CGExprScalar.cpp revision 3498bdb9e9cb300de74c7b51c92608e2902b2348
1//===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenFunction.h"
15#include "CodeGenModule.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/RecordLayout.h"
19#include "clang/AST/StmtVisitor.h"
20#include "clang/Basic/TargetInfo.h"
21#include "llvm/Constants.h"
22#include "llvm/Function.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/Intrinsics.h"
25#include "llvm/Support/Compiler.h"
26#include "llvm/Support/CFG.h"
27#include <cstdarg>
28
29using namespace clang;
30using namespace CodeGen;
31using llvm::Value;
32
33//===----------------------------------------------------------------------===//
34//                         Scalar Expression Emitter
35//===----------------------------------------------------------------------===//
36
37struct BinOpInfo {
38  Value *LHS;
39  Value *RHS;
40  QualType Ty;  // Computation Type.
41  const BinaryOperator *E;
42};
43
44namespace {
45class VISIBILITY_HIDDEN ScalarExprEmitter
46  : public StmtVisitor<ScalarExprEmitter, Value*> {
47  CodeGenFunction &CGF;
48  CGBuilderTy &Builder;
49
50public:
51
52  ScalarExprEmitter(CodeGenFunction &cgf) : CGF(cgf),
53    Builder(CGF.Builder) {
54  }
55
56  //===--------------------------------------------------------------------===//
57  //                               Utilities
58  //===--------------------------------------------------------------------===//
59
60  const llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
61  LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
62
63  Value *EmitLoadOfLValue(LValue LV, QualType T) {
64    return CGF.EmitLoadOfLValue(LV, T).getScalarVal();
65  }
66
67  /// EmitLoadOfLValue - Given an expression with complex type that represents a
68  /// value l-value, this method emits the address of the l-value, then loads
69  /// and returns the result.
70  Value *EmitLoadOfLValue(const Expr *E) {
71    // FIXME: Volatile
72    return EmitLoadOfLValue(EmitLValue(E), E->getType());
73  }
74
75  /// EmitConversionToBool - Convert the specified expression value to a
76  /// boolean (i1) truth value.  This is equivalent to "Val != 0".
77  Value *EmitConversionToBool(Value *Src, QualType DstTy);
78
79  /// EmitScalarConversion - Emit a conversion from the specified type to the
80  /// specified destination type, both of which are LLVM scalar types.
81  Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);
82
83  /// EmitComplexToScalarConversion - Emit a conversion from the specified
84  /// complex type to the specified destination type, where the destination
85  /// type is an LLVM scalar type.
86  Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
87                                       QualType SrcTy, QualType DstTy);
88
89  //===--------------------------------------------------------------------===//
90  //                            Visitor Methods
91  //===--------------------------------------------------------------------===//
92
93  Value *VisitStmt(Stmt *S) {
94    S->dump(CGF.getContext().getSourceManager());
95    assert(0 && "Stmt can't have complex result type!");
96    return 0;
97  }
98  Value *VisitExpr(Expr *S);
99  Value *VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr()); }
100
101  // Leaves.
102  Value *VisitIntegerLiteral(const IntegerLiteral *E) {
103    return llvm::ConstantInt::get(E->getValue());
104  }
105  Value *VisitFloatingLiteral(const FloatingLiteral *E) {
106    return llvm::ConstantFP::get(E->getValue());
107  }
108  Value *VisitCharacterLiteral(const CharacterLiteral *E) {
109    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
110  }
111  Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
112    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
113  }
114  Value *VisitCXXZeroInitValueExpr(const CXXZeroInitValueExpr *E) {
115    return llvm::Constant::getNullValue(ConvertType(E->getType()));
116  }
117  Value *VisitGNUNullExpr(const GNUNullExpr *E) {
118    return llvm::Constant::getNullValue(ConvertType(E->getType()));
119  }
120  Value *VisitTypesCompatibleExpr(const TypesCompatibleExpr *E) {
121    return llvm::ConstantInt::get(ConvertType(E->getType()),
122                                  CGF.getContext().typesAreCompatible(
123                                    E->getArgType1(), E->getArgType2()));
124  }
125  Value *VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E);
126  Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
127    llvm::Value *V =
128      llvm::ConstantInt::get(llvm::Type::Int32Ty,
129                             CGF.GetIDForAddrOfLabel(E->getLabel()));
130
131    return Builder.CreateIntToPtr(V, ConvertType(E->getType()));
132  }
133
134  // l-values.
135  Value *VisitDeclRefExpr(DeclRefExpr *E) {
136    if (const EnumConstantDecl *EC = dyn_cast<EnumConstantDecl>(E->getDecl()))
137      return llvm::ConstantInt::get(EC->getInitVal());
138    return EmitLoadOfLValue(E);
139  }
140  Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
141    return CGF.EmitObjCSelectorExpr(E);
142  }
143  Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
144    return CGF.EmitObjCProtocolExpr(E);
145  }
146  Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
147    return EmitLoadOfLValue(E);
148  }
149  Value *VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
150    return EmitLoadOfLValue(E);
151  }
152  Value *VisitObjCKVCRefExpr(ObjCKVCRefExpr *E) {
153    return EmitLoadOfLValue(E);
154  }
155  Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
156    return CGF.EmitObjCMessageExpr(E).getScalarVal();
157  }
158
159  Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
160  Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
161  Value *VisitMemberExpr(Expr *E)           { return EmitLoadOfLValue(E); }
162  Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
163  Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
164    return EmitLoadOfLValue(E);
165  }
166  Value *VisitStringLiteral(Expr *E)  { return EmitLValue(E).getAddress(); }
167  Value *VisitPredefinedExpr(Expr *E) { return EmitLValue(E).getAddress(); }
168
169  Value *VisitInitListExpr(InitListExpr *E) {
170    unsigned NumInitElements = E->getNumInits();
171
172    const llvm::VectorType *VType =
173      dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
174
175    // We have a scalar in braces. Just use the first element.
176    if (!VType)
177      return Visit(E->getInit(0));
178
179    unsigned NumVectorElements = VType->getNumElements();
180    const llvm::Type *ElementType = VType->getElementType();
181
182    // Emit individual vector element stores.
183    llvm::Value *V = llvm::UndefValue::get(VType);
184
185    // Emit initializers
186    unsigned i;
187    for (i = 0; i < NumInitElements; ++i) {
188      Value *NewV = Visit(E->getInit(i));
189      Value *Idx = llvm::ConstantInt::get(llvm::Type::Int32Ty, i);
190      V = Builder.CreateInsertElement(V, NewV, Idx);
191    }
192
193    // Emit remaining default initializers
194    for (/* Do not initialize i*/; i < NumVectorElements; ++i) {
195      Value *Idx = llvm::ConstantInt::get(llvm::Type::Int32Ty, i);
196      llvm::Value *NewV = llvm::Constant::getNullValue(ElementType);
197      V = Builder.CreateInsertElement(V, NewV, Idx);
198    }
199
200    return V;
201  }
202
203  Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
204    return llvm::Constant::getNullValue(ConvertType(E->getType()));
205  }
206  Value *VisitImplicitCastExpr(const ImplicitCastExpr *E);
207  Value *VisitCastExpr(const CastExpr *E) {
208    return EmitCastExpr(E->getSubExpr(), E->getType());
209  }
210  Value *EmitCastExpr(const Expr *E, QualType T);
211
212  Value *VisitCallExpr(const CallExpr *E) {
213    return CGF.EmitCallExpr(E).getScalarVal();
214  }
215
216  Value *VisitStmtExpr(const StmtExpr *E);
217
218  // Unary Operators.
