CGExprScalar.cpp revision 6155d73ad1668be5335b1a060f6c49c03d4dca05
1//===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenFunction.h"
15#include "CGCXXABI.h"
16#include "CGObjCRuntime.h"
17#include "CodeGenModule.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/AST/RecordLayout.h"
21#include "clang/AST/StmtVisitor.h"
22#include "clang/Basic/TargetInfo.h"
23#include "llvm/Constants.h"
24#include "llvm/Function.h"
25#include "llvm/GlobalVariable.h"
26#include "llvm/Intrinsics.h"
27#include "llvm/Module.h"
28#include "llvm/Support/CFG.h"
29#include "llvm/Target/TargetData.h"
30#include <cstdarg>
31
32using namespace clang;
33using namespace CodeGen;
34using llvm::Value;
35
36//===----------------------------------------------------------------------===//
37//                         Scalar Expression Emitter
38//===----------------------------------------------------------------------===//
39
40struct BinOpInfo {
41  Value *LHS;
42  Value *RHS;
43  QualType Ty;  // Computation Type.
44  BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
45  const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
46};
47
48namespace {
49class ScalarExprEmitter
50  : public StmtVisitor<ScalarExprEmitter, Value*> {
51  CodeGenFunction &CGF;
52  CGBuilderTy &Builder;
53  bool IgnoreResultAssign;
54  llvm::LLVMContext &VMContext;
55public:
56
57  ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
58    : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
59      VMContext(cgf.getLLVMContext()) {
60  }
61
62  //===--------------------------------------------------------------------===//
63  //                               Utilities
64  //===--------------------------------------------------------------------===//
65
66  bool TestAndClearIgnoreResultAssign() {
67    bool I = IgnoreResultAssign;
68    IgnoreResultAssign = false;
69    return I;
70  }
71
72  const llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
73  LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
74  LValue EmitCheckedLValue(const Expr *E) { return CGF.EmitCheckedLValue(E); }
75
76  Value *EmitLoadOfLValue(LValue LV, QualType T) {
77    return CGF.EmitLoadOfLValue(LV, T).getScalarVal();
78  }
79
80  /// EmitLoadOfLValue - Given an expression with complex type that represents a
81  /// value l-value, this method emits the address of the l-value, then loads
82  /// and returns the result.
83  Value *EmitLoadOfLValue(const Expr *E) {
84    return EmitLoadOfLValue(EmitCheckedLValue(E), E->getType());
85  }
86
87  /// EmitConversionToBool - Convert the specified expression value to a
88  /// boolean (i1) truth value.  This is equivalent to "Val != 0".
89  Value *EmitConversionToBool(Value *Src, QualType DstTy);
90
91  /// EmitScalarConversion - Emit a conversion from the specified type to the
92  /// specified destination type, both of which are LLVM scalar types.
93  Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);
94
95  /// EmitComplexToScalarConversion - Emit a conversion from the specified
96  /// complex type to the specified destination type, where the destination type
97  /// is an LLVM scalar type.
98  Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
99                                       QualType SrcTy, QualType DstTy);
100
101  /// EmitNullValue - Emit a value that corresponds to null for the given type.
102  Value *EmitNullValue(QualType Ty);
103
104  //===--------------------------------------------------------------------===//
105  //                            Visitor Methods
106  //===--------------------------------------------------------------------===//
107
108  Value *Visit(Expr *E) {
109    llvm::DenseMap<const Expr *, llvm::Value *>::iterator I =
110      CGF.ConditionalSaveExprs.find(E);
111    if (I != CGF.ConditionalSaveExprs.end())
112      return I->second;
113
114    return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
115  }
116
117  Value *VisitStmt(Stmt *S) {
118    S->dump(CGF.getContext().getSourceManager());
119    assert(0 && "Stmt can't have complex result type!");
120    return 0;
121  }
122  Value *VisitExpr(Expr *S);
123
124  Value *VisitParenExpr(ParenExpr *PE) {
125    return Visit(PE->getSubExpr());
126  }
127
128  // Leaves.
129  Value *VisitIntegerLiteral(const IntegerLiteral *E) {
130    return llvm::ConstantInt::get(VMContext, E->getValue());
131  }
132  Value *VisitFloatingLiteral(const FloatingLiteral *E) {
133    return llvm::ConstantFP::get(VMContext, E->getValue());
134  }
135  Value *VisitCharacterLiteral(const CharacterLiteral *E) {
136    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
137  }
138  Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
139    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
140  }
141  Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
142    return EmitNullValue(E->getType());
143  }
144  Value *VisitGNUNullExpr(const GNUNullExpr *E) {
145    return EmitNullValue(E->getType());
146  }
147  Value *VisitTypesCompatibleExpr(const TypesCompatibleExpr *E) {
148    return llvm::ConstantInt::get(ConvertType(E->getType()),
149                                  CGF.getContext().typesAreCompatible(
150                                    E->getArgType1(), E->getArgType2()));
151  }
152  Value *VisitOffsetOfExpr(OffsetOfExpr *E);
153  Value *VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E);
154  Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
155    llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
156    return Builder.CreateBitCast(V, ConvertType(E->getType()));
157  }
158
159  // l-values.
160  Value *VisitDeclRefExpr(DeclRefExpr *E) {
161    Expr::EvalResult Result;
162    if (E->Evaluate(Result, CGF.getContext()) && Result.Val.isInt()) {
163      assert(!Result.HasSideEffects && "Constant declref with side-effect?!");
164      llvm::ConstantInt *CI
165        = llvm::ConstantInt::get(VMContext, Result.Val.getInt());
166      CGF.EmitDeclRefExprDbgValue(E, CI);
167      return CI;
168    }
169    return EmitLoadOfLValue(E);
170  }
171  Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
172    return CGF.EmitObjCSelectorExpr(E);
173  }
174  Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
175    return CGF.EmitObjCProtocolExpr(E);
176  }
177  Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
178    return EmitLoadOfLValue(E);
179  }
180  Value *VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
181    return EmitLoadOfLValue(E);
182  }
183  Value *VisitObjCImplicitSetterGetterRefExpr(
184                        ObjCImplicitSetterGetterRefExpr *E) {
185    return EmitLoadOfLValue(E);
186  }
187  Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
188    return CGF.EmitObjCMessageExpr(E).getScalarVal();
189  }
190
191  Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
192    LValue LV = CGF.EmitObjCIsaExpr(E);
193    Value *V = CGF.EmitLoadOfLValue(LV, E->getType()).getScalarVal();
194    return V;
195  }
196
197  Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
198  Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
199  Value *VisitMemberExpr(MemberExpr *E);
200  Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
201  Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
202    return EmitLoadOfLValue(E);
203  }
204
205  Value *VisitInitListExpr(InitListExpr *E);
206
207  Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
208    return CGF.CGM.EmitNullConstant(E->getType());
209  }
210  Value *VisitCastExpr(CastExpr *E) {
211    // Make sure to evaluate VLA bounds now so that we have them for later.
212    if (E->getType()->isVariablyModifiedType())
213      CGF.EmitVLASize(E->getType());
214
215    return EmitCastExpr(E);
216  }
217  Value *EmitCastExpr(CastExpr *E);
218
219  Value *VisitCallExpr(const CallExpr *E) {
220    if (E->getCallReturnType()->isReferenceType())
221      return EmitLoadOfLValue(E);
222
223    return CGF.EmitCallExpr(E).getScalarVal();
224  }
225
226  Value *VisitStmtExpr(const StmtExpr *E);
227
228  Value *VisitBlockDeclRefExpr(const BlockDeclRefExpr *E);
229
230  // Unary Operators.
231  Value *VisitUnaryPostDec(const UnaryOperator *E) {
232    LValue LV = EmitLValue(E->getSubExpr());
233    return EmitScalarPrePostIncDec(E, LV, false, false);
234  }
235  Value *VisitUnaryPostInc(const UnaryOperator *E) {
236    LValue LV = EmitLValue(E->getSubExpr());
237    return EmitScalarPrePostIncDec(E, LV, true, false);
238  }
239  Value *VisitUnaryPreDec(const UnaryOperator *E) {
240    LValue LV = EmitLValue(E->getSubExpr());
241    return EmitScalarPrePostIncDec(E, LV, false, true);
242  }
243  Value *VisitUnaryPreInc(const UnaryOperator *E) {
244    LValue LV = EmitLValue(E->getSubExpr());
245    return EmitScalarPrePostIncDec(E, LV, true, true);
246  }
247
248  llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
249                                       bool isInc, bool isPre);
250
251
252  Value *VisitUnaryAddrOf(const UnaryOperator *E) {
253    // If the sub-expression is an instance member reference,
254    // EmitDeclRefLValue will magically emit it with the appropriate
255    // value as the "address".
256    return EmitLValue(E->getSubExpr()).getAddress();
257  }
258  Value *VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); }
259  Value *VisitUnaryPlus(const UnaryOperator *E) {
260    // This differs from gcc, though, most likely due to a bug in gcc.
261    TestAndClearIgnoreResultAssign();
262    return Visit(E->getSubExpr());
263  }
264  Value *VisitUnaryMinus    (const UnaryOperator *E);
265  Value *VisitUnaryNot      (const UnaryOperator *E);
266  Value *VisitUnaryLNot     (const UnaryOperator *E);
267  Value *VisitUnaryReal     (const UnaryOperator *E);
268  Value *VisitUnaryImag     (const UnaryOperator *E);
269  Value *VisitUnaryExtension(const UnaryOperator *E) {
270    return Visit(E->getSubExpr());
271  }
272
273  // C++
274  Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
275    return Visit(DAE->getExpr());
276  }
277  Value *VisitCXXThisExpr(CXXThisExpr *TE) {
278    return CGF.LoadCXXThis();
279  }
280
281  Value *VisitCXXExprWithTemporaries(CXXExprWithTemporaries *E) {
282    return CGF.EmitCXXExprWithTemporaries(E).getScalarVal();
283  }
284  Value *VisitCXXNewExpr(const CXXNewExpr *E) {
285    return CGF.EmitCXXNewExpr(E);
286  }
287  Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
288    CGF.EmitCXXDeleteExpr(E);
289    return 0;
290  }
291  Value *VisitUnaryTypeTraitExpr(const UnaryTypeTraitExpr *E) {
292    return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
293  }
294
295  Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
296    // C++ [expr.pseudo]p1:
297    //   The result shall only be used as the operand for the function call
298    //   operator (), and the result of such a call has type void. The only
299    //   effect is the evaluation of the postfix-expression before the dot or
300    //   arrow.
301    CGF.EmitScalarExpr(E->getBase());
302    return 0;
303  }
304
305  Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
306    return EmitNullValue(E->getType());
307  }
308
309  Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
310    CGF.EmitCXXThrowExpr(E);
311    return 0;
312  }
313
314  Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
315    return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
316  }
317
318  // Binary Operators.
319  Value *EmitMul(const BinOpInfo &Ops) {
320    if (Ops.Ty->hasSignedIntegerRepresentation()) {
321      switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
322      case LangOptions::SOB_Undefined:
323        return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
324      case LangOptions::SOB_Defined:
325        return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
326      case LangOptions::SOB_Trapping:
327        return EmitOverflowCheckedBinOp(Ops);
328      }
329    }
330
331    if (Ops.LHS->getType()->isFPOrFPVectorTy())
332      return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
333    return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
334  }
335  bool isTrapvOverflowBehavior() {
336    return CGF.getContext().getLangOptions().getSignedOverflowBehavior()
337               == LangOptions::SOB_Trapping;
338  }
339  /// Create a binary op that checks for overflow.
340  /// Currently only supports +, - and *.
341  Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
342  // Emit the overflow BB when -ftrapv option is activated.
