CGExprScalar.cpp revision f6a1648197562e0b133440d612d9af297d0a86cc
1//===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Frontend/CodeGenOptions.h"
15#include "CodeGenFunction.h"
16#include "CGCXXABI.h"
17#include "CGObjCRuntime.h"
18#include "CodeGenModule.h"
19#include "CGDebugInfo.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/DeclObjC.h"
22#include "clang/AST/RecordLayout.h"
23#include "clang/AST/StmtVisitor.h"
24#include "clang/Basic/TargetInfo.h"
25#include "llvm/Constants.h"
26#include "llvm/Function.h"
27#include "llvm/GlobalVariable.h"
28#include "llvm/Intrinsics.h"
29#include "llvm/Module.h"
30#include "llvm/Support/CFG.h"
31#include "llvm/Target/TargetData.h"
32#include <cstdarg>
33
34using namespace clang;
35using namespace CodeGen;
36using llvm::Value;
37
38//===----------------------------------------------------------------------===//
39//                         Scalar Expression Emitter
40//===----------------------------------------------------------------------===//
41
42namespace {
43struct BinOpInfo {
44  Value *LHS;
45  Value *RHS;
46  QualType Ty;  // Computation Type.
47  BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
48  const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
49};
50
51static bool MustVisitNullValue(const Expr *E) {
52  // If a null pointer expression's type is the C++0x nullptr_t, then
53  // it's not necessarily a simple constant and it must be evaluated
54  // for its potential side effects.
55  return E->getType()->isNullPtrType();
56}
57
58class ScalarExprEmitter
59  : public StmtVisitor<ScalarExprEmitter, Value*> {
60  CodeGenFunction &CGF;
61  CGBuilderTy &Builder;
62  bool IgnoreResultAssign;
63  llvm::LLVMContext &VMContext;
64public:
65
66  ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
67    : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
68      VMContext(cgf.getLLVMContext()) {
69  }
70
71  //===--------------------------------------------------------------------===//
72  //                               Utilities
73  //===--------------------------------------------------------------------===//
74
75  bool TestAndClearIgnoreResultAssign() {
76    bool I = IgnoreResultAssign;
77    IgnoreResultAssign = false;
78    return I;
79  }
80
81  const llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
82  LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
83  LValue EmitCheckedLValue(const Expr *E) { return CGF.EmitCheckedLValue(E); }
84
85  Value *EmitLoadOfLValue(LValue LV, QualType T) {
86    return CGF.EmitLoadOfLValue(LV, T).getScalarVal();
87  }
88
89  /// EmitLoadOfLValue - Given an expression with complex type that represents a
90  /// value l-value, this method emits the address of the l-value, then loads
91  /// and returns the result.
92  Value *EmitLoadOfLValue(const Expr *E) {
93    return EmitLoadOfLValue(EmitCheckedLValue(E), E->getType());
94  }
95
96  /// EmitConversionToBool - Convert the specified expression value to a
97  /// boolean (i1) truth value.  This is equivalent to "Val != 0".
98  Value *EmitConversionToBool(Value *Src, QualType DstTy);
99
100  /// EmitScalarConversion - Emit a conversion from the specified type to the
101  /// specified destination type, both of which are LLVM scalar types.
102  Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);
103
104  /// EmitComplexToScalarConversion - Emit a conversion from the specified
105  /// complex type to the specified destination type, where the destination type
106  /// is an LLVM scalar type.
107  Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
108                                       QualType SrcTy, QualType DstTy);
109
110  /// EmitNullValue - Emit a value that corresponds to null for the given type.
111  Value *EmitNullValue(QualType Ty);
112
113  /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
114  Value *EmitFloatToBoolConversion(Value *V) {
115    // Compare against 0.0 for fp scalars.
116    llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
117    return Builder.CreateFCmpUNE(V, Zero, "tobool");
118  }
119
120  /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
121  Value *EmitPointerToBoolConversion(Value *V) {
122    Value *Zero = llvm::ConstantPointerNull::get(
123                                      cast<llvm::PointerType>(V->getType()));
124    return Builder.CreateICmpNE(V, Zero, "tobool");
125  }
126
127  Value *EmitIntToBoolConversion(Value *V) {
128    // Because of the type rules of C, we often end up computing a
129    // logical value, then zero extending it to int, then wanting it
130    // as a logical value again.  Optimize this common case.
131    if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
132      if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
133        Value *Result = ZI->getOperand(0);
134        // If there aren't any more uses, zap the instruction to save space.
135        // Note that there can be more uses, for example if this
136        // is the result of an assignment.
137        if (ZI->use_empty())
138          ZI->eraseFromParent();
139        return Result;
140      }
141    }
142
143    const llvm::IntegerType *Ty = cast<llvm::IntegerType>(V->getType());
144    Value *Zero = llvm::ConstantInt::get(Ty, 0);
145    return Builder.CreateICmpNE(V, Zero, "tobool");
146  }
147
148  //===--------------------------------------------------------------------===//
149  //                            Visitor Methods
150  //===--------------------------------------------------------------------===//
151
152  Value *Visit(Expr *E) {
153    llvm::DenseMap<const Expr *, llvm::Value *>::iterator I =
154      CGF.ConditionalSaveExprs.find(E);
155    if (I != CGF.ConditionalSaveExprs.end())
156      return I->second;
157
158    return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
159  }
160
161  Value *VisitStmt(Stmt *S) {
162    S->dump(CGF.getContext().getSourceManager());
163    assert(0 && "Stmt can't have complex result type!");
164    return 0;
165  }
166  Value *VisitExpr(Expr *S);
167
168  Value *VisitParenExpr(ParenExpr *PE) {
169    return Visit(PE->getSubExpr());
170  }
171
172  // Leaves.
173  Value *VisitIntegerLiteral(const IntegerLiteral *E) {
174    return llvm::ConstantInt::get(VMContext, E->getValue());
175  }
176  Value *VisitFloatingLiteral(const FloatingLiteral *E) {
177    return llvm::ConstantFP::get(VMContext, E->getValue());
178  }
179  Value *VisitCharacterLiteral(const CharacterLiteral *E) {
180    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
181  }
182  Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
183    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
184  }
185  Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
186    return EmitNullValue(E->getType());
187  }
188  Value *VisitGNUNullExpr(const GNUNullExpr *E) {
189    return EmitNullValue(E->getType());
190  }
191  Value *VisitTypesCompatibleExpr(const TypesCompatibleExpr *E) {
192    return llvm::ConstantInt::get(ConvertType(E->getType()),
193                                  CGF.getContext().typesAreCompatible(
194                                    E->getArgType1(), E->getArgType2()));
195  }
196  Value *VisitOffsetOfExpr(OffsetOfExpr *E);
197  Value *VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E);
198  Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
199    llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
200    return Builder.CreateBitCast(V, ConvertType(E->getType()));
201  }
202
203  // l-values.
204  Value *VisitDeclRefExpr(DeclRefExpr *E) {
205    Expr::EvalResult Result;
206    if (!E->Evaluate(Result, CGF.getContext()))
207      return EmitLoadOfLValue(E);
208
209    assert(!Result.HasSideEffects && "Constant declref with side-effect?!");
210
211    llvm::Constant *C;
212    if (Result.Val.isInt()) {
213      C = llvm::ConstantInt::get(VMContext, Result.Val.getInt());
214    } else if (Result.Val.isFloat()) {
215      C = llvm::ConstantFP::get(VMContext, Result.Val.getFloat());
216    } else {
217      return EmitLoadOfLValue(E);
218    }
219
220    // Make sure we emit a debug reference to the global variable.
221    if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl())) {
222      if (!CGF.getContext().DeclMustBeEmitted(VD))
223        CGF.EmitDeclRefExprDbgValue(E, C);
224    } else if (isa<EnumConstantDecl>(E->getDecl())) {
225      CGF.EmitDeclRefExprDbgValue(E, C);
226    }
227
228    return C;
229  }
230  Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
231    return CGF.EmitObjCSelectorExpr(E);
232  }
233  Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
234    return CGF.EmitObjCProtocolExpr(E);
235  }
236  Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
237    return EmitLoadOfLValue(E);
238  }
239  Value *VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
240    assert(E->getObjectKind() == OK_Ordinary &&
241           "reached property reference without lvalue-to-rvalue");
242    return EmitLoadOfLValue(E);
243  }
244  Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
245    return CGF.EmitObjCMessageExpr(E).getScalarVal();
246  }
247
248  Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
249    LValue LV = CGF.EmitObjCIsaExpr(E);
250    Value *V = CGF.EmitLoadOfLValue(LV, E->getType()).getScalarVal();
251    return V;
252  }
253
254  Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
255  Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
256  Value *VisitMemberExpr(MemberExpr *E);
257  Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
258  Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
259    return EmitLoadOfLValue(E);
260  }
261
262  Value *VisitInitListExpr(InitListExpr *E);
263
264  Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
265    return CGF.CGM.EmitNullConstant(E->getType());
266  }
267  Value *VisitCastExpr(CastExpr *E) {
268    // Make sure to evaluate VLA bounds now so that we have them for later.