219  Value *VisitPrePostIncDec(const UnaryOperator *E, bool isInc, bool isPre);
220  Value *VisitUnaryPostDec(const UnaryOperator *E) {
221    return VisitPrePostIncDec(E, false, false);
222  }
223  Value *VisitUnaryPostInc(const UnaryOperator *E) {
224    return VisitPrePostIncDec(E, true, false);
225  }
226  Value *VisitUnaryPreDec(const UnaryOperator *E) {
227    return VisitPrePostIncDec(E, false, true);
228  }
229  Value *VisitUnaryPreInc(const UnaryOperator *E) {
230    return VisitPrePostIncDec(E, true, true);
231  }
232  Value *VisitUnaryAddrOf(const UnaryOperator *E) {
233    return EmitLValue(E->getSubExpr()).getAddress();
234  }
235  Value *VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); }
236  Value *VisitUnaryPlus(const UnaryOperator *E) {
237    return Visit(E->getSubExpr());
238  }
239  Value *VisitUnaryMinus    (const UnaryOperator *E);
240  Value *VisitUnaryNot      (const UnaryOperator *E);
241  Value *VisitUnaryLNot     (const UnaryOperator *E);
242  Value *VisitUnaryReal     (const UnaryOperator *E);
243  Value *VisitUnaryImag     (const UnaryOperator *E);
244  Value *VisitUnaryExtension(const UnaryOperator *E) {
245    return Visit(E->getSubExpr());
246  }
247  Value *VisitUnaryOffsetOf(const UnaryOperator *E);
248  Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
249    return Visit(DAE->getExpr());
250  }
251
252  // Binary Operators.
253  Value *EmitMul(const BinOpInfo &Ops) {
254    return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
255  }
256  Value *EmitDiv(const BinOpInfo &Ops);
257  Value *EmitRem(const BinOpInfo &Ops);
258  Value *EmitAdd(const BinOpInfo &Ops);
259  Value *EmitSub(const BinOpInfo &Ops);
260  Value *EmitShl(const BinOpInfo &Ops);
261  Value *EmitShr(const BinOpInfo &Ops);
262  Value *EmitAnd(const BinOpInfo &Ops) {
263    return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
264  }
265  Value *EmitXor(const BinOpInfo &Ops) {
266    return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
267  }
268  Value *EmitOr (const BinOpInfo &Ops) {
269    return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
270  }
271
272  BinOpInfo EmitBinOps(const BinaryOperator *E);
273  Value *EmitCompoundAssign(const CompoundAssignOperator *E,
274                            Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
275
276  // Binary operators and binary compound assignment operators.
277#define HANDLEBINOP(OP) \
278  Value *VisitBin ## OP(const BinaryOperator *E) {                         \
279    return Emit ## OP(EmitBinOps(E));                                      \
280  }                                                                        \
281  Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
282    return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
283  }
284  HANDLEBINOP(Mul);
285  HANDLEBINOP(Div);
286  HANDLEBINOP(Rem);
287  HANDLEBINOP(Add);
288  HANDLEBINOP(Sub);
289  HANDLEBINOP(Shl);
290  HANDLEBINOP(Shr);
291  HANDLEBINOP(And);
292  HANDLEBINOP(Xor);
293  HANDLEBINOP(Or);
294#undef HANDLEBINOP
295
296  // Comparisons.
297  Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
298                     unsigned SICmpOpc, unsigned FCmpOpc);
299#define VISITCOMP(CODE, UI, SI, FP) \
300    Value *VisitBin##CODE(const BinaryOperator *E) { \
301      return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
302                         llvm::FCmpInst::FP); }
303  VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT);
304  VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT);
305  VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE);
306  VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE);
307  VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ);
308  VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE);
309#undef VISITCOMP
310
311  Value *VisitBinAssign     (const BinaryOperator *E);
312
313  Value *VisitBinLAnd       (const BinaryOperator *E);
314  Value *VisitBinLOr        (const BinaryOperator *E);
315  Value *VisitBinComma      (const BinaryOperator *E);
316
317  // Other Operators.
318  Value *VisitBlockExpr(const BlockExpr *BE) {
319    CGF.ErrorUnsupported(BE, "block expression");
320    return llvm::UndefValue::get(CGF.ConvertType(BE->getType()));
321  }
322
323  Value *VisitConditionalOperator(const ConditionalOperator *CO);
324  Value *VisitChooseExpr(ChooseExpr *CE);
325  Value *VisitOverloadExpr(OverloadExpr *OE);
326  Value *VisitVAArgExpr(VAArgExpr *VE);
327  Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
328    return CGF.EmitObjCStringLiteral(E);
329  }
330  Value *VisitObjCEncodeExpr(const ObjCEncodeExpr *E);
331};
332}  // end anonymous namespace.
333
334//===----------------------------------------------------------------------===//
335//                                Utilities
336//===----------------------------------------------------------------------===//
337
338/// EmitConversionToBool - Convert the specified expression value to a
339/// boolean (i1) truth value.  This is equivalent to "Val != 0".
340Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
341  assert(SrcType->isCanonical() && "EmitScalarConversion strips typedefs");
342
343  if (SrcType->isRealFloatingType()) {
344    // Compare against 0.0 for fp scalars.
345    llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType());
346    return Builder.CreateFCmpUNE(Src, Zero, "tobool");
347  }
348
349  assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
350         "Unknown scalar type to convert");
351
352  // Because of the type rules of C, we often end up computing a logical value,
353  // then zero extending it to int, then wanting it as a logical value again.
354  // Optimize this common case.
355  if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(Src)) {
356    if (ZI->getOperand(0)->getType() == llvm::Type::Int1Ty) {
357      Value *Result = ZI->getOperand(0);
358      // If there aren't any more uses, zap the instruction to save space.
359      // Note that there can be more uses, for example if this
360      // is the result of an assignment.
361      if (ZI->use_empty())
362        ZI->eraseFromParent();
363      return Result;
364    }
365  }
366
367  // Compare against an integer or pointer null.
368  llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType());
369  return Builder.CreateICmpNE(Src, Zero, "tobool");
370}
371
372/// EmitScalarConversion - Emit a conversion from the specified type to the
373/// specified destination type, both of which are LLVM scalar types.
374Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
375                                               QualType DstType) {
376  SrcType = CGF.getContext().getCanonicalType(SrcType);
377  DstType = CGF.getContext().getCanonicalType(DstType);
378  if (SrcType == DstType) return Src;
379
380  if (DstType->isVoidType()) return 0;
381
382  // Handle conversions to bool first, they are special: comparisons against 0.