343  void EmitOverflowBB(llvm::BasicBlock *overflowBB) {
344    Builder.SetInsertPoint(overflowBB);
345    llvm::Function *Trap = CGF.CGM.getIntrinsic(llvm::Intrinsic::trap);
346    Builder.CreateCall(Trap);
347    Builder.CreateUnreachable();
348  }
349  // Check for undefined division and modulus behaviors.
350  void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
351                                                  llvm::Value *Zero,bool isDiv);
352  Value *EmitDiv(const BinOpInfo &Ops);
353  Value *EmitRem(const BinOpInfo &Ops);
354  Value *EmitAdd(const BinOpInfo &Ops);
355  Value *EmitSub(const BinOpInfo &Ops);
356  Value *EmitShl(const BinOpInfo &Ops);
357  Value *EmitShr(const BinOpInfo &Ops);
358  Value *EmitAnd(const BinOpInfo &Ops) {
359    return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
360  }
361  Value *EmitXor(const BinOpInfo &Ops) {
362    return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
363  }
364  Value *EmitOr (const BinOpInfo &Ops) {
365    return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
366  }
367
368  BinOpInfo EmitBinOps(const BinaryOperator *E);
369  LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
370                            Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
371                                  Value *&Result);
372
373  Value *EmitCompoundAssign(const CompoundAssignOperator *E,
374                            Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
375
376  // Binary operators and binary compound assignment operators.
377#define HANDLEBINOP(OP) \
378  Value *VisitBin ## OP(const BinaryOperator *E) {                         \
379    return Emit ## OP(EmitBinOps(E));                                      \
380  }                                                                        \
381  Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
382    return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
383  }
384  HANDLEBINOP(Mul)
385  HANDLEBINOP(Div)
386  HANDLEBINOP(Rem)
387  HANDLEBINOP(Add)
388  HANDLEBINOP(Sub)
389  HANDLEBINOP(Shl)
390  HANDLEBINOP(Shr)
391  HANDLEBINOP(And)
392  HANDLEBINOP(Xor)
393  HANDLEBINOP(Or)
394#undef HANDLEBINOP
395
396  // Comparisons.
397  Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
398                     unsigned SICmpOpc, unsigned FCmpOpc);
399#define VISITCOMP(CODE, UI, SI, FP) \
400    Value *VisitBin##CODE(const BinaryOperator *E) { \
401      return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
402                         llvm::FCmpInst::FP); }
403  VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
404  VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
405  VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
406  VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
407  VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
408  VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
409#undef VISITCOMP
410
411  Value *VisitBinAssign     (const BinaryOperator *E);
412
413  Value *VisitBinLAnd       (const BinaryOperator *E);
414  Value *VisitBinLOr        (const BinaryOperator *E);
415  Value *VisitBinComma      (const BinaryOperator *E);
416
417  Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
418  Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
419
420  // Other Operators.
421  Value *VisitBlockExpr(const BlockExpr *BE);
422  Value *VisitConditionalOperator(const ConditionalOperator *CO);
423  Value *VisitChooseExpr(ChooseExpr *CE);
424  Value *VisitVAArgExpr(VAArgExpr *VE);
425  Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
426    return CGF.EmitObjCStringLiteral(E);
427  }
428};
429}  // end anonymous namespace.
430
431//===----------------------------------------------------------------------===//
432//                                Utilities
433//===----------------------------------------------------------------------===//
434
435/// EmitConversionToBool - Convert the specified expression value to a
436/// boolean (i1) truth value.  This is equivalent to "Val != 0".
437Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
438  assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
439
440  if (SrcType->isRealFloatingType()) {
441    // Compare against 0.0 for fp scalars.
442    llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType());
443    return Builder.CreateFCmpUNE(Src, Zero, "tobool");
444  }
445
446  if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
447    return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
448
449  assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
450         "Unknown scalar type to convert");
451
452  // Because of the type rules of C, we often end up computing a logical value,
453  // then zero extending it to int, then wanting it as a logical value again.
454  // Optimize this common case.
455  if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(Src)) {
456    if (ZI->getOperand(0)->getType() ==
457        llvm::Type::getInt1Ty(CGF.getLLVMContext())) {
458      Value *Result = ZI->getOperand(0);
459      // If there aren't any more uses, zap the instruction to save space.
460      // Note that there can be more uses, for example if this
461      // is the result of an assignment.
462      if (ZI->use_empty())
463        ZI->eraseFromParent();
464      return Result;
465    }
466  }
467
468  // Compare against an integer or pointer null.
469  llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType());
470  return Builder.CreateICmpNE(Src, Zero, "tobool");
471}
472
473/// EmitScalarConversion - Emit a conversion from the specified type to the
474/// specified destination type, both of which are LLVM scalar types.
475Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
476                                               QualType DstType) {
477  SrcType = CGF.getContext().getCanonicalType(SrcType);
478  DstType = CGF.getContext().getCanonicalType(DstType);
479  if (SrcType == DstType) return Src;
480
481  if (DstType->isVoidType()) return 0;
482
483  // Handle conversions to bool first, they are special: comparisons against 0.
484  if (DstType->isBooleanType())
485    return EmitConversionToBool(Src, SrcType);
486
487  const llvm::Type *DstTy = ConvertType(DstType);
488
489  // Ignore conversions like int -> uint.
490  if (Src->getType() == DstTy)
491    return Src;
492
493  // Handle pointer conversions next: pointers can only be converted to/from
494  // other pointers and integers. Check for pointer types in terms of LLVM, as
495  // some native types (like Obj-C id) may map to a pointer type.
496  if (isa<llvm::PointerType>(DstTy)) {
497    // The source value may be an integer, or a pointer.
498    if (isa<llvm::PointerType>(Src->getType()))
499      return Builder.CreateBitCast(Src, DstTy, "conv");
500
501    assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
502    // First, convert to the correct width so that we control the kind of
503    // extension.
504    const llvm::Type *MiddleTy = CGF.IntPtrTy;
505    bool InputSigned = SrcType->isSignedIntegerType();
506    llvm::Value* IntResult =
507        Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
508    // Then, cast to pointer.
509    return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
510  }
511
512  if (isa<llvm::PointerType>(Src->getType())) {
513    // Must be an ptr to int cast.
514    assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
515    return Builder.CreatePtrToInt(Src, DstTy, "conv");
516  }
517
518  // A scalar can be splatted to an extended vector of the same element type
519  if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
520    // Cast the scalar to element type
521    QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType();
522    llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy);
523
524    // Insert the element in element zero of an undef vector
525    llvm::Value *UnV = llvm::UndefValue::get(DstTy);
526    llvm::Value *Idx = llvm::ConstantInt::get(CGF.Int32Ty, 0);
527    UnV = Builder.CreateInsertElement(UnV, Elt, Idx, "tmp");
528
529    // Splat the element across to all elements
530    llvm::SmallVector<llvm::Constant*, 16> Args;
531    unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
532    for (unsigned i = 0; i < NumElements; i++)
533      Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty, 0));
534
535    llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements);
536    llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
537    return Yay;
538  }
539
540  // Allow bitcast from vector to integer/fp of the same size.
541  if (isa<llvm::VectorType>(Src->getType()) ||
542      isa<llvm::VectorType>(DstTy))
543    return Builder.CreateBitCast(Src, DstTy, "conv");
544
545  // Finally, we have the arithmetic types: real int/float.
546  if (isa<llvm::IntegerType>(Src->getType())) {
547    bool InputSigned = SrcType->isSignedIntegerType();
548    if (isa<llvm::IntegerType>(DstTy))
549      return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
550    else if (InputSigned)
551      return Builder.CreateSIToFP(Src, DstTy, "conv");
552    else
553      return Builder.CreateUIToFP(Src, DstTy, "conv");
554  }
555
556  assert(Src->getType()->isFloatingPointTy() && "Unknown real conversion");
557  if (isa<llvm::IntegerType>(DstTy)) {
558    if (DstType->isSignedIntegerType())
559      return Builder.CreateFPToSI(Src, DstTy, "conv");
560    else
561      return Builder.CreateFPToUI(Src, DstTy, "conv");
562  }
563
564  assert(DstTy->isFloatingPointTy() && "Unknown real conversion");
565  if (DstTy->getTypeID() < Src->getType()->getTypeID())
566    return Builder.CreateFPTrunc(Src, DstTy, "conv");
567  else
568    return Builder.CreateFPExt(Src, DstTy, "conv");
569}
570
571/// EmitComplexToScalarConversion - Emit a conversion from the specified complex
572/// type to the specified destination type, where the destination type is an
573/// LLVM scalar type.
574Value *ScalarExprEmitter::
575EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
576                              QualType SrcTy, QualType DstTy) {
577  // Get the source element type.
578  SrcTy = SrcTy->getAs<ComplexType>()->getElementType();
579
580  // Handle conversions to bool first, they are special: comparisons against 0.
581  if (DstTy->isBooleanType()) {
582    //  Complex != 0  -> (Real != 0) | (Imag != 0)
583    Src.first  = EmitScalarConversion(Src.first, SrcTy, DstTy);
584    Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
585    return Builder.CreateOr(Src.first, Src.second, "tobool");
586  }
587
588  // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
589  // the imaginary part of the complex value is discarded and the value of the
590  // real part is converted according to the conversion rules for the
591  // corresponding real type.
592  return EmitScalarConversion(Src.first, SrcTy, DstTy);
593}
594
595Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
596  if (const MemberPointerType *MPT = Ty->getAs<MemberPointerType>())
597    return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
598
599  return llvm::Constant::getNullValue(ConvertType(Ty));
600}
601
602//===----------------------------------------------------------------------===//
603//                            Visitor Methods
604//===----------------------------------------------------------------------===//
605
606Value *ScalarExprEmitter::VisitExpr(Expr *E) {
607  CGF.ErrorUnsupported(E, "scalar expression");
608  if (E->getType()->isVoidType())
609    return 0;
610  return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
611}
612
613Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
614  // Vector Mask Case
615  if (E->getNumSubExprs() == 2 ||
616      (E->getNumSubExprs() == 3 && E->getExpr(2)->getType()->isVectorType())) {
617    Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
618    Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
619    Value *Mask;
620
621    const llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
622    unsigned LHSElts = LTy->getNumElements();
623
624    if (E->getNumSubExprs() == 3) {
625      Mask = CGF.EmitScalarExpr(E->getExpr(2));
626
627      // Shuffle LHS & RHS into one input vector.
628      llvm::SmallVector<llvm::Constant*, 32> concat;
629      for (unsigned i = 0; i != LHSElts; ++i) {
630        concat.push_back(llvm::ConstantInt::get(CGF.Int32Ty, 2*i));
631        concat.push_back(llvm::ConstantInt::get(CGF.Int32Ty, 2*i+1));
632      }
633
634      Value* CV = llvm::ConstantVector::get(concat.begin(), concat.size());
635      LHS = Builder.CreateShuffleVector(LHS, RHS, CV, "concat");
636      LHSElts *= 2;
637    } else {
638      Mask = RHS;
639    }
640
641    const llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
642    llvm::Constant* EltMask;
643
644    // Treat vec3 like vec4.
645    if ((LHSElts == 6) && (E->getNumSubExprs() == 3))
646      EltMask = llvm::ConstantInt::get(MTy->getElementType(),
647                                       (1 << llvm::Log2_32(LHSElts+2))-1);
648    else if ((LHSElts == 3) && (E->getNumSubExprs() == 2))
649      EltMask = llvm::ConstantInt::get(MTy->getElementType(),
650                                       (1 << llvm::Log2_32(LHSElts+1))-1);
651    else
652      EltMask = llvm::ConstantInt::get(MTy->getElementType(),
653                                       (1 << llvm::Log2_32(LHSElts))-1);
654
655    // Mask off the high bits of each shuffle index.