269    if (E->getType()->isVariablyModifiedType())
270      CGF.EmitVLASize(E->getType());
271
272    return EmitCastExpr(E);
273  }
274  Value *EmitCastExpr(CastExpr *E);
275
276  Value *VisitCallExpr(const CallExpr *E) {
277    if (E->getCallReturnType()->isReferenceType())
278      return EmitLoadOfLValue(E);
279
280    return CGF.EmitCallExpr(E).getScalarVal();
281  }
282
283  Value *VisitStmtExpr(const StmtExpr *E);
284
285  Value *VisitBlockDeclRefExpr(const BlockDeclRefExpr *E);
286
287  // Unary Operators.
288  Value *VisitUnaryPostDec(const UnaryOperator *E) {
289    LValue LV = EmitLValue(E->getSubExpr());
290    return EmitScalarPrePostIncDec(E, LV, false, false);
291  }
292  Value *VisitUnaryPostInc(const UnaryOperator *E) {
293    LValue LV = EmitLValue(E->getSubExpr());
294    return EmitScalarPrePostIncDec(E, LV, true, false);
295  }
296  Value *VisitUnaryPreDec(const UnaryOperator *E) {
297    LValue LV = EmitLValue(E->getSubExpr());
298    return EmitScalarPrePostIncDec(E, LV, false, true);
299  }
300  Value *VisitUnaryPreInc(const UnaryOperator *E) {
301    LValue LV = EmitLValue(E->getSubExpr());
302    return EmitScalarPrePostIncDec(E, LV, true, true);
303  }
304
305  llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
306                                       bool isInc, bool isPre);
307
308
309  Value *VisitUnaryAddrOf(const UnaryOperator *E) {
310    // If the sub-expression is an instance member reference,
311    // EmitDeclRefLValue will magically emit it with the appropriate
312    // value as the "address".
313    return EmitLValue(E->getSubExpr()).getAddress();
314  }
315  Value *VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); }
316  Value *VisitUnaryPlus(const UnaryOperator *E) {
317    // This differs from gcc, though, most likely due to a bug in gcc.
318    TestAndClearIgnoreResultAssign();
319    return Visit(E->getSubExpr());
320  }
321  Value *VisitUnaryMinus    (const UnaryOperator *E);
322  Value *VisitUnaryNot      (const UnaryOperator *E);
323  Value *VisitUnaryLNot     (const UnaryOperator *E);
324  Value *VisitUnaryReal     (const UnaryOperator *E);
325  Value *VisitUnaryImag     (const UnaryOperator *E);
326  Value *VisitUnaryExtension(const UnaryOperator *E) {
327    return Visit(E->getSubExpr());
328  }
329
330  // C++
331  Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
332    return Visit(DAE->getExpr());
333  }
334  Value *VisitCXXThisExpr(CXXThisExpr *TE) {
335    return CGF.LoadCXXThis();
336  }
337
338  Value *VisitCXXExprWithTemporaries(CXXExprWithTemporaries *E) {
339    return CGF.EmitCXXExprWithTemporaries(E).getScalarVal();
340  }
341  Value *VisitCXXNewExpr(const CXXNewExpr *E) {
342    return CGF.EmitCXXNewExpr(E);
343  }
344  Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
345    CGF.EmitCXXDeleteExpr(E);
346    return 0;
347  }
348  Value *VisitUnaryTypeTraitExpr(const UnaryTypeTraitExpr *E) {
349    return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
350  }
351
352  Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
353    // C++ [expr.pseudo]p1:
354    //   The result shall only be used as the operand for the function call
355    //   operator (), and the result of such a call has type void. The only
356    //   effect is the evaluation of the postfix-expression before the dot or
357    //   arrow.
358    CGF.EmitScalarExpr(E->getBase());
359    return 0;
360  }
361
362  Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
363    return EmitNullValue(E->getType());
364  }
365
366  Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
367    CGF.EmitCXXThrowExpr(E);
368    return 0;
369  }
370
371  Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
372    return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
373  }
374
375  // Binary Operators.
376  Value *EmitMul(const BinOpInfo &Ops) {
377    if (Ops.Ty->hasSignedIntegerRepresentation()) {
378      switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
379      case LangOptions::SOB_Undefined:
380        return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
381      case LangOptions::SOB_Defined:
382        return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
383      case LangOptions::SOB_Trapping:
384        return EmitOverflowCheckedBinOp(Ops);
385      }
386    }
387
388    if (Ops.LHS->getType()->isFPOrFPVectorTy())
389      return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
390    return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
391  }
392  bool isTrapvOverflowBehavior() {
393    return CGF.getContext().getLangOptions().getSignedOverflowBehavior()
394               == LangOptions::SOB_Trapping;
395  }
396  /// Create a binary op that checks for overflow.
397  /// Currently only supports +, - and *.
398  Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
399  // Emit the overflow BB when -ftrapv option is activated.
400  void EmitOverflowBB(llvm::BasicBlock *overflowBB) {
401    Builder.SetInsertPoint(overflowBB);
402    llvm::Function *Trap = CGF.CGM.getIntrinsic(llvm::Intrinsic::trap);
403    Builder.CreateCall(Trap);
404    Builder.CreateUnreachable();
405  }
406  // Check for undefined division and modulus behaviors.
407  void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
408                                                  llvm::Value *Zero,bool isDiv);
409  Value *EmitDiv(const BinOpInfo &Ops);
410  Value *EmitRem(const BinOpInfo &Ops);
411  Value *EmitAdd(const BinOpInfo &Ops);
412  Value *EmitSub(const BinOpInfo &Ops);
413  Value *EmitShl(const BinOpInfo &Ops);
414  Value *EmitShr(const BinOpInfo &Ops);
415  Value *EmitAnd(const BinOpInfo &Ops) {
416    return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
417  }
418  Value *EmitXor(const BinOpInfo &Ops) {
419    return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
420  }
421  Value *EmitOr (const BinOpInfo &Ops) {
422    return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
423  }
424
425  BinOpInfo EmitBinOps(const BinaryOperator *E);
426  LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
427                            Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
428                                  Value *&Result);
429
430  Value *EmitCompoundAssign(const CompoundAssignOperator *E,
431                            Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
432
433  // Binary operators and binary compound assignment operators.
434#define HANDLEBINOP(OP) \
435  Value *VisitBin ## OP(const BinaryOperator *E) {                         \
436    return Emit ## OP(EmitBinOps(E));                                      \
437  }                                                                        \
438  Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
439    return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
440  }
441  HANDLEBINOP(Mul)
442  HANDLEBINOP(Div)
443  HANDLEBINOP(Rem)
444  HANDLEBINOP(Add)
445  HANDLEBINOP(Sub)
446  HANDLEBINOP(Shl)
447  HANDLEBINOP(Shr)
448  HANDLEBINOP(And)
449  HANDLEBINOP(Xor)
450  HANDLEBINOP(Or)
451#undef HANDLEBINOP
452
453  // Comparisons.
454  Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
455                     unsigned SICmpOpc, unsigned FCmpOpc);
456#define VISITCOMP(CODE, UI, SI, FP) \
457    Value *VisitBin##CODE(const BinaryOperator *E) { \
458      return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
459                         llvm::FCmpInst::FP); }
460  VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
461  VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
462  VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
463  VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
464  VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
465  VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
466#undef VISITCOMP
467
468  Value *VisitBinAssign     (const BinaryOperator *E);
469
470  Value *VisitBinLAnd       (const BinaryOperator *E);
471  Value *VisitBinLOr        (const BinaryOperator *E);
472  Value *VisitBinComma      (const BinaryOperator *E);
473
474  Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
475  Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
476
477  // Other Operators.
478  Value *VisitBlockExpr(const BlockExpr *BE);
479  Value *VisitConditionalOperator(const ConditionalOperator *CO);
480  Value *VisitChooseExpr(ChooseExpr *CE);
481  Value *VisitVAArgExpr(VAArgExpr *VE);
482  Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
483    return CGF.EmitObjCStringLiteral(E);
484  }
485};
486}  // end anonymous namespace.
487
488//===----------------------------------------------------------------------===//
489//                                Utilities
490//===----------------------------------------------------------------------===//
491
492/// EmitConversionToBool - Convert the specified expression value to a
493/// boolean (i1) truth value.  This is equivalent to "Val != 0".
494Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
495  assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
496
497  if (SrcType->isRealFloatingType())
498    return EmitFloatToBoolConversion(Src);
499
500  if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
501    return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
502
503  assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
504         "Unknown scalar type to convert");
505
506  if (isa<llvm::IntegerType>(Src->getType()))
507    return EmitIntToBoolConversion(Src);
508
509  assert(isa<llvm::PointerType>(Src->getType()));
510  return EmitPointerToBoolConversion(Src);
511}
512
513/// EmitScalarConversion - Emit a conversion from the specified type to the
514/// specified destination type, both of which are LLVM scalar types.
515Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
516                                               QualType DstType) {
517  SrcType = CGF.getContext().getCanonicalType(SrcType);
518  DstType = CGF.getContext().getCanonicalType(DstType);
519  if (SrcType == DstType) return Src;
520
521  if (DstType->isVoidType()) return 0;
522
523  // Handle conversions to bool first, they are special: comparisons against 0.
524  if (DstType->isBooleanType())
525    return EmitConversionToBool(Src, SrcType);
526
527  const llvm::Type *DstTy = ConvertType(DstType);
528
529  // Ignore conversions like int -> uint.
530  if (Src->getType() == DstTy)
531    return Src;
532
533  // Handle pointer conversions next: pointers can only be converted to/from
534  // other pointers and integers. Check for pointer types in terms of LLVM, as
535  // some native types (like Obj-C id) may map to a pointer type.
536  if (isa<llvm::PointerType>(DstTy)) {
537    // The source value may be an integer, or a pointer.
538    if (isa<llvm::PointerType>(Src->getType()))
539      return Builder.CreateBitCast(Src, DstTy, "conv");
540
541    assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
542    // First, convert to the correct width so that we control the kind of
543    // extension.
544    const llvm::Type *MiddleTy = CGF.IntPtrTy;
545    bool InputSigned = SrcType->isSignedIntegerType();
546    llvm::Value* IntResult =
547        Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
548    // Then, cast to pointer.
549    return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
550  }
551
552  if (isa<llvm::PointerType>(Src->getType())) {
553    // Must be an ptr to int cast.
554    assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
555    return Builder.CreatePtrToInt(Src, DstTy, "conv");
556  }
557
558  // A scalar can be splatted to an extended vector of the same element type
559  if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
560    // Cast the scalar to element type
561    QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType();
562    llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy);
563
564    // Insert the element in element zero of an undef vector
565    llvm::Value *UnV = llvm::UndefValue::get(DstTy);
566    llvm::Value *Idx = llvm::ConstantInt::get(CGF.Int32Ty, 0);
567    UnV = Builder.CreateInsertElement(UnV, Elt, Idx, "tmp");
568
569    // Splat the element across to all elements
570    llvm::SmallVector<llvm::Constant*, 16> Args;
571    unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
572    for (unsigned i = 0; i < NumElements; i++)
573      Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty, 0));
574
575    llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements);
576    llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
577    return Yay;
578  }
579
580  // Allow bitcast from vector to integer/fp of the same size.
581  if (isa<llvm::VectorType>(Src->getType()) ||
582      isa<llvm::VectorType>(DstTy))
583    return Builder.CreateBitCast(Src, DstTy, "conv");
584
585  // Finally, we have the arithmetic types: real int/float.
586  if (isa<llvm::IntegerType>(Src->getType())) {
587    bool InputSigned = SrcType->isSignedIntegerType();
588    if (isa<llvm::IntegerType>(DstTy))
589      return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
590    else if (InputSigned)
591      return Builder.CreateSIToFP(Src, DstTy, "conv");
592    else
593      return Builder.CreateUIToFP(Src, DstTy, "conv");
594  }
595
596  assert(Src->getType()->isFloatingPointTy() && "Unknown real conversion");
597  if (isa<llvm::IntegerType>(DstTy)) {
598    if (DstType->isSignedIntegerType())
599      return Builder.CreateFPToSI(Src, DstTy, "conv");
600    else
601      return Builder.CreateFPToUI(Src, DstTy, "conv");
602  }
603
604  assert(DstTy->isFloatingPointTy() && "Unknown real conversion");
605  if (DstTy->getTypeID() < Src->getType()->getTypeID())
606    return Builder.CreateFPTrunc(Src, DstTy, "conv");
607  else
608    return Builder.CreateFPExt(Src, DstTy, "conv");
609}
610
611/// EmitComplexToScalarConversion - Emit a conversion from the specified complex
612/// type to the specified destination type, where the destination type is an
613/// LLVM scalar type.
614Value *ScalarExprEmitter::
615EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
616                              QualType SrcTy, QualType DstTy) {
617  // Get the source element type.
618  SrcTy = SrcTy->getAs<ComplexType>()->getElementType();
619
620  // Handle conversions to bool first, they are special: comparisons against 0.
621  if (DstTy->isBooleanType()) {
622    //  Complex != 0  -> (Real != 0) | (Imag != 0)
623    Src.first  = EmitScalarConversion(Src.first, SrcTy, DstTy);
624    Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
625    return Builder.CreateOr(Src.first, Src.second, "tobool");
626  }
627
628  // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
629  // the imaginary part of the complex value is discarded and the value of the
630  // real part is converted according to the conversion rules for the
631  // corresponding real type.
632  return EmitScalarConversion(Src.first, SrcTy, DstTy);
633}
634
635Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
636  if (const MemberPointerType *MPT = Ty->getAs<MemberPointerType>())
637    return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
638
639  return llvm::Constant::getNullValue(ConvertType(Ty));
640}
641
642//===----------------------------------------------------------------------===//
643//                            Visitor Methods
644//===----------------------------------------------------------------------===//
645
646Value *ScalarExprEmitter::VisitExpr(Expr *E) {
647  CGF.ErrorUnsupported(E, "scalar expression");
648  if (E->getType()->isVoidType())
649    return 0;
650  return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
651}
652
653Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
654  // Vector Mask Case
655  if (E->getNumSubExprs() == 2 ||
656      (E->getNumSubExprs() == 3 && E->getExpr(2)->getType()->isVectorType())) {
657    Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
658    Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
659    Value *Mask;
660
661    const llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
662    unsigned LHSElts = LTy->getNumElements();
663
664    if (E->getNumSubExprs() == 3) {
665      Mask = CGF.EmitScalarExpr(E->getExpr(2));
666
667      // Shuffle LHS & RHS into one input vector.
668      llvm::SmallVector<llvm::Constant*, 32> concat;
669      for (unsigned i = 0; i != LHSElts; ++i) {
670        concat.push_back(llvm::ConstantInt::get(CGF.Int32Ty, 2*i));
671        concat.push_back(llvm::ConstantInt::get(CGF.Int32Ty, 2*i+1));
672      }
673
674      Value* CV = llvm::ConstantVector::get(concat.begin(), concat.size());
675      LHS = Builder.CreateShuffleVector(LHS, RHS, CV, "concat");
676      LHSElts *= 2;
677    } else {
678      Mask = RHS;
679    }
680
681    const llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
682    llvm::Constant* EltMask;
683
684    // Treat vec3 like vec4.
685    if ((LHSElts == 6) && (E->getNumSubExprs() == 3))
686      EltMask = llvm::ConstantInt::get(MTy->getElementType(),
687                                       (1 << llvm::Log2_32(LHSElts+2))-1);
688    else if ((LHSElts == 3) && (E->getNumSubExprs() == 2))
689      EltMask = llvm::ConstantInt::get(MTy->getElementType(),
690                                       (1 << llvm::Log2_32(LHSElts+1))-1);
691    else
692      EltMask = llvm::ConstantInt::get(MTy->getElementType(),
693                                       (1 << llvm::Log2_32(LHSElts))-1);
694
695    // Mask off the high bits of each shuffle index.
696    llvm::SmallVector<llvm::Constant *, 32> MaskV;
697    for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i)
698      MaskV.push_back(EltMask);
699
700    Value* MaskBits = llvm::ConstantVector::get(MaskV.begin(), MaskV.size());
701    Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
702
703    // newv = undef
704    // mask = mask & maskbits
705    // for each elt
706    //   n = extract mask i
707    //   x = extract val n
708    //   newv = insert newv, x, i
709    const llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
710                                                        MTy->getNumElements());
711    Value* NewV = llvm::UndefValue::get(RTy);
712    for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
713      Value *Indx = llvm::ConstantInt::get(CGF.Int32Ty, i);
714      Indx = Builder.CreateExtractElement(Mask, Indx, "shuf_idx");
715      Indx = Builder.CreateZExt(Indx, CGF.Int32Ty, "idx_zext");
716
717      // Handle vec3 special since the index will be off by one for the RHS.
718      if ((LHSElts == 6) && (E->getNumSubExprs() == 3)) {
719        Value *cmpIndx, *newIndx;
720        cmpIndx = Builder.CreateICmpUGT(Indx,
721                                        llvm::ConstantInt::get(CGF.Int32Ty, 3),
722                                        "cmp_shuf_idx");
723        newIndx = Builder.CreateSub(Indx, llvm::ConstantInt::get(CGF.Int32Ty,1),
724                                    "shuf_idx_adj");
725        Indx = Builder.CreateSelect(cmpIndx, newIndx, Indx, "sel_shuf_idx");
726      }
727      Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
728      NewV = Builder.CreateInsertElement(NewV, VExt, Indx, "shuf_ins");
729    }
730    return NewV;
731  }
732
733  Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
734  Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
735
736  // Handle vec3 special since the index will be off by one for the RHS.