383  if (DstType->isBooleanType())
384    return EmitConversionToBool(Src, SrcType);
385
386  const llvm::Type *DstTy = ConvertType(DstType);
387
388  // Ignore conversions like int -> uint.
389  if (Src->getType() == DstTy)
390    return Src;
391
392  // Handle pointer conversions next: pointers can only be converted
393  // to/from other pointers and integers. Check for pointer types in
394  // terms of LLVM, as some native types (like Obj-C id) may map to a
395  // pointer type.
396  if (isa<llvm::PointerType>(DstTy)) {
397    // The source value may be an integer, or a pointer.
398    if (isa<llvm::PointerType>(Src->getType()))
399      return Builder.CreateBitCast(Src, DstTy, "conv");
400    assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
401    return Builder.CreateIntToPtr(Src, DstTy, "conv");
402  }
403
404  if (isa<llvm::PointerType>(Src->getType())) {
405    // Must be an ptr to int cast.
406    assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
407    return Builder.CreatePtrToInt(Src, DstTy, "conv");
408  }
409
410  // A scalar can be splatted to an extended vector of the same element type
411  if (DstType->isExtVectorType() && !isa<VectorType>(SrcType)) {
412    // Cast the scalar to element type
413    QualType EltTy = DstType->getAsExtVectorType()->getElementType();
414    llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy);
415
416    // Insert the element in element zero of an undef vector
417    llvm::Value *UnV = llvm::UndefValue::get(DstTy);
418    llvm::Value *Idx = llvm::ConstantInt::get(llvm::Type::Int32Ty, 0);
419    UnV = Builder.CreateInsertElement(UnV, Elt, Idx, "tmp");
420
421    // Splat the element across to all elements
422    llvm::SmallVector<llvm::Constant*, 16> Args;
423    unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
424    for (unsigned i = 0; i < NumElements; i++)
425      Args.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, 0));
426
427    llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements);
428    llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
429    return Yay;
430  }
431
432  // Allow bitcast from vector to integer/fp of the same size.
433  if (isa<llvm::VectorType>(Src->getType()) ||
434      isa<llvm::VectorType>(DstTy))
435    return Builder.CreateBitCast(Src, DstTy, "conv");
436
437  // Finally, we have the arithmetic types: real int/float.
438  if (isa<llvm::IntegerType>(Src->getType())) {
439    bool InputSigned = SrcType->isSignedIntegerType();
440    if (isa<llvm::IntegerType>(DstTy))
441      return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
442    else if (InputSigned)
443      return Builder.CreateSIToFP(Src, DstTy, "conv");
444    else
445      return Builder.CreateUIToFP(Src, DstTy, "conv");
446  }
447
448  assert(Src->getType()->isFloatingPoint() && "Unknown real conversion");
449  if (isa<llvm::IntegerType>(DstTy)) {
450    if (DstType->isSignedIntegerType())
451      return Builder.CreateFPToSI(Src, DstTy, "conv");
452    else
453      return Builder.CreateFPToUI(Src, DstTy, "conv");
454  }
455
456  assert(DstTy->isFloatingPoint() && "Unknown real conversion");
457  if (DstTy->getTypeID() < Src->getType()->getTypeID())
458    return Builder.CreateFPTrunc(Src, DstTy, "conv");
459  else
460    return Builder.CreateFPExt(Src, DstTy, "conv");
461}
462
463/// EmitComplexToScalarConversion - Emit a conversion from the specified
464/// complex type to the specified destination type, where the destination
465/// type is an LLVM scalar type.
466Value *ScalarExprEmitter::
467EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
468                              QualType SrcTy, QualType DstTy) {
469  // Get the source element type.
470  SrcTy = SrcTy->getAsComplexType()->getElementType();
471
472  // Handle conversions to bool first, they are special: comparisons against 0.
473  if (DstTy->isBooleanType()) {
474    //  Complex != 0  -> (Real != 0) | (Imag != 0)
475    Src.first  = EmitScalarConversion(Src.first, SrcTy, DstTy);
476    Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
477    return Builder.CreateOr(Src.first, Src.second, "tobool");
478  }
479
480  // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
481  // the imaginary part of the complex value is discarded and the value of the
482  // real part is converted according to the conversion rules for the
483  // corresponding real type.
484  return EmitScalarConversion(Src.first, SrcTy, DstTy);
485}
486
487
488//===----------------------------------------------------------------------===//
489//                            Visitor Methods
490//===----------------------------------------------------------------------===//
491
492Value *ScalarExprEmitter::VisitExpr(Expr *E) {
493  CGF.ErrorUnsupported(E, "scalar expression");
494  if (E->getType()->isVoidType())
495    return 0;
496  return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
497}
498
499Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
500  llvm::SmallVector<llvm::Constant*, 32> indices;
501  for (unsigned i = 2; i < E->getNumSubExprs(); i++) {
502    indices.push_back(cast<llvm::Constant>(CGF.EmitScalarExpr(E->getExpr(i))));
503  }
504  Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
505  Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
506  Value* SV = llvm::ConstantVector::get(indices.begin(), indices.size());
507  return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
508}
509
510Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
511  // Emit subscript expressions in rvalue context's.  For most cases, this just
512  // loads the lvalue formed by the subscript expr.  However, we have to be
513  // careful, because the base of a vector subscript is occasionally an rvalue,
514  // so we can't get it as an lvalue.
515  if (!E->getBase()->getType()->isVectorType())
516    return EmitLoadOfLValue(E);
517
518  // Handle the vector case.  The base must be a vector, the index must be an
519  // integer value.
520  Value *Base = Visit(E->getBase());
521  Value *Idx  = Visit(E->getIdx());
522
523  // FIXME: Convert Idx to i32 type.
524  return Builder.CreateExtractElement(Base, Idx, "vecext");
525}
526
527/// VisitImplicitCastExpr - Implicit casts are the same as normal casts, but
528/// also handle things like function to pointer-to-function decay, and array to
529/// pointer decay.
530Value *ScalarExprEmitter::VisitImplicitCastExpr(const ImplicitCastExpr *E) {
531  const Expr *Op = E->getSubExpr();
532
533  // If this is due to array->pointer conversion, emit the array expression as
534  // an l-value.
535  if (Op->getType()->isArrayType()) {
536    // FIXME: For now we assume that all source arrays map to LLVM arrays.  This
537    // will not true when we add support for VLAs.
538    Value *V = EmitLValue(Op).getAddress();  // Bitfields can't be arrays.
539
540    if (!Op->getType()->isVariableArrayType()) {
541      assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer");
542      assert(isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType())
543                                 ->getElementType()) &&
544             "Expected pointer to array");
545      V = Builder.CreateStructGEP(V, 0, "arraydecay");
546    }
547
548    // The resultant pointer type can be implicitly casted to other pointer
549    // types as well (e.g. void*) and can be implicitly converted to integer.