656    llvm::SmallVector<llvm::Constant *, 32> MaskV;
657    for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i)
658      MaskV.push_back(EltMask);
659
660    Value* MaskBits = llvm::ConstantVector::get(MaskV.begin(), MaskV.size());
661    Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
662
663    // newv = undef
664    // mask = mask & maskbits
665    // for each elt
666    //   n = extract mask i
667    //   x = extract val n
668    //   newv = insert newv, x, i
669    const llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
670                                                        MTy->getNumElements());
671    Value* NewV = llvm::UndefValue::get(RTy);
672    for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
673      Value *Indx = llvm::ConstantInt::get(CGF.Int32Ty, i);
674      Indx = Builder.CreateExtractElement(Mask, Indx, "shuf_idx");
675      Indx = Builder.CreateZExt(Indx, CGF.Int32Ty, "idx_zext");
676
677      // Handle vec3 special since the index will be off by one for the RHS.
678      if ((LHSElts == 6) && (E->getNumSubExprs() == 3)) {
679        Value *cmpIndx, *newIndx;
680        cmpIndx = Builder.CreateICmpUGT(Indx,
681                                        llvm::ConstantInt::get(CGF.Int32Ty, 3),
682                                        "cmp_shuf_idx");
683        newIndx = Builder.CreateSub(Indx, llvm::ConstantInt::get(CGF.Int32Ty,1),
684                                    "shuf_idx_adj");
685        Indx = Builder.CreateSelect(cmpIndx, newIndx, Indx, "sel_shuf_idx");
686      }
687      Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
688      NewV = Builder.CreateInsertElement(NewV, VExt, Indx, "shuf_ins");
689    }
690    return NewV;
691  }
692
693  Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
694  Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
695
696  // Handle vec3 special since the index will be off by one for the RHS.
697  llvm::SmallVector<llvm::Constant*, 32> indices;
698  for (unsigned i = 2; i < E->getNumSubExprs(); i++) {
699    llvm::Constant *C = cast<llvm::Constant>(CGF.EmitScalarExpr(E->getExpr(i)));
700    const llvm::VectorType *VTy = cast<llvm::VectorType>(V1->getType());
701    if (VTy->getNumElements() == 3) {
702      if (llvm::ConstantInt *CI = dyn_cast<llvm::ConstantInt>(C)) {
703        uint64_t cVal = CI->getZExtValue();
704        if (cVal > 3) {
705          C = llvm::ConstantInt::get(C->getType(), cVal-1);
706        }
707      }
708    }
709    indices.push_back(C);
710  }
711
712  Value* SV = llvm::ConstantVector::get(indices.begin(), indices.size());
713  return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
714}
715Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
716  Expr::EvalResult Result;
717  if (E->Evaluate(Result, CGF.getContext()) && Result.Val.isInt()) {
718    if (E->isArrow())
719      CGF.EmitScalarExpr(E->getBase());
720    else
721      EmitLValue(E->getBase());
722    return llvm::ConstantInt::get(VMContext, Result.Val.getInt());
723  }
724  return EmitLoadOfLValue(E);
725}
726
727Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
728  TestAndClearIgnoreResultAssign();
729
730  // Emit subscript expressions in rvalue context's.  For most cases, this just
731  // loads the lvalue formed by the subscript expr.  However, we have to be
732  // careful, because the base of a vector subscript is occasionally an rvalue,
733  // so we can't get it as an lvalue.
734  if (!E->getBase()->getType()->isVectorType())
735    return EmitLoadOfLValue(E);
736
737  // Handle the vector case.  The base must be a vector, the index must be an
738  // integer value.
739  Value *Base = Visit(E->getBase());
740  Value *Idx  = Visit(E->getIdx());
741  bool IdxSigned = E->getIdx()->getType()->isSignedIntegerType();
742  Idx = Builder.CreateIntCast(Idx, CGF.Int32Ty, IdxSigned, "vecidxcast");
743  return Builder.CreateExtractElement(Base, Idx, "vecext");
744}
745
746static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
747                                  unsigned Off, const llvm::Type *I32Ty) {
748  int MV = SVI->getMaskValue(Idx);
749  if (MV == -1)
750    return llvm::UndefValue::get(I32Ty);
751  return llvm::ConstantInt::get(I32Ty, Off+MV);
752}
753
754Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
755  bool Ignore = TestAndClearIgnoreResultAssign();
756  (void)Ignore;
757  assert (Ignore == false && "init list ignored");
758  unsigned NumInitElements = E->getNumInits();
759
760  if (E->hadArrayRangeDesignator())
761    CGF.ErrorUnsupported(E, "GNU array range designator extension");
762
763  const llvm::VectorType *VType =
764    dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
765
766  // We have a scalar in braces. Just use the first element.
767  if (!VType)
768    return Visit(E->getInit(0));
769
770  unsigned ResElts = VType->getNumElements();
771
772  // Loop over initializers collecting the Value for each, and remembering
773  // whether the source was swizzle (ExtVectorElementExpr).  This will allow
774  // us to fold the shuffle for the swizzle into the shuffle for the vector
775  // initializer, since LLVM optimizers generally do not want to touch
776  // shuffles.
777  unsigned CurIdx = 0;
778  bool VIsUndefShuffle = false;
779  llvm::Value *V = llvm::UndefValue::get(VType);
780  for (unsigned i = 0; i != NumInitElements; ++i) {
781    Expr *IE = E->getInit(i);
782    Value *Init = Visit(IE);
783    llvm::SmallVector<llvm::Constant*, 16> Args;
784
785    const llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
786
787    // Handle scalar elements.  If the scalar initializer is actually one
788    // element of a different vector of the same width, use shuffle instead of
789    // extract+insert.
790    if (!VVT) {
791      if (isa<ExtVectorElementExpr>(IE)) {
792        llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
793
794        if (EI->getVectorOperandType()->getNumElements() == ResElts) {
795          llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
796          Value *LHS = 0, *RHS = 0;
797          if (CurIdx == 0) {
798            // insert into undef -> shuffle (src, undef)
799            Args.push_back(C);
800            for (unsigned j = 1; j != ResElts; ++j)
801              Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
802
803            LHS = EI->getVectorOperand();
804            RHS = V;
805            VIsUndefShuffle = true;
806          } else if (VIsUndefShuffle) {
807            // insert into undefshuffle && size match -> shuffle (v, src)
808            llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
809            for (unsigned j = 0; j != CurIdx; ++j)
810              Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
811            Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty,
812                                                  ResElts + C->getZExtValue()));
813            for (unsigned j = CurIdx + 1; j != ResElts; ++j)
814              Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
815
816            LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
817            RHS = EI->getVectorOperand();
818            VIsUndefShuffle = false;
819          }
820          if (!Args.empty()) {
821            llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], ResElts);
822            V = Builder.CreateShuffleVector(LHS, RHS, Mask);
823            ++CurIdx;
824            continue;
825          }
826        }
827      }
828      Value *Idx = llvm::ConstantInt::get(CGF.Int32Ty, CurIdx);
829      V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
830      VIsUndefShuffle = false;
831      ++CurIdx;
832      continue;
833    }
834
835    unsigned InitElts = VVT->getNumElements();
836
837    // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
838    // input is the same width as the vector being constructed, generate an
839    // optimized shuffle of the swizzle input into the result.
840    unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
841    if (isa<ExtVectorElementExpr>(IE)) {
842      llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
843      Value *SVOp = SVI->getOperand(0);
844      const llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
845
846      if (OpTy->getNumElements() == ResElts) {
847        for (unsigned j = 0; j != CurIdx; ++j) {
848          // If the current vector initializer is a shuffle with undef, merge
849          // this shuffle directly into it.
850          if (VIsUndefShuffle) {
851            Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
852                                      CGF.Int32Ty));
853          } else {
854            Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty, j));
855          }
856        }
857        for (unsigned j = 0, je = InitElts; j != je; ++j)
858          Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
859        for (unsigned j = CurIdx + InitElts; j != ResElts; ++j)
860          Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
861
862        if (VIsUndefShuffle)
863          V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
864
865        Init = SVOp;
866      }
867    }
868
869    // Extend init to result vector length, and then shuffle its contribution
870    // to the vector initializer into V.
871    if (Args.empty()) {
872      for (unsigned j = 0; j != InitElts; ++j)
873        Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty, j));
874      for (unsigned j = InitElts; j != ResElts; ++j)
875        Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
876      llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], ResElts);
877      Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
878                                         Mask, "vext");
879
880      Args.clear();
881      for (unsigned j = 0; j != CurIdx; ++j)
882        Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty, j));
883      for (unsigned j = 0; j != InitElts; ++j)
884        Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty, j+Offset));
885      for (unsigned j = CurIdx + InitElts; j != ResElts; ++j)
886        Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
887    }
888
889    // If V is undef, make sure it ends up on the RHS of the shuffle to aid
890    // merging subsequent shuffles into this one.
891    if (CurIdx == 0)
892      std::swap(V, Init);
893    llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], ResElts);
894    V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
895    VIsUndefShuffle = isa<llvm::UndefValue>(Init);
896    CurIdx += InitElts;
897  }
898
899  // FIXME: evaluate codegen vs. shuffling against constant null vector.
900  // Emit remaining default initializers.
901  const llvm::Type *EltTy = VType->getElementType();
902
903  // Emit remaining default initializers
904  for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
905    Value *Idx = llvm::ConstantInt::get(CGF.Int32Ty, CurIdx);
906    llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
907    V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
908  }
909  return V;
910}
911
912static bool ShouldNullCheckClassCastValue(const CastExpr *CE) {
913  const Expr *E = CE->getSubExpr();
914
915  if (CE->getCastKind() == CK_UncheckedDerivedToBase)
916    return false;
917
918  if (isa<CXXThisExpr>(E)) {
919    // We always assume that 'this' is never null.
920    return false;
921  }
922
923  if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
924    // And that glvalue casts are never null.
925    if (ICE->getValueKind() != VK_RValue)
926      return false;
927  }
928
929  return true;
930}
931
932// VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
933// have to handle a more broad range of conversions than explicit casts, as they
934// handle things like function to ptr-to-function decay etc.
935Value *ScalarExprEmitter::EmitCastExpr(CastExpr *CE) {
936  Expr *E = CE->getSubExpr();
937  QualType DestTy = CE->getType();
938  CastKind Kind = CE->getCastKind();
939
940  if (!DestTy->isVoidType())
941    TestAndClearIgnoreResultAssign();
942
943  // Since almost all cast kinds apply to scalars, this switch doesn't have
944  // a default case, so the compiler will warn on a missing case.  The cases
945  // are in the same order as in the CastKind enum.
946  switch (Kind) {
947  case CK_Unknown:
948    // FIXME: All casts should have a known kind!
