CGExprScalar.cpp revision f3ea8cfe6b1c2ef0702efe130561e9e66708d799
1//===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Frontend/CodeGenOptions.h"
15#include "CodeGenFunction.h"
16#include "CGCXXABI.h"
17#include "CGObjCRuntime.h"
18#include "CodeGenModule.h"
19#include "CGDebugInfo.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/DeclObjC.h"
22#include "clang/AST/RecordLayout.h"
23#include "clang/AST/StmtVisitor.h"
24#include "clang/Basic/TargetInfo.h"
25#include "llvm/Constants.h"
26#include "llvm/Function.h"
27#include "llvm/GlobalVariable.h"
28#include "llvm/Intrinsics.h"
29#include "llvm/Module.h"
30#include "llvm/Support/CFG.h"
31#include "llvm/Target/TargetData.h"
32#include <cstdarg>
33
34using namespace clang;
35using namespace CodeGen;
36using llvm::Value;
37
38//===----------------------------------------------------------------------===//
39//                         Scalar Expression Emitter
40//===----------------------------------------------------------------------===//
41
42namespace {
43struct BinOpInfo {
44  Value *LHS;
45  Value *RHS;
46  QualType Ty;  // Computation Type.
47  BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
48  const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
49};
50
51static bool MustVisitNullValue(const Expr *E) {
52  // If a null pointer expression's type is the C++0x nullptr_t, then
53  // it's not necessarily a simple constant and it must be evaluated
54  // for its potential side effects.
55  return E->getType()->isNullPtrType();
56}
57
58class ScalarExprEmitter
59  : public StmtVisitor<ScalarExprEmitter, Value*> {
60  CodeGenFunction &CGF;
61  CGBuilderTy &Builder;
62  bool IgnoreResultAssign;
63  llvm::LLVMContext &VMContext;
64public:
65
66  ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
67    : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
68      VMContext(cgf.getLLVMContext()) {
69  }
70
71  //===--------------------------------------------------------------------===//
72  //                               Utilities
73  //===--------------------------------------------------------------------===//
74
75  bool TestAndClearIgnoreResultAssign() {
76    bool I = IgnoreResultAssign;
77    IgnoreResultAssign = false;
78    return I;
79  }
80
81  const llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
82  LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
83  LValue EmitCheckedLValue(const Expr *E) { return CGF.EmitCheckedLValue(E); }
84
85  Value *EmitLoadOfLValue(LValue LV, QualType T) {
86    return CGF.EmitLoadOfLValue(LV, T).getScalarVal();
87  }
88
89  /// EmitLoadOfLValue - Given an expression with complex type that represents a
90  /// value l-value, this method emits the address of the l-value, then loads
91  /// and returns the result.
92  Value *EmitLoadOfLValue(const Expr *E) {
93    return EmitLoadOfLValue(EmitCheckedLValue(E), E->getType());
94  }
95
96  /// EmitConversionToBool - Convert the specified expression value to a
97  /// boolean (i1) truth value.  This is equivalent to "Val != 0".
98  Value *EmitConversionToBool(Value *Src, QualType DstTy);
99
100  /// EmitScalarConversion - Emit a conversion from the specified type to the
101  /// specified destination type, both of which are LLVM scalar types.
102  Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);
103
104  /// EmitComplexToScalarConversion - Emit a conversion from the specified
105  /// complex type to the specified destination type, where the destination type
106  /// is an LLVM scalar type.
107  Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
108                                       QualType SrcTy, QualType DstTy);
109
110  /// EmitNullValue - Emit a value that corresponds to null for the given type.
111  Value *EmitNullValue(QualType Ty);
112
113  //===--------------------------------------------------------------------===//
114  //                            Visitor Methods
115  //===--------------------------------------------------------------------===//
116
117  Value *Visit(Expr *E) {
118    llvm::DenseMap<const Expr *, llvm::Value *>::iterator I =
119      CGF.ConditionalSaveExprs.find(E);
120    if (I != CGF.ConditionalSaveExprs.end())
121      return I->second;
122
123    return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
124  }
125
126  Value *VisitStmt(Stmt *S) {
127    S->dump(CGF.getContext().getSourceManager());
128    assert(0 && "Stmt can't have complex result type!");
129    return 0;
130  }
131  Value *VisitExpr(Expr *S);
132
133  Value *VisitParenExpr(ParenExpr *PE) {
134    return Visit(PE->getSubExpr());
135  }
136
137  // Leaves.
138  Value *VisitIntegerLiteral(const IntegerLiteral *E) {
139    return llvm::ConstantInt::get(VMContext, E->getValue());
140  }
141  Value *VisitFloatingLiteral(const FloatingLiteral *E) {
142    return llvm::ConstantFP::get(VMContext, E->getValue());
143  }
144  Value *VisitCharacterLiteral(const CharacterLiteral *E) {
145    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
146  }
147  Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
148    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
149  }
150  Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
151    return EmitNullValue(E->getType());
152  }
153  Value *VisitGNUNullExpr(const GNUNullExpr *E) {
154    return EmitNullValue(E->getType());
155  }
156  Value *VisitTypesCompatibleExpr(const TypesCompatibleExpr *E) {
157    return llvm::ConstantInt::get(ConvertType(E->getType()),
158                                  CGF.getContext().typesAreCompatible(
159                                    E->getArgType1(), E->getArgType2()));
160  }
161  Value *VisitOffsetOfExpr(OffsetOfExpr *E);
162  Value *VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E);
163  Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
164    llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
165    return Builder.CreateBitCast(V, ConvertType(E->getType()));
166  }
167
168  // l-values.
169  Value *VisitDeclRefExpr(DeclRefExpr *E) {
170    Expr::EvalResult Result;
171    if (!E->Evaluate(Result, CGF.getContext()))
172      return EmitLoadOfLValue(E);
173
174    assert(!Result.HasSideEffects && "Constant declref with side-effect?!");
175
176    llvm::Constant *C;
177    if (Result.Val.isInt()) {
178      C = llvm::ConstantInt::get(VMContext, Result.Val.getInt());
179    } else if (Result.Val.isFloat()) {
180      C = llvm::ConstantFP::get(VMContext, Result.Val.getFloat());
181    } else {
182      return EmitLoadOfLValue(E);
183    }
184
185    // Make sure we emit a debug reference to the global variable.
186    if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl())) {
187      if (!CGF.getContext().DeclMustBeEmitted(VD))
188        CGF.EmitDeclRefExprDbgValue(E, C);
189    } else if (isa<EnumConstantDecl>(E->getDecl())) {
190      CGF.EmitDeclRefExprDbgValue(E, C);
191    }
192
193    return C;
194  }
195  Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
196    return CGF.EmitObjCSelectorExpr(E);
197  }
198  Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
199    return CGF.EmitObjCProtocolExpr(E);
200  }
201  Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
202    return EmitLoadOfLValue(E);
203  }
204  Value *VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
205    return EmitLoadOfLValue(E);
206  }
207  Value *VisitObjCImplicitSetterGetterRefExpr(
208                        ObjCImplicitSetterGetterRefExpr *E) {
209    return EmitLoadOfLValue(E);
210  }
211  Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
212    return CGF.EmitObjCMessageExpr(E).getScalarVal();
213  }
214
215  Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
216    LValue LV = CGF.EmitObjCIsaExpr(E);
217    Value *V = CGF.EmitLoadOfLValue(LV, E->getType()).getScalarVal();
218    return V;
219  }
220
221  Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
222  Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
223  Value *VisitMemberExpr(MemberExpr *E);
224  Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
225  Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
226    return EmitLoadOfLValue(E);
227  }
228
229  Value *VisitInitListExpr(InitListExpr *E);
230
231  Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
232    return CGF.CGM.EmitNullConstant(E->getType());
233  }
234  Value *VisitCastExpr(CastExpr *E) {
235    // Make sure to evaluate VLA bounds now so that we have them for later.
236    if (E->getType()->isVariablyModifiedType())
237      CGF.EmitVLASize(E->getType());
238
239    return EmitCastExpr(E);
240  }
241  Value *EmitCastExpr(CastExpr *E);
242
243  Value *VisitCallExpr(const CallExpr *E) {
244    if (E->getCallReturnType()->isReferenceType())
245      return EmitLoadOfLValue(E);
246
247    return CGF.EmitCallExpr(E).getScalarVal();
248  }
249
250  Value *VisitStmtExpr(const StmtExpr *E);
251
252  Value *VisitBlockDeclRefExpr(const BlockDeclRefExpr *E);
253
254  // Unary Operators.
255  Value *VisitUnaryPostDec(const UnaryOperator *E) {
256    LValue LV = EmitLValue(E->getSubExpr());
257    return EmitScalarPrePostIncDec(E, LV, false, false);
258  }
259  Value *VisitUnaryPostInc(const UnaryOperator *E) {
260    LValue LV = EmitLValue(E->getSubExpr());
261    return EmitScalarPrePostIncDec(E, LV, true, false);
262  }
263  Value *VisitUnaryPreDec(const UnaryOperator *E) {
264    LValue LV = EmitLValue(E->getSubExpr());
265    return EmitScalarPrePostIncDec(E, LV, false, true);
266  }
267  Value *VisitUnaryPreInc(const UnaryOperator *E) {
268    LValue LV = EmitLValue(E->getSubExpr());
269    return EmitScalarPrePostIncDec(E, LV, true, true);
270  }
271
272  llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
273                                       bool isInc, bool isPre);
274
275
276  Value *VisitUnaryAddrOf(const UnaryOperator *E) {
277    // If the sub-expression is an instance member reference,
278    // EmitDeclRefLValue will magically emit it with the appropriate
279    // value as the "address".
280    return EmitLValue(E->getSubExpr()).getAddress();
281  }
282  Value *VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); }
283  Value *VisitUnaryPlus(const UnaryOperator *E) {
284    // This differs from gcc, though, most likely due to a bug in gcc.
285    TestAndClearIgnoreResultAssign();
286    return Visit(E->getSubExpr());
287  }
288  Value *VisitUnaryMinus    (const UnaryOperator *E);
289  Value *VisitUnaryNot      (const UnaryOperator *E);
290  Value *VisitUnaryLNot     (const UnaryOperator *E);
291  Value *VisitUnaryReal     (const UnaryOperator *E);
292  Value *VisitUnaryImag     (const UnaryOperator *E);
293  Value *VisitUnaryExtension(const UnaryOperator *E) {
294    return Visit(E->getSubExpr());
295  }
296
297  // C++
298  Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
299    return Visit(DAE->getExpr());
300  }
301  Value *VisitCXXThisExpr(CXXThisExpr *TE) {
302    return CGF.LoadCXXThis();
303  }
304
305  Value *VisitCXXExprWithTemporaries(CXXExprWithTemporaries *E) {
306    return CGF.EmitCXXExprWithTemporaries(E).getScalarVal();
307  }
308  Value *VisitCXXNewExpr(const CXXNewExpr *E) {
309    return CGF.EmitCXXNewExpr(E);
310  }
311  Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
312    CGF.EmitCXXDeleteExpr(E);
313    return 0;
314  }
315  Value *VisitUnaryTypeTraitExpr(const UnaryTypeTraitExpr *E) {
316    return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
317  }
318
319  Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
320    // C++ [expr.pseudo]p1:
321    //   The result shall only be used as the operand for the function call
322    //   operator (), and the result of such a call has type void. The only
323    //   effect is the evaluation of the postfix-expression before the dot or
324    //   arrow.
325    CGF.EmitScalarExpr(E->getBase());
326    return 0;
327  }
328
329  Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
330    return EmitNullValue(E->getType());
331  }
332
333  Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
334    CGF.EmitCXXThrowExpr(E);
335    return 0;
336  }
337
338  Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
339    return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
340  }
341
342  // Binary Operators.
