CGExprScalar.cpp revision 6b5a61b6dc400027fd793dcadceeb9da944a37ea
1//===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Frontend/CodeGenOptions.h"
15#include "CodeGenFunction.h"
16#include "CGCXXABI.h"
17#include "CGObjCRuntime.h"
18#include "CodeGenModule.h"
19#include "CGDebugInfo.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/DeclObjC.h"
22#include "clang/AST/RecordLayout.h"
23#include "clang/AST/StmtVisitor.h"
24#include "clang/Basic/TargetInfo.h"
25#include "llvm/Constants.h"
26#include "llvm/Function.h"
27#include "llvm/GlobalVariable.h"
28#include "llvm/Intrinsics.h"
29#include "llvm/Module.h"
30#include "llvm/Support/CFG.h"
31#include "llvm/Target/TargetData.h"
32#include <cstdarg>
33
34using namespace clang;
35using namespace CodeGen;
36using llvm::Value;
37
38//===----------------------------------------------------------------------===//
39//                         Scalar Expression Emitter
40//===----------------------------------------------------------------------===//
41
42namespace {
43struct BinOpInfo {
44  Value *LHS;
45  Value *RHS;
46  QualType Ty;  // Computation Type.
47  BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
48  const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
49};
50
51static bool MustVisitNullValue(const Expr *E) {
52  // If a null pointer expression's type is the C++0x nullptr_t, then
53  // it's not necessarily a simple constant and it must be evaluated
54  // for its potential side effects.
55  return E->getType()->isNullPtrType();
56}
57
58class ScalarExprEmitter
59  : public StmtVisitor<ScalarExprEmitter, Value*> {
60  CodeGenFunction &CGF;
61  CGBuilderTy &Builder;
62  bool IgnoreResultAssign;
63  llvm::LLVMContext &VMContext;
64public:
65
66  ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
67    : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
68      VMContext(cgf.getLLVMContext()) {
69  }
70
71  //===--------------------------------------------------------------------===//
72  //                               Utilities
73  //===--------------------------------------------------------------------===//
74
75  bool TestAndClearIgnoreResultAssign() {
76    bool I = IgnoreResultAssign;
77    IgnoreResultAssign = false;
78    return I;
79  }
80
81  const llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
82  LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
83  LValue EmitCheckedLValue(const Expr *E) { return CGF.EmitCheckedLValue(E); }
84
85  Value *EmitLoadOfLValue(LValue LV, QualType T) {
86    return CGF.EmitLoadOfLValue(LV, T).getScalarVal();
87  }
88
89  /// EmitLoadOfLValue - Given an expression with complex type that represents a
90  /// value l-value, this method emits the address of the l-value, then loads
91  /// and returns the result.
92  Value *EmitLoadOfLValue(const Expr *E) {
93    return EmitLoadOfLValue(EmitCheckedLValue(E), E->getType());
94  }
95
96  /// EmitConversionToBool - Convert the specified expression value to a
97  /// boolean (i1) truth value.  This is equivalent to "Val != 0".
98  Value *EmitConversionToBool(Value *Src, QualType DstTy);
99
100  /// EmitScalarConversion - Emit a conversion from the specified type to the
101  /// specified destination type, both of which are LLVM scalar types.
102  Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);
103
104  /// EmitComplexToScalarConversion - Emit a conversion from the specified
105  /// complex type to the specified destination type, where the destination type
106  /// is an LLVM scalar type.
107  Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
108                                       QualType SrcTy, QualType DstTy);
109
110  /// EmitNullValue - Emit a value that corresponds to null for the given type.
111  Value *EmitNullValue(QualType Ty);
112
113  /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
114  Value *EmitFloatToBoolConversion(Value *V) {
115    // Compare against 0.0 for fp scalars.
116    llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
117    return Builder.CreateFCmpUNE(V, Zero, "tobool");
118  }
119
120  /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
121  Value *EmitPointerToBoolConversion(Value *V) {
122    Value *Zero = llvm::ConstantPointerNull::get(
123                                      cast<llvm::PointerType>(V->getType()));
124    return Builder.CreateICmpNE(V, Zero, "tobool");
125  }
126
127  Value *EmitIntToBoolConversion(Value *V) {
128    // Because of the type rules of C, we often end up computing a
129    // logical value, then zero extending it to int, then wanting it
130    // as a logical value again.  Optimize this common case.
131    if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
132      if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
133        Value *Result = ZI->getOperand(0);
134        // If there aren't any more uses, zap the instruction to save space.
135        // Note that there can be more uses, for example if this
136        // is the result of an assignment.
137        if (ZI->use_empty())
138          ZI->eraseFromParent();
139        return Result;
140      }
141    }
142
143    const llvm::IntegerType *Ty = cast<llvm::IntegerType>(V->getType());
144    Value *Zero = llvm::ConstantInt::get(Ty, 0);
145    return Builder.CreateICmpNE(V, Zero, "tobool");
146  }
147
148  //===--------------------------------------------------------------------===//
149  //                            Visitor Methods
150  //===--------------------------------------------------------------------===//
151
152  Value *Visit(Expr *E) {
153    llvm::DenseMap<const Expr *, llvm::Value *>::iterator I =
154      CGF.ConditionalSaveExprs.find(E);
155    if (I != CGF.ConditionalSaveExprs.end())
156      return I->second;
157
158    return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
159  }
160
161  Value *VisitStmt(Stmt *S) {
162    S->dump(CGF.getContext().getSourceManager());
163    assert(0 && "Stmt can't have complex result type!");
164    return 0;
165  }
166  Value *VisitExpr(Expr *S);
167
168  Value *VisitParenExpr(ParenExpr *PE) {
169    return Visit(PE->getSubExpr());
170  }
171
172  // Leaves.
173  Value *VisitIntegerLiteral(const IntegerLiteral *E) {
174    return llvm::ConstantInt::get(VMContext, E->getValue());
175  }
176  Value *VisitFloatingLiteral(const FloatingLiteral *E) {
177    return llvm::ConstantFP::get(VMContext, E->getValue());
178  }
179  Value *VisitCharacterLiteral(const CharacterLiteral *E) {
180    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
181  }
182  Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
183    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
184  }
185  Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
186    return EmitNullValue(E->getType());
187  }
188  Value *VisitGNUNullExpr(const GNUNullExpr *E) {
189    return EmitNullValue(E->getType());
190  }
191  Value *VisitOffsetOfExpr(OffsetOfExpr *E);
192  Value *VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E);
193  Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
194    llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
195    return Builder.CreateBitCast(V, ConvertType(E->getType()));
196  }
197
198  Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
199    return llvm::ConstantInt::get(ConvertType(E->getType()),
200                                  E->getPackLength());
201  }
202
203  // l-values.
204  Value *VisitDeclRefExpr(DeclRefExpr *E) {
205    Expr::EvalResult Result;
206    if (!E->Evaluate(Result, CGF.getContext()))
207      return EmitLoadOfLValue(E);
208
209    assert(!Result.HasSideEffects && "Constant declref with side-effect?!");
210
211    llvm::Constant *C;
212    if (Result.Val.isInt()) {
213      C = llvm::ConstantInt::get(VMContext, Result.Val.getInt());
214    } else if (Result.Val.isFloat()) {
215      C = llvm::ConstantFP::get(VMContext, Result.Val.getFloat());
216    } else {
217      return EmitLoadOfLValue(E);
218    }
219
220    // Make sure we emit a debug reference to the global variable.
221    if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl())) {
222      if (!CGF.getContext().DeclMustBeEmitted(VD))
223        CGF.EmitDeclRefExprDbgValue(E, C);
224    } else if (isa<EnumConstantDecl>(E->getDecl())) {
225      CGF.EmitDeclRefExprDbgValue(E, C);
226    }
227
228    return C;
229  }
230  Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
231    return CGF.EmitObjCSelectorExpr(E);
232  }
233  Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
234    return CGF.EmitObjCProtocolExpr(E);
235  }
236  Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
237    return EmitLoadOfLValue(E);
238  }
239  Value *VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
240    assert(E->getObjectKind() == OK_Ordinary &&
241           "reached property reference without lvalue-to-rvalue");
242    return EmitLoadOfLValue(E);
243  }
244  Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
245    return CGF.EmitObjCMessageExpr(E).getScalarVal();
246  }
247
248  Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
249    LValue LV = CGF.EmitObjCIsaExpr(E);
250    Value *V = CGF.EmitLoadOfLValue(LV, E->getType()).getScalarVal();
251    return V;
252  }
253
254  Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
255  Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
256  Value *VisitMemberExpr(MemberExpr *E);
257  Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
258  Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
259    return EmitLoadOfLValue(E);
260  }
261
262  Value *VisitInitListExpr(InitListExpr *E);
263
264  Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
265    return CGF.CGM.EmitNullConstant(E->getType());
266  }
267  Value *VisitCastExpr(CastExpr *E) {
268    // Make sure to evaluate VLA bounds now so that we have them for later.
269    if (E->getType()->isVariablyModifiedType())
270      CGF.EmitVLASize(E->getType());
271
272    return EmitCastExpr(E);
273  }
274  Value *EmitCastExpr(CastExpr *E);
275
276  Value *VisitCallExpr(const CallExpr *E) {
277    if (E->getCallReturnType()->isReferenceType())
278      return EmitLoadOfLValue(E);
279
280    return CGF.EmitCallExpr(E).getScalarVal();
281  }
282
283  Value *VisitStmtExpr(const StmtExpr *E);
284
285  Value *VisitBlockDeclRefExpr(const BlockDeclRefExpr *E);
286
287  // Unary Operators.
288  Value *VisitUnaryPostDec(const UnaryOperator *E) {
289    LValue LV = EmitLValue(E->getSubExpr());
290    return EmitScalarPrePostIncDec(E, LV, false, false);
291  }
292  Value *VisitUnaryPostInc(const UnaryOperator *E) {
293    LValue LV = EmitLValue(E->getSubExpr());
294    return EmitScalarPrePostIncDec(E, LV, true, false);
295  }
296  Value *VisitUnaryPreDec(const UnaryOperator *E) {
297    LValue LV = EmitLValue(E->getSubExpr());
298    return EmitScalarPrePostIncDec(E, LV, false, true);
299  }
300  Value *VisitUnaryPreInc(const UnaryOperator *E) {
301    LValue LV = EmitLValue(E->getSubExpr());
302    return EmitScalarPrePostIncDec(E, LV, true, true);
303  }
304
305  llvm::Value *EmitAddConsiderOverflowBehavior(const UnaryOperator *E,
306                                               llvm::Value *InVal,
307                                               llvm::Value *NextVal,
308                                               bool IsInc);
309
310  llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
311                                       bool isInc, bool isPre);
312
313
314  Value *VisitUnaryAddrOf(const UnaryOperator *E) {
315    if (isa<MemberPointerType>(E->getType())) // never sugared
316      return CGF.CGM.getMemberPointerConstant(E);
317
318    return EmitLValue(E->getSubExpr()).getAddress();
319  }
320  Value *VisitUnaryDeref(const UnaryOperator *E) {
321    if (E->getType()->isVoidType())
322      return Visit(E->getSubExpr()); // the actual value should be unused
323    return EmitLoadOfLValue(E);
324  }
325  Value *VisitUnaryPlus(const UnaryOperator *E) {
326    // This differs from gcc, though, most likely due to a bug in gcc.
327    TestAndClearIgnoreResultAssign();
328    return Visit(E->getSubExpr());
329  }
330  Value *VisitUnaryMinus    (const UnaryOperator *E);
331  Value *VisitUnaryNot      (const UnaryOperator *E);
332  Value *VisitUnaryLNot     (const UnaryOperator *E);
333  Value *VisitUnaryReal     (const UnaryOperator *E);
334  Value *VisitUnaryImag     (const UnaryOperator *E);
335  Value *VisitUnaryExtension(const UnaryOperator *E) {
336    return Visit(E->getSubExpr());
337  }
338
339  // C++
340  Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
341    return Visit(DAE->getExpr());
342  }
343  Value *VisitCXXThisExpr(CXXThisExpr *TE) {
344    return CGF.LoadCXXThis();
345  }
346
347  Value *VisitExprWithCleanups(ExprWithCleanups *E) {
348    return CGF.EmitExprWithCleanups(E).getScalarVal();
349  }
350  Value *VisitCXXNewExpr(const CXXNewExpr *E) {
351    return CGF.EmitCXXNewExpr(E);
352  }
353  Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
354    CGF.EmitCXXDeleteExpr(E);
355    return 0;
356  }
357  Value *VisitUnaryTypeTraitExpr(const UnaryTypeTraitExpr *E) {
358    return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
359  }
360
361  Value *VisitBinaryTypeTraitExpr(const BinaryTypeTraitExpr *E) {
362    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
363  }
364
365  Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
366    // C++ [expr.pseudo]p1:
367    //   The result shall only be used as the operand for the function call
368    //   operator (), and the result of such a call has type void. The only
369    //   effect is the evaluation of the postfix-expression before the dot or
370    //   arrow.
