CGExprScalar.cpp revision aa4a99b4a62615db243f7a5c433169f2fc704420
1//===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Frontend/CodeGenOptions.h"
15#include "CodeGenFunction.h"
16#include "CGCXXABI.h"
17#include "CGObjCRuntime.h"
18#include "CodeGenModule.h"
19#include "CGDebugInfo.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/DeclObjC.h"
22#include "clang/AST/RecordLayout.h"
23#include "clang/AST/StmtVisitor.h"
24#include "clang/Basic/TargetInfo.h"
25#include "llvm/Constants.h"
26#include "llvm/Function.h"
27#include "llvm/GlobalVariable.h"
28#include "llvm/Intrinsics.h"
29#include "llvm/Module.h"
30#include "llvm/Support/CFG.h"
31#include "llvm/Target/TargetData.h"
32#include <cstdarg>
33
34using namespace clang;
35using namespace CodeGen;
36using llvm::Value;
37
38//===----------------------------------------------------------------------===//
39//                         Scalar Expression Emitter
40//===----------------------------------------------------------------------===//
41
42namespace {
43struct BinOpInfo {
44  Value *LHS;
45  Value *RHS;
46  QualType Ty;  // Computation Type.
47  BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
48  const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
49};
50
51static bool MustVisitNullValue(const Expr *E) {
52  // If a null pointer expression's type is the C++0x nullptr_t, then
53  // it's not necessarily a simple constant and it must be evaluated
54  // for its potential side effects.
55  return E->getType()->isNullPtrType();
56}
57
58class ScalarExprEmitter
59  : public StmtVisitor<ScalarExprEmitter, Value*> {
60  CodeGenFunction &CGF;
61  CGBuilderTy &Builder;
62  bool IgnoreResultAssign;
63  llvm::LLVMContext &VMContext;
64public:
65
66  ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
67    : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
68      VMContext(cgf.getLLVMContext()) {
69  }
70
71  //===--------------------------------------------------------------------===//
72  //                               Utilities
73  //===--------------------------------------------------------------------===//
74
75  bool TestAndClearIgnoreResultAssign() {
76    bool I = IgnoreResultAssign;
77    IgnoreResultAssign = false;
78    return I;
79  }
80
81  llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
82  LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
83  LValue EmitCheckedLValue(const Expr *E) { return CGF.EmitCheckedLValue(E); }
84
85  Value *EmitLoadOfLValue(LValue LV) {
86    return CGF.EmitLoadOfLValue(LV).getScalarVal();
87  }
88
89  /// EmitLoadOfLValue - Given an expression with complex type that represents a
90  /// value l-value, this method emits the address of the l-value, then loads
91  /// and returns the result.
92  Value *EmitLoadOfLValue(const Expr *E) {
93    return EmitLoadOfLValue(EmitCheckedLValue(E));
94  }
95
96  /// EmitConversionToBool - Convert the specified expression value to a
97  /// boolean (i1) truth value.  This is equivalent to "Val != 0".
98  Value *EmitConversionToBool(Value *Src, QualType DstTy);
99
100  /// EmitScalarConversion - Emit a conversion from the specified type to the
101  /// specified destination type, both of which are LLVM scalar types.
102  Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);
103
104  /// EmitComplexToScalarConversion - Emit a conversion from the specified
105  /// complex type to the specified destination type, where the destination type
106  /// is an LLVM scalar type.
107  Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
108                                       QualType SrcTy, QualType DstTy);
109
110  /// EmitNullValue - Emit a value that corresponds to null for the given type.
111  Value *EmitNullValue(QualType Ty);
112
113  /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
114  Value *EmitFloatToBoolConversion(Value *V) {
115    // Compare against 0.0 for fp scalars.
116    llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
117    return Builder.CreateFCmpUNE(V, Zero, "tobool");
118  }
119
120  /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
121  Value *EmitPointerToBoolConversion(Value *V) {
122    Value *Zero = llvm::ConstantPointerNull::get(
123                                      cast<llvm::PointerType>(V->getType()));
124    return Builder.CreateICmpNE(V, Zero, "tobool");
125  }
126
127  Value *EmitIntToBoolConversion(Value *V) {
128    // Because of the type rules of C, we often end up computing a
129    // logical value, then zero extending it to int, then wanting it
130    // as a logical value again.  Optimize this common case.
131    if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
132      if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
133        Value *Result = ZI->getOperand(0);
134        // If there aren't any more uses, zap the instruction to save space.
135        // Note that there can be more uses, for example if this
136        // is the result of an assignment.
137        if (ZI->use_empty())
138          ZI->eraseFromParent();
139        return Result;
140      }
141    }
142
143    return Builder.CreateIsNotNull(V, "tobool");
144  }
145
146  //===--------------------------------------------------------------------===//
147  //                            Visitor Methods
148  //===--------------------------------------------------------------------===//
149
150  Value *Visit(Expr *E) {
151    return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
152  }
153
154  Value *VisitStmt(Stmt *S) {
155    S->dump(CGF.getContext().getSourceManager());
156    llvm_unreachable("Stmt can't have complex result type!");
157  }
158  Value *VisitExpr(Expr *S);
159
160  Value *VisitParenExpr(ParenExpr *PE) {
161    return Visit(PE->getSubExpr());
162  }
163  Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
164    return Visit(E->getReplacement());
165  }
166  Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
167    return Visit(GE->getResultExpr());
168  }
169
170  // Leaves.
171  Value *VisitIntegerLiteral(const IntegerLiteral *E) {
172    return Builder.getInt(E->getValue());
173  }
174  Value *VisitFloatingLiteral(const FloatingLiteral *E) {
175    return llvm::ConstantFP::get(VMContext, E->getValue());
176  }
177  Value *VisitCharacterLiteral(const CharacterLiteral *E) {
178    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
179  }
180  Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
181    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
182  }
183  Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
184    return EmitNullValue(E->getType());
185  }
186  Value *VisitGNUNullExpr(const GNUNullExpr *E) {
187    return EmitNullValue(E->getType());
188  }
189  Value *VisitOffsetOfExpr(OffsetOfExpr *E);
190  Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
191  Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
192    llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
193    return Builder.CreateBitCast(V, ConvertType(E->getType()));
194  }
195
196  Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
197    return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
198  }
199
200  Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
201    if (E->isGLValue())
202      return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E));
203
204    // Otherwise, assume the mapping is the scalar directly.
205    return CGF.getOpaqueRValueMapping(E).getScalarVal();
206  }
207
208  // l-values.
209  Value *VisitDeclRefExpr(DeclRefExpr *E) {
210    Expr::EvalResult Result;
211    if (!E->Evaluate(Result, CGF.getContext()))
212      return EmitLoadOfLValue(E);
213
214    assert(!Result.HasSideEffects && "Constant declref with side-effect?!");
215
216    llvm::Constant *C;
217    if (Result.Val.isInt())
218      C = Builder.getInt(Result.Val.getInt());
219    else if (Result.Val.isFloat())
220      C = llvm::ConstantFP::get(VMContext, Result.Val.getFloat());
221    else
222      return EmitLoadOfLValue(E);
223
224    // Make sure we emit a debug reference to the global variable.
225    if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl())) {
226      if (!CGF.getContext().DeclMustBeEmitted(VD))
227        CGF.EmitDeclRefExprDbgValue(E, C);
228    } else if (isa<EnumConstantDecl>(E->getDecl())) {
229      CGF.EmitDeclRefExprDbgValue(E, C);
230    }
231
232    return C;
233  }
234  Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
235    return CGF.EmitObjCSelectorExpr(E);
236  }
237  Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
238    return CGF.EmitObjCProtocolExpr(E);
239  }
240  Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
241    return EmitLoadOfLValue(E);
242  }
243  Value *VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
244    assert(E->getObjectKind() == OK_Ordinary &&
245           "reached property reference without lvalue-to-rvalue");
246    return EmitLoadOfLValue(E);
247  }
248  Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
249    if (E->getMethodDecl() &&
250        E->getMethodDecl()->getResultType()->isReferenceType())
251      return EmitLoadOfLValue(E);
252    return CGF.EmitObjCMessageExpr(E).getScalarVal();
253  }
254
255  Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
256    LValue LV = CGF.EmitObjCIsaExpr(E);
257    Value *V = CGF.EmitLoadOfLValue(LV).getScalarVal();
258    return V;
259  }
260
261  Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
262  Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
263  Value *VisitMemberExpr(MemberExpr *E);
264  Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
265  Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
266    return EmitLoadOfLValue(E);
267  }
268
269  Value *VisitInitListExpr(InitListExpr *E);
270
271  Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
272    return CGF.CGM.EmitNullConstant(E->getType());
273  }
274  Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
275    if (E->getType()->isVariablyModifiedType())
276      CGF.EmitVariablyModifiedType(E->getType());
277    return VisitCastExpr(E);
278  }
279  Value *VisitCastExpr(CastExpr *E);
280
281  Value *VisitCallExpr(const CallExpr *E) {
282    if (E->getCallReturnType()->isReferenceType())
283      return EmitLoadOfLValue(E);
284
285    return CGF.EmitCallExpr(E).getScalarVal();
286  }
287
288  Value *VisitStmtExpr(const StmtExpr *E);
289
290  Value *VisitBlockDeclRefExpr(const BlockDeclRefExpr *E);
291
292  // Unary Operators.
293  Value *VisitUnaryPostDec(const UnaryOperator *E) {
294    LValue LV = EmitLValue(E->getSubExpr());
295    return EmitScalarPrePostIncDec(E, LV, false, false);
296  }
297  Value *VisitUnaryPostInc(const UnaryOperator *E) {
298    LValue LV = EmitLValue(E->getSubExpr());
299    return EmitScalarPrePostIncDec(E, LV, true, false);
300  }
301  Value *VisitUnaryPreDec(const UnaryOperator *E) {
302    LValue LV = EmitLValue(E->getSubExpr());
303    return EmitScalarPrePostIncDec(E, LV, false, true);
304  }
305  Value *VisitUnaryPreInc(const UnaryOperator *E) {
306    LValue LV = EmitLValue(E->getSubExpr());
307    return EmitScalarPrePostIncDec(E, LV, true, true);
308  }
309
310  llvm::Value *EmitAddConsiderOverflowBehavior(const UnaryOperator *E,
311                                               llvm::Value *InVal,
312                                               llvm::Value *NextVal,
313                                               bool IsInc);
314
315  llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
316                                       bool isInc, bool isPre);
317
318
319  Value *VisitUnaryAddrOf(const UnaryOperator *E) {
320    if (isa<MemberPointerType>(E->getType())) // never sugared
321      return CGF.CGM.getMemberPointerConstant(E);
322
323    return EmitLValue(E->getSubExpr()).getAddress();
324  }
325  Value *VisitUnaryDeref(const UnaryOperator *E) {
326    if (E->getType()->isVoidType())
327      return Visit(E->getSubExpr()); // the actual value should be unused
328    return EmitLoadOfLValue(E);
329  }
330  Value *VisitUnaryPlus(const UnaryOperator *E) {
331    // This differs from gcc, though, most likely due to a bug in gcc.
332    TestAndClearIgnoreResultAssign();
333    return Visit(E->getSubExpr());
334  }
335  Value *VisitUnaryMinus    (const UnaryOperator *E);
336  Value *VisitUnaryNot      (const UnaryOperator *E);
337  Value *VisitUnaryLNot     (const UnaryOperator *E);
338  Value *VisitUnaryReal     (const UnaryOperator *E);
339  Value *VisitUnaryImag     (const UnaryOperator *E);
340  Value *VisitUnaryExtension(const UnaryOperator *E) {
341    return Visit(E->getSubExpr());
342  }
343
344  // C++
345  Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
346    return EmitLoadOfLValue(E);
347  }
348
349  Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
350    return Visit(DAE->getExpr());
351  }
352  Value *VisitCXXThisExpr(CXXThisExpr *TE) {
353    return CGF.LoadCXXThis();
354  }
355
356  Value *VisitExprWithCleanups(ExprWithCleanups *E) {
357    return CGF.EmitExprWithCleanups(E).getScalarVal();
358  }
359  Value *VisitCXXNewExpr(const CXXNewExpr *E) {
360    return CGF.EmitCXXNewExpr(E);
361  }
362  Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
363    CGF.EmitCXXDeleteExpr(E);
364    return 0;
365  }
366  Value *VisitUnaryTypeTraitExpr(const UnaryTypeTraitExpr *E) {
367    return Builder.getInt1(E->getValue());
368  }
369
370  Value *VisitBinaryTypeTraitExpr(const BinaryTypeTraitExpr *E) {
371    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
372  }
373
374  Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
375    return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
376  }
377
378  Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
379    return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
380  }
381
382  Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
383    // C++ [expr.pseudo]p1:
384    //   The result shall only be used as the operand for the function call
385    //   operator (), and the result of such a call has type void. The only
386    //   effect is the evaluation of the postfix-expression before the dot or
387    //   arrow.
