CGExprScalar.cpp revision bd65cac8de63d108a681035782a71d42954b03ab
1//===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenFunction.h"
15#include "CodeGenModule.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/RecordLayout.h"
19#include "clang/AST/StmtVisitor.h"
20#include "clang/Basic/TargetInfo.h"
21#include "llvm/Constants.h"
22#include "llvm/Function.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/Intrinsics.h"
25#include "llvm/Support/Compiler.h"
26#include "llvm/Support/CFG.h"
27#include <cstdarg>
28
29using namespace clang;
30using namespace CodeGen;
31using llvm::Value;
32
33//===----------------------------------------------------------------------===//
34//                         Scalar Expression Emitter
35//===----------------------------------------------------------------------===//
36
37struct BinOpInfo {
38  Value *LHS;
39  Value *RHS;
40  QualType Ty;  // Computation Type.
41  const BinaryOperator *E;
42};
43
44namespace {
45class VISIBILITY_HIDDEN ScalarExprEmitter
46  : public StmtVisitor<ScalarExprEmitter, Value*> {
47  CodeGenFunction &CGF;
48  CGBuilderTy &Builder;
49
50public:
51
52  ScalarExprEmitter(CodeGenFunction &cgf) : CGF(cgf),
53    Builder(CGF.Builder) {
54  }
55
56  //===--------------------------------------------------------------------===//
57  //                               Utilities
58  //===--------------------------------------------------------------------===//
59
60  const llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
61  LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
62
63  Value *EmitLoadOfLValue(LValue LV, QualType T) {
64    return CGF.EmitLoadOfLValue(LV, T).getScalarVal();
65  }
66
67  /// EmitLoadOfLValue - Given an expression with complex type that represents a
68  /// value l-value, this method emits the address of the l-value, then loads
69  /// and returns the result.
70  Value *EmitLoadOfLValue(const Expr *E) {
71    // FIXME: Volatile
72    return EmitLoadOfLValue(EmitLValue(E), E->getType());
73  }
74
75  /// EmitConversionToBool - Convert the specified expression value to a
76  /// boolean (i1) truth value.  This is equivalent to "Val != 0".
77  Value *EmitConversionToBool(Value *Src, QualType DstTy);
78
79  /// EmitScalarConversion - Emit a conversion from the specified type to the
80  /// specified destination type, both of which are LLVM scalar types.
81  Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);
82
83  /// EmitComplexToScalarConversion - Emit a conversion from the specified
84  /// complex type to the specified destination type, where the destination
85  /// type is an LLVM scalar type.
86  Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
87                                       QualType SrcTy, QualType DstTy);
88
89  //===--------------------------------------------------------------------===//
90  //                            Visitor Methods
91  //===--------------------------------------------------------------------===//
92
93  Value *VisitStmt(Stmt *S) {
94    S->dump(CGF.getContext().getSourceManager());
95    assert(0 && "Stmt can't have complex result type!");
96    return 0;
97  }
98  Value *VisitExpr(Expr *S);
99  Value *VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr()); }
100
101  // Leaves.
102  Value *VisitIntegerLiteral(const IntegerLiteral *E) {
103    return llvm::ConstantInt::get(E->getValue());
104  }
105  Value *VisitFloatingLiteral(const FloatingLiteral *E) {
106    return llvm::ConstantFP::get(E->getValue());
107  }
108  Value *VisitCharacterLiteral(const CharacterLiteral *E) {
109    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
110  }
111  Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
112    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
113  }
114  Value *VisitCXXZeroInitValueExpr(const CXXZeroInitValueExpr *E) {
115    return llvm::Constant::getNullValue(ConvertType(E->getType()));
116  }
117  Value *VisitGNUNullExpr(const GNUNullExpr *E) {
118    return llvm::Constant::getNullValue(ConvertType(E->getType()));
119  }
120  Value *VisitTypesCompatibleExpr(const TypesCompatibleExpr *E) {
121    return llvm::ConstantInt::get(ConvertType(E->getType()),
122                                  CGF.getContext().typesAreCompatible(
123                                    E->getArgType1(), E->getArgType2()));
124  }
125  Value *VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E);
126  Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
127    llvm::Value *V =
128      llvm::ConstantInt::get(llvm::Type::Int32Ty,
129                             CGF.GetIDForAddrOfLabel(E->getLabel()));
130
131    return Builder.CreateIntToPtr(V, ConvertType(E->getType()));
132  }
133
134  // l-values.
135  Value *VisitDeclRefExpr(DeclRefExpr *E) {
136    if (const EnumConstantDecl *EC = dyn_cast<EnumConstantDecl>(E->getDecl()))
137      return llvm::ConstantInt::get(EC->getInitVal());
138    return EmitLoadOfLValue(E);
139  }
140  Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
141    return CGF.EmitObjCSelectorExpr(E);
142  }
143  Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
144    return CGF.EmitObjCProtocolExpr(E);
145  }
146  Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
147    return EmitLoadOfLValue(E);
148  }
149  Value *VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
150    return EmitLoadOfLValue(E);
151  }
152  Value *VisitObjCKVCRefExpr(ObjCKVCRefExpr *E) {
153    return EmitLoadOfLValue(E);
154  }
155  Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
156    return CGF.EmitObjCMessageExpr(E).getScalarVal();
157  }
158
159  Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
160  Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
161  Value *VisitMemberExpr(Expr *E)           { return EmitLoadOfLValue(E); }
162  Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
163  Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
164    return EmitLoadOfLValue(E);
165  }
166  Value *VisitStringLiteral(Expr *E)  { return EmitLValue(E).getAddress(); }
167  Value *VisitPredefinedExpr(Expr *E) { return EmitLValue(E).getAddress(); }
168
169  Value *VisitInitListExpr(InitListExpr *E) {
170    unsigned NumInitElements = E->getNumInits();
171
172    if (E->hadArrayRangeDesignator()) {
173      CGF.ErrorUnsupported(E, "GNU array range designator extension");
174    }
175
176    const llvm::VectorType *VType =
177      dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
178
179    // We have a scalar in braces. Just use the first element.
180    if (!VType)
181      return Visit(E->getInit(0));
182
183    unsigned NumVectorElements = VType->getNumElements();
184    const llvm::Type *ElementType = VType->getElementType();
185
186    // Emit individual vector element stores.
187    llvm::Value *V = llvm::UndefValue::get(VType);
188
189    // Emit initializers
190    unsigned i;
191    for (i = 0; i < NumInitElements; ++i) {
192      Value *NewV = Visit(E->getInit(i));
193      Value *Idx = llvm::ConstantInt::get(llvm::Type::Int32Ty, i);
194      V = Builder.CreateInsertElement(V, NewV, Idx);
195    }
196
197    // Emit remaining default initializers
198    for (/* Do not initialize i*/; i < NumVectorElements; ++i) {
199      Value *Idx = llvm::ConstantInt::get(llvm::Type::Int32Ty, i);
200      llvm::Value *NewV = llvm::Constant::getNullValue(ElementType);
201      V = Builder.CreateInsertElement(V, NewV, Idx);
202    }
203
204    return V;
205  }
206
207  Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
208    return llvm::Constant::getNullValue(ConvertType(E->getType()));
209  }
210  Value *VisitImplicitCastExpr(const ImplicitCastExpr *E);
211  Value *VisitCastExpr(const CastExpr *E) {
212    return EmitCastExpr(E->getSubExpr(), E->getType());
213  }
214  Value *EmitCastExpr(const Expr *E, QualType T);
215
216  Value *VisitCallExpr(const CallExpr *E) {
217    return CGF.EmitCallExpr(E).getScalarVal();
218  }
219
220  Value *VisitStmtExpr(const StmtExpr *E);
221
222  // Unary Operators.
