  if (isa<llvm::IntegerType>(Src->getType()))
538    return EmitIntToBoolConversion(Src);
539
540  assert(isa<llvm::PointerType>(Src->getType()));
541  return EmitPointerToBoolConversion(Src);
542}
543
544/// EmitScalarConversion - Emit a conversion from the specified type to the
545/// specified destination type, both of which are LLVM scalar types.
546Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
547                                               QualType DstType) {
548  SrcType = CGF.getContext().getCanonicalType(SrcType);
549  DstType = CGF.getContext().getCanonicalType(DstType);
550  if (SrcType == DstType) return Src;
551
552  if (DstType->isVoidType()) return 0;
553
554  // Handle conversions to bool first, they are special: comparisons against 0.
555  if (DstType->isBooleanType())
556    return EmitConversionToBool(Src, SrcType);
557
558  llvm::Type *DstTy = ConvertType(DstType);
559
560  // Ignore conversions like int -> uint.
561  if (Src->getType() == DstTy)
562    return Src;
563
564  // Handle pointer conversions next: pointers can only be converted to/from
565  // other pointers and integers. Check for pointer types in terms of LLVM, as
566  // some native types (like Obj-C id) may map to a pointer type.
567  if (isa<llvm::PointerType>(DstTy)) {
568    // The source value may be an integer, or a pointer.
569    if (isa<llvm::PointerType>(Src->getType()))
570      return Builder.CreateBitCast(Src, DstTy, "conv");
571
572    assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
573    // First, convert to the correct width so that we control the kind of
574    // extension.
575    llvm::Type *MiddleTy = CGF.IntPtrTy;
576    bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
577    llvm::Value* IntResult =
578        Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
579    // Then, cast to pointer.
580    return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
581  }
582
583  if (isa<llvm::PointerType>(Src->getType())) {
584    // Must be an ptr to int cast.
585    assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
586    return Builder.CreatePtrToInt(Src, DstTy, "conv");
587  }
588
589  // A scalar can be splatted to an extended vector of the same element type
590  if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
591    // Cast the scalar to element type
592    QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType();
593    llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy);
594
595    // Insert the element in element zero of an undef vector
596    llvm::Value *UnV = llvm::UndefValue::get(DstTy);
597    llvm::Value *Idx = Builder.getInt32(0);
598    UnV = Builder.CreateInsertElement(UnV, Elt, Idx);
599
600    // Splat the element across to all elements
601    SmallVector<llvm::Constant*, 16> Args;
602    unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
603    for (unsigned i = 0; i != NumElements; ++i)
604      Args.push_back(Builder.getInt32(0));
605
606    llvm::Constant *Mask = llvm::ConstantVector::get(Args);
607    llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
608    return Yay;
609  }
610
611  // Allow bitcast from vector to integer/fp of the same size.
612  if (isa<llvm::VectorType>(Src->getType()) ||
613      isa<llvm::VectorType>(DstTy))
614    return Builder.CreateBitCast(Src, DstTy, "conv");
615
616  // Finally, we have the arithmetic types: real int/float.
617  if (isa<llvm::IntegerType>(Src->getType())) {
618    bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
619    if (isa<llvm::IntegerType>(DstTy))
620      return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
621    else if (InputSigned)
622      return Builder.CreateSIToFP(Src, DstTy, "conv");
623    else
624      return Builder.CreateUIToFP(Src, DstTy, "conv");
625  }
626
627  assert(Src->getType()->isFloatingPointTy() && "Unknown real conversion");
628  if (isa<llvm::IntegerType>(DstTy)) {
629    if (DstType->isSignedIntegerOrEnumerationType())
630      return Builder.CreateFPToSI(Src, DstTy, "conv");
631    else
632      return Builder.CreateFPToUI(Src, DstTy, "conv");
633  }
634
635  assert(DstTy->isFloatingPointTy() && "Unknown real conversion");
636  if (DstTy->getTypeID() < Src->getType()->getTypeID())
637    return Builder.CreateFPTrunc(Src, DstTy, "conv");
638  else
639    return Builder.CreateFPExt(Src, DstTy, "conv");
640}
641
642/// EmitComplexToScalarConversion - Emit a conversion from the specified complex
643/// type to the specified destination type, where the destination type is an
644/// LLVM scalar type.
645Value *ScalarExprEmitter::
646EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
647                              QualType SrcTy, QualType DstTy) {
648  // Get the source element type.
649  SrcTy = SrcTy->getAs<ComplexType>()->getElementType();
650
651  // Handle conversions to bool first, they are special: comparisons against 0.
652  if (DstTy->isBooleanType()) {
653    //  Complex != 0  -> (Real != 0) | (Imag != 0)
654    Src.first  = EmitScalarConversion(Src.first, SrcTy, DstTy);
655    Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
656    return Builder.CreateOr(Src.first, Src.second, "tobool");
657  }
658
659  // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
660  // the imaginary part of the complex value is discarded and the value of the
661  // real part is converted according to the conversion rules for the
662  // corresponding real type.
663  return EmitScalarConversion(Src.first, SrcTy, DstTy);
664}
665
666Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
667  if (const MemberPointerType *MPT = Ty->getAs<MemberPointerType>())
668    return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
669
670  return llvm::Constant::getNullValue(ConvertType(Ty));
671}
672
673//===----------------------------------------------------------------------===//
674//                            Visitor Methods
675//===----------------------------------------------------------------------===//
676
677Value *ScalarExprEmitter::VisitExpr(Expr *E) {
678  CGF.ErrorUnsupported(E, "scalar expression");
679  if (E->getType()->isVoidType())
680    return 0;
681  return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
682}
683
684Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
685  // Vector Mask Case
686  if (E->getNumSubExprs() == 2 ||
687      (E->getNumSubExprs() == 3 && E->getExpr(2)->getType()->isVectorType())) {
688    Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
689    Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
690    Value *Mask;
691
692    llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
693    unsigned LHSElts = LTy->getNumElements();
694
695    if (E->getNumSubExprs() == 3) {
696      Mask = CGF.EmitScalarExpr(E->getExpr(2));
697
698      // Shuffle LHS & RHS into one input vector.
699      SmallVector<llvm::Constant*, 32> concat;
700      for (unsigned i = 0; i != LHSElts; ++i) {
701        concat.push_back(Builder.getInt32(2*i));
702        concat.push_back(Builder.getInt32(2*i+1));
703      }
704
705      Value* CV = llvm::ConstantVector::get(concat);
706      LHS = Builder.CreateShuffleVector(LHS, RHS, CV, "concat");
707      LHSElts *= 2;
708    } else {
709      Mask = RHS;
710    }
711
712    llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
713    llvm::Constant* EltMask;
714
715    // Treat vec3 like vec4.
716    if ((LHSElts == 6) && (E->getNumSubExprs() == 3))
717      EltMask = llvm::ConstantInt::get(MTy->getElementType(),
718                                       (1 << llvm::Log2_32(LHSElts+2))-1);
719    else if ((LHSElts == 3) && (E->getNumSubExprs() == 2))
720      EltMask = llvm::ConstantInt::get(MTy->getElementType(),
721                                       (1 << llvm::Log2_32(LHSElts+1))-1);
722    else
723      EltMask = llvm::ConstantInt::get(MTy->getElementType(),
724                                       (1 << llvm::Log2_32(LHSElts))-1);
725
726    // Mask off the high bits of each shuffle index.
727    SmallVector<llvm::Constant *, 32> MaskV;
728    for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i)
729      MaskV.push_back(EltMask);
730
731    Value* MaskBits = llvm::ConstantVector::get(MaskV);
732    Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
733
734    // newv = undef
735    // mask = mask & maskbits
736    // for each elt
737    //   n = extract mask i
738    //   x = extract val n
739    //   newv = insert newv, x, i
740    llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
741                                                        MTy->getNumElements());
742    Value* NewV = llvm::UndefValue::get(RTy);
743    for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
744      Value *Indx = Builder.getInt32(i);
745      Indx = Builder.CreateExtractElement(Mask, Indx, "shuf_idx");
746      Indx = Builder.CreateZExt(Indx, CGF.Int32Ty, "idx_zext");
747
748      // Handle vec3 special since the index will be off by one for the RHS.
749      if ((LHSElts == 6) && (E->getNumSubExprs() == 3)) {
750        Value *cmpIndx, *newIndx;
751        cmpIndx = Builder.CreateICmpUGT(Indx, Builder.getInt32(3),
752                                        "cmp_shuf_idx");
753        newIndx = Builder.CreateSub(Indx, Builder.getInt32(1), "shuf_idx_adj");
754        Indx = Builder.CreateSelect(cmpIndx, newIndx, Indx, "sel_shuf_idx");
755      }
756      Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
757      NewV = Builder.CreateInsertElement(NewV, VExt, Indx, "shuf_ins");
758    }
759    return NewV;
760  }
761
762  Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
763  Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
764
765  // Handle vec3 special since the index will be off by one for the RHS.
766  llvm::VectorType *VTy = cast<llvm::VectorType>(V1->getType());
767  SmallVector<llvm::Constant*, 32> indices;
768  for (unsigned i = 2; i < E->getNumSubExprs(); i++) {
769    unsigned Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
770    if (VTy->getNumElements() == 3 && Idx > 3)
771      Idx -= 1;
772    indices.push_back(Builder.getInt32(Idx));
773  }
774
775  Value *SV = llvm::ConstantVector::get(indices);
776  return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
777}
778Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
779  Expr::EvalResult Result;
780  if (E->Evaluate(Result, CGF.getContext()) && Result.Val.isInt()) {
781    if (E->isArrow())
782      CGF.EmitScalarExpr(E->getBase());
783    else
784      EmitLValue(E->getBase());
785    return Builder.getInt(Result.Val.getInt());
786  }
787
788  // Emit debug info for aggregate now, if it was delayed to reduce
789  // debug info size.
790  CGDebugInfo *DI = CGF.getDebugInfo();
791  if (DI && CGF.CGM.getCodeGenOpts().LimitDebugInfo) {
792    QualType PQTy = E->getBase()->IgnoreParenImpCasts()->getType();
793    if (const PointerType * PTy = dyn_cast<PointerType>(PQTy))
794      if (FieldDecl *M = dyn_cast<FieldDecl>(E->getMemberDecl()))
795        DI->getOrCreateRecordType(PTy->getPointeeType(),
796                                  M->getParent()->getLocation());
797  }
798  return EmitLoadOfLValue(E);
799}
800
801Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
802  TestAndClearIgnoreResultAssign();
803
804  // Emit subscript expressions in rvalue context's.  For most cases, this just
805  // loads the lvalue formed by the subscript expr.  However, we have to be
806  // careful, because the base of a vector subscript is occasionally an rvalue,
807  // so we can't get it as an lvalue.