737  llvm::SmallVector<llvm::Constant*, 32> indices;
738  for (unsigned i = 2; i < E->getNumSubExprs(); i++) {
739    llvm::Constant *C = cast<llvm::Constant>(CGF.EmitScalarExpr(E->getExpr(i)));
740    const llvm::VectorType *VTy = cast<llvm::VectorType>(V1->getType());
741    if (VTy->getNumElements() == 3) {
742      if (llvm::ConstantInt *CI = dyn_cast<llvm::ConstantInt>(C)) {
743        uint64_t cVal = CI->getZExtValue();
744        if (cVal > 3) {
745          C = llvm::ConstantInt::get(C->getType(), cVal-1);
746        }
747      }
748    }
749    indices.push_back(C);
750  }
751
752  Value* SV = llvm::ConstantVector::get(indices.begin(), indices.size());
753  return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
754}
755Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
756  Expr::EvalResult Result;
757  if (E->Evaluate(Result, CGF.getContext()) && Result.Val.isInt()) {
758    if (E->isArrow())
759      CGF.EmitScalarExpr(E->getBase());
760    else
761      EmitLValue(E->getBase());
762    return llvm::ConstantInt::get(VMContext, Result.Val.getInt());
763  }
764
765  // Emit debug info for aggregate now, if it was delayed to reduce
766  // debug info size.
767  CGDebugInfo *DI = CGF.getDebugInfo();
768  if (DI && CGF.CGM.getCodeGenOpts().LimitDebugInfo) {
769    QualType PQTy = E->getBase()->IgnoreParenImpCasts()->getType();
770    if (const PointerType * PTy = dyn_cast<PointerType>(PQTy))
771      if (FieldDecl *M = dyn_cast<FieldDecl>(E->getMemberDecl()))
772        DI->getOrCreateRecordType(PTy->getPointeeType(),
773                                  M->getParent()->getLocation());
774  }
775  return EmitLoadOfLValue(E);
776}
777
778Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
779  TestAndClearIgnoreResultAssign();
780
781  // Emit subscript expressions in rvalue context's.  For most cases, this just
782  // loads the lvalue formed by the subscript expr.  However, we have to be
783  // careful, because the base of a vector subscript is occasionally an rvalue,
784  // so we can't get it as an lvalue.
785  if (!E->getBase()->getType()->isVectorType())
786    return EmitLoadOfLValue(E);
787
788  // Handle the vector case.  The base must be a vector, the index must be an
789  // integer value.
790  Value *Base = Visit(E->getBase());
791  Value *Idx  = Visit(E->getIdx());
792  bool IdxSigned = E->getIdx()->getType()->isSignedIntegerType();
793  Idx = Builder.CreateIntCast(Idx, CGF.Int32Ty, IdxSigned, "vecidxcast");
794  return Builder.CreateExtractElement(Base, Idx, "vecext");
795}
796
797static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
798                                  unsigned Off, const llvm::Type *I32Ty) {
799  int MV = SVI->getMaskValue(Idx);
800  if (MV == -1)
801    return llvm::UndefValue::get(I32Ty);
802  return llvm::ConstantInt::get(I32Ty, Off+MV);
803}
804
805Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
806  bool Ignore = TestAndClearIgnoreResultAssign();
807  (void)Ignore;
808  assert (Ignore == false && "init list ignored");
809  unsigned NumInitElements = E->getNumInits();
810
811  if (E->hadArrayRangeDesignator())
812    CGF.ErrorUnsupported(E, "GNU array range designator extension");
813
814  const llvm::VectorType *VType =
815    dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
816
817  // We have a scalar in braces. Just use the first element.
818  if (!VType)
819    return Visit(E->getInit(0));
820
821  unsigned ResElts = VType->getNumElements();
822
823  // Loop over initializers collecting the Value for each, and remembering
824  // whether the source was swizzle (ExtVectorElementExpr).  This will allow
825  // us to fold the shuffle for the swizzle into the shuffle for the vector
826  // initializer, since LLVM optimizers generally do not want to touch
827  // shuffles.
828  unsigned CurIdx = 0;
829  bool VIsUndefShuffle = false;
830  llvm::Value *V = llvm::UndefValue::get(VType);
831  for (unsigned i = 0; i != NumInitElements; ++i) {
832    Expr *IE = E->getInit(i);
833    Value *Init = Visit(IE);
834    llvm::SmallVector<llvm::Constant*, 16> Args;
835
836    const llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
837
838    // Handle scalar elements.  If the scalar initializer is actually one
839    // element of a different vector of the same width, use shuffle instead of
840    // extract+insert.
841    if (!VVT) {
842      if (isa<ExtVectorElementExpr>(IE)) {
843        llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
844
845        if (EI->getVectorOperandType()->getNumElements() == ResElts) {
846          llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
847          Value *LHS = 0, *RHS = 0;
848          if (CurIdx == 0) {
849            // insert into undef -> shuffle (src, undef)
850            Args.push_back(C);
851            for (unsigned j = 1; j != ResElts; ++j)
852              Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
853
854            LHS = EI->getVectorOperand();
855            RHS = V;
856            VIsUndefShuffle = true;
857          } else if (VIsUndefShuffle) {
858            // insert into undefshuffle && size match -> shuffle (v, src)
859            llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
860            for (unsigned j = 0; j != CurIdx; ++j)
861              Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
862            Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty,
863                                                  ResElts + C->getZExtValue()));
864            for (unsigned j = CurIdx + 1; j != ResElts; ++j)
865              Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
866
867            LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
868            RHS = EI->getVectorOperand();
869            VIsUndefShuffle = false;
870          }
871          if (!Args.empty()) {
872            llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], ResElts);
873            V = Builder.CreateShuffleVector(LHS, RHS, Mask);
874            ++CurIdx;
875            continue;
876          }
877        }
878      }
879      Value *Idx = llvm::ConstantInt::get(CGF.Int32Ty, CurIdx);
880      V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
881      VIsUndefShuffle = false;
882      ++CurIdx;
883      continue;
884    }
885
886    unsigned InitElts = VVT->getNumElements();
887
888    // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
889    // input is the same width as the vector being constructed, generate an
890    // optimized shuffle of the swizzle input into the result.
891    unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
892    if (isa<ExtVectorElementExpr>(IE)) {
893      llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
894      Value *SVOp = SVI->getOperand(0);
895      const llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
896
897      if (OpTy->getNumElements() == ResElts) {
898        for (unsigned j = 0; j != CurIdx; ++j) {
899          // If the current vector initializer is a shuffle with undef, merge
900          // this shuffle directly into it.
901          if (VIsUndefShuffle) {
902            Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
903                                      CGF.Int32Ty));
904          } else {
905            Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty, j));
906          }
907        }
908        for (unsigned j = 0, je = InitElts; j != je; ++j)
909          Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
910        for (unsigned j = CurIdx + InitElts; j != ResElts; ++j)
911          Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
912
913        if (VIsUndefShuffle)
914          V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
915
916        Init = SVOp;
917      }
918    }
919
920    // Extend init to result vector length, and then shuffle its contribution
921    // to the vector initializer into V.
922    if (Args.empty()) {
923      for (unsigned j = 0; j != InitElts; ++j)
924        Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty, j));
925      for (unsigned j = InitElts; j != ResElts; ++j)
926        Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
927      llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], ResElts);
928      Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
929                                         Mask, "vext");
930
931      Args.clear();
932      for (unsigned j = 0; j != CurIdx; ++j)
933        Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty, j));
934      for (unsigned j = 0; j != InitElts; ++j)
935        Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty, j+Offset));
936      for (unsigned j = CurIdx + InitElts; j != ResElts; ++j)
937        Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
938    }
939
940    // If V is undef, make sure it ends up on the RHS of the shuffle to aid
941    // merging subsequent shuffles into this one.
942    if (CurIdx == 0)
943      std::swap(V, Init);
944    llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], ResElts);
945    V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
946    VIsUndefShuffle = isa<llvm::UndefValue>(Init);
947    CurIdx += InitElts;
948  }
949
950  // FIXME: evaluate codegen vs. shuffling against constant null vector.
951  // Emit remaining default initializers.
952  const llvm::Type *EltTy = VType->getElementType();
953
954  // Emit remaining default initializers
955  for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
956    Value *Idx = llvm::ConstantInt::get(CGF.Int32Ty, CurIdx);
957    llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
958    V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
959  }
960  return V;
961}
962
963static bool ShouldNullCheckClassCastValue(const CastExpr *CE) {
964  const Expr *E = CE->getSubExpr();
965
966  if (CE->getCastKind() == CK_UncheckedDerivedToBase)
967    return false;
968
969  if (isa<CXXThisExpr>(E)) {
970    // We always assume that 'this' is never null.
971    return false;
972  }
973
974  if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
975    // And that glvalue casts are never null.
976    if (ICE->getValueKind() != VK_RValue)
977      return false;
978  }
979
980  return true;
981}
982
983// VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
984// have to handle a more broad range of conversions than explicit casts, as they
985// handle things like function to ptr-to-function decay etc.
986Value *ScalarExprEmitter::EmitCastExpr(CastExpr *CE) {
987  Expr *E = CE->getSubExpr();
988  QualType DestTy = CE->getType();
989  CastKind Kind = CE->getCastKind();
990
991  if (!DestTy->isVoidType())
992    TestAndClearIgnoreResultAssign();
993
994  // Since almost all cast kinds apply to scalars, this switch doesn't have
995  // a default case, so the compiler will warn on a missing case.  The cases
996  // are in the same order as in the CastKind enum.
