CGExprScalar.cpp revision 8f2926b73ed635afecd020da787af6a837601a2b
1//===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenFunction.h"
15#include "CodeGenModule.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/StmtVisitor.h"
19#include "clang/Basic/TargetInfo.h"
20#include "llvm/Constants.h"
21#include "llvm/Function.h"
22#include "llvm/GlobalVariable.h"
23#include "llvm/Intrinsics.h"
24#include "llvm/Support/Compiler.h"
25#include <cstdarg>
26
27using namespace clang;
28using namespace CodeGen;
29using llvm::Value;
30
31//===----------------------------------------------------------------------===//
32//                         Scalar Expression Emitter
33//===----------------------------------------------------------------------===//
34
35struct BinOpInfo {
36  Value *LHS;
37  Value *RHS;
38  QualType Ty;  // Computation Type.
39  const BinaryOperator *E;
40};
41
42namespace {
43class VISIBILITY_HIDDEN ScalarExprEmitter
44  : public StmtVisitor<ScalarExprEmitter, Value*> {
45  CodeGenFunction &CGF;
46  llvm::IRBuilder<> &Builder;
47
48public:
49
50  ScalarExprEmitter(CodeGenFunction &cgf) : CGF(cgf),
51    Builder(CGF.Builder) {
52  }
53
54  //===--------------------------------------------------------------------===//
55  //                               Utilities
56  //===--------------------------------------------------------------------===//
57
58  const llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
59  LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
60
61  Value *EmitLoadOfLValue(LValue LV, QualType T) {
62    return CGF.EmitLoadOfLValue(LV, T).getScalarVal();
63  }
64
65  /// EmitLoadOfLValue - Given an expression with complex type that represents a
66  /// value l-value, this method emits the address of the l-value, then loads
67  /// and returns the result.
68  Value *EmitLoadOfLValue(const Expr *E) {
69    // FIXME: Volatile
70    return EmitLoadOfLValue(EmitLValue(E), E->getType());
71  }
72
73  /// EmitConversionToBool - Convert the specified expression value to a
74  /// boolean (i1) truth value.  This is equivalent to "Val != 0".
75  Value *EmitConversionToBool(Value *Src, QualType DstTy);
76
77  /// EmitScalarConversion - Emit a conversion from the specified type to the
78  /// specified destination type, both of which are LLVM scalar types.
79  Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);
80
81  /// EmitComplexToScalarConversion - Emit a conversion from the specified
82  /// complex type to the specified destination type, where the destination
83  /// type is an LLVM scalar type.
84  Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
85                                       QualType SrcTy, QualType DstTy);
86
87  //===--------------------------------------------------------------------===//
88  //                            Visitor Methods
89  //===--------------------------------------------------------------------===//
90
91  Value *VisitStmt(Stmt *S) {
92    S->dump(CGF.getContext().getSourceManager());
93    assert(0 && "Stmt can't have complex result type!");
94    return 0;
95  }
96  Value *VisitExpr(Expr *S);
97  Value *VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr()); }
98
99  // Leaves.
100  Value *VisitIntegerLiteral(const IntegerLiteral *E) {
101    return llvm::ConstantInt::get(E->getValue());
102  }
103  Value *VisitFloatingLiteral(const FloatingLiteral *E) {
104    return llvm::ConstantFP::get(E->getValue());
105  }
106  Value *VisitCharacterLiteral(const CharacterLiteral *E) {
107    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
108  }
109  Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
110    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
111  }
112  Value *VisitTypesCompatibleExpr(const TypesCompatibleExpr *E) {
113    return llvm::ConstantInt::get(ConvertType(E->getType()),
114                                  CGF.getContext().typesAreCompatible(
115                                    E->getArgType1(), E->getArgType2()));
116  }
117  Value *VisitSizeOfAlignOfTypeExpr(const SizeOfAlignOfTypeExpr *E) {
118    return EmitSizeAlignOf(E->getArgumentType(), E->getType(), E->isSizeOf());
119  }
120  Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
121    llvm::Value *V =
122      llvm::ConstantInt::get(llvm::Type::Int32Ty,
123                             CGF.GetIDForAddrOfLabel(E->getLabel()));
124
125    return Builder.CreateIntToPtr(V, ConvertType(E->getType()));
126  }
127
128  // l-values.
129  Value *VisitDeclRefExpr(DeclRefExpr *E) {
130    if (const EnumConstantDecl *EC = dyn_cast<EnumConstantDecl>(E->getDecl()))
131      return llvm::ConstantInt::get(EC->getInitVal());
132    return EmitLoadOfLValue(E);
133  }
134  Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E);
135  Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E);
136  Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { return EmitLoadOfLValue(E);}
137  Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
138  Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
139  Value *VisitMemberExpr(Expr *E)           { return EmitLoadOfLValue(E); }
140  Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
141  Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { return EmitLoadOfLValue(E); }
142  Value *VisitStringLiteral(Expr *E)  { return EmitLValue(E).getAddress(); }
143  Value *VisitPredefinedExpr(Expr *E) { return EmitLValue(E).getAddress(); }
144
145  Value *VisitInitListExpr(InitListExpr *E) {
146    unsigned NumInitElements = E->getNumInits();
147
148    const llvm::VectorType *VType =
149      dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
150
151    // We have a scalar in braces. Just use the first element.
152    if (!VType)
153      return Visit(E->getInit(0));
154
155    unsigned NumVectorElements = VType->getNumElements();
156    const llvm::Type *ElementType = VType->getElementType();
157
158    // Emit individual vector element stores.