949    //assert(0 && "Unknown cast kind!");
950    break;
951
952  case CK_LValueBitCast:
953  case CK_ObjCObjectLValueCast: {
954    Value *V = EmitLValue(E).getAddress();
955    V = Builder.CreateBitCast(V,
956                          ConvertType(CGF.getContext().getPointerType(DestTy)));
957    return EmitLoadOfLValue(CGF.MakeAddrLValue(V, DestTy), DestTy);
958  }
959
960  case CK_AnyPointerToObjCPointerCast:
961  case CK_AnyPointerToBlockPointerCast:
962  case CK_BitCast: {
963    Value *Src = Visit(const_cast<Expr*>(E));
964    return Builder.CreateBitCast(Src, ConvertType(DestTy));
965  }
966  case CK_NoOp:
967  case CK_UserDefinedConversion:
968    return Visit(const_cast<Expr*>(E));
969
970  case CK_BaseToDerived: {
971    const CXXRecordDecl *DerivedClassDecl =
972      DestTy->getCXXRecordDeclForPointerType();
973
974    return CGF.GetAddressOfDerivedClass(Visit(E), DerivedClassDecl,
975                                        CE->path_begin(), CE->path_end(),
976                                        ShouldNullCheckClassCastValue(CE));
977  }
978  case CK_UncheckedDerivedToBase:
979  case CK_DerivedToBase: {
980    const RecordType *DerivedClassTy =
981      E->getType()->getAs<PointerType>()->getPointeeType()->getAs<RecordType>();
982    CXXRecordDecl *DerivedClassDecl =
983      cast<CXXRecordDecl>(DerivedClassTy->getDecl());
984
985    return CGF.GetAddressOfBaseClass(Visit(E), DerivedClassDecl,
986                                     CE->path_begin(), CE->path_end(),
987                                     ShouldNullCheckClassCastValue(CE));
988  }
989  case CK_Dynamic: {
990    Value *V = Visit(const_cast<Expr*>(E));
991    const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
992    return CGF.EmitDynamicCast(V, DCE);
993  }
994  case CK_ToUnion:
995    assert(0 && "Should be unreachable!");
996    break;
997
998  case CK_ArrayToPointerDecay: {
999    assert(E->getType()->isArrayType() &&
1000           "Array to pointer decay must have array source type!");
1001
1002    Value *V = EmitLValue(E).getAddress();  // Bitfields can't be arrays.
1003
1004    // Note that VLA pointers are always decayed, so we don't need to do
1005    // anything here.
1006    if (!E->getType()->isVariableArrayType()) {
1007      assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer");
1008      assert(isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType())
1009                                 ->getElementType()) &&
1010             "Expected pointer to array");
1011      V = Builder.CreateStructGEP(V, 0, "arraydecay");
1012    }
1013
1014    return V;
1015  }
1016  case CK_FunctionToPointerDecay:
1017    return EmitLValue(E).getAddress();
1018
1019  case CK_NullToMemberPointer: {
1020    // If the subexpression's type is the C++0x nullptr_t, emit the
1021    // subexpression, which may have side effects.
1022    if (E->getType()->isNullPtrType())
1023      (void) Visit(E);
1024
1025    const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
1026    return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
1027  }
1028
1029  case CK_BaseToDerivedMemberPointer:
1030  case CK_DerivedToBaseMemberPointer: {
1031    Value *Src = Visit(E);
1032
1033    // Note that the AST doesn't distinguish between checked and
1034    // unchecked member pointer conversions, so we always have to
1035    // implement checked conversions here.  This is inefficient when
1036    // actual control flow may be required in order to perform the
1037    // check, which it is for data member pointers (but not member
1038    // function pointers on Itanium and ARM).
1039    return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
1040  }
1041
1042
1043  case CK_ConstructorConversion:
1044    assert(0 && "Should be unreachable!");
1045    break;
1046
1047  case CK_IntegralToPointer: {
1048    Value *Src = Visit(const_cast<Expr*>(E));
1049
1050    // First, convert to the correct width so that we control the kind of
1051    // extension.
1052    const llvm::Type *MiddleTy = CGF.IntPtrTy;
1053    bool InputSigned = E->getType()->isSignedIntegerType();
1054    llvm::Value* IntResult =
1055      Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1056
1057    return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy));
1058  }
1059  case CK_PointerToIntegral: {
1060    Value *Src = Visit(const_cast<Expr*>(E));
1061
1062    // Handle conversion to bool correctly.
1063    if (DestTy->isBooleanType())
1064      return EmitScalarConversion(Src, E->getType(), DestTy);
1065
1066    return Builder.CreatePtrToInt(Src, ConvertType(DestTy));
1067  }
1068  case CK_ToVoid: {
1069    if (E->Classify(CGF.getContext()).isGLValue()) {
1070      LValue LV = CGF.EmitLValue(E);
1071      if (LV.isPropertyRef())
1072        CGF.EmitLoadOfPropertyRefLValue(LV, E->getType());
1073      else if (LV.isKVCRef())
1074        CGF.EmitLoadOfKVCRefLValue(LV, E->getType());
1075    }
1076    else
1077      CGF.EmitAnyExpr(E, AggValueSlot::ignored(), true);
1078    return 0;
1079  }
1080  case CK_VectorSplat: {
1081    const llvm::Type *DstTy = ConvertType(DestTy);
1082    Value *Elt = Visit(const_cast<Expr*>(E));
1083
1084    // Insert the element in element zero of an undef vector
1085    llvm::Value *UnV = llvm::UndefValue::get(DstTy);
1086    llvm::Value *Idx = llvm::ConstantInt::get(CGF.Int32Ty, 0);
1087    UnV = Builder.CreateInsertElement(UnV, Elt, Idx, "tmp");
1088
1089    // Splat the element across to all elements
1090    llvm::SmallVector<llvm::Constant*, 16> Args;
1091    unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
1092    for (unsigned i = 0; i < NumElements; i++)
1093      Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty, 0));
1094
1095    llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements);
1096    llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
1097    return Yay;
1098  }
1099  case CK_IntegralCast:
1100  case CK_IntegralToFloating:
1101  case CK_FloatingToIntegral:
1102  case CK_FloatingCast:
1103    return EmitScalarConversion(Visit(E), E->getType(), DestTy);
1104
1105  case CK_MemberPointerToBoolean: {
1106    llvm::Value *MemPtr = Visit(E);
1107    const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
1108    return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
1109  }
1110  }
1111
1112  // Handle cases where the source is an non-complex type.
1113
1114  if (!CGF.hasAggregateLLVMType(E->getType())) {
1115    Value *Src = Visit(const_cast<Expr*>(E));
1116
1117    // Use EmitScalarConversion to perform the conversion.
1118    return EmitScalarConversion(Src, E->getType(), DestTy);
1119  }
1120
1121  if (E->getType()->isAnyComplexType()) {
1122    // Handle cases where the source is a complex type.
1123    bool IgnoreImag = true;
1124    bool IgnoreImagAssign = true;
1125    bool IgnoreReal = IgnoreResultAssign;
1126    bool IgnoreRealAssign = IgnoreResultAssign;
1127    if (DestTy->isBooleanType())
1128      IgnoreImagAssign = IgnoreImag = false;
1129    else if (DestTy->isVoidType()) {
1130      IgnoreReal = IgnoreImag = false;
1131      IgnoreRealAssign = IgnoreImagAssign = true;
1132    }
1133    CodeGenFunction::ComplexPairTy V
1134      = CGF.EmitComplexExpr(E, IgnoreReal, IgnoreImag, IgnoreRealAssign,
1135                            IgnoreImagAssign);
1136    return EmitComplexToScalarConversion(V, E->getType(), DestTy);
1137  }
1138
1139  // Okay, this is a cast from an aggregate.  It must be a cast to void.  Just
1140  // evaluate the result and return.
1141  CGF.EmitAggExpr(E, AggValueSlot::ignored(), true);
1142  return 0;
1143}
1144
1145Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
1146  return CGF.EmitCompoundStmt(*E->getSubStmt(),
1147                              !E->getType()->isVoidType()).getScalarVal();
1148}
1149
1150Value *ScalarExprEmitter::VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) {
1151  llvm::Value *V = CGF.GetAddrOfBlockDecl(E);
1152  if (E->getType().isObjCGCWeak())
1153    return CGF.CGM.getObjCRuntime().EmitObjCWeakRead(CGF, V);
1154  return CGF.EmitLoadOfScalar(V, false, 0, E->getType());
1155}
1156
1157//===----------------------------------------------------------------------===//
1158//                             Unary Operators
1159//===----------------------------------------------------------------------===//
1160
1161llvm::Value *ScalarExprEmitter::
1162EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1163                        bool isInc, bool isPre) {
1164
1165  QualType ValTy = E->getSubExpr()->getType();
1166  llvm::Value *InVal = EmitLoadOfLValue(LV, ValTy);
1167
1168  int AmountVal = isInc ? 1 : -1;
1169
1170  if (ValTy->isPointerType() &&
1171      ValTy->getAs<PointerType>()->isVariableArrayType()) {
1172    // The amount of the addition/subtraction needs to account for the VLA size
1173    CGF.ErrorUnsupported(E, "VLA pointer inc/dec");
1174  }
1175
1176  llvm::Value *NextVal;
1177  if (const llvm::PointerType *PT =
1178      dyn_cast<llvm::PointerType>(InVal->getType())) {
1179    llvm::Constant *Inc = llvm::ConstantInt::get(CGF.Int32Ty, AmountVal);
1180    if (!isa<llvm::FunctionType>(PT->getElementType())) {
1181      QualType PTEE = ValTy->getPointeeType();
1182      if (const ObjCObjectType *OIT = PTEE->getAs<ObjCObjectType>()) {
1183        // Handle interface types, which are not represented with a concrete
1184        // type.
1185        int size = CGF.getContext().getTypeSize(OIT) / 8;
1186        if (!isInc)
1187          size = -size;
1188        Inc = llvm::ConstantInt::get(Inc->getType(), size);
1189        const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1190        InVal = Builder.CreateBitCast(InVal, i8Ty);
1191        NextVal = Builder.CreateGEP(InVal, Inc, "add.ptr");
1192        llvm::Value *lhs = LV.getAddress();
1193        lhs = Builder.CreateBitCast(lhs, llvm::PointerType::getUnqual(i8Ty));
1194        LV = CGF.MakeAddrLValue(lhs, ValTy);
1195      } else
1196        NextVal = Builder.CreateInBoundsGEP(InVal, Inc, "ptrincdec");
1197    } else {
1198      const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1199      NextVal = Builder.CreateBitCast(InVal, i8Ty, "tmp");
1200      NextVal = Builder.CreateGEP(NextVal, Inc, "ptrincdec");
1201      NextVal = Builder.CreateBitCast(NextVal, InVal->getType());
1202    }
1203  } else if (InVal->getType()->isIntegerTy(1) && isInc) {
1204    // Bool++ is an interesting case, due to promotion rules, we get:
1205    // Bool++ -> Bool = Bool+1 -> Bool = (int)Bool+1 ->
1206    // Bool = ((int)Bool+1) != 0
1207    // An interesting aspect of this is that increment is always true.
1208    // Decrement does not have this property.
1209    NextVal = llvm::ConstantInt::getTrue(VMContext);
1210  } else if (isa<llvm::IntegerType>(InVal->getType())) {
1211    NextVal = llvm::ConstantInt::get(InVal->getType(), AmountVal);
1212
1213    if (!ValTy->isSignedIntegerType())
1214      // Unsigned integer inc is always two's complement.
1215      NextVal = Builder.CreateAdd(InVal, NextVal, isInc ? "inc" : "dec");
1216    else {
1217      switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
1218      case LangOptions::SOB_Undefined:
1219        NextVal = Builder.CreateNSWAdd(InVal, NextVal, isInc ? "inc" : "dec");
1220        break;
1221      case LangOptions::SOB_Defined:
1222        NextVal = Builder.CreateAdd(InVal, NextVal, isInc ? "inc" : "dec");
1223        break;
1224      case LangOptions::SOB_Trapping:
1225        BinOpInfo BinOp;
1226        BinOp.LHS = InVal;
1227        BinOp.RHS = NextVal;
1228        BinOp.Ty = E->getType();
1229        BinOp.Opcode = BO_Add;
1230        BinOp.E = E;
1231        NextVal = EmitOverflowCheckedBinOp(BinOp);
1232        break;
1233      }
1234    }
1235  } else {
1236    // Add the inc/dec to the real part.