997  switch (Kind) {
998  case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
999
1000  case CK_LValueBitCast:
1001  case CK_ObjCObjectLValueCast: {
1002    Value *V = EmitLValue(E).getAddress();
1003    V = Builder.CreateBitCast(V,
1004                          ConvertType(CGF.getContext().getPointerType(DestTy)));
1005    return EmitLoadOfLValue(CGF.MakeAddrLValue(V, DestTy), DestTy);
1006  }
1007
1008  case CK_AnyPointerToObjCPointerCast:
1009  case CK_AnyPointerToBlockPointerCast:
1010  case CK_BitCast: {
1011    Value *Src = Visit(const_cast<Expr*>(E));
1012    return Builder.CreateBitCast(Src, ConvertType(DestTy));
1013  }
1014  case CK_NoOp:
1015  case CK_UserDefinedConversion:
1016    return Visit(const_cast<Expr*>(E));
1017
1018  case CK_BaseToDerived: {
1019    const CXXRecordDecl *DerivedClassDecl =
1020      DestTy->getCXXRecordDeclForPointerType();
1021
1022    return CGF.GetAddressOfDerivedClass(Visit(E), DerivedClassDecl,
1023                                        CE->path_begin(), CE->path_end(),
1024                                        ShouldNullCheckClassCastValue(CE));
1025  }
1026  case CK_UncheckedDerivedToBase:
1027  case CK_DerivedToBase: {
1028    const RecordType *DerivedClassTy =
1029      E->getType()->getAs<PointerType>()->getPointeeType()->getAs<RecordType>();
1030    CXXRecordDecl *DerivedClassDecl =
1031      cast<CXXRecordDecl>(DerivedClassTy->getDecl());
1032
1033    return CGF.GetAddressOfBaseClass(Visit(E), DerivedClassDecl,
1034                                     CE->path_begin(), CE->path_end(),
1035                                     ShouldNullCheckClassCastValue(CE));
1036  }
1037  case CK_Dynamic: {
1038    Value *V = Visit(const_cast<Expr*>(E));
1039    const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
1040    return CGF.EmitDynamicCast(V, DCE);
1041  }
1042
1043  case CK_ArrayToPointerDecay: {
1044    assert(E->getType()->isArrayType() &&
1045           "Array to pointer decay must have array source type!");
1046
1047    Value *V = EmitLValue(E).getAddress();  // Bitfields can't be arrays.
1048
1049    // Note that VLA pointers are always decayed, so we don't need to do
1050    // anything here.
1051    if (!E->getType()->isVariableArrayType()) {
1052      assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer");
1053      assert(isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType())
1054                                 ->getElementType()) &&
1055             "Expected pointer to array");
1056      V = Builder.CreateStructGEP(V, 0, "arraydecay");
1057    }
1058
1059    return V;
1060  }
1061  case CK_FunctionToPointerDecay:
1062    return EmitLValue(E).getAddress();
1063
1064  case CK_NullToPointer:
1065    if (MustVisitNullValue(E))
1066      (void) Visit(E);
1067
1068    return llvm::ConstantPointerNull::get(
1069                               cast<llvm::PointerType>(ConvertType(DestTy)));
1070
1071  case CK_NullToMemberPointer: {
1072    if (MustVisitNullValue(E))
1073      (void) Visit(E);
1074
1075    const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
1076    return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
1077  }
1078
1079  case CK_BaseToDerivedMemberPointer:
1080  case CK_DerivedToBaseMemberPointer: {
1081    Value *Src = Visit(E);
1082
1083    // Note that the AST doesn't distinguish between checked and
1084    // unchecked member pointer conversions, so we always have to
1085    // implement checked conversions here.  This is inefficient when
1086    // actual control flow may be required in order to perform the
1087    // check, which it is for data member pointers (but not member
1088    // function pointers on Itanium and ARM).
1089    return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
1090  }
1091
1092  case CK_FloatingRealToComplex:
1093  case CK_FloatingComplexCast:
1094  case CK_IntegralRealToComplex:
1095  case CK_IntegralComplexCast:
1096  case CK_IntegralComplexToFloatingComplex:
1097  case CK_FloatingComplexToIntegralComplex:
1098  case CK_ConstructorConversion:
1099  case CK_ToUnion:
1100    llvm_unreachable("scalar cast to non-scalar value");
1101    break;
1102
1103  case CK_GetObjCProperty: {
1104    assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
1105    assert(E->isLValue() && E->getObjectKind() == OK_ObjCProperty &&
1106           "CK_GetObjCProperty for non-lvalue or non-ObjCProperty");
1107    RValue RV = CGF.EmitLoadOfLValue(CGF.EmitLValue(E), E->getType());
1108    return RV.getScalarVal();
1109  }
1110
1111  case CK_LValueToRValue:
1112    assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
1113    assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
1114    return Visit(const_cast<Expr*>(E));
1115
1116  case CK_IntegralToPointer: {
1117    Value *Src = Visit(const_cast<Expr*>(E));
1118
1119    // First, convert to the correct width so that we control the kind of
1120    // extension.
1121    const llvm::Type *MiddleTy = CGF.IntPtrTy;
1122    bool InputSigned = E->getType()->isSignedIntegerType();
1123    llvm::Value* IntResult =
1124      Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1125
1126    return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy));
1127  }
1128  case CK_PointerToIntegral: {
1129    Value *Src = Visit(const_cast<Expr*>(E));
1130
1131    // Handle conversion to bool correctly.
1132    if (DestTy->isBooleanType())
1133      return EmitScalarConversion(Src, E->getType(), DestTy);
1134
1135    return Builder.CreatePtrToInt(Src, ConvertType(DestTy));
1136  }
1137  case CK_ToVoid: {
1138    if (!E->isRValue())
1139      CGF.EmitLValue(E);
1140    else
1141      CGF.EmitAnyExpr(E, AggValueSlot::ignored(), true);
1142    return 0;
1143  }
1144  case CK_VectorSplat: {
1145    const llvm::Type *DstTy = ConvertType(DestTy);
1146    Value *Elt = Visit(const_cast<Expr*>(E));
1147
1148    // Insert the element in element zero of an undef vector
1149    llvm::Value *UnV = llvm::UndefValue::get(DstTy);
1150    llvm::Value *Idx = llvm::ConstantInt::get(CGF.Int32Ty, 0);
1151    UnV = Builder.CreateInsertElement(UnV, Elt, Idx, "tmp");
1152
1153    // Splat the element across to all elements
1154    llvm::SmallVector<llvm::Constant*, 16> Args;
1155    unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
1156    llvm::Constant *Zero = llvm::ConstantInt::get(CGF.Int32Ty, 0);
1157    for (unsigned i = 0; i < NumElements; i++)
1158      Args.push_back(Zero);
1159
1160    llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements);
1161    llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
1162    return Yay;
1163  }
1164
1165  case CK_IntegralCast:
1166  case CK_IntegralToFloating:
1167  case CK_FloatingToIntegral:
1168  case CK_FloatingCast:
1169    return EmitScalarConversion(Visit(E), E->getType(), DestTy);
1170
1171  case CK_IntegralToBoolean:
1172    return EmitIntToBoolConversion(Visit(E));
1173  case CK_PointerToBoolean:
1174    return EmitPointerToBoolConversion(Visit(E));
1175  case CK_FloatingToBoolean:
1176    return EmitFloatToBoolConversion(Visit(E));
1177  case CK_MemberPointerToBoolean: {
1178    llvm::Value *MemPtr = Visit(E);
1179    const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
1180    return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
1181  }
1182
1183  case CK_FloatingComplexToReal:
1184  case CK_IntegralComplexToReal:
1185    return CGF.EmitComplexExpr(E, false, true).first;
1186
1187  case CK_FloatingComplexToBoolean:
1188  case CK_IntegralComplexToBoolean: {
1189    CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
1190
1191    // TODO: kill this function off, inline appropriate case here
1192    return EmitComplexToScalarConversion(V, E->getType(), DestTy);
1193  }
1194
1195  }
1196
1197  llvm_unreachable("unknown scalar cast");
1198  return 0;
1199}
1200
1201Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
1202  return CGF.EmitCompoundStmt(*E->getSubStmt(),
1203                              !E->getType()->isVoidType()).getScalarVal();
1204}
1205
1206Value *ScalarExprEmitter::VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) {
1207  llvm::Value *V = CGF.GetAddrOfBlockDecl(E);
1208  if (E->getType().isObjCGCWeak())
1209    return CGF.CGM.getObjCRuntime().EmitObjCWeakRead(CGF, V);
1210  return CGF.EmitLoadOfScalar(V, false, 0, E->getType());
1211}
1212
1213//===----------------------------------------------------------------------===//
1214//                             Unary Operators
1215//===----------------------------------------------------------------------===//
1216
1217llvm::Value *ScalarExprEmitter::
1218EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1219                        bool isInc, bool isPre) {
1220
1221  QualType ValTy = E->getSubExpr()->getType();
1222  llvm::Value *InVal = EmitLoadOfLValue(LV, ValTy);
1223
1224  int AmountVal = isInc ? 1 : -1;
1225
1226  if (ValTy->isPointerType() &&
1227      ValTy->getAs<PointerType>()->isVariableArrayType()) {
1228    // The amount of the addition/subtraction needs to account for the VLA size
1229    CGF.ErrorUnsupported(E, "VLA pointer inc/dec");
1230  }
1231
1232  llvm::Value *NextVal;
1233  if (const llvm::PointerType *PT =
1234      dyn_cast<llvm::PointerType>(InVal->getType())) {
1235    llvm::Constant *Inc = llvm::ConstantInt::get(CGF.Int32Ty, AmountVal);
1236    if (!isa<llvm::FunctionType>(PT->getElementType())) {
1237      QualType PTEE = ValTy->getPointeeType();
1238      if (const ObjCObjectType *OIT = PTEE->getAs<ObjCObjectType>()) {
1239        // Handle interface types, which are not represented with a concrete
1240        // type.