343  Value *EmitMul(const BinOpInfo &Ops) {
344    if (Ops.Ty->hasSignedIntegerRepresentation()) {
345      switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
346      case LangOptions::SOB_Undefined:
347        return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
348      case LangOptions::SOB_Defined:
349        return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
350      case LangOptions::SOB_Trapping:
351        return EmitOverflowCheckedBinOp(Ops);
352      }
353    }
354
355    if (Ops.LHS->getType()->isFPOrFPVectorTy())
356      return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
357    return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
358  }
359  bool isTrapvOverflowBehavior() {
360    return CGF.getContext().getLangOptions().getSignedOverflowBehavior()
361               == LangOptions::SOB_Trapping;
362  }
363  /// Create a binary op that checks for overflow.
364  /// Currently only supports +, - and *.
365  Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
366  // Emit the overflow BB when -ftrapv option is activated.
367  void EmitOverflowBB(llvm::BasicBlock *overflowBB) {
368    Builder.SetInsertPoint(overflowBB);
369    llvm::Function *Trap = CGF.CGM.getIntrinsic(llvm::Intrinsic::trap);
370    Builder.CreateCall(Trap);
371    Builder.CreateUnreachable();
372  }
373  // Check for undefined division and modulus behaviors.
374  void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
375                                                  llvm::Value *Zero,bool isDiv);
376  Value *EmitDiv(const BinOpInfo &Ops);
377  Value *EmitRem(const BinOpInfo &Ops);
378  Value *EmitAdd(const BinOpInfo &Ops);
379  Value *EmitSub(const BinOpInfo &Ops);
380  Value *EmitShl(const BinOpInfo &Ops);
381  Value *EmitShr(const BinOpInfo &Ops);
382  Value *EmitAnd(const BinOpInfo &Ops) {
383    return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
384  }
385  Value *EmitXor(const BinOpInfo &Ops) {
386    return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
387  }
388  Value *EmitOr (const BinOpInfo &Ops) {
389    return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
390  }
391
392  BinOpInfo EmitBinOps(const BinaryOperator *E);
393  LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
394                            Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
395                                  Value *&Result);
396
397  Value *EmitCompoundAssign(const CompoundAssignOperator *E,
398                            Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
399
400  // Binary operators and binary compound assignment operators.
401#define HANDLEBINOP(OP) \
402  Value *VisitBin ## OP(const BinaryOperator *E) {                         \
403    return Emit ## OP(EmitBinOps(E));                                      \
404  }                                                                        \
405  Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
406    return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
407  }
408  HANDLEBINOP(Mul)
409  HANDLEBINOP(Div)
410  HANDLEBINOP(Rem)
411  HANDLEBINOP(Add)
412  HANDLEBINOP(Sub)
413  HANDLEBINOP(Shl)
414  HANDLEBINOP(Shr)
415  HANDLEBINOP(And)
416  HANDLEBINOP(Xor)
417  HANDLEBINOP(Or)
418#undef HANDLEBINOP
419
420  // Comparisons.
421  Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
422                     unsigned SICmpOpc, unsigned FCmpOpc);
423#define VISITCOMP(CODE, UI, SI, FP) \
424    Value *VisitBin##CODE(const BinaryOperator *E) { \
425      return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
426                         llvm::FCmpInst::FP); }
427  VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
428  VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
429  VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
430  VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
431  VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
432  VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
433#undef VISITCOMP
434
435  Value *VisitBinAssign     (const BinaryOperator *E);
436
437  Value *VisitBinLAnd       (const BinaryOperator *E);
438  Value *VisitBinLOr        (const BinaryOperator *E);
439  Value *VisitBinComma      (const BinaryOperator *E);
440
441  Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
442  Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
443
444  // Other Operators.
445  Value *VisitBlockExpr(const BlockExpr *BE);
446  Value *VisitConditionalOperator(const ConditionalOperator *CO);
447  Value *VisitChooseExpr(ChooseExpr *CE);
448  Value *VisitVAArgExpr(VAArgExpr *VE);
449  Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
450    return CGF.EmitObjCStringLiteral(E);
451  }
452};
453}  // end anonymous namespace.
454
455//===----------------------------------------------------------------------===//
456//                                Utilities
457//===----------------------------------------------------------------------===//
458
459/// EmitConversionToBool - Convert the specified expression value to a
460/// boolean (i1) truth value.  This is equivalent to "Val != 0".
461Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
462  assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
463
464  if (SrcType->isRealFloatingType()) {
465    // Compare against 0.0 for fp scalars.
466    llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType());
467    return Builder.CreateFCmpUNE(Src, Zero, "tobool");
468  }
469
470  if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
471    return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
472
473  assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
474         "Unknown scalar type to convert");
475
476  // Because of the type rules of C, we often end up computing a logical value,
477  // then zero extending it to int, then wanting it as a logical value again.
478  // Optimize this common case.
479  if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(Src)) {
480    if (ZI->getOperand(0)->getType() ==
481        llvm::Type::getInt1Ty(CGF.getLLVMContext())) {
482      Value *Result = ZI->getOperand(0);
483      // If there aren't any more uses, zap the instruction to save space.
484      // Note that there can be more uses, for example if this
485      // is the result of an assignment.
486      if (ZI->use_empty())
487        ZI->eraseFromParent();
488      return Result;
489    }
490  }
491
492  // Compare against an integer or pointer null.
493  llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType());
494  return Builder.CreateICmpNE(Src, Zero, "tobool");
495}
496
497/// EmitScalarConversion - Emit a conversion from the specified type to the
498/// specified destination type, both of which are LLVM scalar types.
499Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
500                                               QualType DstType) {
501  SrcType = CGF.getContext().getCanonicalType(SrcType);
502  DstType = CGF.getContext().getCanonicalType(DstType);
503  if (SrcType == DstType) return Src;
504
505  if (DstType->isVoidType()) return 0;
506
507  // Handle conversions to bool first, they are special: comparisons against 0.
508  if (DstType->isBooleanType())
509    return EmitConversionToBool(Src, SrcType);
510
511  const llvm::Type *DstTy = ConvertType(DstType);
512
513  // Ignore conversions like int -> uint.
514  if (Src->getType() == DstTy)
515    return Src;
516
517  // Handle pointer conversions next: pointers can only be converted to/from
518  // other pointers and integers. Check for pointer types in terms of LLVM, as
519  // some native types (like Obj-C id) may map to a pointer type.
520  if (isa<llvm::PointerType>(DstTy)) {
521    // The source value may be an integer, or a pointer.
522    if (isa<llvm::PointerType>(Src->getType()))
523      return Builder.CreateBitCast(Src, DstTy, "conv");
524
525    assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
526    // First, convert to the correct width so that we control the kind of
527    // extension.
528    const llvm::Type *MiddleTy = CGF.IntPtrTy;
529    bool InputSigned = SrcType->isSignedIntegerType();
530    llvm::Value* IntResult =
531        Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
532    // Then, cast to pointer.
533    return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
534  }
535
536  if (isa<llvm::PointerType>(Src->getType())) {
537    // Must be an ptr to int cast.
538    assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
539    return Builder.CreatePtrToInt(Src, DstTy, "conv");
540  }
541
542  // A scalar can be splatted to an extended vector of the same element type
543  if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
544    // Cast the scalar to element type
545    QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType();
546    llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy);
547
548    // Insert the element in element zero of an undef vector
549    llvm::Value *UnV = llvm::UndefValue::get(DstTy);
550    llvm::Value *Idx = llvm::ConstantInt::get(CGF.Int32Ty, 0);
551    UnV = Builder.CreateInsertElement(UnV, Elt, Idx, "tmp");
552
553    // Splat the element across to all elements
554    llvm::SmallVector<llvm::Constant*, 16> Args;
555    unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
556    for (unsigned i = 0; i < NumElements; i++)
557      Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty, 0));
558
559    llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements);
560    llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
561    return Yay;
562  }
563
564  // Allow bitcast from vector to integer/fp of the same size.
565  if (isa<llvm::VectorType>(Src->getType()) ||
566      isa<llvm::VectorType>(DstTy))
567    return Builder.CreateBitCast(Src, DstTy, "conv");
568
569  // Finally, we have the arithmetic types: real int/float.
570  if (isa<llvm::IntegerType>(Src->getType())) {
571    bool InputSigned = SrcType->isSignedIntegerType();
572    if (isa<llvm::IntegerType>(DstTy))
573      return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
574    else if (InputSigned)
575      return Builder.CreateSIToFP(Src, DstTy, "conv");
576    else
577      return Builder.CreateUIToFP(Src, DstTy, "conv");
578  }
579
580  assert(Src->getType()->isFloatingPointTy() && "Unknown real conversion");
581  if (isa<llvm::IntegerType>(DstTy)) {
582    if (DstType->isSignedIntegerType())
583      return Builder.CreateFPToSI(Src, DstTy, "conv");
584    else
585      return Builder.CreateFPToUI(Src, DstTy, "conv");
586  }
587
588  assert(DstTy->isFloatingPointTy() && "Unknown real conversion");
589  if (DstTy->getTypeID() < Src->getType()->getTypeID())
590    return Builder.CreateFPTrunc(Src, DstTy, "conv");
591  else
592    return Builder.CreateFPExt(Src, DstTy, "conv");
593}
594
595/// EmitComplexToScalarConversion - Emit a conversion from the specified complex
596/// type to the specified destination type, where the destination type is an
597/// LLVM scalar type.
598Value *ScalarExprEmitter::
599EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
600                              QualType SrcTy, QualType DstTy) {
601  // Get the source element type.
602  SrcTy = SrcTy->getAs<ComplexType>()->getElementType();
603
604  // Handle conversions to bool first, they are special: comparisons against 0.
605  if (DstTy->isBooleanType()) {
606    //  Complex != 0  -> (Real != 0) | (Imag != 0)
607    Src.first  = EmitScalarConversion(Src.first, SrcTy, DstTy);
608    Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
609    return Builder.CreateOr(Src.first, Src.second, "tobool");
610  }
611
612  // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
613  // the imaginary part of the complex value is discarded and the value of the
614  // real part is converted according to the conversion rules for the
615  // corresponding real type.
616  return EmitScalarConversion(Src.first, SrcTy, DstTy);
617}
618
619Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
620  if (const MemberPointerType *MPT = Ty->getAs<MemberPointerType>())
621    return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
622
623  return llvm::Constant::getNullValue(ConvertType(Ty));
624}
625
626//===----------------------------------------------------------------------===//
627//                            Visitor Methods
628//===----------------------------------------------------------------------===//
629
630Value *ScalarExprEmitter::VisitExpr(Expr *E) {
631  CGF.ErrorUnsupported(E, "scalar expression");
632  if (E->getType()->isVoidType())
633    return 0;
634  return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
635}
636
637Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
638  // Vector Mask Case
639  if (E->getNumSubExprs() == 2 ||
640      (E->getNumSubExprs() == 3 && E->getExpr(2)->getType()->isVectorType())) {
641    Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
642    Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
643    Value *Mask;
644
645    const llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
646    unsigned LHSElts = LTy->getNumElements();
647
648    if (E->getNumSubExprs() == 3) {
649      Mask = CGF.EmitScalarExpr(E->getExpr(2));
650
651      // Shuffle LHS & RHS into one input vector.
652      llvm::SmallVector<llvm::Constant*, 32> concat;
653      for (unsigned i = 0; i != LHSElts; ++i) {
654        concat.push_back(llvm::ConstantInt::get(CGF.Int32Ty, 2*i));
655        concat.push_back(llvm::ConstantInt::get(CGF.Int32Ty, 2*i+1));
656      }
657
658      Value* CV = llvm::ConstantVector::get(concat.begin(), concat.size());
659      LHS = Builder.CreateShuffleVector(LHS, RHS, CV, "concat");
660      LHSElts *= 2;
661    } else {
662      Mask = RHS;
663    }
664
665    const llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
666    llvm::Constant* EltMask;
667
668    // Treat vec3 like vec4.
669    if ((LHSElts == 6) && (E->getNumSubExprs() == 3))
670      EltMask = llvm::ConstantInt::get(MTy->getElementType(),
671                                       (1 << llvm::Log2_32(LHSElts+2))-1);
672    else if ((LHSElts == 3) && (E->getNumSubExprs() == 2))
673      EltMask = llvm::ConstantInt::get(MTy->getElementType(),
674                                       (1 << llvm::Log2_32(LHSElts+1))-1);
675    else
676      EltMask = llvm::ConstantInt::get(MTy->getElementType(),
677                                       (1 << llvm::Log2_32(LHSElts))-1);
678
679    // Mask off the high bits of each shuffle index.