371    CGF.EmitScalarExpr(E->getBase());
372    return 0;
373  }
374
375  Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
376    return EmitNullValue(E->getType());
377  }
378
379  Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
380    CGF.EmitCXXThrowExpr(E);
381    return 0;
382  }
383
384  Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
385    return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
386  }
387
388  // Binary Operators.
389  Value *EmitMul(const BinOpInfo &Ops) {
390    if (Ops.Ty->hasSignedIntegerRepresentation()) {
391      switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
392      case LangOptions::SOB_Undefined:
393        return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
394      case LangOptions::SOB_Defined:
395        return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
396      case LangOptions::SOB_Trapping:
397        return EmitOverflowCheckedBinOp(Ops);
398      }
399    }
400
401    if (Ops.LHS->getType()->isFPOrFPVectorTy())
402      return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
403    return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
404  }
405  bool isTrapvOverflowBehavior() {
406    return CGF.getContext().getLangOptions().getSignedOverflowBehavior()
407               == LangOptions::SOB_Trapping;
408  }
409  /// Create a binary op that checks for overflow.
410  /// Currently only supports +, - and *.
411  Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
412  // Emit the overflow BB when -ftrapv option is activated.
413  void EmitOverflowBB(llvm::BasicBlock *overflowBB) {
414    Builder.SetInsertPoint(overflowBB);
415    llvm::Function *Trap = CGF.CGM.getIntrinsic(llvm::Intrinsic::trap);
416    Builder.CreateCall(Trap);
417    Builder.CreateUnreachable();
418  }
419  // Check for undefined division and modulus behaviors.
420  void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
421                                                  llvm::Value *Zero,bool isDiv);
422  Value *EmitDiv(const BinOpInfo &Ops);
423  Value *EmitRem(const BinOpInfo &Ops);
424  Value *EmitAdd(const BinOpInfo &Ops);
425  Value *EmitSub(const BinOpInfo &Ops);
426  Value *EmitShl(const BinOpInfo &Ops);
427  Value *EmitShr(const BinOpInfo &Ops);
428  Value *EmitAnd(const BinOpInfo &Ops) {
429    return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
430  }
431  Value *EmitXor(const BinOpInfo &Ops) {
432    return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
433  }
434  Value *EmitOr (const BinOpInfo &Ops) {
435    return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
436  }
437
438  BinOpInfo EmitBinOps(const BinaryOperator *E);
439  LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
440                            Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
441                                  Value *&Result);
442
443  Value *EmitCompoundAssign(const CompoundAssignOperator *E,
444                            Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
445
446  // Binary operators and binary compound assignment operators.
447#define HANDLEBINOP(OP) \
448  Value *VisitBin ## OP(const BinaryOperator *E) {                         \
449    return Emit ## OP(EmitBinOps(E));                                      \
450  }                                                                        \
451  Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
452    return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
453  }
454  HANDLEBINOP(Mul)
455  HANDLEBINOP(Div)
456  HANDLEBINOP(Rem)
457  HANDLEBINOP(Add)
458  HANDLEBINOP(Sub)
459  HANDLEBINOP(Shl)
460  HANDLEBINOP(Shr)
461  HANDLEBINOP(And)
462  HANDLEBINOP(Xor)
463  HANDLEBINOP(Or)
464#undef HANDLEBINOP
465
466  // Comparisons.
467  Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
468                     unsigned SICmpOpc, unsigned FCmpOpc);
469#define VISITCOMP(CODE, UI, SI, FP) \
470    Value *VisitBin##CODE(const BinaryOperator *E) { \
471      return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
472                         llvm::FCmpInst::FP); }
473  VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
474  VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
475  VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
476  VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
477  VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
478  VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
479#undef VISITCOMP
480
481  Value *VisitBinAssign     (const BinaryOperator *E);
482
483  Value *VisitBinLAnd       (const BinaryOperator *E);
484  Value *VisitBinLOr        (const BinaryOperator *E);
485  Value *VisitBinComma      (const BinaryOperator *E);
486
487  Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
488  Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
489
490  // Other Operators.
491  Value *VisitBlockExpr(const BlockExpr *BE);
492  Value *VisitConditionalOperator(const ConditionalOperator *CO);
493  Value *VisitChooseExpr(ChooseExpr *CE);
494  Value *VisitVAArgExpr(VAArgExpr *VE);
495  Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
496    return CGF.EmitObjCStringLiteral(E);
497  }
498};
499}  // end anonymous namespace.
500
501//===----------------------------------------------------------------------===//
502//                                Utilities
503//===----------------------------------------------------------------------===//
504
505/// EmitConversionToBool - Convert the specified expression value to a
506/// boolean (i1) truth value.  This is equivalent to "Val != 0".
507Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
508  assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
509
510  if (SrcType->isRealFloatingType())
511    return EmitFloatToBoolConversion(Src);
512
513  if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
514    return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
515
516  assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
517         "Unknown scalar type to convert");
518
519  if (isa<llvm::IntegerType>(Src->getType()))
520    return EmitIntToBoolConversion(Src);
521
522  assert(isa<llvm::PointerType>(Src->getType()));
523  return EmitPointerToBoolConversion(Src);
524}
525
526/// EmitScalarConversion - Emit a conversion from the specified type to the
527/// specified destination type, both of which are LLVM scalar types.
528Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
529                                               QualType DstType) {
530  SrcType = CGF.getContext().getCanonicalType(SrcType);
531  DstType = CGF.getContext().getCanonicalType(DstType);
532  if (SrcType == DstType) return Src;
533
534  if (DstType->isVoidType()) return 0;
535
536  // Handle conversions to bool first, they are special: comparisons against 0.
537  if (DstType->isBooleanType())
538    return EmitConversionToBool(Src, SrcType);
539
540  const llvm::Type *DstTy = ConvertType(DstType);
541
542  // Ignore conversions like int -> uint.
543  if (Src->getType() == DstTy)
544    return Src;
545
546  // Handle pointer conversions next: pointers can only be converted to/from
547  // other pointers and integers. Check for pointer types in terms of LLVM, as
548  // some native types (like Obj-C id) may map to a pointer type.
549  if (isa<llvm::PointerType>(DstTy)) {
550    // The source value may be an integer, or a pointer.
551    if (isa<llvm::PointerType>(Src->getType()))
552      return Builder.CreateBitCast(Src, DstTy, "conv");
553
554    assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
555    // First, convert to the correct width so that we control the kind of
556    // extension.
557    const llvm::Type *MiddleTy = CGF.IntPtrTy;
558    bool InputSigned = SrcType->isSignedIntegerType();
559    llvm::Value* IntResult =
560        Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
561    // Then, cast to pointer.
562    return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
563  }
564
565  if (isa<llvm::PointerType>(Src->getType())) {
566    // Must be an ptr to int cast.
567    assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
568    return Builder.CreatePtrToInt(Src, DstTy, "conv");
569  }
570
571  // A scalar can be splatted to an extended vector of the same element type
572  if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
573    // Cast the scalar to element type
574    QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType();
575    llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy);
576
577    // Insert the element in element zero of an undef vector
578    llvm::Value *UnV = llvm::UndefValue::get(DstTy);
579    llvm::Value *Idx = llvm::ConstantInt::get(CGF.Int32Ty, 0);
580    UnV = Builder.CreateInsertElement(UnV, Elt, Idx, "tmp");
581
582    // Splat the element across to all elements
583    llvm::SmallVector<llvm::Constant*, 16> Args;
584    unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
585    for (unsigned i = 0; i < NumElements; i++)
586      Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty, 0));
587
588    llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements);
589    llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
590    return Yay;
591  }
592
593  // Allow bitcast from vector to integer/fp of the same size.
594  if (isa<llvm::VectorType>(Src->getType()) ||
595      isa<llvm::VectorType>(DstTy))
596    return Builder.CreateBitCast(Src, DstTy, "conv");
597
598  // Finally, we have the arithmetic types: real int/float.
599  if (isa<llvm::IntegerType>(Src->getType())) {
600    bool InputSigned = SrcType->isSignedIntegerType();
601    if (isa<llvm::IntegerType>(DstTy))
602      return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
603    else if (InputSigned)
604      return Builder.CreateSIToFP(Src, DstTy, "conv");
605    else
606      return Builder.CreateUIToFP(Src, DstTy, "conv");
607  }
608
609  assert(Src->getType()->isFloatingPointTy() && "Unknown real conversion");
610  if (isa<llvm::IntegerType>(DstTy)) {
611    if (DstType->isSignedIntegerType())
612      return Builder.CreateFPToSI(Src, DstTy, "conv");
613    else
614      return Builder.CreateFPToUI(Src, DstTy, "conv");
615  }
616
617  assert(DstTy->isFloatingPointTy() && "Unknown real conversion");
618  if (DstTy->getTypeID() < Src->getType()->getTypeID())
619    return Builder.CreateFPTrunc(Src, DstTy, "conv");
620  else
621    return Builder.CreateFPExt(Src, DstTy, "conv");
622}
623
624/// EmitComplexToScalarConversion - Emit a conversion from the specified complex
625/// type to the specified destination type, where the destination type is an
626/// LLVM scalar type.
627Value *ScalarExprEmitter::
628EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
629                              QualType SrcTy, QualType DstTy) {
630  // Get the source element type.
631  SrcTy = SrcTy->getAs<ComplexType>()->getElementType();
632
633  // Handle conversions to bool first, they are special: comparisons against 0.
634  if (DstTy->isBooleanType()) {
635    //  Complex != 0  -> (Real != 0) | (Imag != 0)
636    Src.first  = EmitScalarConversion(Src.first, SrcTy, DstTy);
637    Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
638    return Builder.CreateOr(Src.first, Src.second, "tobool");
639  }
640
641  // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
642  // the imaginary part of the complex value is discarded and the value of the
643  // real part is converted according to the conversion rules for the
644  // corresponding real type.
645  return EmitScalarConversion(Src.first, SrcTy, DstTy);
646}
647
648Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
649  if (const MemberPointerType *MPT = Ty->getAs<MemberPointerType>())
650    return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
651
652  return llvm::Constant::getNullValue(ConvertType(Ty));
653}
654
655//===----------------------------------------------------------------------===//
656//                            Visitor Methods
657//===----------------------------------------------------------------------===//
658
659Value *ScalarExprEmitter::VisitExpr(Expr *E) {
660  CGF.ErrorUnsupported(E, "scalar expression");
661  if (E->getType()->isVoidType())
662    return 0;
663  return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
664}
665
666Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
667  // Vector Mask Case
668  if (E->getNumSubExprs() == 2 ||
669      (E->getNumSubExprs() == 3 && E->getExpr(2)->getType()->isVectorType())) {
670    Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
671    Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
672    Value *Mask;
673
674    const llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
675    unsigned LHSElts = LTy->getNumElements();
676
677    if (E->getNumSubExprs() == 3) {
678      Mask = CGF.EmitScalarExpr(E->getExpr(2));
679
680      // Shuffle LHS & RHS into one input vector.
681      llvm::SmallVector<llvm::Constant*, 32> concat;
682      for (unsigned i = 0; i != LHSElts; ++i) {
683        concat.push_back(llvm::ConstantInt::get(CGF.Int32Ty, 2*i));
684        concat.push_back(llvm::ConstantInt::get(CGF.Int32Ty, 2*i+1));
685      }
686
687      Value* CV = llvm::ConstantVector::get(concat.begin(), concat.size());
688      LHS = Builder.CreateShuffleVector(LHS, RHS, CV, "concat");
689      LHSElts *= 2;
690    } else {
691      Mask = RHS;
692    }
693
694    const llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
695    llvm::Constant* EltMask;
696
697    // Treat vec3 like vec4.
698    if ((LHSElts == 6) && (E->getNumSubExprs() == 3))
699      EltMask = llvm::ConstantInt::get(MTy->getElementType(),
700                                       (1 << llvm::Log2_32(LHSElts+2))-1);
701    else if ((LHSElts == 3) && (E->getNumSubExprs() == 2))
702      EltMask = llvm::ConstantInt::get(MTy->getElementType(),
703                                       (1 << llvm::Log2_32(LHSElts+1))-1);
704    else
705      EltMask = llvm::ConstantInt::get(MTy->getElementType(),
706                                       (1 << llvm::Log2_32(LHSElts))-1);
707
708    // Mask off the high bits of each shuffle index.