1241        int size = CGF.getContext().getTypeSize(OIT) / 8;
1242        if (!isInc)
1243          size = -size;
1244        Inc = llvm::ConstantInt::get(Inc->getType(), size);
1245        const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1246        InVal = Builder.CreateBitCast(InVal, i8Ty);
1247        NextVal = Builder.CreateGEP(InVal, Inc, "add.ptr");
1248        llvm::Value *lhs = LV.getAddress();
1249        lhs = Builder.CreateBitCast(lhs, llvm::PointerType::getUnqual(i8Ty));
1250        LV = CGF.MakeAddrLValue(lhs, ValTy);
1251      } else
1252        NextVal = Builder.CreateInBoundsGEP(InVal, Inc, "ptrincdec");
1253    } else {
1254      const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1255      NextVal = Builder.CreateBitCast(InVal, i8Ty, "tmp");
1256      NextVal = Builder.CreateGEP(NextVal, Inc, "ptrincdec");
1257      NextVal = Builder.CreateBitCast(NextVal, InVal->getType());
1258    }
1259  } else if (InVal->getType()->isIntegerTy(1) && isInc) {
1260    // Bool++ is an interesting case, due to promotion rules, we get:
1261    // Bool++ -> Bool = Bool+1 -> Bool = (int)Bool+1 ->
1262    // Bool = ((int)Bool+1) != 0
1263    // An interesting aspect of this is that increment is always true.
1264    // Decrement does not have this property.
1265    NextVal = llvm::ConstantInt::getTrue(VMContext);
1266  } else if (isa<llvm::IntegerType>(InVal->getType())) {
1267    NextVal = llvm::ConstantInt::get(InVal->getType(), AmountVal);
1268
1269    if (!ValTy->isSignedIntegerType())
1270      // Unsigned integer inc is always two's complement.
1271      NextVal = Builder.CreateAdd(InVal, NextVal, isInc ? "inc" : "dec");
1272    else {
1273      switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
1274      case LangOptions::SOB_Undefined:
1275        NextVal = Builder.CreateNSWAdd(InVal, NextVal, isInc ? "inc" : "dec");
1276        break;
1277      case LangOptions::SOB_Defined:
1278        NextVal = Builder.CreateAdd(InVal, NextVal, isInc ? "inc" : "dec");
1279        break;
1280      case LangOptions::SOB_Trapping:
1281        BinOpInfo BinOp;
1282        BinOp.LHS = InVal;
1283        BinOp.RHS = NextVal;
1284        BinOp.Ty = E->getType();
1285        BinOp.Opcode = BO_Add;
1286        BinOp.E = E;
1287        NextVal = EmitOverflowCheckedBinOp(BinOp);
1288        break;
1289      }
1290    }
1291  } else {
1292    // Add the inc/dec to the real part.
1293    if (InVal->getType()->isFloatTy())
1294      NextVal =
1295      llvm::ConstantFP::get(VMContext,
1296                            llvm::APFloat(static_cast<float>(AmountVal)));
1297    else if (InVal->getType()->isDoubleTy())
1298      NextVal =
1299      llvm::ConstantFP::get(VMContext,
1300                            llvm::APFloat(static_cast<double>(AmountVal)));
1301    else {
1302      llvm::APFloat F(static_cast<float>(AmountVal));
1303      bool ignored;
1304      F.convert(CGF.Target.getLongDoubleFormat(), llvm::APFloat::rmTowardZero,
1305                &ignored);
1306      NextVal = llvm::ConstantFP::get(VMContext, F);
1307    }
1308    NextVal = Builder.CreateFAdd(InVal, NextVal, isInc ? "inc" : "dec");
1309  }
1310
1311  // Store the updated result through the lvalue.
1312  if (LV.isBitField())
1313    CGF.EmitStoreThroughBitfieldLValue(RValue::get(NextVal), LV, ValTy, &NextVal);
1314  else
1315    CGF.EmitStoreThroughLValue(RValue::get(NextVal), LV, ValTy);
1316
1317  // If this is a postinc, return the value read from memory, otherwise use the
1318  // updated value.
1319  return isPre ? NextVal : InVal;
1320}
1321
1322
1323
1324Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
1325  TestAndClearIgnoreResultAssign();
1326  // Emit unary minus with EmitSub so we handle overflow cases etc.
1327  BinOpInfo BinOp;
1328  BinOp.RHS = Visit(E->getSubExpr());
1329
1330  if (BinOp.RHS->getType()->isFPOrFPVectorTy())
1331    BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType());
1332  else
1333    BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
1334  BinOp.Ty = E->getType();
1335  BinOp.Opcode = BO_Sub;
1336  BinOp.E = E;
1337  return EmitSub(BinOp);
1338}
1339
1340Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
1341  TestAndClearIgnoreResultAssign();
1342  Value *Op = Visit(E->getSubExpr());
1343  return Builder.CreateNot(Op, "neg");
1344}
1345
1346Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
1347  // Compare operand to zero.
1348  Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
1349
1350  // Invert value.
1351  // TODO: Could dynamically modify easy computations here.  For example, if
1352  // the operand is an icmp ne, turn into icmp eq.
1353  BoolVal = Builder.CreateNot(BoolVal, "lnot");
1354
1355  // ZExt result to the expr type.
1356  return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
1357}
1358
1359Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
1360  // Try folding the offsetof to a constant.
1361  Expr::EvalResult EvalResult;
1362  if (E->Evaluate(EvalResult, CGF.getContext()))
1363    return llvm::ConstantInt::get(VMContext, EvalResult.Val.getInt());
1364
1365  // Loop over the components of the offsetof to compute the value.
1366  unsigned n = E->getNumComponents();
1367  const llvm::Type* ResultType = ConvertType(E->getType());
1368  llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
1369  QualType CurrentType = E->getTypeSourceInfo()->getType();
1370  for (unsigned i = 0; i != n; ++i) {
1371    OffsetOfExpr::OffsetOfNode ON = E->getComponent(i);
1372    llvm::Value *Offset = 0;
1373    switch (ON.getKind()) {
1374    case OffsetOfExpr::OffsetOfNode::Array: {
1375      // Compute the index
1376      Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
1377      llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
1378      bool IdxSigned = IdxExpr->getType()->isSignedIntegerType();
1379      Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
1380
1381      // Save the element type
1382      CurrentType =
1383          CGF.getContext().getAsArrayType(CurrentType)->getElementType();
1384
1385      // Compute the element size
1386      llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
1387          CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
1388
1389      // Multiply out to compute the result
1390      Offset = Builder.CreateMul(Idx, ElemSize);
1391      break;
1392    }
1393
1394    case OffsetOfExpr::OffsetOfNode::Field: {
1395      FieldDecl *MemberDecl = ON.getField();
1396      RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1397      const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1398
1399      // Compute the index of the field in its parent.
1400      unsigned i = 0;
1401      // FIXME: It would be nice if we didn't have to loop here!
1402      for (RecordDecl::field_iterator Field = RD->field_begin(),
1403                                      FieldEnd = RD->field_end();
1404           Field != FieldEnd; (void)++Field, ++i) {
1405        if (*Field == MemberDecl)
1406          break;
1407      }
1408      assert(i < RL.getFieldCount() && "offsetof field in wrong type");
1409
1410      // Compute the offset to the field
1411      int64_t OffsetInt = RL.getFieldOffset(i) /
1412                          CGF.getContext().getCharWidth();
1413      Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
1414
1415      // Save the element type.
1416      CurrentType = MemberDecl->getType();
1417      break;
1418    }
1419
1420    case OffsetOfExpr::OffsetOfNode::Identifier:
1421      llvm_unreachable("dependent __builtin_offsetof");
1422
1423    case OffsetOfExpr::OffsetOfNode::Base: {
1424      if (ON.getBase()->isVirtual()) {
1425        CGF.ErrorUnsupported(E, "virtual base in offsetof");
1426        continue;
1427      }
1428
1429      RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1430      const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1431
1432      // Save the element type.
