CGExprScalar.cpp revision c849c052d6b4b70f2651c1969531861a5f230053
1//===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenFunction.h"
15#include "CGObjCRuntime.h"
16#include "CodeGenModule.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/RecordLayout.h"
20#include "clang/AST/StmtVisitor.h"
21#include "clang/Basic/TargetInfo.h"
22#include "llvm/Constants.h"
23#include "llvm/Function.h"
24#include "llvm/GlobalVariable.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/Module.h"
27#include "llvm/Support/Compiler.h"
28#include "llvm/Support/CFG.h"
29#include "llvm/Target/TargetData.h"
30#include <cstdarg>
31
32using namespace clang;
33using namespace CodeGen;
34using llvm::Value;
35
36//===----------------------------------------------------------------------===//
37//                         Scalar Expression Emitter
38//===----------------------------------------------------------------------===//
39
40struct BinOpInfo {
41  Value *LHS;
42  Value *RHS;
43  QualType Ty;  // Computation Type.
44  const BinaryOperator *E;
45};
46
47namespace {
48class VISIBILITY_HIDDEN ScalarExprEmitter
49  : public StmtVisitor<ScalarExprEmitter, Value*> {
50  CodeGenFunction &CGF;
51  CGBuilderTy &Builder;
52  bool IgnoreResultAssign;
53  llvm::LLVMContext &VMContext;
54public:
55
56  ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
57    : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
58      VMContext(cgf.getLLVMContext()) {
59  }
60
61  //===--------------------------------------------------------------------===//
62  //                               Utilities
63  //===--------------------------------------------------------------------===//
64
65  bool TestAndClearIgnoreResultAssign() {
66    bool I = IgnoreResultAssign;
67    IgnoreResultAssign = false;
68    return I;
69  }
70
71  const llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
72  LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
73
74  Value *EmitLoadOfLValue(LValue LV, QualType T) {
75    return CGF.EmitLoadOfLValue(LV, T).getScalarVal();
76  }
77
78  /// EmitLoadOfLValue - Given an expression with complex type that represents a
79  /// value l-value, this method emits the address of the l-value, then loads
80  /// and returns the result.
81  Value *EmitLoadOfLValue(const Expr *E) {
82    return EmitLoadOfLValue(EmitLValue(E), E->getType());
83  }
84
85  /// EmitConversionToBool - Convert the specified expression value to a
86  /// boolean (i1) truth value.  This is equivalent to "Val != 0".
87  Value *EmitConversionToBool(Value *Src, QualType DstTy);
88
89  /// EmitScalarConversion - Emit a conversion from the specified type to the
90  /// specified destination type, both of which are LLVM scalar types.
91  Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);
92
93  /// EmitComplexToScalarConversion - Emit a conversion from the specified
94  /// complex type to the specified destination type, where the destination type
95  /// is an LLVM scalar type.
96  Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
97                                       QualType SrcTy, QualType DstTy);
98
99  //===--------------------------------------------------------------------===//
100  //                            Visitor Methods
101  //===--------------------------------------------------------------------===//
102
103  Value *VisitStmt(Stmt *S) {
104    S->dump(CGF.getContext().getSourceManager());
105    assert(0 && "Stmt can't have complex result type!");
106    return 0;
107  }
108  Value *VisitExpr(Expr *S);
109
110  Value *VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr()); }
111
112  // Leaves.
113  Value *VisitIntegerLiteral(const IntegerLiteral *E) {
114    return llvm::ConstantInt::get(VMContext, E->getValue());
115  }
116  Value *VisitFloatingLiteral(const FloatingLiteral *E) {
117    return llvm::ConstantFP::get(VMContext, E->getValue());
118  }
119  Value *VisitCharacterLiteral(const CharacterLiteral *E) {
120    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
121  }
122  Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
123    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
124  }
125  Value *VisitCXXZeroInitValueExpr(const CXXZeroInitValueExpr *E) {
126    return llvm::Constant::getNullValue(ConvertType(E->getType()));
127  }
128  Value *VisitGNUNullExpr(const GNUNullExpr *E) {
129    return llvm::Constant::getNullValue(ConvertType(E->getType()));
130  }
131  Value *VisitTypesCompatibleExpr(const TypesCompatibleExpr *E) {
132    return llvm::ConstantInt::get(ConvertType(E->getType()),
133                                  CGF.getContext().typesAreCompatible(
134                                    E->getArgType1(), E->getArgType2()));
135  }
136  Value *VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E);
137  Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
138    llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
139    return Builder.CreateBitCast(V, ConvertType(E->getType()));
140  }
141
142  // l-values.
143  Value *VisitDeclRefExpr(DeclRefExpr *E) {
144    if (const EnumConstantDecl *EC = dyn_cast<EnumConstantDecl>(E->getDecl()))
145      return llvm::ConstantInt::get(VMContext, EC->getInitVal());
146    return EmitLoadOfLValue(E);
147  }
148  Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
149    return CGF.EmitObjCSelectorExpr(E);
150  }
151  Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
152    return CGF.EmitObjCProtocolExpr(E);
153  }
154  Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
155    return EmitLoadOfLValue(E);
156  }
157  Value *VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
158    return EmitLoadOfLValue(E);
159  }
160  Value *VisitObjCImplicitSetterGetterRefExpr(
161                        ObjCImplicitSetterGetterRefExpr *E) {
162    return EmitLoadOfLValue(E);
163  }
164  Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
165    return CGF.EmitObjCMessageExpr(E).getScalarVal();
166  }
167
168  Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
169  Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
170  Value *VisitMemberExpr(Expr *E)           { return EmitLoadOfLValue(E); }
171  Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
172  Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
173    return EmitLoadOfLValue(E);
174  }
175  Value *VisitStringLiteral(Expr *E)  { return EmitLValue(E).getAddress(); }
176  Value *VisitObjCEncodeExpr(const ObjCEncodeExpr *E) {
177     return EmitLValue(E).getAddress();
178  }
179
180  Value *VisitPredefinedExpr(Expr *E) { return EmitLValue(E).getAddress(); }
181
182  Value *VisitInitListExpr(InitListExpr *E);
183
184  Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
185    return llvm::Constant::getNullValue(ConvertType(E->getType()));
186  }
187  Value *VisitCastExpr(const CastExpr *E) {
188    // Make sure to evaluate VLA bounds now so that we have them for later.
189    if (E->getType()->isVariablyModifiedType())
190      CGF.EmitVLASize(E->getType());
191
192    return EmitCastExpr(E);
193  }
194  Value *EmitCastExpr(const CastExpr *E);
195
196  Value *VisitCallExpr(const CallExpr *E) {
197    if (E->getCallReturnType()->isReferenceType())
198      return EmitLoadOfLValue(E);
199
200    return CGF.EmitCallExpr(E).getScalarVal();
201  }
202
203  Value *VisitStmtExpr(const StmtExpr *E);
204
205  Value *VisitBlockDeclRefExpr(const BlockDeclRefExpr *E);
206
207  // Unary Operators.
208  Value *VisitPrePostIncDec(const UnaryOperator *E, bool isInc, bool isPre);
209  Value *VisitUnaryPostDec(const UnaryOperator *E) {
210    return VisitPrePostIncDec(E, false, false);
211  }
212  Value *VisitUnaryPostInc(const UnaryOperator *E) {
213    return VisitPrePostIncDec(E, true, false);
214  }
215  Value *VisitUnaryPreDec(const UnaryOperator *E) {
216    return VisitPrePostIncDec(E, false, true);
217  }
218  Value *VisitUnaryPreInc(const UnaryOperator *E) {
219    return VisitPrePostIncDec(E, true, true);
220  }
221  Value *VisitUnaryAddrOf(const UnaryOperator *E) {
222    return EmitLValue(E->getSubExpr()).getAddress();
223  }
224  Value *VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); }
225  Value *VisitUnaryPlus(const UnaryOperator *E) {
226    // This differs from gcc, though, most likely due to a bug in gcc.
227    TestAndClearIgnoreResultAssign();
228    return Visit(E->getSubExpr());
229  }
230  Value *VisitUnaryMinus    (const UnaryOperator *E);
231  Value *VisitUnaryNot      (const UnaryOperator *E);
232  Value *VisitUnaryLNot     (const UnaryOperator *E);
233  Value *VisitUnaryReal     (const UnaryOperator *E);
234  Value *VisitUnaryImag     (const UnaryOperator *E);
235  Value *VisitUnaryExtension(const UnaryOperator *E) {
236    return Visit(E->getSubExpr());
237  }
238  Value *VisitUnaryOffsetOf(const UnaryOperator *E);
239
240  // C++
241  Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
242    return Visit(DAE->getExpr());
243  }
244  Value *VisitCXXThisExpr(CXXThisExpr *TE) {
245    return CGF.LoadCXXThis();
246  }
247
248  Value *VisitCXXExprWithTemporaries(CXXExprWithTemporaries *E) {
249    return CGF.EmitCXXExprWithTemporaries(E).getScalarVal();
250  }
251  Value *VisitCXXNewExpr(const CXXNewExpr *E) {
252    return CGF.EmitCXXNewExpr(E);
253  }
254  Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
255    CGF.EmitCXXDeleteExpr(E);
256    return 0;
257  }
258
259  Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
260    // C++ [expr.pseudo]p1:
261    //   The result shall only be used as the operand for the function call
262    //   operator (), and the result of such a call has type void. The only
263    //   effect is the evaluation of the postfix-expression before the dot or
264    //   arrow.