159    llvm::Value *V = llvm::UndefValue::get(VType);
160
161    // Emit initializers
162    unsigned i;
163    for (i = 0; i < NumInitElements; ++i) {
164      Value *NewV = Visit(E->getInit(i));
165      Value *Idx = llvm::ConstantInt::get(llvm::Type::Int32Ty, i);
166      V = Builder.CreateInsertElement(V, NewV, Idx);
167    }
168
169    // Emit remaining default initializers
170    for (/* Do not initialize i*/; i < NumVectorElements; ++i) {
171      Value *Idx = llvm::ConstantInt::get(llvm::Type::Int32Ty, i);
172      llvm::Value *NewV = llvm::Constant::getNullValue(ElementType);
173      V = Builder.CreateInsertElement(V, NewV, Idx);
174    }
175
176    return V;
177  }
178
179  Value *VisitImplicitCastExpr(const ImplicitCastExpr *E);
180  Value *VisitCastExpr(const CastExpr *E) {
181    return EmitCastExpr(E->getSubExpr(), E->getType());
182  }
183  Value *EmitCastExpr(const Expr *E, QualType T);
184
185  Value *VisitCallExpr(const CallExpr *E) {
186    return CGF.EmitCallExpr(E).getScalarVal();
187  }
188
189  Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
190    return CGF.EmitObjCMessageExpr(E).getScalarVal();
191  }
192
193  Value *VisitStmtExpr(const StmtExpr *E);
194
195  // Unary Operators.
196  Value *VisitPrePostIncDec(const UnaryOperator *E, bool isInc, bool isPre);
197  Value *VisitUnaryPostDec(const UnaryOperator *E) {
198    return VisitPrePostIncDec(E, false, false);
199  }
200  Value *VisitUnaryPostInc(const UnaryOperator *E) {
201    return VisitPrePostIncDec(E, true, false);
202  }
203  Value *VisitUnaryPreDec(const UnaryOperator *E) {
204    return VisitPrePostIncDec(E, false, true);
205  }
206  Value *VisitUnaryPreInc(const UnaryOperator *E) {
207    return VisitPrePostIncDec(E, true, true);
208  }
209  Value *VisitUnaryAddrOf(const UnaryOperator *E) {
210    return EmitLValue(E->getSubExpr()).getAddress();
211  }
212  Value *VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); }
213  Value *VisitUnaryPlus(const UnaryOperator *E) {
214    return Visit(E->getSubExpr());
215  }
216  Value *VisitUnaryMinus    (const UnaryOperator *E);
217  Value *VisitUnaryNot      (const UnaryOperator *E);
218  Value *VisitUnaryLNot     (const UnaryOperator *E);
219  Value *VisitUnarySizeOf   (const UnaryOperator *E) {
220    return EmitSizeAlignOf(E->getSubExpr()->getType(), E->getType(), true);
221  }
222  Value *VisitUnaryAlignOf  (const UnaryOperator *E) {
223    return EmitSizeAlignOf(E->getSubExpr()->getType(), E->getType(), false);
224  }
225  Value *EmitSizeAlignOf(QualType TypeToSize, QualType RetType,
226                         bool isSizeOf);
227  Value *VisitUnaryReal     (const UnaryOperator *E);
228  Value *VisitUnaryImag     (const UnaryOperator *E);
229  Value *VisitUnaryExtension(const UnaryOperator *E) {
230    return Visit(E->getSubExpr());
231  }
232  Value *VisitUnaryOffsetOf(const UnaryOperator *E);
233  Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
234    return Visit(DAE->getExpr());
235  }
236
237  // Binary Operators.
238  Value *EmitMul(const BinOpInfo &Ops) {
239    return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
240  }
241  Value *EmitDiv(const BinOpInfo &Ops);
242  Value *EmitRem(const BinOpInfo &Ops);
243  Value *EmitAdd(const BinOpInfo &Ops);
244  Value *EmitSub(const BinOpInfo &Ops);
245  Value *EmitShl(const BinOpInfo &Ops);
246  Value *EmitShr(const BinOpInfo &Ops);
247  Value *EmitAnd(const BinOpInfo &Ops) {
248    return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
249  }
250  Value *EmitXor(const BinOpInfo &Ops) {
251    return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
252  }
253  Value *EmitOr (const BinOpInfo &Ops) {
254    return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
255  }
256
257  BinOpInfo EmitBinOps(const BinaryOperator *E);
258  Value *EmitCompoundAssign(const CompoundAssignOperator *E,
259                            Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
260
261  // Binary operators and binary compound assignment operators.
262#define HANDLEBINOP(OP) \
263  Value *VisitBin ## OP(const BinaryOperator *E) {                         \
264    return Emit ## OP(EmitBinOps(E));                                      \
265  }                                                                        \
266  Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
267    return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
268  }
269  HANDLEBINOP(Mul);
270  HANDLEBINOP(Div);
271  HANDLEBINOP(Rem);
272  HANDLEBINOP(Add);
273  HANDLEBINOP(Sub);
274  HANDLEBINOP(Shl);
275  HANDLEBINOP(Shr);
276  HANDLEBINOP(And);
277  HANDLEBINOP(Xor);
278  HANDLEBINOP(Or);
279#undef HANDLEBINOP
280
281  // Comparisons.
282  Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
283                     unsigned SICmpOpc, unsigned FCmpOpc);
284#define VISITCOMP(CODE, UI, SI, FP) \
285    Value *VisitBin##CODE(const BinaryOperator *E) { \
286      return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
287                         llvm::FCmpInst::FP); }
288  VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT);
289  VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT);
290  VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE);
291  VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE);
292  VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ);
293  VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE);
294#undef VISITCOMP
295
296  Value *VisitBinAssign     (const BinaryOperator *E);
297
298  Value *VisitBinLAnd       (const BinaryOperator *E);
299  Value *VisitBinLOr        (const BinaryOperator *E);
300  Value *VisitBinComma      (const BinaryOperator *E);
301
302  // Other Operators.
303  Value *VisitConditionalOperator(const ConditionalOperator *CO);
304  Value *VisitChooseExpr(ChooseExpr *CE);
305  Value *VisitOverloadExpr(OverloadExpr *OE);
306  Value *VisitVAArgExpr(VAArgExpr *VE);
307  Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
308    return CGF.EmitObjCStringLiteral(E);
309  }
310  Value *VisitObjCEncodeExpr(const ObjCEncodeExpr *E);
311};
312}  // end anonymous namespace.
313
314//===----------------------------------------------------------------------===//
315//                                Utilities
316//===----------------------------------------------------------------------===//
317
318/// EmitConversionToBool - Convert the specified expression value to a
319/// boolean (i1) truth value.  This is equivalent to "Val != 0".
320Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
321  assert(SrcType->isCanonical() && "EmitScalarConversion strips typedefs");
322
323  if (SrcType->isRealFloatingType()) {
324    // Compare against 0.0 for fp scalars.