388    CGF.EmitScalarExpr(E->getBase());
389    return 0;
390  }
391
392  Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
393    return EmitNullValue(E->getType());
394  }
395
396  Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
397    CGF.EmitCXXThrowExpr(E);
398    return 0;
399  }
400
401  Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
402    return Builder.getInt1(E->getValue());
403  }
404
405  // Binary Operators.
406  Value *EmitMul(const BinOpInfo &Ops) {
407    if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
408      switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
409      case LangOptions::SOB_Undefined:
410        return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
411      case LangOptions::SOB_Defined:
412        return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
413      case LangOptions::SOB_Trapping:
414        return EmitOverflowCheckedBinOp(Ops);
415      }
416    }
417
418    if (Ops.LHS->getType()->isFPOrFPVectorTy())
419      return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
420    return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
421  }
422  bool isTrapvOverflowBehavior() {
423    return CGF.getContext().getLangOptions().getSignedOverflowBehavior()
424               == LangOptions::SOB_Trapping;
425  }
426  /// Create a binary op that checks for overflow.
427  /// Currently only supports +, - and *.
428  Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
429  // Emit the overflow BB when -ftrapv option is activated.
430  void EmitOverflowBB(llvm::BasicBlock *overflowBB) {
431    Builder.SetInsertPoint(overflowBB);
432    llvm::Function *Trap = CGF.CGM.getIntrinsic(llvm::Intrinsic::trap);
433    Builder.CreateCall(Trap);
434    Builder.CreateUnreachable();
435  }
436  // Check for undefined division and modulus behaviors.
437  void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
438                                                  llvm::Value *Zero,bool isDiv);
439  Value *EmitDiv(const BinOpInfo &Ops);
440  Value *EmitRem(const BinOpInfo &Ops);
441  Value *EmitAdd(const BinOpInfo &Ops);
442  Value *EmitSub(const BinOpInfo &Ops);
443  Value *EmitShl(const BinOpInfo &Ops);
444  Value *EmitShr(const BinOpInfo &Ops);
445  Value *EmitAnd(const BinOpInfo &Ops) {
446    return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
447  }
448  Value *EmitXor(const BinOpInfo &Ops) {
449    return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
450  }
451  Value *EmitOr (const BinOpInfo &Ops) {
452    return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
453  }
454
455  BinOpInfo EmitBinOps(const BinaryOperator *E);
456  LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
457                            Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
458                                  Value *&Result);
459
460  Value *EmitCompoundAssign(const CompoundAssignOperator *E,
461                            Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
462
463  // Binary operators and binary compound assignment operators.
464#define HANDLEBINOP(OP) \
465  Value *VisitBin ## OP(const BinaryOperator *E) {                         \
466    return Emit ## OP(EmitBinOps(E));                                      \
467  }                                                                        \
468  Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
469    return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
470  }
471  HANDLEBINOP(Mul)
472  HANDLEBINOP(Div)
473  HANDLEBINOP(Rem)
474  HANDLEBINOP(Add)
475  HANDLEBINOP(Sub)
476  HANDLEBINOP(Shl)
477  HANDLEBINOP(Shr)
478  HANDLEBINOP(And)
479  HANDLEBINOP(Xor)
480  HANDLEBINOP(Or)
481#undef HANDLEBINOP
482
483  // Comparisons.
484  Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
485                     unsigned SICmpOpc, unsigned FCmpOpc);
486#define VISITCOMP(CODE, UI, SI, FP) \
487    Value *VisitBin##CODE(const BinaryOperator *E) { \
488      return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
489                         llvm::FCmpInst::FP); }
490  VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
491  VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
492  VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
493  VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
494  VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
495  VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
496#undef VISITCOMP
497
498  Value *VisitBinAssign     (const BinaryOperator *E);
499
500  Value *VisitBinLAnd       (const BinaryOperator *E);
501  Value *VisitBinLOr        (const BinaryOperator *E);
502  Value *VisitBinComma      (const BinaryOperator *E);
503
504  Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
505  Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
506
507  // Other Operators.
508  Value *VisitBlockExpr(const BlockExpr *BE);
509  Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
510  Value *VisitChooseExpr(ChooseExpr *CE);
511  Value *VisitVAArgExpr(VAArgExpr *VE);
512  Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
513    return CGF.EmitObjCStringLiteral(E);
514  }
515  Value *VisitAsTypeExpr(AsTypeExpr *CE);
516  Value *VisitAtomicExpr(AtomicExpr *AE);
517};
518}  // end anonymous namespace.
519
520//===----------------------------------------------------------------------===//
521//                                Utilities
522//===----------------------------------------------------------------------===//
523
524/// EmitConversionToBool - Convert the specified expression value to a
525/// boolean (i1) truth value.  This is equivalent to "Val != 0".
526Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
527  assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
528
529  if (SrcType->isRealFloatingType())
530    return EmitFloatToBoolConversion(Src);
531
532  if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
533    return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
534
535  assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
536         "Unknown scalar type to convert");
537
538  if (isa<llvm::IntegerType>(Src->getType()))
539    return EmitIntToBoolConversion(Src);
540
541  assert(isa<llvm::PointerType>(Src->getType()));
542  return EmitPointerToBoolConversion(Src);
543}
544
545/// EmitScalarConversion - Emit a conversion from the specified type to the
546/// specified destination type, both of which are LLVM scalar types.
547Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
548                                               QualType DstType) {
549  SrcType = CGF.getContext().getCanonicalType(SrcType);
550  DstType = CGF.getContext().getCanonicalType(DstType);
551  if (SrcType == DstType) return Src;
552
553  if (DstType->isVoidType()) return 0;
554
555  llvm::Type *SrcTy = Src->getType();
556
557  // Floating casts might be a bit special: if we're doing casts to / from half
558  // FP, we should go via special intrinsics.
559  if (SrcType->isHalfType()) {
560    Src = Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16), Src);
561    SrcType = CGF.getContext().FloatTy;
562    SrcTy = llvm::Type::getFloatTy(VMContext);
563  }
564
565  // Handle conversions to bool first, they are special: comparisons against 0.
566  if (DstType->isBooleanType())
567    return EmitConversionToBool(Src, SrcType);
568
569  llvm::Type *DstTy = ConvertType(DstType);
570
571  // Ignore conversions like int -> uint.
572  if (SrcTy == DstTy)
573    return Src;
574
575  // Handle pointer conversions next: pointers can only be converted to/from
576  // other pointers and integers. Check for pointer types in terms of LLVM, as
577  // some native types (like Obj-C id) may map to a pointer type.
578  if (isa<llvm::PointerType>(DstTy)) {
579    // The source value may be an integer, or a pointer.
580    if (isa<llvm::PointerType>(SrcTy))
581      return Builder.CreateBitCast(Src, DstTy, "conv");
582
583    assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
584    // First, convert to the correct width so that we control the kind of
585    // extension.
586    llvm::Type *MiddleTy = CGF.IntPtrTy;
587    bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
588    llvm::Value* IntResult =
589        Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
590    // Then, cast to pointer.
591    return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
592  }
593
594  if (isa<llvm::PointerType>(SrcTy)) {
595    // Must be an ptr to int cast.
596    assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
597    return Builder.CreatePtrToInt(Src, DstTy, "conv");
598  }
599
600  // A scalar can be splatted to an extended vector of the same element type
601  if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
602    // Cast the scalar to element type
603    QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType();
604    llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy);
605
606    // Insert the element in element zero of an undef vector
607    llvm::Value *UnV = llvm::UndefValue::get(DstTy);
608    llvm::Value *Idx = Builder.getInt32(0);
609    UnV = Builder.CreateInsertElement(UnV, Elt, Idx);
610
611    // Splat the element across to all elements
612    SmallVector<llvm::Constant*, 16> Args;
613    unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
614    for (unsigned i = 0; i != NumElements; ++i)
615      Args.push_back(Builder.getInt32(0));
616
617    llvm::Constant *Mask = llvm::ConstantVector::get(Args);
618    llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
619    return Yay;
620  }
621
622  // Allow bitcast from vector to integer/fp of the same size.
623  if (isa<llvm::VectorType>(SrcTy) ||
624      isa<llvm::VectorType>(DstTy))
625    return Builder.CreateBitCast(Src, DstTy, "conv");
626
627  // Finally, we have the arithmetic types: real int/float.
628  Value *Res = NULL;
629  llvm::Type *ResTy = DstTy;
630
631  // Cast to half via float
632  if (DstType->isHalfType())
633    DstTy = llvm::Type::getFloatTy(VMContext);
634
635  if (isa<llvm::IntegerType>(SrcTy)) {
636    bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
637    if (isa<llvm::IntegerType>(DstTy))
638      Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
639    else if (InputSigned)
640      Res = Builder.CreateSIToFP(Src, DstTy, "conv");
641    else
642      Res = Builder.CreateUIToFP(Src, DstTy, "conv");
643  } else if (isa<llvm::IntegerType>(DstTy)) {
644    assert(SrcTy->isFloatingPointTy() && "Unknown real conversion");
645    if (DstType->isSignedIntegerOrEnumerationType())
646      Res = Builder.CreateFPToSI(Src, DstTy, "conv");
647    else
648      Res = Builder.CreateFPToUI(Src, DstTy, "conv");
649  } else {
650    assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() &&
651           "Unknown real conversion");
652    if (DstTy->getTypeID() < SrcTy->getTypeID())
653      Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
654    else
655      Res = Builder.CreateFPExt(Src, DstTy, "conv");
656  }
657
658  if (DstTy != ResTy) {
659    assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
660    Res = Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16), Res);
661  }
662
663  return Res;
664}
665
666/// EmitComplexToScalarConversion - Emit a conversion from the specified complex
667/// type to the specified destination type, where the destination type is an
668/// LLVM scalar type.
669Value *ScalarExprEmitter::
670EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
671                              QualType SrcTy, QualType DstTy) {
672  // Get the source element type.
673  SrcTy = SrcTy->getAs<ComplexType>()->getElementType();
674
675  // Handle conversions to bool first, they are special: comparisons against 0.
676  if (DstTy->isBooleanType()) {
677    //  Complex != 0  -> (Real != 0) | (Imag != 0)
678    Src.first  = EmitScalarConversion(Src.first, SrcTy, DstTy);
679    Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
680    return Builder.CreateOr(Src.first, Src.second, "tobool");
681  }
682
683  // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
684  // the imaginary part of the complex value is discarded and the value of the
685  // real part is converted according to the conversion rules for the
686  // corresponding real type.
687  return EmitScalarConversion(Src.first, SrcTy, DstTy);
688}
689
690Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
691  if (const MemberPointerType *MPT = Ty->getAs<MemberPointerType>())
692    return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
693
694  return llvm::Constant::getNullValue(ConvertType(Ty));
695}
696
697//===----------------------------------------------------------------------===//
698//                            Visitor Methods
699//===----------------------------------------------------------------------===//
700
701Value *ScalarExprEmitter::VisitExpr(Expr *E) {
702  CGF.ErrorUnsupported(E, "scalar expression");
703  if (E->getType()->isVoidType())
704    return 0;
705  return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
706}
707
708Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
709  // Vector Mask Case
710  if (E->getNumSubExprs() == 2 ||
711      (E->getNumSubExprs() == 3 && E->getExpr(2)->getType()->isVectorType())) {
712    Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
713    Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
714    Value *Mask;
715
716    llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
717    unsigned LHSElts = LTy->getNumElements();
718
719    if (E->getNumSubExprs() == 3) {
720      Mask = CGF.EmitScalarExpr(E->getExpr(2));
721
722      // Shuffle LHS & RHS into one input vector.
723      SmallVector<llvm::Constant*, 32> concat;
724      for (unsigned i = 0; i != LHSElts; ++i) {
725        concat.push_back(Builder.getInt32(2*i));
726        concat.push_back(Builder.getInt32(2*i+1));
727      }
728
729      Value* CV = llvm::ConstantVector::get(concat);
730      LHS = Builder.CreateShuffleVector(LHS, RHS, CV, "concat");
731      LHSElts *= 2;
732    } else {
733      Mask = RHS;
734    }
735
736    llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
737    llvm::Constant* EltMask;
738
739    // Treat vec3 like vec4.