680    llvm::SmallVector<llvm::Constant *, 32> MaskV;
681    for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i)
682      MaskV.push_back(EltMask);
683
684    Value* MaskBits = llvm::ConstantVector::get(MaskV.begin(), MaskV.size());
685    Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
686
687    // newv = undef
688    // mask = mask & maskbits
689    // for each elt
690    //   n = extract mask i
691    //   x = extract val n
692    //   newv = insert newv, x, i
693    const llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
694                                                        MTy->getNumElements());
695    Value* NewV = llvm::UndefValue::get(RTy);
696    for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
697      Value *Indx = llvm::ConstantInt::get(CGF.Int32Ty, i);
698      Indx = Builder.CreateExtractElement(Mask, Indx, "shuf_idx");
699      Indx = Builder.CreateZExt(Indx, CGF.Int32Ty, "idx_zext");
700
701      // Handle vec3 special since the index will be off by one for the RHS.
702      if ((LHSElts == 6) && (E->getNumSubExprs() == 3)) {
703        Value *cmpIndx, *newIndx;
704        cmpIndx = Builder.CreateICmpUGT(Indx,
705                                        llvm::ConstantInt::get(CGF.Int32Ty, 3),
706                                        "cmp_shuf_idx");
707        newIndx = Builder.CreateSub(Indx, llvm::ConstantInt::get(CGF.Int32Ty,1),
708                                    "shuf_idx_adj");
709        Indx = Builder.CreateSelect(cmpIndx, newIndx, Indx, "sel_shuf_idx");
710      }
711      Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
712      NewV = Builder.CreateInsertElement(NewV, VExt, Indx, "shuf_ins");
713    }
714    return NewV;
715  }
716
717  Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
718  Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
719
720  // Handle vec3 special since the index will be off by one for the RHS.
721  llvm::SmallVector<llvm::Constant*, 32> indices;
722  for (unsigned i = 2; i < E->getNumSubExprs(); i++) {
723    llvm::Constant *C = cast<llvm::Constant>(CGF.EmitScalarExpr(E->getExpr(i)));
724    const llvm::VectorType *VTy = cast<llvm::VectorType>(V1->getType());
725    if (VTy->getNumElements() == 3) {
726      if (llvm::ConstantInt *CI = dyn_cast<llvm::ConstantInt>(C)) {
727        uint64_t cVal = CI->getZExtValue();
728        if (cVal > 3) {
729          C = llvm::ConstantInt::get(C->getType(), cVal-1);
730        }
731      }
732    }
733    indices.push_back(C);
734  }
735
736  Value* SV = llvm::ConstantVector::get(indices.begin(), indices.size());
737  return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
738}
739Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
740  Expr::EvalResult Result;
741  if (E->Evaluate(Result, CGF.getContext()) && Result.Val.isInt()) {
742    if (E->isArrow())
743      CGF.EmitScalarExpr(E->getBase());
744    else
745      EmitLValue(E->getBase());
746    return llvm::ConstantInt::get(VMContext, Result.Val.getInt());
747  }
748
749  // Emit debug info for aggregate now, if it was delayed to reduce
750  // debug info size.
751  CGDebugInfo *DI = CGF.getDebugInfo();
752  if (DI && CGF.CGM.getCodeGenOpts().LimitDebugInfo) {
753    QualType PQTy = E->getBase()->IgnoreParenImpCasts()->getType();
754    if (const PointerType * PTy = dyn_cast<PointerType>(PQTy))
755      if (FieldDecl *M = dyn_cast<FieldDecl>(E->getMemberDecl()))
756        DI->getOrCreateRecordType(PTy->getPointeeType(),
757                                  M->getParent()->getLocation());
758  }
759  return EmitLoadOfLValue(E);
760}
761
762Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
763  TestAndClearIgnoreResultAssign();
764
765  // Emit subscript expressions in rvalue context's.  For most cases, this just
766  // loads the lvalue formed by the subscript expr.  However, we have to be
767  // careful, because the base of a vector subscript is occasionally an rvalue,
768  // so we can't get it as an lvalue.
769  if (!E->getBase()->getType()->isVectorType())
770    return EmitLoadOfLValue(E);
771
772  // Handle the vector case.  The base must be a vector, the index must be an
773  // integer value.
774  Value *Base = Visit(E->getBase());
775  Value *Idx  = Visit(E->getIdx());
776  bool IdxSigned = E->getIdx()->getType()->isSignedIntegerType();
777  Idx = Builder.CreateIntCast(Idx, CGF.Int32Ty, IdxSigned, "vecidxcast");
778  return Builder.CreateExtractElement(Base, Idx, "vecext");
779}
780
781static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
782                                  unsigned Off, const llvm::Type *I32Ty) {
783  int MV = SVI->getMaskValue(Idx);
784  if (MV == -1)
785    return llvm::UndefValue::get(I32Ty);
786  return llvm::ConstantInt::get(I32Ty, Off+MV);
787}
788
789Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
790  bool Ignore = TestAndClearIgnoreResultAssign();
791  (void)Ignore;
792  assert (Ignore == false && "init list ignored");
793  unsigned NumInitElements = E->getNumInits();
794
795  if (E->hadArrayRangeDesignator())
796    CGF.ErrorUnsupported(E, "GNU array range designator extension");
797
798  const llvm::VectorType *VType =
799    dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
800
801  // We have a scalar in braces. Just use the first element.
802  if (!VType)
803    return Visit(E->getInit(0));
804
805  unsigned ResElts = VType->getNumElements();
806
807  // Loop over initializers collecting the Value for each, and remembering
808  // whether the source was swizzle (ExtVectorElementExpr).  This will allow
809  // us to fold the shuffle for the swizzle into the shuffle for the vector
810  // initializer, since LLVM optimizers generally do not want to touch
811  // shuffles.
812  unsigned CurIdx = 0;
813  bool VIsUndefShuffle = false;
814  llvm::Value *V = llvm::UndefValue::get(VType);
815  for (unsigned i = 0; i != NumInitElements; ++i) {
816    Expr *IE = E->getInit(i);
817    Value *Init = Visit(IE);
818    llvm::SmallVector<llvm::Constant*, 16> Args;
819
820    const llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
821
822    // Handle scalar elements.  If the scalar initializer is actually one
823    // element of a different vector of the same width, use shuffle instead of
824    // extract+insert.
825    if (!VVT) {
826      if (isa<ExtVectorElementExpr>(IE)) {
827        llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
828
829        if (EI->getVectorOperandType()->getNumElements() == ResElts) {
830          llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
831          Value *LHS = 0, *RHS = 0;
832          if (CurIdx == 0) {
833            // insert into undef -> shuffle (src, undef)
834            Args.push_back(C);
835            for (unsigned j = 1; j != ResElts; ++j)
836              Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
837
838            LHS = EI->getVectorOperand();
839            RHS = V;
840            VIsUndefShuffle = true;
841          } else if (VIsUndefShuffle) {
842            // insert into undefshuffle && size match -> shuffle (v, src)
843            llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
844            for (unsigned j = 0; j != CurIdx; ++j)
845              Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
846            Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty,
847                                                  ResElts + C->getZExtValue()));
848            for (unsigned j = CurIdx + 1; j != ResElts; ++j)
849              Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
850
851            LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
852            RHS = EI->getVectorOperand();
853            VIsUndefShuffle = false;
854          }
855          if (!Args.empty()) {
856            llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], ResElts);
857            V = Builder.CreateShuffleVector(LHS, RHS, Mask);
858            ++CurIdx;
859            continue;
860          }
861        }
862      }
863      Value *Idx = llvm::ConstantInt::get(CGF.Int32Ty, CurIdx);
864      V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
865      VIsUndefShuffle = false;
866      ++CurIdx;
867      continue;
868    }
869
870    unsigned InitElts = VVT->getNumElements();
871
872    // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
873    // input is the same width as the vector being constructed, generate an
874    // optimized shuffle of the swizzle input into the result.
875    unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
876    if (isa<ExtVectorElementExpr>(IE)) {
877      llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
878      Value *SVOp = SVI->getOperand(0);
879      const llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
880
881      if (OpTy->getNumElements() == ResElts) {
882        for (unsigned j = 0; j != CurIdx; ++j) {
883          // If the current vector initializer is a shuffle with undef, merge
884          // this shuffle directly into it.
885          if (VIsUndefShuffle) {
886            Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
887                                      CGF.Int32Ty));
888          } else {
889            Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty, j));
890          }
891        }
892        for (unsigned j = 0, je = InitElts; j != je; ++j)
893          Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
894        for (unsigned j = CurIdx + InitElts; j != ResElts; ++j)
895          Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
896
897        if (VIsUndefShuffle)
898          V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
899
900        Init = SVOp;
901      }
902    }
903
904    // Extend init to result vector length, and then shuffle its contribution
905    // to the vector initializer into V.
906    if (Args.empty()) {
907      for (unsigned j = 0; j != InitElts; ++j)
908        Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty, j));
909      for (unsigned j = InitElts; j != ResElts; ++j)
910        Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
911      llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], ResElts);
912      Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
913                                         Mask, "vext");
914
915      Args.clear();
916      for (unsigned j = 0; j != CurIdx; ++j)
917        Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty, j));
918      for (unsigned j = 0; j != InitElts; ++j)
919        Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty, j+Offset));
920      for (unsigned j = CurIdx + InitElts; j != ResElts; ++j)
921        Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
922    }
923
924    // If V is undef, make sure it ends up on the RHS of the shuffle to aid
925    // merging subsequent shuffles into this one.
926    if (CurIdx == 0)
927      std::swap(V, Init);
928    llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], ResElts);
929    V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
930    VIsUndefShuffle = isa<llvm::UndefValue>(Init);
931    CurIdx += InitElts;
932  }
933
934  // FIXME: evaluate codegen vs. shuffling against constant null vector.
935  // Emit remaining default initializers.
936  const llvm::Type *EltTy = VType->getElementType();
937
938  // Emit remaining default initializers
939  for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
940    Value *Idx = llvm::ConstantInt::get(CGF.Int32Ty, CurIdx);
941    llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
942    V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
943  }
944  return V;
945}
946
947static bool ShouldNullCheckClassCastValue(const CastExpr *CE) {
948  const Expr *E = CE->getSubExpr();
949
950  if (CE->getCastKind() == CK_UncheckedDerivedToBase)
951    return false;
952
953  if (isa<CXXThisExpr>(E)) {
954    // We always assume that 'this' is never null.
955    return false;
956  }
957
958  if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
959    // And that glvalue casts are never null.
960    if (ICE->getValueKind() != VK_RValue)
961      return false;
962  }
963
964  return true;
965}
966
967// VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
968// have to handle a more broad range of conversions than explicit casts, as they
969// handle things like function to ptr-to-function decay etc.
970Value *ScalarExprEmitter::EmitCastExpr(CastExpr *CE) {
971  Expr *E = CE->getSubExpr();
972  QualType DestTy = CE->getType();
973  CastKind Kind = CE->getCastKind();
974
975  if (!DestTy->isVoidType())
976    TestAndClearIgnoreResultAssign();
977
978  // Since almost all cast kinds apply to scalars, this switch doesn't have
979  // a default case, so the compiler will warn on a missing case.  The cases
980  // are in the same order as in the CastKind enum.
981  switch (Kind) {
982  case CK_Unknown:
983    // FIXME: All casts should have a known kind!