1237    if (InVal->getType()->isFloatTy())
1238      NextVal =
1239      llvm::ConstantFP::get(VMContext,
1240                            llvm::APFloat(static_cast<float>(AmountVal)));
1241    else if (InVal->getType()->isDoubleTy())
1242      NextVal =
1243      llvm::ConstantFP::get(VMContext,
1244                            llvm::APFloat(static_cast<double>(AmountVal)));
1245    else {
1246      llvm::APFloat F(static_cast<float>(AmountVal));
1247      bool ignored;
1248      F.convert(CGF.Target.getLongDoubleFormat(), llvm::APFloat::rmTowardZero,
1249                &ignored);
1250      NextVal = llvm::ConstantFP::get(VMContext, F);
1251    }
1252    NextVal = Builder.CreateFAdd(InVal, NextVal, isInc ? "inc" : "dec");
1253  }
1254
1255  // Store the updated result through the lvalue.
1256  if (LV.isBitField())
1257    CGF.EmitStoreThroughBitfieldLValue(RValue::get(NextVal), LV, ValTy, &NextVal);
1258  else
1259    CGF.EmitStoreThroughLValue(RValue::get(NextVal), LV, ValTy);
1260
1261  // If this is a postinc, return the value read from memory, otherwise use the
1262  // updated value.
1263  return isPre ? NextVal : InVal;
1264}
1265
1266
1267
1268Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
1269  TestAndClearIgnoreResultAssign();
1270  // Emit unary minus with EmitSub so we handle overflow cases etc.
1271  BinOpInfo BinOp;
1272  BinOp.RHS = Visit(E->getSubExpr());
1273
1274  if (BinOp.RHS->getType()->isFPOrFPVectorTy())
1275    BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType());
1276  else
1277    BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
1278  BinOp.Ty = E->getType();
1279  BinOp.Opcode = BO_Sub;
1280  BinOp.E = E;
1281  return EmitSub(BinOp);
1282}
1283
1284Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
1285  TestAndClearIgnoreResultAssign();
1286  Value *Op = Visit(E->getSubExpr());
1287  return Builder.CreateNot(Op, "neg");
1288}
1289
1290Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
1291  // Compare operand to zero.
1292  Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
1293
1294  // Invert value.
1295  // TODO: Could dynamically modify easy computations here.  For example, if
1296  // the operand is an icmp ne, turn into icmp eq.
1297  BoolVal = Builder.CreateNot(BoolVal, "lnot");
1298
1299  // ZExt result to the expr type.
1300  return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
1301}
1302
1303Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
1304  // Try folding the offsetof to a constant.
1305  Expr::EvalResult EvalResult;
1306  if (E->Evaluate(EvalResult, CGF.getContext()))
1307    return llvm::ConstantInt::get(VMContext, EvalResult.Val.getInt());
1308
1309  // Loop over the components of the offsetof to compute the value.
1310  unsigned n = E->getNumComponents();
1311  const llvm::Type* ResultType = ConvertType(E->getType());
1312  llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
1313  QualType CurrentType = E->getTypeSourceInfo()->getType();
1314  for (unsigned i = 0; i != n; ++i) {
1315    OffsetOfExpr::OffsetOfNode ON = E->getComponent(i);
1316    llvm::Value *Offset = 0;
1317    switch (ON.getKind()) {
1318    case OffsetOfExpr::OffsetOfNode::Array: {
1319      // Compute the index
1320      Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
1321      llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
1322      bool IdxSigned = IdxExpr->getType()->isSignedIntegerType();
1323      Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
1324
1325      // Save the element type
1326      CurrentType =
1327          CGF.getContext().getAsArrayType(CurrentType)->getElementType();
1328
1329      // Compute the element size
1330      llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
1331          CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
1332
1333      // Multiply out to compute the result
1334      Offset = Builder.CreateMul(Idx, ElemSize);
1335      break;
1336    }
1337
1338    case OffsetOfExpr::OffsetOfNode::Field: {
1339      FieldDecl *MemberDecl = ON.getField();
1340      RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1341      const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1342
1343      // Compute the index of the field in its parent.
1344      unsigned i = 0;
1345      // FIXME: It would be nice if we didn't have to loop here!
1346      for (RecordDecl::field_iterator Field = RD->field_begin(),
1347                                      FieldEnd = RD->field_end();
1348           Field != FieldEnd; (void)++Field, ++i) {
1349        if (*Field == MemberDecl)
1350          break;
1351      }
1352      assert(i < RL.getFieldCount() && "offsetof field in wrong type");
1353
1354      // Compute the offset to the field
1355      int64_t OffsetInt = RL.getFieldOffset(i) /
1356                          CGF.getContext().getCharWidth();
1357      Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
1358
1359      // Save the element type.
1360      CurrentType = MemberDecl->getType();
1361      break;
1362    }
1363
1364    case OffsetOfExpr::OffsetOfNode::Identifier:
1365      llvm_unreachable("dependent __builtin_offsetof");
1366
1367    case OffsetOfExpr::OffsetOfNode::Base: {
1368      if (ON.getBase()->isVirtual()) {
1369        CGF.ErrorUnsupported(E, "virtual base in offsetof");
1370        continue;
1371      }
1372
1373      RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1374      const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1375
1376      // Save the element type.
1377      CurrentType = ON.getBase()->getType();
1378
1379      // Compute the offset to the base.
1380      const RecordType *BaseRT = CurrentType->getAs<RecordType>();
1381      CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
1382      int64_t OffsetInt = RL.getBaseClassOffset(BaseRD) /
1383                          CGF.getContext().getCharWidth();
1384      Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
1385      break;
1386    }
1387    }
1388    Result = Builder.CreateAdd(Result, Offset);
1389  }
1390  return Result;
1391}
1392
1393/// VisitSizeOfAlignOfExpr - Return the size or alignment of the type of
1394/// argument of the sizeof expression as an integer.
1395Value *
1396ScalarExprEmitter::VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E) {
1397  QualType TypeToSize = E->getTypeOfArgument();
1398  if (E->isSizeOf()) {
1399    if (const VariableArrayType *VAT =
1400          CGF.getContext().getAsVariableArrayType(TypeToSize)) {
1401      if (E->isArgumentType()) {
1402        // sizeof(type) - make sure to emit the VLA size.
1403        CGF.EmitVLASize(TypeToSize);
1404      } else {
1405        // C99 6.5.3.4p2: If the argument is an expression of type
1406        // VLA, it is evaluated.
1407        CGF.EmitAnyExpr(E->getArgumentExpr());
1408      }
1409
1410      return CGF.GetVLASize(VAT);
1411    }
1412  }
1413
1414  // If this isn't sizeof(vla), the result must be constant; use the constant
1415  // folding logic so we don't have to duplicate it here.
1416  Expr::EvalResult Result;
1417  E->Evaluate(Result, CGF.getContext());
1418  return llvm::ConstantInt::get(VMContext, Result.Val.getInt());
1419}
1420
1421Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
1422  Expr *Op = E->getSubExpr();
1423  if (Op->getType()->isAnyComplexType())
1424    return CGF.EmitComplexExpr(Op, false, true, false, true).first;
1425  return Visit(Op);
1426}
1427Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
1428  Expr *Op = E->getSubExpr();
1429  if (Op->getType()->isAnyComplexType())
1430    return CGF.EmitComplexExpr(Op, true, false, true, false).second;
1431
1432  // __imag on a scalar returns zero.  Emit the subexpr to ensure side
1433  // effects are evaluated, but not the actual value.
1434  if (E->isLvalue(CGF.getContext()) == Expr::LV_Valid)
1435    CGF.EmitLValue(Op);
1436  else
1437    CGF.EmitScalarExpr(Op, true);
1438  return llvm::Constant::getNullValue(ConvertType(E->getType()));
1439}
1440
1441//===----------------------------------------------------------------------===//
1442//                           Binary Operators
1443//===----------------------------------------------------------------------===//
1444
1445BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
1446  TestAndClearIgnoreResultAssign();
1447  BinOpInfo Result;
1448  Result.LHS = Visit(E->getLHS());
1449  Result.RHS = Visit(E->getRHS());
1450  Result.Ty  = E->getType();
1451  Result.Opcode = E->getOpcode();
1452  Result.E = E;
1453  return Result;
1454}
1455
1456LValue ScalarExprEmitter::EmitCompoundAssignLValue(
1457                                              const CompoundAssignOperator *E,
1458                        Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
1459                                                   Value *&Result) {
1460  QualType LHSTy = E->getLHS()->getType();
1461  BinOpInfo OpInfo;
1462
1463  if (E->getComputationResultType()->isAnyComplexType()) {
1464    // This needs to go through the complex expression emitter, but it's a tad
1465    // complicated to do that... I'm leaving it out for now.  (Note that we do
1466    // actually need the imaginary part of the RHS for multiplication and
1467    // division.)
1468    CGF.ErrorUnsupported(E, "complex compound assignment");
1469    Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1470    return LValue();
1471  }
1472
1473  // Emit the RHS first.  __block variables need to have the rhs evaluated
1474  // first, plus this should improve codegen a little.
1475  OpInfo.RHS = Visit(E->getRHS());
1476  OpInfo.Ty = E->getComputationResultType();
1477  OpInfo.Opcode = E->getOpcode();
1478  OpInfo.E = E;
1479  // Load/convert the LHS.
1480  LValue LHSLV = EmitCheckedLValue(E->getLHS());
1481  OpInfo.LHS = EmitLoadOfLValue(LHSLV, LHSTy);
1482  OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy,
1483                                    E->getComputationLHSType());
1484
1485  // Expand the binary operator.
1486  Result = (this->*Func)(OpInfo);
1487
1488  // Convert the result back to the LHS type.
1489  Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy);
1490
1491  // Store the result value into the LHS lvalue. Bit-fields are handled
1492  // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
1493  // 'An assignment expression has the value of the left operand after the
1494  // assignment...'.
1495  if (LHSLV.isBitField())
1496    CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, LHSTy,
1497                                       &Result);
1498  else
1499    CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV, LHSTy);
1500
1501  return LHSLV;
1502}
1503
1504Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
1505                      Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
1506  bool Ignore = TestAndClearIgnoreResultAssign();
1507  Value *RHS;
1508  LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
1509
1510  // If the result is clearly ignored, return now.
1511  if (Ignore)
1512    return 0;
1513
1514  // Objective-C property assignment never reloads the value following a store.
1515  if (LHS.isPropertyRef() || LHS.isKVCRef())
1516    return RHS;
1517
1518  // If the lvalue is non-volatile, return the computed value of the assignment.
1519  if (!LHS.isVolatileQualified())
1520    return RHS;
1521
1522  // Otherwise, reload the value.