740    if ((LHSElts == 6) && (E->getNumSubExprs() == 3))
741      EltMask = llvm::ConstantInt::get(MTy->getElementType(),
742                                       (1 << llvm::Log2_32(LHSElts+2))-1);
743    else if ((LHSElts == 3) && (E->getNumSubExprs() == 2))
744      EltMask = llvm::ConstantInt::get(MTy->getElementType(),
745                                       (1 << llvm::Log2_32(LHSElts+1))-1);
746    else
747      EltMask = llvm::ConstantInt::get(MTy->getElementType(),
748                                       (1 << llvm::Log2_32(LHSElts))-1);
749
750    // Mask off the high bits of each shuffle index.
751    SmallVector<llvm::Constant *, 32> MaskV;
752    for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i)
753      MaskV.push_back(EltMask);
754
755    Value* MaskBits = llvm::ConstantVector::get(MaskV);
756    Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
757
758    // newv = undef
759    // mask = mask & maskbits
760    // for each elt
761    //   n = extract mask i
762    //   x = extract val n
763    //   newv = insert newv, x, i
764    llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
765                                                        MTy->getNumElements());
766    Value* NewV = llvm::UndefValue::get(RTy);
767    for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
768      Value *Indx = Builder.getInt32(i);
769      Indx = Builder.CreateExtractElement(Mask, Indx, "shuf_idx");
770      Indx = Builder.CreateZExt(Indx, CGF.Int32Ty, "idx_zext");
771
772      // Handle vec3 special since the index will be off by one for the RHS.
773      if ((LHSElts == 6) && (E->getNumSubExprs() == 3)) {
774        Value *cmpIndx, *newIndx;
775        cmpIndx = Builder.CreateICmpUGT(Indx, Builder.getInt32(3),
776                                        "cmp_shuf_idx");
777        newIndx = Builder.CreateSub(Indx, Builder.getInt32(1), "shuf_idx_adj");
778        Indx = Builder.CreateSelect(cmpIndx, newIndx, Indx, "sel_shuf_idx");
779      }
780      Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
781      NewV = Builder.CreateInsertElement(NewV, VExt, Indx, "shuf_ins");
782    }
783    return NewV;
784  }
785
786  Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
787  Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
788
789  // Handle vec3 special since the index will be off by one for the RHS.
790  llvm::VectorType *VTy = cast<llvm::VectorType>(V1->getType());
791  SmallVector<llvm::Constant*, 32> indices;
792  for (unsigned i = 2; i < E->getNumSubExprs(); i++) {
793    unsigned Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
794    if (VTy->getNumElements() == 3 && Idx > 3)
795      Idx -= 1;
796    indices.push_back(Builder.getInt32(Idx));
797  }
798
799  Value *SV = llvm::ConstantVector::get(indices);
800  return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
801}
802Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
803  Expr::EvalResult Result;
804  if (E->Evaluate(Result, CGF.getContext()) && Result.Val.isInt()) {
805    if (E->isArrow())
806      CGF.EmitScalarExpr(E->getBase());
807    else
808      EmitLValue(E->getBase());
809    return Builder.getInt(Result.Val.getInt());
810  }
811
812  // Emit debug info for aggregate now, if it was delayed to reduce
813  // debug info size.
814  CGDebugInfo *DI = CGF.getDebugInfo();
815  if (DI && CGF.CGM.getCodeGenOpts().LimitDebugInfo) {
816    QualType PQTy = E->getBase()->IgnoreParenImpCasts()->getType();
817    if (const PointerType * PTy = dyn_cast<PointerType>(PQTy))
818      if (FieldDecl *M = dyn_cast<FieldDecl>(E->getMemberDecl()))
819        DI->getOrCreateRecordType(PTy->getPointeeType(),
820                                  M->getParent()->getLocation());
821  }
822  return EmitLoadOfLValue(E);
823}
824
825Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
826  TestAndClearIgnoreResultAssign();
827
828  // Emit subscript expressions in rvalue context's.  For most cases, this just
829  // loads the lvalue formed by the subscript expr.  However, we have to be
830  // careful, because the base of a vector subscript is occasionally an rvalue,
831  // so we can't get it as an lvalue.
832  if (!E->getBase()->getType()->isVectorType())
833    return EmitLoadOfLValue(E);
834
835  // Handle the vector case.  The base must be a vector, the index must be an
836  // integer value.
837  Value *Base = Visit(E->getBase());
838  Value *Idx  = Visit(E->getIdx());
839  bool IdxSigned = E->getIdx()->getType()->isSignedIntegerOrEnumerationType();
840  Idx = Builder.CreateIntCast(Idx, CGF.Int32Ty, IdxSigned, "vecidxcast");
841  return Builder.CreateExtractElement(Base, Idx, "vecext");
842}
843
844static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
845                                  unsigned Off, llvm::Type *I32Ty) {
846  int MV = SVI->getMaskValue(Idx);
847  if (MV == -1)
848    return llvm::UndefValue::get(I32Ty);
849  return llvm::ConstantInt::get(I32Ty, Off+MV);
850}
851
852Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
853  bool Ignore = TestAndClearIgnoreResultAssign();
854  (void)Ignore;
855  assert (Ignore == false && "init list ignored");
856  unsigned NumInitElements = E->getNumInits();
857
858  if (E->hadArrayRangeDesignator())
859    CGF.ErrorUnsupported(E, "GNU array range designator extension");
860
861  llvm::VectorType *VType =
862    dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
863
864  if (!VType) {
865    if (NumInitElements == 0) {
866      // C++11 value-initialization for the scalar.
867      return EmitNullValue(E->getType());
868    }
869    // We have a scalar in braces. Just use the first element.
870    return Visit(E->getInit(0));
871  }
872
873  unsigned ResElts = VType->getNumElements();
874
875  // Loop over initializers collecting the Value for each, and remembering
876  // whether the source was swizzle (ExtVectorElementExpr).  This will allow
877  // us to fold the shuffle for the swizzle into the shuffle for the vector
878  // initializer, since LLVM optimizers generally do not want to touch
879  // shuffles.
880  unsigned CurIdx = 0;
881  bool VIsUndefShuffle = false;
882  llvm::Value *V = llvm::UndefValue::get(VType);
883  for (unsigned i = 0; i != NumInitElements; ++i) {
884    Expr *IE = E->getInit(i);
885    Value *Init = Visit(IE);
886    SmallVector<llvm::Constant*, 16> Args;
887
888    llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
889
890    // Handle scalar elements.  If the scalar initializer is actually one
891    // element of a different vector of the same width, use shuffle instead of
892    // extract+insert.
893    if (!VVT) {
894      if (isa<ExtVectorElementExpr>(IE)) {
895        llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
896
897        if (EI->getVectorOperandType()->getNumElements() == ResElts) {
898          llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
899          Value *LHS = 0, *RHS = 0;
900          if (CurIdx == 0) {
901            // insert into undef -> shuffle (src, undef)
902            Args.push_back(C);
903            for (unsigned j = 1; j != ResElts; ++j)
904              Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
905
906            LHS = EI->getVectorOperand();
907            RHS = V;
908            VIsUndefShuffle = true;
909          } else if (VIsUndefShuffle) {
910            // insert into undefshuffle && size match -> shuffle (v, src)
911            llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
912            for (unsigned j = 0; j != CurIdx; ++j)
913              Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
914            Args.push_back(Builder.getInt32(ResElts + C->getZExtValue()));
915            for (unsigned j = CurIdx + 1; j != ResElts; ++j)
916              Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
917
918            LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
919            RHS = EI->getVectorOperand();
920            VIsUndefShuffle = false;
921          }
922          if (!Args.empty()) {
923            llvm::Constant *Mask = llvm::ConstantVector::get(Args);
924            V = Builder.CreateShuffleVector(LHS, RHS, Mask);
925            ++CurIdx;
926            continue;
927          }
928        }
929      }
930      V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
931                                      "vecinit");
932      VIsUndefShuffle = false;
933      ++CurIdx;
934      continue;
935    }
936
937    unsigned InitElts = VVT->getNumElements();
938
939    // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
940    // input is the same width as the vector being constructed, generate an
941    // optimized shuffle of the swizzle input into the result.
942    unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
943    if (isa<ExtVectorElementExpr>(IE)) {
944      llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
945      Value *SVOp = SVI->getOperand(0);
946      llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
947
948      if (OpTy->getNumElements() == ResElts) {
949        for (unsigned j = 0; j != CurIdx; ++j) {
950          // If the current vector initializer is a shuffle with undef, merge
951          // this shuffle directly into it.
952          if (VIsUndefShuffle) {
953            Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
954                                      CGF.Int32Ty));
955          } else {
956            Args.push_back(Builder.getInt32(j));
957          }
958        }
959        for (unsigned j = 0, je = InitElts; j != je; ++j)
960          Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
961        for (unsigned j = CurIdx + InitElts; j != ResElts; ++j)
962          Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
963
964        if (VIsUndefShuffle)
965          V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
966
967        Init = SVOp;
968      }
969    }
970
971    // Extend init to result vector length, and then shuffle its contribution
972    // to the vector initializer into V.
973    if (Args.empty()) {
974      for (unsigned j = 0; j != InitElts; ++j)
975        Args.push_back(Builder.getInt32(j));
976      for (unsigned j = InitElts; j != ResElts; ++j)
977        Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
978      llvm::Constant *Mask = llvm::ConstantVector::get(Args);
979      Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
980                                         Mask, "vext");
981
982      Args.clear();
983      for (unsigned j = 0; j != CurIdx; ++j)
984        Args.push_back(Builder.getInt32(j));
985      for (unsigned j = 0; j != InitElts; ++j)
986        Args.push_back(Builder.getInt32(j+Offset));
987      for (unsigned j = CurIdx + InitElts; j != ResElts; ++j)
988        Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
989    }
990
991    // If V is undef, make sure it ends up on the RHS of the shuffle to aid
992    // merging subsequent shuffles into this one.
993    if (CurIdx == 0)
994      std::swap(V, Init);
995    llvm::Constant *Mask = llvm::ConstantVector::get(Args);
996    V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
997    VIsUndefShuffle = isa<llvm::UndefValue>(Init);
998    CurIdx += InitElts;
999  }
1000
1001  // FIXME: evaluate codegen vs. shuffling against constant null vector.
1002  // Emit remaining default initializers.
1003  llvm::Type *EltTy = VType->getElementType();
1004
1005  // Emit remaining default initializers
1006  for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
1007    Value *Idx = Builder.getInt32(CurIdx);
1008    llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
1009    V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
1010  }
1011  return V;
1012}
1013
1014static bool ShouldNullCheckClassCastValue(const CastExpr *CE) {
1015  const Expr *E = CE->getSubExpr();
1016
1017  if (CE->getCastKind() == CK_UncheckedDerivedToBase)
1018    return false;
1019
1020  if (isa<CXXThisExpr>(E)) {
1021    // We always assume that 'this' is never null.
1022    return false;
1023  }
1024
1025  if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
1026    // And that glvalue casts are never null.
1027    if (ICE->getValueKind() != VK_RValue)
1028      return false;
1029  }
1030
1031  return true;
1032}
1033
1034// VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
1035// have to handle a more broad range of conversions than explicit casts, as they
1036// handle things like function to ptr-to-function decay etc.
1037Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
1038  Expr *E = CE->getSubExpr();
1039  QualType DestTy = CE->getType();
1040  CastKind Kind = CE->getCastKind();
1041
1042  if (!DestTy->isVoidType())
1043    TestAndClearIgnoreResultAssign();
1044
1045  // Since almost all cast kinds apply to scalars, this switch doesn't have
1046  // a default case, so the compiler will warn on a missing case.  The cases
1047  // are in the same order as in the CastKind enum.