984    //assert(0 && "Unknown cast kind!");
985    break;
986
987  case CK_LValueBitCast:
988  case CK_ObjCObjectLValueCast: {
989    Value *V = EmitLValue(E).getAddress();
990    V = Builder.CreateBitCast(V,
991                          ConvertType(CGF.getContext().getPointerType(DestTy)));
992    return EmitLoadOfLValue(CGF.MakeAddrLValue(V, DestTy), DestTy);
993  }
994
995  case CK_AnyPointerToObjCPointerCast:
996  case CK_AnyPointerToBlockPointerCast:
997  case CK_BitCast: {
998    Value *Src = Visit(const_cast<Expr*>(E));
999    return Builder.CreateBitCast(Src, ConvertType(DestTy));
1000  }
1001  case CK_NoOp:
1002  case CK_UserDefinedConversion:
1003    return Visit(const_cast<Expr*>(E));
1004
1005  case CK_BaseToDerived: {
1006    const CXXRecordDecl *DerivedClassDecl =
1007      DestTy->getCXXRecordDeclForPointerType();
1008
1009    return CGF.GetAddressOfDerivedClass(Visit(E), DerivedClassDecl,
1010                                        CE->path_begin(), CE->path_end(),
1011                                        ShouldNullCheckClassCastValue(CE));
1012  }
1013  case CK_UncheckedDerivedToBase:
1014  case CK_DerivedToBase: {
1015    const RecordType *DerivedClassTy =
1016      E->getType()->getAs<PointerType>()->getPointeeType()->getAs<RecordType>();
1017    CXXRecordDecl *DerivedClassDecl =
1018      cast<CXXRecordDecl>(DerivedClassTy->getDecl());
1019
1020    return CGF.GetAddressOfBaseClass(Visit(E), DerivedClassDecl,
1021                                     CE->path_begin(), CE->path_end(),
1022                                     ShouldNullCheckClassCastValue(CE));
1023  }
1024  case CK_Dynamic: {
1025    Value *V = Visit(const_cast<Expr*>(E));
1026    const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
1027    return CGF.EmitDynamicCast(V, DCE);
1028  }
1029  case CK_ToUnion:
1030    assert(0 && "Should be unreachable!");
1031    break;
1032
1033  case CK_ArrayToPointerDecay: {
1034    assert(E->getType()->isArrayType() &&
1035           "Array to pointer decay must have array source type!");
1036
1037    Value *V = EmitLValue(E).getAddress();  // Bitfields can't be arrays.
1038
1039    // Note that VLA pointers are always decayed, so we don't need to do
1040    // anything here.
1041    if (!E->getType()->isVariableArrayType()) {
1042      assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer");
1043      assert(isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType())
1044                                 ->getElementType()) &&
1045             "Expected pointer to array");
1046      V = Builder.CreateStructGEP(V, 0, "arraydecay");
1047    }
1048
1049    return V;
1050  }
1051  case CK_FunctionToPointerDecay:
1052    return EmitLValue(E).getAddress();
1053
1054  case CK_NullToPointer:
1055    if (MustVisitNullValue(E))
1056      (void) Visit(E);
1057
1058    return llvm::ConstantPointerNull::get(
1059                               cast<llvm::PointerType>(ConvertType(DestTy)));
1060
1061  case CK_NullToMemberPointer: {
1062    if (MustVisitNullValue(E))
1063      (void) Visit(E);
1064
1065    const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
1066    return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
1067  }
1068
1069  case CK_BaseToDerivedMemberPointer:
1070  case CK_DerivedToBaseMemberPointer: {
1071    Value *Src = Visit(E);
1072
1073    // Note that the AST doesn't distinguish between checked and
1074    // unchecked member pointer conversions, so we always have to
1075    // implement checked conversions here.  This is inefficient when
1076    // actual control flow may be required in order to perform the
1077    // check, which it is for data member pointers (but not member
1078    // function pointers on Itanium and ARM).
1079    return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
1080  }
1081
1082  case CK_FloatingRealToComplex:
1083  case CK_FloatingComplexCast:
1084  case CK_IntegralRealToComplex:
1085  case CK_IntegralComplexCast:
1086  case CK_IntegralComplexToFloatingComplex:
1087  case CK_FloatingComplexToIntegralComplex:
1088  case CK_ConstructorConversion:
1089    assert(0 && "Should be unreachable!");
1090    break;
1091
1092  case CK_IntegralToPointer: {
1093    Value *Src = Visit(const_cast<Expr*>(E));
1094
1095    // First, convert to the correct width so that we control the kind of
1096    // extension.
1097    const llvm::Type *MiddleTy = CGF.IntPtrTy;
1098    bool InputSigned = E->getType()->isSignedIntegerType();
1099    llvm::Value* IntResult =
1100      Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1101
1102    return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy));
1103  }
1104  case CK_PointerToIntegral: {
1105    Value *Src = Visit(const_cast<Expr*>(E));
1106
1107    // Handle conversion to bool correctly.
1108    if (DestTy->isBooleanType())
1109      return EmitScalarConversion(Src, E->getType(), DestTy);
1110
1111    return Builder.CreatePtrToInt(Src, ConvertType(DestTy));
1112  }
1113  case CK_ToVoid: {
1114    if (E->Classify(CGF.getContext()).isGLValue()) {
1115      LValue LV = CGF.EmitLValue(E);
1116      if (LV.isPropertyRef())
1117        CGF.EmitLoadOfPropertyRefLValue(LV, E->getType());
1118      else if (LV.isKVCRef())
1119        CGF.EmitLoadOfKVCRefLValue(LV, E->getType());
1120    }
1121    else
1122      CGF.EmitAnyExpr(E, AggValueSlot::ignored(), true);
1123    return 0;
1124  }
1125  case CK_VectorSplat: {
1126    const llvm::Type *DstTy = ConvertType(DestTy);
1127    Value *Elt = Visit(const_cast<Expr*>(E));
1128
1129    // Insert the element in element zero of an undef vector
1130    llvm::Value *UnV = llvm::UndefValue::get(DstTy);
1131    llvm::Value *Idx = llvm::ConstantInt::get(CGF.Int32Ty, 0);
1132    UnV = Builder.CreateInsertElement(UnV, Elt, Idx, "tmp");
1133
1134    // Splat the element across to all elements
1135    llvm::SmallVector<llvm::Constant*, 16> Args;
1136    unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
1137    for (unsigned i = 0; i < NumElements; i++)
1138      Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty, 0));
1139
1140    llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements);
1141    llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
1142    return Yay;
1143  }
1144  case CK_IntegralCast:
1145  case CK_IntegralToFloating:
1146  case CK_FloatingToIntegral:
1147  case CK_FloatingCast:
1148    return EmitScalarConversion(Visit(E), E->getType(), DestTy);
1149
1150  case CK_MemberPointerToBoolean: {
1151    llvm::Value *MemPtr = Visit(E);
1152    const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
1153    return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
1154  }
1155
1156  case CK_FloatingComplexToReal:
1157  case CK_IntegralComplexToReal:
1158    return CGF.EmitComplexExpr(E, false, true, false, true).first;
1159
1160  case CK_FloatingComplexToBoolean:
1161  case CK_IntegralComplexToBoolean: {
1162    CodeGenFunction::ComplexPairTy V
1163      = CGF.EmitComplexExpr(E, false, false, false, false);
1164
1165    // TODO: kill this function off, inline appropriate case here
1166    return EmitComplexToScalarConversion(V, E->getType(), DestTy);
1167  }
1168
1169  }
1170
1171  // Handle cases where the source is an non-complex type.
1172
1173  if (!CGF.hasAggregateLLVMType(E->getType())) {
1174    Value *Src = Visit(const_cast<Expr*>(E));
1175
1176    // Use EmitScalarConversion to perform the conversion.
1177    return EmitScalarConversion(Src, E->getType(), DestTy);
1178  }
1179
1180  // Handle cases where the source is a complex type.
1181  // TODO: when we're certain about cast kinds, we should just be able
1182  // to assert that no complexes make it here.
1183  if (E->getType()->isAnyComplexType()) {
1184    bool IgnoreImag = true;
1185    bool IgnoreImagAssign = true;
1186    bool IgnoreReal = IgnoreResultAssign;
1187    bool IgnoreRealAssign = IgnoreResultAssign;
1188    if (DestTy->isBooleanType())
1189      IgnoreImagAssign = IgnoreImag = false;
1190    else if (DestTy->isVoidType()) {
1191      IgnoreReal = IgnoreImag = false;
1192      IgnoreRealAssign = IgnoreImagAssign = true;
1193    }
1194    CodeGenFunction::ComplexPairTy V
1195      = CGF.EmitComplexExpr(E, IgnoreReal, IgnoreImag, IgnoreRealAssign,
1196                            IgnoreImagAssign);
1197    return EmitComplexToScalarConversion(V, E->getType(), DestTy);
1198  }
1199
1200  // Okay, this is a cast from an aggregate.  It must be a cast to void.  Just
1201  // evaluate the result and return.
1202  CGF.EmitAggExpr(E, AggValueSlot::ignored(), true);
1203  return 0;
1204}
1205
1206Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
1207  return CGF.EmitCompoundStmt(*E->getSubStmt(),
1208                              !E->getType()->isVoidType()).getScalarVal();
1209}
1210
1211Value *ScalarExprEmitter::VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) {
1212  llvm::Value *V = CGF.GetAddrOfBlockDecl(E);
1213  if (E->getType().isObjCGCWeak())
1214    return CGF.CGM.getObjCRuntime().EmitObjCWeakRead(CGF, V);
1215  return CGF.EmitLoadOfScalar(V, false, 0, E->getType());
1216}
1217
1218//===----------------------------------------------------------------------===//
1219//                             Unary Operators
1220//===----------------------------------------------------------------------===//
1221
1222llvm::Value *ScalarExprEmitter::
1223EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1224                        bool isInc, bool isPre) {
1225
1226  QualType ValTy = E->getSubExpr()->getType();
1227  llvm::Value *InVal = EmitLoadOfLValue(LV, ValTy);
1228
1229  int AmountVal = isInc ? 1 : -1;
1230
1231  if (ValTy->isPointerType() &&
1232      ValTy->getAs<PointerType>()->isVariableArrayType()) {
1233    // The amount of the addition/subtraction needs to account for the VLA size
1234    CGF.ErrorUnsupported(E, "VLA pointer inc/dec");
1235  }
1236
1237  llvm::Value *NextVal;
1238  if (const llvm::PointerType *PT =
1239      dyn_cast<llvm::PointerType>(InVal->getType())) {
1240    llvm::Constant *Inc = llvm::ConstantInt::get(CGF.Int32Ty, AmountVal);
1241    if (!isa<llvm::FunctionType>(PT->getElementType())) {
1242      QualType PTEE = ValTy->getPointeeType();
1243      if (const ObjCObjectType *OIT = PTEE->getAs<ObjCObjectType>()) {
1244        // Handle interface types, which are not represented with a concrete
1245        // type.
1246        int size = CGF.getContext().getTypeSize(OIT) / 8;
1247        if (!isInc)
1248          size = -size;
1249        Inc = llvm::ConstantInt::get(Inc->getType(), size);
1250        const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1251        InVal = Builder.CreateBitCast(InVal, i8Ty);
1252        NextVal = Builder.CreateGEP(InVal, Inc, "add.ptr");
1253        llvm::Value *lhs = LV.getAddress();
1254        lhs = Builder.CreateBitCast(lhs, llvm::PointerType::getUnqual(i8Ty));
1255        LV = CGF.MakeAddrLValue(lhs, ValTy);
1256      } else
1257        NextVal = Builder.CreateInBoundsGEP(InVal, Inc, "ptrincdec");
1258    } else {
1259      const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1260      NextVal = Builder.CreateBitCast(InVal, i8Ty, "tmp");
1261      NextVal = Builder.CreateGEP(NextVal, Inc, "ptrincdec");
1262      NextVal = Builder.CreateBitCast(NextVal, InVal->getType());
1263    }
1264  } else if (InVal->getType()->isIntegerTy(1) && isInc) {
1265    // Bool++ is an interesting case, due to promotion rules, we get:
1266    // Bool++ -> Bool = Bool+1 -> Bool = (int)Bool+1 ->
1267    // Bool = ((int)Bool+1) != 0
1268    // An interesting aspect of this is that increment is always true.