325    llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType());
326    return Builder.CreateFCmpUNE(Src, Zero, "tobool");
327  }
328
329  assert((SrcType->isIntegerType() || SrcType->isPointerType()) &&
330         "Unknown scalar type to convert");
331
332  // Because of the type rules of C, we often end up computing a logical value,
333  // then zero extending it to int, then wanting it as a logical value again.
334  // Optimize this common case.
335  if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(Src)) {
336    if (ZI->getOperand(0)->getType() == llvm::Type::Int1Ty) {
337      Value *Result = ZI->getOperand(0);
338      // If there aren't any more uses, zap the instruction to save space.
339      // Note that there can be more uses, for example if this
340      // is the result of an assignment.
341      if (ZI->use_empty())
342        ZI->eraseFromParent();
343      return Result;
344    }
345  }
346
347  // Compare against an integer or pointer null.
348  llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType());
349  return Builder.CreateICmpNE(Src, Zero, "tobool");
350}
351
352/// EmitScalarConversion - Emit a conversion from the specified type to the
353/// specified destination type, both of which are LLVM scalar types.
354Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
355                                               QualType DstType) {
356  SrcType = CGF.getContext().getCanonicalType(SrcType);
357  DstType = CGF.getContext().getCanonicalType(DstType);
358  if (SrcType == DstType) return Src;
359
360  if (DstType->isVoidType()) return 0;
361
362  // Handle conversions to bool first, they are special: comparisons against 0.
363  if (DstType->isBooleanType())
364    return EmitConversionToBool(Src, SrcType);
365
366  const llvm::Type *DstTy = ConvertType(DstType);
367
368  // Ignore conversions like int -> uint.
369  if (Src->getType() == DstTy)
370    return Src;
371
372  // Handle pointer conversions next: pointers can only be converted to/from
373  // other pointers and integers.
374  if (isa<PointerType>(DstType)) {
375    // The source value may be an integer, or a pointer.
376    if (isa<llvm::PointerType>(Src->getType()))
377      return Builder.CreateBitCast(Src, DstTy, "conv");
378    assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
379    return Builder.CreateIntToPtr(Src, DstTy, "conv");
380  }
381
382  if (isa<PointerType>(SrcType)) {
383    // Must be an ptr to int cast.
384    assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
385    return Builder.CreatePtrToInt(Src, DstTy, "conv");
386  }
387
388  // A scalar can be splatted to an extended vector of the same element type
389  if (DstType->isExtVectorType() && !isa<VectorType>(SrcType) &&
390      cast<llvm::VectorType>(DstTy)->getElementType() == Src->getType())
391    return CGF.EmitVector(&Src, DstType->getAsVectorType()->getNumElements(),
392                          true);
393
394  // Allow bitcast from vector to integer/fp of the same size.
395  if (isa<llvm::VectorType>(Src->getType()) ||
396      isa<llvm::VectorType>(DstTy))
397    return Builder.CreateBitCast(Src, DstTy, "conv");
398
399  // Finally, we have the arithmetic types: real int/float.
400  if (isa<llvm::IntegerType>(Src->getType())) {
401    bool InputSigned = SrcType->isSignedIntegerType();
402    if (isa<llvm::IntegerType>(DstTy))
403      return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
404    else if (InputSigned)
405      return Builder.CreateSIToFP(Src, DstTy, "conv");
406    else
407      return Builder.CreateUIToFP(Src, DstTy, "conv");
408  }
409
410  assert(Src->getType()->isFloatingPoint() && "Unknown real conversion");
411  if (isa<llvm::IntegerType>(DstTy)) {
412    if (DstType->isSignedIntegerType())
413      return Builder.CreateFPToSI(Src, DstTy, "conv");
414    else
415      return Builder.CreateFPToUI(Src, DstTy, "conv");
416  }
417
418  assert(DstTy->isFloatingPoint() && "Unknown real conversion");
419  if (DstTy->getTypeID() < Src->getType()->getTypeID())
420    return Builder.CreateFPTrunc(Src, DstTy, "conv");
421  else
422    return Builder.CreateFPExt(Src, DstTy, "conv");
423}
424
425/// EmitComplexToScalarConversion - Emit a conversion from the specified
426/// complex type to the specified destination type, where the destination
427/// type is an LLVM scalar type.
428Value *ScalarExprEmitter::
429EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
430                              QualType SrcTy, QualType DstTy) {
431  // Get the source element type.
432  SrcTy = SrcTy->getAsComplexType()->getElementType();
433
434  // Handle conversions to bool first, they are special: comparisons against 0.
435  if (DstTy->isBooleanType()) {
436    //  Complex != 0  -> (Real != 0) | (Imag != 0)
437    Src.first  = EmitScalarConversion(Src.first, SrcTy, DstTy);
438    Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
439    return Builder.CreateOr(Src.first, Src.second, "tobool");
440  }
441
442  // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
443  // the imaginary part of the complex value is discarded and the value of the
444  // real part is converted according to the conversion rules for the
445  // corresponding real type.
446  return EmitScalarConversion(Src.first, SrcTy, DstTy);
447}
448
449
450//===----------------------------------------------------------------------===//
451//                            Visitor Methods
452//===----------------------------------------------------------------------===//
453
454Value *ScalarExprEmitter::VisitExpr(Expr *E) {
455  CGF.ErrorUnsupported(E, "scalar expression");
456  if (E->getType()->isVoidType())
457    return 0;
458  return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
459}
460
461Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
462  llvm::SmallVector<llvm::Constant*, 32> indices;
463  for (unsigned i = 2; i < E->getNumSubExprs(); i++) {
464    indices.push_back(cast<llvm::Constant>(CGF.EmitScalarExpr(E->getExpr(i))));
465  }
466  Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
467  Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
468  Value* SV = llvm::ConstantVector::get(indices.begin(), indices.size());
469  return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
470}
471
472Value *ScalarExprEmitter::VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
473  return CGF.EmitObjCSelectorExpr(E);
474}
475
476Value *ScalarExprEmitter::VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
477  return CGF.EmitObjCProtocolExpr(E);
478}
479
480Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
481  // Emit subscript expressions in rvalue context's.  For most cases, this just
482  // loads the lvalue formed by the subscript expr.  However, we have to be
483  // careful, because the base of a vector subscript is occasionally an rvalue,
484  // so we can't get it as an lvalue.