265    CGF.EmitScalarExpr(E->getBase());
266    return 0;
267  }
268
269  Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
270    return llvm::Constant::getNullValue(ConvertType(E->getType()));
271  }
272
273  Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
274    CGF.EmitCXXThrowExpr(E);
275    return 0;
276  }
277
278  // Binary Operators.
279  Value *EmitMul(const BinOpInfo &Ops) {
280    if (CGF.getContext().getLangOptions().OverflowChecking
281        && Ops.Ty->isSignedIntegerType())
282      return EmitOverflowCheckedBinOp(Ops);
283    if (Ops.LHS->getType()->isFPOrFPVector())
284      return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
285    return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
286  }
287  /// Create a binary op that checks for overflow.
288  /// Currently only supports +, - and *.
289  Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
290  Value *EmitDiv(const BinOpInfo &Ops);
291  Value *EmitRem(const BinOpInfo &Ops);
292  Value *EmitAdd(const BinOpInfo &Ops);
293  Value *EmitSub(const BinOpInfo &Ops);
294  Value *EmitShl(const BinOpInfo &Ops);
295  Value *EmitShr(const BinOpInfo &Ops);
296  Value *EmitAnd(const BinOpInfo &Ops) {
297    return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
298  }
299  Value *EmitXor(const BinOpInfo &Ops) {
300    return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
301  }
302  Value *EmitOr (const BinOpInfo &Ops) {
303    return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
304  }
305
306  BinOpInfo EmitBinOps(const BinaryOperator *E);
307  Value *EmitCompoundAssign(const CompoundAssignOperator *E,
308                            Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
309
310  // Binary operators and binary compound assignment operators.
311#define HANDLEBINOP(OP) \
312  Value *VisitBin ## OP(const BinaryOperator *E) {                         \
313    return Emit ## OP(EmitBinOps(E));                                      \
314  }                                                                        \
315  Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
316    return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
317  }
318  HANDLEBINOP(Mul);
319  HANDLEBINOP(Div);
320  HANDLEBINOP(Rem);
321  HANDLEBINOP(Add);
322  HANDLEBINOP(Sub);
323  HANDLEBINOP(Shl);
324  HANDLEBINOP(Shr);
325  HANDLEBINOP(And);
326  HANDLEBINOP(Xor);
327  HANDLEBINOP(Or);
328#undef HANDLEBINOP
329
330  // Comparisons.
331  Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
332                     unsigned SICmpOpc, unsigned FCmpOpc);
333#define VISITCOMP(CODE, UI, SI, FP) \
334    Value *VisitBin##CODE(const BinaryOperator *E) { \
335      return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
336                         llvm::FCmpInst::FP); }
337  VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT);
338  VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT);
339  VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE);
340  VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE);
341  VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ);
342  VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE);
343#undef VISITCOMP
344
345  Value *VisitBinAssign     (const BinaryOperator *E);
346
347  Value *VisitBinLAnd       (const BinaryOperator *E);
348  Value *VisitBinLOr        (const BinaryOperator *E);
349  Value *VisitBinComma      (const BinaryOperator *E);
350
351  // Other Operators.
352  Value *VisitBlockExpr(const BlockExpr *BE);
353  Value *VisitConditionalOperator(const ConditionalOperator *CO);
354  Value *VisitChooseExpr(ChooseExpr *CE);
355  Value *VisitVAArgExpr(VAArgExpr *VE);
356  Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
357    return CGF.EmitObjCStringLiteral(E);
358  }
359};
360}  // end anonymous namespace.
361
362//===----------------------------------------------------------------------===//
363//                                Utilities
364//===----------------------------------------------------------------------===//
365
366/// EmitConversionToBool - Convert the specified expression value to a
367/// boolean (i1) truth value.  This is equivalent to "Val != 0".
368Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
369  assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
370
371  if (SrcType->isRealFloatingType()) {
372    // Compare against 0.0 for fp scalars.
373    llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType());
374    return Builder.CreateFCmpUNE(Src, Zero, "tobool");
375  }
376
377  if (SrcType->isMemberPointerType()) {
378    // FIXME: This is ABI specific.
379
380    // Compare against -1.
381    llvm::Value *NegativeOne = llvm::Constant::getAllOnesValue(Src->getType());
382    return Builder.CreateICmpNE(Src, NegativeOne, "tobool");
383  }
384
385  assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
386         "Unknown scalar type to convert");
387
388  // Because of the type rules of C, we often end up computing a logical value,
389  // then zero extending it to int, then wanting it as a logical value again.
390  // Optimize this common case.
391  if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(Src)) {
392    if (ZI->getOperand(0)->getType() ==
393        llvm::Type::getInt1Ty(CGF.getLLVMContext())) {
394      Value *Result = ZI->getOperand(0);
395      // If there aren't any more uses, zap the instruction to save space.
396      // Note that there can be more uses, for example if this
397      // is the result of an assignment.
398      if (ZI->use_empty())
399        ZI->eraseFromParent();
400      return Result;
401    }
402  }
403
404  // Compare against an integer or pointer null.
405  llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType());
406  return Builder.CreateICmpNE(Src, Zero, "tobool");
407}
408
409/// EmitScalarConversion - Emit a conversion from the specified type to the
410/// specified destination type, both of which are LLVM scalar types.
411Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
412                                               QualType DstType) {
413  SrcType = CGF.getContext().getCanonicalType(SrcType);
414  DstType = CGF.getContext().getCanonicalType(DstType);
415  if (SrcType == DstType) return Src;
416
417  if (DstType->isVoidType()) return 0;
418
419  llvm::LLVMContext &VMContext = CGF.getLLVMContext();
420
421  // Handle conversions to bool first, they are special: comparisons against 0.
422  if (DstType->isBooleanType())
423    return EmitConversionToBool(Src, SrcType);
424
425  const llvm::Type *DstTy = ConvertType(DstType);
426
427  // Ignore conversions like int -> uint.
428  if (Src->getType() == DstTy)
429    return Src;
430
431  // Handle pointer conversions next: pointers can only be converted to/from
432  // other pointers and integers. Check for pointer types in terms of LLVM, as
433  // some native types (like Obj-C id) may map to a pointer type.
434  if (isa<llvm::PointerType>(DstTy)) {
435    // The source value may be an integer, or a pointer.
436    if (isa<llvm::PointerType>(Src->getType()))
437      return Builder.CreateBitCast(Src, DstTy, "conv");
438
439    assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
440    // First, convert to the correct width so that we control the kind of
441    // extension.
442    const llvm::Type *MiddleTy =
443          llvm::IntegerType::get(VMContext, CGF.LLVMPointerWidth);
444    bool InputSigned = SrcType->isSignedIntegerType();
445    llvm::Value* IntResult =
446        Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
447    // Then, cast to pointer.
448    return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
449  }
450
451  if (isa<llvm::PointerType>(Src->getType())) {
452    // Must be an ptr to int cast.
453    assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
454    return Builder.CreatePtrToInt(Src, DstTy, "conv");
455  }
456
457  // A scalar can be splatted to an extended vector of the same element type
458  if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
459    // Cast the scalar to element type
460    QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType();
461    llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy);
462
463    // Insert the element in element zero of an undef vector
464    llvm::Value *UnV = llvm::UndefValue::get(DstTy);
465    llvm::Value *Idx =
466        llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 0);
467    UnV = Builder.CreateInsertElement(UnV, Elt, Idx, "tmp");
468
469    // Splat the element across to all elements
470    llvm::SmallVector<llvm::Constant*, 16> Args;
471    unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
472    for (unsigned i = 0; i < NumElements; i++)
473      Args.push_back(llvm::ConstantInt::get(
474                                        llvm::Type::getInt32Ty(VMContext), 0));
475
476    llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements);
477    llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
478    return Yay;
479  }
480
481  // Allow bitcast from vector to integer/fp of the same size.
482  if (isa<llvm::VectorType>(Src->getType()) ||
483      isa<llvm::VectorType>(DstTy))
484    return Builder.CreateBitCast(Src, DstTy, "conv");
485
486  // Finally, we have the arithmetic types: real int/float.
487  if (isa<llvm::IntegerType>(Src->getType())) {
488    bool InputSigned = SrcType->isSignedIntegerType();
489    if (isa<llvm::IntegerType>(DstTy))
490      return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
491    else if (InputSigned)
492      return Builder.CreateSIToFP(Src, DstTy, "conv");
493    else
494      return Builder.CreateUIToFP(Src, DstTy, "conv");
495  }
496
497  assert(Src->getType()->isFloatingPoint() && "Unknown real conversion");
498  if (isa<llvm::IntegerType>(DstTy)) {
499    if (DstType->isSignedIntegerType())
500      return Builder.CreateFPToSI(Src, DstTy, "conv");
501    else
502      return Builder.CreateFPToUI(Src, DstTy, "conv");
503  }
504
505  assert(DstTy->isFloatingPoint() && "Unknown real conversion");
506  if (DstTy->getTypeID() < Src->getType()->getTypeID())
507    return Builder.CreateFPTrunc(Src, DstTy, "conv");
508  else
509    return Builder.CreateFPExt(Src, DstTy, "conv");
510}
511
512/// EmitComplexToScalarConversion - Emit a conversion from the specified complex
513/// type to the specified destination type, where the destination type is an
514/// LLVM scalar type.