1269    // Decrement does not have this property.
1270    NextVal = llvm::ConstantInt::getTrue(VMContext);
1271  } else if (isa<llvm::IntegerType>(InVal->getType())) {
1272    NextVal = llvm::ConstantInt::get(InVal->getType(), AmountVal);
1273
1274    if (!ValTy->isSignedIntegerType())
1275      // Unsigned integer inc is always two's complement.
1276      NextVal = Builder.CreateAdd(InVal, NextVal, isInc ? "inc" : "dec");
1277    else {
1278      switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
1279      case LangOptions::SOB_Undefined:
1280        NextVal = Builder.CreateNSWAdd(InVal, NextVal, isInc ? "inc" : "dec");
1281        break;
1282      case LangOptions::SOB_Defined:
1283        NextVal = Builder.CreateAdd(InVal, NextVal, isInc ? "inc" : "dec");
1284        break;
1285      case LangOptions::SOB_Trapping:
1286        BinOpInfo BinOp;
1287        BinOp.LHS = InVal;
1288        BinOp.RHS = NextVal;
1289        BinOp.Ty = E->getType();
1290        BinOp.Opcode = BO_Add;
1291        BinOp.E = E;
1292        NextVal = EmitOverflowCheckedBinOp(BinOp);
1293        break;
1294      }
1295    }
1296  } else {
1297    // Add the inc/dec to the real part.
1298    if (InVal->getType()->isFloatTy())
1299      NextVal =
1300      llvm::ConstantFP::get(VMContext,
1301                            llvm::APFloat(static_cast<float>(AmountVal)));
1302    else if (InVal->getType()->isDoubleTy())
1303      NextVal =
1304      llvm::ConstantFP::get(VMContext,
1305                            llvm::APFloat(static_cast<double>(AmountVal)));
1306    else {
1307      llvm::APFloat F(static_cast<float>(AmountVal));
1308      bool ignored;
1309      F.convert(CGF.Target.getLongDoubleFormat(), llvm::APFloat::rmTowardZero,
1310                &ignored);
1311      NextVal = llvm::ConstantFP::get(VMContext, F);
1312    }
1313    NextVal = Builder.CreateFAdd(InVal, NextVal, isInc ? "inc" : "dec");
1314  }
1315
1316  // Store the updated result through the lvalue.
1317  if (LV.isBitField())
1318    CGF.EmitStoreThroughBitfieldLValue(RValue::get(NextVal), LV, ValTy, &NextVal);
1319  else
1320    CGF.EmitStoreThroughLValue(RValue::get(NextVal), LV, ValTy);
1321
1322  // If this is a postinc, return the value read from memory, otherwise use the
1323  // updated value.
1324  return isPre ? NextVal : InVal;
1325}
1326
1327
1328
1329Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
1330  TestAndClearIgnoreResultAssign();
1331  // Emit unary minus with EmitSub so we handle overflow cases etc.
1332  BinOpInfo BinOp;
1333  BinOp.RHS = Visit(E->getSubExpr());
1334
1335  if (BinOp.RHS->getType()->isFPOrFPVectorTy())
1336    BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType());
1337  else
1338    BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
1339  BinOp.Ty = E->getType();
1340  BinOp.Opcode = BO_Sub;
1341  BinOp.E = E;
1342  return EmitSub(BinOp);
1343}
1344
1345Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
1346  TestAndClearIgnoreResultAssign();
1347  Value *Op = Visit(E->getSubExpr());
1348  return Builder.CreateNot(Op, "neg");
1349}
1350
1351Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
1352  // Compare operand to zero.
1353  Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
1354
1355  // Invert value.
1356  // TODO: Could dynamically modify easy computations here.  For example, if
1357  // the operand is an icmp ne, turn into icmp eq.
1358  BoolVal = Builder.CreateNot(BoolVal, "lnot");
1359
1360  // ZExt result to the expr type.
1361  return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
1362}
1363
1364Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
1365  // Try folding the offsetof to a constant.
1366  Expr::EvalResult EvalResult;
1367  if (E->Evaluate(EvalResult, CGF.getContext()))
1368    return llvm::ConstantInt::get(VMContext, EvalResult.Val.getInt());
1369
1370  // Loop over the components of the offsetof to compute the value.
1371  unsigned n = E->getNumComponents();
1372  const llvm::Type* ResultType = ConvertType(E->getType());
1373  llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
1374  QualType CurrentType = E->getTypeSourceInfo()->getType();
1375  for (unsigned i = 0; i != n; ++i) {
1376    OffsetOfExpr::OffsetOfNode ON = E->getComponent(i);
1377    llvm::Value *Offset = 0;
1378    switch (ON.getKind()) {
1379    case OffsetOfExpr::OffsetOfNode::Array: {
1380      // Compute the index
1381      Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
1382      llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
1383      bool IdxSigned = IdxExpr->getType()->isSignedIntegerType();
1384      Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
1385
1386      // Save the element type
1387      CurrentType =
1388          CGF.getContext().getAsArrayType(CurrentType)->getElementType();
1389
1390      // Compute the element size
1391      llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
1392          CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
1393
1394      // Multiply out to compute the result
1395      Offset = Builder.CreateMul(Idx, ElemSize);
1396      break;
1397    }
1398
1399    case OffsetOfExpr::OffsetOfNode::Field: {
1400      FieldDecl *MemberDecl = ON.getField();
1401      RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1402      const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1403
1404      // Compute the index of the field in its parent.
1405      unsigned i = 0;
1406      // FIXME: It would be nice if we didn't have to loop here!
1407      for (RecordDecl::field_iterator Field = RD->field_begin(),
1408                                      FieldEnd = RD->field_end();
1409           Field != FieldEnd; (void)++Field, ++i) {
1410        if (*Field == MemberDecl)
1411          break;
1412      }
1413      assert(i < RL.getFieldCount() && "offsetof field in wrong type");
1414
1415      // Compute the offset to the field
1416      int64_t OffsetInt = RL.getFieldOffset(i) /
1417                          CGF.getContext().getCharWidth();
1418      Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
1419
1420      // Save the element type.
1421      CurrentType = MemberDecl->getType();
1422      break;
1423    }
1424
1425    case OffsetOfExpr::OffsetOfNode::Identifier:
1426      llvm_unreachable("dependent __builtin_offsetof");
1427
1428    case OffsetOfExpr::OffsetOfNode::Base: {
1429      if (ON.getBase()->isVirtual()) {
1430        CGF.ErrorUnsupported(E, "virtual base in offsetof");
1431        continue;
1432      }
1433
1434      RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1435      const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1436
1437      // Save the element type.
1438      CurrentType = ON.getBase()->getType();
1439
1440      // Compute the offset to the base.
1441      const RecordType *BaseRT = CurrentType->getAs<RecordType>();
1442      CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
1443      int64_t OffsetInt = RL.getBaseClassOffsetInBits(BaseRD) /
1444                          CGF.getContext().getCharWidth();
1445      Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
1446      break;
1447    }
1448    }
1449    Result = Builder.CreateAdd(Result, Offset);
1450  }
1451  return Result;
1452}
1453
1454/// VisitSizeOfAlignOfExpr - Return the size or alignment of the type of
1455/// argument of the sizeof expression as an integer.
1456Value *
1457ScalarExprEmitter::VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E) {
1458  QualType TypeToSize = E->getTypeOfArgument();
1459  if (E->isSizeOf()) {
1460    if (const VariableArrayType *VAT =
1461          CGF.getContext().getAsVariableArrayType(TypeToSize)) {
1462      if (E->isArgumentType()) {
1463        // sizeof(type) - make sure to emit the VLA size.
1464        CGF.EmitVLASize(TypeToSize);
1465      } else {
1466        // C99 6.5.3.4p2: If the argument is an expression of type
1467        // VLA, it is evaluated.
1468        CGF.EmitAnyExpr(E->getArgumentExpr());
1469      }
1470
1471      return CGF.GetVLASize(VAT);
1472    }
1473  }
1474
1475  // If this isn't sizeof(vla), the result must be constant; use the constant
1476  // folding logic so we don't have to duplicate it here.
1477  Expr::EvalResult Result;
1478  E->Evaluate(Result, CGF.getContext());
1479  return llvm::ConstantInt::get(VMContext, Result.Val.getInt());
1480}
1481
1482Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
1483  Expr *Op = E->getSubExpr();
1484  if (Op->getType()->isAnyComplexType())
1485    return CGF.EmitComplexExpr(Op, false, true, false, true).first;
1486  return Visit(Op);
1487}
1488Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
1489  Expr *Op = E->getSubExpr();
1490  if (Op->getType()->isAnyComplexType())
1491    return CGF.EmitComplexExpr(Op, true, false, true, false).second;
1492
1493  // __imag on a scalar returns zero.  Emit the subexpr to ensure side
1494  // effects are evaluated, but not the actual value.
1495  if (E->isLvalue(CGF.getContext()) == Expr::LV_Valid)
1496    CGF.EmitLValue(Op);
1497  else
1498    CGF.EmitScalarExpr(Op, true);
1499  return llvm::Constant::getNullValue(ConvertType(E->getType()));
1500}
1501
1502//===----------------------------------------------------------------------===//
1503//                           Binary Operators
1504//===----------------------------------------------------------------------===//
1505
1506BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
1507  TestAndClearIgnoreResultAssign();
1508  BinOpInfo Result;
1509  Result.LHS = Visit(E->getLHS());
1510  Result.RHS = Visit(E->getRHS());
1511  Result.Ty  = E->getType();
1512  Result.Opcode = E->getOpcode();
1513  Result.E = E;
1514  return Result;
1515}
1516
1517LValue ScalarExprEmitter::EmitCompoundAssignLValue(
1518                                              const CompoundAssignOperator *E,
1519                        Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
1520                                                   Value *&Result) {
1521  QualType LHSTy = E->getLHS()->getType();
1522  BinOpInfo OpInfo;
1523
1524  if (E->getComputationResultType()->isAnyComplexType()) {
1525    // This needs to go through the complex expression emitter, but it's a tad
1526    // complicated to do that... I'm leaving it out for now.  (Note that we do
1527    // actually need the imaginary part of the RHS for multiplication and
1528    // division.)
1529    CGF.ErrorUnsupported(E, "complex compound assignment");
1530    Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1531    return LValue();
1532  }
1533
1534  // Emit the RHS first.  __block variables need to have the rhs evaluated
1535  // first, plus this should improve codegen a little.
1536  OpInfo.RHS = Visit(E->getRHS());
1537  OpInfo.Ty = E->getComputationResultType();
1538  OpInfo.Opcode = E->getOpcode();
1539  OpInfo.E = E;
1540  // Load/convert the LHS.
1541  LValue LHSLV = EmitCheckedLValue(E->getLHS());
1542  OpInfo.LHS = EmitLoadOfLValue(LHSLV, LHSTy);
1543  OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy,
1544                                    E->getComputationLHSType());
1545
1546  // Expand the binary operator.
1547  Result = (this->*Func)(OpInfo);
1548
1549  // Convert the result back to the LHS type.
1550  Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy);
1551
1552  // Store the result value into the LHS lvalue. Bit-fields are handled
1553  // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
1554  // 'An assignment expression has the value of the left operand after the
1555  // assignment...'.
1556  if (LHSLV.isBitField())
1557    CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, LHSTy,
1558                                       &Result);
1559  else
1560    CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV, LHSTy);
1561
1562  return LHSLV;
1563}
1564
1565Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
1566                      Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
1567  bool Ignore = TestAndClearIgnoreResultAssign();
1568  Value *RHS;
1569  LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
1570
1571  // If the result is clearly ignored, return now.
1572  if (Ignore)
1573    return 0;
1574
1575  // Objective-C property assignment never reloads the value following a store.
1576  if (LHS.isPropertyRef() || LHS.isKVCRef())
1577    return RHS;
1578
1579  // If the lvalue is non-volatile, return the computed value of the assignment.
1580  if (!LHS.isVolatileQualified())
1581    return RHS;
1582
1583  // Otherwise, reload the value.