223  Value *VisitPrePostIncDec(const UnaryOperator *E, bool isInc, bool isPre);
224  Value *VisitUnaryPostDec(const UnaryOperator *E) {
225    return VisitPrePostIncDec(E, false, false);
226  }
227  Value *VisitUnaryPostInc(const UnaryOperator *E) {
228    return VisitPrePostIncDec(E, true, false);
229  }
230  Value *VisitUnaryPreDec(const UnaryOperator *E) {
231    return VisitPrePostIncDec(E, false, true);
232  }
233  Value *VisitUnaryPreInc(const UnaryOperator *E) {
234    return VisitPrePostIncDec(E, true, true);
235  }
236  Value *VisitUnaryAddrOf(const UnaryOperator *E) {
237    return EmitLValue(E->getSubExpr()).getAddress();
238  }
239  Value *VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); }
240  Value *VisitUnaryPlus(const UnaryOperator *E) {
241    return Visit(E->getSubExpr());
242  }
243  Value *VisitUnaryMinus    (const UnaryOperator *E);
244  Value *VisitUnaryNot      (const UnaryOperator *E);
245  Value *VisitUnaryLNot     (const UnaryOperator *E);
246  Value *VisitUnaryReal     (const UnaryOperator *E);
247  Value *VisitUnaryImag     (const UnaryOperator *E);
248  Value *VisitUnaryExtension(const UnaryOperator *E) {
249    return Visit(E->getSubExpr());
250  }
251  Value *VisitUnaryOffsetOf(const UnaryOperator *E);
252  Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
253    return Visit(DAE->getExpr());
254  }
255
256  // Binary Operators.
257  Value *EmitMul(const BinOpInfo &Ops) {
258    return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
259  }
260  Value *EmitDiv(const BinOpInfo &Ops);
261  Value *EmitRem(const BinOpInfo &Ops);
262  Value *EmitAdd(const BinOpInfo &Ops);
263  Value *EmitSub(const BinOpInfo &Ops);
264  Value *EmitShl(const BinOpInfo &Ops);
265  Value *EmitShr(const BinOpInfo &Ops);
266  Value *EmitAnd(const BinOpInfo &Ops) {
267    return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
268  }
269  Value *EmitXor(const BinOpInfo &Ops) {
270    return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
271  }
272  Value *EmitOr (const BinOpInfo &Ops) {
273    return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
274  }
275
276  BinOpInfo EmitBinOps(const BinaryOperator *E);
277  Value *EmitCompoundAssign(const CompoundAssignOperator *E,
278                            Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
279
280  // Binary operators and binary compound assignment operators.
281#define HANDLEBINOP(OP) \
282  Value *VisitBin ## OP(const BinaryOperator *E) {                         \
283    return Emit ## OP(EmitBinOps(E));                                      \
284  }                                                                        \
285  Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
286    return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
287  }
288  HANDLEBINOP(Mul);
289  HANDLEBINOP(Div);
290  HANDLEBINOP(Rem);
291  HANDLEBINOP(Add);
292  HANDLEBINOP(Sub);
293  HANDLEBINOP(Shl);
294  HANDLEBINOP(Shr);
295  HANDLEBINOP(And);
296  HANDLEBINOP(Xor);
297  HANDLEBINOP(Or);
298#undef HANDLEBINOP
299
300  // Comparisons.
301  Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
302                     unsigned SICmpOpc, unsigned FCmpOpc);
303#define VISITCOMP(CODE, UI, SI, FP) \
304    Value *VisitBin##CODE(const BinaryOperator *E) { \
305      return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
306                         llvm::FCmpInst::FP); }
307  VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT);
308  VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT);
309  VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE);
310  VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE);
311  VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ);
312  VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE);
313#undef VISITCOMP
314
315  Value *VisitBinAssign     (const BinaryOperator *E);
316
317  Value *VisitBinLAnd       (const BinaryOperator *E);
318  Value *VisitBinLOr        (const BinaryOperator *E);
319  Value *VisitBinComma      (const BinaryOperator *E);
320
321  // Other Operators.
322  Value *VisitBlockExpr(const BlockExpr *BE);
323  Value *VisitConditionalOperator(const ConditionalOperator *CO);
324  Value *VisitChooseExpr(ChooseExpr *CE);
325  Value *VisitVAArgExpr(VAArgExpr *VE);
326  Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
327    return CGF.EmitObjCStringLiteral(E);
328  }
329  Value *VisitObjCEncodeExpr(const ObjCEncodeExpr *E);
330};
331}  // end anonymous namespace.
332
333//===----------------------------------------------------------------------===//
334//                                Utilities
335//===----------------------------------------------------------------------===//
336
337/// EmitConversionToBool - Convert the specified expression value to a
338/// boolean (i1) truth value.  This is equivalent to "Val != 0".
339Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
340  assert(SrcType->isCanonical() && "EmitScalarConversion strips typedefs");
341
342  if (SrcType->isRealFloatingType()) {
343    // Compare against 0.0 for fp scalars.
344    llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType());
345    return Builder.CreateFCmpUNE(Src, Zero, "tobool");
346  }
347
348  assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
349         "Unknown scalar type to convert");
350
351  // Because of the type rules of C, we often end up computing a logical value,
352  // then zero extending it to int, then wanting it as a logical value again.
353  // Optimize this common case.
354  if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(Src)) {
355    if (ZI->getOperand(0)->getType() == llvm::Type::Int1Ty) {
356      Value *Result = ZI->getOperand(0);
357      // If there aren't any more uses, zap the instruction to save space.
358      // Note that there can be more uses, for example if this
359      // is the result of an assignment.
360      if (ZI->use_empty())
361        ZI->eraseFromParent();
362      return Result;
363    }
364  }
365
366  // Compare against an integer or pointer null.
367  llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType());
368  return Builder.CreateICmpNE(Src, Zero, "tobool");
369}
370
371/// EmitScalarConversion - Emit a conversion from the specified type to the
372/// specified destination type, both of which are LLVM scalar types.
373Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
374                                               QualType DstType) {
375  SrcType = CGF.getContext().getCanonicalType(SrcType);
376  DstType = CGF.getContext().getCanonicalType(DstType);
377  if (SrcType == DstType) return Src;
378
379  if (DstType->isVoidType()) return 0;
380
381  // Handle conversions to bool first, they are special: comparisons against 0.
382  if (DstType->isBooleanType())
383    return EmitConversionToBool(Src, SrcType);
384
385  const llvm::Type *DstTy = ConvertType(DstType);
386
387  // Ignore conversions like int -> uint.