1523  return EmitLoadOfLValue(LHS, E->getType());
1524}
1525
1526void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
1527     					    const BinOpInfo &Ops,
1528				     	    llvm::Value *Zero, bool isDiv) {
1529  llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
1530  llvm::BasicBlock *contBB =
1531    CGF.createBasicBlock(isDiv ? "div.cont" : "rem.cont", CGF.CurFn);
1532
1533  const llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
1534
1535  if (Ops.Ty->hasSignedIntegerRepresentation()) {
1536    llvm::Value *IntMin =
1537      llvm::ConstantInt::get(VMContext,
1538                             llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
1539    llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
1540
1541    llvm::Value *Cond1 = Builder.CreateICmpEQ(Ops.RHS, Zero);
1542    llvm::Value *LHSCmp = Builder.CreateICmpEQ(Ops.LHS, IntMin);
1543    llvm::Value *RHSCmp = Builder.CreateICmpEQ(Ops.RHS, NegOne);
1544    llvm::Value *Cond2 = Builder.CreateAnd(LHSCmp, RHSCmp, "and");
1545    Builder.CreateCondBr(Builder.CreateOr(Cond1, Cond2, "or"),
1546                         overflowBB, contBB);
1547  } else {
1548    CGF.Builder.CreateCondBr(Builder.CreateICmpEQ(Ops.RHS, Zero),
1549                             overflowBB, contBB);
1550  }
1551  EmitOverflowBB(overflowBB);
1552  Builder.SetInsertPoint(contBB);
1553}
1554
1555Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
1556  if (isTrapvOverflowBehavior()) {
1557    llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
1558
1559    if (Ops.Ty->isIntegerType())
1560      EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
1561    else if (Ops.Ty->isRealFloatingType()) {
1562      llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow",
1563                                                          CGF.CurFn);
1564      llvm::BasicBlock *DivCont = CGF.createBasicBlock("div.cont", CGF.CurFn);
1565      CGF.Builder.CreateCondBr(Builder.CreateFCmpOEQ(Ops.RHS, Zero),
1566                               overflowBB, DivCont);
1567      EmitOverflowBB(overflowBB);
1568      Builder.SetInsertPoint(DivCont);
1569    }
1570  }
1571  if (Ops.LHS->getType()->isFPOrFPVectorTy())
1572    return Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
1573  else if (Ops.Ty->hasUnsignedIntegerRepresentation())
1574    return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
1575  else
1576    return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
1577}
1578
1579Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
1580  // Rem in C can't be a floating point type: C99 6.5.5p2.
1581  if (isTrapvOverflowBehavior()) {
1582    llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
1583
1584    if (Ops.Ty->isIntegerType())
1585      EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
1586  }
1587
1588  if (Ops.Ty->isUnsignedIntegerType())
1589    return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
1590  else
1591    return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
1592}
1593
1594Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
1595  unsigned IID;
1596  unsigned OpID = 0;
1597
1598  switch (Ops.Opcode) {
1599  case BO_Add:
1600  case BO_AddAssign:
1601    OpID = 1;
1602    IID = llvm::Intrinsic::sadd_with_overflow;
1603    break;
1604  case BO_Sub:
1605  case BO_SubAssign:
1606    OpID = 2;
1607    IID = llvm::Intrinsic::ssub_with_overflow;
1608    break;
1609  case BO_Mul:
1610  case BO_MulAssign:
1611    OpID = 3;
1612    IID = llvm::Intrinsic::smul_with_overflow;
1613    break;
1614  default:
1615    assert(false && "Unsupported operation for overflow detection");
1616    IID = 0;
1617  }
1618  OpID <<= 1;
1619  OpID |= 1;
1620
1621  const llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
1622
1623  llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, &opTy, 1);
1624
1625  Value *resultAndOverflow = Builder.CreateCall2(intrinsic, Ops.LHS, Ops.RHS);
1626  Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
1627  Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
1628
1629  // Branch in case of overflow.
1630  llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
1631  llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
1632  llvm::BasicBlock *continueBB = CGF.createBasicBlock("nooverflow", CGF.CurFn);
1633
1634  Builder.CreateCondBr(overflow, overflowBB, continueBB);
1635
1636  // Handle overflow with llvm.trap.
1637  const std::string *handlerName =
1638    &CGF.getContext().getLangOptions().OverflowHandler;
1639  if (handlerName->empty()) {
1640    EmitOverflowBB(overflowBB);
1641    Builder.SetInsertPoint(continueBB);
1642    return result;
1643  }
1644
1645  // If an overflow handler is set, then we want to call it and then use its
1646  // result, if it returns.
1647  Builder.SetInsertPoint(overflowBB);
1648
1649  // Get the overflow handler.
1650  const llvm::Type *Int8Ty = llvm::Type::getInt8Ty(VMContext);
1651  std::vector<const llvm::Type*> argTypes;
1652  argTypes.push_back(CGF.Int64Ty); argTypes.push_back(CGF.Int64Ty);
1653  argTypes.push_back(Int8Ty); argTypes.push_back(Int8Ty);
1654  llvm::FunctionType *handlerTy =
1655      llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
1656  llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
1657
1658  // Sign extend the args to 64-bit, so that we can use the same handler for
1659  // all types of overflow.
1660  llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
1661  llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
1662
1663  // Call the handler with the two arguments, the operation, and the size of
1664  // the result.
1665  llvm::Value *handlerResult = Builder.CreateCall4(handler, lhs, rhs,
1666      Builder.getInt8(OpID),
1667      Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth()));
1668
1669  // Truncate the result back to the desired size.
1670  handlerResult = Builder.CreateTrunc(handlerResult, opTy);
1671  Builder.CreateBr(continueBB);
1672
1673  Builder.SetInsertPoint(continueBB);
1674  llvm::PHINode *phi = Builder.CreatePHI(opTy);
1675  phi->reserveOperandSpace(2);
1676  phi->addIncoming(result, initialBB);
1677  phi->addIncoming(handlerResult, overflowBB);
1678
1679  return phi;
1680}
1681
1682Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &Ops) {
1683  if (!Ops.Ty->isAnyPointerType()) {
1684    if (Ops.Ty->hasSignedIntegerRepresentation()) {
1685      switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
1686      case LangOptions::SOB_Undefined:
1687        return Builder.CreateNSWAdd(Ops.LHS, Ops.RHS, "add");
1688      case LangOptions::SOB_Defined:
1689        return Builder.CreateAdd(Ops.LHS, Ops.RHS, "add");
1690      case LangOptions::SOB_Trapping:
1691        return EmitOverflowCheckedBinOp(Ops);
1692      }
1693    }
1694
1695    if (Ops.LHS->getType()->isFPOrFPVectorTy())
1696      return Builder.CreateFAdd(Ops.LHS, Ops.RHS, "add");
1697
1698    return Builder.CreateAdd(Ops.LHS, Ops.RHS, "add");
1699  }
1700
1701  // Must have binary (not unary) expr here.  Unary pointer decrement doesn't
1702  // use this path.
1703  const BinaryOperator *BinOp = cast<BinaryOperator>(Ops.E);
1704
1705  if (Ops.Ty->isPointerType() &&
1706      Ops.Ty->getAs<PointerType>()->isVariableArrayType()) {
1707    // The amount of the addition needs to account for the VLA size
1708    CGF.ErrorUnsupported(BinOp, "VLA pointer addition");
1709  }
1710
1711  Value *Ptr, *Idx;
1712  Expr *IdxExp;
1713  const PointerType *PT = BinOp->getLHS()->getType()->getAs<PointerType>();
1714  const ObjCObjectPointerType *OPT =
1715    BinOp->getLHS()->getType()->getAs<ObjCObjectPointerType>();
1716  if (PT || OPT) {
1717    Ptr = Ops.LHS;
1718    Idx = Ops.RHS;
1719    IdxExp = BinOp->getRHS();
1720  } else {  // int + pointer
1721    PT = BinOp->getRHS()->getType()->getAs<PointerType>();
1722    OPT = BinOp->getRHS()->getType()->getAs<ObjCObjectPointerType>();
1723    assert((PT || OPT) && "Invalid add expr");
1724    Ptr = Ops.RHS;
1725    Idx = Ops.LHS;
1726    IdxExp = BinOp->getLHS();
1727  }
1728
1729  unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
1730  if (Width < CGF.LLVMPointerWidth) {
1731    // Zero or sign extend the pointer value based on whether the index is
1732    // signed or not.
1733    const llvm::Type *IdxType = CGF.IntPtrTy;
1734    if (IdxExp->getType()->isSignedIntegerType())
1735      Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
1736    else
1737      Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
1738  }
1739  const QualType ElementType = PT ? PT->getPointeeType() : OPT->getPointeeType();
1740  // Handle interface types, which are not represented with a concrete type.
1741  if (const ObjCObjectType *OIT = ElementType->getAs<ObjCObjectType>()) {
1742    llvm::Value *InterfaceSize =
1743      llvm::ConstantInt::get(Idx->getType(),
1744          CGF.getContext().getTypeSizeInChars(OIT).getQuantity());
1745    Idx = Builder.CreateMul(Idx, InterfaceSize);
1746    const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1747    Value *Casted = Builder.CreateBitCast(Ptr, i8Ty);
1748    Value *Res = Builder.CreateGEP(Casted, Idx, "add.ptr");
1749    return Builder.CreateBitCast(Res, Ptr->getType());
1750  }
1751
1752  // Explicitly handle GNU void* and function pointer arithmetic extensions. The
1753  // GNU void* casts amount to no-ops since our void* type is i8*, but this is
1754  // future proof.
1755  if (ElementType->isVoidType() || ElementType->isFunctionType()) {
1756    const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1757    Value *Casted = Builder.CreateBitCast(Ptr, i8Ty);
1758    Value *Res = Builder.CreateGEP(Casted, Idx, "add.ptr");
1759    return Builder.CreateBitCast(Res, Ptr->getType());
1760  }
1761
1762  return Builder.CreateInBoundsGEP(Ptr, Idx, "add.ptr");
1763}
1764
1765Value *ScalarExprEmitter::EmitSub(const BinOpInfo &Ops) {
1766  if (!isa<llvm::PointerType>(Ops.LHS->getType())) {
1767    if (Ops.Ty->hasSignedIntegerRepresentation()) {
1768      switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
1769      case LangOptions::SOB_Undefined:
1770        return Builder.CreateNSWSub(Ops.LHS, Ops.RHS, "sub");
1771      case LangOptions::SOB_Defined:
1772        return Builder.CreateSub(Ops.LHS, Ops.RHS, "sub");
1773      case LangOptions::SOB_Trapping:
1774        return EmitOverflowCheckedBinOp(Ops);
1775      }
1776    }
1777
1778    if (Ops.LHS->getType()->isFPOrFPVectorTy())
1779      return Builder.CreateFSub(Ops.LHS, Ops.RHS, "sub");
1780
1781    return Builder.CreateSub(Ops.LHS, Ops.RHS, "sub");
1782  }
1783
1784  // Must have binary (not unary) expr here.  Unary pointer increment doesn't
1785  // use this path.
1786  const BinaryOperator *BinOp = cast<BinaryOperator>(Ops.E);
1787
1788  if (BinOp->getLHS()->getType()->isPointerType() &&
1789      BinOp->getLHS()->getType()->getAs<PointerType>()->isVariableArrayType()) {
1790    // The amount of the addition needs to account for the VLA size for
1791    // ptr-int
1792    // The amount of the division needs to account for the VLA size for
1793    // ptr-ptr.
1794    CGF.ErrorUnsupported(BinOp, "VLA pointer subtraction");
1795  }
1796
1797  const QualType LHSType = BinOp->getLHS()->getType();
1798  const QualType LHSElementType = LHSType->getPointeeType();
1799  if (!isa<llvm::PointerType>(Ops.RHS->getType())) {
1800    // pointer - int
1801    Value *Idx = Ops.RHS;
1802    unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
1803    if (Width < CGF.LLVMPointerWidth) {
1804      // Zero or sign extend the pointer value based on whether the index is
1805      // signed or not.
1806      const llvm::Type *IdxType = CGF.IntPtrTy;
1807      if (BinOp->getRHS()->getType()->isSignedIntegerType())
1808        Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
1809      else
1810        Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
1811    }
1812    Idx = Builder.CreateNeg(Idx, "sub.ptr.neg");
1813
1814    // Handle interface types, which are not represented with a concrete type.