808  if (!E->getBase()->getType()->isVectorType())
809    return EmitLoadOfLValue(E);
810
811  // Handle the vector case.  The base must be a vector, the index must be an
812  // integer value.
813  Value *Base = Visit(E->getBase());
814  Value *Idx  = Visit(E->getIdx());
815  bool IdxSigned = E->getIdx()->getType()->isSignedIntegerOrEnumerationType();
816  Idx = Builder.CreateIntCast(Idx, CGF.Int32Ty, IdxSigned, "vecidxcast");
817  return Builder.CreateExtractElement(Base, Idx, "vecext");
818}
819
820static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
821                                  unsigned Off, llvm::Type *I32Ty) {
822  int MV = SVI->getMaskValue(Idx);
823  if (MV == -1)
824    return llvm::UndefValue::get(I32Ty);
825  return llvm::ConstantInt::get(I32Ty, Off+MV);
826}
827
828Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
829  bool Ignore = TestAndClearIgnoreResultAssign();
830  (void)Ignore;
831  assert (Ignore == false && "init list ignored");
832  unsigned NumInitElements = E->getNumInits();
833
834  if (E->hadArrayRangeDesignator())
835    CGF.ErrorUnsupported(E, "GNU array range designator extension");
836
837  llvm::VectorType *VType =
838    dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
839
840  if (!VType) {
841    if (NumInitElements == 0) {
842      // C++11 value-initialization for the scalar.
843      return EmitNullValue(E->getType());
844    }
845    // We have a scalar in braces. Just use the first element.
846    return Visit(E->getInit(0));
847  }
848
849  unsigned ResElts = VType->getNumElements();
850
851  // Loop over initializers collecting the Value for each, and remembering
852  // whether the source was swizzle (ExtVectorElementExpr).  This will allow
853  // us to fold the shuffle for the swizzle into the shuffle for the vector
854  // initializer, since LLVM optimizers generally do not want to touch
855  // shuffles.
856  unsigned CurIdx = 0;
857  bool VIsUndefShuffle = false;
858  llvm::Value *V = llvm::UndefValue::get(VType);
859  for (unsigned i = 0; i != NumInitElements; ++i) {
860    Expr *IE = E->getInit(i);
861    Value *Init = Visit(IE);
862    SmallVector<llvm::Constant*, 16> Args;
863
864    llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
865
866    // Handle scalar elements.  If the scalar initializer is actually one
867    // element of a different vector of the same width, use shuffle instead of
868    // extract+insert.
869    if (!VVT) {
870      if (isa<ExtVectorElementExpr>(IE)) {
871        llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
872
873        if (EI->getVectorOperandType()->getNumElements() == ResElts) {
874          llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
875          Value *LHS = 0, *RHS = 0;
876          if (CurIdx == 0) {
877            // insert into undef -> shuffle (src, undef)
878            Args.push_back(C);
879            for (unsigned j = 1; j != ResElts; ++j)
880              Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
881
882            LHS = EI->getVectorOperand();
883            RHS = V;
884            VIsUndefShuffle = true;
885          } else if (VIsUndefShuffle) {
886            // insert into undefshuffle && size match -> shuffle (v, src)
887            llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
888            for (unsigned j = 0; j != CurIdx; ++j)
889              Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
890            Args.push_back(Builder.getInt32(ResElts + C->getZExtValue()));
891            for (unsigned j = CurIdx + 1; j != ResElts; ++j)
892              Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
893
894            LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
895            RHS = EI->getVectorOperand();
896            VIsUndefShuffle = false;
897          }
898          if (!Args.empty()) {
899            llvm::Constant *Mask = llvm::ConstantVector::get(Args);
900            V = Builder.CreateShuffleVector(LHS, RHS, Mask);
901            ++CurIdx;
902            continue;
903          }
904        }
905      }
906      V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
907                                      "vecinit");
908      VIsUndefShuffle = false;
909      ++CurIdx;
910      continue;
911    }
912
913    unsigned InitElts = VVT->getNumElements();
914
915    // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
916    // input is the same width as the vector being constructed, generate an
917    // optimized shuffle of the swizzle input into the result.
918    unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
919    if (isa<ExtVectorElementExpr>(IE)) {
920      llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
921      Value *SVOp = SVI->getOperand(0);
922      llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
923
924      if (OpTy->getNumElements() == ResElts) {
925        for (unsigned j = 0; j != CurIdx; ++j) {
926          // If the current vector initializer is a shuffle with undef, merge
927          // this shuffle directly into it.
928          if (VIsUndefShuffle) {
929            Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
930                                      CGF.Int32Ty));
931          } else {
932            Args.push_back(Builder.getInt32(j));
933          }
934        }
935        for (unsigned j = 0, je = InitElts; j != je; ++j)
936          Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
937        for (unsigned j = CurIdx + InitElts; j != ResElts; ++j)
938          Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
939
940        if (VIsUndefShuffle)
941          V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
942
943        Init = SVOp;
944      }
945    }
946
947    // Extend init to result vector length, and then shuffle its contribution
948    // to the vector initializer into V.
949    if (Args.empty()) {
950      for (unsigned j = 0; j != InitElts; ++j)
951        Args.push_back(Builder.getInt32(j));
952      for (unsigned j = InitElts; j != ResElts; ++j)
953        Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
954      llvm::Constant *Mask = llvm::ConstantVector::get(Args);
955      Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
956                                         Mask, "vext");
957
958      Args.clear();
959      for (unsigned j = 0; j != CurIdx; ++j)
960        Args.push_back(Builder.getInt32(j));
961      for (unsigned j = 0; j != InitElts; ++j)
962        Args.push_back(Builder.getInt32(j+Offset));
963      for (unsigned j = CurIdx + InitElts; j != ResElts; ++j)
964        Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
965    }
966
967    // If V is undef, make sure it ends up on the RHS of the shuffle to aid
968    // merging subsequent shuffles into this one.
969    if (CurIdx == 0)
970      std::swap(V, Init);
971    llvm::Constant *Mask = llvm::ConstantVector::get(Args);
972    V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
973    VIsUndefShuffle = isa<llvm::UndefValue>(Init);
974    CurIdx += InitElts;
975  }
976
977  // FIXME: evaluate codegen vs. shuffling against constant null vector.
978  // Emit remaining default initializers.
979  llvm::Type *EltTy = VType->getElementType();
980
981  // Emit remaining default initializers
982  for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
983    Value *Idx = Builder.getInt32(CurIdx);
984    llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
985    V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
986  }
987  return V;
988}
989
990static bool ShouldNullCheckClassCastValue(const CastExpr *CE) {
991  const Expr *E = CE->getSubExpr();
992
993  if (CE->getCastKind() == CK_UncheckedDerivedToBase)
994    return false;
995
996  if (isa<CXXThisExpr>(E)) {
997    // We always assume that 'this' is never null.
998    return false;
999  }
1000
1001  if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
1002    // And that glvalue casts are never null.
1003    if (ICE->getValueKind() != VK_RValue)
1004      return false;
1005  }
1006
1007  return true;
1008}
1009
1010// VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
1011// have to handle a more broad range of conversions than explicit casts, as they
1012// handle things like function to ptr-to-function decay etc.
1013Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
1014  Expr *E = CE->getSubExpr();
1015  QualType DestTy = CE->getType();
1016  CastKind Kind = CE->getCastKind();
1017
1018  if (!DestTy->isVoidType())
1019    TestAndClearIgnoreResultAssign();
1020
1021  // Since almost all cast kinds apply to scalars, this switch doesn't have
1022  // a default case, so the compiler will warn on a missing case.  The cases
1023  // are in the same order as in the CastKind enum.
1024  switch (Kind) {
1025  case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
1026
1027  case CK_LValueBitCast:
1028  case CK_ObjCObjectLValueCast: {
1029    Value *V = EmitLValue(E).getAddress();
1030    V = Builder.CreateBitCast(V,
1031                          ConvertType(CGF.getContext().getPointerType(DestTy)));
1032    return EmitLoadOfLValue(CGF.MakeAddrLValue(V, DestTy));
1033  }
1034
1035  case CK_CPointerToObjCPointerCast:
1036  case CK_BlockPointerToObjCPointerCast:
1037  case CK_AnyPointerToBlockPointerCast:
1038  case CK_BitCast: {
1039    Value *Src = Visit(const_cast<Expr*>(E));
1040    return Builder.CreateBitCast(Src, ConvertType(DestTy));
1041  }
1042  case CK_NoOp:
1043  case CK_UserDefinedConversion:
1044    return Visit(const_cast<Expr*>(E));
1045
1046  case CK_BaseToDerived: {
1047    const CXXRecordDecl *DerivedClassDecl =
1048      DestTy->getCXXRecordDeclForPointerType();
1049
1050    return CGF.GetAddressOfDerivedClass(Visit(E), DerivedClassDecl,
1051                                        CE->path_begin(), CE->path_end(),
1052                                        ShouldNullCheckClassCastValue(CE));
1053  }
1054  case CK_UncheckedDerivedToBase:
1055  case CK_DerivedToBase: {
1056    const RecordType *DerivedClassTy =
1057      E->getType()->getAs<PointerType>()->getPointeeType()->getAs<RecordType>();
1058    CXXRecordDecl *DerivedClassDecl =
1059      cast<CXXRecordDecl>(DerivedClassTy->getDecl());
1060
1061    return CGF.GetAddressOfBaseClass(Visit(E), DerivedClassDecl,
1062                                     CE->path_begin(), CE->path_end(),
1063                                     ShouldNullCheckClassCastValue(CE));
1064  }
1065  case CK_Dynamic: {
1066    Value *V = Visit(const_cast<Expr*>(E));
1067    const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
1068    return CGF.EmitDynamicCast(V, DCE);
1069  }
1070
1071  case CK_ArrayToPointerDecay: {
1072    assert(E->getType()->isArrayType() &&
1073           "Array to pointer decay must have array source type!");
1074
1075    Value *V = EmitLValue(E).getAddress();  // Bitfields can't be arrays.
1076
1077    // Note that VLA pointers are always decayed, so we don't need to do
1078    // anything here.