485  if (!E->getBase()->getType()->isVectorType())
486    return EmitLoadOfLValue(E);
487
488  // Handle the vector case.  The base must be a vector, the index must be an
489  // integer value.
490  Value *Base = Visit(E->getBase());
491  Value *Idx  = Visit(E->getIdx());
492
493  // FIXME: Convert Idx to i32 type.
494  return Builder.CreateExtractElement(Base, Idx, "vecext");
495}
496
497/// VisitImplicitCastExpr - Implicit casts are the same as normal casts, but
498/// also handle things like function to pointer-to-function decay, and array to
499/// pointer decay.
500Value *ScalarExprEmitter::VisitImplicitCastExpr(const ImplicitCastExpr *E) {
501  const Expr *Op = E->getSubExpr();
502
503  // If this is due to array->pointer conversion, emit the array expression as
504  // an l-value.
505  if (Op->getType()->isArrayType()) {
506    // FIXME: For now we assume that all source arrays map to LLVM arrays.  This
507    // will not true when we add support for VLAs.
508    Value *V = EmitLValue(Op).getAddress();  // Bitfields can't be arrays.
509
510    assert(isa<llvm::PointerType>(V->getType()) &&
511           isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType())
512                                ->getElementType()) &&
513           "Doesn't support VLAs yet!");
514    V = Builder.CreateStructGEP(V, 0, "arraydecay");
515
516    // The resultant pointer type can be implicitly casted to other pointer
517    // types as well (e.g. void*) and can be implicitly converted to integer.
518    const llvm::Type *DestTy = ConvertType(E->getType());
519    if (V->getType() != DestTy) {
520      if (isa<llvm::PointerType>(DestTy))
521        V = Builder.CreateBitCast(V, DestTy, "ptrconv");
522      else {
523        assert(isa<llvm::IntegerType>(DestTy) && "Unknown array decay");
524        V = Builder.CreatePtrToInt(V, DestTy, "ptrconv");
525      }
526    }
527    return V;
528
529  } else if (E->getType()->isReferenceType()) {
530    return EmitLValue(Op).getAddress();
531  }
532
533  return EmitCastExpr(Op, E->getType());
534}
535
536
537// VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
538// have to handle a more broad range of conversions than explicit casts, as they
539// handle things like function to ptr-to-function decay etc.
540Value *ScalarExprEmitter::EmitCastExpr(const Expr *E, QualType DestTy) {
541  // Handle cases where the source is an non-complex type.
542
543  if (!CGF.hasAggregateLLVMType(E->getType())) {
544    Value *Src = Visit(const_cast<Expr*>(E));
545
546    // Use EmitScalarConversion to perform the conversion.
547    return EmitScalarConversion(Src, E->getType(), DestTy);
548  }
549
550  if (E->getType()->isAnyComplexType()) {
551    // Handle cases where the source is a complex type.
552    return EmitComplexToScalarConversion(CGF.EmitComplexExpr(E), E->getType(),
553                                         DestTy);
554  }
555
556  // Okay, this is a cast from an aggregate.  It must be a cast to void.  Just
557  // evaluate the result and return.
558  CGF.EmitAggExpr(E, 0, false);
559  return 0;
560}
561
562Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
563  return CGF.EmitCompoundStmt(*E->getSubStmt(),
564                              !E->getType()->isVoidType()).getScalarVal();
565}
566
567
568//===----------------------------------------------------------------------===//
569//                             Unary Operators
570//===----------------------------------------------------------------------===//
571
572Value *ScalarExprEmitter::VisitPrePostIncDec(const UnaryOperator *E,
573                                             bool isInc, bool isPre) {
574  LValue LV = EmitLValue(E->getSubExpr());
575  // FIXME: Handle volatile!
576  Value *InVal = CGF.EmitLoadOfLValue(LV, // false
577                                     E->getSubExpr()->getType()).getScalarVal();
578
579  int AmountVal = isInc ? 1 : -1;
580
581  Value *NextVal;
582  if (isa<llvm::PointerType>(InVal->getType())) {
583    // FIXME: This isn't right for VLAs.
584    NextVal = llvm::ConstantInt::get(llvm::Type::Int32Ty, AmountVal);
585    NextVal = Builder.CreateGEP(InVal, NextVal, "ptrincdec");
586  } else {
587    // Add the inc/dec to the real part.
588    if (isa<llvm::IntegerType>(InVal->getType()))
589      NextVal = llvm::ConstantInt::get(InVal->getType(), AmountVal);
590    else if (InVal->getType() == llvm::Type::FloatTy)
591      NextVal =
592        llvm::ConstantFP::get(llvm::APFloat(static_cast<float>(AmountVal)));
593    else if (InVal->getType() == llvm::Type::DoubleTy)
594      NextVal =
595        llvm::ConstantFP::get(llvm::APFloat(static_cast<double>(AmountVal)));
596    else {
597      llvm::APFloat F(static_cast<float>(AmountVal));
598      F.convert(CGF.Target.getLongDoubleFormat(), llvm::APFloat::rmTowardZero);
599      NextVal = llvm::ConstantFP::get(F);
600    }
601    NextVal = Builder.CreateAdd(InVal, NextVal, isInc ? "inc" : "dec");
602  }
603
604  // Store the updated result through the lvalue.
605  CGF.EmitStoreThroughLValue(RValue::get(NextVal), LV,
606                             E->getSubExpr()->getType());
607
608  // If this is a postinc, return the value read from memory, otherwise use the
609  // updated value.
610  return isPre ? NextVal : InVal;
611}
612
613
614Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
615  Value *Op = Visit(E->getSubExpr());
616  return Builder.CreateNeg(Op, "neg");
617}
618
619Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
620  Value *Op = Visit(E->getSubExpr());
621  return Builder.CreateNot(Op, "neg");
622}
623
624Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
625  // Compare operand to zero.
626  Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
627
628  // Invert value.