1048  switch (Kind) {
1049  case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
1050
1051  case CK_LValueBitCast:
1052  case CK_ObjCObjectLValueCast: {
1053    Value *V = EmitLValue(E).getAddress();
1054    V = Builder.CreateBitCast(V,
1055                          ConvertType(CGF.getContext().getPointerType(DestTy)));
1056    return EmitLoadOfLValue(CGF.MakeAddrLValue(V, DestTy));
1057  }
1058
1059  case CK_CPointerToObjCPointerCast:
1060  case CK_BlockPointerToObjCPointerCast:
1061  case CK_AnyPointerToBlockPointerCast:
1062  case CK_BitCast: {
1063    Value *Src = Visit(const_cast<Expr*>(E));
1064    return Builder.CreateBitCast(Src, ConvertType(DestTy));
1065  }
1066  case CK_NoOp:
1067  case CK_UserDefinedConversion:
1068    return Visit(const_cast<Expr*>(E));
1069
1070  case CK_BaseToDerived: {
1071    const CXXRecordDecl *DerivedClassDecl =
1072      DestTy->getCXXRecordDeclForPointerType();
1073
1074    return CGF.GetAddressOfDerivedClass(Visit(E), DerivedClassDecl,
1075                                        CE->path_begin(), CE->path_end(),
1076                                        ShouldNullCheckClassCastValue(CE));
1077  }
1078  case CK_UncheckedDerivedToBase:
1079  case CK_DerivedToBase: {
1080    const RecordType *DerivedClassTy =
1081      E->getType()->getAs<PointerType>()->getPointeeType()->getAs<RecordType>();
1082    CXXRecordDecl *DerivedClassDecl =
1083      cast<CXXRecordDecl>(DerivedClassTy->getDecl());
1084
1085    return CGF.GetAddressOfBaseClass(Visit(E), DerivedClassDecl,
1086                                     CE->path_begin(), CE->path_end(),
1087                                     ShouldNullCheckClassCastValue(CE));
1088  }
1089  case CK_Dynamic: {
1090    Value *V = Visit(const_cast<Expr*>(E));
1091    const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
1092    return CGF.EmitDynamicCast(V, DCE);
1093  }
1094
1095  case CK_ArrayToPointerDecay: {
1096    assert(E->getType()->isArrayType() &&
1097           "Array to pointer decay must have array source type!");
1098
1099    Value *V = EmitLValue(E).getAddress();  // Bitfields can't be arrays.
1100
1101    // Note that VLA pointers are always decayed, so we don't need to do
1102    // anything here.
1103    if (!E->getType()->isVariableArrayType()) {
1104      assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer");
1105      assert(isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType())
1106                                 ->getElementType()) &&
1107             "Expected pointer to array");
1108      V = Builder.CreateStructGEP(V, 0, "arraydecay");
1109    }
1110
1111    // Make sure the array decay ends up being the right type.  This matters if
1112    // the array type was of an incomplete type.
1113    return CGF.Builder.CreateBitCast(V, ConvertType(CE->getType()));
1114  }
1115  case CK_FunctionToPointerDecay:
1116    return EmitLValue(E).getAddress();
1117
1118  case CK_NullToPointer:
1119    if (MustVisitNullValue(E))
1120      (void) Visit(E);
1121
1122    return llvm::ConstantPointerNull::get(
1123                               cast<llvm::PointerType>(ConvertType(DestTy)));
1124
1125  case CK_NullToMemberPointer: {
1126    if (MustVisitNullValue(E))
1127      (void) Visit(E);
1128
1129    const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
1130    return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
1131  }
1132
1133  case CK_BaseToDerivedMemberPointer:
1134  case CK_DerivedToBaseMemberPointer: {
1135    Value *Src = Visit(E);
1136
1137    // Note that the AST doesn't distinguish between checked and
1138    // unchecked member pointer conversions, so we always have to
1139    // implement checked conversions here.  This is inefficient when
1140    // actual control flow may be required in order to perform the
1141    // check, which it is for data member pointers (but not member
1142    // function pointers on Itanium and ARM).
1143    return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
1144  }
1145
1146  case CK_ARCProduceObject:
1147    return CGF.EmitARCRetainScalarExpr(E);
1148  case CK_ARCConsumeObject:
1149    return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
1150  case CK_ARCReclaimReturnedObject: {
1151    llvm::Value *value = Visit(E);
1152    value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
1153    return CGF.EmitObjCConsumeObject(E->getType(), value);
1154  }
1155  case CK_ARCExtendBlockObject:
1156    return CGF.EmitARCExtendBlockObject(E);
1157
1158  case CK_FloatingRealToComplex:
1159  case CK_FloatingComplexCast:
1160  case CK_IntegralRealToComplex:
1161  case CK_IntegralComplexCast:
1162  case CK_IntegralComplexToFloatingComplex:
1163  case CK_FloatingComplexToIntegralComplex:
1164  case CK_ConstructorConversion:
1165  case CK_ToUnion:
1166    llvm_unreachable("scalar cast to non-scalar value");
1167    break;
1168
1169  case CK_GetObjCProperty: {
1170    assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
1171    assert(E->isGLValue() && E->getObjectKind() == OK_ObjCProperty &&
1172           "CK_GetObjCProperty for non-lvalue or non-ObjCProperty");
1173    RValue RV = CGF.EmitLoadOfLValue(CGF.EmitLValue(E));
1174    return RV.getScalarVal();
1175  }
1176
1177  case CK_LValueToRValue:
1178    assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
1179    assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
1180    return Visit(const_cast<Expr*>(E));
1181
1182  case CK_IntegralToPointer: {
1183    Value *Src = Visit(const_cast<Expr*>(E));
1184
1185    // First, convert to the correct width so that we control the kind of
1186    // extension.
1187    llvm::Type *MiddleTy = CGF.IntPtrTy;
1188    bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
1189    llvm::Value* IntResult =
1190      Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1191
1192    return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy));
1193  }
1194  case CK_PointerToIntegral:
1195    assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
1196    return Builder.CreatePtrToInt(Visit(E), ConvertType(DestTy));
1197
1198  case CK_ToVoid: {
1199    CGF.EmitIgnoredExpr(E);
1200    return 0;
1201  }
1202  case CK_VectorSplat: {
1203    llvm::Type *DstTy = ConvertType(DestTy);
1204    Value *Elt = Visit(const_cast<Expr*>(E));
1205
1206    // Insert the element in element zero of an undef vector
1207    llvm::Value *UnV = llvm::UndefValue::get(DstTy);
1208    llvm::Value *Idx = Builder.getInt32(0);
1209    UnV = Builder.CreateInsertElement(UnV, Elt, Idx);
1210
1211    // Splat the element across to all elements
1212    SmallVector<llvm::Constant*, 16> Args;
1213    unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
1214    llvm::Constant *Zero = Builder.getInt32(0);
1215    for (unsigned i = 0; i < NumElements; i++)
1216      Args.push_back(Zero);
1217
1218    llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1219    llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
1220    return Yay;
1221  }
1222
1223  case CK_IntegralCast:
1224  case CK_IntegralToFloating:
1225  case CK_FloatingToIntegral:
1226  case CK_FloatingCast:
1227    return EmitScalarConversion(Visit(E), E->getType(), DestTy);
1228  case CK_IntegralToBoolean:
1229    return EmitIntToBoolConversion(Visit(E));
1230  case CK_PointerToBoolean:
1231    return EmitPointerToBoolConversion(Visit(E));
1232  case CK_FloatingToBoolean:
1233    return EmitFloatToBoolConversion(Visit(E));
1234  case CK_MemberPointerToBoolean: {
1235    llvm::Value *MemPtr = Visit(E);
1236    const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
1237    return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
1238  }
1239
1240  case CK_FloatingComplexToReal:
1241  case CK_IntegralComplexToReal:
1242    return CGF.EmitComplexExpr(E, false, true).first;
1243
1244  case CK_FloatingComplexToBoolean:
1245  case CK_IntegralComplexToBoolean: {
1246    CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
1247
1248    // TODO: kill this function off, inline appropriate case here
1249    return EmitComplexToScalarConversion(V, E->getType(), DestTy);
1250  }
1251
1252  }
1253
1254  llvm_unreachable("unknown scalar cast");
1255  return 0;
1256}
1257
1258Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
1259  CodeGenFunction::StmtExprEvaluation eval(CGF);
1260  return CGF.EmitCompoundStmt(*E->getSubStmt(), !E->getType()->isVoidType())
1261    .getScalarVal();
1262}
1263
1264Value *ScalarExprEmitter::VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) {
1265  LValue LV = CGF.EmitBlockDeclRefLValue(E);
1266  return CGF.EmitLoadOfLValue(LV).getScalarVal();
1267}
1268
1269//===----------------------------------------------------------------------===//
1270//                             Unary Operators
1271//===----------------------------------------------------------------------===//
1272
1273llvm::Value *ScalarExprEmitter::
1274EmitAddConsiderOverflowBehavior(const UnaryOperator *E,
1275                                llvm::Value *InVal,
1276                                llvm::Value *NextVal, bool IsInc) {
1277  switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
1278  case LangOptions::SOB_Undefined:
1279    return Builder.CreateNSWAdd(InVal, NextVal, IsInc ? "inc" : "dec");
1280    break;
1281  case LangOptions::SOB_Defined:
1282    return Builder.CreateAdd(InVal, NextVal, IsInc ? "inc" : "dec");
1283    break;
1284  case LangOptions::SOB_Trapping:
1285    BinOpInfo BinOp;
1286    BinOp.LHS = InVal;
1287    BinOp.RHS = NextVal;
1288    BinOp.Ty = E->getType();
1289    BinOp.Opcode = BO_Add;
1290    BinOp.E = E;
1291    return EmitOverflowCheckedBinOp(BinOp);
1292  }
1293  llvm_unreachable("Unknown SignedOverflowBehaviorTy");
1294}
1295
1296llvm::Value *
1297ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1298                                           bool isInc, bool isPre) {
1299
1300  QualType type = E->getSubExpr()->getType();
1301  llvm::Value *value = EmitLoadOfLValue(LV);
1302  llvm::Value *input = value;
1303
1304  int amount = (isInc ? 1 : -1);
1305
1306  // Special case of integer increment that we have to check first: bool++.
1307  // Due to promotion rules, we get:
1308  //   bool++ -> bool = bool + 1
1309  //          -> bool = (int)bool + 1
1310  //          -> bool = ((int)bool + 1 != 0)
1311  // An interesting aspect of this is that increment is always true.
1312  // Decrement does not have this property.
1313  if (isInc && type->isBooleanType()) {
1314    value = Builder.getTrue();
1315
1316  // Most common case by far: integer increment.
1317  } else if (type->isIntegerType()) {
1318
1319    llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
1320
1321    // Note that signed integer inc/dec with width less than int can't
1322    // overflow because of promotion rules; we're just eliding a few steps here.
1323    if (type->isSignedIntegerOrEnumerationType() &&
1324        value->getType()->getPrimitiveSizeInBits() >=
1325            CGF.IntTy->getBitWidth())
1326      value = EmitAddConsiderOverflowBehavior(E, value, amt, isInc);
1327    else
1328      value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1329
1330  // Next most common: pointer increment.
1331  } else if (const PointerType *ptr = type->getAs<PointerType>()) {
1332    QualType type = ptr->getPointeeType();
1333
1334    // VLA types don't have constant size.
1335    if (const VariableArrayType *vla
1336          = CGF.getContext().getAsVariableArrayType(type)) {
1337      llvm::Value *numElts = CGF.getVLASize(vla).first;
1338      if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
1339      if (CGF.getContext().getLangOptions().isSignedOverflowDefined())
1340        value = Builder.CreateGEP(value, numElts, "vla.inc");
1341      else
1342        value = Builder.CreateInBoundsGEP(value, numElts, "vla.inc");
1343
1344    // Arithmetic on function pointers (!) is just +-1.
1345    } else if (type->isFunctionType()) {
1346      llvm::Value *amt = Builder.getInt32(amount);
1347
1348      value = CGF.EmitCastToVoidPtr(value);
1349      if (CGF.getContext().getLangOptions().isSignedOverflowDefined())
1350        value = Builder.CreateGEP(value, amt, "incdec.funcptr");
1351      else
1352        value = Builder.CreateInBoundsGEP(value, amt, "incdec.funcptr");
1353      value = Builder.CreateBitCast(value, input->getType());
1354
1355    // For everything else, we can just do a simple increment.
1356    } else {
1357      llvm::Value *amt = Builder.getInt32(amount);
1358      if (CGF.getContext().getLangOptions().isSignedOverflowDefined())
1359        value = Builder.CreateGEP(value, amt, "incdec.ptr");
1360      else
1361        value = Builder.CreateInBoundsGEP(value, amt, "incdec.ptr");
1362    }
1363
1364  // Vector increment/decrement.
1365  } else if (type->isVectorType()) {
1366    if (type->hasIntegerRepresentation()) {
1367      llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
1368
1369      value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1370    } else {
1371      value = Builder.CreateFAdd(
1372                  value,
1373                  llvm::ConstantFP::get(value->getType(), amount),
1374                  isInc ? "inc" : "dec");
1375    }
1376
1377  // Floating point.
1378  } else if (type->isRealFloatingType()) {
1379    // Add the inc/dec to the real part.