1079    if (!E->getType()->isVariableArrayType()) {
1080      assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer");
1081      assert(isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType())
1082                                 ->getElementType()) &&
1083             "Expected pointer to array");
1084      V = Builder.CreateStructGEP(V, 0, "arraydecay");
1085    }
1086
1087    // Make sure the array decay ends up being the right type.  This matters if
1088    // the array type was of an incomplete type.
1089    return CGF.Builder.CreateBitCast(V, ConvertType(CE->getType()));
1090  }
1091  case CK_FunctionToPointerDecay:
1092    return EmitLValue(E).getAddress();
1093
1094  case CK_NullToPointer:
1095    if (MustVisitNullValue(E))
1096      (void) Visit(E);
1097
1098    return llvm::ConstantPointerNull::get(
1099                               cast<llvm::PointerType>(ConvertType(DestTy)));
1100
1101  case CK_NullToMemberPointer: {
1102    if (MustVisitNullValue(E))
1103      (void) Visit(E);
1104
1105    const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
1106    return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
1107  }
1108
1109  case CK_BaseToDerivedMemberPointer:
1110  case CK_DerivedToBaseMemberPointer: {
1111    Value *Src = Visit(E);
1112
1113    // Note that the AST doesn't distinguish between checked and
1114    // unchecked member pointer conversions, so we always have to
1115    // implement checked conversions here.  This is inefficient when
1116    // actual control flow may be required in order to perform the
1117    // check, which it is for data member pointers (but not member
1118    // function pointers on Itanium and ARM).
1119    return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
1120  }
1121
1122  case CK_ARCProduceObject:
1123    return CGF.EmitARCRetainScalarExpr(E);
1124  case CK_ARCConsumeObject:
1125    return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
1126  case CK_ARCReclaimReturnedObject: {
1127    llvm::Value *value = Visit(E);
1128    value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
1129    return CGF.EmitObjCConsumeObject(E->getType(), value);
1130  }
1131  case CK_ARCExtendBlockObject:
1132    return CGF.EmitARCExtendBlockObject(E);
1133
1134  case CK_FloatingRealToComplex:
1135  case CK_FloatingComplexCast:
1136  case CK_IntegralRealToComplex:
1137  case CK_IntegralComplexCast:
1138  case CK_IntegralComplexToFloatingComplex:
1139  case CK_FloatingComplexToIntegralComplex:
1140  case CK_ConstructorConversion:
1141  case CK_ToUnion:
1142    llvm_unreachable("scalar cast to non-scalar value");
1143    break;
1144
1145  case CK_GetObjCProperty: {
1146    assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
1147    assert(E->isGLValue() && E->getObjectKind() == OK_ObjCProperty &&
1148           "CK_GetObjCProperty for non-lvalue or non-ObjCProperty");
1149    RValue RV = CGF.EmitLoadOfLValue(CGF.EmitLValue(E));
1150    return RV.getScalarVal();
1151  }
1152
1153  case CK_LValueToRValue:
1154    assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
1155    assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
1156    return Visit(const_cast<Expr*>(E));
1157
1158  case CK_IntegralToPointer: {
1159    Value *Src = Visit(const_cast<Expr*>(E));
1160
1161    // First, convert to the correct width so that we control the kind of
1162    // extension.
1163    llvm::Type *MiddleTy = CGF.IntPtrTy;
1164    bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
1165    llvm::Value* IntResult =
1166      Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1167
1168    return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy));
1169  }
1170  case CK_PointerToIntegral:
1171    assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
1172    return Builder.CreatePtrToInt(Visit(E), ConvertType(DestTy));
1173
1174  case CK_ToVoid: {
1175    CGF.EmitIgnoredExpr(E);
1176    return 0;
1177  }
1178  case CK_VectorSplat: {
1179    llvm::Type *DstTy = ConvertType(DestTy);
1180    Value *Elt = Visit(const_cast<Expr*>(E));
1181
1182    // Insert the element in element zero of an undef vector
1183    llvm::Value *UnV = llvm::UndefValue::get(DstTy);
1184    llvm::Value *Idx = Builder.getInt32(0);
1185    UnV = Builder.CreateInsertElement(UnV, Elt, Idx);
1186
1187    // Splat the element across to all elements
1188    SmallVector<llvm::Constant*, 16> Args;
1189    unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
1190    llvm::Constant *Zero = Builder.getInt32(0);
1191    for (unsigned i = 0; i < NumElements; i++)
1192      Args.push_back(Zero);
1193
1194    llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1195    llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
1196    return Yay;
1197  }
1198
1199  case CK_IntegralCast:
1200  case CK_IntegralToFloating:
1201  case CK_FloatingToIntegral:
1202  case CK_FloatingCast:
1203    return EmitScalarConversion(Visit(E), E->getType(), DestTy);
1204
1205  case CK_IntegralToBoolean:
1206    return EmitIntToBoolConversion(Visit(E));
1207  case CK_PointerToBoolean:
1208    return EmitPointerToBoolConversion(Visit(E));
1209  case CK_FloatingToBoolean:
1210    return EmitFloatToBoolConversion(Visit(E));
1211  case CK_MemberPointerToBoolean: {
1212    llvm::Value *MemPtr = Visit(E);
1213    const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
1214    return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
1215  }
1216
1217  case CK_FloatingComplexToReal:
1218  case CK_IntegralComplexToReal:
1219    return CGF.EmitComplexExpr(E, false, true).first;
1220
1221  case CK_FloatingComplexToBoolean:
1222  case CK_IntegralComplexToBoolean: {
1223    CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
1224
1225    // TODO: kill this function off, inline appropriate case here
1226    return EmitComplexToScalarConversion(V, E->getType(), DestTy);
1227  }
1228
1229  }
1230
1231  llvm_unreachable("unknown scalar cast");
1232  return 0;
1233}
1234
1235Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
1236  CodeGenFunction::StmtExprEvaluation eval(CGF);
1237  return CGF.EmitCompoundStmt(*E->getSubStmt(), !E->getType()->isVoidType())
1238    .getScalarVal();
1239}
1240
1241Value *ScalarExprEmitter::VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) {
1242  LValue LV = CGF.EmitBlockDeclRefLValue(E);
1243  return CGF.EmitLoadOfLValue(LV).getScalarVal();
1244}
1245
1246//===----------------------------------------------------------------------===//
1247//                             Unary Operators
1248//===----------------------------------------------------------------------===//
1249
1250llvm::Value *ScalarExprEmitter::
1251EmitAddConsiderOverflowBehavior(const UnaryOperator *E,
1252                                llvm::Value *InVal,
1253                                llvm::Value *NextVal, bool IsInc) {
1254  switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
1255  case LangOptions::SOB_Undefined:
1256    return Builder.CreateNSWAdd(InVal, NextVal, IsInc ? "inc" : "dec");
1257    break;
1258  case LangOptions::SOB_Defined:
1259    return Builder.CreateAdd(InVal, NextVal, IsInc ? "inc" : "dec");
1260    break;
1261  case LangOptions::SOB_Trapping:
1262    BinOpInfo BinOp;
1263    BinOp.LHS = InVal;
1264    BinOp.RHS = NextVal;
1265    BinOp.Ty = E->getType();
1266    BinOp.Opcode = BO_Add;
1267    BinOp.E = E;
1268    return EmitOverflowCheckedBinOp(BinOp);
1269  }
1270  llvm_unreachable("Unknown SignedOverflowBehaviorTy");
1271}
1272
1273llvm::Value *
1274ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1275                                           bool isInc, bool isPre) {
1276
1277  QualType type = E->getSubExpr()->getType();
1278  llvm::Value *value = EmitLoadOfLValue(LV);
1279  llvm::Value *input = value;
1280
1281  int amount = (isInc ? 1 : -1);
1282
1283  // Special case of integer increment that we have to check first: bool++.
1284  // Due to promotion rules, we get:
1285  //   bool++ -> bool = bool + 1
1286  //          -> bool = (int)bool + 1
1287  //          -> bool = ((int)bool + 1 != 0)
1288  // An interesting aspect of this is that increment is always true.
1289  // Decrement does not have this property.
1290  if (isInc && type->isBooleanType()) {
1291    value = Builder.getTrue();
1292
1293  // Most common case by far: integer increment.
1294  } else if (type->isIntegerType()) {
1295
1296    llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
1297
1298    // Note that signed integer inc/dec with width less than int can't
1299    // overflow because of promotion rules; we're just eliding a few steps here.
1300    if (type->isSignedIntegerOrEnumerationType() &&
1301        value->getType()->getPrimitiveSizeInBits() >=
1302            CGF.IntTy->getBitWidth())
1303      value = EmitAddConsiderOverflowBehavior(E, value, amt, isInc);
1304    else
1305      value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1306
1307  // Next most common: pointer increment.
1308  } else if (const PointerType *ptr = type->getAs<PointerType>()) {
1309    QualType type = ptr->getPointeeType();
1310
1311    // VLA types don't have constant size.
1312    if (const VariableArrayType *vla
1313          = CGF.getContext().getAsVariableArrayType(type)) {
1314      llvm::Value *numElts = CGF.getVLASize(vla).first;
1315      if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
1316      if (CGF.getContext().getLangOptions().isSignedOverflowDefined())
1317        value = Builder.CreateGEP(value, numElts, "vla.inc");
1318      else
1319        value = Builder.CreateInBoundsGEP(value, numElts, "vla.inc");
1320
1321    // Arithmetic on function pointers (!) is just +-1.
1322    } else if (type->isFunctionType()) {
1323      llvm::Value *amt = Builder.getInt32(amount);
1324
1325      value = CGF.EmitCastToVoidPtr(value);
1326      if (CGF.getContext().getLangOptions().isSignedOverflowDefined())
1327        value = Builder.CreateGEP(value, amt, "incdec.funcptr");
1328      else
1329        value = Builder.CreateInBoundsGEP(value, amt, "incdec.funcptr");
1330      value = Builder.CreateBitCast(value, input->getType());
1331
1332    // For everything else, we can just do a simple increment.