709    llvm::SmallVector<llvm::Constant *, 32> MaskV;
710    for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i)
711      MaskV.push_back(EltMask);
712
713    Value* MaskBits = llvm::ConstantVector::get(MaskV.begin(), MaskV.size());
714    Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
715
716    // newv = undef
717    // mask = mask & maskbits
718    // for each elt
719    //   n = extract mask i
720    //   x = extract val n
721    //   newv = insert newv, x, i
722    const llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
723                                                        MTy->getNumElements());
724    Value* NewV = llvm::UndefValue::get(RTy);
725    for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
726      Value *Indx = llvm::ConstantInt::get(CGF.Int32Ty, i);
727      Indx = Builder.CreateExtractElement(Mask, Indx, "shuf_idx");
728      Indx = Builder.CreateZExt(Indx, CGF.Int32Ty, "idx_zext");
729
730      // Handle vec3 special since the index will be off by one for the RHS.
731      if ((LHSElts == 6) && (E->getNumSubExprs() == 3)) {
732        Value *cmpIndx, *newIndx;
733        cmpIndx = Builder.CreateICmpUGT(Indx,
734                                        llvm::ConstantInt::get(CGF.Int32Ty, 3),
735                                        "cmp_shuf_idx");
736        newIndx = Builder.CreateSub(Indx, llvm::ConstantInt::get(CGF.Int32Ty,1),
737                                    "shuf_idx_adj");
738        Indx = Builder.CreateSelect(cmpIndx, newIndx, Indx, "sel_shuf_idx");
739      }
740      Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
741      NewV = Builder.CreateInsertElement(NewV, VExt, Indx, "shuf_ins");
742    }
743    return NewV;
744  }
745
746  Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
747  Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
748
749  // Handle vec3 special since the index will be off by one for the RHS.
750  llvm::SmallVector<llvm::Constant*, 32> indices;
751  for (unsigned i = 2; i < E->getNumSubExprs(); i++) {
752    llvm::Constant *C = cast<llvm::Constant>(CGF.EmitScalarExpr(E->getExpr(i)));
753    const llvm::VectorType *VTy = cast<llvm::VectorType>(V1->getType());
754    if (VTy->getNumElements() == 3) {
755      if (llvm::ConstantInt *CI = dyn_cast<llvm::ConstantInt>(C)) {
756        uint64_t cVal = CI->getZExtValue();
757        if (cVal > 3) {
758          C = llvm::ConstantInt::get(C->getType(), cVal-1);
759        }
760      }
761    }
762    indices.push_back(C);
763  }
764
765  Value* SV = llvm::ConstantVector::get(indices.begin(), indices.size());
766  return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
767}
768Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
769  Expr::EvalResult Result;
770  if (E->Evaluate(Result, CGF.getContext()) && Result.Val.isInt()) {
771    if (E->isArrow())
772      CGF.EmitScalarExpr(E->getBase());
773    else
774      EmitLValue(E->getBase());
775    return llvm::ConstantInt::get(VMContext, Result.Val.getInt());
776  }
777
778  // Emit debug info for aggregate now, if it was delayed to reduce
779  // debug info size.
780  CGDebugInfo *DI = CGF.getDebugInfo();
781  if (DI && CGF.CGM.getCodeGenOpts().LimitDebugInfo) {
782    QualType PQTy = E->getBase()->IgnoreParenImpCasts()->getType();
783    if (const PointerType * PTy = dyn_cast<PointerType>(PQTy))
784      if (FieldDecl *M = dyn_cast<FieldDecl>(E->getMemberDecl()))
785        DI->getOrCreateRecordType(PTy->getPointeeType(),
786                                  M->getParent()->getLocation());
787  }
788  return EmitLoadOfLValue(E);
789}
790
791Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
792  TestAndClearIgnoreResultAssign();
793
794  // Emit subscript expressions in rvalue context's.  For most cases, this just
795  // loads the lvalue formed by the subscript expr.  However, we have to be
796  // careful, because the base of a vector subscript is occasionally an rvalue,
797  // so we can't get it as an lvalue.
798  if (!E->getBase()->getType()->isVectorType())
799    return EmitLoadOfLValue(E);
800
801  // Handle the vector case.  The base must be a vector, the index must be an
802  // integer value.
803  Value *Base = Visit(E->getBase());
804  Value *Idx  = Visit(E->getIdx());
805  bool IdxSigned = E->getIdx()->getType()->isSignedIntegerType();
806  Idx = Builder.CreateIntCast(Idx, CGF.Int32Ty, IdxSigned, "vecidxcast");
807  return Builder.CreateExtractElement(Base, Idx, "vecext");
808}
809
810static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
811                                  unsigned Off, const llvm::Type *I32Ty) {
812  int MV = SVI->getMaskValue(Idx);
813  if (MV == -1)
814    return llvm::UndefValue::get(I32Ty);
815  return llvm::ConstantInt::get(I32Ty, Off+MV);
816}
817
818Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
819  bool Ignore = TestAndClearIgnoreResultAssign();
820  (void)Ignore;
821  assert (Ignore == false && "init list ignored");
822  unsigned NumInitElements = E->getNumInits();
823
824  if (E->hadArrayRangeDesignator())
825    CGF.ErrorUnsupported(E, "GNU array range designator extension");
826
827  const llvm::VectorType *VType =
828    dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
829
830  // We have a scalar in braces. Just use the first element.
831  if (!VType)
832    return Visit(E->getInit(0));
833
834  unsigned ResElts = VType->getNumElements();
835
836  // Loop over initializers collecting the Value for each, and remembering
837  // whether the source was swizzle (ExtVectorElementExpr).  This will allow
838  // us to fold the shuffle for the swizzle into the shuffle for the vector
839  // initializer, since LLVM optimizers generally do not want to touch
840  // shuffles.
841  unsigned CurIdx = 0;
842  bool VIsUndefShuffle = false;
843  llvm::Value *V = llvm::UndefValue::get(VType);
844  for (unsigned i = 0; i != NumInitElements; ++i) {
845    Expr *IE = E->getInit(i);
846    Value *Init = Visit(IE);
847    llvm::SmallVector<llvm::Constant*, 16> Args;
848
849    const llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
850
851    // Handle scalar elements.  If the scalar initializer is actually one
852    // element of a different vector of the same width, use shuffle instead of
853    // extract+insert.
854    if (!VVT) {
855      if (isa<ExtVectorElementExpr>(IE)) {
856        llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
857
858        if (EI->getVectorOperandType()->getNumElements() == ResElts) {
859          llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
860          Value *LHS = 0, *RHS = 0;
861          if (CurIdx == 0) {
862            // insert into undef -> shuffle (src, undef)
863            Args.push_back(C);
864            for (unsigned j = 1; j != ResElts; ++j)
865              Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
866
867            LHS = EI->getVectorOperand();
868            RHS = V;
869            VIsUndefShuffle = true;
870          } else if (VIsUndefShuffle) {
871            // insert into undefshuffle && size match -> shuffle (v, src)
872            llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
873            for (unsigned j = 0; j != CurIdx; ++j)
874              Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
875            Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty,
876                                                  ResElts + C->getZExtValue()));
877            for (unsigned j = CurIdx + 1; j != ResElts; ++j)
878              Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
879
880            LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
881            RHS = EI->getVectorOperand();
882            VIsUndefShuffle = false;
883          }
884          if (!Args.empty()) {
885            llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], ResElts);
886            V = Builder.CreateShuffleVector(LHS, RHS, Mask);
887            ++CurIdx;
888            continue;
889          }
890        }
891      }
892      Value *Idx = llvm::ConstantInt::get(CGF.Int32Ty, CurIdx);
893      V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
894      VIsUndefShuffle = false;
895      ++CurIdx;
896      continue;
897    }
898
899    unsigned InitElts = VVT->getNumElements();
900
901    // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
902    // input is the same width as the vector being constructed, generate an
903    // optimized shuffle of the swizzle input into the result.
904    unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
905    if (isa<ExtVectorElementExpr>(IE)) {
906      llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
907      Value *SVOp = SVI->getOperand(0);
908      const llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
909
910      if (OpTy->getNumElements() == ResElts) {
911        for (unsigned j = 0; j != CurIdx; ++j) {
912          // If the current vector initializer is a shuffle with undef, merge
913          // this shuffle directly into it.
914          if (VIsUndefShuffle) {
915            Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
916                                      CGF.Int32Ty));
917          } else {
918            Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty, j));
919          }
920        }
921        for (unsigned j = 0, je = InitElts; j != je; ++j)
922          Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
923        for (unsigned j = CurIdx + InitElts; j != ResElts; ++j)
924          Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
925
926        if (VIsUndefShuffle)
927          V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
928
929        Init = SVOp;
930      }
931    }
932
933    // Extend init to result vector length, and then shuffle its contribution
934    // to the vector initializer into V.
935    if (Args.empty()) {
936      for (unsigned j = 0; j != InitElts; ++j)
937        Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty, j));
938      for (unsigned j = InitElts; j != ResElts; ++j)
939        Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
940      llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], ResElts);
941      Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
942                                         Mask, "vext");
943
944      Args.clear();
945      for (unsigned j = 0; j != CurIdx; ++j)
946        Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty, j));
947      for (unsigned j = 0; j != InitElts; ++j)
948        Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty, j+Offset));
949      for (unsigned j = CurIdx + InitElts; j != ResElts; ++j)
950        Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
951    }
952
953    // If V is undef, make sure it ends up on the RHS of the shuffle to aid
954    // merging subsequent shuffles into this one.
955    if (CurIdx == 0)
956      std::swap(V, Init);
957    llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], ResElts);
958    V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
959    VIsUndefShuffle = isa<llvm::UndefValue>(Init);
960    CurIdx += InitElts;
961  }
962
963  // FIXME: evaluate codegen vs. shuffling against constant null vector.
964  // Emit remaining default initializers.
965  const llvm::Type *EltTy = VType->getElementType();
966
967  // Emit remaining default initializers
968  for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
969    Value *Idx = llvm::ConstantInt::get(CGF.Int32Ty, CurIdx);
970    llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
971    V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
972  }
973  return V;
974}
975
976static bool ShouldNullCheckClassCastValue(const CastExpr *CE) {
977  const Expr *E = CE->getSubExpr();
978
979  if (CE->getCastKind() == CK_UncheckedDerivedToBase)
980    return false;
981
982  if (isa<CXXThisExpr>(E)) {
983    // We always assume that 'this' is never null.
984    return false;
985  }
986
987  if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
988    // And that glvalue casts are never null.
989    if (ICE->getValueKind() != VK_RValue)
990      return false;
991  }
992
993  return true;
994}
995
996// VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
997// have to handle a more broad range of conversions than explicit casts, as they
998// handle things like function to ptr-to-function decay etc.
999Value *ScalarExprEmitter::EmitCastExpr(CastExpr *CE) {
1000  Expr *E = CE->getSubExpr();
1001  QualType DestTy = CE->getType();
1002  CastKind Kind = CE->getCastKind();
1003
1004  if (!DestTy->isVoidType())
1005    TestAndClearIgnoreResultAssign();
1006
1007  // Since almost all cast kinds apply to scalars, this switch doesn't have
1008  // a default case, so the compiler will warn on a missing case.  The cases
1009  // are in the same order as in the CastKind enum.
1010  switch (Kind) {
1011  case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
1012
1013  case CK_LValueBitCast:
1014  case CK_ObjCObjectLValueCast: {
1015    Value *V = EmitLValue(E).getAddress();
1016    V = Builder.CreateBitCast(V,
1017                          ConvertType(CGF.getContext().getPointerType(DestTy)));
1018    return EmitLoadOfLValue(CGF.MakeAddrLValue(V, DestTy), DestTy);
1019  }
1020
1021  case CK_AnyPointerToObjCPointerCast:
1022  case CK_AnyPointerToBlockPointerCast:
1023  case CK_BitCast: {
1024    Value *Src = Visit(const_cast<Expr*>(E));
1025    return Builder.CreateBitCast(Src, ConvertType(DestTy));
1026  }
1027  case CK_NoOp:
1028  case CK_UserDefinedConversion:
1029    return Visit(const_cast<Expr*>(E));
1030
1031  case CK_BaseToDerived: {
1032    const CXXRecordDecl *DerivedClassDecl =
1033      DestTy->getCXXRecordDeclForPointerType();
1034
1035    return CGF.GetAddressOfDerivedClass(Visit(E), DerivedClassDecl,
1036                                        CE->path_begin(), CE->path_end(),
1037                                        ShouldNullCheckClassCastValue(CE));
1038  }
1039  case CK_UncheckedDerivedToBase:
1040  case CK_DerivedToBase: {
1041    const RecordType *DerivedClassTy =
1042      E->getType()->getAs<PointerType>()->getPointeeType()->getAs<RecordType>();
1043    CXXRecordDecl *DerivedClassDecl =
1044      cast<CXXRecordDecl>(DerivedClassTy->getDecl());
1045
1046    return CGF.GetAddressOfBaseClass(Visit(E), DerivedClassDecl,
1047                                     CE->path_begin(), CE->path_end(),
1048                                     ShouldNullCheckClassCastValue(CE));
1049  }
1050  case CK_Dynamic: {
1051    Value *V = Visit(const_cast<Expr*>(E));
1052    const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
1053    return CGF.EmitDynamicCast(V, DCE);
1054  }
1055
1056  case CK_ArrayToPointerDecay: {
1057    assert(E->getType()->isArrayType() &&
1058           "Array to pointer decay must have array source type!");
1059
1060    Value *V = EmitLValue(E).getAddress();  // Bitfields can't be arrays.
1061
1062    // Note that VLA pointers are always decayed, so we don't need to do
1063    // anything here.