629  // TODO: Could dynamically modify easy computations here.  For example, if
630  // the operand is an icmp ne, turn into icmp eq.
631  BoolVal = Builder.CreateNot(BoolVal, "lnot");
632
633  // ZExt result to int.
634  return Builder.CreateZExt(BoolVal, CGF.LLVMIntTy, "lnot.ext");
635}
636
637/// EmitSizeAlignOf - Return the size or alignment of the 'TypeToSize' type as
638/// an integer (RetType).
639Value *ScalarExprEmitter::EmitSizeAlignOf(QualType TypeToSize,
640                                          QualType RetType,bool isSizeOf){
641  assert(RetType->isIntegerType() && "Result type must be an integer!");
642  uint32_t ResultWidth =
643    static_cast<uint32_t>(CGF.getContext().getTypeSize(RetType));
644
645  // sizeof(void) and __alignof__(void) = 1 as a gcc extension. Also
646  // for function types.
647  // FIXME: what is alignof a function type in gcc?
648  if (TypeToSize->isVoidType() || TypeToSize->isFunctionType())
649    return llvm::ConstantInt::get(llvm::APInt(ResultWidth, 1));
650
651  /// FIXME: This doesn't handle VLAs yet!
652  std::pair<uint64_t, unsigned> Info = CGF.getContext().getTypeInfo(TypeToSize);
653
654  uint64_t Val = isSizeOf ? Info.first : Info.second;
655  Val /= 8;  // Return size in bytes, not bits.
656
657  return llvm::ConstantInt::get(llvm::APInt(ResultWidth, Val));
658}
659
660Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
661  Expr *Op = E->getSubExpr();
662  if (Op->getType()->isAnyComplexType())
663    return CGF.EmitComplexExpr(Op).first;
664  return Visit(Op);
665}
666Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
667  Expr *Op = E->getSubExpr();
668  if (Op->getType()->isAnyComplexType())
669    return CGF.EmitComplexExpr(Op).second;
670
671  // __imag on a scalar returns zero.  Emit it the subexpr to ensure side
672  // effects are evaluated.
673  CGF.EmitScalarExpr(Op);
674  return llvm::Constant::getNullValue(ConvertType(E->getType()));
675}
676
677Value *ScalarExprEmitter::VisitUnaryOffsetOf(const UnaryOperator *E)
678{
679  int64_t Val = E->evaluateOffsetOf(CGF.getContext());
680
681  assert(E->getType()->isIntegerType() && "Result type must be an integer!");
682
683  uint32_t ResultWidth =
684    static_cast<uint32_t>(CGF.getContext().getTypeSize(E->getType()));
685  return llvm::ConstantInt::get(llvm::APInt(ResultWidth, Val));
686}
687
688//===----------------------------------------------------------------------===//
689//                           Binary Operators
690//===----------------------------------------------------------------------===//
691
692BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
693  BinOpInfo Result;
694  Result.LHS = Visit(E->getLHS());
695  Result.RHS = Visit(E->getRHS());
696  Result.Ty  = E->getType();
697  Result.E = E;
698  return Result;
699}
700
701Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
702                      Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
703  QualType LHSTy = E->getLHS()->getType(), RHSTy = E->getRHS()->getType();
704
705  BinOpInfo OpInfo;
706
707  // Load the LHS and RHS operands.
708  LValue LHSLV = EmitLValue(E->getLHS());
709  OpInfo.LHS = EmitLoadOfLValue(LHSLV, LHSTy);
710
711  // Determine the computation type.  If the RHS is complex, then this is one of
712  // the add/sub/mul/div operators.  All of these operators can be computed in
713  // with just their real component even though the computation domain really is
714  // complex.
715  QualType ComputeType = E->getComputationType();
716
717  // If the computation type is complex, then the RHS is complex.  Emit the RHS.
718  if (const ComplexType *CT = ComputeType->getAsComplexType()) {
719    ComputeType = CT->getElementType();
720
721    // Emit the RHS, only keeping the real component.
722    OpInfo.RHS = CGF.EmitComplexExpr(E->getRHS()).first;
723    RHSTy = RHSTy->getAsComplexType()->getElementType();
724  } else {
725    // Otherwise the RHS is a simple scalar value.
726    OpInfo.RHS = Visit(E->getRHS());
727  }
728
729  QualType LComputeTy, RComputeTy, ResultTy;
730
731  // Compound assignment does not contain enough information about all
732  // the types involved for pointer arithmetic cases. Figure it out
733  // here for now.
734  if (E->getLHS()->getType()->isPointerType()) {
735    // Pointer arithmetic cases: ptr +=,-= int and ptr -= ptr,
736    assert((E->getOpcode() == BinaryOperator::AddAssign ||
737            E->getOpcode() == BinaryOperator::SubAssign) &&
738           "Invalid compound assignment operator on pointer type.");
739    LComputeTy = E->getLHS()->getType();
740
741    if (E->getRHS()->getType()->isPointerType()) {
742      // Degenerate case of (ptr -= ptr) allowed by GCC implicit cast
743      // extension, the conversion from the pointer difference back to
744      // the LHS type is handled at the end.
745      assert(E->getOpcode() == BinaryOperator::SubAssign &&
746             "Invalid compound assignment operator on pointer type.");
747      RComputeTy = E->getLHS()->getType();
748      ResultTy = CGF.getContext().getPointerDiffType();
749    } else {
750      RComputeTy = E->getRHS()->getType();
751      ResultTy = LComputeTy;
752    }
753  } else if (E->getRHS()->getType()->isPointerType()) {
754    // Degenerate case of (int += ptr) allowed by GCC implicit cast
755    // extension.
756    assert(E->getOpcode() == BinaryOperator::AddAssign &&
757           "Invalid compound assignment operator on pointer type.");
758    LComputeTy = E->getLHS()->getType();
759    RComputeTy = E->getRHS()->getType();
760    ResultTy = RComputeTy;
761  } else {
762    LComputeTy = RComputeTy = ResultTy = ComputeType;
763  }
764
765  // Convert the LHS/RHS values to the computation type.
766  OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy, LComputeTy);
767  OpInfo.RHS = EmitScalarConversion(OpInfo.RHS, RHSTy, RComputeTy);
768  OpInfo.Ty = ResultTy;
769  OpInfo.E = E;
770
771  // Expand the binary operator.