550    const llvm::Type *DestTy = ConvertType(E->getType());
551    if (V->getType() != DestTy) {
552      if (isa<llvm::PointerType>(DestTy))
553        V = Builder.CreateBitCast(V, DestTy, "ptrconv");
554      else {
555        assert(isa<llvm::IntegerType>(DestTy) && "Unknown array decay");
556        V = Builder.CreatePtrToInt(V, DestTy, "ptrconv");
557      }
558    }
559    return V;
560
561  } else if (E->getType()->isReferenceType()) {
562    return EmitLValue(Op).getAddress();
563  }
564
565  return EmitCastExpr(Op, E->getType());
566}
567
568
569// VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
570// have to handle a more broad range of conversions than explicit casts, as they
571// handle things like function to ptr-to-function decay etc.
572Value *ScalarExprEmitter::EmitCastExpr(const Expr *E, QualType DestTy) {
573  // Handle cases where the source is an non-complex type.
574
575  if (!CGF.hasAggregateLLVMType(E->getType())) {
576    Value *Src = Visit(const_cast<Expr*>(E));
577
578    // Use EmitScalarConversion to perform the conversion.
579    return EmitScalarConversion(Src, E->getType(), DestTy);
580  }
581
582  if (E->getType()->isAnyComplexType()) {
583    // Handle cases where the source is a complex type.
584    return EmitComplexToScalarConversion(CGF.EmitComplexExpr(E), E->getType(),
585                                         DestTy);
586  }
587
588  // Okay, this is a cast from an aggregate.  It must be a cast to void.  Just
589  // evaluate the result and return.
590  CGF.EmitAggExpr(E, 0, false);
591  return 0;
592}
593
594Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
595  return CGF.EmitCompoundStmt(*E->getSubStmt(),
596                              !E->getType()->isVoidType()).getScalarVal();
597}
598
599
600//===----------------------------------------------------------------------===//
601//                             Unary Operators
602//===----------------------------------------------------------------------===//
603
604Value *ScalarExprEmitter::VisitPrePostIncDec(const UnaryOperator *E,
605                                             bool isInc, bool isPre) {
606  LValue LV = EmitLValue(E->getSubExpr());
607  // FIXME: Handle volatile!
608  Value *InVal = CGF.EmitLoadOfLValue(LV, // false
609                                     E->getSubExpr()->getType()).getScalarVal();
610
611  int AmountVal = isInc ? 1 : -1;
612
613  Value *NextVal;
614  if (isa<llvm::PointerType>(InVal->getType())) {
615    // FIXME: This isn't right for VLAs.
616    NextVal = llvm::ConstantInt::get(llvm::Type::Int32Ty, AmountVal);
617    NextVal = Builder.CreateGEP(InVal, NextVal, "ptrincdec");
618  } else {
619    // Add the inc/dec to the real part.
620    if (isa<llvm::IntegerType>(InVal->getType()))
621      NextVal = llvm::ConstantInt::get(InVal->getType(), AmountVal);
622    else if (InVal->getType() == llvm::Type::FloatTy)
623      NextVal =
624        llvm::ConstantFP::get(llvm::APFloat(static_cast<float>(AmountVal)));
625    else if (InVal->getType() == llvm::Type::DoubleTy)
626      NextVal =
627        llvm::ConstantFP::get(llvm::APFloat(static_cast<double>(AmountVal)));
628    else {
629      llvm::APFloat F(static_cast<float>(AmountVal));
630      bool ignored;
631      F.convert(CGF.Target.getLongDoubleFormat(), llvm::APFloat::rmTowardZero,
632                &ignored);
633      NextVal = llvm::ConstantFP::get(F);
634    }
635    NextVal = Builder.CreateAdd(InVal, NextVal, isInc ? "inc" : "dec");
636  }
637
638  // Store the updated result through the lvalue.
639  CGF.EmitStoreThroughLValue(RValue::get(NextVal), LV,
640                             E->getSubExpr()->getType());
641
642  // If this is a postinc, return the value read from memory, otherwise use the
643  // updated value.
644  return isPre ? NextVal : InVal;
645}
646
647
648Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
649  Value *Op = Visit(E->getSubExpr());
650  return Builder.CreateNeg(Op, "neg");
651}
652
653Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
654  Value *Op = Visit(E->getSubExpr());
655  return Builder.CreateNot(Op, "neg");
656}
657
658Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
659  // Compare operand to zero.
660  Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
661
662  // Invert value.
663  // TODO: Could dynamically modify easy computations here.  For example, if
664  // the operand is an icmp ne, turn into icmp eq.
665  BoolVal = Builder.CreateNot(BoolVal, "lnot");
666
667  // ZExt result to int.
668  return Builder.CreateZExt(BoolVal, CGF.LLVMIntTy, "lnot.ext");
669}
670
671/// VisitSizeOfAlignOfExpr - Return the size or alignment of the type of
672/// argument of the sizeof expression as an integer.
673Value *
674ScalarExprEmitter::VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E) {
675  QualType TypeToSize = E->getTypeOfArgument();
676  if (E->isSizeOf()) {
677    if (const VariableArrayType *VAT =
678          CGF.getContext().getAsVariableArrayType(TypeToSize)) {
679      if (E->isArgumentType()) {
680        // sizeof(type) - make sure to emit the VLA size.
681        CGF.EmitVLASize(TypeToSize);
682      }
683      return CGF.GetVLASize(VAT);
684    }
685  }
686
687  // If this isn't sizeof(vla), the result must be constant; use the
688  // constant folding logic so we don't have to duplicate it here.
689  Expr::EvalResult Result;
690  E->Evaluate(Result, CGF.getContext());
691  return llvm::ConstantInt::get(Result.Val.getInt());
692}
693
694Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
695  Expr *Op = E->getSubExpr();
696  if (Op->getType()->isAnyComplexType())
697    return CGF.EmitComplexExpr(Op).first;
698  return Visit(Op);
699}
700Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
701  Expr *Op = E->getSubExpr();
702  if (Op->getType()->isAnyComplexType())
703    return CGF.EmitComplexExpr(Op).second;
704
705  // __imag on a scalar returns zero.  Emit it the subexpr to ensure side
706  // effects are evaluated.
707  CGF.EmitScalarExpr(Op);
708  return llvm::Constant::getNullValue(ConvertType(E->getType()));
709}
710
711Value *ScalarExprEmitter::VisitUnaryOffsetOf(const UnaryOperator *E)
712{
713  const Expr* SubExpr = E->getSubExpr();
714  const llvm::Type* ResultType = ConvertType(E->getType());
715  llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
716  while (!isa<CompoundLiteralExpr>(SubExpr)) {
717    if (const MemberExpr *ME = dyn_cast<MemberExpr>(SubExpr)) {
718      SubExpr = ME->getBase();
719      QualType Ty = SubExpr->getType();
720
721      RecordDecl *RD = Ty->getAsRecordType()->getDecl();
722      const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
723      FieldDecl *FD = cast<FieldDecl>(ME->getMemberDecl());
724
725      // FIXME: This is linear time. And the fact that we're indexing
726      // into the layout by position in the record means that we're
727      // either stuck numbering the fields in the AST or we have to keep
728      // the linear search (yuck and yuck).