1433      CurrentType = ON.getBase()->getType();
1434
1435      // Compute the offset to the base.
1436      const RecordType *BaseRT = CurrentType->getAs<RecordType>();
1437      CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
1438      int64_t OffsetInt = RL.getBaseClassOffsetInBits(BaseRD) /
1439                          CGF.getContext().getCharWidth();
1440      Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
1441      break;
1442    }
1443    }
1444    Result = Builder.CreateAdd(Result, Offset);
1445  }
1446  return Result;
1447}
1448
1449/// VisitSizeOfAlignOfExpr - Return the size or alignment of the type of
1450/// argument of the sizeof expression as an integer.
1451Value *
1452ScalarExprEmitter::VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E) {
1453  QualType TypeToSize = E->getTypeOfArgument();
1454  if (E->isSizeOf()) {
1455    if (const VariableArrayType *VAT =
1456          CGF.getContext().getAsVariableArrayType(TypeToSize)) {
1457      if (E->isArgumentType()) {
1458        // sizeof(type) - make sure to emit the VLA size.
1459        CGF.EmitVLASize(TypeToSize);
1460      } else {
1461        // C99 6.5.3.4p2: If the argument is an expression of type
1462        // VLA, it is evaluated.
1463        CGF.EmitAnyExpr(E->getArgumentExpr());
1464      }
1465
1466      return CGF.GetVLASize(VAT);
1467    }
1468  }
1469
1470  // If this isn't sizeof(vla), the result must be constant; use the constant
1471  // folding logic so we don't have to duplicate it here.
1472  Expr::EvalResult Result;
1473  E->Evaluate(Result, CGF.getContext());
1474  return llvm::ConstantInt::get(VMContext, Result.Val.getInt());
1475}
1476
1477Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
1478  Expr *Op = E->getSubExpr();
1479  if (Op->getType()->isAnyComplexType()) {
1480    // If it's an l-value, load through the appropriate subobject l-value.
1481    // Note that we have to ask E because Op might be an l-value that
1482    // this won't work for, e.g. an Obj-C property.
1483    if (E->isGLValue())
1484      return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), E->getType())
1485                .getScalarVal();
1486
1487    // Otherwise, calculate and project.
1488    return CGF.EmitComplexExpr(Op, false, true).first;
1489  }
1490
1491  return Visit(Op);
1492}
1493
1494Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
1495  Expr *Op = E->getSubExpr();
1496  if (Op->getType()->isAnyComplexType()) {
1497    // If it's an l-value, load through the appropriate subobject l-value.
1498    // Note that we have to ask E because Op might be an l-value that
1499    // this won't work for, e.g. an Obj-C property.
1500    if (Op->isGLValue())
1501      return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), E->getType())
1502                .getScalarVal();
1503
1504    // Otherwise, calculate and project.
1505    return CGF.EmitComplexExpr(Op, true, false).second;
1506  }
1507
1508  // __imag on a scalar returns zero.  Emit the subexpr to ensure side
1509  // effects are evaluated, but not the actual value.
1510  CGF.EmitScalarExpr(Op, true);
1511  return llvm::Constant::getNullValue(ConvertType(E->getType()));
1512}
1513
1514//===----------------------------------------------------------------------===//
1515//                           Binary Operators
1516//===----------------------------------------------------------------------===//
1517
1518BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
1519  TestAndClearIgnoreResultAssign();
1520  BinOpInfo Result;
1521  Result.LHS = Visit(E->getLHS());
1522  Result.RHS = Visit(E->getRHS());
1523  Result.Ty  = E->getType();
1524  Result.Opcode = E->getOpcode();
1525  Result.E = E;
1526  return Result;
1527}
1528
1529LValue ScalarExprEmitter::EmitCompoundAssignLValue(
1530                                              const CompoundAssignOperator *E,
1531                        Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
1532                                                   Value *&Result) {
1533  QualType LHSTy = E->getLHS()->getType();
1534  BinOpInfo OpInfo;
1535
1536  if (E->getComputationResultType()->isAnyComplexType()) {
1537    // This needs to go through the complex expression emitter, but it's a tad
1538    // complicated to do that... I'm leaving it out for now.  (Note that we do
1539    // actually need the imaginary part of the RHS for multiplication and
1540    // division.)
1541    CGF.ErrorUnsupported(E, "complex compound assignment");
1542    Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1543    return LValue();
1544  }
1545
1546  // Emit the RHS first.  __block variables need to have the rhs evaluated
1547  // first, plus this should improve codegen a little.
1548  OpInfo.RHS = Visit(E->getRHS());
1549  OpInfo.Ty = E->getComputationResultType();
1550  OpInfo.Opcode = E->getOpcode();
1551  OpInfo.E = E;
1552  // Load/convert the LHS.
1553  LValue LHSLV = EmitCheckedLValue(E->getLHS());
1554  OpInfo.LHS = EmitLoadOfLValue(LHSLV, LHSTy);
1555  OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy,
1556                                    E->getComputationLHSType());
1557
1558  // Expand the binary operator.
1559  Result = (this->*Func)(OpInfo);
1560
1561  // Convert the result back to the LHS type.
1562  Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy);
1563
1564  // Store the result value into the LHS lvalue. Bit-fields are handled
1565  // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
1566  // 'An assignment expression has the value of the left operand after the
1567  // assignment...'.
1568  if (LHSLV.isBitField())
1569    CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, LHSTy,
1570                                       &Result);
1571  else
1572    CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV, LHSTy);
1573
1574  return LHSLV;
1575}
1576
1577Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
1578                      Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
1579  bool Ignore = TestAndClearIgnoreResultAssign();
1580  Value *RHS;
1581  LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
1582
1583  // If the result is clearly ignored, return now.
1584  if (Ignore)
1585    return 0;
1586
1587  // The result of an assignment in C is the assigned r-value.
1588  if (!CGF.getContext().getLangOptions().CPlusPlus)
1589    return RHS;
1590
1591  // Objective-C property assignment never reloads the value following a store.
1592  if (LHS.isPropertyRef())
1593    return RHS;
1594
1595  // If the lvalue is non-volatile, return the computed value of the assignment.
1596  if (!LHS.isVolatileQualified())
1597    return RHS;
1598
1599  // Otherwise, reload the value.
1600  return EmitLoadOfLValue(LHS, E->getType());
1601}
1602
1603void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
1604     					    const BinOpInfo &Ops,
1605				     	    llvm::Value *Zero, bool isDiv) {
1606  llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
1607  llvm::BasicBlock *contBB =
1608    CGF.createBasicBlock(isDiv ? "div.cont" : "rem.cont", CGF.CurFn);
1609
1610  const llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
1611
1612  if (Ops.Ty->hasSignedIntegerRepresentation()) {
1613    llvm::Value *IntMin =
1614      llvm::ConstantInt::get(VMContext,
1615                             llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
1616    llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
1617
1618    llvm::Value *Cond1 = Builder.CreateICmpEQ(Ops.RHS, Zero);
1619    llvm::Value *LHSCmp = Builder.CreateICmpEQ(Ops.LHS, IntMin);
1620    llvm::Value *RHSCmp = Builder.CreateICmpEQ(Ops.RHS, NegOne);
1621    llvm::Value *Cond2 = Builder.CreateAnd(LHSCmp, RHSCmp, "and");
1622    Builder.CreateCondBr(Builder.CreateOr(Cond1, Cond2, "or"),
1623                         overflowBB, contBB);
1624  } else {
1625    CGF.Builder.CreateCondBr(Builder.CreateICmpEQ(Ops.RHS, Zero),
1626                             overflowBB, contBB);
1627  }
1628  EmitOverflowBB(overflowBB);
1629  Builder.SetInsertPoint(contBB);
1630}
1631
1632Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
1633  if (isTrapvOverflowBehavior()) {
1634    llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
1635
1636    if (Ops.Ty->isIntegerType())
1637      EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
1638    else if (Ops.Ty->isRealFloatingType()) {
1639      llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow",
1640                                                          CGF.CurFn);
1641      llvm::BasicBlock *DivCont = CGF.createBasicBlock("div.cont", CGF.CurFn);
1642      CGF.Builder.CreateCondBr(Builder.CreateFCmpOEQ(Ops.RHS, Zero),
1643                               overflowBB, DivCont);
1644      EmitOverflowBB(overflowBB);
1645      Builder.SetInsertPoint(DivCont);
1646    }
1647  }
1648  if (Ops.LHS->getType()->isFPOrFPVectorTy())
1649    return Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
1650  else if (Ops.Ty->hasUnsignedIntegerRepresentation())
1651    return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
1652  else
1653    return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
1654}
1655
1656Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
1657  // Rem in C can't be a floating point type: C99 6.5.5p2.