1584  return EmitLoadOfLValue(LHS, E->getType());
1585}
1586
1587void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
1588     					    const BinOpInfo &Ops,
1589				     	    llvm::Value *Zero, bool isDiv) {
1590  llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
1591  llvm::BasicBlock *contBB =
1592    CGF.createBasicBlock(isDiv ? "div.cont" : "rem.cont", CGF.CurFn);
1593
1594  const llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
1595
1596  if (Ops.Ty->hasSignedIntegerRepresentation()) {
1597    llvm::Value *IntMin =
1598      llvm::ConstantInt::get(VMContext,
1599                             llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
1600    llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
1601
1602    llvm::Value *Cond1 = Builder.CreateICmpEQ(Ops.RHS, Zero);
1603    llvm::Value *LHSCmp = Builder.CreateICmpEQ(Ops.LHS, IntMin);
1604    llvm::Value *RHSCmp = Builder.CreateICmpEQ(Ops.RHS, NegOne);
1605    llvm::Value *Cond2 = Builder.CreateAnd(LHSCmp, RHSCmp, "and");
1606    Builder.CreateCondBr(Builder.CreateOr(Cond1, Cond2, "or"),
1607                         overflowBB, contBB);
1608  } else {
1609    CGF.Builder.CreateCondBr(Builder.CreateICmpEQ(Ops.RHS, Zero),
1610                             overflowBB, contBB);
1611  }
1612  EmitOverflowBB(overflowBB);
1613  Builder.SetInsertPoint(contBB);
1614}
1615
1616Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
1617  if (isTrapvOverflowBehavior()) {
1618    llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
1619
1620    if (Ops.Ty->isIntegerType())
1621      EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
1622    else if (Ops.Ty->isRealFloatingType()) {
1623      llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow",
1624                                                          CGF.CurFn);
1625      llvm::BasicBlock *DivCont = CGF.createBasicBlock("div.cont", CGF.CurFn);
1626      CGF.Builder.CreateCondBr(Builder.CreateFCmpOEQ(Ops.RHS, Zero),
1627                               overflowBB, DivCont);
1628      EmitOverflowBB(overflowBB);
1629      Builder.SetInsertPoint(DivCont);
1630    }
1631  }
1632  if (Ops.LHS->getType()->isFPOrFPVectorTy())
1633    return Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
1634  else if (Ops.Ty->hasUnsignedIntegerRepresentation())
1635    return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
1636  else
1637    return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
1638}
1639
1640Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
1641  // Rem in C can't be a floating point type: C99 6.5.5p2.
1642  if (isTrapvOverflowBehavior()) {
1643    llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
1644
1645    if (Ops.Ty->isIntegerType())
1646      EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
1647  }
1648
1649  if (Ops.Ty->isUnsignedIntegerType())
1650    return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
1651  else
1652    return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
1653}
1654
1655Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
1656  unsigned IID;
1657  unsigned OpID = 0;
1658
1659  switch (Ops.Opcode) {
1660  case BO_Add:
1661  case BO_AddAssign:
1662    OpID = 1;
1663    IID = llvm::Intrinsic::sadd_with_overflow;
1664    break;
1665  case BO_Sub:
1666  case BO_SubAssign:
1667    OpID = 2;
1668    IID = llvm::Intrinsic::ssub_with_overflow;
1669    break;
1670  case BO_Mul:
1671  case BO_MulAssign:
1672    OpID = 3;
1673    IID = llvm::Intrinsic::smul_with_overflow;
1674    break;
1675  default:
1676    assert(false && "Unsupported operation for overflow detection");
1677    IID = 0;
1678  }
1679  OpID <<= 1;
1680  OpID |= 1;
1681
1682  const llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
1683
1684  llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, &opTy, 1);
1685
1686  Value *resultAndOverflow = Builder.CreateCall2(intrinsic, Ops.LHS, Ops.RHS);
1687  Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
1688  Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
1689
1690  // Branch in case of overflow.
1691  llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
1692  llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
1693  llvm::BasicBlock *continueBB = CGF.createBasicBlock("nooverflow", CGF.CurFn);
1694
1695  Builder.CreateCondBr(overflow, overflowBB, continueBB);
1696
1697  // Handle overflow with llvm.trap.
1698  const std::string *handlerName =
1699    &CGF.getContext().getLangOptions().OverflowHandler;
1700  if (handlerName->empty()) {
1701    EmitOverflowBB(overflowBB);
1702    Builder.SetInsertPoint(continueBB);
1703    return result;
1704  }
1705
1706  // If an overflow handler is set, then we want to call it and then use its
1707  // result, if it returns.
1708  Builder.SetInsertPoint(overflowBB);
1709
1710  // Get the overflow handler.
1711  const llvm::Type *Int8Ty = llvm::Type::getInt8Ty(VMContext);
1712  std::vector<const llvm::Type*> argTypes;
1713  argTypes.push_back(CGF.Int64Ty); argTypes.push_back(CGF.Int64Ty);
1714  argTypes.push_back(Int8Ty); argTypes.push_back(Int8Ty);
1715  llvm::FunctionType *handlerTy =
1716      llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
1717  llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
1718
1719  // Sign extend the args to 64-bit, so that we can use the same handler for
1720  // all types of overflow.
1721  llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
1722  llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
1723
1724  // Call the handler with the two arguments, the operation, and the size of
1725  // the result.
1726  llvm::Value *handlerResult = Builder.CreateCall4(handler, lhs, rhs,
1727      Builder.getInt8(OpID),
1728      Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth()));
1729
1730  // Truncate the result back to the desired size.
1731  handlerResult = Builder.CreateTrunc(handlerResult, opTy);
1732  Builder.CreateBr(continueBB);
1733
1734  Builder.SetInsertPoint(continueBB);
1735  llvm::PHINode *phi = Builder.CreatePHI(opTy);
1736  phi->reserveOperandSpace(2);
1737  phi->addIncoming(result, initialBB);
1738  phi->addIncoming(handlerResult, overflowBB);
1739
1740  return phi;
1741}
1742
1743Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &Ops) {
1744  if (!Ops.Ty->isAnyPointerType()) {
1745    if (Ops.Ty->hasSignedIntegerRepresentation()) {
1746      switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
1747      case LangOptions::SOB_Undefined:
1748        return Builder.CreateNSWAdd(Ops.LHS, Ops.RHS, "add");
1749      case LangOptions::SOB_Defined:
1750        return Builder.CreateAdd(Ops.LHS, Ops.RHS, "add");
1751      case LangOptions::SOB_Trapping:
1752        return EmitOverflowCheckedBinOp(Ops);
1753      }
1754    }
1755
1756    if (Ops.LHS->getType()->isFPOrFPVectorTy())
1757      return Builder.CreateFAdd(Ops.LHS, Ops.RHS, "add");
1758
1759    return Builder.CreateAdd(Ops.LHS, Ops.RHS, "add");
1760  }
1761
1762  // Must have binary (not unary) expr here.  Unary pointer decrement doesn't
1763  // use this path.
1764  const BinaryOperator *BinOp = cast<BinaryOperator>(Ops.E);
1765
1766  if (Ops.Ty->isPointerType() &&
1767      Ops.Ty->getAs<PointerType>()->isVariableArrayType()) {
1768    // The amount of the addition needs to account for the VLA size
1769    CGF.ErrorUnsupported(BinOp, "VLA pointer addition");
1770  }
1771
1772  Value *Ptr, *Idx;
1773  Expr *IdxExp;
1774  const PointerType *PT = BinOp->getLHS()->getType()->getAs<PointerType>();
1775  const ObjCObjectPointerType *OPT =
1776    BinOp->getLHS()->getType()->getAs<ObjCObjectPointerType>();
1777  if (PT || OPT) {
1778    Ptr = Ops.LHS;
1779    Idx = Ops.RHS;
1780    IdxExp = BinOp->getRHS();
1781  } else {  // int + pointer
1782    PT = BinOp->getRHS()->getType()->getAs<PointerType>();
1783    OPT = BinOp->getRHS()->getType()->getAs<ObjCObjectPointerType>();
1784    assert((PT || OPT) && "Invalid add expr");
1785    Ptr = Ops.RHS;
1786    Idx = Ops.LHS;
1787    IdxExp = BinOp->getLHS();
1788  }
1789
1790  unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
1791  if (Width < CGF.LLVMPointerWidth) {
1792    // Zero or sign extend the pointer value based on whether the index is
1793    // signed or not.
1794    const llvm::Type *IdxType = CGF.IntPtrTy;
1795    if (IdxExp->getType()->isSignedIntegerType())
1796      Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
1797    else
1798      Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
1799  }
1800  const QualType ElementType = PT ? PT->getPointeeType() : OPT->getPointeeType();
1801  // Handle interface types, which are not represented with a concrete type.
1802  if (const ObjCObjectType *OIT = ElementType->getAs<ObjCObjectType>()) {
1803    llvm::Value *InterfaceSize =
1804      llvm::ConstantInt::get(Idx->getType(),
1805          CGF.getContext().getTypeSizeInChars(OIT).getQuantity());
1806    Idx = Builder.CreateMul(Idx, InterfaceSize);
1807    const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1808    Value *Casted = Builder.CreateBitCast(Ptr, i8Ty);
1809    Value *Res = Builder.CreateGEP(Casted, Idx, "add.ptr");
1810    return Builder.CreateBitCast(Res, Ptr->getType());
1811  }
1812
1813  // Explicitly handle GNU void* and function pointer arithmetic extensions. The
1814  // GNU void* casts amount to no-ops since our void* type is i8*, but this is
1815  // future proof.
1816  if (ElementType->isVoidType() || ElementType->isFunctionType()) {
1817    const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1818    Value *Casted = Builder.CreateBitCast(Ptr, i8Ty);
1819    Value *Res = Builder.CreateGEP(Casted, Idx, "add.ptr");
1820    return Builder.CreateBitCast(Res, Ptr->getType());
1821  }
1822
1823  return Builder.CreateInBoundsGEP(Ptr, Idx, "add.ptr");
1824}
1825
1826Value *ScalarExprEmitter::EmitSub(const BinOpInfo &Ops) {
1827  if (!isa<llvm::PointerType>(Ops.LHS->getType())) {
1828    if (Ops.Ty->hasSignedIntegerRepresentation()) {
1829      switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
1830      case LangOptions::SOB_Undefined:
1831        return Builder.CreateNSWSub(Ops.LHS, Ops.RHS, "sub");
1832      case LangOptions::SOB_Defined:
1833        return Builder.CreateSub(Ops.LHS, Ops.RHS, "sub");
1834      case LangOptions::SOB_Trapping:
1835        return EmitOverflowCheckedBinOp(Ops);
1836      }
1837    }
1838
1839    if (Ops.LHS->getType()->isFPOrFPVectorTy())
1840      return Builder.CreateFSub(Ops.LHS, Ops.RHS, "sub");
1841
1842    return Builder.CreateSub(Ops.LHS, Ops.RHS, "sub");
1843  }
1844
1845  // Must have binary (not unary) expr here.  Unary pointer increment doesn't
1846  // use this path.
1847  const BinaryOperator *BinOp = cast<BinaryOperator>(Ops.E);
1848
1849  if (BinOp->getLHS()->getType()->isPointerType() &&
1850      BinOp->getLHS()->getType()->getAs<PointerType>()->isVariableArrayType()) {
1851    // The amount of the addition needs to account for the VLA size for
1852    // ptr-int
1853    // The amount of the division needs to account for the VLA size for
1854    // ptr-ptr.
1855    CGF.ErrorUnsupported(BinOp, "VLA pointer subtraction");
1856  }
1857
1858  const QualType LHSType = BinOp->getLHS()->getType();
1859  const QualType LHSElementType = LHSType->getPointeeType();
1860  if (!isa<llvm::PointerType>(Ops.RHS->getType())) {
1861    // pointer - int
1862    Value *Idx = Ops.RHS;
1863    unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
1864    if (Width < CGF.LLVMPointerWidth) {
1865      // Zero or sign extend the pointer value based on whether the index is
1866      // signed or not.