1064    if (!E->getType()->isVariableArrayType()) {
1065      assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer");
1066      assert(isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType())
1067                                 ->getElementType()) &&
1068             "Expected pointer to array");
1069      V = Builder.CreateStructGEP(V, 0, "arraydecay");
1070    }
1071
1072    return V;
1073  }
1074  case CK_FunctionToPointerDecay:
1075    return EmitLValue(E).getAddress();
1076
1077  case CK_NullToPointer:
1078    if (MustVisitNullValue(E))
1079      (void) Visit(E);
1080
1081    return llvm::ConstantPointerNull::get(
1082                               cast<llvm::PointerType>(ConvertType(DestTy)));
1083
1084  case CK_NullToMemberPointer: {
1085    if (MustVisitNullValue(E))
1086      (void) Visit(E);
1087
1088    const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
1089    return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
1090  }
1091
1092  case CK_BaseToDerivedMemberPointer:
1093  case CK_DerivedToBaseMemberPointer: {
1094    Value *Src = Visit(E);
1095
1096    // Note that the AST doesn't distinguish between checked and
1097    // unchecked member pointer conversions, so we always have to
1098    // implement checked conversions here.  This is inefficient when
1099    // actual control flow may be required in order to perform the
1100    // check, which it is for data member pointers (but not member
1101    // function pointers on Itanium and ARM).
1102    return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
1103  }
1104
1105  case CK_FloatingRealToComplex:
1106  case CK_FloatingComplexCast:
1107  case CK_IntegralRealToComplex:
1108  case CK_IntegralComplexCast:
1109  case CK_IntegralComplexToFloatingComplex:
1110  case CK_FloatingComplexToIntegralComplex:
1111  case CK_ConstructorConversion:
1112  case CK_ToUnion:
1113    llvm_unreachable("scalar cast to non-scalar value");
1114    break;
1115
1116  case CK_GetObjCProperty: {
1117    assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
1118    assert(E->isGLValue() && E->getObjectKind() == OK_ObjCProperty &&
1119           "CK_GetObjCProperty for non-lvalue or non-ObjCProperty");
1120    RValue RV = CGF.EmitLoadOfLValue(CGF.EmitLValue(E), E->getType());
1121    return RV.getScalarVal();
1122  }
1123
1124  case CK_LValueToRValue:
1125    assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
1126    assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
1127    return Visit(const_cast<Expr*>(E));
1128
1129  case CK_IntegralToPointer: {
1130    Value *Src = Visit(const_cast<Expr*>(E));
1131
1132    // First, convert to the correct width so that we control the kind of
1133    // extension.
1134    const llvm::Type *MiddleTy = CGF.IntPtrTy;
1135    bool InputSigned = E->getType()->isSignedIntegerType();
1136    llvm::Value* IntResult =
1137      Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1138
1139    return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy));
1140  }
1141  case CK_PointerToIntegral: {
1142    Value *Src = Visit(const_cast<Expr*>(E));
1143
1144    // Handle conversion to bool correctly.
1145    if (DestTy->isBooleanType())
1146      return EmitScalarConversion(Src, E->getType(), DestTy);
1147
1148    return Builder.CreatePtrToInt(Src, ConvertType(DestTy));
1149  }
1150  case CK_ToVoid: {
1151    CGF.EmitIgnoredExpr(E);
1152    return 0;
1153  }
1154  case CK_VectorSplat: {
1155    const llvm::Type *DstTy = ConvertType(DestTy);
1156    Value *Elt = Visit(const_cast<Expr*>(E));
1157
1158    // Insert the element in element zero of an undef vector
1159    llvm::Value *UnV = llvm::UndefValue::get(DstTy);
1160    llvm::Value *Idx = llvm::ConstantInt::get(CGF.Int32Ty, 0);
1161    UnV = Builder.CreateInsertElement(UnV, Elt, Idx, "tmp");
1162
1163    // Splat the element across to all elements
1164    llvm::SmallVector<llvm::Constant*, 16> Args;
1165    unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
1166    llvm::Constant *Zero = llvm::ConstantInt::get(CGF.Int32Ty, 0);
1167    for (unsigned i = 0; i < NumElements; i++)
1168      Args.push_back(Zero);
1169
1170    llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements);
1171    llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
1172    return Yay;
1173  }
1174
1175  case CK_IntegralCast:
1176  case CK_IntegralToFloating:
1177  case CK_FloatingToIntegral:
1178  case CK_FloatingCast:
1179    return EmitScalarConversion(Visit(E), E->getType(), DestTy);
1180
1181  case CK_IntegralToBoolean:
1182    return EmitIntToBoolConversion(Visit(E));
1183  case CK_PointerToBoolean:
1184    return EmitPointerToBoolConversion(Visit(E));
1185  case CK_FloatingToBoolean:
1186    return EmitFloatToBoolConversion(Visit(E));
1187  case CK_MemberPointerToBoolean: {
1188    llvm::Value *MemPtr = Visit(E);
1189    const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
1190    return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
1191  }
1192
1193  case CK_FloatingComplexToReal:
1194  case CK_IntegralComplexToReal:
1195    return CGF.EmitComplexExpr(E, false, true).first;
1196
1197  case CK_FloatingComplexToBoolean:
1198  case CK_IntegralComplexToBoolean: {
1199    CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
1200
1201    // TODO: kill this function off, inline appropriate case here
1202    return EmitComplexToScalarConversion(V, E->getType(), DestTy);
1203  }
1204
1205  }
1206
1207  llvm_unreachable("unknown scalar cast");
1208  return 0;
1209}
1210
1211Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
1212  CodeGenFunction::StmtExprEvaluation eval(CGF);
1213  return CGF.EmitCompoundStmt(*E->getSubStmt(), !E->getType()->isVoidType())
1214    .getScalarVal();
1215}
1216
1217Value *ScalarExprEmitter::VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) {
1218  llvm::Value *V = CGF.GetAddrOfBlockDecl(E);
1219  if (E->getType().isObjCGCWeak())
1220    return CGF.CGM.getObjCRuntime().EmitObjCWeakRead(CGF, V);
1221  return CGF.EmitLoadOfScalar(V, false, 0, E->getType());
1222}
1223
1224//===----------------------------------------------------------------------===//
1225//                             Unary Operators
1226//===----------------------------------------------------------------------===//
1227
1228llvm::Value *ScalarExprEmitter::
1229EmitAddConsiderOverflowBehavior(const UnaryOperator *E,
1230                                llvm::Value *InVal,
1231                                llvm::Value *NextVal, bool IsInc) {
1232  switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
1233  case LangOptions::SOB_Undefined:
1234    return Builder.CreateNSWAdd(InVal, NextVal, IsInc ? "inc" : "dec");
1235    break;
1236  case LangOptions::SOB_Defined:
1237    return Builder.CreateAdd(InVal, NextVal, IsInc ? "inc" : "dec");
1238    break;
1239  case LangOptions::SOB_Trapping:
1240    BinOpInfo BinOp;
1241    BinOp.LHS = InVal;
1242    BinOp.RHS = NextVal;
1243    BinOp.Ty = E->getType();
1244    BinOp.Opcode = BO_Add;
1245    BinOp.E = E;
1246    return EmitOverflowCheckedBinOp(BinOp);
1247    break;
1248  }
1249  assert(false && "Unknown SignedOverflowBehaviorTy");
1250  return 0;
1251}
1252
1253llvm::Value *ScalarExprEmitter::
1254EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1255                        bool isInc, bool isPre) {
1256
1257  QualType ValTy = E->getSubExpr()->getType();
1258  llvm::Value *InVal = EmitLoadOfLValue(LV, ValTy);
1259
1260  int AmountVal = isInc ? 1 : -1;
1261
1262  if (ValTy->isPointerType() &&
1263      ValTy->getAs<PointerType>()->isVariableArrayType()) {
1264    // The amount of the addition/subtraction needs to account for the VLA size
1265    CGF.ErrorUnsupported(E, "VLA pointer inc/dec");
1266  }
1267
1268  llvm::Value *NextVal;
1269  if (const llvm::PointerType *PT =
1270      dyn_cast<llvm::PointerType>(InVal->getType())) {
1271    llvm::Constant *Inc = llvm::ConstantInt::get(CGF.Int32Ty, AmountVal);
1272    if (!isa<llvm::FunctionType>(PT->getElementType())) {
1273      QualType PTEE = ValTy->getPointeeType();
1274      if (const ObjCObjectType *OIT = PTEE->getAs<ObjCObjectType>()) {
1275        // Handle interface types, which are not represented with a concrete
1276        // type.
1277        CharUnits size = CGF.getContext().getTypeSizeInChars(OIT);
1278        if (!isInc)
1279          size = -size;
1280        Inc = llvm::ConstantInt::get(Inc->getType(), size.getQuantity());
1281        const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1282        InVal = Builder.CreateBitCast(InVal, i8Ty);
1283        NextVal = Builder.CreateGEP(InVal, Inc, "add.ptr");
1284        llvm::Value *lhs = LV.getAddress();
1285        lhs = Builder.CreateBitCast(lhs, llvm::PointerType::getUnqual(i8Ty));
1286        LV = CGF.MakeAddrLValue(lhs, ValTy);
1287      } else
1288        NextVal = Builder.CreateInBoundsGEP(InVal, Inc, "ptrincdec");
1289    } else {
1290      const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1291      NextVal = Builder.CreateBitCast(InVal, i8Ty, "tmp");
1292      NextVal = Builder.CreateGEP(NextVal, Inc, "ptrincdec");
1293      NextVal = Builder.CreateBitCast(NextVal, InVal->getType());
1294    }
1295  } else if (InVal->getType()->isIntegerTy(1) && isInc) {
1296    // Bool++ is an interesting case, due to promotion rules, we get:
1297    // Bool++ -> Bool = Bool+1 -> Bool = (int)Bool+1 ->
1298    // Bool = ((int)Bool+1) != 0
1299    // An interesting aspect of this is that increment is always true.
1300    // Decrement does not have this property.
1301    NextVal = llvm::ConstantInt::getTrue(VMContext);
1302  } else if (ValTy->isVectorType()) {
1303    if (ValTy->hasIntegerRepresentation()) {
1304      NextVal = llvm::ConstantInt::get(InVal->getType(), AmountVal);
1305
1306      NextVal = ValTy->hasSignedIntegerRepresentation() ?
1307                EmitAddConsiderOverflowBehavior(E, InVal, NextVal, isInc) :
1308                Builder.CreateAdd(InVal, NextVal, isInc ? "inc" : "dec");
1309    } else {
1310      NextVal = Builder.CreateFAdd(
1311                  InVal,
1312                  llvm::ConstantFP::get(InVal->getType(), AmountVal),
1313                  isInc ? "inc" : "dec");
1314    }
1315  } else if (isa<llvm::IntegerType>(InVal->getType())) {
1316    NextVal = llvm::ConstantInt::get(InVal->getType(), AmountVal);
1317
1318    NextVal = ValTy->isSignedIntegerType() ?
1319              EmitAddConsiderOverflowBehavior(E, InVal, NextVal, isInc) :
1320              // Unsigned integer inc is always two's complement.
1321              Builder.CreateAdd(InVal, NextVal, isInc ? "inc" : "dec");
1322  } else {
1323    // Add the inc/dec to the real part.