729      unsigned i = 0;
730      for (RecordDecl::field_iterator Field = RD->field_begin(),
731                                   FieldEnd = RD->field_end();
732           Field != FieldEnd; (void)++Field, ++i) {
733        if (*Field == FD)
734          break;
735      }
736
737      llvm::Value* Offset =
738          llvm::ConstantInt::get(ResultType, RL.getFieldOffset(i) / 8);
739      Result = Builder.CreateAdd(Result, Offset);
740    } else if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(SubExpr)) {
741      SubExpr = ASE->getBase();
742      int64_t size = CGF.getContext().getTypeSize(ASE->getType()) / 8;
743      llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType, size);
744      llvm::Value* ElemIndex = CGF.EmitScalarExpr(ASE->getIdx());
745      bool IndexSigned = ASE->getIdx()->getType()->isSignedIntegerType();
746      ElemIndex = Builder.CreateIntCast(ElemIndex, ResultType, IndexSigned);
747      llvm::Value* Offset = Builder.CreateMul(ElemSize, ElemIndex);
748      Result = Builder.CreateAdd(Result, Offset);
749    } else {
750      assert(0 && "This should be impossible!");
751    }
752  }
753  return Result;
754}
755
756//===----------------------------------------------------------------------===//
757//                           Binary Operators
758//===----------------------------------------------------------------------===//
759
760BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
761  BinOpInfo Result;
762  Result.LHS = Visit(E->getLHS());
763  Result.RHS = Visit(E->getRHS());
764  Result.Ty  = E->getType();
765  Result.E = E;
766  return Result;
767}
768
769Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
770                      Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
771  QualType LHSTy = E->getLHS()->getType(), RHSTy = E->getRHS()->getType();
772
773  BinOpInfo OpInfo;
774
775  // Load the LHS and RHS operands.
776  LValue LHSLV = EmitLValue(E->getLHS());
777  OpInfo.LHS = EmitLoadOfLValue(LHSLV, LHSTy);
778
779  // Determine the computation type.  If the RHS is complex, then this is one of
780  // the add/sub/mul/div operators.  All of these operators can be computed in
781  // with just their real component even though the computation domain really is
782  // complex.
783  QualType ComputeType = E->getComputationType();
784
785  // If the computation type is complex, then the RHS is complex.  Emit the RHS.
786  if (const ComplexType *CT = ComputeType->getAsComplexType()) {
787    ComputeType = CT->getElementType();
788
789    // Emit the RHS, only keeping the real component.
790    OpInfo.RHS = CGF.EmitComplexExpr(E->getRHS()).first;
791    RHSTy = RHSTy->getAsComplexType()->getElementType();
792  } else {
793    // Otherwise the RHS is a simple scalar value.
794    OpInfo.RHS = Visit(E->getRHS());
795  }
796
797  QualType LComputeTy, RComputeTy, ResultTy;
798
799  // Compound assignment does not contain enough information about all
800  // the types involved for pointer arithmetic cases. Figure it out
801  // here for now.
802  if (E->getLHS()->getType()->isPointerType()) {
803    // Pointer arithmetic cases: ptr +=,-= int and ptr -= ptr,
804    assert((E->getOpcode() == BinaryOperator::AddAssign ||
805            E->getOpcode() == BinaryOperator::SubAssign) &&
806           "Invalid compound assignment operator on pointer type.");
807    LComputeTy = E->getLHS()->getType();
808
809    if (E->getRHS()->getType()->isPointerType()) {
810      // Degenerate case of (ptr -= ptr) allowed by GCC implicit cast
811      // extension, the conversion from the pointer difference back to
812      // the LHS type is handled at the end.
813      assert(E->getOpcode() == BinaryOperator::SubAssign &&
814             "Invalid compound assignment operator on pointer type.");
815      RComputeTy = E->getLHS()->getType();
816      ResultTy = CGF.getContext().getPointerDiffType();
817    } else {
818      RComputeTy = E->getRHS()->getType();
819      ResultTy = LComputeTy;
820    }
821  } else if (E->getRHS()->getType()->isPointerType()) {
822    // Degenerate case of (int += ptr) allowed by GCC implicit cast
823    // extension.
824    assert(E->getOpcode() == BinaryOperator::AddAssign &&
825           "Invalid compound assignment operator on pointer type.");
826    LComputeTy = E->getLHS()->getType();
827    RComputeTy = E->getRHS()->getType();
828    ResultTy = RComputeTy;
829  } else {
830    LComputeTy = RComputeTy = ResultTy = ComputeType;
831  }
832
833  // Convert the LHS/RHS values to the computation type.
834  OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy, LComputeTy);
835  OpInfo.RHS = EmitScalarConversion(OpInfo.RHS, RHSTy, RComputeTy);
836  OpInfo.Ty = ResultTy;
837  OpInfo.E = E;
838
839  // Expand the binary operator.
840  Value *Result = (this->*Func)(OpInfo);
841
842  // Convert the result back to the LHS type.
843  Result = EmitScalarConversion(Result, ResultTy, LHSTy);
844
845  // Store the result value into the LHS lvalue. Bit-fields are
846  // handled specially because the result is altered by the store,
847  // i.e., [C99 6.5.16p1] 'An assignment expression has the value of
848  // the left operand after the assignment...'.
849  if (LHSLV.isBitfield())
850    CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, LHSTy,
851                                       &Result);
852  else
853    CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV, LHSTy);
854
855  return Result;
856}
857
858
859Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
860  if (Ops.LHS->getType()->isFPOrFPVector())
861    return Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
862  else if (Ops.Ty->isUnsignedIntegerType())
863    return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
864  else
865    return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
866}
867
868Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
869  // Rem in C can't be a floating point type: C99 6.5.5p2.
870  if (Ops.Ty->isUnsignedIntegerType())
871    return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
872  else
873    return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
874}
875
876
877Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &Ops) {
878  if (!Ops.Ty->isPointerType())
879    return Builder.CreateAdd(Ops.LHS, Ops.RHS, "add");
880
881  // FIXME: What about a pointer to a VLA?
882  Value *Ptr, *Idx;
883  Expr *IdxExp;
884  const PointerType *PT;
885  if ((PT = Ops.E->getLHS()->getType()->getAsPointerType())) {
886    Ptr = Ops.LHS;
887    Idx = Ops.RHS;
888    IdxExp = Ops.E->getRHS();
889  } else {                                           // int + pointer
890    PT = Ops.E->getRHS()->getType()->getAsPointerType();
891    assert(PT && "Invalid add expr");
892    Ptr = Ops.RHS;
893    Idx = Ops.LHS;
894    IdxExp = Ops.E->getLHS();
895  }
896
897  unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
898  if (Width < CGF.LLVMPointerWidth) {
899    // Zero or sign extend the pointer value based on whether the index is
900    // signed or not.