772  Value *Result = (this->*Func)(OpInfo);
773
774  // Convert the result back to the LHS type.
775  Result = EmitScalarConversion(Result, ResultTy, LHSTy);
776
777  // Store the result value into the LHS lvalue.
778  CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV, LHSTy);
779
780  // For bitfields, we need the value in the bitfield
781  // FIXME: This adds an extra bitfield load
782  if (LHSLV.isBitfield())
783    Result = EmitLoadOfLValue(LHSLV, LHSTy);
784
785  return Result;
786}
787
788
789Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
790  if (Ops.LHS->getType()->isFPOrFPVector())
791    return Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
792  else if (Ops.Ty->isUnsignedIntegerType())
793    return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
794  else
795    return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
796}
797
798Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
799  // Rem in C can't be a floating point type: C99 6.5.5p2.
800  if (Ops.Ty->isUnsignedIntegerType())
801    return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
802  else
803    return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
804}
805
806
807Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &Ops) {
808  if (!Ops.Ty->isPointerType())
809    return Builder.CreateAdd(Ops.LHS, Ops.RHS, "add");
810
811  // FIXME: What about a pointer to a VLA?
812  Value *Ptr, *Idx;
813  Expr *IdxExp;
814  if (isa<llvm::PointerType>(Ops.LHS->getType())) {  // pointer + int
815    Ptr = Ops.LHS;
816    Idx = Ops.RHS;
817    IdxExp = Ops.E->getRHS();
818  } else {                                           // int + pointer
819    Ptr = Ops.RHS;
820    Idx = Ops.LHS;
821    IdxExp = Ops.E->getLHS();
822  }
823
824  unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
825  if (Width < CGF.LLVMPointerWidth) {
826    // Zero or sign extend the pointer value based on whether the index is
827    // signed or not.
828    const llvm::Type *IdxType = llvm::IntegerType::get(CGF.LLVMPointerWidth);
829    if (IdxExp->getType()->isSignedIntegerType())
830      Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
831    else
832      Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
833  }
834
835  return Builder.CreateGEP(Ptr, Idx, "add.ptr");
836}
837
838Value *ScalarExprEmitter::EmitSub(const BinOpInfo &Ops) {
839  if (!isa<llvm::PointerType>(Ops.LHS->getType()))
840    return Builder.CreateSub(Ops.LHS, Ops.RHS, "sub");
841
842  if (!isa<llvm::PointerType>(Ops.RHS->getType())) {
843    // pointer - int
844    Value *Idx = Ops.RHS;
845    unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
846    if (Width < CGF.LLVMPointerWidth) {
847      // Zero or sign extend the pointer value based on whether the index is
848      // signed or not.
849      const llvm::Type *IdxType = llvm::IntegerType::get(CGF.LLVMPointerWidth);
850      if (Ops.E->getRHS()->getType()->isSignedIntegerType())
851        Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
852      else
853        Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
854    }
855    Idx = Builder.CreateNeg(Idx, "sub.ptr.neg");
856
857    // FIXME: The pointer could point to a VLA.
858    // The GNU void* - int case is automatically handled here because
859    // our LLVM type for void* is i8*.
860    return Builder.CreateGEP(Ops.LHS, Idx, "sub.ptr");
861  } else {
862    // pointer - pointer
863    Value *LHS = Ops.LHS;
864    Value *RHS = Ops.RHS;
865
866    const QualType LHSType = Ops.E->getLHS()->getType();
867    const QualType LHSElementType = LHSType->getAsPointerType()->getPointeeType();
868    uint64_t ElementSize;
869
870    // Handle GCC extension for pointer arithmetic on void* types.
871    if (LHSElementType->isVoidType()) {
872      ElementSize = 1;
873    } else {
874      ElementSize = CGF.getContext().getTypeSize(LHSElementType) / 8;
875    }
876
877    const llvm::Type *ResultType = ConvertType(Ops.Ty);
878    LHS = Builder.CreatePtrToInt(LHS, ResultType, "sub.ptr.lhs.cast");
879    RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
880    Value *BytesBetween = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
881
882    // HACK: LLVM doesn't have an divide instruction that 'knows' there is no
883    // remainder.  As such, we handle common power-of-two cases here to generate
884    // better code. See PR2247.
885    if (llvm::isPowerOf2_64(ElementSize)) {
886      Value *ShAmt =
887        llvm::ConstantInt::get(ResultType, llvm::Log2_64(ElementSize));
888      return Builder.CreateAShr(BytesBetween, ShAmt, "sub.ptr.shr");
889    }
890
891    // Otherwise, do a full sdiv.
892    Value *BytesPerElt = llvm::ConstantInt::get(ResultType, ElementSize);
893    return Builder.CreateSDiv(BytesBetween, BytesPerElt, "sub.ptr.div");
894  }
895}
896
897Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
898  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
899  // RHS to the same size as the LHS.
900  Value *RHS = Ops.RHS;
901  if (Ops.LHS->getType() != RHS->getType())
902    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
903
904  return Builder.CreateShl(Ops.LHS, RHS, "shl");
905}
906
907Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
908  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
909  // RHS to the same size as the LHS.
910  Value *RHS = Ops.RHS;
911  if (Ops.LHS->getType() != RHS->getType())
912    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
913
914  if (Ops.Ty->isUnsignedIntegerType())
915    return Builder.CreateLShr(Ops.LHS, RHS, "shr");
916  return Builder.CreateAShr(Ops.LHS, RHS, "shr");
917}
918
919Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
920                                      unsigned SICmpOpc, unsigned FCmpOpc) {
921  Value *Result;
922  QualType LHSTy = E->getLHS()->getType();
923  if (!LHSTy->isAnyComplexType() && !LHSTy->isVectorType()) {
924    Value *LHS = Visit(E->getLHS());
925    Value *RHS = Visit(E->getRHS());
926
927    if (LHS->getType()->isFloatingPoint()) {
928      Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
929                                  LHS, RHS, "cmp");
930    } else if (LHSTy->isSignedIntegerType()) {
931      Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
932                                  LHS, RHS, "cmp");
933    } else {
934      // Unsigned integers and pointers.