1324    if (InVal->getType()->isFloatTy())
1325      NextVal =
1326      llvm::ConstantFP::get(VMContext,
1327                            llvm::APFloat(static_cast<float>(AmountVal)));
1328    else if (InVal->getType()->isDoubleTy())
1329      NextVal =
1330      llvm::ConstantFP::get(VMContext,
1331                            llvm::APFloat(static_cast<double>(AmountVal)));
1332    else {
1333      llvm::APFloat F(static_cast<float>(AmountVal));
1334      bool ignored;
1335      F.convert(CGF.Target.getLongDoubleFormat(), llvm::APFloat::rmTowardZero,
1336                &ignored);
1337      NextVal = llvm::ConstantFP::get(VMContext, F);
1338    }
1339    NextVal = Builder.CreateFAdd(InVal, NextVal, isInc ? "inc" : "dec");
1340  }
1341
1342  // Store the updated result through the lvalue.
1343  if (LV.isBitField())
1344    CGF.EmitStoreThroughBitfieldLValue(RValue::get(NextVal), LV, ValTy, &NextVal);
1345  else
1346    CGF.EmitStoreThroughLValue(RValue::get(NextVal), LV, ValTy);
1347
1348  // If this is a postinc, return the value read from memory, otherwise use the
1349  // updated value.
1350  return isPre ? NextVal : InVal;
1351}
1352
1353
1354
1355Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
1356  TestAndClearIgnoreResultAssign();
1357  // Emit unary minus with EmitSub so we handle overflow cases etc.
1358  BinOpInfo BinOp;
1359  BinOp.RHS = Visit(E->getSubExpr());
1360
1361  if (BinOp.RHS->getType()->isFPOrFPVectorTy())
1362    BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType());
1363  else
1364    BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
1365  BinOp.Ty = E->getType();
1366  BinOp.Opcode = BO_Sub;
1367  BinOp.E = E;
1368  return EmitSub(BinOp);
1369}
1370
1371Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
1372  TestAndClearIgnoreResultAssign();
1373  Value *Op = Visit(E->getSubExpr());
1374  return Builder.CreateNot(Op, "neg");
1375}
1376
1377Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
1378  // Compare operand to zero.
1379  Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
1380
1381  // Invert value.
1382  // TODO: Could dynamically modify easy computations here.  For example, if
1383  // the operand is an icmp ne, turn into icmp eq.
1384  BoolVal = Builder.CreateNot(BoolVal, "lnot");
1385
1386  // ZExt result to the expr type.
1387  return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
1388}
1389
1390Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
1391  // Try folding the offsetof to a constant.
1392  Expr::EvalResult EvalResult;
1393  if (E->Evaluate(EvalResult, CGF.getContext()))
1394    return llvm::ConstantInt::get(VMContext, EvalResult.Val.getInt());
1395
1396  // Loop over the components of the offsetof to compute the value.
1397  unsigned n = E->getNumComponents();
1398  const llvm::Type* ResultType = ConvertType(E->getType());
1399  llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
1400  QualType CurrentType = E->getTypeSourceInfo()->getType();
1401  for (unsigned i = 0; i != n; ++i) {
1402    OffsetOfExpr::OffsetOfNode ON = E->getComponent(i);
1403    llvm::Value *Offset = 0;
1404    switch (ON.getKind()) {
1405    case OffsetOfExpr::OffsetOfNode::Array: {
1406      // Compute the index
1407      Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
1408      llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
1409      bool IdxSigned = IdxExpr->getType()->isSignedIntegerType();
1410      Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
1411
1412      // Save the element type
1413      CurrentType =
1414          CGF.getContext().getAsArrayType(CurrentType)->getElementType();
1415
1416      // Compute the element size
1417      llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
1418          CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
1419
1420      // Multiply out to compute the result
1421      Offset = Builder.CreateMul(Idx, ElemSize);
1422      break;
1423    }
1424
1425    case OffsetOfExpr::OffsetOfNode::Field: {
1426      FieldDecl *MemberDecl = ON.getField();
1427      RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1428      const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1429
1430      // Compute the index of the field in its parent.
1431      unsigned i = 0;
1432      // FIXME: It would be nice if we didn't have to loop here!
1433      for (RecordDecl::field_iterator Field = RD->field_begin(),
1434                                      FieldEnd = RD->field_end();
1435           Field != FieldEnd; (void)++Field, ++i) {
1436        if (*Field == MemberDecl)
1437          break;
1438      }
1439      assert(i < RL.getFieldCount() && "offsetof field in wrong type");
1440
1441      // Compute the offset to the field
1442      int64_t OffsetInt = RL.getFieldOffset(i) /
1443                          CGF.getContext().getCharWidth();
1444      Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
1445
1446      // Save the element type.
1447      CurrentType = MemberDecl->getType();
1448      break;
1449    }
1450
1451    case OffsetOfExpr::OffsetOfNode::Identifier:
1452      llvm_unreachable("dependent __builtin_offsetof");
1453
1454    case OffsetOfExpr::OffsetOfNode::Base: {
1455      if (ON.getBase()->isVirtual()) {
1456        CGF.ErrorUnsupported(E, "virtual base in offsetof");
1457        continue;
1458      }
1459
1460      RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1461      const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1462
1463      // Save the element type.
1464      CurrentType = ON.getBase()->getType();
1465
1466      // Compute the offset to the base.
1467      const RecordType *BaseRT = CurrentType->getAs<RecordType>();
1468      CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
1469      int64_t OffsetInt = RL.getBaseClassOffsetInBits(BaseRD) /
1470                          CGF.getContext().getCharWidth();
1471      Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
1472      break;
1473    }
1474    }
1475    Result = Builder.CreateAdd(Result, Offset);
1476  }
1477  return Result;
1478}
1479
1480/// VisitSizeOfAlignOfExpr - Return the size or alignment of the type of
1481/// argument of the sizeof expression as an integer.
1482Value *
1483ScalarExprEmitter::VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E) {
1484  QualType TypeToSize = E->getTypeOfArgument();
1485  if (E->isSizeOf()) {
1486    if (const VariableArrayType *VAT =
1487          CGF.getContext().getAsVariableArrayType(TypeToSize)) {
1488      if (E->isArgumentType()) {
1489        // sizeof(type) - make sure to emit the VLA size.
1490        CGF.EmitVLASize(TypeToSize);
1491      } else {
1492        // C99 6.5.3.4p2: If the argument is an expression of type
1493        // VLA, it is evaluated.
1494        CGF.EmitIgnoredExpr(E->getArgumentExpr());
1495      }
1496
1497      return CGF.GetVLASize(VAT);
1498    }
1499  }
1500
1501  // If this isn't sizeof(vla), the result must be constant; use the constant
1502  // folding logic so we don't have to duplicate it here.
1503  Expr::EvalResult Result;
1504  E->Evaluate(Result, CGF.getContext());
1505  return llvm::ConstantInt::get(VMContext, Result.Val.getInt());
1506}
1507
1508Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
1509  Expr *Op = E->getSubExpr();
1510  if (Op->getType()->isAnyComplexType()) {
1511    // If it's an l-value, load through the appropriate subobject l-value.
1512    // Note that we have to ask E because Op might be an l-value that
1513    // this won't work for, e.g. an Obj-C property.
1514    if (E->isGLValue())
1515      return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), E->getType())
1516                .getScalarVal();
1517
1518    // Otherwise, calculate and project.
1519    return CGF.EmitComplexExpr(Op, false, true).first;
1520  }
1521
1522  return Visit(Op);
1523}
1524
1525Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
1526  Expr *Op = E->getSubExpr();
1527  if (Op->getType()->isAnyComplexType()) {
1528    // If it's an l-value, load through the appropriate subobject l-value.
1529    // Note that we have to ask E because Op might be an l-value that
1530    // this won't work for, e.g. an Obj-C property.
1531    if (Op->isGLValue())
1532      return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), E->getType())
1533                .getScalarVal();
1534
1535    // Otherwise, calculate and project.
1536    return CGF.EmitComplexExpr(Op, true, false).second;
1537  }
1538
1539  // __imag on a scalar returns zero.  Emit the subexpr to ensure side
1540  // effects are evaluated, but not the actual value.
1541  CGF.EmitScalarExpr(Op, true);
1542  return llvm::Constant::getNullValue(ConvertType(E->getType()));
1543}
1544
1545//===----------------------------------------------------------------------===//
1546//                           Binary Operators
1547//===----------------------------------------------------------------------===//
1548
1549BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
1550  TestAndClearIgnoreResultAssign();
1551  BinOpInfo Result;
1552  Result.LHS = Visit(E->getLHS());
1553  Result.RHS = Visit(E->getRHS());
1554  Result.Ty  = E->getType();
1555  Result.Opcode = E->getOpcode();
1556  Result.E = E;
1557  return Result;
1558}
1559
1560LValue ScalarExprEmitter::EmitCompoundAssignLValue(
1561                                              const CompoundAssignOperator *E,
1562                        Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
1563                                                   Value *&Result) {
1564  QualType LHSTy = E->getLHS()->getType();
1565  BinOpInfo OpInfo;
1566
1567  if (E->getComputationResultType()->isAnyComplexType()) {
1568    // This needs to go through the complex expression emitter, but it's a tad
1569    // complicated to do that... I'm leaving it out for now.  (Note that we do
1570    // actually need the imaginary part of the RHS for multiplication and
1571    // division.)
1572    CGF.ErrorUnsupported(E, "complex compound assignment");
1573    Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1574    return LValue();
1575  }
1576
1577  // Emit the RHS first.  __block variables need to have the rhs evaluated
1578  // first, plus this should improve codegen a little.
1579  OpInfo.RHS = Visit(E->getRHS());
1580  OpInfo.Ty = E->getComputationResultType();
1581  OpInfo.Opcode = E->getOpcode();
1582  OpInfo.E = E;
1583  // Load/convert the LHS.
1584  LValue LHSLV = EmitCheckedLValue(E->getLHS());
1585  OpInfo.LHS = EmitLoadOfLValue(LHSLV, LHSTy);
1586  OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy,
1587                                    E->getComputationLHSType());
1588
1589  // Expand the binary operator.
1590  Result = (this->*Func)(OpInfo);
1591
1592  // Convert the result back to the LHS type.
1593  Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy);
1594
1595  // Store the result value into the LHS lvalue. Bit-fields are handled
1596  // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
1597  // 'An assignment expression has the value of the left operand after the
1598  // assignment...'.
1599  if (LHSLV.isBitField())
1600    CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, LHSTy,
1601                                       &Result);
1602  else
1603    CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV, LHSTy);
1604
1605  return LHSLV;
1606}
1607
1608Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
1609                      Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
1610  bool Ignore = TestAndClearIgnoreResultAssign();
1611  Value *RHS;
1612  LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
1613
1614  // If the result is clearly ignored, return now.
1615  if (Ignore)
1616    return 0;
1617
1618  // The result of an assignment in C is the assigned r-value.
1619  if (!CGF.getContext().getLangOptions().CPlusPlus)
1620    return RHS;
1621
1622  // Objective-C property assignment never reloads the value following a store.
1623  if (LHS.isPropertyRef())
1624    return RHS;
1625
1626  // If the lvalue is non-volatile, return the computed value of the assignment.
1627  if (!LHS.isVolatileQualified())
1628    return RHS;
1629
1630  // Otherwise, reload the value.
1631  return EmitLoadOfLValue(LHS, E->getType());
1632}
1633
1634void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
1635     					    const BinOpInfo &Ops,
1636				     	    llvm::Value *Zero, bool isDiv) {
1637  llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
1638  llvm::BasicBlock *contBB =
1639    CGF.createBasicBlock(isDiv ? "div.cont" : "rem.cont", CGF.CurFn);
1640
1641  const llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
1642
1643  if (Ops.Ty->hasSignedIntegerRepresentation()) {
1644    llvm::Value *IntMin =
1645      llvm::ConstantInt::get(VMContext,
1646                             llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
1647    llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
1648
1649    llvm::Value *Cond1 = Builder.CreateICmpEQ(Ops.RHS, Zero);
1650    llvm::Value *LHSCmp = Builder.CreateICmpEQ(Ops.LHS, IntMin);
1651    llvm::Value *RHSCmp = Builder.CreateICmpEQ(Ops.RHS, NegOne);
1652    llvm::Value *Cond2 = Builder.CreateAnd(LHSCmp, RHSCmp, "and");
1653    Builder.CreateCondBr(Builder.CreateOr(Cond1, Cond2, "or"),
1654                         overflowBB, contBB);
1655  } else {
1656    CGF.Builder.CreateCondBr(Builder.CreateICmpEQ(Ops.RHS, Zero),
1657                             overflowBB, contBB);
1658  }
1659  EmitOverflowBB(overflowBB);
1660  Builder.SetInsertPoint(contBB);
1661}
1662
1663Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
1664  if (isTrapvOverflowBehavior()) {
1665    llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
1666
1667    if (Ops.Ty->isIntegerType())
1668      EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
1669    else if (Ops.Ty->isRealFloatingType()) {
1670      llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow",
1671                                                          CGF.CurFn);
1672      llvm::BasicBlock *DivCont = CGF.createBasicBlock("div.cont", CGF.CurFn);
1673      CGF.Builder.CreateCondBr(Builder.CreateFCmpOEQ(Ops.RHS, Zero),
1674                               overflowBB, DivCont);
1675      EmitOverflowBB(overflowBB);
1676      Builder.SetInsertPoint(DivCont);
1677    }
1678  }
1679  if (Ops.LHS->getType()->isFPOrFPVectorTy())
1680    return Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
1681  else if (Ops.Ty->hasUnsignedIntegerRepresentation())
1682    return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
1683  else
1684    return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
1685}
1686
1687Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
1688  // Rem in C can't be a floating point type: C99 6.5.5p2.