515Value *ScalarExprEmitter::
516EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
517                              QualType SrcTy, QualType DstTy) {
518  // Get the source element type.
519  SrcTy = SrcTy->getAs<ComplexType>()->getElementType();
520
521  // Handle conversions to bool first, they are special: comparisons against 0.
522  if (DstTy->isBooleanType()) {
523    //  Complex != 0  -> (Real != 0) | (Imag != 0)
524    Src.first  = EmitScalarConversion(Src.first, SrcTy, DstTy);
525    Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
526    return Builder.CreateOr(Src.first, Src.second, "tobool");
527  }
528
529  // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
530  // the imaginary part of the complex value is discarded and the value of the
531  // real part is converted according to the conversion rules for the
532  // corresponding real type.
533  return EmitScalarConversion(Src.first, SrcTy, DstTy);
534}
535
536
537//===----------------------------------------------------------------------===//
538//                            Visitor Methods
539//===----------------------------------------------------------------------===//
540
541Value *ScalarExprEmitter::VisitExpr(Expr *E) {
542  if (const BinaryOperator *BExpr = dyn_cast<BinaryOperator>(E))
543    if (BExpr->getOpcode() == BinaryOperator::PtrMemD) {
544      LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(BExpr);
545      Value *InVal = CGF.EmitLoadOfLValue(LV, E->getType()).getScalarVal();
546      return InVal;
547    }
548
549  CGF.ErrorUnsupported(E, "scalar expression");
550  if (E->getType()->isVoidType())
551    return 0;
552  return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
553}
554
555Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
556  llvm::SmallVector<llvm::Constant*, 32> indices;
557  for (unsigned i = 2; i < E->getNumSubExprs(); i++) {
558    indices.push_back(cast<llvm::Constant>(CGF.EmitScalarExpr(E->getExpr(i))));
559  }
560  Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
561  Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
562  Value* SV = llvm::ConstantVector::get(indices.begin(), indices.size());
563  return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
564}
565
566Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
567  TestAndClearIgnoreResultAssign();
568
569  // Emit subscript expressions in rvalue context's.  For most cases, this just
570  // loads the lvalue formed by the subscript expr.  However, we have to be
571  // careful, because the base of a vector subscript is occasionally an rvalue,
572  // so we can't get it as an lvalue.
573  if (!E->getBase()->getType()->isVectorType())
574    return EmitLoadOfLValue(E);
575
576  // Handle the vector case.  The base must be a vector, the index must be an
577  // integer value.
578  Value *Base = Visit(E->getBase());
579  Value *Idx  = Visit(E->getIdx());
580  bool IdxSigned = E->getIdx()->getType()->isSignedIntegerType();
581  Idx = Builder.CreateIntCast(Idx,
582                              llvm::Type::getInt32Ty(CGF.getLLVMContext()),
583                              IdxSigned,
584                              "vecidxcast");
585  return Builder.CreateExtractElement(Base, Idx, "vecext");
586}
587
588static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
589                                  unsigned Off, const llvm::Type *I32Ty) {
590  int MV = SVI->getMaskValue(Idx);
591  if (MV == -1)
592    return llvm::UndefValue::get(I32Ty);
593  return llvm::ConstantInt::get(I32Ty, Off+MV);
594}
595
596Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
597  bool Ignore = TestAndClearIgnoreResultAssign();
598  (void)Ignore;
599  assert (Ignore == false && "init list ignored");
600  unsigned NumInitElements = E->getNumInits();
601
602  if (E->hadArrayRangeDesignator())
603    CGF.ErrorUnsupported(E, "GNU array range designator extension");
604
605  const llvm::VectorType *VType =
606    dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
607
608  // We have a scalar in braces. Just use the first element.
609  if (!VType)
610    return Visit(E->getInit(0));
611
612  unsigned ResElts = VType->getNumElements();
613  const llvm::Type *I32Ty = llvm::Type::getInt32Ty(CGF.getLLVMContext());
614
615  // Loop over initializers collecting the Value for each, and remembering
616  // whether the source was swizzle (ExtVectorElementExpr).  This will allow
617  // us to fold the shuffle for the swizzle into the shuffle for the vector
618  // initializer, since LLVM optimizers generally do not want to touch
619  // shuffles.
620  unsigned CurIdx = 0;
621  bool VIsUndefShuffle = false;
622  llvm::Value *V = llvm::UndefValue::get(VType);
623  for (unsigned i = 0; i != NumInitElements; ++i) {
624    Expr *IE = E->getInit(i);
625    Value *Init = Visit(IE);
626    llvm::SmallVector<llvm::Constant*, 16> Args;
627
628    const llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
629
630    // Handle scalar elements.  If the scalar initializer is actually one
631    // element of a different vector of the same width, use shuffle instead of
632    // extract+insert.
633    if (!VVT) {
634      if (isa<ExtVectorElementExpr>(IE)) {
635        llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
636
637        if (EI->getVectorOperandType()->getNumElements() == ResElts) {
638          llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
639          Value *LHS = 0, *RHS = 0;
640          if (CurIdx == 0) {
641            // insert into undef -> shuffle (src, undef)
642            Args.push_back(C);
643            for (unsigned j = 1; j != ResElts; ++j)
644              Args.push_back(llvm::UndefValue::get(I32Ty));
645
646            LHS = EI->getVectorOperand();
647            RHS = V;
648            VIsUndefShuffle = true;
649          } else if (VIsUndefShuffle) {
650            // insert into undefshuffle && size match -> shuffle (v, src)
651            llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
652            for (unsigned j = 0; j != CurIdx; ++j)
653              Args.push_back(getMaskElt(SVV, j, 0, I32Ty));
654            Args.push_back(llvm::ConstantInt::get(I32Ty,
655                                                  ResElts + C->getZExtValue()));
656            for (unsigned j = CurIdx + 1; j != ResElts; ++j)
657              Args.push_back(llvm::UndefValue::get(I32Ty));
658
659            LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
660            RHS = EI->getVectorOperand();
661            VIsUndefShuffle = false;
662          }
663          if (!Args.empty()) {
664            llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], ResElts);
665            V = Builder.CreateShuffleVector(LHS, RHS, Mask);
666            ++CurIdx;
667            continue;
668          }
669        }
670      }
671      Value *Idx = llvm::ConstantInt::get(I32Ty, CurIdx);
672      V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
673      VIsUndefShuffle = false;
674      ++CurIdx;
675      continue;
676    }
677
678    unsigned InitElts = VVT->getNumElements();
679
680    // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
681    // input is the same width as the vector being constructed, generate an
682    // optimized shuffle of the swizzle input into the result.
683    unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
684    if (isa<ExtVectorElementExpr>(IE)) {
685      llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
686      Value *SVOp = SVI->getOperand(0);
687      const llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
688
689      if (OpTy->getNumElements() == ResElts) {
690        for (unsigned j = 0; j != CurIdx; ++j) {
691          // If the current vector initializer is a shuffle with undef, merge
692          // this shuffle directly into it.
693          if (VIsUndefShuffle) {
694            Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
695                                      I32Ty));
696          } else {
697            Args.push_back(llvm::ConstantInt::get(I32Ty, j));
698          }
699        }
700        for (unsigned j = 0, je = InitElts; j != je; ++j)
701          Args.push_back(getMaskElt(SVI, j, Offset, I32Ty));
702        for (unsigned j = CurIdx + InitElts; j != ResElts; ++j)
703          Args.push_back(llvm::UndefValue::get(I32Ty));
704
705        if (VIsUndefShuffle)
706          V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
707
708        Init = SVOp;
709      }
710    }
711
712    // Extend init to result vector length, and then shuffle its contribution
713    // to the vector initializer into V.
714    if (Args.empty()) {
715      for (unsigned j = 0; j != InitElts; ++j)
716        Args.push_back(llvm::ConstantInt::get(I32Ty, j));
717      for (unsigned j = InitElts; j != ResElts; ++j)
718        Args.push_back(llvm::UndefValue::get(I32Ty));
719      llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], ResElts);
720      Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
721                                         Mask, "vext");
722
723      Args.clear();
724      for (unsigned j = 0; j != CurIdx; ++j)
725        Args.push_back(llvm::ConstantInt::get(I32Ty, j));
726      for (unsigned j = 0; j != InitElts; ++j)
727        Args.push_back(llvm::ConstantInt::get(I32Ty, j+Offset));
728      for (unsigned j = CurIdx + InitElts; j != ResElts; ++j)
729        Args.push_back(llvm::UndefValue::get(I32Ty));
730    }
731
732    // If V is undef, make sure it ends up on the RHS of the shuffle to aid
733    // merging subsequent shuffles into this one.
734    if (CurIdx == 0)
735      std::swap(V, Init);
736    llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], ResElts);
737    V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
738    VIsUndefShuffle = isa<llvm::UndefValue>(Init);
739    CurIdx += InitElts;
740  }
741
742  // FIXME: evaluate codegen vs. shuffling against constant null vector.
743  // Emit remaining default initializers.