1333    } else {
1334      llvm::Value *amt = Builder.getInt32(amount);
1335      if (CGF.getContext().getLangOptions().isSignedOverflowDefined())
1336        value = Builder.CreateGEP(value, amt, "incdec.ptr");
1337      else
1338        value = Builder.CreateInBoundsGEP(value, amt, "incdec.ptr");
1339    }
1340
1341  // Vector increment/decrement.
1342  } else if (type->isVectorType()) {
1343    if (type->hasIntegerRepresentation()) {
1344      llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
1345
1346      value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1347    } else {
1348      value = Builder.CreateFAdd(
1349                  value,
1350                  llvm::ConstantFP::get(value->getType(), amount),
1351                  isInc ? "inc" : "dec");
1352    }
1353
1354  // Floating point.
1355  } else if (type->isRealFloatingType()) {
1356    // Add the inc/dec to the real part.
1357    llvm::Value *amt;
1358    if (value->getType()->isFloatTy())
1359      amt = llvm::ConstantFP::get(VMContext,
1360                                  llvm::APFloat(static_cast<float>(amount)));
1361    else if (value->getType()->isDoubleTy())
1362      amt = llvm::ConstantFP::get(VMContext,
1363                                  llvm::APFloat(static_cast<double>(amount)));
1364    else {
1365      llvm::APFloat F(static_cast<float>(amount));
1366      bool ignored;
1367      F.convert(CGF.Target.getLongDoubleFormat(), llvm::APFloat::rmTowardZero,
1368                &ignored);
1369      amt = llvm::ConstantFP::get(VMContext, F);
1370    }
1371    value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
1372
1373  // Objective-C pointer types.
1374  } else {
1375    const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
1376    value = CGF.EmitCastToVoidPtr(value);
1377
1378    CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
1379    if (!isInc) size = -size;
1380    llvm::Value *sizeValue =
1381      llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
1382
1383    if (CGF.getContext().getLangOptions().isSignedOverflowDefined())
1384      value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
1385    else
1386      value = Builder.CreateInBoundsGEP(value, sizeValue, "incdec.objptr");
1387    value = Builder.CreateBitCast(value, input->getType());
1388  }
1389
1390  // Store the updated result through the lvalue.
1391  if (LV.isBitField())
1392    CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
1393  else
1394    CGF.EmitStoreThroughLValue(RValue::get(value), LV);
1395
1396  // If this is a postinc, return the value read from memory, otherwise use the
1397  // updated value.
1398  return isPre ? value : input;
1399}
1400
1401
1402
1403Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
1404  TestAndClearIgnoreResultAssign();
1405  // Emit unary minus with EmitSub so we handle overflow cases etc.
1406  BinOpInfo BinOp;
1407  BinOp.RHS = Visit(E->getSubExpr());
1408
1409  if (BinOp.RHS->getType()->isFPOrFPVectorTy())
1410    BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType());
1411  else
1412    BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
1413  BinOp.Ty = E->getType();
1414  BinOp.Opcode = BO_Sub;
1415  BinOp.E = E;
1416  return EmitSub(BinOp);
1417}
1418
1419Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
1420  TestAndClearIgnoreResultAssign();
1421  Value *Op = Visit(E->getSubExpr());
1422  return Builder.CreateNot(Op, "neg");
1423}
1424
1425Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
1426  // Compare operand to zero.
1427  Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
1428
1429  // Invert value.
1430  // TODO: Could dynamically modify easy computations here.  For example, if
1431  // the operand is an icmp ne, turn into icmp eq.
1432  BoolVal = Builder.CreateNot(BoolVal, "lnot");
1433
1434  // ZExt result to the expr type.
1435  return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
1436}
1437
1438Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
1439  // Try folding the offsetof to a constant.
1440  Expr::EvalResult EvalResult;
1441  if (E->Evaluate(EvalResult, CGF.getContext()))
1442    return Builder.getInt(EvalResult.Val.getInt());
1443
1444  // Loop over the components of the offsetof to compute the value.
1445  unsigned n = E->getNumComponents();
1446  llvm::Type* ResultType = ConvertType(E->getType());
1447  llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
1448  QualType CurrentType = E->getTypeSourceInfo()->getType();
1449  for (unsigned i = 0; i != n; ++i) {
1450    OffsetOfExpr::OffsetOfNode ON = E->getComponent(i);
1451    llvm::Value *Offset = 0;
1452    switch (ON.getKind()) {
1453    case OffsetOfExpr::OffsetOfNode::Array: {
1454      // Compute the index
1455      Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
1456      llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
1457      bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
1458      Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
1459
1460      // Save the element type
1461      CurrentType =
1462          CGF.getContext().getAsArrayType(CurrentType)->getElementType();
1463
1464      // Compute the element size
1465      llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
1466          CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
1467
1468      // Multiply out to compute the result
1469      Offset = Builder.CreateMul(Idx, ElemSize);
1470      break;
1471    }
1472
1473    case OffsetOfExpr::OffsetOfNode::Field: {
1474      FieldDecl *MemberDecl = ON.getField();
1475      RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1476      const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1477
1478      // Compute the index of the field in its parent.
1479      unsigned i = 0;
1480      // FIXME: It would be nice if we didn't have to loop here!
1481      for (RecordDecl::field_iterator Field = RD->field_begin(),
1482                                      FieldEnd = RD->field_end();
1483           Field != FieldEnd; (void)++Field, ++i) {
1484        if (*Field == MemberDecl)
1485          break;
1486      }
1487      assert(i < RL.getFieldCount() && "offsetof field in wrong type");
1488
1489      // Compute the offset to the field
1490      int64_t OffsetInt = RL.getFieldOffset(i) /
1491                          CGF.getContext().getCharWidth();
1492      Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
1493
1494      // Save the element type.
1495      CurrentType = MemberDecl->getType();
1496      break;
1497    }
1498
1499    case OffsetOfExpr::OffsetOfNode::Identifier:
1500      llvm_unreachable("dependent __builtin_offsetof");
1501
1502    case OffsetOfExpr::OffsetOfNode::Base: {
1503      if (ON.getBase()->isVirtual()) {
1504        CGF.ErrorUnsupported(E, "virtual base in offsetof");
1505        continue;
1506      }
1507
1508      RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1509      const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1510
1511      // Save the element type.
1512      CurrentType = ON.getBase()->getType();
1513
1514      // Compute the offset to the base.
1515      const RecordType *BaseRT = CurrentType->getAs<RecordType>();
1516      CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
1517      int64_t OffsetInt = RL.getBaseClassOffsetInBits(BaseRD) /
1518                          CGF.getContext().getCharWidth();
1519      Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
1520      break;
1521    }
1522    }
1523    Result = Builder.CreateAdd(Result, Offset);
1524  }
1525  return Result;
1526}
1527
1528/// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
1529/// argument of the sizeof expression as an integer.
1530Value *
1531ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
1532                              const UnaryExprOrTypeTraitExpr *E) {
1533  QualType TypeToSize = E->getTypeOfArgument();
1534  if (E->getKind() == UETT_SizeOf) {
1535    if (const VariableArrayType *VAT =
1536          CGF.getContext().getAsVariableArrayType(TypeToSize)) {
1537      if (E->isArgumentType()) {
1538        // sizeof(type) - make sure to emit the VLA size.
1539        CGF.EmitVariablyModifiedType(TypeToSize);
1540      } else {
1541        // C99 6.5.3.4p2: If the argument is an expression of type
1542        // VLA, it is evaluated.
1543        CGF.EmitIgnoredExpr(E->getArgumentExpr());
1544      }
1545
1546      QualType eltType;
1547      llvm::Value *numElts;
1548      llvm::tie(numElts, eltType) = CGF.getVLASize(VAT);
1549
1550      llvm::Value *size = numElts;
1551
1552      // Scale the number of non-VLA elements by the non-VLA element size.
1553      CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
1554      if (!eltSize.isOne())
1555        size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), numElts);
1556
1557      return size;
1558    }
1559  }
1560
1561  // If this isn't sizeof(vla), the result must be constant; use the constant
1562  // folding logic so we don't have to duplicate it here.
1563  Expr::EvalResult Result;
1564  E->Evaluate(Result, CGF.getContext());
1565  return Builder.getInt(Result.Val.getInt());
1566}
1567
1568Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
1569  Expr *Op = E->getSubExpr();
1570  if (Op->getType()->isAnyComplexType()) {
1571    // If it's an l-value, load through the appropriate subobject l-value.
1572    // Note that we have to ask E because Op might be an l-value that
1573    // this won't work for, e.g. an Obj-C property.
1574    if (E->isGLValue())
1575      return CGF.EmitLoadOfLValue(CGF.EmitLValue(E)).getScalarVal();
1576
1577    // Otherwise, calculate and project.
1578    return CGF.EmitComplexExpr(Op, false, true).first;
1579  }
1580
1581  return Visit(Op);
1582}
1583
1584Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
1585  Expr *Op = E->getSubExpr();
1586  if (Op->getType()->isAnyComplexType()) {
1587    // If it's an l-value, load through the appropriate subobject l-value.
1588    // Note that we have to ask E because Op might be an l-value that
1589    // this won't work for, e.g. an Obj-C property.
1590    if (Op->isGLValue())
1591      return CGF.EmitLoadOfLValue(CGF.EmitLValue(E)).getScalarVal();
1592
1593    // Otherwise, calculate and project.
1594    return CGF.EmitComplexExpr(Op, true, false).second;
1595  }
1596
1597  // __imag on a scalar returns zero.  Emit the subexpr to ensure side
1598  // effects are evaluated, but not the actual value.
1599  CGF.EmitScalarExpr(Op, true);
1600  return llvm::Constant::getNullValue(ConvertType(E->getType()));
1601}
1602
1603//===----------------------------------------------------------------------===//
1604//                           Binary Operators
1605//===----------------------------------------------------------------------===//
1606
1607BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
1608  TestAndClearIgnoreResultAssign();
1609  BinOpInfo Result;
1610  Result.LHS = Visit(E->getLHS());
1611  Result.RHS = Visit(E->getRHS());
1612  Result.Ty  = E->getType();
1613  Result.Opcode = E->getOpcode();
1614  Result.E = E;
1615  return Result;
1616}
1617
1618LValue ScalarExprEmitter::EmitCompoundAssignLValue(
1619                                              const CompoundAssignOperator *E,
1620                        Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
1621                                                   Value *&Result) {
1622  QualType LHSTy = E->getLHS()->getType();
1623  BinOpInfo OpInfo;
1624
1625  if (E->getComputationResultType()->isAnyComplexType()) {
1626    // This needs to go through the complex expression emitter, but it's a tad
1627    // complicated to do that... I'm leaving it out for now.  (Note that we do
1628    // actually need the imaginary part of the RHS for multiplication and
1629    // division.)