388  if (Src->getType() == DstTy)
389    return Src;
390
391  // Handle pointer conversions next: pointers can only be converted
392  // to/from other pointers and integers. Check for pointer types in
393  // terms of LLVM, as some native types (like Obj-C id) may map to a
394  // pointer type.
395  if (isa<llvm::PointerType>(DstTy)) {
396    // The source value may be an integer, or a pointer.
397    if (isa<llvm::PointerType>(Src->getType()))
398      return Builder.CreateBitCast(Src, DstTy, "conv");
399    assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
400    return Builder.CreateIntToPtr(Src, DstTy, "conv");
401  }
402
403  if (isa<llvm::PointerType>(Src->getType())) {
404    // Must be an ptr to int cast.
405    assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
406    return Builder.CreatePtrToInt(Src, DstTy, "conv");
407  }
408
409  // A scalar can be splatted to an extended vector of the same element type
410  if (DstType->isExtVectorType() && !isa<VectorType>(SrcType)) {
411    // Cast the scalar to element type
412    QualType EltTy = DstType->getAsExtVectorType()->getElementType();
413    llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy);
414
415    // Insert the element in element zero of an undef vector
416    llvm::Value *UnV = llvm::UndefValue::get(DstTy);
417    llvm::Value *Idx = llvm::ConstantInt::get(llvm::Type::Int32Ty, 0);
418    UnV = Builder.CreateInsertElement(UnV, Elt, Idx, "tmp");
419
420    // Splat the element across to all elements
421    llvm::SmallVector<llvm::Constant*, 16> Args;
422    unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
423    for (unsigned i = 0; i < NumElements; i++)
424      Args.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, 0));
425
426    llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements);
427    llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
428    return Yay;
429  }
430
431  // Allow bitcast from vector to integer/fp of the same size.
432  if (isa<llvm::VectorType>(Src->getType()) ||
433      isa<llvm::VectorType>(DstTy))
434    return Builder.CreateBitCast(Src, DstTy, "conv");
435
436  // Finally, we have the arithmetic types: real int/float.
437  if (isa<llvm::IntegerType>(Src->getType())) {
438    bool InputSigned = SrcType->isSignedIntegerType();
439    if (isa<llvm::IntegerType>(DstTy))
440      return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
441    else if (InputSigned)
442      return Builder.CreateSIToFP(Src, DstTy, "conv");
443    else
444      return Builder.CreateUIToFP(Src, DstTy, "conv");
445  }
446
447  assert(Src->getType()->isFloatingPoint() && "Unknown real conversion");
448  if (isa<llvm::IntegerType>(DstTy)) {
449    if (DstType->isSignedIntegerType())
450      return Builder.CreateFPToSI(Src, DstTy, "conv");
451    else
452      return Builder.CreateFPToUI(Src, DstTy, "conv");
453  }
454
455  assert(DstTy->isFloatingPoint() && "Unknown real conversion");
456  if (DstTy->getTypeID() < Src->getType()->getTypeID())
457    return Builder.CreateFPTrunc(Src, DstTy, "conv");
458  else
459    return Builder.CreateFPExt(Src, DstTy, "conv");
460}
461
462/// EmitComplexToScalarConversion - Emit a conversion from the specified
463/// complex type to the specified destination type, where the destination
464/// type is an LLVM scalar type.
465Value *ScalarExprEmitter::
466EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
467                              QualType SrcTy, QualType DstTy) {
468  // Get the source element type.
469  SrcTy = SrcTy->getAsComplexType()->getElementType();
470
471  // Handle conversions to bool first, they are special: comparisons against 0.
472  if (DstTy->isBooleanType()) {
473    //  Complex != 0  -> (Real != 0) | (Imag != 0)
474    Src.first  = EmitScalarConversion(Src.first, SrcTy, DstTy);
475    Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
476    return Builder.CreateOr(Src.first, Src.second, "tobool");
477  }
478
479  // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
480  // the imaginary part of the complex value is discarded and the value of the
481  // real part is converted according to the conversion rules for the
482  // corresponding real type.
483  return EmitScalarConversion(Src.first, SrcTy, DstTy);
484}
485
486
487//===----------------------------------------------------------------------===//
488//                            Visitor Methods
489//===----------------------------------------------------------------------===//
490
491Value *ScalarExprEmitter::VisitExpr(Expr *E) {
492  CGF.ErrorUnsupported(E, "scalar expression");
493  if (E->getType()->isVoidType())
494    return 0;
495  return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
496}
497
498Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
499  llvm::SmallVector<llvm::Constant*, 32> indices;
500  for (unsigned i = 2; i < E->getNumSubExprs(); i++) {
501    indices.push_back(cast<llvm::Constant>(CGF.EmitScalarExpr(E->getExpr(i))));
502  }
503  Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
504  Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
505  Value* SV = llvm::ConstantVector::get(indices.begin(), indices.size());
506  return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
507}
508
509Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
510  // Emit subscript expressions in rvalue context's.  For most cases, this just
511  // loads the lvalue formed by the subscript expr.  However, we have to be
512  // careful, because the base of a vector subscript is occasionally an rvalue,
513  // so we can't get it as an lvalue.
514  if (!E->getBase()->getType()->isVectorType())
515    return EmitLoadOfLValue(E);
516
517  // Handle the vector case.  The base must be a vector, the index must be an
518  // integer value.
519  Value *Base = Visit(E->getBase());
520  Value *Idx  = Visit(E->getIdx());
521
522  // FIXME: Convert Idx to i32 type.
523  return Builder.CreateExtractElement(Base, Idx, "vecext");
524}
525
526/// VisitImplicitCastExpr - Implicit casts are the same as normal casts, but
527/// also handle things like function to pointer-to-function decay, and array to
528/// pointer decay.
529Value *ScalarExprEmitter::VisitImplicitCastExpr(const ImplicitCastExpr *E) {
530  const Expr *Op = E->getSubExpr();
531
532  // If this is due to array->pointer conversion, emit the array expression as
533  // an l-value.
534  if (Op->getType()->isArrayType()) {
535    // FIXME: For now we assume that all source arrays map to LLVM arrays.  This
536    // will not true when we add support for VLAs.
537    Value *V = EmitLValue(Op).getAddress();  // Bitfields can't be arrays.
538
539    if (!Op->getType()->isVariableArrayType()) {
540      assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer");
541      assert(isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType())
542                                 ->getElementType()) &&
543             "Expected pointer to array");
544      V = Builder.CreateStructGEP(V, 0, "arraydecay");
545    }
546
547    // The resultant pointer type can be implicitly casted to other pointer
548    // types as well (e.g. void*) and can be implicitly converted to integer.
549    const llvm::Type *DestTy = ConvertType(E->getType());
550    if (V->getType() != DestTy) {
551      if (isa<llvm::PointerType>(DestTy))
552        V = Builder.CreateBitCast(V, DestTy, "ptrconv");
553      else {
554        assert(isa<llvm::IntegerType>(DestTy) && "Unknown array decay");
555        V = Builder.CreatePtrToInt(V, DestTy, "ptrconv");
556      }
557    }
558    return V;
559
560  } else if (E->getType()->isReferenceType()) {
561    return EmitLValue(Op).getAddress();
562  }
563
564  return EmitCastExpr(Op, E->getType());
565}
566
567
568// VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
569// have to handle a more broad range of conversions than explicit casts, as they
570// handle things like function to ptr-to-function decay etc.