744  const llvm::Type *EltTy = VType->getElementType();
745
746  // Emit remaining default initializers
747  for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
748    Value *Idx = llvm::ConstantInt::get(I32Ty, CurIdx);
749    llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
750    V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
751  }
752  return V;
753}
754
755// VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
756// have to handle a more broad range of conversions than explicit casts, as they
757// handle things like function to ptr-to-function decay etc.
758Value *ScalarExprEmitter::EmitCastExpr(const CastExpr *CE) {
759  const Expr *E = CE->getSubExpr();
760  QualType DestTy = CE->getType();
761  CastExpr::CastKind Kind = CE->getCastKind();
762
763  if (!DestTy->isVoidType())
764    TestAndClearIgnoreResultAssign();
765
766  switch (Kind) {
767  default:
768    // FIXME: Assert here.
769    // assert(0 && "Unhandled cast kind!");
770    break;
771  case CastExpr::CK_Unknown:
772    // FIXME: We should really assert here - Unknown casts should never get
773    // as far as to codegen.
774    break;
775  case CastExpr::CK_BitCast: {
776    Value *Src = Visit(const_cast<Expr*>(E));
777    return Builder.CreateBitCast(Src, ConvertType(DestTy));
778  }
779  case CastExpr::CK_ArrayToPointerDecay: {
780    assert(E->getType()->isArrayType() &&
781           "Array to pointer decay must have array source type!");
782
783    Value *V = EmitLValue(E).getAddress();  // Bitfields can't be arrays.
784
785    // Note that VLA pointers are always decayed, so we don't need to do
786    // anything here.
787    if (!E->getType()->isVariableArrayType()) {
788      assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer");
789      assert(isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType())
790                                 ->getElementType()) &&
791             "Expected pointer to array");
792      V = Builder.CreateStructGEP(V, 0, "arraydecay");
793    }
794
795    // The resultant pointer type can be implicitly casted to other pointer
796    // types as well (e.g. void*) and can be implicitly converted to integer.
797    const llvm::Type *DestLTy = ConvertType(DestTy);
798    if (V->getType() != DestLTy) {
799      if (isa<llvm::PointerType>(DestLTy))
800        V = Builder.CreateBitCast(V, DestLTy, "ptrconv");
801      else {
802        assert(isa<llvm::IntegerType>(DestLTy) && "Unknown array decay");
803        V = Builder.CreatePtrToInt(V, DestLTy, "ptrconv");
804      }
805    }
806    return V;
807  }
808  case CastExpr::CK_NullToMemberPointer:
809    return CGF.CGM.EmitNullConstant(DestTy);
810
811  case CastExpr::CK_DerivedToBase: {
812    const RecordType *DerivedClassTy =
813      E->getType()->getAs<PointerType>()->getPointeeType()->getAs<RecordType>();
814    CXXRecordDecl *DerivedClassDecl =
815      cast<CXXRecordDecl>(DerivedClassTy->getDecl());
816
817    const RecordType *BaseClassTy =
818      DestTy->getAs<PointerType>()->getPointeeType()->getAs<RecordType>();
819    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseClassTy->getDecl());
820
821    Value *Src = Visit(const_cast<Expr*>(E));
822
823    bool NullCheckValue = true;
824
825    if (isa<CXXThisExpr>(E)) {
826      // We always assume that 'this' is never null.
827      NullCheckValue = false;
828    } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
829      // And that lvalue casts are never null.
830      if (ICE->isLvalueCast())
831        NullCheckValue = false;
832    }
833    return CGF.GetAddressCXXOfBaseClass(Src, DerivedClassDecl, BaseClassDecl,
834                                        NullCheckValue);
835  }
836
837  case CastExpr::CK_IntegralToPointer: {
838    Value *Src = Visit(const_cast<Expr*>(E));
839
840    // First, convert to the correct width so that we control the kind of
841    // extension.
842    const llvm::Type *MiddleTy =
843      llvm::IntegerType::get(VMContext, CGF.LLVMPointerWidth);
844    bool InputSigned = E->getType()->isSignedIntegerType();
845    llvm::Value* IntResult =
846      Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
847
848    return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy));
849  }
850
851  case CastExpr::CK_PointerToIntegral: {
852    Value *Src = Visit(const_cast<Expr*>(E));
853    return Builder.CreatePtrToInt(Src, ConvertType(DestTy));
854  }
855
856  case CastExpr::CK_Dynamic: {
857    Value *V = Visit(const_cast<Expr*>(E));
858    const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
859    return CGF.EmitDynamicCast(V, DCE);
860  }
861
862  }
863
864  // Handle cases where the source is an non-complex type.
865
866  if (!CGF.hasAggregateLLVMType(E->getType())) {
867    Value *Src = Visit(const_cast<Expr*>(E));
868
869    // Use EmitScalarConversion to perform the conversion.
870    return EmitScalarConversion(Src, E->getType(), DestTy);
871  }
872
873  if (E->getType()->isAnyComplexType()) {
874    // Handle cases where the source is a complex type.
875    bool IgnoreImag = true;
876    bool IgnoreImagAssign = true;
877    bool IgnoreReal = IgnoreResultAssign;
878    bool IgnoreRealAssign = IgnoreResultAssign;
879    if (DestTy->isBooleanType())
880      IgnoreImagAssign = IgnoreImag = false;
881    else if (DestTy->isVoidType()) {
882      IgnoreReal = IgnoreImag = false;
883      IgnoreRealAssign = IgnoreImagAssign = true;
884    }
885    CodeGenFunction::ComplexPairTy V
886      = CGF.EmitComplexExpr(E, IgnoreReal, IgnoreImag, IgnoreRealAssign,
887                            IgnoreImagAssign);
888    return EmitComplexToScalarConversion(V, E->getType(), DestTy);
889  }
890
891  // Okay, this is a cast from an aggregate.  It must be a cast to void.  Just
892  // evaluate the result and return.
893  CGF.EmitAggExpr(E, 0, false, true);
894  return 0;
895}
896
897Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
898  return CGF.EmitCompoundStmt(*E->getSubStmt(),
899                              !E->getType()->isVoidType()).getScalarVal();
900}
901
902Value *ScalarExprEmitter::VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) {
903  llvm::Value *V = CGF.GetAddrOfBlockDecl(E);
904  if (E->getType().isObjCGCWeak())
905    return CGF.CGM.getObjCRuntime().EmitObjCWeakRead(CGF, V);
906  return Builder.CreateLoad(V, false, "tmp");
907}
908
909//===----------------------------------------------------------------------===//
910//                             Unary Operators
911//===----------------------------------------------------------------------===//
912
913Value *ScalarExprEmitter::VisitPrePostIncDec(const UnaryOperator *E,
914                                             bool isInc, bool isPre) {
915  LValue LV = EmitLValue(E->getSubExpr());
916  QualType ValTy = E->getSubExpr()->getType();
917  Value *InVal = CGF.EmitLoadOfLValue(LV, ValTy).getScalarVal();
918
919  llvm::LLVMContext &VMContext = CGF.getLLVMContext();
920
921  int AmountVal = isInc ? 1 : -1;
922
923  if (ValTy->isPointerType() &&
924      ValTy->getAs<PointerType>()->isVariableArrayType()) {
925    // The amount of the addition/subtraction needs to account for the VLA size
926    CGF.ErrorUnsupported(E, "VLA pointer inc/dec");
927  }
928
929  Value *NextVal;
930  if (const llvm::PointerType *PT =
931         dyn_cast<llvm::PointerType>(InVal->getType())) {
932    llvm::Constant *Inc =
933      llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), AmountVal);
934    if (!isa<llvm::FunctionType>(PT->getElementType())) {
935      QualType PTEE = ValTy->getPointeeType();
936      if (const ObjCInterfaceType *OIT =
937          dyn_cast<ObjCInterfaceType>(PTEE)) {
938        // Handle interface types, which are not represented with a concrete type.
939        int size = CGF.getContext().getTypeSize(OIT) / 8;
940        if (!isInc)
941          size = -size;
942        Inc = llvm::ConstantInt::get(Inc->getType(), size);
943        const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
944        InVal = Builder.CreateBitCast(InVal, i8Ty);
945        NextVal = Builder.CreateGEP(InVal, Inc, "add.ptr");
946        llvm::Value *lhs = LV.getAddress();
947        lhs = Builder.CreateBitCast(lhs, llvm::PointerType::getUnqual(i8Ty));
948        LV = LValue::MakeAddr(lhs, CGF.MakeQualifiers(ValTy));
949      } else
950        NextVal = Builder.CreateInBoundsGEP(InVal, Inc, "ptrincdec");
951    } else {
952      const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
953      NextVal = Builder.CreateBitCast(InVal, i8Ty, "tmp");
954      NextVal = Builder.CreateGEP(NextVal, Inc, "ptrincdec");
955      NextVal = Builder.CreateBitCast(NextVal, InVal->getType());
956    }
957  } else if (InVal->getType() == llvm::Type::getInt1Ty(VMContext) && isInc) {
958    // Bool++ is an interesting case, due to promotion rules, we get:
959    // Bool++ -> Bool = Bool+1 -> Bool = (int)Bool+1 ->
960    // Bool = ((int)Bool+1) != 0
961    // An interesting aspect of this is that increment is always true.