1815    if (const ObjCObjectType *OIT = LHSElementType->getAs<ObjCObjectType>()) {
1816      llvm::Value *InterfaceSize =
1817        llvm::ConstantInt::get(Idx->getType(),
1818                               CGF.getContext().
1819                                 getTypeSizeInChars(OIT).getQuantity());
1820      Idx = Builder.CreateMul(Idx, InterfaceSize);
1821      const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1822      Value *LHSCasted = Builder.CreateBitCast(Ops.LHS, i8Ty);
1823      Value *Res = Builder.CreateGEP(LHSCasted, Idx, "add.ptr");
1824      return Builder.CreateBitCast(Res, Ops.LHS->getType());
1825    }
1826
1827    // Explicitly handle GNU void* and function pointer arithmetic
1828    // extensions. The GNU void* casts amount to no-ops since our void* type is
1829    // i8*, but this is future proof.
1830    if (LHSElementType->isVoidType() || LHSElementType->isFunctionType()) {
1831      const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1832      Value *LHSCasted = Builder.CreateBitCast(Ops.LHS, i8Ty);
1833      Value *Res = Builder.CreateGEP(LHSCasted, Idx, "sub.ptr");
1834      return Builder.CreateBitCast(Res, Ops.LHS->getType());
1835    }
1836
1837    return Builder.CreateInBoundsGEP(Ops.LHS, Idx, "sub.ptr");
1838  } else {
1839    // pointer - pointer
1840    Value *LHS = Ops.LHS;
1841    Value *RHS = Ops.RHS;
1842
1843    CharUnits ElementSize;
1844
1845    // Handle GCC extension for pointer arithmetic on void* and function pointer
1846    // types.
1847    if (LHSElementType->isVoidType() || LHSElementType->isFunctionType()) {
1848      ElementSize = CharUnits::One();
1849    } else {
1850      ElementSize = CGF.getContext().getTypeSizeInChars(LHSElementType);
1851    }
1852
1853    const llvm::Type *ResultType = ConvertType(Ops.Ty);
1854    LHS = Builder.CreatePtrToInt(LHS, ResultType, "sub.ptr.lhs.cast");
1855    RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
1856    Value *BytesBetween = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
1857
1858    // Optimize out the shift for element size of 1.
1859    if (ElementSize.isOne())
1860      return BytesBetween;
1861
1862    // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
1863    // pointer difference in C is only defined in the case where both operands
1864    // are pointing to elements of an array.
1865    Value *BytesPerElt =
1866        llvm::ConstantInt::get(ResultType, ElementSize.getQuantity());
1867    return Builder.CreateExactSDiv(BytesBetween, BytesPerElt, "sub.ptr.div");
1868  }
1869}
1870
1871Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
1872  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
1873  // RHS to the same size as the LHS.
1874  Value *RHS = Ops.RHS;
1875  if (Ops.LHS->getType() != RHS->getType())
1876    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
1877
1878  if (CGF.CatchUndefined
1879      && isa<llvm::IntegerType>(Ops.LHS->getType())) {
1880    unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth();
1881    llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
1882    CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS,
1883                                 llvm::ConstantInt::get(RHS->getType(), Width)),
1884                             Cont, CGF.getTrapBB());
1885    CGF.EmitBlock(Cont);
1886  }
1887
1888  return Builder.CreateShl(Ops.LHS, RHS, "shl");
1889}
1890
1891Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
1892  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
1893  // RHS to the same size as the LHS.
1894  Value *RHS = Ops.RHS;
1895  if (Ops.LHS->getType() != RHS->getType())
1896    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
1897
1898  if (CGF.CatchUndefined
1899      && isa<llvm::IntegerType>(Ops.LHS->getType())) {
1900    unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth();
1901    llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
1902    CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS,
1903                                 llvm::ConstantInt::get(RHS->getType(), Width)),
1904                             Cont, CGF.getTrapBB());
1905    CGF.EmitBlock(Cont);
1906  }
1907
1908  if (Ops.Ty->hasUnsignedIntegerRepresentation())
1909    return Builder.CreateLShr(Ops.LHS, RHS, "shr");
1910  return Builder.CreateAShr(Ops.LHS, RHS, "shr");
1911}
1912
1913Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
1914                                      unsigned SICmpOpc, unsigned FCmpOpc) {
1915  TestAndClearIgnoreResultAssign();
1916  Value *Result;
1917  QualType LHSTy = E->getLHS()->getType();
1918  if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
1919    assert(E->getOpcode() == BO_EQ ||
1920           E->getOpcode() == BO_NE);
1921    Value *LHS = CGF.EmitScalarExpr(E->getLHS());
1922    Value *RHS = CGF.EmitScalarExpr(E->getRHS());
1923    Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
1924                   CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
1925  } else if (!LHSTy->isAnyComplexType()) {
1926    Value *LHS = Visit(E->getLHS());
1927    Value *RHS = Visit(E->getRHS());
1928
1929    if (LHS->getType()->isFPOrFPVectorTy()) {
1930      Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
1931                                  LHS, RHS, "cmp");
1932    } else if (LHSTy->hasSignedIntegerRepresentation()) {
1933      Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
1934                                  LHS, RHS, "cmp");
1935    } else {
1936      // Unsigned integers and pointers.
1937      Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1938                                  LHS, RHS, "cmp");
1939    }
1940
1941    // If this is a vector comparison, sign extend the result to the appropriate
1942    // vector integer type and return it (don't convert to bool).
1943    if (LHSTy->isVectorType())
1944      return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
1945
1946  } else {
1947    // Complex Comparison: can only be an equality comparison.
1948    CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS());
1949    CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS());
1950
1951    QualType CETy = LHSTy->getAs<ComplexType>()->getElementType();
1952
1953    Value *ResultR, *ResultI;
1954    if (CETy->isRealFloatingType()) {
1955      ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
1956                                   LHS.first, RHS.first, "cmp.r");
1957      ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
1958                                   LHS.second, RHS.second, "cmp.i");
1959    } else {
1960      // Complex comparisons can only be equality comparisons.  As such, signed
1961      // and unsigned opcodes are the same.
1962      ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1963                                   LHS.first, RHS.first, "cmp.r");
1964      ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1965                                   LHS.second, RHS.second, "cmp.i");
1966    }
1967
1968    if (E->getOpcode() == BO_EQ) {
1969      Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
1970    } else {
1971      assert(E->getOpcode() == BO_NE &&
1972             "Complex comparison other than == or != ?");
1973      Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
1974    }
1975  }
1976
1977  return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
1978}
1979
1980Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
1981  bool Ignore = TestAndClearIgnoreResultAssign();
1982
1983  // __block variables need to have the rhs evaluated first, plus this should
1984  // improve codegen just a little.
1985  Value *RHS = Visit(E->getRHS());
1986  LValue LHS = EmitCheckedLValue(E->getLHS());
1987
1988  // Store the value into the LHS.  Bit-fields are handled specially
1989  // because the result is altered by the store, i.e., [C99 6.5.16p1]
1990  // 'An assignment expression has the value of the left operand after
1991  // the assignment...'.
1992  if (LHS.isBitField())
1993    CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, E->getType(),
1994                                       &RHS);
1995  else
1996    CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS, E->getType());
1997
1998  // If the result is clearly ignored, return now.
1999  if (Ignore)
2000    return 0;
2001
2002  // Objective-C property assignment never reloads the value following a store.
2003  if (LHS.isPropertyRef() || LHS.isKVCRef())
2004    return RHS;
2005
2006  // If the lvalue is non-volatile, return the computed value of the assignment.
2007  if (!LHS.isVolatileQualified())
2008    return RHS;
2009
2010  // Otherwise, reload the value.
2011  return EmitLoadOfLValue(LHS, E->getType());
2012}
2013
2014Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
2015  const llvm::Type *ResTy = ConvertType(E->getType());
2016
2017  // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
2018  // If we have 1 && X, just emit X without inserting the control flow.
2019  if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getLHS())) {
2020    if (Cond == 1) { // If we have 1 && X, just emit X.
2021      Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2022      // ZExt result to int or bool.
2023      return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
2024    }
2025
2026    // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
2027    if (!CGF.ContainsLabel(E->getRHS()))
2028      return llvm::Constant::getNullValue(ResTy);
2029  }
2030
2031  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
2032  llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
2033
2034  // Branch on the LHS first.  If it is false, go to the failure (cont) block.
2035  CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock);
2036
2037  // Any edges into the ContBlock are now from an (indeterminate number of)
2038  // edges from this first condition.  All of these values will be false.  Start
2039  // setting up the PHI node in the Cont Block for this.
2040  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext),
2041                                            "", ContBlock);
2042  PN->reserveOperandSpace(2);  // Normal case, two inputs.
2043  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
2044       PI != PE; ++PI)
2045    PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
2046
2047  CGF.BeginConditionalBranch();
2048  CGF.EmitBlock(RHSBlock);
2049  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2050  CGF.EndConditionalBranch();
2051
2052  // Reaquire the RHS block, as there may be subblocks inserted.
2053  RHSBlock = Builder.GetInsertBlock();
2054
2055  // Emit an unconditional branch from this block to ContBlock.  Insert an entry
2056  // into the phi node for the edge with the value of RHSCond.
2057  CGF.EmitBlock(ContBlock);
2058  PN->addIncoming(RHSCond, RHSBlock);
2059
2060  // ZExt result to int.
2061  return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
2062}
2063
2064Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
2065  const llvm::Type *ResTy = ConvertType(E->getType());
2066
2067  // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
2068  // If we have 0 || X, just emit X without inserting the control flow.
2069  if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getLHS())) {
2070    if (Cond == -1) { // If we have 0 || X, just emit X.
2071      Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2072      // ZExt result to int or bool.
2073      return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
2074    }
2075
2076    // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
2077    if (!CGF.ContainsLabel(E->getRHS()))
2078      return llvm::ConstantInt::get(ResTy, 1);
2079  }
2080
2081  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
2082  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
2083
2084  // Branch on the LHS first.  If it is true, go to the success (cont) block.
2085  CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock);
2086
2087  // Any edges into the ContBlock are now from an (indeterminate number of)
2088  // edges from this first condition.  All of these values will be true.  Start
2089  // setting up the PHI node in the Cont Block for this.
2090  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext),
2091                                            "", ContBlock);
2092  PN->reserveOperandSpace(2);  // Normal case, two inputs.
2093  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
2094       PI != PE; ++PI)
2095    PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
2096
2097  CGF.BeginConditionalBranch();
2098
2099  // Emit the RHS condition as a bool value.
2100  CGF.EmitBlock(RHSBlock);
2101  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2102
2103  CGF.EndConditionalBranch();
2104
2105  // Reaquire the RHS block, as there may be subblocks inserted.
2106  RHSBlock = Builder.GetInsertBlock();
2107
2108  // Emit an unconditional branch from this block to ContBlock.  Insert an entry
2109  // into the phi node for the edge with the value of RHSCond.
2110  CGF.EmitBlock(ContBlock);
2111  PN->addIncoming(RHSCond, RHSBlock);
2112
2113  // ZExt result to int.
2114  return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
2115}
2116
2117Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
2118  CGF.EmitStmt(E->getLHS());
2119  CGF.EnsureInsertPoint();
2120  return Visit(E->getRHS());
2121}
2122
2123//===----------------------------------------------------------------------===//
2124//                             Other Operators
2125//===----------------------------------------------------------------------===//
2126
2127/// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
2128/// expression is cheap enough and side-effect-free enough to evaluate
2129/// unconditionally instead of conditionally.  This is used to convert control
2130/// flow into selects in some cases.
2131static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
2132                                                   CodeGenFunction &CGF) {
2133  if (const ParenExpr *PE = dyn_cast<ParenExpr>(E))
2134    return isCheapEnoughToEvaluateUnconditionally(PE->getSubExpr(), CGF);
2135
2136  // TODO: Allow anything we can constant fold to an integer or fp constant.