571Value *ScalarExprEmitter::EmitCastExpr(const Expr *E, QualType DestTy) {
572  // Handle cases where the source is an non-complex type.
573
574  if (!CGF.hasAggregateLLVMType(E->getType())) {
575    Value *Src = Visit(const_cast<Expr*>(E));
576
577    // Use EmitScalarConversion to perform the conversion.
578    return EmitScalarConversion(Src, E->getType(), DestTy);
579  }
580
581  if (E->getType()->isAnyComplexType()) {
582    // Handle cases where the source is a complex type.
583    return EmitComplexToScalarConversion(CGF.EmitComplexExpr(E), E->getType(),
584                                         DestTy);
585  }
586
587  // Okay, this is a cast from an aggregate.  It must be a cast to void.  Just
588  // evaluate the result and return.
589  CGF.EmitAggExpr(E, 0, false);
590  return 0;
591}
592
593Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
594  return CGF.EmitCompoundStmt(*E->getSubStmt(),
595                              !E->getType()->isVoidType()).getScalarVal();
596}
597
598
599//===----------------------------------------------------------------------===//
600//                             Unary Operators
601//===----------------------------------------------------------------------===//
602
603Value *ScalarExprEmitter::VisitPrePostIncDec(const UnaryOperator *E,
604                                             bool isInc, bool isPre) {
605  LValue LV = EmitLValue(E->getSubExpr());
606  // FIXME: Handle volatile!
607  Value *InVal = CGF.EmitLoadOfLValue(LV, // false
608                                     E->getSubExpr()->getType()).getScalarVal();
609
610  int AmountVal = isInc ? 1 : -1;
611
612  Value *NextVal;
613  if (isa<llvm::PointerType>(InVal->getType())) {
614    // FIXME: This isn't right for VLAs.
615    NextVal = llvm::ConstantInt::get(llvm::Type::Int32Ty, AmountVal);
616    NextVal = Builder.CreateGEP(InVal, NextVal, "ptrincdec");
617  } else if (InVal->getType() == llvm::Type::Int1Ty && isInc) {
618    // Bool++ is an interesting case, due to promotion rules, we get:
619    // Bool++ -> Bool = Bool+1 -> Bool = (int)Bool+1 ->
620    // Bool = ((int)Bool+1) != 0
621    // An interesting aspect of this is that increment is always true.
622    // Decrement does not have this property.
623    NextVal = llvm::ConstantInt::getTrue();
624  } else {
625    // Add the inc/dec to the real part.
626    if (isa<llvm::IntegerType>(InVal->getType()))
627      NextVal = llvm::ConstantInt::get(InVal->getType(), AmountVal);
628    else if (InVal->getType() == llvm::Type::FloatTy)
629      NextVal =
630        llvm::ConstantFP::get(llvm::APFloat(static_cast<float>(AmountVal)));
631    else if (InVal->getType() == llvm::Type::DoubleTy)
632      NextVal =
633        llvm::ConstantFP::get(llvm::APFloat(static_cast<double>(AmountVal)));
634    else {
635      llvm::APFloat F(static_cast<float>(AmountVal));
636      bool ignored;
637      F.convert(CGF.Target.getLongDoubleFormat(), llvm::APFloat::rmTowardZero,
638                &ignored);
639      NextVal = llvm::ConstantFP::get(F);
640    }
641    NextVal = Builder.CreateAdd(InVal, NextVal, isInc ? "inc" : "dec");
642  }
643
644  // Store the updated result through the lvalue.
645  CGF.EmitStoreThroughLValue(RValue::get(NextVal), LV,
646                             E->getSubExpr()->getType());
647
648  // If this is a postinc, return the value read from memory, otherwise use the
649  // updated value.
650  return isPre ? NextVal : InVal;
651}
652
653
654Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
655  Value *Op = Visit(E->getSubExpr());
656  return Builder.CreateNeg(Op, "neg");
657}
658
659Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
660  Value *Op = Visit(E->getSubExpr());
661  return Builder.CreateNot(Op, "neg");
662}
663
664Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
665  // Compare operand to zero.
666  Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
667
668  // Invert value.
669  // TODO: Could dynamically modify easy computations here.  For example, if
670  // the operand is an icmp ne, turn into icmp eq.
671  BoolVal = Builder.CreateNot(BoolVal, "lnot");
672
673  // ZExt result to int.
674  return Builder.CreateZExt(BoolVal, CGF.LLVMIntTy, "lnot.ext");
675}
676
677/// VisitSizeOfAlignOfExpr - Return the size or alignment of the type of
678/// argument of the sizeof expression as an integer.
679Value *
680ScalarExprEmitter::VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E) {
681  QualType TypeToSize = E->getTypeOfArgument();
682  if (E->isSizeOf()) {
683    if (const VariableArrayType *VAT =
684          CGF.getContext().getAsVariableArrayType(TypeToSize)) {
685      if (E->isArgumentType()) {
686        // sizeof(type) - make sure to emit the VLA size.
687        CGF.EmitVLASize(TypeToSize);
688      }
689
690      return CGF.GetVLASize(VAT);
691    }
692  }
693
694  // If this isn't sizeof(vla), the result must be constant; use the
695  // constant folding logic so we don't have to duplicate it here.
696  Expr::EvalResult Result;
697  E->Evaluate(Result, CGF.getContext());
698  return llvm::ConstantInt::get(Result.Val.getInt());
699}
700
701Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
702  Expr *Op = E->getSubExpr();
703  if (Op->getType()->isAnyComplexType())
704    return CGF.EmitComplexExpr(Op).first;
705  return Visit(Op);
706}
707Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
708  Expr *Op = E->getSubExpr();
709  if (Op->getType()->isAnyComplexType())
710    return CGF.EmitComplexExpr(Op).second;
711
712  // __imag on a scalar returns zero.  Emit it the subexpr to ensure side
713  // effects are evaluated.
714  CGF.EmitScalarExpr(Op);
715  return llvm::Constant::getNullValue(ConvertType(E->getType()));
716}
717
718Value *ScalarExprEmitter::VisitUnaryOffsetOf(const UnaryOperator *E)
719{
720  const Expr* SubExpr = E->getSubExpr();
721  const llvm::Type* ResultType = ConvertType(E->getType());
722  llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
723  while (!isa<CompoundLiteralExpr>(SubExpr)) {
724    if (const MemberExpr *ME = dyn_cast<MemberExpr>(SubExpr)) {
725      SubExpr = ME->getBase();
726      QualType Ty = SubExpr->getType();
727
728      RecordDecl *RD = Ty->getAsRecordType()->getDecl();
729      const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
730      FieldDecl *FD = cast<FieldDecl>(ME->getMemberDecl());
731
732      // FIXME: This is linear time. And the fact that we're indexing
733      // into the layout by position in the record means that we're
734      // either stuck numbering the fields in the AST or we have to keep
735      // the linear search (yuck and yuck).