1380    llvm::Value *amt;
1381
1382    if (type->isHalfType()) {
1383      // Another special case: half FP increment should be done via float
1384      value =
1385    Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16),
1386                       input);
1387    }
1388
1389    if (value->getType()->isFloatTy())
1390      amt = llvm::ConstantFP::get(VMContext,
1391                                  llvm::APFloat(static_cast<float>(amount)));
1392    else if (value->getType()->isDoubleTy())
1393      amt = llvm::ConstantFP::get(VMContext,
1394                                  llvm::APFloat(static_cast<double>(amount)));
1395    else {
1396      llvm::APFloat F(static_cast<float>(amount));
1397      bool ignored;
1398      F.convert(CGF.Target.getLongDoubleFormat(), llvm::APFloat::rmTowardZero,
1399                &ignored);
1400      amt = llvm::ConstantFP::get(VMContext, F);
1401    }
1402    value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
1403
1404    if (type->isHalfType())
1405      value =
1406       Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16),
1407                          value);
1408
1409  // Objective-C pointer types.
1410  } else {
1411    const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
1412    value = CGF.EmitCastToVoidPtr(value);
1413
1414    CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
1415    if (!isInc) size = -size;
1416    llvm::Value *sizeValue =
1417      llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
1418
1419    if (CGF.getContext().getLangOptions().isSignedOverflowDefined())
1420      value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
1421    else
1422      value = Builder.CreateInBoundsGEP(value, sizeValue, "incdec.objptr");
1423    value = Builder.CreateBitCast(value, input->getType());
1424  }
1425
1426  // Store the updated result through the lvalue.
1427  if (LV.isBitField())
1428    CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
1429  else
1430    CGF.EmitStoreThroughLValue(RValue::get(value), LV);
1431
1432  // If this is a postinc, return the value read from memory, otherwise use the
1433  // updated value.
1434  return isPre ? value : input;
1435}
1436
1437
1438
1439Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
1440  TestAndClearIgnoreResultAssign();
1441  // Emit unary minus with EmitSub so we handle overflow cases etc.
1442  BinOpInfo BinOp;
1443  BinOp.RHS = Visit(E->getSubExpr());
1444
1445  if (BinOp.RHS->getType()->isFPOrFPVectorTy())
1446    BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType());
1447  else
1448    BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
1449  BinOp.Ty = E->getType();
1450  BinOp.Opcode = BO_Sub;
1451  BinOp.E = E;
1452  return EmitSub(BinOp);
1453}
1454
1455Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
1456  TestAndClearIgnoreResultAssign();
1457  Value *Op = Visit(E->getSubExpr());
1458  return Builder.CreateNot(Op, "neg");
1459}
1460
1461Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
1462  // Compare operand to zero.
1463  Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
1464
1465  // Invert value.
1466  // TODO: Could dynamically modify easy computations here.  For example, if
1467  // the operand is an icmp ne, turn into icmp eq.
1468  BoolVal = Builder.CreateNot(BoolVal, "lnot");
1469
1470  // ZExt result to the expr type.
1471  return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
1472}
1473
1474Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
1475  // Try folding the offsetof to a constant.
1476  Expr::EvalResult EvalResult;
1477  if (E->Evaluate(EvalResult, CGF.getContext()))
1478    return Builder.getInt(EvalResult.Val.getInt());
1479
1480  // Loop over the components of the offsetof to compute the value.
1481  unsigned n = E->getNumComponents();
1482  llvm::Type* ResultType = ConvertType(E->getType());
1483  llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
1484  QualType CurrentType = E->getTypeSourceInfo()->getType();
1485  for (unsigned i = 0; i != n; ++i) {
1486    OffsetOfExpr::OffsetOfNode ON = E->getComponent(i);
1487    llvm::Value *Offset = 0;
1488    switch (ON.getKind()) {
1489    case OffsetOfExpr::OffsetOfNode::Array: {
1490      // Compute the index
1491      Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
1492      llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
1493      bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
1494      Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
1495
1496      // Save the element type
1497      CurrentType =
1498          CGF.getContext().getAsArrayType(CurrentType)->getElementType();
1499
1500      // Compute the element size
1501      llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
1502          CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
1503
1504      // Multiply out to compute the result
1505      Offset = Builder.CreateMul(Idx, ElemSize);
1506      break;
1507    }
1508
1509    case OffsetOfExpr::OffsetOfNode::Field: {
1510      FieldDecl *MemberDecl = ON.getField();
1511      RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1512      const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1513
1514      // Compute the index of the field in its parent.
1515      unsigned i = 0;
1516      // FIXME: It would be nice if we didn't have to loop here!
1517      for (RecordDecl::field_iterator Field = RD->field_begin(),
1518                                      FieldEnd = RD->field_end();
1519           Field != FieldEnd; (void)++Field, ++i) {
1520        if (*Field == MemberDecl)
1521          break;
1522      }
1523      assert(i < RL.getFieldCount() && "offsetof field in wrong type");
1524
1525      // Compute the offset to the field
1526      int64_t OffsetInt = RL.getFieldOffset(i) /
1527                          CGF.getContext().getCharWidth();
1528      Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
1529
1530      // Save the element type.
1531      CurrentType = MemberDecl->getType();
1532      break;
1533    }
1534
1535    case OffsetOfExpr::OffsetOfNode::Identifier:
1536      llvm_unreachable("dependent __builtin_offsetof");
1537
1538    case OffsetOfExpr::OffsetOfNode::Base: {
1539      if (ON.getBase()->isVirtual()) {
1540        CGF.ErrorUnsupported(E, "virtual base in offsetof");
1541        continue;
1542      }
1543
1544      RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1545      const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1546
1547      // Save the element type.
1548      CurrentType = ON.getBase()->getType();
1549
1550      // Compute the offset to the base.
1551      const RecordType *BaseRT = CurrentType->getAs<RecordType>();
1552      CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
1553      int64_t OffsetInt = RL.getBaseClassOffsetInBits(BaseRD) /
1554                          CGF.getContext().getCharWidth();
1555      Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
1556      break;
1557    }
1558    }
1559    Result = Builder.CreateAdd(Result, Offset);
1560  }
1561  return Result;
1562}
1563
1564/// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
1565/// argument of the sizeof expression as an integer.
1566Value *
1567ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
1568                              const UnaryExprOrTypeTraitExpr *E) {
1569  QualType TypeToSize = E->getTypeOfArgument();
1570  if (E->getKind() == UETT_SizeOf) {
1571    if (const VariableArrayType *VAT =
1572          CGF.getContext().getAsVariableArrayType(TypeToSize)) {
1573      if (E->isArgumentType()) {
1574        // sizeof(type) - make sure to emit the VLA size.
1575        CGF.EmitVariablyModifiedType(TypeToSize);
1576      } else {
1577        // C99 6.5.3.4p2: If the argument is an expression of type
1578        // VLA, it is evaluated.
1579        CGF.EmitIgnoredExpr(E->getArgumentExpr());
1580      }
1581
1582      QualType eltType;
1583      llvm::Value *numElts;
1584      llvm::tie(numElts, eltType) = CGF.getVLASize(VAT);
1585
1586      llvm::Value *size = numElts;
1587
1588      // Scale the number of non-VLA elements by the non-VLA element size.
1589      CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
1590      if (!eltSize.isOne())
1591        size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), numElts);
1592
1593      return size;
1594    }
1595  }
1596
1597  // If this isn't sizeof(vla), the result must be constant; use the constant
1598  // folding logic so we don't have to duplicate it here.
1599  Expr::EvalResult Result;
1600  E->Evaluate(Result, CGF.getContext());
1601  return Builder.getInt(Result.Val.getInt());
1602}
1603
1604Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
1605  Expr *Op = E->getSubExpr();
1606  if (Op->getType()->isAnyComplexType()) {
1607    // If it's an l-value, load through the appropriate subobject l-value.
1608    // Note that we have to ask E because Op might be an l-value that
1609    // this won't work for, e.g. an Obj-C property.
1610    if (E->isGLValue())
1611      return CGF.EmitLoadOfLValue(CGF.EmitLValue(E)).getScalarVal();
1612
1613    // Otherwise, calculate and project.
1614    return CGF.EmitComplexExpr(Op, false, true).first;
1615  }
1616
1617  return Visit(Op);
1618}
1619
1620Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
1621  Expr *Op = E->getSubExpr();
1622  if (Op->getType()->isAnyComplexType()) {
1623    // If it's an l-value, load through the appropriate subobject l-value.
1624    // Note that we have to ask E because Op might be an l-value that
1625    // this won't work for, e.g. an Obj-C property.
1626    if (Op->isGLValue())
1627      return CGF.EmitLoadOfLValue(CGF.EmitLValue(E)).getScalarVal();
1628
1629    // Otherwise, calculate and project.
1630    return CGF.EmitComplexExpr(Op, true, false).second;
1631  }
1632
1633  // __imag on a scalar returns zero.  Emit the subexpr to ensure side
1634  // effects are evaluated, but not the actual value.
1635  CGF.EmitScalarExpr(Op, true);
1636  return llvm::Constant::getNullValue(ConvertType(E->getType()));
1637}
1638
1639//===----------------------------------------------------------------------===//
1640//                           Binary Operators
1641//===----------------------------------------------------------------------===//
1642
1643BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
1644  TestAndClearIgnoreResultAssign();
1645  BinOpInfo Result;
1646  Result.LHS = Visit(E->getLHS());
1647  Result.RHS = Visit(E->getRHS());
1648  Result.Ty  = E->getType();
1649  Result.Opcode = E->getOpcode();
1650  Result.E = E;
1651  return Result;
1652}
1653
1654LValue ScalarExprEmitter::EmitCompoundAssignLValue(
1655                                              const CompoundAssignOperator *E,
1656                        Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
1657                                                   Value *&Result) {
1658  QualType LHSTy = E->getLHS()->getType();
1659  BinOpInfo OpInfo;
1660
1661  if (E->getComputationResultType()->isAnyComplexType()) {
1662    // This needs to go through the complex expression emitter, but it's a tad
1663    // complicated to do that... I'm leaving it out for now.  (Note that we do
1664    // actually need the imaginary part of the RHS for multiplication and
1665    // division.)
1666    CGF.ErrorUnsupported(E, "complex compound assignment");
1667    Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1668    return LValue();
1669  }
1670
1671  // Emit the RHS first.  __block variables need to have the rhs evaluated
1672  // first, plus this should improve codegen a little.
1673  OpInfo.RHS = Visit(E->getRHS());
1674  OpInfo.Ty = E->getComputationResultType();
1675  OpInfo.Opcode = E->getOpcode();
1676  OpInfo.E = E;
1677  // Load/convert the LHS.
1678  LValue LHSLV = EmitCheckedLValue(E->getLHS());
1679  OpInfo.LHS = EmitLoadOfLValue(LHSLV);
1680  OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy,
1681                                    E->getComputationLHSType());
1682
1683  // Expand the binary operator.
1684  Result = (this->*Func)(OpInfo);
1685
1686  // Convert the result back to the LHS type.
1687  Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy);
1688
1689  // Store the result value into the LHS lvalue. Bit-fields are handled
1690  // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
1691  // 'An assignment expression has the value of the left operand after the
1692  // assignment...'.
1693  if (LHSLV.isBitField())
1694    CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
1695  else
1696    CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
1697
1698  return LHSLV;
1699}
1700
1701Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
1702                      Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
1703  bool Ignore = TestAndClearIgnoreResultAssign();
1704  Value *RHS;
1705  LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
1706
1707  // If the result is clearly ignored, return now.
1708  if (Ignore)
1709    return 0;
1710
1711  // The result of an assignment in C is the assigned r-value.
1712  if (!CGF.getContext().getLangOptions().CPlusPlus)
1713    return RHS;
1714
1715  // Objective-C property assignment never reloads the value following a store.
1716  if (LHS.isPropertyRef())
1717    return RHS;
1718
1719  // If the lvalue is non-volatile, return the computed value of the assignment.
1720  if (!LHS.isVolatileQualified())
1721    return RHS;
1722
1723  // Otherwise, reload the value.