1689  if (isTrapvOverflowBehavior()) {
1690    llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
1691
1692    if (Ops.Ty->isIntegerType())
1693      EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
1694  }
1695
1696  if (Ops.Ty->isUnsignedIntegerType())
1697    return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
1698  else
1699    return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
1700}
1701
1702Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
1703  unsigned IID;
1704  unsigned OpID = 0;
1705
1706  switch (Ops.Opcode) {
1707  case BO_Add:
1708  case BO_AddAssign:
1709    OpID = 1;
1710    IID = llvm::Intrinsic::sadd_with_overflow;
1711    break;
1712  case BO_Sub:
1713  case BO_SubAssign:
1714    OpID = 2;
1715    IID = llvm::Intrinsic::ssub_with_overflow;
1716    break;
1717  case BO_Mul:
1718  case BO_MulAssign:
1719    OpID = 3;
1720    IID = llvm::Intrinsic::smul_with_overflow;
1721    break;
1722  default:
1723    assert(false && "Unsupported operation for overflow detection");
1724    IID = 0;
1725  }
1726  OpID <<= 1;
1727  OpID |= 1;
1728
1729  const llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
1730
1731  llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, &opTy, 1);
1732
1733  Value *resultAndOverflow = Builder.CreateCall2(intrinsic, Ops.LHS, Ops.RHS);
1734  Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
1735  Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
1736
1737  // Branch in case of overflow.
1738  llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
1739  llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
1740  llvm::BasicBlock *continueBB = CGF.createBasicBlock("nooverflow", CGF.CurFn);
1741
1742  Builder.CreateCondBr(overflow, overflowBB, continueBB);
1743
1744  // Handle overflow with llvm.trap.
1745  const std::string *handlerName =
1746    &CGF.getContext().getLangOptions().OverflowHandler;
1747  if (handlerName->empty()) {
1748    EmitOverflowBB(overflowBB);
1749    Builder.SetInsertPoint(continueBB);
1750    return result;
1751  }
1752
1753  // If an overflow handler is set, then we want to call it and then use its
1754  // result, if it returns.
1755  Builder.SetInsertPoint(overflowBB);
1756
1757  // Get the overflow handler.
1758  const llvm::Type *Int8Ty = llvm::Type::getInt8Ty(VMContext);
1759  std::vector<const llvm::Type*> argTypes;
1760  argTypes.push_back(CGF.Int64Ty); argTypes.push_back(CGF.Int64Ty);
1761  argTypes.push_back(Int8Ty); argTypes.push_back(Int8Ty);
1762  llvm::FunctionType *handlerTy =
1763      llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
1764  llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
1765
1766  // Sign extend the args to 64-bit, so that we can use the same handler for
1767  // all types of overflow.
1768  llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
1769  llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
1770
1771  // Call the handler with the two arguments, the operation, and the size of
1772  // the result.
1773  llvm::Value *handlerResult = Builder.CreateCall4(handler, lhs, rhs,
1774      Builder.getInt8(OpID),
1775      Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth()));
1776
1777  // Truncate the result back to the desired size.
1778  handlerResult = Builder.CreateTrunc(handlerResult, opTy);
1779  Builder.CreateBr(continueBB);
1780
1781  Builder.SetInsertPoint(continueBB);
1782  llvm::PHINode *phi = Builder.CreatePHI(opTy);
1783  phi->reserveOperandSpace(2);
1784  phi->addIncoming(result, initialBB);
1785  phi->addIncoming(handlerResult, overflowBB);
1786
1787  return phi;
1788}
1789
1790Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &Ops) {
1791  if (!Ops.Ty->isAnyPointerType()) {
1792    if (Ops.Ty->hasSignedIntegerRepresentation()) {
1793      switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
1794      case LangOptions::SOB_Undefined:
1795        return Builder.CreateNSWAdd(Ops.LHS, Ops.RHS, "add");
1796      case LangOptions::SOB_Defined:
1797        return Builder.CreateAdd(Ops.LHS, Ops.RHS, "add");
1798      case LangOptions::SOB_Trapping:
1799        return EmitOverflowCheckedBinOp(Ops);
1800      }
1801    }
1802
1803    if (Ops.LHS->getType()->isFPOrFPVectorTy())
1804      return Builder.CreateFAdd(Ops.LHS, Ops.RHS, "add");
1805
1806    return Builder.CreateAdd(Ops.LHS, Ops.RHS, "add");
1807  }
1808
1809  // Must have binary (not unary) expr here.  Unary pointer decrement doesn't
1810  // use this path.
1811  const BinaryOperator *BinOp = cast<BinaryOperator>(Ops.E);
1812
1813  if (Ops.Ty->isPointerType() &&
1814      Ops.Ty->getAs<PointerType>()->isVariableArrayType()) {
1815    // The amount of the addition needs to account for the VLA size
1816    CGF.ErrorUnsupported(BinOp, "VLA pointer addition");
1817  }
1818
1819  Value *Ptr, *Idx;
1820  Expr *IdxExp;
1821  const PointerType *PT = BinOp->getLHS()->getType()->getAs<PointerType>();
1822  const ObjCObjectPointerType *OPT =
1823    BinOp->getLHS()->getType()->getAs<ObjCObjectPointerType>();
1824  if (PT || OPT) {
1825    Ptr = Ops.LHS;
1826    Idx = Ops.RHS;
1827    IdxExp = BinOp->getRHS();
1828  } else {  // int + pointer
1829    PT = BinOp->getRHS()->getType()->getAs<PointerType>();
1830    OPT = BinOp->getRHS()->getType()->getAs<ObjCObjectPointerType>();
1831    assert((PT || OPT) && "Invalid add expr");
1832    Ptr = Ops.RHS;
1833    Idx = Ops.LHS;
1834    IdxExp = BinOp->getLHS();
1835  }
1836
1837  unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
1838  if (Width < CGF.LLVMPointerWidth) {
1839    // Zero or sign extend the pointer value based on whether the index is
1840    // signed or not.
1841    const llvm::Type *IdxType = CGF.IntPtrTy;
1842    if (IdxExp->getType()->isSignedIntegerType())
1843      Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
1844    else
1845      Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
1846  }
1847  const QualType ElementType = PT ? PT->getPointeeType() : OPT->getPointeeType();
1848  // Handle interface types, which are not represented with a concrete type.
1849  if (const ObjCObjectType *OIT = ElementType->getAs<ObjCObjectType>()) {
1850    llvm::Value *InterfaceSize =
1851      llvm::ConstantInt::get(Idx->getType(),
1852          CGF.getContext().getTypeSizeInChars(OIT).getQuantity());
1853    Idx = Builder.CreateMul(Idx, InterfaceSize);
1854    const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1855    Value *Casted = Builder.CreateBitCast(Ptr, i8Ty);
1856    Value *Res = Builder.CreateGEP(Casted, Idx, "add.ptr");
1857    return Builder.CreateBitCast(Res, Ptr->getType());
1858  }
1859
1860  // Explicitly handle GNU void* and function pointer arithmetic extensions. The
1861  // GNU void* casts amount to no-ops since our void* type is i8*, but this is
1862  // future proof.
1863  if (ElementType->isVoidType() || ElementType->isFunctionType()) {
1864    const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1865    Value *Casted = Builder.CreateBitCast(Ptr, i8Ty);
1866    Value *Res = Builder.CreateGEP(Casted, Idx, "add.ptr");
1867    return Builder.CreateBitCast(Res, Ptr->getType());
1868  }
1869
1870  return Builder.CreateInBoundsGEP(Ptr, Idx, "add.ptr");
1871}
1872
1873Value *ScalarExprEmitter::EmitSub(const BinOpInfo &Ops) {
1874  if (!isa<llvm::PointerType>(Ops.LHS->getType())) {
1875    if (Ops.Ty->hasSignedIntegerRepresentation()) {
1876      switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
1877      case LangOptions::SOB_Undefined:
1878        return Builder.CreateNSWSub(Ops.LHS, Ops.RHS, "sub");
1879      case LangOptions::SOB_Defined:
1880        return Builder.CreateSub(Ops.LHS, Ops.RHS, "sub");
1881      case LangOptions::SOB_Trapping:
1882        return EmitOverflowCheckedBinOp(Ops);
1883      }
1884    }
1885
1886    if (Ops.LHS->getType()->isFPOrFPVectorTy())
1887      return Builder.CreateFSub(Ops.LHS, Ops.RHS, "sub");
1888
1889    return Builder.CreateSub(Ops.LHS, Ops.RHS, "sub");
1890  }
1891
1892  // Must have binary (not unary) expr here.  Unary pointer increment doesn't
1893  // use this path.
1894  const BinaryOperator *BinOp = cast<BinaryOperator>(Ops.E);
1895
1896  if (BinOp->getLHS()->getType()->isPointerType() &&
1897      BinOp->getLHS()->getType()->getAs<PointerType>()->isVariableArrayType()) {
1898    // The amount of the addition needs to account for the VLA size for
1899    // ptr-int
1900    // The amount of the division needs to account for the VLA size for
1901    // ptr-ptr.
1902    CGF.ErrorUnsupported(BinOp, "VLA pointer subtraction");
1903  }
1904
1905  const QualType LHSType = BinOp->getLHS()->getType();
1906  const QualType LHSElementType = LHSType->getPointeeType();
1907  if (!isa<llvm::PointerType>(Ops.RHS->getType())) {
1908    // pointer - int
1909    Value *Idx = Ops.RHS;
1910    unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
1911    if (Width < CGF.LLVMPointerWidth) {
1912      // Zero or sign extend the pointer value based on whether the index is
1913      // signed or not.
1914      const llvm::Type *IdxType = CGF.IntPtrTy;
1915      if (BinOp->getRHS()->getType()->isSignedIntegerType())
1916        Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
1917      else
1918        Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
1919    }
1920    Idx = Builder.CreateNeg(Idx, "sub.ptr.neg");
1921
1922    // Handle interface types, which are not represented with a concrete type.
1923    if (const ObjCObjectType *OIT = LHSElementType->getAs<ObjCObjectType>()) {
1924      llvm::Value *InterfaceSize =
1925        llvm::ConstantInt::get(Idx->getType(),
1926                               CGF.getContext().
1927                                 getTypeSizeInChars(OIT).getQuantity());
1928      Idx = Builder.CreateMul(Idx, InterfaceSize);
1929      const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1930      Value *LHSCasted = Builder.CreateBitCast(Ops.LHS, i8Ty);
1931      Value *Res = Builder.CreateGEP(LHSCasted, Idx, "add.ptr");
1932      return Builder.CreateBitCast(Res, Ops.LHS->getType());
1933    }
1934
1935    // Explicitly handle GNU void* and function pointer arithmetic
1936    // extensions. The GNU void* casts amount to no-ops since our void* type is
1937    // i8*, but this is future proof.
1938    if (LHSElementType->isVoidType() || LHSElementType->isFunctionType()) {
1939      const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1940      Value *LHSCasted = Builder.CreateBitCast(Ops.LHS, i8Ty);
1941      Value *Res = Builder.CreateGEP(LHSCasted, Idx, "sub.ptr");
1942      return Builder.CreateBitCast(Res, Ops.LHS->getType());
1943    }
1944
1945    return Builder.CreateInBoundsGEP(Ops.LHS, Idx, "sub.ptr");
1946  } else {
1947    // pointer - pointer
1948    Value *LHS = Ops.LHS;
1949    Value *RHS = Ops.RHS;
1950
1951    CharUnits ElementSize;
1952
1953    // Handle GCC extension for pointer arithmetic on void* and function pointer
1954    // types.
1955    if (LHSElementType->isVoidType() || LHSElementType->isFunctionType()) {
1956      ElementSize = CharUnits::One();
1957    } else {
1958      ElementSize = CGF.getContext().getTypeSizeInChars(LHSElementType);
1959    }
1960
1961    const llvm::Type *ResultType = ConvertType(Ops.Ty);
1962    LHS = Builder.CreatePtrToInt(LHS, ResultType, "sub.ptr.lhs.cast");
1963    RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
1964    Value *BytesBetween = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
1965
1966    // Optimize out the shift for element size of 1.