962    // Decrement does not have this property.
963    NextVal = llvm::ConstantInt::getTrue(VMContext);
964  } else if (isa<llvm::IntegerType>(InVal->getType())) {
965    NextVal = llvm::ConstantInt::get(InVal->getType(), AmountVal);
966
967    // Signed integer overflow is undefined behavior.
968    if (ValTy->isSignedIntegerType())
969      NextVal = Builder.CreateNSWAdd(InVal, NextVal, isInc ? "inc" : "dec");
970    else
971      NextVal = Builder.CreateAdd(InVal, NextVal, isInc ? "inc" : "dec");
972  } else {
973    // Add the inc/dec to the real part.
974    if (InVal->getType()->isFloatTy())
975      NextVal =
976        llvm::ConstantFP::get(VMContext,
977                              llvm::APFloat(static_cast<float>(AmountVal)));
978    else if (InVal->getType()->isDoubleTy())
979      NextVal =
980        llvm::ConstantFP::get(VMContext,
981                              llvm::APFloat(static_cast<double>(AmountVal)));
982    else {
983      llvm::APFloat F(static_cast<float>(AmountVal));
984      bool ignored;
985      F.convert(CGF.Target.getLongDoubleFormat(), llvm::APFloat::rmTowardZero,
986                &ignored);
987      NextVal = llvm::ConstantFP::get(VMContext, F);
988    }
989    NextVal = Builder.CreateFAdd(InVal, NextVal, isInc ? "inc" : "dec");
990  }
991
992  // Store the updated result through the lvalue.
993  if (LV.isBitfield())
994    CGF.EmitStoreThroughBitfieldLValue(RValue::get(NextVal), LV, ValTy,
995                                       &NextVal);
996  else
997    CGF.EmitStoreThroughLValue(RValue::get(NextVal), LV, ValTy);
998
999  // If this is a postinc, return the value read from memory, otherwise use the
1000  // updated value.
1001  return isPre ? NextVal : InVal;
1002}
1003
1004
1005Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
1006  TestAndClearIgnoreResultAssign();
1007  Value *Op = Visit(E->getSubExpr());
1008  if (Op->getType()->isFPOrFPVector())
1009    return Builder.CreateFNeg(Op, "neg");
1010  return Builder.CreateNeg(Op, "neg");
1011}
1012
1013Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
1014  TestAndClearIgnoreResultAssign();
1015  Value *Op = Visit(E->getSubExpr());
1016  return Builder.CreateNot(Op, "neg");
1017}
1018
1019Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
1020  // Compare operand to zero.
1021  Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
1022
1023  // Invert value.
1024  // TODO: Could dynamically modify easy computations here.  For example, if
1025  // the operand is an icmp ne, turn into icmp eq.
1026  BoolVal = Builder.CreateNot(BoolVal, "lnot");
1027
1028  // ZExt result to the expr type.
1029  return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
1030}
1031
1032/// VisitSizeOfAlignOfExpr - Return the size or alignment of the type of
1033/// argument of the sizeof expression as an integer.
1034Value *
1035ScalarExprEmitter::VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E) {
1036  QualType TypeToSize = E->getTypeOfArgument();
1037  if (E->isSizeOf()) {
1038    if (const VariableArrayType *VAT =
1039          CGF.getContext().getAsVariableArrayType(TypeToSize)) {
1040      if (E->isArgumentType()) {
1041        // sizeof(type) - make sure to emit the VLA size.
1042        CGF.EmitVLASize(TypeToSize);
1043      } else {
1044        // C99 6.5.3.4p2: If the argument is an expression of type
1045        // VLA, it is evaluated.
1046        CGF.EmitAnyExpr(E->getArgumentExpr());
1047      }
1048
1049      return CGF.GetVLASize(VAT);
1050    }
1051  }
1052
1053  // If this isn't sizeof(vla), the result must be constant; use the constant
1054  // folding logic so we don't have to duplicate it here.
1055  Expr::EvalResult Result;
1056  E->Evaluate(Result, CGF.getContext());
1057  return llvm::ConstantInt::get(VMContext, Result.Val.getInt());
1058}
1059
1060Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
1061  Expr *Op = E->getSubExpr();
1062  if (Op->getType()->isAnyComplexType())
1063    return CGF.EmitComplexExpr(Op, false, true, false, true).first;
1064  return Visit(Op);
1065}
1066Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
1067  Expr *Op = E->getSubExpr();
1068  if (Op->getType()->isAnyComplexType())
1069    return CGF.EmitComplexExpr(Op, true, false, true, false).second;
1070
1071  // __imag on a scalar returns zero.  Emit the subexpr to ensure side
1072  // effects are evaluated, but not the actual value.
1073  if (E->isLvalue(CGF.getContext()) == Expr::LV_Valid)
1074    CGF.EmitLValue(Op);
1075  else
1076    CGF.EmitScalarExpr(Op, true);
1077  return llvm::Constant::getNullValue(ConvertType(E->getType()));
1078}
1079
1080Value *ScalarExprEmitter::VisitUnaryOffsetOf(const UnaryOperator *E) {
1081  Value* ResultAsPtr = EmitLValue(E->getSubExpr()).getAddress();
1082  const llvm::Type* ResultType = ConvertType(E->getType());
1083  return Builder.CreatePtrToInt(ResultAsPtr, ResultType, "offsetof");
1084}
1085
1086//===----------------------------------------------------------------------===//
1087//                           Binary Operators
1088//===----------------------------------------------------------------------===//
1089
1090BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
1091  TestAndClearIgnoreResultAssign();
1092  BinOpInfo Result;
1093  Result.LHS = Visit(E->getLHS());
1094  Result.RHS = Visit(E->getRHS());
1095  Result.Ty  = E->getType();
1096  Result.E = E;
1097  return Result;
1098}
1099
1100Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
1101                      Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
1102  bool Ignore = TestAndClearIgnoreResultAssign();
1103  QualType LHSTy = E->getLHS()->getType(), RHSTy = E->getRHS()->getType();
1104
1105  BinOpInfo OpInfo;
1106
1107  if (E->getComputationResultType()->isAnyComplexType()) {
1108    // This needs to go through the complex expression emitter, but it's a tad
1109    // complicated to do that... I'm leaving it out for now.  (Note that we do
1110    // actually need the imaginary part of the RHS for multiplication and
1111    // division.)
1112    CGF.ErrorUnsupported(E, "complex compound assignment");
1113    return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1114  }
1115
1116  // Emit the RHS first.  __block variables need to have the rhs evaluated
1117  // first, plus this should improve codegen a little.
1118  OpInfo.RHS = Visit(E->getRHS());
1119  OpInfo.Ty = E->getComputationResultType();
1120  OpInfo.E = E;
1121  // Load/convert the LHS.
1122  LValue LHSLV = EmitLValue(E->getLHS());
1123  OpInfo.LHS = EmitLoadOfLValue(LHSLV, LHSTy);
1124  OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy,
1125                                    E->getComputationLHSType());
1126
1127  // Expand the binary operator.
1128  Value *Result = (this->*Func)(OpInfo);
1129
1130  // Convert the result back to the LHS type.
1131  Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy);
1132
1133  // Store the result value into the LHS lvalue. Bit-fields are handled
1134  // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
1135  // 'An assignment expression has the value of the left operand after the
1136  // assignment...'.
1137  if (LHSLV.isBitfield()) {
1138    if (!LHSLV.isVolatileQualified()) {
1139      CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, LHSTy,
1140                                         &Result);
1141      return Result;
1142    } else
1143      CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, LHSTy);
1144  } else
1145    CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV, LHSTy);
1146  if (Ignore)
1147    return 0;
1148  return EmitLoadOfLValue(LHSLV, E->getType());
1149}
1150
1151
1152Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
1153  if (Ops.LHS->getType()->isFPOrFPVector())
1154    return Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
1155  else if (Ops.Ty->isUnsignedIntegerType())
1156    return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
1157  else
1158    return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
1159}
1160
1161Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
1162  // Rem in C can't be a floating point type: C99 6.5.5p2.
1163  if (Ops.Ty->isUnsignedIntegerType())
1164    return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
1165  else
1166    return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
1167}
1168
1169Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
1170  unsigned IID;
1171  unsigned OpID = 0;
1172
1173  switch (Ops.E->getOpcode()) {
1174  case BinaryOperator::Add:
1175  case BinaryOperator::AddAssign:
1176    OpID = 1;
1177    IID = llvm::Intrinsic::sadd_with_overflow;
1178    break;
1179  case BinaryOperator::Sub:
1180  case BinaryOperator::SubAssign:
1181    OpID = 2;
1182    IID = llvm::Intrinsic::ssub_with_overflow;
1183    break;
1184  case BinaryOperator::Mul:
1185  case BinaryOperator::MulAssign:
1186    OpID = 3;
1187    IID = llvm::Intrinsic::smul_with_overflow;
1188    break;
1189  default:
1190    assert(false && "Unsupported operation for overflow detection");
1191    IID = 0;
1192  }
1193  OpID <<= 1;
1194  OpID |= 1;
1195
1196  const llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
1197
1198  llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, &opTy, 1);
1199
1200  Value *resultAndOverflow = Builder.CreateCall2(intrinsic, Ops.LHS, Ops.RHS);
1201  Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
1202  Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
1203
1204  // Branch in case of overflow.