901    const llvm::Type *IdxType = llvm::IntegerType::get(CGF.LLVMPointerWidth);
902    if (IdxExp->getType()->isSignedIntegerType())
903      Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
904    else
905      Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
906  }
907
908  // Explicitly handle GNU void* and function pointer arithmetic
909  // extensions. The GNU void* casts amount to no-ops since our void*
910  // type is i8*, but this is future proof.
911  const QualType ElementType = PT->getPointeeType();
912  if (ElementType->isVoidType() || ElementType->isFunctionType()) {
913    const llvm::Type *i8Ty = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
914    Value *Casted = Builder.CreateBitCast(Ptr, i8Ty);
915    Value *Res = Builder.CreateGEP(Casted, Idx, "sub.ptr");
916    return Builder.CreateBitCast(Res, Ptr->getType());
917  }
918
919  return Builder.CreateGEP(Ptr, Idx, "add.ptr");
920}
921
922Value *ScalarExprEmitter::EmitSub(const BinOpInfo &Ops) {
923  if (!isa<llvm::PointerType>(Ops.LHS->getType()))
924    return Builder.CreateSub(Ops.LHS, Ops.RHS, "sub");
925
926  const QualType LHSType = Ops.E->getLHS()->getType();
927  const QualType LHSElementType = LHSType->getAsPointerType()->getPointeeType();
928  if (!isa<llvm::PointerType>(Ops.RHS->getType())) {
929    // pointer - int
930    Value *Idx = Ops.RHS;
931    unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
932    if (Width < CGF.LLVMPointerWidth) {
933      // Zero or sign extend the pointer value based on whether the index is
934      // signed or not.
935      const llvm::Type *IdxType = llvm::IntegerType::get(CGF.LLVMPointerWidth);
936      if (Ops.E->getRHS()->getType()->isSignedIntegerType())
937        Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
938      else
939        Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
940    }
941    Idx = Builder.CreateNeg(Idx, "sub.ptr.neg");
942
943    // FIXME: The pointer could point to a VLA.
944
945    // Explicitly handle GNU void* and function pointer arithmetic
946    // extensions. The GNU void* casts amount to no-ops since our
947    // void* type is i8*, but this is future proof.
948    if (LHSElementType->isVoidType() || LHSElementType->isFunctionType()) {
949      const llvm::Type *i8Ty = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
950      Value *LHSCasted = Builder.CreateBitCast(Ops.LHS, i8Ty);
951      Value *Res = Builder.CreateGEP(LHSCasted, Idx, "sub.ptr");
952      return Builder.CreateBitCast(Res, Ops.LHS->getType());
953    }
954
955    return Builder.CreateGEP(Ops.LHS, Idx, "sub.ptr");
956  } else {
957    // pointer - pointer
958    Value *LHS = Ops.LHS;
959    Value *RHS = Ops.RHS;
960
961    uint64_t ElementSize;
962
963    // Handle GCC extension for pointer arithmetic on void* types.
964    if (LHSElementType->isVoidType()) {
965      ElementSize = 1;
966    } else {
967      ElementSize = CGF.getContext().getTypeSize(LHSElementType) / 8;
968    }
969
970    const llvm::Type *ResultType = ConvertType(Ops.Ty);
971    LHS = Builder.CreatePtrToInt(LHS, ResultType, "sub.ptr.lhs.cast");
972    RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
973    Value *BytesBetween = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
974
975    // HACK: LLVM doesn't have an divide instruction that 'knows' there is no
976    // remainder.  As such, we handle common power-of-two cases here to generate
977    // better code. See PR2247.
978    if (llvm::isPowerOf2_64(ElementSize)) {
979      Value *ShAmt =
980        llvm::ConstantInt::get(ResultType, llvm::Log2_64(ElementSize));
981      return Builder.CreateAShr(BytesBetween, ShAmt, "sub.ptr.shr");
982    }
983
984    // Otherwise, do a full sdiv.
985    Value *BytesPerElt = llvm::ConstantInt::get(ResultType, ElementSize);
986    return Builder.CreateSDiv(BytesBetween, BytesPerElt, "sub.ptr.div");
987  }
988}
989
990Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
991  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
992  // RHS to the same size as the LHS.
993  Value *RHS = Ops.RHS;
994  if (Ops.LHS->getType() != RHS->getType())
995    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
996
997  return Builder.CreateShl(Ops.LHS, RHS, "shl");
998}
999
1000Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
1001  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
1002  // RHS to the same size as the LHS.
1003  Value *RHS = Ops.RHS;
1004  if (Ops.LHS->getType() != RHS->getType())
1005    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
1006
1007  if (Ops.Ty->isUnsignedIntegerType())
1008    return Builder.CreateLShr(Ops.LHS, RHS, "shr");
1009  return Builder.CreateAShr(Ops.LHS, RHS, "shr");
1010}
1011
1012Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
1013                                      unsigned SICmpOpc, unsigned FCmpOpc) {
1014  Value *Result;
1015  QualType LHSTy = E->getLHS()->getType();
1016  if (!LHSTy->isAnyComplexType() && !LHSTy->isVectorType()) {
1017    Value *LHS = Visit(E->getLHS());
1018    Value *RHS = Visit(E->getRHS());
1019
1020    if (LHS->getType()->isFloatingPoint()) {
1021      Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
1022                                  LHS, RHS, "cmp");
1023    } else if (LHSTy->isSignedIntegerType()) {
1024      Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
1025                                  LHS, RHS, "cmp");
1026    } else {
1027      // Unsigned integers and pointers.
1028      Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1029                                  LHS, RHS, "cmp");
1030    }
1031  } else if (LHSTy->isVectorType()) {
1032    Value *LHS = Visit(E->getLHS());
1033    Value *RHS = Visit(E->getRHS());
1034
1035    if (LHS->getType()->isFPOrFPVector()) {
1036      Result = Builder.CreateVFCmp((llvm::CmpInst::Predicate)FCmpOpc,
1037                                  LHS, RHS, "cmp");
1038    } else if (LHSTy->isUnsignedIntegerType()) {
1039      Result = Builder.CreateVICmp((llvm::CmpInst::Predicate)UICmpOpc,
1040                                  LHS, RHS, "cmp");
1041    } else {
1042      // Signed integers and pointers.
1043      Result = Builder.CreateVICmp((llvm::CmpInst::Predicate)SICmpOpc,
1044                                  LHS, RHS, "cmp");
1045    }
1046    return Result;
1047  } else {
1048    // Complex Comparison: can only be an equality comparison.
1049    CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS());
1050    CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS());
1051
1052    QualType CETy = LHSTy->getAsComplexType()->getElementType();
1053
1054    Value *ResultR, *ResultI;
1055    if (CETy->isRealFloatingType()) {
1056      ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
1057                                   LHS.first, RHS.first, "cmp.r");
1058      ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
1059                                   LHS.second, RHS.second, "cmp.i");
1060    } else {
1061      // Complex comparisons can only be equality comparisons.  As such, signed
1062      // and unsigned opcodes are the same.