1967    if (ElementSize.isOne())
1968      return BytesBetween;
1969
1970    // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
1971    // pointer difference in C is only defined in the case where both operands
1972    // are pointing to elements of an array.
1973    Value *BytesPerElt =
1974        llvm::ConstantInt::get(ResultType, ElementSize.getQuantity());
1975    return Builder.CreateExactSDiv(BytesBetween, BytesPerElt, "sub.ptr.div");
1976  }
1977}
1978
1979Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
1980  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
1981  // RHS to the same size as the LHS.
1982  Value *RHS = Ops.RHS;
1983  if (Ops.LHS->getType() != RHS->getType())
1984    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
1985
1986  if (CGF.CatchUndefined
1987      && isa<llvm::IntegerType>(Ops.LHS->getType())) {
1988    unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth();
1989    llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
1990    CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS,
1991                                 llvm::ConstantInt::get(RHS->getType(), Width)),
1992                             Cont, CGF.getTrapBB());
1993    CGF.EmitBlock(Cont);
1994  }
1995
1996  return Builder.CreateShl(Ops.LHS, RHS, "shl");
1997}
1998
1999Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
2000  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2001  // RHS to the same size as the LHS.
2002  Value *RHS = Ops.RHS;
2003  if (Ops.LHS->getType() != RHS->getType())
2004    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2005
2006  if (CGF.CatchUndefined
2007      && isa<llvm::IntegerType>(Ops.LHS->getType())) {
2008    unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth();
2009    llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
2010    CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS,
2011                                 llvm::ConstantInt::get(RHS->getType(), Width)),
2012                             Cont, CGF.getTrapBB());
2013    CGF.EmitBlock(Cont);
2014  }
2015
2016  if (Ops.Ty->hasUnsignedIntegerRepresentation())
2017    return Builder.CreateLShr(Ops.LHS, RHS, "shr");
2018  return Builder.CreateAShr(Ops.LHS, RHS, "shr");
2019}
2020
2021enum IntrinsicType { VCMPEQ, VCMPGT };
2022// return corresponding comparison intrinsic for given vector type
2023static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
2024                                        BuiltinType::Kind ElemKind) {
2025  switch (ElemKind) {
2026  default: assert(0 && "unexpected element type");
2027  case BuiltinType::Char_U:
2028  case BuiltinType::UChar:
2029    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2030                            llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
2031    break;
2032  case BuiltinType::Char_S:
2033  case BuiltinType::SChar:
2034    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2035                            llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
2036    break;
2037  case BuiltinType::UShort:
2038    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2039                            llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
2040    break;
2041  case BuiltinType::Short:
2042    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2043                            llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
2044    break;
2045  case BuiltinType::UInt:
2046  case BuiltinType::ULong:
2047    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2048                            llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
2049    break;
2050  case BuiltinType::Int:
2051  case BuiltinType::Long:
2052    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2053                            llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
2054    break;
2055  case BuiltinType::Float:
2056    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
2057                            llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
2058    break;
2059  }
2060  return llvm::Intrinsic::not_intrinsic;
2061}
2062
2063Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
2064                                      unsigned SICmpOpc, unsigned FCmpOpc) {
2065  TestAndClearIgnoreResultAssign();
2066  Value *Result;
2067  QualType LHSTy = E->getLHS()->getType();
2068  if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
2069    assert(E->getOpcode() == BO_EQ ||
2070           E->getOpcode() == BO_NE);
2071    Value *LHS = CGF.EmitScalarExpr(E->getLHS());
2072    Value *RHS = CGF.EmitScalarExpr(E->getRHS());
2073    Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
2074                   CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
2075  } else if (!LHSTy->isAnyComplexType()) {
2076    Value *LHS = Visit(E->getLHS());
2077    Value *RHS = Visit(E->getRHS());
2078
2079    // If AltiVec, the comparison results in a numeric type, so we use
2080    // intrinsics comparing vectors and giving 0 or 1 as a result
2081    if (LHSTy->isVectorType() && CGF.getContext().getLangOptions().AltiVec) {
2082      // constants for mapping CR6 register bits to predicate result
2083      enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
2084
2085      llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
2086
2087      // in several cases vector arguments order will be reversed
2088      Value *FirstVecArg = LHS,
2089            *SecondVecArg = RHS;
2090
2091      QualType ElTy = LHSTy->getAs<VectorType>()->getElementType();
2092      const BuiltinType *BTy = ElTy->getAs<BuiltinType>();
2093      BuiltinType::Kind ElementKind = BTy->getKind();
2094
2095      switch(E->getOpcode()) {
2096      default: assert(0 && "is not a comparison operation");
2097      case BO_EQ:
2098        CR6 = CR6_LT;
2099        ID = GetIntrinsic(VCMPEQ, ElementKind);
2100        break;
2101      case BO_NE:
2102        CR6 = CR6_EQ;
2103        ID = GetIntrinsic(VCMPEQ, ElementKind);
2104        break;
2105      case BO_LT:
2106        CR6 = CR6_LT;
2107        ID = GetIntrinsic(VCMPGT, ElementKind);
2108        std::swap(FirstVecArg, SecondVecArg);
2109        break;
2110      case BO_GT:
2111        CR6 = CR6_LT;
2112        ID = GetIntrinsic(VCMPGT, ElementKind);
2113        break;
2114      case BO_LE:
2115        if (ElementKind == BuiltinType::Float) {
2116          CR6 = CR6_LT;
2117          ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2118          std::swap(FirstVecArg, SecondVecArg);
2119        }
2120        else {
2121          CR6 = CR6_EQ;
2122          ID = GetIntrinsic(VCMPGT, ElementKind);
2123        }
2124        break;
2125      case BO_GE:
2126        if (ElementKind == BuiltinType::Float) {
2127          CR6 = CR6_LT;
2128          ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2129        }
2130        else {
2131          CR6 = CR6_EQ;
2132          ID = GetIntrinsic(VCMPGT, ElementKind);
2133          std::swap(FirstVecArg, SecondVecArg);
2134        }
2135        break;
2136      }
2137
2138      Value *CR6Param = llvm::ConstantInt::get(CGF.Int32Ty, CR6);
2139      llvm::Function *F = CGF.CGM.getIntrinsic(ID);
2140      Result = Builder.CreateCall3(F, CR6Param, FirstVecArg, SecondVecArg, "");
2141      return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
2142    }
2143
2144    if (LHS->getType()->isFPOrFPVectorTy()) {
2145      Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
2146                                  LHS, RHS, "cmp");
2147    } else if (LHSTy->hasSignedIntegerRepresentation()) {
2148      Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
2149                                  LHS, RHS, "cmp");
2150    } else {
2151      // Unsigned integers and pointers.
2152      Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2153                                  LHS, RHS, "cmp");
2154    }
2155
2156    // If this is a vector comparison, sign extend the result to the appropriate
2157    // vector integer type and return it (don't convert to bool).
2158    if (LHSTy->isVectorType())
2159      return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2160
2161  } else {
2162    // Complex Comparison: can only be an equality comparison.
2163    CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS());
2164    CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS());
2165
2166    QualType CETy = LHSTy->getAs<ComplexType>()->getElementType();
2167
2168    Value *ResultR, *ResultI;
2169    if (CETy->isRealFloatingType()) {
2170      ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
2171                                   LHS.first, RHS.first, "cmp.r");
2172      ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
2173                                   LHS.second, RHS.second, "cmp.i");
2174    } else {
2175      // Complex comparisons can only be equality comparisons.  As such, signed
2176      // and unsigned opcodes are the same.
2177      ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2178                                   LHS.first, RHS.first, "cmp.r");
2179      ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2180                                   LHS.second, RHS.second, "cmp.i");
2181    }
2182
2183    if (E->getOpcode() == BO_EQ) {
2184      Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
2185    } else {
2186      assert(E->getOpcode() == BO_NE &&
2187             "Complex comparison other than == or != ?");
2188      Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
2189    }
2190  }
2191
2192  return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
2193}
2194
2195Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
2196  bool Ignore = TestAndClearIgnoreResultAssign();
2197
2198  // __block variables need to have the rhs evaluated first, plus this should
2199  // improve codegen just a little.
2200  Value *RHS = Visit(E->getRHS());
2201  LValue LHS = EmitCheckedLValue(E->getLHS());
2202
2203  // Store the value into the LHS.  Bit-fields are handled specially
2204  // because the result is altered by the store, i.e., [C99 6.5.16p1]
2205  // 'An assignment expression has the value of the left operand after
2206  // the assignment...'.
2207  if (LHS.isBitField())
2208    CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, E->getType(),
2209                                       &RHS);
2210  else
2211    CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS, E->getType());
2212
2213  // If the result is clearly ignored, return now.
2214  if (Ignore)
2215    return 0;
2216
2217  // The result of an assignment in C is the assigned r-value.
2218  if (!CGF.getContext().getLangOptions().CPlusPlus)
2219    return RHS;
2220
2221  // Objective-C property assignment never reloads the value following a store.
2222  if (LHS.isPropertyRef())
2223    return RHS;
2224
2225  // If the lvalue is non-volatile, return the computed value of the assignment.
2226  if (!LHS.isVolatileQualified())
2227    return RHS;
2228
2229  // Otherwise, reload the value.
2230  return EmitLoadOfLValue(LHS, E->getType());
2231}
2232
2233Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
2234  const llvm::Type *ResTy = ConvertType(E->getType());
2235
2236  // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
2237  // If we have 1 && X, just emit X without inserting the control flow.
2238  if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getLHS())) {
2239    if (Cond == 1) { // If we have 1 && X, just emit X.
2240      Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2241      // ZExt result to int or bool.
2242      return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
2243    }
2244
2245    // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
2246    if (!CGF.ContainsLabel(E->getRHS()))
2247      return llvm::Constant::getNullValue(ResTy);
2248  }
2249
2250  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
2251  llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
2252
2253  CodeGenFunction::ConditionalEvaluation eval(CGF);
2254
2255  // Branch on the LHS first.  If it is false, go to the failure (cont) block.
2256  CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock);
2257
2258  // Any edges into the ContBlock are now from an (indeterminate number of)
2259  // edges from this first condition.  All of these values will be false.  Start
2260  // setting up the PHI node in the Cont Block for this.
2261  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext),
2262                                            "", ContBlock);
2263  PN->reserveOperandSpace(2);  // Normal case, two inputs.
2264  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
2265       PI != PE; ++PI)
2266    PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
2267
2268  eval.begin(CGF);
2269  CGF.EmitBlock(RHSBlock);
2270  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2271  eval.end(CGF);
2272
2273  // Reaquire the RHS block, as there may be subblocks inserted.
2274  RHSBlock = Builder.GetInsertBlock();
2275
2276  // Emit an unconditional branch from this block to ContBlock.  Insert an entry
2277  // into the phi node for the edge with the value of RHSCond.
2278  CGF.EmitBlock(ContBlock);
2279  PN->addIncoming(RHSCond, RHSBlock);
2280
2281  // ZExt result to int.
2282  return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
2283}
2284
2285Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
2286  const llvm::Type *ResTy = ConvertType(E->getType());
2287
2288  // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
2289  // If we have 0 || X, just emit X without inserting the control flow.
2290  if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getLHS())) {
2291    if (Cond == -1) { // If we have 0 || X, just emit X.
2292      Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2293      // ZExt result to int or bool.
2294      return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
2295    }
2296
2297    // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
2298    if (!CGF.ContainsLabel(E->getRHS()))
2299      return llvm::ConstantInt::get(ResTy, 1);
2300  }
2301
2302  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
2303  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
2304
2305  CodeGenFunction::ConditionalEvaluation eval(CGF);
2306
2307  // Branch on the LHS first.  If it is true, go to the success (cont) block.
2308  CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock);
2309
2310  // Any edges into the ContBlock are now from an (indeterminate number of)
2311  // edges from this first condition.  All of these values will be true.  Start
2312  // setting up the PHI node in the Cont Block for this.
2313  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext),
2314                                            "", ContBlock);
2315  PN->reserveOperandSpace(2);  // Normal case, two inputs.
2316  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
2317       PI != PE; ++PI)
2318    PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
2319
2320  eval.begin(CGF);
2321
2322  // Emit the RHS condition as a bool value.
2323  CGF.EmitBlock(RHSBlock);
2324  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2325
2326  eval.end(CGF);
2327
2328  // Reaquire the RHS block, as there may be subblocks inserted.
2329  RHSBlock = Builder.GetInsertBlock();
2330
2331  // Emit an unconditional branch from this block to ContBlock.  Insert an entry
2332  // into the phi node for the edge with the value of RHSCond.