1205  llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
1206  llvm::BasicBlock *overflowBB =
1207    CGF.createBasicBlock("overflow", CGF.CurFn);
1208  llvm::BasicBlock *continueBB =
1209    CGF.createBasicBlock("overflow.continue", CGF.CurFn);
1210
1211  Builder.CreateCondBr(overflow, overflowBB, continueBB);
1212
1213  // Handle overflow
1214
1215  Builder.SetInsertPoint(overflowBB);
1216
1217  // Handler is:
1218  // long long *__overflow_handler)(long long a, long long b, char op,
1219  // char width)
1220  std::vector<const llvm::Type*> handerArgTypes;
1221  handerArgTypes.push_back(llvm::Type::getInt64Ty(VMContext));
1222  handerArgTypes.push_back(llvm::Type::getInt64Ty(VMContext));
1223  handerArgTypes.push_back(llvm::Type::getInt8Ty(VMContext));
1224  handerArgTypes.push_back(llvm::Type::getInt8Ty(VMContext));
1225  llvm::FunctionType *handlerTy = llvm::FunctionType::get(
1226      llvm::Type::getInt64Ty(VMContext), handerArgTypes, false);
1227  llvm::Value *handlerFunction =
1228    CGF.CGM.getModule().getOrInsertGlobal("__overflow_handler",
1229        llvm::PointerType::getUnqual(handlerTy));
1230  handlerFunction = Builder.CreateLoad(handlerFunction);
1231
1232  llvm::Value *handlerResult = Builder.CreateCall4(handlerFunction,
1233      Builder.CreateSExt(Ops.LHS, llvm::Type::getInt64Ty(VMContext)),
1234      Builder.CreateSExt(Ops.RHS, llvm::Type::getInt64Ty(VMContext)),
1235      llvm::ConstantInt::get(llvm::Type::getInt8Ty(VMContext), OpID),
1236      llvm::ConstantInt::get(llvm::Type::getInt8Ty(VMContext),
1237        cast<llvm::IntegerType>(opTy)->getBitWidth()));
1238
1239  handlerResult = Builder.CreateTrunc(handlerResult, opTy);
1240
1241  Builder.CreateBr(continueBB);
1242
1243  // Set up the continuation
1244  Builder.SetInsertPoint(continueBB);
1245  // Get the correct result
1246  llvm::PHINode *phi = Builder.CreatePHI(opTy);
1247  phi->reserveOperandSpace(2);
1248  phi->addIncoming(result, initialBB);
1249  phi->addIncoming(handlerResult, overflowBB);
1250
1251  return phi;
1252}
1253
1254Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &Ops) {
1255  if (!Ops.Ty->isAnyPointerType()) {
1256    if (CGF.getContext().getLangOptions().OverflowChecking &&
1257        Ops.Ty->isSignedIntegerType())
1258      return EmitOverflowCheckedBinOp(Ops);
1259
1260    if (Ops.LHS->getType()->isFPOrFPVector())
1261      return Builder.CreateFAdd(Ops.LHS, Ops.RHS, "add");
1262
1263    // Signed integer overflow is undefined behavior.
1264    if (Ops.Ty->isSignedIntegerType())
1265      return Builder.CreateNSWAdd(Ops.LHS, Ops.RHS, "add");
1266
1267    return Builder.CreateAdd(Ops.LHS, Ops.RHS, "add");
1268  }
1269
1270  if (Ops.Ty->isPointerType() &&
1271      Ops.Ty->getAs<PointerType>()->isVariableArrayType()) {
1272    // The amount of the addition needs to account for the VLA size
1273    CGF.ErrorUnsupported(Ops.E, "VLA pointer addition");
1274  }
1275  Value *Ptr, *Idx;
1276  Expr *IdxExp;
1277  const PointerType *PT = Ops.E->getLHS()->getType()->getAs<PointerType>();
1278  const ObjCObjectPointerType *OPT =
1279    Ops.E->getLHS()->getType()->getAs<ObjCObjectPointerType>();
1280  if (PT || OPT) {
1281    Ptr = Ops.LHS;
1282    Idx = Ops.RHS;
1283    IdxExp = Ops.E->getRHS();
1284  } else {  // int + pointer
1285    PT = Ops.E->getRHS()->getType()->getAs<PointerType>();
1286    OPT = Ops.E->getRHS()->getType()->getAs<ObjCObjectPointerType>();
1287    assert((PT || OPT) && "Invalid add expr");
1288    Ptr = Ops.RHS;
1289    Idx = Ops.LHS;
1290    IdxExp = Ops.E->getLHS();
1291  }
1292
1293  unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
1294  if (Width < CGF.LLVMPointerWidth) {
1295    // Zero or sign extend the pointer value based on whether the index is
1296    // signed or not.
1297    const llvm::Type *IdxType =
1298        llvm::IntegerType::get(VMContext, CGF.LLVMPointerWidth);
1299    if (IdxExp->getType()->isSignedIntegerType())
1300      Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
1301    else
1302      Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
1303  }
1304  const QualType ElementType = PT ? PT->getPointeeType() : OPT->getPointeeType();
1305  // Handle interface types, which are not represented with a concrete type.
1306  if (const ObjCInterfaceType *OIT = dyn_cast<ObjCInterfaceType>(ElementType)) {
1307    llvm::Value *InterfaceSize =
1308      llvm::ConstantInt::get(Idx->getType(),
1309                             CGF.getContext().getTypeSize(OIT) / 8);
1310    Idx = Builder.CreateMul(Idx, InterfaceSize);
1311    const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1312    Value *Casted = Builder.CreateBitCast(Ptr, i8Ty);
1313    Value *Res = Builder.CreateGEP(Casted, Idx, "add.ptr");
1314    return Builder.CreateBitCast(Res, Ptr->getType());
1315  }
1316
1317  // Explicitly handle GNU void* and function pointer arithmetic extensions. The
1318  // GNU void* casts amount to no-ops since our void* type is i8*, but this is
1319  // future proof.
1320  if (ElementType->isVoidType() || ElementType->isFunctionType()) {
1321    const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1322    Value *Casted = Builder.CreateBitCast(Ptr, i8Ty);
1323    Value *Res = Builder.CreateGEP(Casted, Idx, "add.ptr");
1324    return Builder.CreateBitCast(Res, Ptr->getType());
1325  }
1326
1327  return Builder.CreateInBoundsGEP(Ptr, Idx, "add.ptr");
1328}
1329
1330Value *ScalarExprEmitter::EmitSub(const BinOpInfo &Ops) {
1331  if (!isa<llvm::PointerType>(Ops.LHS->getType())) {
1332    if (CGF.getContext().getLangOptions().OverflowChecking
1333        && Ops.Ty->isSignedIntegerType())
1334      return EmitOverflowCheckedBinOp(Ops);
1335
1336    if (Ops.LHS->getType()->isFPOrFPVector())
1337      return Builder.CreateFSub(Ops.LHS, Ops.RHS, "sub");
1338    return Builder.CreateSub(Ops.LHS, Ops.RHS, "sub");
1339  }
1340
1341  if (Ops.E->getLHS()->getType()->isPointerType() &&
1342      Ops.E->getLHS()->getType()->getAs<PointerType>()->isVariableArrayType()) {
1343    // The amount of the addition needs to account for the VLA size for
1344    // ptr-int
1345    // The amount of the division needs to account for the VLA size for
1346    // ptr-ptr.
1347    CGF.ErrorUnsupported(Ops.E, "VLA pointer subtraction");
1348  }
1349
1350  const QualType LHSType = Ops.E->getLHS()->getType();
1351  const QualType LHSElementType = LHSType->getPointeeType();
1352  if (!isa<llvm::PointerType>(Ops.RHS->getType())) {
1353    // pointer - int
1354    Value *Idx = Ops.RHS;
1355    unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
1356    if (Width < CGF.LLVMPointerWidth) {
1357      // Zero or sign extend the pointer value based on whether the index is
1358      // signed or not.
1359      const llvm::Type *IdxType =
1360          llvm::IntegerType::get(VMContext, CGF.LLVMPointerWidth);
1361      if (Ops.E->getRHS()->getType()->isSignedIntegerType())
1362        Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
1363      else
1364        Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
1365    }
1366    Idx = Builder.CreateNeg(Idx, "sub.ptr.neg");
1367
1368    // Handle interface types, which are not represented with a concrete type.
1369    if (const ObjCInterfaceType *OIT =
1370        dyn_cast<ObjCInterfaceType>(LHSElementType)) {
1371      llvm::Value *InterfaceSize =
1372        llvm::ConstantInt::get(Idx->getType(),
1373                               CGF.getContext().getTypeSize(OIT) / 8);
1374      Idx = Builder.CreateMul(Idx, InterfaceSize);
1375      const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1376      Value *LHSCasted = Builder.CreateBitCast(Ops.LHS, i8Ty);
1377      Value *Res = Builder.CreateGEP(LHSCasted, Idx, "add.ptr");
1378      return Builder.CreateBitCast(Res, Ops.LHS->getType());
1379    }
1380
1381    // Explicitly handle GNU void* and function pointer arithmetic
1382    // extensions. The GNU void* casts amount to no-ops since our void* type is
1383    // i8*, but this is future proof.