1724  return EmitLoadOfLValue(LHS);
1725}
1726
1727void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
1728     					    const BinOpInfo &Ops,
1729				     	    llvm::Value *Zero, bool isDiv) {
1730  llvm::Function::iterator insertPt = Builder.GetInsertBlock();
1731  llvm::BasicBlock *contBB =
1732    CGF.createBasicBlock(isDiv ? "div.cont" : "rem.cont", CGF.CurFn,
1733                         llvm::next(insertPt));
1734  llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
1735
1736  llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
1737
1738  if (Ops.Ty->hasSignedIntegerRepresentation()) {
1739    llvm::Value *IntMin =
1740      Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
1741    llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
1742
1743    llvm::Value *Cond1 = Builder.CreateICmpEQ(Ops.RHS, Zero);
1744    llvm::Value *LHSCmp = Builder.CreateICmpEQ(Ops.LHS, IntMin);
1745    llvm::Value *RHSCmp = Builder.CreateICmpEQ(Ops.RHS, NegOne);
1746    llvm::Value *Cond2 = Builder.CreateAnd(LHSCmp, RHSCmp, "and");
1747    Builder.CreateCondBr(Builder.CreateOr(Cond1, Cond2, "or"),
1748                         overflowBB, contBB);
1749  } else {
1750    CGF.Builder.CreateCondBr(Builder.CreateICmpEQ(Ops.RHS, Zero),
1751                             overflowBB, contBB);
1752  }
1753  EmitOverflowBB(overflowBB);
1754  Builder.SetInsertPoint(contBB);
1755}
1756
1757Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
1758  if (isTrapvOverflowBehavior()) {
1759    llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
1760
1761    if (Ops.Ty->isIntegerType())
1762      EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
1763    else if (Ops.Ty->isRealFloatingType()) {
1764      llvm::Function::iterator insertPt = Builder.GetInsertBlock();
1765      llvm::BasicBlock *DivCont = CGF.createBasicBlock("div.cont", CGF.CurFn,
1766                                                       llvm::next(insertPt));
1767      llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow",
1768                                                          CGF.CurFn);
1769      CGF.Builder.CreateCondBr(Builder.CreateFCmpOEQ(Ops.RHS, Zero),
1770                               overflowBB, DivCont);
1771      EmitOverflowBB(overflowBB);
1772      Builder.SetInsertPoint(DivCont);
1773    }
1774  }
1775  if (Ops.LHS->getType()->isFPOrFPVectorTy())
1776    return Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
1777  else if (Ops.Ty->hasUnsignedIntegerRepresentation())
1778    return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
1779  else
1780    return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
1781}
1782
1783Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
1784  // Rem in C can't be a floating point type: C99 6.5.5p2.
1785  if (isTrapvOverflowBehavior()) {
1786    llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
1787
1788    if (Ops.Ty->isIntegerType())
1789      EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
1790  }
1791
1792  if (Ops.Ty->hasUnsignedIntegerRepresentation())
1793    return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
1794  else
1795    return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
1796}
1797
1798Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
1799  unsigned IID;
1800  unsigned OpID = 0;
1801
1802  switch (Ops.Opcode) {
1803  case BO_Add:
1804  case BO_AddAssign:
1805    OpID = 1;
1806    IID = llvm::Intrinsic::sadd_with_overflow;
1807    break;
1808  case BO_Sub:
1809  case BO_SubAssign:
1810    OpID = 2;
1811    IID = llvm::Intrinsic::ssub_with_overflow;
1812    break;
1813  case BO_Mul:
1814  case BO_MulAssign:
1815    OpID = 3;
1816    IID = llvm::Intrinsic::smul_with_overflow;
1817    break;
1818  default:
1819    llvm_unreachable("Unsupported operation for overflow detection");
1820    IID = 0;
1821  }
1822  OpID <<= 1;
1823  OpID |= 1;
1824
1825  llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
1826
1827  llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
1828
1829  Value *resultAndOverflow = Builder.CreateCall2(intrinsic, Ops.LHS, Ops.RHS);
1830  Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
1831  Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
1832
1833  // Branch in case of overflow.
1834  llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
1835  llvm::Function::iterator insertPt = initialBB;
1836  llvm::BasicBlock *continueBB = CGF.createBasicBlock("nooverflow", CGF.CurFn,
1837                                                      llvm::next(insertPt));
1838  llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
1839
1840  Builder.CreateCondBr(overflow, overflowBB, continueBB);
1841
1842  // Handle overflow with llvm.trap.
1843  const std::string *handlerName =
1844    &CGF.getContext().getLangOptions().OverflowHandler;
1845  if (handlerName->empty()) {
1846    EmitOverflowBB(overflowBB);
1847    Builder.SetInsertPoint(continueBB);
1848    return result;
1849  }
1850
1851  // If an overflow handler is set, then we want to call it and then use its
1852  // result, if it returns.
1853  Builder.SetInsertPoint(overflowBB);
1854
1855  // Get the overflow handler.
1856  llvm::Type *Int8Ty = llvm::Type::getInt8Ty(VMContext);
1857  llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
1858  llvm::FunctionType *handlerTy =
1859      llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
1860  llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
1861
1862  // Sign extend the args to 64-bit, so that we can use the same handler for
1863  // all types of overflow.
1864  llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
1865  llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
1866
1867  // Call the handler with the two arguments, the operation, and the size of
1868  // the result.
1869  llvm::Value *handlerResult = Builder.CreateCall4(handler, lhs, rhs,
1870      Builder.getInt8(OpID),
1871      Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth()));
1872
1873  // Truncate the result back to the desired size.
1874  handlerResult = Builder.CreateTrunc(handlerResult, opTy);
1875  Builder.CreateBr(continueBB);
1876
1877  Builder.SetInsertPoint(continueBB);
1878  llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
1879  phi->addIncoming(result, initialBB);
1880  phi->addIncoming(handlerResult, overflowBB);
1881
1882  return phi;
1883}
1884
1885/// Emit pointer + index arithmetic.
1886static Value *emitPointerArithmetic(CodeGenFunction &CGF,
1887                                    const BinOpInfo &op,
1888                                    bool isSubtraction) {
1889  // Must have binary (not unary) expr here.  Unary pointer
1890  // increment/decrement doesn't use this path.
1891  const BinaryOperator *expr = cast<BinaryOperator>(op.E);
1892
1893  Value *pointer = op.LHS;
1894  Expr *pointerOperand = expr->getLHS();
1895  Value *index = op.RHS;
1896  Expr *indexOperand = expr->getRHS();
1897
1898  // In a subtraction, the LHS is always the pointer.
1899  if (!isSubtraction && !pointer->getType()->isPointerTy()) {
1900    std::swap(pointer, index);
1901    std::swap(pointerOperand, indexOperand);
1902  }
1903
1904  unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
1905  if (width != CGF.PointerWidthInBits) {
1906    // Zero-extend or sign-extend the pointer value according to
1907    // whether the index is signed or not.
1908    bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
1909    index = CGF.Builder.CreateIntCast(index, CGF.PtrDiffTy, isSigned,
1910                                      "idx.ext");
1911  }
1912
1913  // If this is subtraction, negate the index.
1914  if (isSubtraction)
1915    index = CGF.Builder.CreateNeg(index, "idx.neg");
1916
1917  const PointerType *pointerType
1918    = pointerOperand->getType()->getAs<PointerType>();
1919  if (!pointerType) {
1920    QualType objectType = pointerOperand->getType()
1921                                        ->castAs<ObjCObjectPointerType>()
1922                                        ->getPointeeType();
1923    llvm::Value *objectSize
1924      = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
1925
1926    index = CGF.Builder.CreateMul(index, objectSize);
1927
1928    Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
1929    result = CGF.Builder.CreateGEP(result, index, "add.ptr");
1930    return CGF.Builder.CreateBitCast(result, pointer->getType());
1931  }
1932
1933  QualType elementType = pointerType->getPointeeType();
1934  if (const VariableArrayType *vla
1935        = CGF.getContext().getAsVariableArrayType(elementType)) {
1936    // The element count here is the total number of non-VLA elements.
1937    llvm::Value *numElements = CGF.getVLASize(vla).first;
1938
1939    // Effectively, the multiply by the VLA size is part of the GEP.
1940    // GEP indexes are signed, and scaling an index isn't permitted to
1941    // signed-overflow, so we use the same semantics for our explicit
1942    // multiply.  We suppress this if overflow is not undefined behavior.
1943    if (CGF.getLangOptions().isSignedOverflowDefined()) {
1944      index = CGF.Builder.CreateMul(index, numElements, "vla.index");
1945      pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
1946    } else {
1947      index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
1948      pointer = CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
1949    }
1950    return pointer;
1951  }
1952
1953  // Explicitly handle GNU void* and function pointer arithmetic extensions. The
1954  // GNU void* casts amount to no-ops since our void* type is i8*, but this is
1955  // future proof.
1956  if (elementType->isVoidType() || elementType->isFunctionType()) {
1957    Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
1958    result = CGF.Builder.CreateGEP(result, index, "add.ptr");
1959    return CGF.Builder.CreateBitCast(result, pointer->getType());
1960  }
1961
1962  if (CGF.getLangOptions().isSignedOverflowDefined())
1963    return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
1964
1965  return CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
1966}
1967
1968Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
1969  if (op.LHS->getType()->isPointerTy() ||
1970      op.RHS->getType()->isPointerTy())
1971    return emitPointerArithmetic(CGF, op, /*subtraction*/ false);
1972
1973  if (op.Ty->isSignedIntegerOrEnumerationType()) {
1974    switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
1975    case LangOptions::SOB_Undefined:
1976      return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
1977    case LangOptions::SOB_Defined:
1978      return Builder.CreateAdd(op.LHS, op.RHS, "add");
1979    case LangOptions::SOB_Trapping:
1980      return EmitOverflowCheckedBinOp(op);
1981    }
1982  }
1983
1984  if (op.LHS->getType()->isFPOrFPVectorTy())
1985    return Builder.CreateFAdd(op.LHS, op.RHS, "add");
1986
1987  return Builder.CreateAdd(op.LHS, op.RHS, "add");
1988}
1989
1990Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
1991  // The LHS is always a pointer if either side is.
1992  if (!op.LHS->getType()->isPointerTy()) {
1993    if (op.Ty->isSignedIntegerOrEnumerationType()) {
1994      switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
1995      case LangOptions::SOB_Undefined:
1996        return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
1997      case LangOptions::SOB_Defined:
1998        return Builder.CreateSub(op.LHS, op.RHS, "sub");
1999      case LangOptions::SOB_Trapping:
2000        return EmitOverflowCheckedBinOp(op);
2001      }
2002    }
2003
2004    if (op.LHS->getType()->isFPOrFPVectorTy())
2005      return Builder.CreateFSub(op.LHS, op.RHS, "sub");
2006
2007    return Builder.CreateSub(op.LHS, op.RHS, "sub");
2008  }
2009
2010  // If the RHS is not a pointer, then we have normal pointer
2011  // arithmetic.
2012  if (!op.RHS->getType()->isPointerTy())
2013    return emitPointerArithmetic(CGF, op, /*subtraction*/ true);
2014
2015  // Otherwise, this is a pointer subtraction.
2016
2017  // Do the raw subtraction part.
2018  llvm::Value *LHS
2019    = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
2020  llvm::Value *RHS
2021    = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
2022  Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
2023
2024  // Okay, figure out the element size.
2025  const BinaryOperator *expr = cast<BinaryOperator>(op.E);
2026  QualType elementType = expr->getLHS()->getType()->getPointeeType();
2027
2028  llvm::Value *divisor = 0;
2029
2030  // For a variable-length array, this is going to be non-constant.
2031  if (const VariableArrayType *vla
2032        = CGF.getContext().getAsVariableArrayType(elementType)) {
2033    llvm::Value *numElements;
2034    llvm::tie(numElements, elementType) = CGF.getVLASize(vla);
2035
2036    divisor = numElements;
2037
2038    // Scale the number of non-VLA elements by the non-VLA element size.
2039    CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
2040    if (!eltSize.isOne())
2041      divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
2042
2043  // For everything elese, we can just compute it, safe in the
2044  // assumption that Sema won't let anything through that we can't
2045  // safely compute the size of.
2046  } else {
2047    CharUnits elementSize;
2048    // Handle GCC extension for pointer arithmetic on void* and
2049    // function pointer types.
2050    if (elementType->isVoidType() || elementType->isFunctionType())
2051      elementSize = CharUnits::One();
2052    else
2053      elementSize = CGF.getContext().getTypeSizeInChars(elementType);
2054
2055    // Don't even emit the divide for element size of 1.
2056    if (elementSize.isOne())
2057      return diffInChars;
2058
2059    divisor = CGF.CGM.getSize(elementSize);
2060  }
2061
2062  // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
2063  // pointer difference in C is only defined in the case where both operands
2064  // are pointing to elements of an array.
2065  return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
2066}
2067
2068Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
2069  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2070  // RHS to the same size as the LHS.
2071  Value *RHS = Ops.RHS;
2072  if (Ops.LHS->getType() != RHS->getType())
2073    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2074
2075  if (CGF.CatchUndefined
2076      && isa<llvm::IntegerType>(Ops.LHS->getType())) {
2077    unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth();
2078    llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
2079    CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS,
2080                                 llvm::ConstantInt::get(RHS->getType(), Width)),
2081                             Cont, CGF.getTrapBB());
2082    CGF.EmitBlock(Cont);
2083  }
2084
2085  return Builder.CreateShl(Ops.LHS, RHS, "shl");
2086}
2087
2088Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
2089  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2090  // RHS to the same size as the LHS.