2333  CGF.EmitBlock(ContBlock);
2334  PN->addIncoming(RHSCond, RHSBlock);
2335
2336  // ZExt result to int.
2337  return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
2338}
2339
2340Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
2341  CGF.EmitIgnoredExpr(E->getLHS());
2342  CGF.EnsureInsertPoint();
2343  return Visit(E->getRHS());
2344}
2345
2346//===----------------------------------------------------------------------===//
2347//                             Other Operators
2348//===----------------------------------------------------------------------===//
2349
2350/// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
2351/// expression is cheap enough and side-effect-free enough to evaluate
2352/// unconditionally instead of conditionally.  This is used to convert control
2353/// flow into selects in some cases.
2354static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
2355                                                   CodeGenFunction &CGF) {
2356  if (const ParenExpr *PE = dyn_cast<ParenExpr>(E))
2357    return isCheapEnoughToEvaluateUnconditionally(PE->getSubExpr(), CGF);
2358
2359  // TODO: Allow anything we can constant fold to an integer or fp constant.
2360  if (isa<IntegerLiteral>(E) || isa<CharacterLiteral>(E) ||
2361      isa<FloatingLiteral>(E))
2362    return true;
2363
2364  // Non-volatile automatic variables too, to get "cond ? X : Y" where
2365  // X and Y are local variables.
2366  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
2367    if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
2368      if (VD->hasLocalStorage() && !(CGF.getContext()
2369                                     .getCanonicalType(VD->getType())
2370                                     .isVolatileQualified()))
2371        return true;
2372
2373  return false;
2374}
2375
2376
2377Value *ScalarExprEmitter::
2378VisitConditionalOperator(const ConditionalOperator *E) {
2379  TestAndClearIgnoreResultAssign();
2380  // If the condition constant folds and can be elided, try to avoid emitting
2381  // the condition and the dead arm.
2382  if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getCond())){
2383    Expr *Live = E->getLHS(), *Dead = E->getRHS();
2384    if (Cond == -1)
2385      std::swap(Live, Dead);
2386
2387    // If the dead side doesn't have labels we need, and if the Live side isn't
2388    // the gnu missing ?: extension (which we could handle, but don't bother
2389    // to), just emit the Live part.
2390    if ((!Dead || !CGF.ContainsLabel(Dead)) &&  // No labels in dead part
2391        Live)                                   // Live part isn't missing.
2392      return Visit(Live);
2393  }
2394
2395  // OpenCL: If the condition is a vector, we can treat this condition like
2396  // the select function.
2397  if (CGF.getContext().getLangOptions().OpenCL
2398      && E->getCond()->getType()->isVectorType()) {
2399    llvm::Value *CondV = CGF.EmitScalarExpr(E->getCond());
2400    llvm::Value *LHS = Visit(E->getLHS());
2401    llvm::Value *RHS = Visit(E->getRHS());
2402
2403    const llvm::Type *condType = ConvertType(E->getCond()->getType());
2404    const llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
2405
2406    unsigned numElem = vecTy->getNumElements();
2407    const llvm::Type *elemType = vecTy->getElementType();
2408
2409    std::vector<llvm::Constant*> Zvals;
2410    for (unsigned i = 0; i < numElem; ++i)
2411      Zvals.push_back(llvm::ConstantInt::get(elemType,0));
2412
2413    llvm::Value *zeroVec = llvm::ConstantVector::get(Zvals);
2414    llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
2415    llvm::Value *tmp = Builder.CreateSExt(TestMSB,
2416                                          llvm::VectorType::get(elemType,
2417                                                                numElem),
2418                                          "sext");
2419    llvm::Value *tmp2 = Builder.CreateNot(tmp);
2420
2421    // Cast float to int to perform ANDs if necessary.
2422    llvm::Value *RHSTmp = RHS;
2423    llvm::Value *LHSTmp = LHS;
2424    bool wasCast = false;
2425    const llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
2426    if (rhsVTy->getElementType()->isFloatTy()) {
2427      RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
2428      LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
2429      wasCast = true;
2430    }
2431
2432    llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
2433    llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
2434    llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
2435    if (wasCast)
2436      tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
2437
2438    return tmp5;
2439  }
2440
2441  // If this is a really simple expression (like x ? 4 : 5), emit this as a
2442  // select instead of as control flow.  We can only do this if it is cheap and
2443  // safe to evaluate the LHS and RHS unconditionally.
2444  if (E->getLHS() && isCheapEnoughToEvaluateUnconditionally(E->getLHS(),
2445                                                            CGF) &&
2446      isCheapEnoughToEvaluateUnconditionally(E->getRHS(), CGF)) {
2447    llvm::Value *CondV = CGF.EvaluateExprAsBool(E->getCond());
2448    llvm::Value *LHS = Visit(E->getLHS());
2449    llvm::Value *RHS = Visit(E->getRHS());
2450    return Builder.CreateSelect(CondV, LHS, RHS, "cond");
2451  }
2452
2453  llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
2454  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
2455  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
2456
2457  CodeGenFunction::ConditionalEvaluation eval(CGF);
2458
2459  // If we don't have the GNU missing condition extension, emit a branch on bool
2460  // the normal way.
2461  if (E->getLHS()) {
2462    // Otherwise, just use EmitBranchOnBoolExpr to get small and simple code for
2463    // the branch on bool.
2464    CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock);
2465  } else {
2466    // Otherwise, for the ?: extension, evaluate the conditional and then
2467    // convert it to bool the hard way.  We do this explicitly because we need
2468    // the unconverted value for the missing middle value of the ?:.
2469    Expr *save = E->getSAVE();
2470    assert(save && "VisitConditionalOperator - save is null");
2471    // Intentianlly not doing direct assignment to ConditionalSaveExprs[save] !!
2472    Value *SaveVal = CGF.EmitScalarExpr(save);
2473    CGF.ConditionalSaveExprs[save] = SaveVal;
2474    Value *CondVal = Visit(E->getCond());
2475    // In some cases, EmitScalarConversion will delete the "CondVal" expression
2476    // if there are no extra uses (an optimization).  Inhibit this by making an
2477    // extra dead use, because we're going to add a use of CondVal later.  We
2478    // don't use the builder for this, because we don't want it to get optimized
2479    // away.  This leaves dead code, but the ?: extension isn't common.
2480    new llvm::BitCastInst(CondVal, CondVal->getType(), "dummy?:holder",
2481                          Builder.GetInsertBlock());
2482
2483    Value *CondBoolVal =
2484      CGF.EmitScalarConversion(CondVal, E->getCond()->getType(),
2485                               CGF.getContext().BoolTy);
2486    Builder.CreateCondBr(CondBoolVal, LHSBlock, RHSBlock);
2487  }
2488
2489  CGF.EmitBlock(LHSBlock);
2490  eval.begin(CGF);
2491  Value *LHS = Visit(E->getTrueExpr());
2492  eval.end(CGF);
2493
2494  LHSBlock = Builder.GetInsertBlock();
2495  Builder.CreateBr(ContBlock);
2496
2497  CGF.EmitBlock(RHSBlock);
2498  eval.begin(CGF);
2499  Value *RHS = Visit(E->getRHS());
2500  eval.end(CGF);
2501
2502  RHSBlock = Builder.GetInsertBlock();
2503  CGF.EmitBlock(ContBlock);
2504
2505  // If the LHS or RHS is a throw expression, it will be legitimately null.
2506  if (!LHS)
2507    return RHS;
2508  if (!RHS)
2509    return LHS;
2510
2511  // Create a PHI node for the real part.
2512  llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), "cond");
2513  PN->reserveOperandSpace(2);
2514  PN->addIncoming(LHS, LHSBlock);
2515  PN->addIncoming(RHS, RHSBlock);
2516  return PN;
2517}
2518
2519Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
2520  return Visit(E->getChosenSubExpr(CGF.getContext()));
2521}
2522
2523Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
2524  llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
2525  llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
2526
2527  // If EmitVAArg fails, we fall back to the LLVM instruction.
2528  if (!ArgPtr)
2529    return Builder.CreateVAArg(ArgValue, ConvertType(VE->getType()));
2530
2531  // FIXME Volatility.
2532  return Builder.CreateLoad(ArgPtr);
2533}
2534
2535Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
2536  return CGF.EmitBlockLiteral(block);
2537}
2538
2539//===----------------------------------------------------------------------===//
2540//                         Entry Point into this File
2541//===----------------------------------------------------------------------===//
2542
2543/// EmitScalarExpr - Emit the computation of the specified expression of scalar
2544/// type, ignoring the result.
2545Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
2546  assert(E && !hasAggregateLLVMType(E->getType()) &&
2547         "Invalid scalar expression to emit");
2548
2549  return ScalarExprEmitter(*this, IgnoreResultAssign)
2550    .Visit(const_cast<Expr*>(E));
2551}
2552
2553/// EmitScalarConversion - Emit a conversion from the specified type to the
2554/// specified destination type, both of which are LLVM scalar types.
2555Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
2556                                             QualType DstTy) {
2557  assert(!hasAggregateLLVMType(SrcTy) && !hasAggregateLLVMType(DstTy) &&
2558         "Invalid scalar expression to emit");
2559  return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
2560}
2561
2562/// EmitComplexToScalarConversion - Emit a conversion from the specified complex
2563/// type to the specified destination type, where the destination type is an
2564/// LLVM scalar type.
2565Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
2566                                                      QualType SrcTy,
2567                                                      QualType DstTy) {
2568  assert(SrcTy->isAnyComplexType() && !hasAggregateLLVMType(DstTy) &&
2569         "Invalid complex -> scalar conversion");
2570  return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy,
2571                                                                DstTy);
2572}
2573
2574
2575llvm::Value *CodeGenFunction::
2576EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2577                        bool isInc, bool isPre) {
2578  return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
2579}
2580
2581LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
2582  llvm::Value *V;
2583  // object->isa or (*object).isa
2584  // Generate code as for: *(Class*)object
2585  // build Class* type
2586  const llvm::Type *ClassPtrTy = ConvertType(E->getType());
2587
2588  Expr *BaseExpr = E->getBase();
2589  if (BaseExpr->isRValue()) {
2590    V = CreateTempAlloca(ClassPtrTy, "resval");
2591    llvm::Value *Src = EmitScalarExpr(BaseExpr);
2592    Builder.CreateStore(Src, V);
2593    V = ScalarExprEmitter(*this).EmitLoadOfLValue(
2594      MakeAddrLValue(V, E->getType()), E->getType());
2595  } else {
2596    if (E->isArrow())
2597      V = ScalarExprEmitter(*this).EmitLoadOfLValue(BaseExpr);
2598    else
2599      V = EmitLValue(BaseExpr).getAddress();
2600  }
2601
2602  // build Class* type
2603  ClassPtrTy = ClassPtrTy->getPointerTo();
2604  V = Builder.CreateBitCast(V, ClassPtrTy);
2605  return MakeAddrLValue(V, E->getType());
2606}
2607
2608
2609LValue CodeGenFunction::EmitCompoundAssignmentLValue(
2610                                            const CompoundAssignOperator *E) {
2611  ScalarExprEmitter Scalar(*this);
2612  Value *Result = 0;
2613  switch (E->getOpcode()) {
2614#define COMPOUND_OP(Op)                                                       \
2615    case BO_##Op##Assign:                                                     \
2616      return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
2617                                             Result)
2618  COMPOUND_OP(Mul);
2619  COMPOUND_OP(Div);
2620  COMPOUND_OP(Rem);
2621  COMPOUND_OP(Add);
2622  COMPOUND_OP(Sub);
2623  COMPOUND_OP(Shl);
2624  COMPOUND_OP(Shr);
2625  COMPOUND_OP(And);
2626  COMPOUND_OP(Xor);
2627  COMPOUND_OP(Or);
2628#undef COMPOUND_OP
2629
2630  case BO_PtrMemD:
2631  case BO_PtrMemI:
2632  case BO_Mul:
2633  case BO_Div:
2634  case BO_Rem:
2635  case BO_Add:
2636  case BO_Sub:
2637  case BO_Shl:
2638  case BO_Shr:
2639  case BO_LT:
2640  case BO_GT:
2641  case BO_LE:
2642  case BO_GE:
2643  case BO_EQ:
2644  case BO_NE:
2645  case BO_And:
2646  case BO_Xor:
2647  case BO_Or:
2648  case BO_LAnd:
2649  case BO_LOr:
2650  case BO_Assign:
2651  case BO_Comma:
2652    assert(false && "Not valid compound assignment operators");
2653    break;
2654  }
2655
2656  llvm_unreachable("Unhandled compound assignment operator");
2657}
2658