935      Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
936                                  LHS, RHS, "cmp");
937    }
938  } else if (LHSTy->isVectorType()) {
939    Value *LHS = Visit(E->getLHS());
940    Value *RHS = Visit(E->getRHS());
941
942    if (LHS->getType()->isFPOrFPVector()) {
943      Result = Builder.CreateVFCmp((llvm::CmpInst::Predicate)FCmpOpc,
944                                  LHS, RHS, "cmp");
945    } else if (LHSTy->isUnsignedIntegerType()) {
946      Result = Builder.CreateVICmp((llvm::CmpInst::Predicate)UICmpOpc,
947                                  LHS, RHS, "cmp");
948    } else {
949      // Signed integers and pointers.
950      Result = Builder.CreateVICmp((llvm::CmpInst::Predicate)SICmpOpc,
951                                  LHS, RHS, "cmp");
952    }
953    return Result;
954  } else {
955    // Complex Comparison: can only be an equality comparison.
956    CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS());
957    CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS());
958
959    QualType CETy = LHSTy->getAsComplexType()->getElementType();
960
961    Value *ResultR, *ResultI;
962    if (CETy->isRealFloatingType()) {
963      ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
964                                   LHS.first, RHS.first, "cmp.r");
965      ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
966                                   LHS.second, RHS.second, "cmp.i");
967    } else {
968      // Complex comparisons can only be equality comparisons.  As such, signed
969      // and unsigned opcodes are the same.
970      ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
971                                   LHS.first, RHS.first, "cmp.r");
972      ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
973                                   LHS.second, RHS.second, "cmp.i");
974    }
975
976    if (E->getOpcode() == BinaryOperator::EQ) {
977      Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
978    } else {
979      assert(E->getOpcode() == BinaryOperator::NE &&
980             "Complex comparison other than == or != ?");
981      Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
982    }
983  }
984
985  // ZExt result to int.
986  return Builder.CreateZExt(Result, CGF.LLVMIntTy, "cmp.ext");
987}
988
989Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
990  LValue LHS = EmitLValue(E->getLHS());
991  Value *RHS = Visit(E->getRHS());
992
993  // Store the value into the LHS.
994  // FIXME: Volatility!
995  CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS, E->getType());
996
997  // For bitfields, we need the value in the bitfield
998  // FIXME: This adds an extra bitfield load
999  if (LHS.isBitfield())
1000    return EmitLoadOfLValue(LHS, E->getLHS()->getType());
1001  // Return the RHS.
1002  return RHS;
1003}
1004
1005Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
1006  Value *LHSCond = CGF.EvaluateExprAsBool(E->getLHS());
1007
1008  llvm::BasicBlock *ContBlock = llvm::BasicBlock::Create("land_cont");
1009  llvm::BasicBlock *RHSBlock = llvm::BasicBlock::Create("land_rhs");
1010
1011  llvm::BasicBlock *OrigBlock = Builder.GetInsertBlock();
1012  Builder.CreateCondBr(LHSCond, RHSBlock, ContBlock);
1013
1014  CGF.EmitBlock(RHSBlock);
1015  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1016
1017  // Reaquire the RHS block, as there may be subblocks inserted.
1018  RHSBlock = Builder.GetInsertBlock();
1019  CGF.EmitBlock(ContBlock);
1020
1021  // Create a PHI node.  If we just evaluted the LHS condition, the result is
1022  // false.  If we evaluated both, the result is the RHS condition.
1023  llvm::PHINode *PN = Builder.CreatePHI(llvm::Type::Int1Ty, "land");
1024  PN->reserveOperandSpace(2);
1025  PN->addIncoming(llvm::ConstantInt::getFalse(), OrigBlock);
1026  PN->addIncoming(RHSCond, RHSBlock);
1027
1028  // ZExt result to int.
1029  return Builder.CreateZExt(PN, CGF.LLVMIntTy, "land.ext");
1030}
1031
1032Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
1033  Value *LHSCond = CGF.EvaluateExprAsBool(E->getLHS());
1034
1035  llvm::BasicBlock *ContBlock = llvm::BasicBlock::Create("lor_cont");
1036  llvm::BasicBlock *RHSBlock = llvm::BasicBlock::Create("lor_rhs");
1037
1038  llvm::BasicBlock *OrigBlock = Builder.GetInsertBlock();
1039  Builder.CreateCondBr(LHSCond, ContBlock, RHSBlock);
1040
1041  CGF.EmitBlock(RHSBlock);
1042  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1043
1044  // Reaquire the RHS block, as there may be subblocks inserted.
1045  RHSBlock = Builder.GetInsertBlock();
1046  CGF.EmitBlock(ContBlock);
1047
1048  // Create a PHI node.  If we just evaluted the LHS condition, the result is
1049  // true.  If we evaluated both, the result is the RHS condition.
1050  llvm::PHINode *PN = Builder.CreatePHI(llvm::Type::Int1Ty, "lor");
1051  PN->reserveOperandSpace(2);
1052  PN->addIncoming(llvm::ConstantInt::getTrue(), OrigBlock);
1053  PN->addIncoming(RHSCond, RHSBlock);
1054
1055  // ZExt result to int.
1056  return Builder.CreateZExt(PN, CGF.LLVMIntTy, "lor.ext");
1057}
1058
1059Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
1060  CGF.EmitStmt(E->getLHS());
1061  return Visit(E->getRHS());
1062}
1063
1064//===----------------------------------------------------------------------===//
1065//                             Other Operators
1066//===----------------------------------------------------------------------===//
1067
1068Value *ScalarExprEmitter::
1069VisitConditionalOperator(const ConditionalOperator *E) {
1070  llvm::BasicBlock *LHSBlock = llvm::BasicBlock::Create("cond.?");
1071  llvm::BasicBlock *RHSBlock = llvm::BasicBlock::Create("cond.:");
1072  llvm::BasicBlock *ContBlock = llvm::BasicBlock::Create("cond.cont");
1073
1074  // Evaluate the conditional, then convert it to bool.  We do this explicitly
1075  // because we need the unconverted value if this is a GNU ?: expression with
1076  // missing middle value.