1630    CGF.ErrorUnsupported(E, "complex compound assignment");
1631    Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1632    return LValue();
1633  }
1634
1635  // Emit the RHS first.  __block variables need to have the rhs evaluated
1636  // first, plus this should improve codegen a little.
1637  OpInfo.RHS = Visit(E->getRHS());
1638  OpInfo.Ty = E->getComputationResultType();
1639  OpInfo.Opcode = E->getOpcode();
1640  OpInfo.E = E;
1641  // Load/convert the LHS.
1642  LValue LHSLV = EmitCheckedLValue(E->getLHS());
1643  OpInfo.LHS = EmitLoadOfLValue(LHSLV);
1644  OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy,
1645                                    E->getComputationLHSType());
1646
1647  // Expand the binary operator.
1648  Result = (this->*Func)(OpInfo);
1649
1650  // Convert the result back to the LHS type.
1651  Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy);
1652
1653  // Store the result value into the LHS lvalue. Bit-fields are handled
1654  // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
1655  // 'An assignment expression has the value of the left operand after the
1656  // assignment...'.
1657  if (LHSLV.isBitField())
1658    CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
1659  else
1660    CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
1661
1662  return LHSLV;
1663}
1664
1665Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
1666                      Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
1667  bool Ignore = TestAndClearIgnoreResultAssign();
1668  Value *RHS;
1669  LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
1670
1671  // If the result is clearly ignored, return now.
1672  if (Ignore)
1673    return 0;
1674
1675  // The result of an assignment in C is the assigned r-value.
1676  if (!CGF.getContext().getLangOptions().CPlusPlus)
1677    return RHS;
1678
1679  // Objective-C property assignment never reloads the value following a store.
1680  if (LHS.isPropertyRef())
1681    return RHS;
1682
1683  // If the lvalue is non-volatile, return the computed value of the assignment.
1684  if (!LHS.isVolatileQualified())
1685    return RHS;
1686
1687  // Otherwise, reload the value.
1688  return EmitLoadOfLValue(LHS);
1689}
1690
1691void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
1692     					    const BinOpInfo &Ops,
1693				     	    llvm::Value *Zero, bool isDiv) {
1694  llvm::Function::iterator insertPt = Builder.GetInsertBlock();
1695  llvm::BasicBlock *contBB =
1696    CGF.createBasicBlock(isDiv ? "div.cont" : "rem.cont", CGF.CurFn,
1697                         llvm::next(insertPt));
1698  llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
1699
1700  llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
1701
1702  if (Ops.Ty->hasSignedIntegerRepresentation()) {
1703    llvm::Value *IntMin =
1704      Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
1705    llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
1706
1707    llvm::Value *Cond1 = Builder.CreateICmpEQ(Ops.RHS, Zero);
1708    llvm::Value *LHSCmp = Builder.CreateICmpEQ(Ops.LHS, IntMin);
1709    llvm::Value *RHSCmp = Builder.CreateICmpEQ(Ops.RHS, NegOne);
1710    llvm::Value *Cond2 = Builder.CreateAnd(LHSCmp, RHSCmp, "and");
1711    Builder.CreateCondBr(Builder.CreateOr(Cond1, Cond2, "or"),
1712                         overflowBB, contBB);
1713  } else {
1714    CGF.Builder.CreateCondBr(Builder.CreateICmpEQ(Ops.RHS, Zero),
1715                             overflowBB, contBB);
1716  }
1717  EmitOverflowBB(overflowBB);
1718  Builder.SetInsertPoint(contBB);
1719}
1720
1721Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
1722  if (isTrapvOverflowBehavior()) {
1723    llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
1724
1725    if (Ops.Ty->isIntegerType())
1726      EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
1727    else if (Ops.Ty->isRealFloatingType()) {
1728      llvm::Function::iterator insertPt = Builder.GetInsertBlock();
1729      llvm::BasicBlock *DivCont = CGF.createBasicBlock("div.cont", CGF.CurFn,
1730                                                       llvm::next(insertPt));
1731      llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow",
1732                                                          CGF.CurFn);
1733      CGF.Builder.CreateCondBr(Builder.CreateFCmpOEQ(Ops.RHS, Zero),
1734                               overflowBB, DivCont);
1735      EmitOverflowBB(overflowBB);
1736      Builder.SetInsertPoint(DivCont);
1737    }
1738  }
1739  if (Ops.LHS->getType()->isFPOrFPVectorTy())
1740    return Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
1741  else if (Ops.Ty->hasUnsignedIntegerRepresentation())
1742    return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
1743  else
1744    return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
1745}
1746
1747Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
1748  // Rem in C can't be a floating point type: C99 6.5.5p2.
1749  if (isTrapvOverflowBehavior()) {
1750    llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
1751
1752    if (Ops.Ty->isIntegerType())
1753      EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
1754  }
1755
1756  if (Ops.Ty->hasUnsignedIntegerRepresentation())
1757    return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
1758  else
1759    return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
1760}
1761
1762Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
1763  unsigned IID;
1764  unsigned OpID = 0;
1765
1766  switch (Ops.Opcode) {
1767  case BO_Add:
1768  case BO_AddAssign:
1769    OpID = 1;
1770    IID = llvm::Intrinsic::sadd_with_overflow;
1771    break;
1772  case BO_Sub:
1773  case BO_SubAssign:
1774    OpID = 2;
1775    IID = llvm::Intrinsic::ssub_with_overflow;
1776    break;
1777  case BO_Mul:
1778  case BO_MulAssign:
1779    OpID = 3;
1780    IID = llvm::Intrinsic::smul_with_overflow;
1781    break;
1782  default:
1783    llvm_unreachable("Unsupported operation for overflow detection");
1784    IID = 0;
1785  }
1786  OpID <<= 1;
1787  OpID |= 1;
1788
1789  llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
1790
1791  llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
1792
1793  Value *resultAndOverflow = Builder.CreateCall2(intrinsic, Ops.LHS, Ops.RHS);
1794  Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
1795  Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
1796
1797  // Branch in case of overflow.
1798  llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
1799  llvm::Function::iterator insertPt = initialBB;
1800  llvm::BasicBlock *continueBB = CGF.createBasicBlock("nooverflow", CGF.CurFn,
1801                                                      llvm::next(insertPt));
1802  llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
1803
1804  Builder.CreateCondBr(overflow, overflowBB, continueBB);
1805
1806  // Handle overflow with llvm.trap.
1807  const std::string *handlerName =
1808    &CGF.getContext().getLangOptions().OverflowHandler;
1809  if (handlerName->empty()) {
1810    EmitOverflowBB(overflowBB);
1811    Builder.SetInsertPoint(continueBB);
1812    return result;
1813  }
1814
1815  // If an overflow handler is set, then we want to call it and then use its
1816  // result, if it returns.
1817  Builder.SetInsertPoint(overflowBB);
1818
1819  // Get the overflow handler.
1820  llvm::Type *Int8Ty = llvm::Type::getInt8Ty(VMContext);
1821  llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
1822  llvm::FunctionType *handlerTy =
1823      llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
1824  llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
1825
1826  // Sign extend the args to 64-bit, so that we can use the same handler for
1827  // all types of overflow.
1828  llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
1829  llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
1830
1831  // Call the handler with the two arguments, the operation, and the size of
1832  // the result.
1833  llvm::Value *handlerResult = Builder.CreateCall4(handler, lhs, rhs,
1834      Builder.getInt8(OpID),
1835      Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth()));
1836
1837  // Truncate the result back to the desired size.
1838  handlerResult = Builder.CreateTrunc(handlerResult, opTy);
1839  Builder.CreateBr(continueBB);
1840
1841  Builder.SetInsertPoint(continueBB);
1842  llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
1843  phi->addIncoming(result, initialBB);
1844  phi->addIncoming(handlerResult, overflowBB);
1845
1846  return phi;
1847}
1848
1849/// Emit pointer + index arithmetic.
1850static Value *emitPointerArithmetic(CodeGenFunction &CGF,
1851                                    const BinOpInfo &op,
1852                                    bool isSubtraction) {
1853  // Must have binary (not unary) expr here.  Unary pointer
1854  // increment/decrement doesn't use this path.
1855  const BinaryOperator *expr = cast<BinaryOperator>(op.E);
1856
1857  Value *pointer = op.LHS;
1858  Expr *pointerOperand = expr->getLHS();
1859  Value *index = op.RHS;
1860  Expr *indexOperand = expr->getRHS();
1861
1862  // In a subtraction, the LHS is always the pointer.
1863  if (!isSubtraction && !pointer->getType()->isPointerTy()) {
1864    std::swap(pointer, index);
1865    std::swap(pointerOperand, indexOperand);
1866  }
1867
1868  unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
1869  if (width != CGF.PointerWidthInBits) {
1870    // Zero-extend or sign-extend the pointer value according to
1871    // whether the index is signed or not.
1872    bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
1873    index = CGF.Builder.CreateIntCast(index, CGF.PtrDiffTy, isSigned,
1874                                      "idx.ext");
1875  }
1876
1877  // If this is subtraction, negate the index.
1878  if (isSubtraction)
1879    index = CGF.Builder.CreateNeg(index, "idx.neg");
1880
1881  const PointerType *pointerType
1882    = pointerOperand->getType()->getAs<PointerType>();
1883  if (!pointerType) {
1884    QualType objectType = pointerOperand->getType()
1885                                        ->castAs<ObjCObjectPointerType>()
1886                                        ->getPointeeType();
1887    llvm::Value *objectSize
1888      = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
1889
1890    index = CGF.Builder.CreateMul(index, objectSize);
1891
1892    Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
1893    result = CGF.Builder.CreateGEP(result, index, "add.ptr");
1894    return CGF.Builder.CreateBitCast(result, pointer->getType());
1895  }
1896
1897  QualType elementType = pointerType->getPointeeType();
1898  if (const VariableArrayType *vla
1899        = CGF.getContext().getAsVariableArrayType(elementType)) {
1900    // The element count here is the total number of non-VLA elements.