736      unsigned i = 0;
737      for (RecordDecl::field_iterator Field = RD->field_begin(),
738                                   FieldEnd = RD->field_end();
739           Field != FieldEnd; (void)++Field, ++i) {
740        if (*Field == FD)
741          break;
742      }
743
744      llvm::Value* Offset =
745          llvm::ConstantInt::get(ResultType, RL.getFieldOffset(i) / 8);
746      Result = Builder.CreateAdd(Result, Offset);
747    } else if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(SubExpr)) {
748      SubExpr = ASE->getBase();
749      int64_t size = CGF.getContext().getTypeSize(ASE->getType()) / 8;
750      llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType, size);
751      llvm::Value* ElemIndex = CGF.EmitScalarExpr(ASE->getIdx());
752      bool IndexSigned = ASE->getIdx()->getType()->isSignedIntegerType();
753      ElemIndex = Builder.CreateIntCast(ElemIndex, ResultType, IndexSigned);
754      llvm::Value* Offset = Builder.CreateMul(ElemSize, ElemIndex);
755      Result = Builder.CreateAdd(Result, Offset);
756    } else {
757      assert(0 && "This should be impossible!");
758    }
759  }
760  return Result;
761}
762
763//===----------------------------------------------------------------------===//
764//                           Binary Operators
765//===----------------------------------------------------------------------===//
766
767BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
768  BinOpInfo Result;
769  Result.LHS = Visit(E->getLHS());
770  Result.RHS = Visit(E->getRHS());
771  Result.Ty  = E->getType();
772  Result.E = E;
773  return Result;
774}
775
776Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
777                      Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
778  QualType LHSTy = E->getLHS()->getType(), RHSTy = E->getRHS()->getType();
779
780  BinOpInfo OpInfo;
781
782  // Load the LHS and RHS operands.
783  LValue LHSLV = EmitLValue(E->getLHS());
784  OpInfo.LHS = EmitLoadOfLValue(LHSLV, LHSTy);
785
786  // Determine the computation type.  If the RHS is complex, then this is one of
787  // the add/sub/mul/div operators.  All of these operators can be computed in
788  // with just their real component even though the computation domain really is
789  // complex.
790  QualType ComputeType = E->getComputationType();
791
792  // If the computation type is complex, then the RHS is complex.  Emit the RHS.
793  if (const ComplexType *CT = ComputeType->getAsComplexType()) {
794    ComputeType = CT->getElementType();
795
796    // Emit the RHS, only keeping the real component.
797    OpInfo.RHS = CGF.EmitComplexExpr(E->getRHS()).first;
798    RHSTy = RHSTy->getAsComplexType()->getElementType();
799  } else {
800    // Otherwise the RHS is a simple scalar value.
801    OpInfo.RHS = Visit(E->getRHS());
802  }
803
804  QualType LComputeTy, RComputeTy, ResultTy;
805
806  // Compound assignment does not contain enough information about all
807  // the types involved for pointer arithmetic cases. Figure it out
808  // here for now.
809  if (E->getLHS()->getType()->isPointerType()) {
810    // Pointer arithmetic cases: ptr +=,-= int and ptr -= ptr,
811    assert((E->getOpcode() == BinaryOperator::AddAssign ||
812            E->getOpcode() == BinaryOperator::SubAssign) &&
813           "Invalid compound assignment operator on pointer type.");
814    LComputeTy = E->getLHS()->getType();
815
816    if (E->getRHS()->getType()->isPointerType()) {
817      // Degenerate case of (ptr -= ptr) allowed by GCC implicit cast
818      // extension, the conversion from the pointer difference back to
819      // the LHS type is handled at the end.
820      assert(E->getOpcode() == BinaryOperator::SubAssign &&
821             "Invalid compound assignment operator on pointer type.");
822      RComputeTy = E->getLHS()->getType();
823      ResultTy = CGF.getContext().getPointerDiffType();
824    } else {
825      RComputeTy = E->getRHS()->getType();
826      ResultTy = LComputeTy;
827    }
828  } else if (E->getRHS()->getType()->isPointerType()) {
829    // Degenerate case of (int += ptr) allowed by GCC implicit cast
830    // extension.
831    assert(E->getOpcode() == BinaryOperator::AddAssign &&
832           "Invalid compound assignment operator on pointer type.");
833    LComputeTy = E->getLHS()->getType();
834    RComputeTy = E->getRHS()->getType();
835    ResultTy = RComputeTy;
836  } else {
837    LComputeTy = RComputeTy = ResultTy = ComputeType;
838  }
839
840  // Convert the LHS/RHS values to the computation type.
841  OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy, LComputeTy);
842  OpInfo.RHS = EmitScalarConversion(OpInfo.RHS, RHSTy, RComputeTy);
843  OpInfo.Ty = ResultTy;
844  OpInfo.E = E;
845
846  // Expand the binary operator.
847  Value *Result = (this->*Func)(OpInfo);
848
849  // Convert the result back to the LHS type.
850  Result = EmitScalarConversion(Result, ResultTy, LHSTy);
851
852  // Store the result value into the LHS lvalue. Bit-fields are
853  // handled specially because the result is altered by the store,
854  // i.e., [C99 6.5.16p1] 'An assignment expression has the value of
855  // the left operand after the assignment...'.
856  if (LHSLV.isBitfield())
857    CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, LHSTy,
858                                       &Result);
859  else
860    CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV, LHSTy);
861
862  return Result;
863}
864
865
866Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
867  if (Ops.LHS->getType()->isFPOrFPVector())
868    return Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
869  else if (Ops.Ty->isUnsignedIntegerType())
870    return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
871  else
872    return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
873}
874
875Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
876  // Rem in C can't be a floating point type: C99 6.5.5p2.
877  if (Ops.Ty->isUnsignedIntegerType())
878    return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
879  else
880    return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
881}
882
883
884Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &Ops) {
885  if (!Ops.Ty->isPointerType())
886    return Builder.CreateAdd(Ops.LHS, Ops.RHS, "add");
887
888  // FIXME: What about a pointer to a VLA?
889  Value *Ptr, *Idx;
890  Expr *IdxExp;
891  const PointerType *PT;
892  if ((PT = Ops.E->getLHS()->getType()->getAsPointerType())) {
893    Ptr = Ops.LHS;
894    Idx = Ops.RHS;
895    IdxExp = Ops.E->getRHS();
896  } else {                                           // int + pointer
897    PT = Ops.E->getRHS()->getType()->getAsPointerType();
898    assert(PT && "Invalid add expr");
899    Ptr = Ops.RHS;
900    Idx = Ops.LHS;
901    IdxExp = Ops.E->getLHS();
902  }
903
904  unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
905  if (Width < CGF.LLVMPointerWidth) {
906    // Zero or sign extend the pointer value based on whether the index is
907    // signed or not.
908    const llvm::Type *IdxType = llvm::IntegerType::get(CGF.LLVMPointerWidth);
909    if (IdxExp->getType()->isSignedIntegerType())
910      Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
911    else
912      Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
913  }
914
915  // Explicitly handle GNU void* and function pointer arithmetic
916  // extensions. The GNU void* casts amount to no-ops since our void*
917  // type is i8*, but this is future proof.