1063      ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1064                                   LHS.first, RHS.first, "cmp.r");
1065      ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1066                                   LHS.second, RHS.second, "cmp.i");
1067    }
1068
1069    if (E->getOpcode() == BinaryOperator::EQ) {
1070      Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
1071    } else {
1072      assert(E->getOpcode() == BinaryOperator::NE &&
1073             "Complex comparison other than == or != ?");
1074      Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
1075    }
1076  }
1077
1078  return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
1079}
1080
1081Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
1082  LValue LHS = EmitLValue(E->getLHS());
1083  Value *RHS = Visit(E->getRHS());
1084
1085  // Store the value into the LHS.  Bit-fields are handled specially
1086  // because the result is altered by the store, i.e., [C99 6.5.16p1]
1087  // 'An assignment expression has the value of the left operand after
1088  // the assignment...'.
1089  // FIXME: Volatility!
1090  if (LHS.isBitfield())
1091    CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, E->getType(),
1092                                       &RHS);
1093  else
1094    CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS, E->getType());
1095
1096  // Return the RHS.
1097  return RHS;
1098}
1099
1100Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
1101  // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
1102  // If we have 1 && X, just emit X without inserting the control flow.
1103  if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getLHS())) {
1104    if (Cond == 1) { // If we have 1 && X, just emit X.
1105      Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1106      // ZExt result to int.
1107      return Builder.CreateZExt(RHSCond, CGF.LLVMIntTy, "land.ext");
1108    }
1109
1110    // 0 && RHS: If it is safe, just elide the RHS, and return 0.
1111    if (!CGF.ContainsLabel(E->getRHS()))
1112      return llvm::Constant::getNullValue(CGF.LLVMIntTy);
1113  }
1114
1115  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
1116  llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
1117
1118  // Branch on the LHS first.  If it is false, go to the failure (cont) block.
1119  CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock);
1120
1121  // Any edges into the ContBlock are now from an (indeterminate number of)
1122  // edges from this first condition.  All of these values will be false.  Start
1123  // setting up the PHI node in the Cont Block for this.
1124  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::Int1Ty, "", ContBlock);
1125  PN->reserveOperandSpace(2);  // Normal case, two inputs.
1126  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
1127       PI != PE; ++PI)
1128    PN->addIncoming(llvm::ConstantInt::getFalse(), *PI);
1129
1130  CGF.EmitBlock(RHSBlock);
1131  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1132
1133  // Reaquire the RHS block, as there may be subblocks inserted.
1134  RHSBlock = Builder.GetInsertBlock();
1135
1136  // Emit an unconditional branch from this block to ContBlock.  Insert an entry
1137  // into the phi node for the edge with the value of RHSCond.
1138  CGF.EmitBlock(ContBlock);
1139  PN->addIncoming(RHSCond, RHSBlock);
1140
1141  // ZExt result to int.
1142  return Builder.CreateZExt(PN, CGF.LLVMIntTy, "land.ext");
1143}
1144
1145Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
1146  // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
1147  // If we have 0 || X, just emit X without inserting the control flow.
1148  if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getLHS())) {
1149    if (Cond == -1) { // If we have 0 || X, just emit X.
1150      Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1151      // ZExt result to int.
1152      return Builder.CreateZExt(RHSCond, CGF.LLVMIntTy, "lor.ext");
1153    }
1154
1155    // 1 || RHS: If it is safe, just elide the RHS, and return 1.
1156    if (!CGF.ContainsLabel(E->getRHS()))
1157      return llvm::ConstantInt::get(CGF.LLVMIntTy, 1);
1158  }
1159
1160  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
1161  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
1162
1163  // Branch on the LHS first.  If it is true, go to the success (cont) block.
1164  CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock);
1165
1166  // Any edges into the ContBlock are now from an (indeterminate number of)
1167  // edges from this first condition.  All of these values will be true.  Start
1168  // setting up the PHI node in the Cont Block for this.
1169  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::Int1Ty, "", ContBlock);
1170  PN->reserveOperandSpace(2);  // Normal case, two inputs.
1171  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
1172       PI != PE; ++PI)
1173    PN->addIncoming(llvm::ConstantInt::getTrue(), *PI);
1174
1175  // Emit the RHS condition as a bool value.
1176  CGF.EmitBlock(RHSBlock);
1177  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1178
1179  // Reaquire the RHS block, as there may be subblocks inserted.
1180  RHSBlock = Builder.GetInsertBlock();
1181
1182  // Emit an unconditional branch from this block to ContBlock.  Insert an entry
1183  // into the phi node for the edge with the value of RHSCond.
1184  CGF.EmitBlock(ContBlock);
1185  PN->addIncoming(RHSCond, RHSBlock);
1186
1187  // ZExt result to int.
1188  return Builder.CreateZExt(PN, CGF.LLVMIntTy, "lor.ext");
1189}
1190
1191Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
1192  CGF.EmitStmt(E->getLHS());
1193  CGF.EnsureInsertPoint();
1194  return Visit(E->getRHS());
1195}
1196
1197//===----------------------------------------------------------------------===//
1198//                             Other Operators
1199//===----------------------------------------------------------------------===//
1200
1201/// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
1202/// expression is cheap enough and side-effect-free enough to evaluate
1203/// unconditionally instead of conditionally.  This is used to convert control
1204/// flow into selects in some cases.
1205static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E) {
1206  if (const ParenExpr *PE = dyn_cast<ParenExpr>(E))
1207    return isCheapEnoughToEvaluateUnconditionally(PE->getSubExpr());
1208
1209  // TODO: Allow anything we can constant fold to an integer or fp constant.
1210  if (isa<IntegerLiteral>(E) || isa<CharacterLiteral>(E) ||
1211      isa<FloatingLiteral>(E))
1212    return true;
1213
1214  // Non-volatile automatic variables too, to get "cond ? X : Y" where
1215  // X and Y are local variables.
1216  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
1217    if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
1218      if (VD->hasLocalStorage() && !VD->getType().isVolatileQualified())
1219        return true;
1220
1221  return false;
1222}
1223
1224
1225Value *ScalarExprEmitter::
1226VisitConditionalOperator(const ConditionalOperator *E) {
1227  // If the condition constant folds and can be elided, try to avoid emitting
1228  // the condition and the dead arm.
1229  if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getCond())){
1230    Expr *Live = E->getLHS(), *Dead = E->getRHS();
1231    if (Cond == -1)
1232      std::swap(Live, Dead);
1233
1234    // If the dead side doesn't have labels we need, and if the Live side isn't
1235    // the gnu missing ?: extension (which we could handle, but don't bother
1236    // to), just emit the Live part.
1237    if ((!Dead || !CGF.ContainsLabel(Dead)) &&  // No labels in dead part
1238        Live)                                   // Live part isn't missing.
1239      return Visit(Live);
1240  }
1241
1242
1243  // If this is a really simple expression (like x ? 4 : 5), emit this as a
1244  // select instead of as control flow.  We can only do this if it is cheap and
1245  // safe to evaluate the LHS and RHS unconditionally.