1901    llvm::Value *numElements = CGF.getVLASize(vla).first;
1902
1903    // Effectively, the multiply by the VLA size is part of the GEP.
1904    // GEP indexes are signed, and scaling an index isn't permitted to
1905    // signed-overflow, so we use the same semantics for our explicit
1906    // multiply.  We suppress this if overflow is not undefined behavior.
1907    if (CGF.getLangOptions().isSignedOverflowDefined()) {
1908      index = CGF.Builder.CreateMul(index, numElements, "vla.index");
1909      pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
1910    } else {
1911      index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
1912      pointer = CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
1913    }
1914    return pointer;
1915  }
1916
1917  // Explicitly handle GNU void* and function pointer arithmetic extensions. The
1918  // GNU void* casts amount to no-ops since our void* type is i8*, but this is
1919  // future proof.
1920  if (elementType->isVoidType() || elementType->isFunctionType()) {
1921    Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
1922    result = CGF.Builder.CreateGEP(result, index, "add.ptr");
1923    return CGF.Builder.CreateBitCast(result, pointer->getType());
1924  }
1925
1926  if (CGF.getLangOptions().isSignedOverflowDefined())
1927    return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
1928
1929  return CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
1930}
1931
1932Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
1933  if (op.LHS->getType()->isPointerTy() ||
1934      op.RHS->getType()->isPointerTy())
1935    return emitPointerArithmetic(CGF, op, /*subtraction*/ false);
1936
1937  if (op.Ty->isSignedIntegerOrEnumerationType()) {
1938    switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
1939    case LangOptions::SOB_Undefined:
1940      return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
1941    case LangOptions::SOB_Defined:
1942      return Builder.CreateAdd(op.LHS, op.RHS, "add");
1943    case LangOptions::SOB_Trapping:
1944      return EmitOverflowCheckedBinOp(op);
1945    }
1946  }
1947
1948  if (op.LHS->getType()->isFPOrFPVectorTy())
1949    return Builder.CreateFAdd(op.LHS, op.RHS, "add");
1950
1951  return Builder.CreateAdd(op.LHS, op.RHS, "add");
1952}
1953
1954Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
1955  // The LHS is always a pointer if either side is.
1956  if (!op.LHS->getType()->isPointerTy()) {
1957    if (op.Ty->isSignedIntegerOrEnumerationType()) {
1958      switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
1959      case LangOptions::SOB_Undefined:
1960        return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
1961      case LangOptions::SOB_Defined:
1962        return Builder.CreateSub(op.LHS, op.RHS, "sub");
1963      case LangOptions::SOB_Trapping:
1964        return EmitOverflowCheckedBinOp(op);
1965      }
1966    }
1967
1968    if (op.LHS->getType()->isFPOrFPVectorTy())
1969      return Builder.CreateFSub(op.LHS, op.RHS, "sub");
1970
1971    return Builder.CreateSub(op.LHS, op.RHS, "sub");
1972  }
1973
1974  // If the RHS is not a pointer, then we have normal pointer
1975  // arithmetic.
1976  if (!op.RHS->getType()->isPointerTy())
1977    return emitPointerArithmetic(CGF, op, /*subtraction*/ true);
1978
1979  // Otherwise, this is a pointer subtraction.
1980
1981  // Do the raw subtraction part.
1982  llvm::Value *LHS
1983    = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
1984  llvm::Value *RHS
1985    = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
1986  Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
1987
1988  // Okay, figure out the element size.
1989  const BinaryOperator *expr = cast<BinaryOperator>(op.E);
1990  QualType elementType = expr->getLHS()->getType()->getPointeeType();
1991
1992  llvm::Value *divisor = 0;
1993
1994  // For a variable-length array, this is going to be non-constant.
1995  if (const VariableArrayType *vla
1996        = CGF.getContext().getAsVariableArrayType(elementType)) {
1997    llvm::Value *numElements;
1998    llvm::tie(numElements, elementType) = CGF.getVLASize(vla);
1999
2000    divisor = numElements;
2001
2002    // Scale the number of non-VLA elements by the non-VLA element size.
2003    CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
2004    if (!eltSize.isOne())
2005      divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
2006
2007  // For everything elese, we can just compute it, safe in the
2008  // assumption that Sema won't let anything through that we can't
2009  // safely compute the size of.
2010  } else {
2011    CharUnits elementSize;
2012    // Handle GCC extension for pointer arithmetic on void* and
2013    // function pointer types.
2014    if (elementType->isVoidType() || elementType->isFunctionType())
2015      elementSize = CharUnits::One();
2016    else
2017      elementSize = CGF.getContext().getTypeSizeInChars(elementType);
2018
2019    // Don't even emit the divide for element size of 1.
2020    if (elementSize.isOne())
2021      return diffInChars;
2022
2023    divisor = CGF.CGM.getSize(elementSize);
2024  }
2025
2026  // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
2027  // pointer difference in C is only defined in the case where both operands
2028  // are pointing to elements of an array.
2029  return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
2030}
2031
2032Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
2033  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2034  // RHS to the same size as the LHS.
2035  Value *RHS = Ops.RHS;
2036  if (Ops.LHS->getType() != RHS->getType())
2037    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2038
2039  if (CGF.CatchUndefined
2040      && isa<llvm::IntegerType>(Ops.LHS->getType())) {
2041    unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth();
2042    llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
2043    CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS,
2044                                 llvm::ConstantInt::get(RHS->getType(), Width)),
2045                             Cont, CGF.getTrapBB());
2046    CGF.EmitBlock(Cont);
2047  }
2048
2049  return Builder.CreateShl(Ops.LHS, RHS, "shl");
2050}
2051
2052Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
2053  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2054  // RHS to the same size as the LHS.
2055  Value *RHS = Ops.RHS;
2056  if (Ops.LHS->getType() != RHS->getType())
2057    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2058
2059  if (CGF.CatchUndefined
2060      && isa<llvm::IntegerType>(Ops.LHS->getType())) {
2061    unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth();
2062    llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
2063    CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS,
2064                                 llvm::ConstantInt::get(RHS->getType(), Width)),
2065                             Cont, CGF.getTrapBB());
2066    CGF.EmitBlock(Cont);
2067  }
2068
2069  if (Ops.Ty->hasUnsignedIntegerRepresentation())
2070    return Builder.CreateLShr(Ops.LHS, RHS, "shr");
2071  return Builder.CreateAShr(Ops.LHS, RHS, "shr");
2072}
2073
2074enum IntrinsicType { VCMPEQ, VCMPGT };
2075// return corresponding comparison intrinsic for given vector type
2076static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
2077                                        BuiltinType::Kind ElemKind) {
2078  switch (ElemKind) {
2079  default: llvm_unreachable("unexpected element type");
2080  case BuiltinType::Char_U:
2081  case BuiltinType::UChar:
2082    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2083                            llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
2084    break;
2085  case BuiltinType::Char_S:
2086  case BuiltinType::SChar:
2087    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2088                            llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
2089    break;
2090  case BuiltinType::UShort:
2091    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2092                            llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
2093    break;
2094  case BuiltinType::Short:
2095    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2096                            llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
2097    break;
2098  case BuiltinType::UInt:
2099  case BuiltinType::ULong:
2100    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2101                            llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
2102    break;
2103  case BuiltinType::Int:
2104  case BuiltinType::Long:
2105    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2106                            llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
2107    break;
2108  case BuiltinType::Float:
2109    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
2110                            llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
2111    break;
2112  }
2113  return llvm::Intrinsic::not_intrinsic;
2114}
2115
2116Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
2117                                      unsigned SICmpOpc, unsigned FCmpOpc) {
2118  TestAndClearIgnoreResultAssign();
2119  Value *Result;
2120  QualType LHSTy = E->getLHS()->getType();
2121  if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
2122    assert(E->getOpcode() == BO_EQ ||
2123           E->getOpcode() == BO_NE);
2124    Value *LHS = CGF.EmitScalarExpr(E->getLHS());
2125    Value *RHS = CGF.EmitScalarExpr(E->getRHS());
2126    Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
2127                   CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
2128  } else if (!LHSTy->isAnyComplexType()) {
2129    Value *LHS = Visit(E->getLHS());
2130    Value *RHS = Visit(E->getRHS());
2131
2132    // If AltiVec, the comparison results in a numeric type, so we use
2133    // intrinsics comparing vectors and giving 0 or 1 as a result
2134    if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
2135      // constants for mapping CR6 register bits to predicate result
2136      enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
2137
2138      llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
2139
2140      // in several cases vector arguments order will be reversed
2141      Value *FirstVecArg = LHS,
2142            *SecondVecArg = RHS;
2143
2144      QualType ElTy = LHSTy->getAs<VectorType>()->getElementType();
2145      const BuiltinType *BTy = ElTy->getAs<BuiltinType>();
2146      BuiltinType::Kind ElementKind = BTy->getKind();
2147
2148      switch(E->getOpcode()) {
2149      default: llvm_unreachable("is not a comparison operation");
2150      case BO_EQ:
2151        CR6 = CR6_LT;
2152        ID = GetIntrinsic(VCMPEQ, ElementKind);
2153        break;
2154      case BO_NE:
2155        CR6 = CR6_EQ;
2156        ID = GetIntrinsic(VCMPEQ, ElementKind);
2157        break;
2158      case BO_LT:
2159        CR6 = CR6_LT;
2160        ID = GetIntrinsic(VCMPGT, ElementKind);
2161        std::swap(FirstVecArg, SecondVecArg);
2162        break;
2163      case BO_GT:
2164        CR6 = CR6_LT;
2165        ID = GetIntrinsic(VCMPGT, ElementKind);
2166        break;
2167      case BO_LE:
2168        if (ElementKind == BuiltinType::Float) {
2169          CR6 = CR6_LT;
2170          ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2171          std::swap(FirstVecArg, SecondVecArg);
2172        }
2173        else {
2174          CR6 = CR6_EQ;
2175          ID = GetIntrinsic(VCMPGT, ElementKind);
2176        }
2177        break;
2178      case BO_GE:
2179        if (ElementKind == BuiltinType::Float) {
2180          CR6 = CR6_LT;
2181          ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2182        }
2183        else {
2184          CR6 = CR6_EQ;
2185          ID = GetIntrinsic(VCMPGT, ElementKind);
2186          std::swap(FirstVecArg, SecondVecArg);
2187        }
2188        break;
2189      }
2190
2191      Value *CR6Param = Builder.getInt32(CR6);
2192      llvm::Function *F = CGF.CGM.getIntrinsic(ID);
2193      Result = Builder.CreateCall3(F, CR6Param, FirstVecArg, SecondVecArg, "");
2194      return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
2195    }
2196
2197    if (LHS->getType()->isFPOrFPVectorTy()) {
2198      Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
2199                                  LHS, RHS, "cmp");
2200    } else if (LHSTy->hasSignedIntegerRepresentation()) {
2201      Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
2202                                  LHS, RHS, "cmp");
2203    } else {
2204      // Unsigned integers and pointers.