1077  Value *CondVal = CGF.EmitScalarExpr(E->getCond());
1078  Value *CondBoolVal =CGF.EmitScalarConversion(CondVal, E->getCond()->getType(),
1079                                               CGF.getContext().BoolTy);
1080  Builder.CreateCondBr(CondBoolVal, LHSBlock, RHSBlock);
1081
1082  CGF.EmitBlock(LHSBlock);
1083
1084  // Handle the GNU extension for missing LHS.
1085  Value *LHS;
1086  if (E->getLHS())
1087    LHS = Visit(E->getLHS());
1088  else    // Perform promotions, to handle cases like "short ?: int"
1089    LHS = EmitScalarConversion(CondVal, E->getCond()->getType(), E->getType());
1090
1091  Builder.CreateBr(ContBlock);
1092  LHSBlock = Builder.GetInsertBlock();
1093
1094  CGF.EmitBlock(RHSBlock);
1095
1096  Value *RHS = Visit(E->getRHS());
1097  Builder.CreateBr(ContBlock);
1098  RHSBlock = Builder.GetInsertBlock();
1099
1100  CGF.EmitBlock(ContBlock);
1101
1102  if (!LHS || !RHS) {
1103    assert(E->getType()->isVoidType() && "Non-void value should have a value");
1104    return 0;
1105  }
1106
1107  // Create a PHI node for the real part.
1108  llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), "cond");
1109  PN->reserveOperandSpace(2);
1110  PN->addIncoming(LHS, LHSBlock);
1111  PN->addIncoming(RHS, RHSBlock);
1112  return PN;
1113}
1114
1115Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
1116  // Emit the LHS or RHS as appropriate.
1117  return
1118    Visit(E->isConditionTrue(CGF.getContext()) ? E->getLHS() : E->getRHS());
1119}
1120
1121Value *ScalarExprEmitter::VisitOverloadExpr(OverloadExpr *E) {
1122  return CGF.EmitCallExpr(E->getFn(), E->arg_begin(),
1123                          E->arg_end(CGF.getContext())).getScalarVal();
1124}
1125
1126Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
1127  llvm::Value *ArgValue = EmitLValue(VE->getSubExpr()).getAddress();
1128
1129  llvm::Value *V = Builder.CreateVAArg(ArgValue, ConvertType(VE->getType()));
1130  return V;
1131}
1132
1133Value *ScalarExprEmitter::VisitObjCEncodeExpr(const ObjCEncodeExpr *E) {
1134  std::string str;
1135  llvm::SmallVector<const RecordType *, 8> EncodingRecordTypes;
1136  CGF.getContext().getObjCEncodingForType(E->getEncodedType(), str,
1137                                          EncodingRecordTypes);
1138
1139  llvm::Constant *C = llvm::ConstantArray::get(str);
1140  C = new llvm::GlobalVariable(C->getType(), true,
1141                               llvm::GlobalValue::InternalLinkage,
1142                               C, ".str", &CGF.CGM.getModule());
1143  llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty);
1144  llvm::Constant *Zeros[] = { Zero, Zero };
1145  C = llvm::ConstantExpr::getGetElementPtr(C, Zeros, 2);
1146
1147  return C;
1148}
1149
1150//===----------------------------------------------------------------------===//
1151//                         Entry Point into this File
1152//===----------------------------------------------------------------------===//
1153
1154/// EmitComplexExpr - Emit the computation of the specified expression of
1155/// complex type, ignoring the result.
1156Value *CodeGenFunction::EmitScalarExpr(const Expr *E) {
1157  assert(E && !hasAggregateLLVMType(E->getType()) &&
1158         "Invalid scalar expression to emit");
1159
1160  return ScalarExprEmitter(*this).Visit(const_cast<Expr*>(E));
1161}
1162
1163/// EmitScalarConversion - Emit a conversion from the specified type to the
1164/// specified destination type, both of which are LLVM scalar types.
1165Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
1166                                             QualType DstTy) {
1167  assert(!hasAggregateLLVMType(SrcTy) && !hasAggregateLLVMType(DstTy) &&
1168         "Invalid scalar expression to emit");
1169  return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
1170}
1171
1172/// EmitComplexToScalarConversion - Emit a conversion from the specified
1173/// complex type to the specified destination type, where the destination
1174/// type is an LLVM scalar type.
1175Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
1176                                                      QualType SrcTy,
1177                                                      QualType DstTy) {
1178  assert(SrcTy->isAnyComplexType() && !hasAggregateLLVMType(DstTy) &&
1179         "Invalid complex -> scalar conversion");
1180  return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy,
1181                                                                DstTy);
1182}
1183
1184Value *CodeGenFunction::EmitShuffleVector(Value* V1, Value *V2, ...) {
1185  assert(V1->getType() == V2->getType() &&
1186         "Vector operands must be of the same type");
1187  unsigned NumElements =
1188    cast<llvm::VectorType>(V1->getType())->getNumElements();
1189
1190  va_list va;
1191  va_start(va, V2);
1192
1193  llvm::SmallVector<llvm::Constant*, 16> Args;
1194  for (unsigned i = 0; i < NumElements; i++) {
1195    int n = va_arg(va, int);
1196    assert(n >= 0 && n < (int)NumElements * 2 &&
1197           "Vector shuffle index out of bounds!");
1198    Args.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, n));
1199  }
1200
1201  const char *Name = va_arg(va, const char *);
1202  va_end(va);
1203
1204  llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements);
1205
1206  return Builder.CreateShuffleVector(V1, V2, Mask, Name);
1207}
1208
1209llvm::Value *CodeGenFunction::EmitVector(llvm::Value * const *Vals,
1210                                         unsigned NumVals, bool isSplat) {
1211  llvm::Value *Vec
1212    = llvm::UndefValue::get(llvm::VectorType::get(Vals[0]->getType(), NumVals));
1213
1214  for (unsigned i = 0, e = NumVals; i != e; ++i) {
1215    llvm::Value *Val = isSplat ? Vals[0] : Vals[i];
1216    llvm::Value *Idx = llvm::ConstantInt::get(llvm::Type::Int32Ty, i);
1217    Vec = Builder.CreateInsertElement(Vec, Val, Idx, "tmp");
1218  }
1219
1220  return Vec;
1221}
1222