1384    if (LHSElementType->isVoidType() || LHSElementType->isFunctionType()) {
1385      const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1386      Value *LHSCasted = Builder.CreateBitCast(Ops.LHS, i8Ty);
1387      Value *Res = Builder.CreateGEP(LHSCasted, Idx, "sub.ptr");
1388      return Builder.CreateBitCast(Res, Ops.LHS->getType());
1389    }
1390
1391    return Builder.CreateInBoundsGEP(Ops.LHS, Idx, "sub.ptr");
1392  } else {
1393    // pointer - pointer
1394    Value *LHS = Ops.LHS;
1395    Value *RHS = Ops.RHS;
1396
1397    uint64_t ElementSize;
1398
1399    // Handle GCC extension for pointer arithmetic on void* and function pointer
1400    // types.
1401    if (LHSElementType->isVoidType() || LHSElementType->isFunctionType()) {
1402      ElementSize = 1;
1403    } else {
1404      ElementSize = CGF.getContext().getTypeSize(LHSElementType) / 8;
1405    }
1406
1407    const llvm::Type *ResultType = ConvertType(Ops.Ty);
1408    LHS = Builder.CreatePtrToInt(LHS, ResultType, "sub.ptr.lhs.cast");
1409    RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
1410    Value *BytesBetween = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
1411
1412    // Optimize out the shift for element size of 1.
1413    if (ElementSize == 1)
1414      return BytesBetween;
1415
1416    // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
1417    // pointer difference in C is only defined in the case where both operands
1418    // are pointing to elements of an array.
1419    Value *BytesPerElt = llvm::ConstantInt::get(ResultType, ElementSize);
1420    return Builder.CreateExactSDiv(BytesBetween, BytesPerElt, "sub.ptr.div");
1421  }
1422}
1423
1424Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
1425  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
1426  // RHS to the same size as the LHS.
1427  Value *RHS = Ops.RHS;
1428  if (Ops.LHS->getType() != RHS->getType())
1429    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
1430
1431  return Builder.CreateShl(Ops.LHS, RHS, "shl");
1432}
1433
1434Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
1435  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
1436  // RHS to the same size as the LHS.
1437  Value *RHS = Ops.RHS;
1438  if (Ops.LHS->getType() != RHS->getType())
1439    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
1440
1441  if (Ops.Ty->isUnsignedIntegerType())
1442    return Builder.CreateLShr(Ops.LHS, RHS, "shr");
1443  return Builder.CreateAShr(Ops.LHS, RHS, "shr");
1444}
1445
1446Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
1447                                      unsigned SICmpOpc, unsigned FCmpOpc) {
1448  TestAndClearIgnoreResultAssign();
1449  Value *Result;
1450  QualType LHSTy = E->getLHS()->getType();
1451  if (!LHSTy->isAnyComplexType()) {
1452    Value *LHS = Visit(E->getLHS());
1453    Value *RHS = Visit(E->getRHS());
1454
1455    if (LHS->getType()->isFPOrFPVector()) {
1456      Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
1457                                  LHS, RHS, "cmp");
1458    } else if (LHSTy->isSignedIntegerType()) {
1459      Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
1460                                  LHS, RHS, "cmp");
1461    } else {
1462      // Unsigned integers and pointers.
1463      Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1464                                  LHS, RHS, "cmp");
1465    }
1466
1467    // If this is a vector comparison, sign extend the result to the appropriate
1468    // vector integer type and return it (don't convert to bool).
1469    if (LHSTy->isVectorType())
1470      return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
1471
1472  } else {
1473    // Complex Comparison: can only be an equality comparison.
1474    CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS());
1475    CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS());
1476
1477    QualType CETy = LHSTy->getAs<ComplexType>()->getElementType();
1478
1479    Value *ResultR, *ResultI;
1480    if (CETy->isRealFloatingType()) {
1481      ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
1482                                   LHS.first, RHS.first, "cmp.r");
1483      ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
1484                                   LHS.second, RHS.second, "cmp.i");
1485    } else {
1486      // Complex comparisons can only be equality comparisons.  As such, signed
1487      // and unsigned opcodes are the same.
1488      ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1489                                   LHS.first, RHS.first, "cmp.r");
1490      ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1491                                   LHS.second, RHS.second, "cmp.i");
1492    }
1493
1494    if (E->getOpcode() == BinaryOperator::EQ) {
1495      Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
1496    } else {
1497      assert(E->getOpcode() == BinaryOperator::NE &&
1498             "Complex comparison other than == or != ?");
1499      Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
1500    }
1501  }
1502
1503  return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
1504}
1505
1506Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
1507  bool Ignore = TestAndClearIgnoreResultAssign();
1508
1509  // __block variables need to have the rhs evaluated first, plus this should
1510  // improve codegen just a little.
1511  Value *RHS = Visit(E->getRHS());
1512  LValue LHS = EmitLValue(E->getLHS());
1513
1514  // Store the value into the LHS.  Bit-fields are handled specially
1515  // because the result is altered by the store, i.e., [C99 6.5.16p1]
1516  // 'An assignment expression has the value of the left operand after
1517  // the assignment...'.
1518  if (LHS.isBitfield()) {
1519    if (!LHS.isVolatileQualified()) {
1520      CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, E->getType(),
1521                                         &RHS);
1522      return RHS;
1523    } else
1524      CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, E->getType());
1525  } else
1526    CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS, E->getType());
1527  if (Ignore)
1528    return 0;
1529  return EmitLoadOfLValue(LHS, E->getType());
1530}
1531
1532Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
1533  const llvm::Type *ResTy = ConvertType(E->getType());
1534
1535  // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
1536  // If we have 1 && X, just emit X without inserting the control flow.
1537  if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getLHS())) {
1538    if (Cond == 1) { // If we have 1 && X, just emit X.
1539      Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1540      // ZExt result to int or bool.
1541      return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
1542    }
1543
1544    // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
1545    if (!CGF.ContainsLabel(E->getRHS()))
1546      return llvm::Constant::getNullValue(ResTy);
1547  }
1548
1549  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
1550  llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
1551
1552  // Branch on the LHS first.  If it is false, go to the failure (cont) block.
1553  CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock);
1554
1555  // Any edges into the ContBlock are now from an (indeterminate number of)
1556  // edges from this first condition.  All of these values will be false.  Start
1557  // setting up the PHI node in the Cont Block for this.
1558  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext),
1559                                            "", ContBlock);
1560  PN->reserveOperandSpace(2);  // Normal case, two inputs.
1561  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
1562       PI != PE; ++PI)
1563    PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
1564
1565  CGF.PushConditionalTempDestruction();
1566  CGF.EmitBlock(RHSBlock);
1567  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1568  CGF.PopConditionalTempDestruction();
1569
1570  // Reaquire the RHS block, as there may be subblocks inserted.
1571  RHSBlock = Builder.GetInsertBlock();
1572
1573  // Emit an unconditional branch from this block to ContBlock.  Insert an entry
1574  // into the phi node for the edge with the value of RHSCond.
1575  CGF.EmitBlock(ContBlock);
1576  PN->addIncoming(RHSCond, RHSBlock);
1577
1578  // ZExt result to int.
1579  return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
1580}
1581
1582Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
1583  const llvm::Type *ResTy = ConvertType(E->getType());
1584
1585  // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
1586  // If we have 0 || X, just emit X without inserting the control flow.
1587  if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getLHS())) {
1588    if (Cond == -1) { // If we have 0 || X, just emit X.
1589      Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1590      // ZExt result to int or bool.
1591      return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
1592    }
1593
1594    // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
1595    if (!CGF.ContainsLabel(E->getRHS()))
1596      return llvm::ConstantInt::get(ResTy, 1);
1597  }
1598
1599  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
1600  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
1601
1602  // Branch on the LHS first.  If it is true, go to the success (cont) block.
1603  CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock);
1604
1605  // Any edges into the ContBlock are now from an (indeterminate number of)
1606  // edges from this first condition.  All of these values will be true.  Start
1607  // setting up the PHI node in the Cont Block for this.
1608  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext),
1609                                            "", ContBlock);
1610  PN->reserveOperandSpace(2);  // Normal case, two inputs.
1611  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
1612       PI != PE; ++PI)
1613    PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
1614
1615  CGF.PushConditionalTempDestruction();
1616
1617  // Emit the RHS condition as a bool value.
1618  CGF.EmitBlock(RHSBlock);
1619  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1620
1621  CGF.PopConditionalTempDestruction();
1622
1623  // Reaquire the RHS block, as there may be subblocks inserted.
1624  RHSBlock = Builder.GetInsertBlock();
1625
1626  // Emit an unconditional branch from this block to ContBlock.  Insert an entry
1627  // into the phi node for the edge with the value of RHSCond.
1628  CGF.EmitBlock(ContBlock);
1629  PN->addIncoming(RHSCond, RHSBlock);
1630
1631  // ZExt result to int.
1632  return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
1633}
1634
1635Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
1636  CGF.EmitStmt(E->getLHS());
1637  CGF.EnsureInsertPoint();
1638  return Visit(E->getRHS());
1639}
1640
1641//===----------------------------------------------------------------------===//
1642//                             Other Operators
1643//===----------------------------------------------------------------------===//
1644
1645/// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
1646/// expression is cheap enough and side-effect-free enough to evaluate
1647/// unconditionally instead of conditionally.  This is used to convert control
1648/// flow into selects in some cases.