2137  if (isa<IntegerLiteral>(E) || isa<CharacterLiteral>(E) ||
2138      isa<FloatingLiteral>(E))
2139    return true;
2140
2141  // Non-volatile automatic variables too, to get "cond ? X : Y" where
2142  // X and Y are local variables.
2143  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
2144    if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
2145      if (VD->hasLocalStorage() && !(CGF.getContext()
2146                                     .getCanonicalType(VD->getType())
2147                                     .isVolatileQualified()))
2148        return true;
2149
2150  return false;
2151}
2152
2153
2154Value *ScalarExprEmitter::
2155VisitConditionalOperator(const ConditionalOperator *E) {
2156  TestAndClearIgnoreResultAssign();
2157  // If the condition constant folds and can be elided, try to avoid emitting
2158  // the condition and the dead arm.
2159  if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getCond())){
2160    Expr *Live = E->getLHS(), *Dead = E->getRHS();
2161    if (Cond == -1)
2162      std::swap(Live, Dead);
2163
2164    // If the dead side doesn't have labels we need, and if the Live side isn't
2165    // the gnu missing ?: extension (which we could handle, but don't bother
2166    // to), just emit the Live part.
2167    if ((!Dead || !CGF.ContainsLabel(Dead)) &&  // No labels in dead part
2168        Live)                                   // Live part isn't missing.
2169      return Visit(Live);
2170  }
2171
2172  // OpenCL: If the condition is a vector, we can treat this condition like
2173  // the select function.
2174  if (CGF.getContext().getLangOptions().OpenCL
2175      && E->getCond()->getType()->isVectorType()) {
2176    llvm::Value *CondV = CGF.EmitScalarExpr(E->getCond());
2177    llvm::Value *LHS = Visit(E->getLHS());
2178    llvm::Value *RHS = Visit(E->getRHS());
2179
2180    const llvm::Type *condType = ConvertType(E->getCond()->getType());
2181    const llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
2182
2183    unsigned numElem = vecTy->getNumElements();
2184    const llvm::Type *elemType = vecTy->getElementType();
2185
2186    std::vector<llvm::Constant*> Zvals;
2187    for (unsigned i = 0; i < numElem; ++i)
2188      Zvals.push_back(llvm::ConstantInt::get(elemType,0));
2189
2190    llvm::Value *zeroVec = llvm::ConstantVector::get(Zvals);
2191    llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
2192    llvm::Value *tmp = Builder.CreateSExt(TestMSB,
2193                                          llvm::VectorType::get(elemType,
2194                                                                numElem),
2195                                          "sext");
2196    llvm::Value *tmp2 = Builder.CreateNot(tmp);
2197
2198    // Cast float to int to perform ANDs if necessary.
2199    llvm::Value *RHSTmp = RHS;
2200    llvm::Value *LHSTmp = LHS;
2201    bool wasCast = false;
2202    const llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
2203    if (rhsVTy->getElementType()->isFloatTy()) {
2204      RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
2205      LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
2206      wasCast = true;
2207    }
2208
2209    llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
2210    llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
2211    llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
2212    if (wasCast)
2213      tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
2214
2215    return tmp5;
2216  }
2217
2218  // If this is a really simple expression (like x ? 4 : 5), emit this as a
2219  // select instead of as control flow.  We can only do this if it is cheap and
2220  // safe to evaluate the LHS and RHS unconditionally.
2221  if (E->getLHS() && isCheapEnoughToEvaluateUnconditionally(E->getLHS(),
2222                                                            CGF) &&
2223      isCheapEnoughToEvaluateUnconditionally(E->getRHS(), CGF)) {
2224    llvm::Value *CondV = CGF.EvaluateExprAsBool(E->getCond());
2225    llvm::Value *LHS = Visit(E->getLHS());
2226    llvm::Value *RHS = Visit(E->getRHS());
2227    return Builder.CreateSelect(CondV, LHS, RHS, "cond");
2228  }
2229
2230  llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
2231  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
2232  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
2233
2234  // If we don't have the GNU missing condition extension, emit a branch on bool
2235  // the normal way.
2236  if (E->getLHS()) {
2237    // Otherwise, just use EmitBranchOnBoolExpr to get small and simple code for
2238    // the branch on bool.
2239    CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock);
2240  } else {
2241    // Otherwise, for the ?: extension, evaluate the conditional and then
2242    // convert it to bool the hard way.  We do this explicitly because we need
2243    // the unconverted value for the missing middle value of the ?:.
2244    Expr *save = E->getSAVE();
2245    assert(save && "VisitConditionalOperator - save is null");
2246    // Intentianlly not doing direct assignment to ConditionalSaveExprs[save] !!
2247    Value *SaveVal = CGF.EmitScalarExpr(save);
2248    CGF.ConditionalSaveExprs[save] = SaveVal;
2249    Value *CondVal = Visit(E->getCond());
2250    // In some cases, EmitScalarConversion will delete the "CondVal" expression
2251    // if there are no extra uses (an optimization).  Inhibit this by making an
2252    // extra dead use, because we're going to add a use of CondVal later.  We
2253    // don't use the builder for this, because we don't want it to get optimized
2254    // away.  This leaves dead code, but the ?: extension isn't common.
2255    new llvm::BitCastInst(CondVal, CondVal->getType(), "dummy?:holder",
2256                          Builder.GetInsertBlock());
2257
2258    Value *CondBoolVal =
2259      CGF.EmitScalarConversion(CondVal, E->getCond()->getType(),
2260                               CGF.getContext().BoolTy);
2261    Builder.CreateCondBr(CondBoolVal, LHSBlock, RHSBlock);
2262  }
2263
2264  CGF.BeginConditionalBranch();
2265  CGF.EmitBlock(LHSBlock);
2266
2267  // Handle the GNU extension for missing LHS.
2268  Value *LHS = Visit(E->getTrueExpr());
2269
2270  CGF.EndConditionalBranch();
2271  LHSBlock = Builder.GetInsertBlock();
2272  CGF.EmitBranch(ContBlock);
2273
2274  CGF.BeginConditionalBranch();
2275  CGF.EmitBlock(RHSBlock);
2276
2277  Value *RHS = Visit(E->getRHS());
2278  CGF.EndConditionalBranch();
2279  RHSBlock = Builder.GetInsertBlock();
2280  CGF.EmitBranch(ContBlock);
2281
2282  CGF.EmitBlock(ContBlock);
2283
2284  // If the LHS or RHS is a throw expression, it will be legitimately null.
2285  if (!LHS)
2286    return RHS;
2287  if (!RHS)
2288    return LHS;
2289
2290  // Create a PHI node for the real part.
2291  llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), "cond");
2292  PN->reserveOperandSpace(2);
2293  PN->addIncoming(LHS, LHSBlock);
2294  PN->addIncoming(RHS, RHSBlock);
2295  return PN;
2296}
2297
2298Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
2299  return Visit(E->getChosenSubExpr(CGF.getContext()));
2300}
2301
2302Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
2303  llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
2304  llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
2305
2306  // If EmitVAArg fails, we fall back to the LLVM instruction.
2307  if (!ArgPtr)
2308    return Builder.CreateVAArg(ArgValue, ConvertType(VE->getType()));
2309
2310  // FIXME Volatility.
2311  return Builder.CreateLoad(ArgPtr);
2312}
2313
2314Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *BE) {
2315  return CGF.BuildBlockLiteralTmp(BE);
2316}
2317
2318//===----------------------------------------------------------------------===//
2319//                         Entry Point into this File
2320//===----------------------------------------------------------------------===//
2321
2322/// EmitScalarExpr - Emit the computation of the specified expression of scalar
2323/// type, ignoring the result.
2324Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
2325  assert(E && !hasAggregateLLVMType(E->getType()) &&
2326         "Invalid scalar expression to emit");
2327
2328  return ScalarExprEmitter(*this, IgnoreResultAssign)
2329    .Visit(const_cast<Expr*>(E));
2330}
2331
2332/// EmitScalarConversion - Emit a conversion from the specified type to the
2333/// specified destination type, both of which are LLVM scalar types.
2334Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
2335                                             QualType DstTy) {
2336  assert(!hasAggregateLLVMType(SrcTy) && !hasAggregateLLVMType(DstTy) &&
2337         "Invalid scalar expression to emit");
2338  return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
2339}
2340
2341/// EmitComplexToScalarConversion - Emit a conversion from the specified complex
2342/// type to the specified destination type, where the destination type is an
2343/// LLVM scalar type.
2344Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
2345                                                      QualType SrcTy,
2346                                                      QualType DstTy) {
2347  assert(SrcTy->isAnyComplexType() && !hasAggregateLLVMType(DstTy) &&
2348         "Invalid complex -> scalar conversion");
2349  return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy,
2350                                                                DstTy);
2351}
2352
2353
2354llvm::Value *CodeGenFunction::
2355EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2356                        bool isInc, bool isPre) {
2357  return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
2358}
2359
2360LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
2361  llvm::Value *V;
2362  // object->isa or (*object).isa
2363  // Generate code as for: *(Class*)object
2364  // build Class* type
2365  const llvm::Type *ClassPtrTy = ConvertType(E->getType());
2366
2367  Expr *BaseExpr = E->getBase();
2368  if (BaseExpr->isLvalue(getContext()) != Expr::LV_Valid) {
2369    V = CreateTempAlloca(ClassPtrTy, "resval");
2370    llvm::Value *Src = EmitScalarExpr(BaseExpr);
2371    Builder.CreateStore(Src, V);
2372    V = ScalarExprEmitter(*this).EmitLoadOfLValue(
2373      MakeAddrLValue(V, E->getType()), E->getType());
2374  } else {
2375    if (E->isArrow())
2376      V = ScalarExprEmitter(*this).EmitLoadOfLValue(BaseExpr);
2377    else
2378      V = EmitLValue(BaseExpr).getAddress();
2379  }
2380
2381  // build Class* type
2382  ClassPtrTy = ClassPtrTy->getPointerTo();
2383  V = Builder.CreateBitCast(V, ClassPtrTy);
2384  return MakeAddrLValue(V, E->getType());
2385}
2386
2387
2388LValue CodeGenFunction::EmitCompoundAssignOperatorLValue(
2389                                            const CompoundAssignOperator *E) {
2390  ScalarExprEmitter Scalar(*this);
2391  Value *Result = 0;
2392  switch (E->getOpcode()) {
2393#define COMPOUND_OP(Op)                                                       \
2394    case BO_##Op##Assign:                                                     \
2395      return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
2396                                             Result)
2397  COMPOUND_OP(Mul);
2398  COMPOUND_OP(Div);
2399  COMPOUND_OP(Rem);
2400  COMPOUND_OP(Add);
2401  COMPOUND_OP(Sub);
2402  COMPOUND_OP(Shl);
2403  COMPOUND_OP(Shr);
2404  COMPOUND_OP(And);
2405  COMPOUND_OP(Xor);
2406  COMPOUND_OP(Or);
2407#undef COMPOUND_OP
2408
2409  case BO_PtrMemD:
2410  case BO_PtrMemI:
2411  case BO_Mul:
2412  case BO_Div:
2413  case BO_Rem:
2414  case BO_Add:
2415  case BO_Sub:
2416  case BO_Shl:
2417  case BO_Shr:
2418  case BO_LT:
2419  case BO_GT:
2420  case BO_LE:
2421  case BO_GE:
2422  case BO_EQ:
2423  case BO_NE:
2424  case BO_And:
2425  case BO_Xor:
2426  case BO_Or:
2427  case BO_LAnd:
2428  case BO_LOr:
2429  case BO_Assign:
2430  case BO_Comma:
2431    assert(false && "Not valid compound assignment operators");
2432    break;
2433  }
2434
2435  llvm_unreachable("Unhandled compound assignment operator");
2436}
2437