1867      const llvm::Type *IdxType = CGF.IntPtrTy;
1868      if (BinOp->getRHS()->getType()->isSignedIntegerType())
1869        Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
1870      else
1871        Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
1872    }
1873    Idx = Builder.CreateNeg(Idx, "sub.ptr.neg");
1874
1875    // Handle interface types, which are not represented with a concrete type.
1876    if (const ObjCObjectType *OIT = LHSElementType->getAs<ObjCObjectType>()) {
1877      llvm::Value *InterfaceSize =
1878        llvm::ConstantInt::get(Idx->getType(),
1879                               CGF.getContext().
1880                                 getTypeSizeInChars(OIT).getQuantity());
1881      Idx = Builder.CreateMul(Idx, InterfaceSize);
1882      const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1883      Value *LHSCasted = Builder.CreateBitCast(Ops.LHS, i8Ty);
1884      Value *Res = Builder.CreateGEP(LHSCasted, Idx, "add.ptr");
1885      return Builder.CreateBitCast(Res, Ops.LHS->getType());
1886    }
1887
1888    // Explicitly handle GNU void* and function pointer arithmetic
1889    // extensions. The GNU void* casts amount to no-ops since our void* type is
1890    // i8*, but this is future proof.
1891    if (LHSElementType->isVoidType() || LHSElementType->isFunctionType()) {
1892      const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1893      Value *LHSCasted = Builder.CreateBitCast(Ops.LHS, i8Ty);
1894      Value *Res = Builder.CreateGEP(LHSCasted, Idx, "sub.ptr");
1895      return Builder.CreateBitCast(Res, Ops.LHS->getType());
1896    }
1897
1898    return Builder.CreateInBoundsGEP(Ops.LHS, Idx, "sub.ptr");
1899  } else {
1900    // pointer - pointer
1901    Value *LHS = Ops.LHS;
1902    Value *RHS = Ops.RHS;
1903
1904    CharUnits ElementSize;
1905
1906    // Handle GCC extension for pointer arithmetic on void* and function pointer
1907    // types.
1908    if (LHSElementType->isVoidType() || LHSElementType->isFunctionType()) {
1909      ElementSize = CharUnits::One();
1910    } else {
1911      ElementSize = CGF.getContext().getTypeSizeInChars(LHSElementType);
1912    }
1913
1914    const llvm::Type *ResultType = ConvertType(Ops.Ty);
1915    LHS = Builder.CreatePtrToInt(LHS, ResultType, "sub.ptr.lhs.cast");
1916    RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
1917    Value *BytesBetween = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
1918
1919    // Optimize out the shift for element size of 1.
1920    if (ElementSize.isOne())
1921      return BytesBetween;
1922
1923    // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
1924    // pointer difference in C is only defined in the case where both operands
1925    // are pointing to elements of an array.
1926    Value *BytesPerElt =
1927        llvm::ConstantInt::get(ResultType, ElementSize.getQuantity());
1928    return Builder.CreateExactSDiv(BytesBetween, BytesPerElt, "sub.ptr.div");
1929  }
1930}
1931
1932Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
1933  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
1934  // RHS to the same size as the LHS.
1935  Value *RHS = Ops.RHS;
1936  if (Ops.LHS->getType() != RHS->getType())
1937    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
1938
1939  if (CGF.CatchUndefined
1940      && isa<llvm::IntegerType>(Ops.LHS->getType())) {
1941    unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth();
1942    llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
1943    CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS,
1944                                 llvm::ConstantInt::get(RHS->getType(), Width)),
1945                             Cont, CGF.getTrapBB());
1946    CGF.EmitBlock(Cont);
1947  }
1948
1949  return Builder.CreateShl(Ops.LHS, RHS, "shl");
1950}
1951
1952Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
1953  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
1954  // RHS to the same size as the LHS.
1955  Value *RHS = Ops.RHS;
1956  if (Ops.LHS->getType() != RHS->getType())
1957    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
1958
1959  if (CGF.CatchUndefined
1960      && isa<llvm::IntegerType>(Ops.LHS->getType())) {
1961    unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth();
1962    llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
1963    CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS,
1964                                 llvm::ConstantInt::get(RHS->getType(), Width)),
1965                             Cont, CGF.getTrapBB());
1966    CGF.EmitBlock(Cont);
1967  }
1968
1969  if (Ops.Ty->hasUnsignedIntegerRepresentation())
1970    return Builder.CreateLShr(Ops.LHS, RHS, "shr");
1971  return Builder.CreateAShr(Ops.LHS, RHS, "shr");
1972}
1973
1974Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
1975                                      unsigned SICmpOpc, unsigned FCmpOpc) {
1976  TestAndClearIgnoreResultAssign();
1977  Value *Result;
1978  QualType LHSTy = E->getLHS()->getType();
1979  if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
1980    assert(E->getOpcode() == BO_EQ ||
1981           E->getOpcode() == BO_NE);
1982    Value *LHS = CGF.EmitScalarExpr(E->getLHS());
1983    Value *RHS = CGF.EmitScalarExpr(E->getRHS());
1984    Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
1985                   CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
1986  } else if (!LHSTy->isAnyComplexType()) {
1987    Value *LHS = Visit(E->getLHS());
1988    Value *RHS = Visit(E->getRHS());
1989
1990    if (LHS->getType()->isFPOrFPVectorTy()) {
1991      Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
1992                                  LHS, RHS, "cmp");
1993    } else if (LHSTy->hasSignedIntegerRepresentation()) {
1994      Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
1995                                  LHS, RHS, "cmp");
1996    } else {
1997      // Unsigned integers and pointers.
1998      Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1999                                  LHS, RHS, "cmp");
2000    }
2001
2002    // If this is a vector comparison, sign extend the result to the appropriate
2003    // vector integer type and return it (don't convert to bool).
2004    if (LHSTy->isVectorType())
2005      return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2006
2007  } else {
2008    // Complex Comparison: can only be an equality comparison.
2009    CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS());
2010    CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS());
2011
2012    QualType CETy = LHSTy->getAs<ComplexType>()->getElementType();
2013
2014    Value *ResultR, *ResultI;
2015    if (CETy->isRealFloatingType()) {
2016      ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
2017                                   LHS.first, RHS.first, "cmp.r");
2018      ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
2019                                   LHS.second, RHS.second, "cmp.i");
2020    } else {
2021      // Complex comparisons can only be equality comparisons.  As such, signed
2022      // and unsigned opcodes are the same.
2023      ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2024                                   LHS.first, RHS.first, "cmp.r");
2025      ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2026                                   LHS.second, RHS.second, "cmp.i");
2027    }
2028
2029    if (E->getOpcode() == BO_EQ) {
2030      Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
2031    } else {
2032      assert(E->getOpcode() == BO_NE &&
2033             "Complex comparison other than == or != ?");
2034      Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
2035    }
2036  }
2037
2038  return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
2039}
2040
2041Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
2042  bool Ignore = TestAndClearIgnoreResultAssign();
2043
2044  // __block variables need to have the rhs evaluated first, plus this should
2045  // improve codegen just a little.
2046  Value *RHS = Visit(E->getRHS());
2047  LValue LHS = EmitCheckedLValue(E->getLHS());
2048
2049  // Store the value into the LHS.  Bit-fields are handled specially
2050  // because the result is altered by the store, i.e., [C99 6.5.16p1]
2051  // 'An assignment expression has the value of the left operand after
2052  // the assignment...'.
2053  if (LHS.isBitField())
2054    CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, E->getType(),
2055                                       &RHS);
2056  else
2057    CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS, E->getType());
2058
2059  // If the result is clearly ignored, return now.
2060  if (Ignore)
2061    return 0;
2062
2063  // Objective-C property assignment never reloads the value following a store.
2064  if (LHS.isPropertyRef() || LHS.isKVCRef())
2065    return RHS;
2066
2067  // If the lvalue is non-volatile, return the computed value of the assignment.
2068  if (!LHS.isVolatileQualified())
2069    return RHS;
2070
2071  // Otherwise, reload the value.
2072  return EmitLoadOfLValue(LHS, E->getType());
2073}
2074
2075Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
2076  const llvm::Type *ResTy = ConvertType(E->getType());
2077
2078  // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
2079  // If we have 1 && X, just emit X without inserting the control flow.
2080  if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getLHS())) {
2081    if (Cond == 1) { // If we have 1 && X, just emit X.
2082      Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2083      // ZExt result to int or bool.
2084      return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
2085    }
2086
2087    // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
2088    if (!CGF.ContainsLabel(E->getRHS()))
2089      return llvm::Constant::getNullValue(ResTy);
2090  }
2091
2092  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
2093  llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
2094
2095  // Branch on the LHS first.  If it is false, go to the failure (cont) block.
2096  CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock);
2097
2098  // Any edges into the ContBlock are now from an (indeterminate number of)
2099  // edges from this first condition.  All of these values will be false.  Start
2100  // setting up the PHI node in the Cont Block for this.
2101  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext),
2102                                            "", ContBlock);
2103  PN->reserveOperandSpace(2);  // Normal case, two inputs.
2104  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
2105       PI != PE; ++PI)
2106    PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
2107
2108  CGF.BeginConditionalBranch();
2109  CGF.EmitBlock(RHSBlock);
2110  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2111  CGF.EndConditionalBranch();
2112
2113  // Reaquire the RHS block, as there may be subblocks inserted.
2114  RHSBlock = Builder.GetInsertBlock();
2115
2116  // Emit an unconditional branch from this block to ContBlock.  Insert an entry
2117  // into the phi node for the edge with the value of RHSCond.
2118  CGF.EmitBlock(ContBlock);
2119  PN->addIncoming(RHSCond, RHSBlock);
2120
2121  // ZExt result to int.
2122  return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
2123}
2124
2125Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
2126  const llvm::Type *ResTy = ConvertType(E->getType());
2127
2128  // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
2129  // If we have 0 || X, just emit X without inserting the control flow.
2130  if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getLHS())) {
2131    if (Cond == -1) { // If we have 0 || X, just emit X.
2132      Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2133      // ZExt result to int or bool.
2134      return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
2135    }
2136
2137    // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
2138    if (!CGF.ContainsLabel(E->getRHS()))
2139      return llvm::ConstantInt::get(ResTy, 1);
2140  }
2141
2142  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
2143  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
2144
2145  // Branch on the LHS first.  If it is true, go to the success (cont) block.
2146  CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock);
2147
2148  // Any edges into the ContBlock are now from an (indeterminate number of)
2149  // edges from this first condition.  All of these values will be true.  Start
2150  // setting up the PHI node in the Cont Block for this.
2151  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext),
2152                                            "", ContBlock);
2153  PN->reserveOperandSpace(2);  // Normal case, two inputs.
2154  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
2155       PI != PE; ++PI)
2156    PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
2157
2158  CGF.BeginConditionalBranch();
2159
2160  // Emit the RHS condition as a bool value.
2161  CGF.EmitBlock(RHSBlock);
2162  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2163
2164  CGF.EndConditionalBranch();
2165
2166  // Reaquire the RHS block, as there may be subblocks inserted.
2167  RHSBlock = Builder.GetInsertBlock();
2168
2169  // Emit an unconditional branch from this block to ContBlock.  Insert an entry
2170  // into the phi node for the edge with the value of RHSCond.
2171  CGF.EmitBlock(ContBlock);
2172  PN->addIncoming(RHSCond, RHSBlock);
2173
2174  // ZExt result to int.
2175  return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
2176}
2177
2178Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
2179  CGF.EmitStmt(E->getLHS());
2180  CGF.EnsureInsertPoint();
2181  return Visit(E->getRHS());
2182}
2183
2184//===----------------------------------------------------------------------===//
2185//                             Other Operators
2186//===----------------------------------------------------------------------===//
2187
2188/// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
2189/// expression is cheap enough and side-effect-free enough to evaluate
2190/// unconditionally instead of conditionally.  This is used to convert control
2191/// flow into selects in some cases.