2205      Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2206                                  LHS, RHS, "cmp");
2207    }
2208
2209    // If this is a vector comparison, sign extend the result to the appropriate
2210    // vector integer type and return it (don't convert to bool).
2211    if (LHSTy->isVectorType())
2212      return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2213
2214  } else {
2215    // Complex Comparison: can only be an equality comparison.
2216    CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS());
2217    CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS());
2218
2219    QualType CETy = LHSTy->getAs<ComplexType>()->getElementType();
2220
2221    Value *ResultR, *ResultI;
2222    if (CETy->isRealFloatingType()) {
2223      ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
2224                                   LHS.first, RHS.first, "cmp.r");
2225      ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
2226                                   LHS.second, RHS.second, "cmp.i");
2227    } else {
2228      // Complex comparisons can only be equality comparisons.  As such, signed
2229      // and unsigned opcodes are the same.
2230      ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2231                                   LHS.first, RHS.first, "cmp.r");
2232      ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2233                                   LHS.second, RHS.second, "cmp.i");
2234    }
2235
2236    if (E->getOpcode() == BO_EQ) {
2237      Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
2238    } else {
2239      assert(E->getOpcode() == BO_NE &&
2240             "Complex comparison other than == or != ?");
2241      Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
2242    }
2243  }
2244
2245  return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
2246}
2247
2248Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
2249  bool Ignore = TestAndClearIgnoreResultAssign();
2250
2251  Value *RHS;
2252  LValue LHS;
2253
2254  switch (E->getLHS()->getType().getObjCLifetime()) {
2255  case Qualifiers::OCL_Strong:
2256    llvm::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
2257    break;
2258
2259  case Qualifiers::OCL_Autoreleasing:
2260    llvm::tie(LHS,RHS) = CGF.EmitARCStoreAutoreleasing(E);
2261    break;
2262
2263  case Qualifiers::OCL_Weak:
2264    RHS = Visit(E->getRHS());
2265    LHS = EmitCheckedLValue(E->getLHS());
2266    RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore);
2267    break;
2268
2269  // No reason to do any of these differently.
2270  case Qualifiers::OCL_None:
2271  case Qualifiers::OCL_ExplicitNone:
2272    // __block variables need to have the rhs evaluated first, plus
2273    // this should improve codegen just a little.
2274    RHS = Visit(E->getRHS());
2275    LHS = EmitCheckedLValue(E->getLHS());
2276
2277    // Store the value into the LHS.  Bit-fields are handled specially
2278    // because the result is altered by the store, i.e., [C99 6.5.16p1]
2279    // 'An assignment expression has the value of the left operand after
2280    // the assignment...'.
2281    if (LHS.isBitField())
2282      CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
2283    else
2284      CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
2285  }
2286
2287  // If the result is clearly ignored, return now.
2288  if (Ignore)
2289    return 0;
2290
2291  // The result of an assignment in C is the assigned r-value.
2292  if (!CGF.getContext().getLangOptions().CPlusPlus)
2293    return RHS;
2294
2295  // Objective-C property assignment never reloads the value following a store.
2296  if (LHS.isPropertyRef())
2297    return RHS;
2298
2299  // If the lvalue is non-volatile, return the computed value of the assignment.
2300  if (!LHS.isVolatileQualified())
2301    return RHS;
2302
2303  // Otherwise, reload the value.
2304  return EmitLoadOfLValue(LHS);
2305}
2306
2307Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
2308  llvm::Type *ResTy = ConvertType(E->getType());
2309
2310  // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
2311  // If we have 1 && X, just emit X without inserting the control flow.
2312  bool LHSCondVal;
2313  if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
2314    if (LHSCondVal) { // If we have 1 && X, just emit X.
2315      Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2316      // ZExt result to int or bool.
2317      return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
2318    }
2319
2320    // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
2321    if (!CGF.ContainsLabel(E->getRHS()))
2322      return llvm::Constant::getNullValue(ResTy);
2323  }
2324
2325  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
2326  llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
2327
2328  CodeGenFunction::ConditionalEvaluation eval(CGF);
2329
2330  // Branch on the LHS first.  If it is false, go to the failure (cont) block.
2331  CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock);
2332
2333  // Any edges into the ContBlock are now from an (indeterminate number of)
2334  // edges from this first condition.  All of these values will be false.  Start
2335  // setting up the PHI node in the Cont Block for this.
2336  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
2337                                            "", ContBlock);
2338  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
2339       PI != PE; ++PI)
2340    PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
2341
2342  eval.begin(CGF);
2343  CGF.EmitBlock(RHSBlock);
2344  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2345  eval.end(CGF);
2346
2347  // Reaquire the RHS block, as there may be subblocks inserted.
2348  RHSBlock = Builder.GetInsertBlock();
2349
2350  // Emit an unconditional branch from this block to ContBlock.  Insert an entry
2351  // into the phi node for the edge with the value of RHSCond.
2352  if (CGF.getDebugInfo())
2353    // There is no need to emit line number for unconditional branch.
2354    Builder.SetCurrentDebugLocation(llvm::DebugLoc());
2355  CGF.EmitBlock(ContBlock);
2356  PN->addIncoming(RHSCond, RHSBlock);
2357
2358  // ZExt result to int.
2359  return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
2360}
2361
2362Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
2363  llvm::Type *ResTy = ConvertType(E->getType());
2364
2365  // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
2366  // If we have 0 || X, just emit X without inserting the control flow.
2367  bool LHSCondVal;
2368  if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
2369    if (!LHSCondVal) { // If we have 0 || X, just emit X.
2370      Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2371      // ZExt result to int or bool.
2372      return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
2373    }
2374
2375    // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
2376    if (!CGF.ContainsLabel(E->getRHS()))
2377      return llvm::ConstantInt::get(ResTy, 1);
2378  }
2379
2380  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
2381  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
2382
2383  CodeGenFunction::ConditionalEvaluation eval(CGF);
2384
2385  // Branch on the LHS first.  If it is true, go to the success (cont) block.
2386  CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock);
2387
2388  // Any edges into the ContBlock are now from an (indeterminate number of)
2389  // edges from this first condition.  All of these values will be true.  Start
2390  // setting up the PHI node in the Cont Block for this.
2391  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
2392                                            "", ContBlock);
2393  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
2394       PI != PE; ++PI)
2395    PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
2396
2397  eval.begin(CGF);
2398
2399  // Emit the RHS condition as a bool value.
2400  CGF.EmitBlock(RHSBlock);
2401  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2402
2403  eval.end(CGF);
2404
2405  // Reaquire the RHS block, as there may be subblocks inserted.
2406  RHSBlock = Builder.GetInsertBlock();
2407
2408  // Emit an unconditional branch from this block to ContBlock.  Insert an entry
2409  // into the phi node for the edge with the value of RHSCond.
2410  CGF.EmitBlock(ContBlock);
2411  PN->addIncoming(RHSCond, RHSBlock);
2412
2413  // ZExt result to int.
2414  return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
2415}
2416
2417Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
2418  CGF.EmitIgnoredExpr(E->getLHS());
2419  CGF.EnsureInsertPoint();
2420  return Visit(E->getRHS());
2421}
2422
2423//===----------------------------------------------------------------------===//
2424//                             Other Operators
2425//===----------------------------------------------------------------------===//
2426
2427/// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
2428/// expression is cheap enough and side-effect-free enough to evaluate
2429/// unconditionally instead of conditionally.  This is used to convert control
2430/// flow into selects in some cases.
2431static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
2432                                                   CodeGenFunction &CGF) {
2433  E = E->IgnoreParens();
2434
2435  // Anything that is an integer or floating point constant is fine.
2436  if (E->isConstantInitializer(CGF.getContext(), false))
2437    return true;
2438
2439  // Non-volatile automatic variables too, to get "cond ? X : Y" where
2440  // X and Y are local variables.
2441  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
2442    if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
2443      if (VD->hasLocalStorage() && !(CGF.getContext()
2444                                     .getCanonicalType(VD->getType())
2445                                     .isVolatileQualified()))
2446        return true;
2447
2448  return false;
2449}
2450
2451
2452Value *ScalarExprEmitter::
2453VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
2454  TestAndClearIgnoreResultAssign();
2455
2456  // Bind the common expression if necessary.
2457  CodeGenFunction::OpaqueValueMapping binding(CGF, E);
2458
2459  Expr *condExpr = E->getCond();
2460  Expr *lhsExpr = E->getTrueExpr();
2461  Expr *rhsExpr = E->getFalseExpr();
2462
2463  // If the condition constant folds and can be elided, try to avoid emitting
2464  // the condition and the dead arm.
2465  bool CondExprBool;
2466  if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
2467    Expr *live = lhsExpr, *dead = rhsExpr;
2468    if (!CondExprBool) std::swap(live, dead);
2469
2470    // If the dead side doesn't have labels we need, and if the Live side isn't
2471    // the gnu missing ?: extension (which we could handle, but don't bother
2472    // to), just emit the Live part.
2473    if (!CGF.ContainsLabel(dead))
2474      return Visit(live);
2475  }
2476
2477  // OpenCL: If the condition is a vector, we can treat this condition like
2478  // the select function.