1649static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
1650                                                   CodeGenFunction &CGF) {
1651  if (const ParenExpr *PE = dyn_cast<ParenExpr>(E))
1652    return isCheapEnoughToEvaluateUnconditionally(PE->getSubExpr(), CGF);
1653
1654  // TODO: Allow anything we can constant fold to an integer or fp constant.
1655  if (isa<IntegerLiteral>(E) || isa<CharacterLiteral>(E) ||
1656      isa<FloatingLiteral>(E))
1657    return true;
1658
1659  // Non-volatile automatic variables too, to get "cond ? X : Y" where
1660  // X and Y are local variables.
1661  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
1662    if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
1663      if (VD->hasLocalStorage() && !(CGF.getContext()
1664                                     .getCanonicalType(VD->getType())
1665                                     .isVolatileQualified()))
1666        return true;
1667
1668  return false;
1669}
1670
1671
1672Value *ScalarExprEmitter::
1673VisitConditionalOperator(const ConditionalOperator *E) {
1674  TestAndClearIgnoreResultAssign();
1675  // If the condition constant folds and can be elided, try to avoid emitting
1676  // the condition and the dead arm.
1677  if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getCond())){
1678    Expr *Live = E->getLHS(), *Dead = E->getRHS();
1679    if (Cond == -1)
1680      std::swap(Live, Dead);
1681
1682    // If the dead side doesn't have labels we need, and if the Live side isn't
1683    // the gnu missing ?: extension (which we could handle, but don't bother
1684    // to), just emit the Live part.
1685    if ((!Dead || !CGF.ContainsLabel(Dead)) &&  // No labels in dead part
1686        Live)                                   // Live part isn't missing.
1687      return Visit(Live);
1688  }
1689
1690
1691  // If this is a really simple expression (like x ? 4 : 5), emit this as a
1692  // select instead of as control flow.  We can only do this if it is cheap and
1693  // safe to evaluate the LHS and RHS unconditionally.
1694  if (E->getLHS() && isCheapEnoughToEvaluateUnconditionally(E->getLHS(),
1695                                                            CGF) &&
1696      isCheapEnoughToEvaluateUnconditionally(E->getRHS(), CGF)) {
1697    llvm::Value *CondV = CGF.EvaluateExprAsBool(E->getCond());
1698    llvm::Value *LHS = Visit(E->getLHS());
1699    llvm::Value *RHS = Visit(E->getRHS());
1700    return Builder.CreateSelect(CondV, LHS, RHS, "cond");
1701  }
1702
1703
1704  llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
1705  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
1706  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
1707  Value *CondVal = 0;
1708
1709  // If we don't have the GNU missing condition extension, emit a branch on bool
1710  // the normal way.
1711  if (E->getLHS()) {
1712    // Otherwise, just use EmitBranchOnBoolExpr to get small and simple code for
1713    // the branch on bool.
1714    CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock);
1715  } else {
1716    // Otherwise, for the ?: extension, evaluate the conditional and then
1717    // convert it to bool the hard way.  We do this explicitly because we need
1718    // the unconverted value for the missing middle value of the ?:.
1719    CondVal = CGF.EmitScalarExpr(E->getCond());
1720
1721    // In some cases, EmitScalarConversion will delete the "CondVal" expression
1722    // if there are no extra uses (an optimization).  Inhibit this by making an
1723    // extra dead use, because we're going to add a use of CondVal later.  We
1724    // don't use the builder for this, because we don't want it to get optimized
1725    // away.  This leaves dead code, but the ?: extension isn't common.
1726    new llvm::BitCastInst(CondVal, CondVal->getType(), "dummy?:holder",
1727                          Builder.GetInsertBlock());
1728
1729    Value *CondBoolVal =
1730      CGF.EmitScalarConversion(CondVal, E->getCond()->getType(),
1731                               CGF.getContext().BoolTy);
1732    Builder.CreateCondBr(CondBoolVal, LHSBlock, RHSBlock);
1733  }
1734
1735  CGF.PushConditionalTempDestruction();
1736  CGF.EmitBlock(LHSBlock);
1737
1738  // Handle the GNU extension for missing LHS.
1739  Value *LHS;
1740  if (E->getLHS())
1741    LHS = Visit(E->getLHS());
1742  else    // Perform promotions, to handle cases like "short ?: int"
1743    LHS = EmitScalarConversion(CondVal, E->getCond()->getType(), E->getType());
1744
1745  CGF.PopConditionalTempDestruction();
1746  LHSBlock = Builder.GetInsertBlock();
1747  CGF.EmitBranch(ContBlock);
1748
1749  CGF.PushConditionalTempDestruction();
1750  CGF.EmitBlock(RHSBlock);
1751
1752  Value *RHS = Visit(E->getRHS());
1753  CGF.PopConditionalTempDestruction();
1754  RHSBlock = Builder.GetInsertBlock();
1755  CGF.EmitBranch(ContBlock);
1756
1757  CGF.EmitBlock(ContBlock);
1758
1759  if (!LHS || !RHS) {
1760    assert(E->getType()->isVoidType() && "Non-void value should have a value");
1761    return 0;
1762  }
1763
1764  // Create a PHI node for the real part.
1765  llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), "cond");
1766  PN->reserveOperandSpace(2);
1767  PN->addIncoming(LHS, LHSBlock);
1768  PN->addIncoming(RHS, RHSBlock);
1769  return PN;
1770}
1771
1772Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
1773  return Visit(E->getChosenSubExpr(CGF.getContext()));
1774}
1775
1776Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
1777  llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
1778  llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
1779
1780  // If EmitVAArg fails, we fall back to the LLVM instruction.
1781  if (!ArgPtr)
1782    return Builder.CreateVAArg(ArgValue, ConvertType(VE->getType()));
1783
1784  // FIXME Volatility.
1785  return Builder.CreateLoad(ArgPtr);
1786}
1787
1788Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *BE) {
1789  return CGF.BuildBlockLiteralTmp(BE);
1790}
1791
1792//===----------------------------------------------------------------------===//
1793//                         Entry Point into this File
1794//===----------------------------------------------------------------------===//
1795
1796/// EmitScalarExpr - Emit the computation of the specified expression of scalar
1797/// type, ignoring the result.
1798Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
1799  assert(E && !hasAggregateLLVMType(E->getType()) &&
1800         "Invalid scalar expression to emit");
1801
1802  return ScalarExprEmitter(*this, IgnoreResultAssign)
1803    .Visit(const_cast<Expr*>(E));
1804}
1805
1806/// EmitScalarConversion - Emit a conversion from the specified type to the
1807/// specified destination type, both of which are LLVM scalar types.
1808Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
1809                                             QualType DstTy) {
1810  assert(!hasAggregateLLVMType(SrcTy) && !hasAggregateLLVMType(DstTy) &&
1811         "Invalid scalar expression to emit");
1812  return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
1813}
1814
1815/// EmitComplexToScalarConversion - Emit a conversion from the specified complex
1816/// type to the specified destination type, where the destination type is an
1817/// LLVM scalar type.
1818Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
1819                                                      QualType SrcTy,
1820                                                      QualType DstTy) {
1821  assert(SrcTy->isAnyComplexType() && !hasAggregateLLVMType(DstTy) &&
1822         "Invalid complex -> scalar conversion");
1823  return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy,
1824                                                                DstTy);
1825}
1826
1827Value *CodeGenFunction::EmitShuffleVector(Value* V1, Value *V2, ...) {
1828  assert(V1->getType() == V2->getType() &&
1829         "Vector operands must be of the same type");
1830  unsigned NumElements =
1831    cast<llvm::VectorType>(V1->getType())->getNumElements();
1832
1833  va_list va;
1834  va_start(va, V2);
1835
1836  llvm::SmallVector<llvm::Constant*, 16> Args;
1837  for (unsigned i = 0; i < NumElements; i++) {
1838    int n = va_arg(va, int);
1839    assert(n >= 0 && n < (int)NumElements * 2 &&
1840           "Vector shuffle index out of bounds!");
1841    Args.push_back(llvm::ConstantInt::get(
1842                                         llvm::Type::getInt32Ty(VMContext), n));
1843  }
1844
1845  const char *Name = va_arg(va, const char *);
1846  va_end(va);
1847
1848  llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements);
1849
1850  return Builder.CreateShuffleVector(V1, V2, Mask, Name);
1851}
1852
1853llvm::Value *CodeGenFunction::EmitVector(llvm::Value * const *Vals,
1854                                         unsigned NumVals, bool isSplat) {
1855  llvm::Value *Vec
1856    = llvm::UndefValue::get(llvm::VectorType::get(Vals[0]->getType(), NumVals));
1857
1858  for (unsigned i = 0, e = NumVals; i != e; ++i) {
1859    llvm::Value *Val = isSplat ? Vals[0] : Vals[i];
1860    llvm::Value *Idx = llvm::ConstantInt::get(
1861                                          llvm::Type::getInt32Ty(VMContext), i);
1862    Vec = Builder.CreateInsertElement(Vec, Val, Idx, "tmp");
1863  }
1864
1865  return Vec;
1866}
1867