2091  Value *RHS = Ops.RHS;
2092  if (Ops.LHS->getType() != RHS->getType())
2093    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2094
2095  if (CGF.CatchUndefined
2096      && isa<llvm::IntegerType>(Ops.LHS->getType())) {
2097    unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth();
2098    llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
2099    CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS,
2100                                 llvm::ConstantInt::get(RHS->getType(), Width)),
2101                             Cont, CGF.getTrapBB());
2102    CGF.EmitBlock(Cont);
2103  }
2104
2105  if (Ops.Ty->hasUnsignedIntegerRepresentation())
2106    return Builder.CreateLShr(Ops.LHS, RHS, "shr");
2107  return Builder.CreateAShr(Ops.LHS, RHS, "shr");
2108}
2109
2110enum IntrinsicType { VCMPEQ, VCMPGT };
2111// return corresponding comparison intrinsic for given vector type
2112static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
2113                                        BuiltinType::Kind ElemKind) {
2114  switch (ElemKind) {
2115  default: llvm_unreachable("unexpected element type");
2116  case BuiltinType::Char_U:
2117  case BuiltinType::UChar:
2118    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2119                            llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
2120    break;
2121  case BuiltinType::Char_S:
2122  case BuiltinType::SChar:
2123    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2124                            llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
2125    break;
2126  case BuiltinType::UShort:
2127    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2128                            llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
2129    break;
2130  case BuiltinType::Short:
2131    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2132                            llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
2133    break;
2134  case BuiltinType::UInt:
2135  case BuiltinType::ULong:
2136    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2137                            llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
2138    break;
2139  case BuiltinType::Int:
2140  case BuiltinType::Long:
2141    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2142                            llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
2143    break;
2144  case BuiltinType::Float:
2145    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
2146                            llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
2147    break;
2148  }
2149  return llvm::Intrinsic::not_intrinsic;
2150}
2151
2152Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
2153                                      unsigned SICmpOpc, unsigned FCmpOpc) {
2154  TestAndClearIgnoreResultAssign();
2155  Value *Result;
2156  QualType LHSTy = E->getLHS()->getType();
2157  if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
2158    assert(E->getOpcode() == BO_EQ ||
2159           E->getOpcode() == BO_NE);
2160    Value *LHS = CGF.EmitScalarExpr(E->getLHS());
2161    Value *RHS = CGF.EmitScalarExpr(E->getRHS());
2162    Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
2163                   CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
2164  } else if (!LHSTy->isAnyComplexType()) {
2165    Value *LHS = Visit(E->getLHS());
2166    Value *RHS = Visit(E->getRHS());
2167
2168    // If AltiVec, the comparison results in a numeric type, so we use
2169    // intrinsics comparing vectors and giving 0 or 1 as a result
2170    if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
2171      // constants for mapping CR6 register bits to predicate result
2172      enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
2173
2174      llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
2175
2176      // in several cases vector arguments order will be reversed
2177      Value *FirstVecArg = LHS,
2178            *SecondVecArg = RHS;
2179
2180      QualType ElTy = LHSTy->getAs<VectorType>()->getElementType();
2181      const BuiltinType *BTy = ElTy->getAs<BuiltinType>();
2182      BuiltinType::Kind ElementKind = BTy->getKind();
2183
2184      switch(E->getOpcode()) {
2185      default: llvm_unreachable("is not a comparison operation");
2186      case BO_EQ:
2187        CR6 = CR6_LT;
2188        ID = GetIntrinsic(VCMPEQ, ElementKind);
2189        break;
2190      case BO_NE:
2191        CR6 = CR6_EQ;
2192        ID = GetIntrinsic(VCMPEQ, ElementKind);
2193        break;
2194      case BO_LT:
2195        CR6 = CR6_LT;
2196        ID = GetIntrinsic(VCMPGT, ElementKind);
2197        std::swap(FirstVecArg, SecondVecArg);
2198        break;
2199      case BO_GT:
2200        CR6 = CR6_LT;
2201        ID = GetIntrinsic(VCMPGT, ElementKind);
2202        break;
2203      case BO_LE:
2204        if (ElementKind == BuiltinType::Float) {
2205          CR6 = CR6_LT;
2206          ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2207          std::swap(FirstVecArg, SecondVecArg);
2208        }
2209        else {
2210          CR6 = CR6_EQ;
2211          ID = GetIntrinsic(VCMPGT, ElementKind);
2212        }
2213        break;
2214      case BO_GE:
2215        if (ElementKind == BuiltinType::Float) {
2216          CR6 = CR6_LT;
2217          ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2218        }
2219        else {
2220          CR6 = CR6_EQ;
2221          ID = GetIntrinsic(VCMPGT, ElementKind);
2222          std::swap(FirstVecArg, SecondVecArg);
2223        }
2224        break;
2225      }
2226
2227      Value *CR6Param = Builder.getInt32(CR6);
2228      llvm::Function *F = CGF.CGM.getIntrinsic(ID);
2229      Result = Builder.CreateCall3(F, CR6Param, FirstVecArg, SecondVecArg, "");
2230      return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
2231    }
2232
2233    if (LHS->getType()->isFPOrFPVectorTy()) {
2234      Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
2235                                  LHS, RHS, "cmp");
2236    } else if (LHSTy->hasSignedIntegerRepresentation()) {
2237      Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
2238                                  LHS, RHS, "cmp");
2239    } else {
2240      // Unsigned integers and pointers.
2241      Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2242                                  LHS, RHS, "cmp");
2243    }
2244
2245    // If this is a vector comparison, sign extend the result to the appropriate
2246    // vector integer type and return it (don't convert to bool).
2247    if (LHSTy->isVectorType())
2248      return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2249
2250  } else {
2251    // Complex Comparison: can only be an equality comparison.
2252    CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS());
2253    CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS());
2254
2255    QualType CETy = LHSTy->getAs<ComplexType>()->getElementType();
2256
2257    Value *ResultR, *ResultI;
2258    if (CETy->isRealFloatingType()) {
2259      ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
2260                                   LHS.first, RHS.first, "cmp.r");
2261      ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
2262                                   LHS.second, RHS.second, "cmp.i");
2263    } else {
2264      // Complex comparisons can only be equality comparisons.  As such, signed
2265      // and unsigned opcodes are the same.
2266      ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2267                                   LHS.first, RHS.first, "cmp.r");
2268      ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2269                                   LHS.second, RHS.second, "cmp.i");
2270    }
2271
2272    if (E->getOpcode() == BO_EQ) {
2273      Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
2274    } else {
2275      assert(E->getOpcode() == BO_NE &&
2276             "Complex comparison other than == or != ?");
2277      Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
2278    }
2279  }
2280
2281  return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
2282}
2283
2284Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
2285  bool Ignore = TestAndClearIgnoreResultAssign();
2286
2287  Value *RHS;
2288  LValue LHS;
2289
2290  switch (E->getLHS()->getType().getObjCLifetime()) {
2291  case Qualifiers::OCL_Strong:
2292    llvm::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
2293    break;
2294
2295  case Qualifiers::OCL_Autoreleasing:
2296    llvm::tie(LHS,RHS) = CGF.EmitARCStoreAutoreleasing(E);
2297    break;
2298
2299  case Qualifiers::OCL_Weak:
2300    RHS = Visit(E->getRHS());
2301    LHS = EmitCheckedLValue(E->getLHS());
2302    RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore);
2303    break;
2304
2305  // No reason to do any of these differently.
2306  case Qualifiers::OCL_None:
2307  case Qualifiers::OCL_ExplicitNone:
2308    // __block variables need to have the rhs evaluated first, plus
2309    // this should improve codegen just a little.
2310    RHS = Visit(E->getRHS());
2311    LHS = EmitCheckedLValue(E->getLHS());
2312
2313    // Store the value into the LHS.  Bit-fields are handled specially
2314    // because the result is altered by the store, i.e., [C99 6.5.16p1]
2315    // 'An assignment expression has the value of the left operand after
2316    // the assignment...'.
2317    if (LHS.isBitField())
2318      CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
2319    else
2320      CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
2321  }
2322
2323  // If the result is clearly ignored, return now.
2324  if (Ignore)
2325    return 0;
2326
2327  // The result of an assignment in C is the assigned r-value.
2328  if (!CGF.getContext().getLangOptions().CPlusPlus)
2329    return RHS;
2330
2331  // Objective-C property assignment never reloads the value following a store.
2332  if (LHS.isPropertyRef())
2333    return RHS;
2334
2335  // If the lvalue is non-volatile, return the computed value of the assignment.
2336  if (!LHS.isVolatileQualified())
2337    return RHS;
2338
2339  // Otherwise, reload the value.
2340  return EmitLoadOfLValue(LHS);
2341}
2342
2343Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
2344  llvm::Type *ResTy = ConvertType(E->getType());
2345
2346  // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
2347  // If we have 1 && X, just emit X without inserting the control flow.
2348  bool LHSCondVal;
2349  if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
2350    if (LHSCondVal) { // If we have 1 && X, just emit X.
2351      Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2352      // ZExt result to int or bool.
2353      return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
2354    }
2355
2356    // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
2357    if (!CGF.ContainsLabel(E->getRHS()))
2358      return llvm::Constant::getNullValue(ResTy);
2359  }
2360
2361  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
2362  llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
2363
2364  CodeGenFunction::ConditionalEvaluation eval(CGF);
2365
2366  // Branch on the LHS first.  If it is false, go to the failure (cont) block.
2367  CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock);
2368
2369  // Any edges into the ContBlock are now from an (indeterminate number of)
2370  // edges from this first condition.  All of these values will be false.  Start
2371  // setting up the PHI node in the Cont Block for this.
2372  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
2373                                            "", ContBlock);
2374  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
2375       PI != PE; ++PI)
2376    PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
2377
2378  eval.begin(CGF);
2379  CGF.EmitBlock(RHSBlock);
2380  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2381  eval.end(CGF);
2382
2383  // Reaquire the RHS block, as there may be subblocks inserted.
2384  RHSBlock = Builder.GetInsertBlock();
2385
2386  // Emit an unconditional branch from this block to ContBlock.  Insert an entry
2387  // into the phi node for the edge with the value of RHSCond.
2388  if (CGF.getDebugInfo())
2389    // There is no need to emit line number for unconditional branch.
2390    Builder.SetCurrentDebugLocation(llvm::DebugLoc());
2391  CGF.EmitBlock(ContBlock);
2392  PN->addIncoming(RHSCond, RHSBlock);
2393
2394  // ZExt result to int.
2395  return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
2396}
2397
2398Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
2399  llvm::Type *ResTy = ConvertType(E->getType());
2400
2401  // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
2402  // If we have 0 || X, just emit X without inserting the control flow.
2403  bool LHSCondVal;
2404  if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
2405    if (!LHSCondVal) { // If we have 0 || X, just emit X.
2406      Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2407      // ZExt result to int or bool.
2408      return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
2409    }
2410
2411    // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
2412    if (!CGF.ContainsLabel(E->getRHS()))
2413      return llvm::ConstantInt::get(ResTy, 1);
2414  }
2415
2416  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
2417  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
2418
2419  CodeGenFunction::ConditionalEvaluation eval(CGF);
2420
2421  // Branch on the LHS first.  If it is true, go to the success (cont) block.
2422  CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock);
2423
2424  // Any edges into the ContBlock are now from an (indeterminate number of)
2425  // edges from this first condition.  All of these values will be true.  Start
2426  // setting up the PHI node in the Cont Block for this.
2427  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
2428                                            "", ContBlock);
2429  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
2430       PI != PE; ++PI)
2431    PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
2432
2433  eval.begin(CGF);
2434
2435  // Emit the RHS condition as a bool value.
2436  CGF.EmitBlock(RHSBlock);
2437  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2438
2439  eval.end(CGF);
2440
2441  // Reaquire the RHS block, as there may be subblocks inserted.
2442  RHSBlock = Builder.GetInsertBlock();
2443
2444  // Emit an unconditional branch from this block to ContBlock.  Insert an entry
2445  // into the phi node for the edge with the value of RHSCond.
2446  CGF.EmitBlock(ContBlock);
2447  PN->addIncoming(RHSCond, RHSBlock);
2448
2449  // ZExt result to int.
2450  return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
2451}
2452
2453Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
2454  CGF.EmitIgnoredExpr(E->getLHS());
2455  CGF.EnsureInsertPoint();
2456  return Visit(E->getRHS());
2457}
2458
2459//===----------------------------------------------------------------------===//
2460//                             Other Operators
2461//===----------------------------------------------------------------------===//
2462
2463/// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
2464/// expression is cheap enough and side-effect-free enough to evaluate
2465/// unconditionally instead of conditionally.  This is used to convert control
2466/// flow into selects in some cases.