2479  if (CGF.getContext().getLangOptions().OpenCL
2480      && condExpr->getType()->isVectorType()) {
2481    llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
2482    llvm::Value *LHS = Visit(lhsExpr);
2483    llvm::Value *RHS = Visit(rhsExpr);
2484
2485    llvm::Type *condType = ConvertType(condExpr->getType());
2486    llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
2487
2488    unsigned numElem = vecTy->getNumElements();
2489    llvm::Type *elemType = vecTy->getElementType();
2490
2491    std::vector<llvm::Constant*> Zvals;
2492    for (unsigned i = 0; i < numElem; ++i)
2493      Zvals.push_back(llvm::ConstantInt::get(elemType, 0));
2494
2495    llvm::Value *zeroVec = llvm::ConstantVector::get(Zvals);
2496    llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
2497    llvm::Value *tmp = Builder.CreateSExt(TestMSB,
2498                                          llvm::VectorType::get(elemType,
2499                                                                numElem),
2500                                          "sext");
2501    llvm::Value *tmp2 = Builder.CreateNot(tmp);
2502
2503    // Cast float to int to perform ANDs if necessary.
2504    llvm::Value *RHSTmp = RHS;
2505    llvm::Value *LHSTmp = LHS;
2506    bool wasCast = false;
2507    llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
2508    if (rhsVTy->getElementType()->isFloatTy()) {
2509      RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
2510      LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
2511      wasCast = true;
2512    }
2513
2514    llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
2515    llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
2516    llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
2517    if (wasCast)
2518      tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
2519
2520    return tmp5;
2521  }
2522
2523  // If this is a really simple expression (like x ? 4 : 5), emit this as a
2524  // select instead of as control flow.  We can only do this if it is cheap and
2525  // safe to evaluate the LHS and RHS unconditionally.
2526  if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
2527      isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
2528    llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
2529    llvm::Value *LHS = Visit(lhsExpr);
2530    llvm::Value *RHS = Visit(rhsExpr);
2531    return Builder.CreateSelect(CondV, LHS, RHS, "cond");
2532  }
2533
2534  llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
2535  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
2536  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
2537
2538  CodeGenFunction::ConditionalEvaluation eval(CGF);
2539  CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock);
2540
2541  CGF.EmitBlock(LHSBlock);
2542  eval.begin(CGF);
2543  Value *LHS = Visit(lhsExpr);
2544  eval.end(CGF);
2545
2546  LHSBlock = Builder.GetInsertBlock();
2547  Builder.CreateBr(ContBlock);
2548
2549  CGF.EmitBlock(RHSBlock);
2550  eval.begin(CGF);
2551  Value *RHS = Visit(rhsExpr);
2552  eval.end(CGF);
2553
2554  RHSBlock = Builder.GetInsertBlock();
2555  CGF.EmitBlock(ContBlock);
2556
2557  // If the LHS or RHS is a throw expression, it will be legitimately null.
2558  if (!LHS)
2559    return RHS;
2560  if (!RHS)
2561    return LHS;
2562
2563  // Create a PHI node for the real part.
2564  llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
2565  PN->addIncoming(LHS, LHSBlock);
2566  PN->addIncoming(RHS, RHSBlock);
2567  return PN;
2568}
2569
2570Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
2571  return Visit(E->getChosenSubExpr(CGF.getContext()));
2572}
2573
2574Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
2575  llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
2576  llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
2577
2578  // If EmitVAArg fails, we fall back to the LLVM instruction.
2579  if (!ArgPtr)
2580    return Builder.CreateVAArg(ArgValue, ConvertType(VE->getType()));
2581
2582  // FIXME Volatility.
2583  return Builder.CreateLoad(ArgPtr);
2584}
2585
2586Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
2587  return CGF.EmitBlockLiteral(block);
2588}
2589
2590Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
2591  Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
2592  llvm::Type *DstTy = ConvertType(E->getType());
2593
2594  // Going from vec4->vec3 or vec3->vec4 is a special case and requires
2595  // a shuffle vector instead of a bitcast.
2596  llvm::Type *SrcTy = Src->getType();
2597  if (isa<llvm::VectorType>(DstTy) && isa<llvm::VectorType>(SrcTy)) {
2598    unsigned numElementsDst = cast<llvm::VectorType>(DstTy)->getNumElements();
2599    unsigned numElementsSrc = cast<llvm::VectorType>(SrcTy)->getNumElements();
2600    if ((numElementsDst == 3 && numElementsSrc == 4)
2601        || (numElementsDst == 4 && numElementsSrc == 3)) {
2602
2603
2604      // In the case of going from int4->float3, a bitcast is needed before
2605      // doing a shuffle.
2606      llvm::Type *srcElemTy =
2607      cast<llvm::VectorType>(SrcTy)->getElementType();
2608      llvm::Type *dstElemTy =
2609      cast<llvm::VectorType>(DstTy)->getElementType();
2610
2611      if ((srcElemTy->isIntegerTy() && dstElemTy->isFloatTy())
2612          || (srcElemTy->isFloatTy() && dstElemTy->isIntegerTy())) {
2613        // Create a float type of the same size as the source or destination.
2614        llvm::VectorType *newSrcTy = llvm::VectorType::get(dstElemTy,
2615                                                                 numElementsSrc);
2616
2617        Src = Builder.CreateBitCast(Src, newSrcTy, "astypeCast");
2618      }
2619
2620      llvm::Value *UnV = llvm::UndefValue::get(Src->getType());
2621
2622      SmallVector<llvm::Constant*, 3> Args;
2623      Args.push_back(Builder.getInt32(0));
2624      Args.push_back(Builder.getInt32(1));
2625      Args.push_back(Builder.getInt32(2));
2626
2627      if (numElementsDst == 4)
2628        Args.push_back(llvm::UndefValue::get(
2629                                             llvm::Type::getInt32Ty(CGF.getLLVMContext())));
2630
2631      llvm::Constant *Mask = llvm::ConstantVector::get(Args);
2632
2633      return Builder.CreateShuffleVector(Src, UnV, Mask, "astype");
2634    }
2635  }
2636
2637  return Builder.CreateBitCast(Src, DstTy, "astype");
2638}
2639
2640//===----------------------------------------------------------------------===//
2641//                         Entry Point into this File
2642//===----------------------------------------------------------------------===//
2643
2644/// EmitScalarExpr - Emit the computation of the specified expression of scalar
2645/// type, ignoring the result.
2646Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
2647  assert(E && !hasAggregateLLVMType(E->getType()) &&
2648         "Invalid scalar expression to emit");
2649
2650  if (isa<CXXDefaultArgExpr>(E))
2651    disableDebugInfo();
2652  Value *V = ScalarExprEmitter(*this, IgnoreResultAssign)
2653    .Visit(const_cast<Expr*>(E));
2654  if (isa<CXXDefaultArgExpr>(E))
2655    enableDebugInfo();
2656  return V;
2657}
2658
2659/// EmitScalarConversion - Emit a conversion from the specified type to the
2660/// specified destination type, both of which are LLVM scalar types.
2661Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
2662                                             QualType DstTy) {
2663  assert(!hasAggregateLLVMType(SrcTy) && !hasAggregateLLVMType(DstTy) &&
2664         "Invalid scalar expression to emit");
2665  return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
2666}
2667
2668/// EmitComplexToScalarConversion - Emit a conversion from the specified complex
2669/// type to the specified destination type, where the destination type is an
2670/// LLVM scalar type.
2671Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
2672                                                      QualType SrcTy,
2673                                                      QualType DstTy) {
2674  assert(SrcTy->isAnyComplexType() && !hasAggregateLLVMType(DstTy) &&
2675         "Invalid complex -> scalar conversion");
2676  return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy,
2677                                                                DstTy);
2678}
2679
2680
2681llvm::Value *CodeGenFunction::
2682EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2683                        bool isInc, bool isPre) {
2684  return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
2685}
2686
2687LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
2688  llvm::Value *V;
2689  // object->isa or (*object).isa
2690  // Generate code as for: *(Class*)object
2691  // build Class* type
2692  llvm::Type *ClassPtrTy = ConvertType(E->getType());
2693
2694  Expr *BaseExpr = E->getBase();
2695  if (BaseExpr->isRValue()) {
2696    V = CreateTempAlloca(ClassPtrTy, "resval");
2697    llvm::Value *Src = EmitScalarExpr(BaseExpr);
2698    Builder.CreateStore(Src, V);
2699    V = ScalarExprEmitter(*this).EmitLoadOfLValue(
2700      MakeAddrLValue(V, E->getType()));
2701  } else {
2702    if (E->isArrow())
2703      V = ScalarExprEmitter(*this).EmitLoadOfLValue(BaseExpr);
2704    else
2705      V = EmitLValue(BaseExpr).getAddress();
2706  }
2707
2708  // build Class* type
2709  ClassPtrTy = ClassPtrTy->getPointerTo();
2710  V = Builder.CreateBitCast(V, ClassPtrTy);
2711  return MakeAddrLValue(V, E->getType());
2712}
2713
2714
2715LValue CodeGenFunction::EmitCompoundAssignmentLValue(
2716                                            const CompoundAssignOperator *E) {
2717  ScalarExprEmitter Scalar(*this);
2718  Value *Result = 0;
2719  switch (E->getOpcode()) {
2720#define COMPOUND_OP(Op)                                                       \
2721    case BO_##Op##Assign:                                                     \
2722      return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
2723                                             Result)
2724  COMPOUND_OP(Mul);
2725  COMPOUND_OP(Div);
2726  COMPOUND_OP(Rem);
2727  COMPOUND_OP(Add);
2728  COMPOUND_OP(Sub);
2729  COMPOUND_OP(Shl);
2730  COMPOUND_OP(Shr);
2731  COMPOUND_OP(And);
2732  COMPOUND_OP(Xor);
2733  COMPOUND_OP(Or);
2734#undef COMPOUND_OP
2735
2736  case BO_PtrMemD:
2737  case BO_PtrMemI:
2738  case BO_Mul:
2739  case BO_Div:
2740  case BO_Rem:
2741  case BO_Add:
2742  case BO_Sub:
2743  case BO_Shl:
2744  case BO_Shr:
2745  case BO_LT:
2746  case BO_GT:
2747  case BO_LE:
2748  case BO_GE:
2749  case BO_EQ:
2750  case BO_NE:
2751  case BO_And:
2752  case BO_Xor:
2753  case BO_Or:
2754  case BO_LAnd:
2755  case BO_LOr:
2756  case BO_Assign:
2757  case BO_Comma:
2758    llvm_unreachable("Not valid compound assignment operators");
2759  }
2760
2761  llvm_unreachable("Unhandled compound assignment operator");
2762}
2763