2192static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
2193                                                   CodeGenFunction &CGF) {
2194  if (const ParenExpr *PE = dyn_cast<ParenExpr>(E))
2195    return isCheapEnoughToEvaluateUnconditionally(PE->getSubExpr(), CGF);
2196
2197  // TODO: Allow anything we can constant fold to an integer or fp constant.
2198  if (isa<IntegerLiteral>(E) || isa<CharacterLiteral>(E) ||
2199      isa<FloatingLiteral>(E))
2200    return true;
2201
2202  // Non-volatile automatic variables too, to get "cond ? X : Y" where
2203  // X and Y are local variables.
2204  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
2205    if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
2206      if (VD->hasLocalStorage() && !(CGF.getContext()
2207                                     .getCanonicalType(VD->getType())
2208                                     .isVolatileQualified()))
2209        return true;
2210
2211  return false;
2212}
2213
2214
2215Value *ScalarExprEmitter::
2216VisitConditionalOperator(const ConditionalOperator *E) {
2217  TestAndClearIgnoreResultAssign();
2218  // If the condition constant folds and can be elided, try to avoid emitting
2219  // the condition and the dead arm.
2220  if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getCond())){
2221    Expr *Live = E->getLHS(), *Dead = E->getRHS();
2222    if (Cond == -1)
2223      std::swap(Live, Dead);
2224
2225    // If the dead side doesn't have labels we need, and if the Live side isn't
2226    // the gnu missing ?: extension (which we could handle, but don't bother
2227    // to), just emit the Live part.
2228    if ((!Dead || !CGF.ContainsLabel(Dead)) &&  // No labels in dead part
2229        Live)                                   // Live part isn't missing.
2230      return Visit(Live);
2231  }
2232
2233  // OpenCL: If the condition is a vector, we can treat this condition like
2234  // the select function.
2235  if (CGF.getContext().getLangOptions().OpenCL
2236      && E->getCond()->getType()->isVectorType()) {
2237    llvm::Value *CondV = CGF.EmitScalarExpr(E->getCond());
2238    llvm::Value *LHS = Visit(E->getLHS());
2239    llvm::Value *RHS = Visit(E->getRHS());
2240
2241    const llvm::Type *condType = ConvertType(E->getCond()->getType());
2242    const llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
2243
2244    unsigned numElem = vecTy->getNumElements();
2245    const llvm::Type *elemType = vecTy->getElementType();
2246
2247    std::vector<llvm::Constant*> Zvals;
2248    for (unsigned i = 0; i < numElem; ++i)
2249      Zvals.push_back(llvm::ConstantInt::get(elemType,0));
2250
2251    llvm::Value *zeroVec = llvm::ConstantVector::get(Zvals);
2252    llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
2253    llvm::Value *tmp = Builder.CreateSExt(TestMSB,
2254                                          llvm::VectorType::get(elemType,
2255                                                                numElem),
2256                                          "sext");
2257    llvm::Value *tmp2 = Builder.CreateNot(tmp);
2258
2259    // Cast float to int to perform ANDs if necessary.
2260    llvm::Value *RHSTmp = RHS;
2261    llvm::Value *LHSTmp = LHS;
2262    bool wasCast = false;
2263    const llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
2264    if (rhsVTy->getElementType()->isFloatTy()) {
2265      RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
2266      LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
2267      wasCast = true;
2268    }
2269
2270    llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
2271    llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
2272    llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
2273    if (wasCast)
2274      tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
2275
2276    return tmp5;
2277  }
2278
2279  // If this is a really simple expression (like x ? 4 : 5), emit this as a
2280  // select instead of as control flow.  We can only do this if it is cheap and
2281  // safe to evaluate the LHS and RHS unconditionally.
2282  if (E->getLHS() && isCheapEnoughToEvaluateUnconditionally(E->getLHS(),
2283                                                            CGF) &&
2284      isCheapEnoughToEvaluateUnconditionally(E->getRHS(), CGF)) {
2285    llvm::Value *CondV = CGF.EvaluateExprAsBool(E->getCond());
2286    llvm::Value *LHS = Visit(E->getLHS());
2287    llvm::Value *RHS = Visit(E->getRHS());
2288    return Builder.CreateSelect(CondV, LHS, RHS, "cond");
2289  }
2290
2291  llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
2292  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
2293  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
2294
2295  // If we don't have the GNU missing condition extension, emit a branch on bool
2296  // the normal way.
2297  if (E->getLHS()) {
2298    // Otherwise, just use EmitBranchOnBoolExpr to get small and simple code for
2299    // the branch on bool.
2300    CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock);
2301  } else {
2302    // Otherwise, for the ?: extension, evaluate the conditional and then
2303    // convert it to bool the hard way.  We do this explicitly because we need
2304    // the unconverted value for the missing middle value of the ?:.
2305    Expr *save = E->getSAVE();
2306    assert(save && "VisitConditionalOperator - save is null");
2307    // Intentianlly not doing direct assignment to ConditionalSaveExprs[save] !!
2308    Value *SaveVal = CGF.EmitScalarExpr(save);
2309    CGF.ConditionalSaveExprs[save] = SaveVal;
2310    Value *CondVal = Visit(E->getCond());
2311    // In some cases, EmitScalarConversion will delete the "CondVal" expression
2312    // if there are no extra uses (an optimization).  Inhibit this by making an
2313    // extra dead use, because we're going to add a use of CondVal later.  We
2314    // don't use the builder for this, because we don't want it to get optimized
2315    // away.  This leaves dead code, but the ?: extension isn't common.
2316    new llvm::BitCastInst(CondVal, CondVal->getType(), "dummy?:holder",
2317                          Builder.GetInsertBlock());
2318
2319    Value *CondBoolVal =
2320      CGF.EmitScalarConversion(CondVal, E->getCond()->getType(),
2321                               CGF.getContext().BoolTy);
2322    Builder.CreateCondBr(CondBoolVal, LHSBlock, RHSBlock);
2323  }
2324
2325  CGF.BeginConditionalBranch();
2326  CGF.EmitBlock(LHSBlock);
2327
2328  // Handle the GNU extension for missing LHS.
2329  Value *LHS = Visit(E->getTrueExpr());
2330
2331  CGF.EndConditionalBranch();
2332  LHSBlock = Builder.GetInsertBlock();
2333  CGF.EmitBranch(ContBlock);
2334
2335  CGF.BeginConditionalBranch();
2336  CGF.EmitBlock(RHSBlock);
2337
2338  Value *RHS = Visit(E->getRHS());
2339  CGF.EndConditionalBranch();
2340  RHSBlock = Builder.GetInsertBlock();
2341  CGF.EmitBranch(ContBlock);
2342
2343  CGF.EmitBlock(ContBlock);
2344
2345  // If the LHS or RHS is a throw expression, it will be legitimately null.
2346  if (!LHS)
2347    return RHS;
2348  if (!RHS)
2349    return LHS;
2350
2351  // Create a PHI node for the real part.
2352  llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), "cond");
2353  PN->reserveOperandSpace(2);
2354  PN->addIncoming(LHS, LHSBlock);
2355  PN->addIncoming(RHS, RHSBlock);
2356  return PN;
2357}
2358
2359Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
2360  return Visit(E->getChosenSubExpr(CGF.getContext()));
2361}
2362
2363Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
2364  llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
2365  llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
2366
2367  // If EmitVAArg fails, we fall back to the LLVM instruction.
2368  if (!ArgPtr)
2369    return Builder.CreateVAArg(ArgValue, ConvertType(VE->getType()));
2370
2371  // FIXME Volatility.
2372  return Builder.CreateLoad(ArgPtr);
2373}
2374
2375Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *BE) {
2376  return CGF.BuildBlockLiteralTmp(BE);
2377}
2378
2379//===----------------------------------------------------------------------===//
2380//                         Entry Point into this File
2381//===----------------------------------------------------------------------===//
2382
2383/// EmitScalarExpr - Emit the computation of the specified expression of scalar
2384/// type, ignoring the result.
2385Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
2386  assert(E && !hasAggregateLLVMType(E->getType()) &&
2387         "Invalid scalar expression to emit");
2388
2389  return ScalarExprEmitter(*this, IgnoreResultAssign)
2390    .Visit(const_cast<Expr*>(E));
2391}
2392
2393/// EmitScalarConversion - Emit a conversion from the specified type to the
2394/// specified destination type, both of which are LLVM scalar types.
2395Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
2396                                             QualType DstTy) {
2397  assert(!hasAggregateLLVMType(SrcTy) && !hasAggregateLLVMType(DstTy) &&
2398         "Invalid scalar expression to emit");
2399  return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
2400}
2401
2402/// EmitComplexToScalarConversion - Emit a conversion from the specified complex
2403/// type to the specified destination type, where the destination type is an
2404/// LLVM scalar type.
2405Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
2406                                                      QualType SrcTy,
2407                                                      QualType DstTy) {
2408  assert(SrcTy->isAnyComplexType() && !hasAggregateLLVMType(DstTy) &&
2409         "Invalid complex -> scalar conversion");
2410  return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy,
2411                                                                DstTy);
2412}
2413
2414
2415llvm::Value *CodeGenFunction::
2416EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2417                        bool isInc, bool isPre) {
2418  return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
2419}
2420
2421LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
2422  llvm::Value *V;
2423  // object->isa or (*object).isa
2424  // Generate code as for: *(Class*)object
2425  // build Class* type
2426  const llvm::Type *ClassPtrTy = ConvertType(E->getType());
2427
2428  Expr *BaseExpr = E->getBase();
2429  if (BaseExpr->isLvalue(getContext()) != Expr::LV_Valid) {
2430    V = CreateTempAlloca(ClassPtrTy, "resval");
2431    llvm::Value *Src = EmitScalarExpr(BaseExpr);
2432    Builder.CreateStore(Src, V);
2433    V = ScalarExprEmitter(*this).EmitLoadOfLValue(
2434      MakeAddrLValue(V, E->getType()), E->getType());
2435  } else {
2436    if (E->isArrow())
2437      V = ScalarExprEmitter(*this).EmitLoadOfLValue(BaseExpr);
2438    else
2439      V = EmitLValue(BaseExpr).getAddress();
2440  }
2441
2442  // build Class* type
2443  ClassPtrTy = ClassPtrTy->getPointerTo();
2444  V = Builder.CreateBitCast(V, ClassPtrTy);
2445  return MakeAddrLValue(V, E->getType());
2446}
2447
2448
2449LValue CodeGenFunction::EmitCompoundAssignOperatorLValue(
2450                                            const CompoundAssignOperator *E) {
2451  ScalarExprEmitter Scalar(*this);
2452  Value *Result = 0;
2453  switch (E->getOpcode()) {
2454#define COMPOUND_OP(Op)                                                       \
2455    case BO_##Op##Assign:                                                     \
2456      return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
2457                                             Result)
2458  COMPOUND_OP(Mul);
2459  COMPOUND_OP(Div);
2460  COMPOUND_OP(Rem);
2461  COMPOUND_OP(Add);
2462  COMPOUND_OP(Sub);
2463  COMPOUND_OP(Shl);
2464  COMPOUND_OP(Shr);
2465  COMPOUND_OP(And);
2466  COMPOUND_OP(Xor);
2467  COMPOUND_OP(Or);
2468#undef COMPOUND_OP
2469
2470  case BO_PtrMemD:
2471  case BO_PtrMemI:
2472  case BO_Mul:
2473  case BO_Div:
2474  case BO_Rem:
2475  case BO_Add:
2476  case BO_Sub:
2477  case BO_Shl:
2478  case BO_Shr:
2479  case BO_LT:
2480  case BO_GT:
2481  case BO_LE:
2482  case BO_GE:
2483  case BO_EQ:
2484  case BO_NE:
2485  case BO_And:
2486  case BO_Xor:
2487  case BO_Or:
2488  case BO_LAnd:
2489  case BO_LOr:
2490  case BO_Assign:
2491  case BO_Comma:
2492    assert(false && "Not valid compound assignment operators");
2493    break;
2494  }
2495
2496  llvm_unreachable("Unhandled compound assignment operator");
2497}
2498