2467static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
2468                                                   CodeGenFunction &CGF) {
2469  E = E->IgnoreParens();
2470
2471  // Anything that is an integer or floating point constant is fine.
2472  if (E->isConstantInitializer(CGF.getContext(), false))
2473    return true;
2474
2475  // Non-volatile automatic variables too, to get "cond ? X : Y" where
2476  // X and Y are local variables.
2477  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
2478    if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
2479      if (VD->hasLocalStorage() && !(CGF.getContext()
2480                                     .getCanonicalType(VD->getType())
2481                                     .isVolatileQualified()))
2482        return true;
2483
2484  return false;
2485}
2486
2487
2488Value *ScalarExprEmitter::
2489VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
2490  TestAndClearIgnoreResultAssign();
2491
2492  // Bind the common expression if necessary.
2493  CodeGenFunction::OpaqueValueMapping binding(CGF, E);
2494
2495  Expr *condExpr = E->getCond();
2496  Expr *lhsExpr = E->getTrueExpr();
2497  Expr *rhsExpr = E->getFalseExpr();
2498
2499  // If the condition constant folds and can be elided, try to avoid emitting
2500  // the condition and the dead arm.
2501  bool CondExprBool;
2502  if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
2503    Expr *live = lhsExpr, *dead = rhsExpr;
2504    if (!CondExprBool) std::swap(live, dead);
2505
2506    // If the dead side doesn't have labels we need, and if the Live side isn't
2507    // the gnu missing ?: extension (which we could handle, but don't bother
2508    // to), just emit the Live part.
2509    if (!CGF.ContainsLabel(dead))
2510      return Visit(live);
2511  }
2512
2513  // OpenCL: If the condition is a vector, we can treat this condition like
2514  // the select function.
2515  if (CGF.getContext().getLangOptions().OpenCL
2516      && condExpr->getType()->isVectorType()) {
2517    llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
2518    llvm::Value *LHS = Visit(lhsExpr);
2519    llvm::Value *RHS = Visit(rhsExpr);
2520
2521    llvm::Type *condType = ConvertType(condExpr->getType());
2522    llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
2523
2524    unsigned numElem = vecTy->getNumElements();
2525    llvm::Type *elemType = vecTy->getElementType();
2526
2527    std::vector<llvm::Constant*> Zvals;
2528    for (unsigned i = 0; i < numElem; ++i)
2529      Zvals.push_back(llvm::ConstantInt::get(elemType, 0));
2530
2531    llvm::Value *zeroVec = llvm::ConstantVector::get(Zvals);
2532    llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
2533    llvm::Value *tmp = Builder.CreateSExt(TestMSB,
2534                                          llvm::VectorType::get(elemType,
2535                                                                numElem),
2536                                          "sext");
2537    llvm::Value *tmp2 = Builder.CreateNot(tmp);
2538
2539    // Cast float to int to perform ANDs if necessary.
2540    llvm::Value *RHSTmp = RHS;
2541    llvm::Value *LHSTmp = LHS;
2542    bool wasCast = false;
2543    llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
2544    if (rhsVTy->getElementType()->isFloatTy()) {
2545      RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
2546      LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
2547      wasCast = true;
2548    }
2549
2550    llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
2551    llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
2552    llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
2553    if (wasCast)
2554      tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
2555
2556    return tmp5;
2557  }
2558
2559  // If this is a really simple expression (like x ? 4 : 5), emit this as a
2560  // select instead of as control flow.  We can only do this if it is cheap and
2561  // safe to evaluate the LHS and RHS unconditionally.
2562  if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
2563      isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
2564    llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
2565    llvm::Value *LHS = Visit(lhsExpr);
2566    llvm::Value *RHS = Visit(rhsExpr);
2567    return Builder.CreateSelect(CondV, LHS, RHS, "cond");
2568  }
2569
2570  llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
2571  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
2572  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
2573
2574  CodeGenFunction::ConditionalEvaluation eval(CGF);
2575  CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock);
2576
2577  CGF.EmitBlock(LHSBlock);
2578  eval.begin(CGF);
2579  Value *LHS = Visit(lhsExpr);
2580  eval.end(CGF);
2581
2582  LHSBlock = Builder.GetInsertBlock();
2583  Builder.CreateBr(ContBlock);
2584
2585  CGF.EmitBlock(RHSBlock);
2586  eval.begin(CGF);
2587  Value *RHS = Visit(rhsExpr);
2588  eval.end(CGF);
2589
2590  RHSBlock = Builder.GetInsertBlock();
2591  CGF.EmitBlock(ContBlock);
2592
2593  // If the LHS or RHS is a throw expression, it will be legitimately null.
2594  if (!LHS)
2595    return RHS;
2596  if (!RHS)
2597    return LHS;
2598
2599  // Create a PHI node for the real part.
2600  llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
2601  PN->addIncoming(LHS, LHSBlock);
2602  PN->addIncoming(RHS, RHSBlock);
2603  return PN;
2604}
2605
2606Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
2607  return Visit(E->getChosenSubExpr(CGF.getContext()));
2608}
2609
2610Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
2611  llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
2612  llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
2613
2614  // If EmitVAArg fails, we fall back to the LLVM instruction.
2615  if (!ArgPtr)
2616    return Builder.CreateVAArg(ArgValue, ConvertType(VE->getType()));
2617
2618  // FIXME Volatility.
2619  return Builder.CreateLoad(ArgPtr);
2620}
2621
2622Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
2623  return CGF.EmitBlockLiteral(block);
2624}
2625
2626Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
2627  Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
2628  llvm::Type *DstTy = ConvertType(E->getType());
2629
2630  // Going from vec4->vec3 or vec3->vec4 is a special case and requires
2631  // a shuffle vector instead of a bitcast.
2632  llvm::Type *SrcTy = Src->getType();
2633  if (isa<llvm::VectorType>(DstTy) && isa<llvm::VectorType>(SrcTy)) {
2634    unsigned numElementsDst = cast<llvm::VectorType>(DstTy)->getNumElements();
2635    unsigned numElementsSrc = cast<llvm::VectorType>(SrcTy)->getNumElements();
2636    if ((numElementsDst == 3 && numElementsSrc == 4)
2637        || (numElementsDst == 4 && numElementsSrc == 3)) {
2638
2639
2640      // In the case of going from int4->float3, a bitcast is needed before
2641      // doing a shuffle.
2642      llvm::Type *srcElemTy =
2643      cast<llvm::VectorType>(SrcTy)->getElementType();
2644      llvm::Type *dstElemTy =
2645      cast<llvm::VectorType>(DstTy)->getElementType();
2646
2647      if ((srcElemTy->isIntegerTy() && dstElemTy->isFloatTy())
2648          || (srcElemTy->isFloatTy() && dstElemTy->isIntegerTy())) {
2649        // Create a float type of the same size as the source or destination.
2650        llvm::VectorType *newSrcTy = llvm::VectorType::get(dstElemTy,
2651                                                                 numElementsSrc);
2652
2653        Src = Builder.CreateBitCast(Src, newSrcTy, "astypeCast");
2654      }
2655
2656      llvm::Value *UnV = llvm::UndefValue::get(Src->getType());
2657
2658      SmallVector<llvm::Constant*, 3> Args;
2659      Args.push_back(Builder.getInt32(0));
2660      Args.push_back(Builder.getInt32(1));
2661      Args.push_back(Builder.getInt32(2));
2662
2663      if (numElementsDst == 4)
2664        Args.push_back(llvm::UndefValue::get(
2665                                             llvm::Type::getInt32Ty(CGF.getLLVMContext())));
2666
2667      llvm::Constant *Mask = llvm::ConstantVector::get(Args);
2668
2669      return Builder.CreateShuffleVector(Src, UnV, Mask, "astype");
2670    }
2671  }
2672
2673  return Builder.CreateBitCast(Src, DstTy, "astype");
2674}
2675
2676Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
2677  return CGF.EmitAtomicExpr(E).getScalarVal();
2678}
2679
2680//===----------------------------------------------------------------------===//
2681//                         Entry Point into this File
2682//===----------------------------------------------------------------------===//
2683
2684/// EmitScalarExpr - Emit the computation of the specified expression of scalar
2685/// type, ignoring the result.
2686Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
2687  assert(E && !hasAggregateLLVMType(E->getType()) &&
2688         "Invalid scalar expression to emit");
2689
2690  if (isa<CXXDefaultArgExpr>(E))
2691    disableDebugInfo();
2692  Value *V = ScalarExprEmitter(*this, IgnoreResultAssign)
2693    .Visit(const_cast<Expr*>(E));
2694  if (isa<CXXDefaultArgExpr>(E))
2695    enableDebugInfo();
2696  return V;
2697}
2698
2699/// EmitScalarConversion - Emit a conversion from the specified type to the
2700/// specified destination type, both of which are LLVM scalar types.
2701Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
2702                                             QualType DstTy) {
2703  assert(!hasAggregateLLVMType(SrcTy) && !hasAggregateLLVMType(DstTy) &&
2704         "Invalid scalar expression to emit");
2705  return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
2706}
2707
2708/// EmitComplexToScalarConversion - Emit a conversion from the specified complex
2709/// type to the specified destination type, where the destination type is an
2710/// LLVM scalar type.
2711Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
2712                                                      QualType SrcTy,
2713                                                      QualType DstTy) {
2714  assert(SrcTy->isAnyComplexType() && !hasAggregateLLVMType(DstTy) &&
2715         "Invalid complex -> scalar conversion");
2716  return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy,
2717                                                                DstTy);
2718}
2719
2720
2721llvm::Value *CodeGenFunction::
2722EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2723                        bool isInc, bool isPre) {
2724  return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
2725}
2726
2727LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
2728  llvm::Value *V;
2729  // object->isa or (*object).isa
2730  // Generate code as for: *(Class*)object
2731  // build Class* type
2732  llvm::Type *ClassPtrTy = ConvertType(E->getType());
2733
2734  Expr *BaseExpr = E->getBase();
2735  if (BaseExpr->isRValue()) {
2736    V = CreateTempAlloca(ClassPtrTy, "resval");
2737    llvm::Value *Src = EmitScalarExpr(BaseExpr);
2738    Builder.CreateStore(Src, V);
2739    V = ScalarExprEmitter(*this).EmitLoadOfLValue(
2740      MakeAddrLValue(V, E->getType()));
2741  } else {
2742    if (E->isArrow())
2743      V = ScalarExprEmitter(*this).EmitLoadOfLValue(BaseExpr);
2744    else
2745      V = EmitLValue(BaseExpr).getAddress();
2746  }
2747
2748  // build Class* type
2749  ClassPtrTy = ClassPtrTy->getPointerTo();
2750  V = Builder.CreateBitCast(V, ClassPtrTy);
2751  return MakeAddrLValue(V, E->getType());
2752}
2753
2754
2755LValue CodeGenFunction::EmitCompoundAssignmentLValue(
2756                                            const CompoundAssignOperator *E) {
2757  ScalarExprEmitter Scalar(*this);
2758  Value *Result = 0;
2759  switch (E->getOpcode()) {
2760#define COMPOUND_OP(Op)                                                       \
2761    case BO_##Op##Assign:                                                     \
2762      return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
2763                                             Result)
2764  COMPOUND_OP(Mul);
2765  COMPOUND_OP(Div);
2766  COMPOUND_OP(Rem);
2767  COMPOUND_OP(Add);
2768  COMPOUND_OP(Sub);
2769  COMPOUND_OP(Shl);
2770  COMPOUND_OP(Shr);
2771  COMPOUND_OP(And);
2772  COMPOUND_OP(Xor);
2773  COMPOUND_OP(Or);
2774#undef COMPOUND_OP
2775
2776  case BO_PtrMemD:
2777  case BO_PtrMemI:
2778  case BO_Mul:
2779  case BO_Div:
2780  case BO_Rem:
2781  case BO_Add:
2782  case BO_Sub:
2783  case BO_Shl:
2784  case BO_Shr:
2785  case BO_LT:
2786  case BO_GT:
2787  case BO_LE:
2788  case BO_GE:
2789  case BO_EQ:
2790  case BO_NE:
2791  case BO_And:
2792  case BO_Xor:
2793  case BO_Or:
2794  case BO_LAnd:
2795  case BO_LOr:
2796  case BO_Assign:
2797  case BO_Comma:
2798    llvm_unreachable("Not valid compound assignment operators");
2799  }
2800
2801  llvm_unreachable("Unhandled compound assignment operator");
2802}
2803