918  const QualType ElementType = PT->getPointeeType();
919  if (ElementType->isVoidType() || ElementType->isFunctionType()) {
920    const llvm::Type *i8Ty = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
921    Value *Casted = Builder.CreateBitCast(Ptr, i8Ty);
922    Value *Res = Builder.CreateGEP(Casted, Idx, "sub.ptr");
923    return Builder.CreateBitCast(Res, Ptr->getType());
924  }
925
926  return Builder.CreateGEP(Ptr, Idx, "add.ptr");
927}
928
929Value *ScalarExprEmitter::EmitSub(const BinOpInfo &Ops) {
930  if (!isa<llvm::PointerType>(Ops.LHS->getType()))
931    return Builder.CreateSub(Ops.LHS, Ops.RHS, "sub");
932
933  const QualType LHSType = Ops.E->getLHS()->getType();
934  const QualType LHSElementType = LHSType->getAsPointerType()->getPointeeType();
935  if (!isa<llvm::PointerType>(Ops.RHS->getType())) {
936    // pointer - int
937    Value *Idx = Ops.RHS;
938    unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
939    if (Width < CGF.LLVMPointerWidth) {
940      // Zero or sign extend the pointer value based on whether the index is
941      // signed or not.
942      const llvm::Type *IdxType = llvm::IntegerType::get(CGF.LLVMPointerWidth);
943      if (Ops.E->getRHS()->getType()->isSignedIntegerType())
944        Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
945      else
946        Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
947    }
948    Idx = Builder.CreateNeg(Idx, "sub.ptr.neg");
949
950    // FIXME: The pointer could point to a VLA.
951
952    // Explicitly handle GNU void* and function pointer arithmetic
953    // extensions. The GNU void* casts amount to no-ops since our
954    // void* type is i8*, but this is future proof.
955    if (LHSElementType->isVoidType() || LHSElementType->isFunctionType()) {
956      const llvm::Type *i8Ty = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
957      Value *LHSCasted = Builder.CreateBitCast(Ops.LHS, i8Ty);
958      Value *Res = Builder.CreateGEP(LHSCasted, Idx, "sub.ptr");
959      return Builder.CreateBitCast(Res, Ops.LHS->getType());
960    }
961
962    return Builder.CreateGEP(Ops.LHS, Idx, "sub.ptr");
963  } else {
964    // pointer - pointer
965    Value *LHS = Ops.LHS;
966    Value *RHS = Ops.RHS;
967
968    uint64_t ElementSize;
969
970    // Handle GCC extension for pointer arithmetic on void* and function pointer
971    // types.
972    if (LHSElementType->isVoidType() || LHSElementType->isFunctionType()) {
973      ElementSize = 1;
974    } else {
975      ElementSize = CGF.getContext().getTypeSize(LHSElementType) / 8;
976    }
977
978    const llvm::Type *ResultType = ConvertType(Ops.Ty);
979    LHS = Builder.CreatePtrToInt(LHS, ResultType, "sub.ptr.lhs.cast");
980    RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
981    Value *BytesBetween = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
982
983    // Optimize out the shift for element size of 1.
984    if (ElementSize == 1)
985      return BytesBetween;
986
987    // HACK: LLVM doesn't have an divide instruction that 'knows' there is no
988    // remainder.  As such, we handle common power-of-two cases here to generate
989    // better code. See PR2247.
990    if (llvm::isPowerOf2_64(ElementSize)) {
991      Value *ShAmt =
992        llvm::ConstantInt::get(ResultType, llvm::Log2_64(ElementSize));
993      return Builder.CreateAShr(BytesBetween, ShAmt, "sub.ptr.shr");
994    }
995
996    // Otherwise, do a full sdiv.
997    Value *BytesPerElt = llvm::ConstantInt::get(ResultType, ElementSize);
998    return Builder.CreateSDiv(BytesBetween, BytesPerElt, "sub.ptr.div");
999  }
1000}
1001
1002Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
1003  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
1004  // RHS to the same size as the LHS.
1005  Value *RHS = Ops.RHS;
1006  if (Ops.LHS->getType() != RHS->getType())
1007    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
1008
1009  return Builder.CreateShl(Ops.LHS, RHS, "shl");
1010}
1011
1012Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
1013  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
1014  // RHS to the same size as the LHS.
1015  Value *RHS = Ops.RHS;
1016  if (Ops.LHS->getType() != RHS->getType())
1017    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
1018
1019  if (Ops.Ty->isUnsignedIntegerType())
1020    return Builder.CreateLShr(Ops.LHS, RHS, "shr");
1021  return Builder.CreateAShr(Ops.LHS, RHS, "shr");
1022}
1023
1024Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
1025                                      unsigned SICmpOpc, unsigned FCmpOpc) {
1026  Value *Result;
1027  QualType LHSTy = E->getLHS()->getType();
1028  if (!LHSTy->isAnyComplexType() && !LHSTy->isVectorType()) {
1029    Value *LHS = Visit(E->getLHS());
1030    Value *RHS = Visit(E->getRHS());
1031
1032    if (LHS->getType()->isFloatingPoint()) {
1033      Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
1034                                  LHS, RHS, "cmp");
1035    } else if (LHSTy->isSignedIntegerType()) {
1036      Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
1037                                  LHS, RHS, "cmp");
1038    } else {
1039      // Unsigned integers and pointers.
1040      Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1041                                  LHS, RHS, "cmp");
1042    }
1043  } else if (LHSTy->isVectorType()) {
1044    Value *LHS = Visit(E->getLHS());
1045    Value *RHS = Visit(E->getRHS());
1046
1047    if (LHS->getType()->isFPOrFPVector()) {
1048      Result = Builder.CreateVFCmp((llvm::CmpInst::Predicate)FCmpOpc,
1049                                  LHS, RHS, "cmp");
1050    } else if (LHSTy->isUnsignedIntegerType()) {
1051      Result = Builder.CreateVICmp((llvm::CmpInst::Predicate)UICmpOpc,
1052                                  LHS, RHS, "cmp");
1053    } else {
1054      // Signed integers and pointers.
1055      Result = Builder.CreateVICmp((llvm::CmpInst::Predicate)SICmpOpc,
1056                                  LHS, RHS, "cmp");
1057    }
1058    return Result;
1059  } else {
1060    // Complex Comparison: can only be an equality comparison.
1061    CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS());
1062    CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS());
1063
1064    QualType CETy = LHSTy->getAsComplexType()->getElementType();
1065
1066    Value *ResultR, *ResultI;
1067    if (CETy->isRealFloatingType()) {
1068      ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
1069                                   LHS.first, RHS.first, "cmp.r");
1070      ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
1071                                   LHS.second, RHS.second, "cmp.i");
1072    } else {
1073      // Complex comparisons can only be equality comparisons.  As such, signed
1074      // and unsigned opcodes are the same.
1075      ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1076                                   LHS.first, RHS.first, "cmp.r");
1077      ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1078                                   LHS.second, RHS.second, "cmp.i");
1079    }
1080
1081    if (E->getOpcode() == BinaryOperator::EQ) {
1082      Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
1083    } else {
1084      assert(E->getOpcode() == BinaryOperator::NE &&
1085             "Complex comparison other than == or != ?");
1086      Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
1087    }
1088  }
1089
1090  return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
1091}
1092
1093Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
1094  LValue LHS = EmitLValue(E->getLHS());
1095  Value *RHS = Visit(E->getRHS());
1096
1097  // Store the value into the LHS.  Bit-fields are handled specially
1098  // because the result is altered by the store, i.e., [C99 6.5.16p1]
1099  // 'An assignment expression has the value of the left operand after
1100  // the assignment...'.