1246  if (E->getLHS() && isCheapEnoughToEvaluateUnconditionally(E->getLHS()) &&
1247      isCheapEnoughToEvaluateUnconditionally(E->getRHS())) {
1248    llvm::Value *CondV = CGF.EvaluateExprAsBool(E->getCond());
1249    llvm::Value *LHS = Visit(E->getLHS());
1250    llvm::Value *RHS = Visit(E->getRHS());
1251    return Builder.CreateSelect(CondV, LHS, RHS, "cond");
1252  }
1253
1254
1255  llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
1256  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
1257  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
1258  Value *CondVal = 0;
1259
1260  // If we have the GNU missing condition extension, evaluate the conditional
1261  // and then convert it to bool the hard way.  We do this explicitly
1262  // because we need the unconverted value for the missing middle value of
1263  // the ?:.
1264  if (E->getLHS() == 0) {
1265    CondVal = CGF.EmitScalarExpr(E->getCond());
1266    Value *CondBoolVal =
1267      CGF.EmitScalarConversion(CondVal, E->getCond()->getType(),
1268                               CGF.getContext().BoolTy);
1269    Builder.CreateCondBr(CondBoolVal, LHSBlock, RHSBlock);
1270  } else {
1271    // Otherwise, just use EmitBranchOnBoolExpr to get small and simple code for
1272    // the branch on bool.
1273    CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock);
1274  }
1275
1276  CGF.EmitBlock(LHSBlock);
1277
1278  // Handle the GNU extension for missing LHS.
1279  Value *LHS;
1280  if (E->getLHS())
1281    LHS = Visit(E->getLHS());
1282  else    // Perform promotions, to handle cases like "short ?: int"
1283    LHS = EmitScalarConversion(CondVal, E->getCond()->getType(), E->getType());
1284
1285  LHSBlock = Builder.GetInsertBlock();
1286  CGF.EmitBranch(ContBlock);
1287
1288  CGF.EmitBlock(RHSBlock);
1289
1290  Value *RHS = Visit(E->getRHS());
1291  RHSBlock = Builder.GetInsertBlock();
1292  CGF.EmitBranch(ContBlock);
1293
1294  CGF.EmitBlock(ContBlock);
1295
1296  if (!LHS || !RHS) {
1297    assert(E->getType()->isVoidType() && "Non-void value should have a value");
1298    return 0;
1299  }
1300
1301  // Create a PHI node for the real part.
1302  llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), "cond");
1303  PN->reserveOperandSpace(2);
1304  PN->addIncoming(LHS, LHSBlock);
1305  PN->addIncoming(RHS, RHSBlock);
1306  return PN;
1307}
1308
1309Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
1310  // Emit the LHS or RHS as appropriate.
1311  return
1312    Visit(E->isConditionTrue(CGF.getContext()) ? E->getLHS() : E->getRHS());
1313}
1314
1315Value *ScalarExprEmitter::VisitOverloadExpr(OverloadExpr *E) {
1316  return CGF.EmitCallExpr(E->getFn(), E->arg_begin(),
1317                          E->arg_end(CGF.getContext())).getScalarVal();
1318}
1319
1320Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
1321  llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
1322
1323  llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
1324
1325  // If EmitVAArg fails, we fall back to the LLVM instruction.
1326  if (!ArgPtr)
1327    return Builder.CreateVAArg(ArgValue, ConvertType(VE->getType()));
1328
1329  // FIXME: volatile?
1330  return Builder.CreateLoad(ArgPtr);
1331}
1332
1333Value *ScalarExprEmitter::VisitObjCEncodeExpr(const ObjCEncodeExpr *E) {
1334  std::string str;
1335  CGF.getContext().getObjCEncodingForType(E->getEncodedType(), str);
1336
1337  llvm::Constant *C = llvm::ConstantArray::get(str);
1338  C = new llvm::GlobalVariable(C->getType(), true,
1339                               llvm::GlobalValue::InternalLinkage,
1340                               C, ".str", &CGF.CGM.getModule());
1341  llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty);
1342  llvm::Constant *Zeros[] = { Zero, Zero };
1343  C = llvm::ConstantExpr::getGetElementPtr(C, Zeros, 2);
1344
1345  return C;
1346}
1347
1348//===----------------------------------------------------------------------===//
1349//                         Entry Point into this File
1350//===----------------------------------------------------------------------===//
1351
1352/// EmitComplexExpr - Emit the computation of the specified expression of
1353/// complex type, ignoring the result.
1354Value *CodeGenFunction::EmitScalarExpr(const Expr *E) {
1355  assert(E && !hasAggregateLLVMType(E->getType()) &&
1356         "Invalid scalar expression to emit");
1357
1358  return ScalarExprEmitter(*this).Visit(const_cast<Expr*>(E));
1359}
1360
1361/// EmitScalarConversion - Emit a conversion from the specified type to the
1362/// specified destination type, both of which are LLVM scalar types.
1363Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
1364                                             QualType DstTy) {
1365  assert(!hasAggregateLLVMType(SrcTy) && !hasAggregateLLVMType(DstTy) &&
1366         "Invalid scalar expression to emit");
1367  return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
1368}
1369
1370/// EmitComplexToScalarConversion - Emit a conversion from the specified
1371/// complex type to the specified destination type, where the destination
1372/// type is an LLVM scalar type.
1373Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
1374                                                      QualType SrcTy,
1375                                                      QualType DstTy) {
1376  assert(SrcTy->isAnyComplexType() && !hasAggregateLLVMType(DstTy) &&
1377         "Invalid complex -> scalar conversion");
1378  return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy,
1379                                                                DstTy);
1380}
1381
1382Value *CodeGenFunction::EmitShuffleVector(Value* V1, Value *V2, ...) {
1383  assert(V1->getType() == V2->getType() &&
1384         "Vector operands must be of the same type");
1385  unsigned NumElements =
1386    cast<llvm::VectorType>(V1->getType())->getNumElements();
1387
1388  va_list va;
1389  va_start(va, V2);
1390
1391  llvm::SmallVector<llvm::Constant*, 16> Args;
1392  for (unsigned i = 0; i < NumElements; i++) {
1393    int n = va_arg(va, int);
1394    assert(n >= 0 && n < (int)NumElements * 2 &&
1395           "Vector shuffle index out of bounds!");
1396    Args.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, n));
1397  }
1398
1399  const char *Name = va_arg(va, const char *);
1400  va_end(va);
1401
1402  llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements);
1403
1404  return Builder.CreateShuffleVector(V1, V2, Mask, Name);
1405}
1406
1407llvm::Value *CodeGenFunction::EmitVector(llvm::Value * const *Vals,
1408                                         unsigned NumVals, bool isSplat) {
1409  llvm::Value *Vec
1410    = llvm::UndefValue::get(llvm::VectorType::get(Vals[0]->getType(), NumVals));
1411
1412  for (unsigned i = 0, e = NumVals; i != e; ++i) {
1413    llvm::Value *Val = isSplat ? Vals[0] : Vals[i];
1414    llvm::Value *Idx = llvm::ConstantInt::get(llvm::Type::Int32Ty, i);
1415    Vec = Builder.CreateInsertElement(Vec, Val, Idx, "tmp");
1416  }
1417
1418  return Vec;
1419}
1420