1101  // FIXME: Volatility!
1102  if (LHS.isBitfield())
1103    CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, E->getType(),
1104                                       &RHS);
1105  else
1106    CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS, E->getType());
1107
1108  // Return the RHS.
1109  return RHS;
1110}
1111
1112Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
1113  // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
1114  // If we have 1 && X, just emit X without inserting the control flow.
1115  if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getLHS())) {
1116    if (Cond == 1) { // If we have 1 && X, just emit X.
1117      Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1118      // ZExt result to int.
1119      return Builder.CreateZExt(RHSCond, CGF.LLVMIntTy, "land.ext");
1120    }
1121
1122    // 0 && RHS: If it is safe, just elide the RHS, and return 0.
1123    if (!CGF.ContainsLabel(E->getRHS()))
1124      return llvm::Constant::getNullValue(CGF.LLVMIntTy);
1125  }
1126
1127  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
1128  llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
1129
1130  // Branch on the LHS first.  If it is false, go to the failure (cont) block.
1131  CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock);
1132
1133  // Any edges into the ContBlock are now from an (indeterminate number of)
1134  // edges from this first condition.  All of these values will be false.  Start
1135  // setting up the PHI node in the Cont Block for this.
1136  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::Int1Ty, "", ContBlock);
1137  PN->reserveOperandSpace(2);  // Normal case, two inputs.
1138  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
1139       PI != PE; ++PI)
1140    PN->addIncoming(llvm::ConstantInt::getFalse(), *PI);
1141
1142  CGF.EmitBlock(RHSBlock);
1143  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1144
1145  // Reaquire the RHS block, as there may be subblocks inserted.
1146  RHSBlock = Builder.GetInsertBlock();
1147
1148  // Emit an unconditional branch from this block to ContBlock.  Insert an entry
1149  // into the phi node for the edge with the value of RHSCond.
1150  CGF.EmitBlock(ContBlock);
1151  PN->addIncoming(RHSCond, RHSBlock);
1152
1153  // ZExt result to int.
1154  return Builder.CreateZExt(PN, CGF.LLVMIntTy, "land.ext");
1155}
1156
1157Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
1158  // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
1159  // If we have 0 || X, just emit X without inserting the control flow.
1160  if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getLHS())) {
1161    if (Cond == -1) { // If we have 0 || X, just emit X.
1162      Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1163      // ZExt result to int.
1164      return Builder.CreateZExt(RHSCond, CGF.LLVMIntTy, "lor.ext");
1165    }
1166
1167    // 1 || RHS: If it is safe, just elide the RHS, and return 1.
1168    if (!CGF.ContainsLabel(E->getRHS()))
1169      return llvm::ConstantInt::get(CGF.LLVMIntTy, 1);
1170  }
1171
1172  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
1173  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
1174
1175  // Branch on the LHS first.  If it is true, go to the success (cont) block.
1176  CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock);
1177
1178  // Any edges into the ContBlock are now from an (indeterminate number of)
1179  // edges from this first condition.  All of these values will be true.  Start
1180  // setting up the PHI node in the Cont Block for this.
1181  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::Int1Ty, "", ContBlock);
1182  PN->reserveOperandSpace(2);  // Normal case, two inputs.
1183  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
1184       PI != PE; ++PI)
1185    PN->addIncoming(llvm::ConstantInt::getTrue(), *PI);
1186
1187  // Emit the RHS condition as a bool value.
1188  CGF.EmitBlock(RHSBlock);
1189  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1190
1191  // Reaquire the RHS block, as there may be subblocks inserted.
1192  RHSBlock = Builder.GetInsertBlock();
1193
1194  // Emit an unconditional branch from this block to ContBlock.  Insert an entry
1195  // into the phi node for the edge with the value of RHSCond.
1196  CGF.EmitBlock(ContBlock);
1197  PN->addIncoming(RHSCond, RHSBlock);
1198
1199  // ZExt result to int.
1200  return Builder.CreateZExt(PN, CGF.LLVMIntTy, "lor.ext");
1201}
1202
1203Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
1204  CGF.EmitStmt(E->getLHS());
1205  CGF.EnsureInsertPoint();
1206  return Visit(E->getRHS());
1207}
1208
1209//===----------------------------------------------------------------------===//
1210//                             Other Operators
1211//===----------------------------------------------------------------------===//
1212
1213/// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
1214/// expression is cheap enough and side-effect-free enough to evaluate
1215/// unconditionally instead of conditionally.  This is used to convert control
1216/// flow into selects in some cases.
1217static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E) {
1218  if (const ParenExpr *PE = dyn_cast<ParenExpr>(E))
1219    return isCheapEnoughToEvaluateUnconditionally(PE->getSubExpr());
1220
1221  // TODO: Allow anything we can constant fold to an integer or fp constant.
1222  if (isa<IntegerLiteral>(E) || isa<CharacterLiteral>(E) ||
1223      isa<FloatingLiteral>(E))
1224    return true;
1225
1226  // Non-volatile automatic variables too, to get "cond ? X : Y" where
1227  // X and Y are local variables.
1228  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
1229    if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
1230      if (VD->hasLocalStorage() && !VD->getType().isVolatileQualified())
1231        return true;
1232
1233  return false;
1234}
1235
1236
1237Value *ScalarExprEmitter::
1238VisitConditionalOperator(const ConditionalOperator *E) {
1239  // If the condition constant folds and can be elided, try to avoid emitting
1240  // the condition and the dead arm.
1241  if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getCond())){
1242    Expr *Live = E->getLHS(), *Dead = E->getRHS();
1243    if (Cond == -1)
1244      std::swap(Live, Dead);
1245
1246    // If the dead side doesn't have labels we need, and if the Live side isn't
1247    // the gnu missing ?: extension (which we could handle, but don't bother
1248    // to), just emit the Live part.
1249    if ((!Dead || !CGF.ContainsLabel(Dead)) &&  // No labels in dead part
1250        Live)                                   // Live part isn't missing.
1251      return Visit(Live);
1252  }
1253
1254
1255  // If this is a really simple expression (like x ? 4 : 5), emit this as a
1256  // select instead of as control flow.  We can only do this if it is cheap and
1257  // safe to evaluate the LHS and RHS unconditionally.
1258  if (E->getLHS() && isCheapEnoughToEvaluateUnconditionally(E->getLHS()) &&
1259      isCheapEnoughToEvaluateUnconditionally(E->getRHS())) {
1260    llvm::Value *CondV = CGF.EvaluateExprAsBool(E->getCond());
1261    llvm::Value *LHS = Visit(E->getLHS());
1262    llvm::Value *RHS = Visit(E->getRHS());
1263    return Builder.CreateSelect(CondV, LHS, RHS, "cond");
1264  }
1265
1266
1267  llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
1268  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
1269  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
1270  Value *CondVal = 0;
1271
1272  // If we don't have the GNU missing condition extension, emit a branch on
1273  // bool the normal way.
1274  if (E->getLHS()) {
1275    // Otherwise, just use EmitBranchOnBoolExpr to get small and simple code for
1276    // the branch on bool.
1277    CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock);
1278  } else {
1279    // Otherwise, for the ?: extension, evaluate the conditional and then
1280    // convert it to bool the hard way.  We do this explicitly because we need
1281    // the unconverted value for the missing middle value of the ?:.
1282    CondVal = CGF.EmitScalarExpr(E->getCond());
1283
1284    // In some cases, EmitScalarConversion will delete the "CondVal" expression
1285    // if there are no extra uses (an optimization).  Inhibit this by making an
1286    // extra dead use, because we're going to add a use of CondVal later.  We
1287    // don't use the builder for this, because we don't want it to get optimized
1288    // away.  This leaves dead code, but the ?: extension isn't common.
1289    new llvm::BitCastInst(CondVal, CondVal->getType(), "dummy?:holder",
1290                          Builder.GetInsertBlock());
1291
1292    Value *CondBoolVal =
1293      CGF.EmitScalarConversion(CondVal, E->getCond()->getType(),
1294                               CGF.getContext().BoolTy);
1295    Builder.CreateCondBr(CondBoolVal, LHSBlock, RHSBlock);
1296  }
1297
1298  CGF.EmitBlock(LHSBlock);
1299
1300  // Handle the GNU extension for missing LHS.
1301  Value *LHS;
1302  if (E->getLHS())
1303    LHS = Visit(E->getLHS());
1304  else    // Perform promotions, to handle cases like "short ?: int"
1305    LHS = EmitScalarConversion(CondVal, E->getCond()->getType(), E->getType());
1306
1307  LHSBlock = Builder.GetInsertBlock();
1308  CGF.EmitBranch(ContBlock);
1309
1310  CGF.EmitBlock(RHSBlock);
1311
1312  Value *RHS = Visit(E->getRHS());
1313  RHSBlock = Builder.GetInsertBlock();
1314  CGF.EmitBranch(ContBlock);
1315
1316  CGF.EmitBlock(ContBlock);
1317
1318  if (!LHS || !RHS) {
1319    assert(E->getType()->isVoidType() && "Non-void value should have a value");
1320    return 0;
1321  }
1322
1323  // Create a PHI node for the real part.
1324  llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), "cond");
1325  PN->reserveOperandSpace(2);
1326  PN->addIncoming(LHS, LHSBlock);
1327  PN->addIncoming(RHS, RHSBlock);
1328  return PN;
1329}
1330
1331Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
1332  // Emit the LHS or RHS as appropriate.
1333  return
1334    Visit(E->isConditionTrue(CGF.getContext()) ? E->getLHS() : E->getRHS());
1335}
1336
1337Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
1338  llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
1339  llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
1340
1341  // If EmitVAArg fails, we fall back to the LLVM instruction.
1342  if (!ArgPtr)
1343    return Builder.CreateVAArg(ArgValue, ConvertType(VE->getType()));
1344
1345  // FIXME: volatile?
1346  return Builder.CreateLoad(ArgPtr);
1347}
1348
1349Value *ScalarExprEmitter::VisitObjCEncodeExpr(const ObjCEncodeExpr *E) {
1350  std::string str;
1351  CGF.getContext().getObjCEncodingForType(E->getEncodedType(), str);
1352
1353  llvm::Constant *C = llvm::ConstantArray::get(str);
1354  C = new llvm::GlobalVariable(C->getType(), true,
1355                               llvm::GlobalValue::InternalLinkage,
1356                               C, ".str", &CGF.CGM.getModule());
1357  llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty);
1358  llvm::Constant *Zeros[] = { Zero, Zero };
1359  C = llvm::ConstantExpr::getGetElementPtr(C, Zeros, 2);
1360
1361  return C;
1362}
1363
1364
1365Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *BE) {
1366  llvm::Constant *C = CGF.BuildBlockLiteralTmp(BE);
1367  return C;
1368}
1369
1370//===----------------------------------------------------------------------===//
1371//                         Entry Point into this File
1372//===----------------------------------------------------------------------===//
1373
1374/// EmitComplexExpr - Emit the computation of the specified expression of
1375/// complex type, ignoring the result.
1376Value *CodeGenFunction::EmitScalarExpr(const Expr *E) {
1377  assert(E && !hasAggregateLLVMType(E->getType()) &&
1378         "Invalid scalar expression to emit");
1379
1380  return ScalarExprEmitter(*this).Visit(const_cast<Expr*>(E));
1381}
1382
1383/// EmitScalarConversion - Emit a conversion from the specified type to the
1384/// specified destination type, both of which are LLVM scalar types.
1385Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
1386                                             QualType DstTy) {
1387  assert(!hasAggregateLLVMType(SrcTy) && !hasAggregateLLVMType(DstTy) &&
1388         "Invalid scalar expression to emit");
1389  return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
1390}
1391
1392/// EmitComplexToScalarConversion - Emit a conversion from the specified
1393/// complex type to the specified destination type, where the destination
1394/// type is an LLVM scalar type.
1395Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
1396                                                      QualType SrcTy,
1397                                                      QualType DstTy) {
1398  assert(SrcTy->isAnyComplexType() && !hasAggregateLLVMType(DstTy) &&
1399         "Invalid complex -> scalar conversion");
1400  return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy,
1401                                                                DstTy);
1402}
1403
1404Value *CodeGenFunction::EmitShuffleVector(Value* V1, Value *V2, ...) {
1405  assert(V1->getType() == V2->getType() &&
1406         "Vector operands must be of the same type");
1407  unsigned NumElements =
1408    cast<llvm::VectorType>(V1->getType())->getNumElements();
1409
1410  va_list va;
1411  va_start(va, V2);
1412
1413  llvm::SmallVector<llvm::Constant*, 16> Args;
1414  for (unsigned i = 0; i < NumElements; i++) {
1415    int n = va_arg(va, int);
1416    assert(n >= 0 && n < (int)NumElements * 2 &&
1417           "Vector shuffle index out of bounds!");
1418    Args.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, n));
1419  }
1420
1421  const char *Name = va_arg(va, const char *);
1422  va_end(va);
1423
1424  llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements);
1425
1426  return Builder.CreateShuffleVector(V1, V2, Mask, Name);
1427}
1428
1429llvm::Value *CodeGenFunction::EmitVector(llvm::Value * const *Vals,
1430                                         unsigned NumVals, bool isSplat) {
1431  llvm::Value *Vec
1432    = llvm::UndefValue::get(llvm::VectorType::get(Vals[0]->getType(), NumVals));
1433
1434  for (unsigned i = 0, e = NumVals; i != e; ++i) {
1435    llvm::Value *Val = isSplat ? Vals[0] : Vals[i];
1436    llvm::Value *Idx = llvm::ConstantInt::get(llvm::Type::Int32Ty, i);
1437    Vec = Builder.CreateInsertElement(Vec, Val, Idx, "tmp");
1438  }
1439
1440  return Vec;
1441}
1442