1658  if (isTrapvOverflowBehavior()) {
1659    llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
1660
1661    if (Ops.Ty->isIntegerType())
1662      EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
1663  }
1664
1665  if (Ops.Ty->isUnsignedIntegerType())
1666    return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
1667  else
1668    return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
1669}
1670
1671Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
1672  unsigned IID;
1673  unsigned OpID = 0;
1674
1675  switch (Ops.Opcode) {
1676  case BO_Add:
1677  case BO_AddAssign:
1678    OpID = 1;
1679    IID = llvm::Intrinsic::sadd_with_overflow;
1680    break;
1681  case BO_Sub:
1682  case BO_SubAssign:
1683    OpID = 2;
1684    IID = llvm::Intrinsic::ssub_with_overflow;
1685    break;
1686  case BO_Mul:
1687  case BO_MulAssign:
1688    OpID = 3;
1689    IID = llvm::Intrinsic::smul_with_overflow;
1690    break;
1691  default:
1692    assert(false && "Unsupported operation for overflow detection");
1693    IID = 0;
1694  }
1695  OpID <<= 1;
1696  OpID |= 1;
1697
1698  const llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
1699
1700  llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, &opTy, 1);
1701
1702  Value *resultAndOverflow = Builder.CreateCall2(intrinsic, Ops.LHS, Ops.RHS);
1703  Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
1704  Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
1705
1706  // Branch in case of overflow.
1707  llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
1708  llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
1709  llvm::BasicBlock *continueBB = CGF.createBasicBlock("nooverflow", CGF.CurFn);
1710
1711  Builder.CreateCondBr(overflow, overflowBB, continueBB);
1712
1713  // Handle overflow with llvm.trap.
1714  const std::string *handlerName =
1715    &CGF.getContext().getLangOptions().OverflowHandler;
1716  if (handlerName->empty()) {
1717    EmitOverflowBB(overflowBB);
1718    Builder.SetInsertPoint(continueBB);
1719    return result;
1720  }
1721
1722  // If an overflow handler is set, then we want to call it and then use its
1723  // result, if it returns.
1724  Builder.SetInsertPoint(overflowBB);
1725
1726  // Get the overflow handler.
1727  const llvm::Type *Int8Ty = llvm::Type::getInt8Ty(VMContext);
1728  std::vector<const llvm::Type*> argTypes;
1729  argTypes.push_back(CGF.Int64Ty); argTypes.push_back(CGF.Int64Ty);
1730  argTypes.push_back(Int8Ty); argTypes.push_back(Int8Ty);
1731  llvm::FunctionType *handlerTy =
1732      llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
1733  llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
1734
1735  // Sign extend the args to 64-bit, so that we can use the same handler for
1736  // all types of overflow.
1737  llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
1738  llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
1739
1740  // Call the handler with the two arguments, the operation, and the size of
1741  // the result.
1742  llvm::Value *handlerResult = Builder.CreateCall4(handler, lhs, rhs,
1743      Builder.getInt8(OpID),
1744      Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth()));
1745
1746  // Truncate the result back to the desired size.
1747  handlerResult = Builder.CreateTrunc(handlerResult, opTy);
1748  Builder.CreateBr(continueBB);
1749
1750  Builder.SetInsertPoint(continueBB);
1751  llvm::PHINode *phi = Builder.CreatePHI(opTy);
1752  phi->reserveOperandSpace(2);
1753  phi->addIncoming(result, initialBB);
1754  phi->addIncoming(handlerResult, overflowBB);
1755
1756  return phi;
1757}
1758
1759Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &Ops) {
1760  if (!Ops.Ty->isAnyPointerType()) {
1761    if (Ops.Ty->hasSignedIntegerRepresentation()) {
1762      switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
1763      case LangOptions::SOB_Undefined:
1764        return Builder.CreateNSWAdd(Ops.LHS, Ops.RHS, "add");
1765      case LangOptions::SOB_Defined:
1766        return Builder.CreateAdd(Ops.LHS, Ops.RHS, "add");
1767      case LangOptions::SOB_Trapping:
1768        return EmitOverflowCheckedBinOp(Ops);
1769      }
1770    }
1771
1772    if (Ops.LHS->getType()->isFPOrFPVectorTy())
1773      return Builder.CreateFAdd(Ops.LHS, Ops.RHS, "add");
1774
1775    return Builder.CreateAdd(Ops.LHS, Ops.RHS, "add");
1776  }
1777
1778  // Must have binary (not unary) expr here.  Unary pointer decrement doesn't
1779  // use this path.
1780  const BinaryOperator *BinOp = cast<BinaryOperator>(Ops.E);
1781
1782  if (Ops.Ty->isPointerType() &&
1783      Ops.Ty->getAs<PointerType>()->isVariableArrayType()) {
1784    // The amount of the addition needs to account for the VLA size
1785    CGF.ErrorUnsupported(BinOp, "VLA pointer addition");
1786  }
1787
1788  Value *Ptr, *Idx;
1789  Expr *IdxExp;
1790  const PointerType *PT = BinOp->getLHS()->getType()->getAs<PointerType>();
1791  const ObjCObjectPointerType *OPT =
1792    BinOp->getLHS()->getType()->getAs<ObjCObjectPointerType>();
1793  if (PT || OPT) {
1794    Ptr = Ops.LHS;
1795    Idx = Ops.RHS;
1796    IdxExp = BinOp->getRHS();
1797  } else {  // int + pointer
1798    PT = BinOp->getRHS()->getType()->getAs<PointerType>();
1799    OPT = BinOp->getRHS()->getType()->getAs<ObjCObjectPointerType>();
1800    assert((PT || OPT) && "Invalid add expr");
1801    Ptr = Ops.RHS;
1802    Idx = Ops.LHS;
1803    IdxExp = BinOp->getLHS();
1804  }
1805
1806  unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
1807  if (Width < CGF.LLVMPointerWidth) {
1808    // Zero or sign extend the pointer value based on whether the index is
1809    // signed or not.
1810    const llvm::Type *IdxType = CGF.IntPtrTy;
1811    if (IdxExp->getType()->isSignedIntegerType())
1812      Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
1813    else
1814      Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
1815  }
1816  const QualType ElementType = PT ? PT->getPointeeType() : OPT->getPointeeType();
1817  // Handle interface types, which are not represented with a concrete type.
1818  if (const ObjCObjectType *OIT = ElementType->getAs<ObjCObjectType>()) {
1819    llvm::Value *InterfaceSize =
1820      llvm::ConstantInt::get(Idx->getType(),
1821          CGF.getContext().getTypeSizeInChars(OIT).getQuantity());
1822    Idx = Builder.CreateMul(Idx, InterfaceSize);
1823    const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1824    Value *Casted = Builder.CreateBitCast(Ptr, i8Ty);
1825    Value *Res = Builder.CreateGEP(Casted, Idx, "add.ptr");
1826    return Builder.CreateBitCast(Res, Ptr->getType());
1827  }
1828
1829  // Explicitly handle GNU void* and function pointer arithmetic extensions. The
1830  // GNU void* casts amount to no-ops since our void* type is i8*, but this is
1831  // future proof.
1832  if (ElementType->isVoidType() || ElementType->isFunctionType()) {
1833    const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1834    Value *Casted = Builder.CreateBitCast(Ptr, i8Ty);
1835    Value *Res = Builder.CreateGEP(Casted, Idx, "add.ptr");
1836    return Builder.CreateBitCast(Res, Ptr->getType());
1837  }
1838
1839  return Builder.CreateInBoundsGEP(Ptr, Idx, "add.ptr");
1840}
1841
1842Value *ScalarExprEmitter::EmitSub(const BinOpInfo &Ops) {
1843  if (!isa<llvm::PointerType>(Ops.LHS->getType())) {
1844    if (Ops.Ty->hasSignedIntegerRepresentation()) {
1845      switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
1846      case LangOptions::SOB_Undefined:
1847        return Builder.CreateNSWSub(Ops.LHS, Ops.RHS, "sub");
1848      case LangOptions::SOB_Defined:
1849        return Builder.CreateSub(Ops.LHS, Ops.RHS, "sub");
1850      case LangOptions::SOB_Trapping:
1851        return EmitOverflowCheckedBinOp(Ops);
1852      }
1853    }
1854
1855    if (Ops.LHS->getType()->isFPOrFPVectorTy())
1856      return Builder.CreateFSub(Ops.LHS, Ops.RHS, "sub");
1857
1858    return Builder.CreateSub(Ops.LHS, Ops.RHS, "sub");
1859  }
1860
1861  // Must have binary (not unary) expr here.  Unary pointer increment doesn't
1862  // use this path.
1863  const BinaryOperator *BinOp = cast<BinaryOperator>(Ops.E);
1864
1865  if (BinOp->getLHS()->getType()->isPointerType() &&
1866      BinOp->getLHS()->getType()->getAs<PointerType>()->isVariableArrayType()) {
1867    // The amount of the addition needs to account for the VLA size for
1868    // ptr-int
1869    // The amount of the division needs to account for the VLA size for
1870    // ptr-ptr.
1871    CGF.ErrorUnsupported(BinOp, "VLA pointer subtraction");
1872  }
1873
1874  const QualType LHSType = BinOp->getLHS()->getType();
1875  const QualType LHSElementType = LHSType->getPointeeType();
1876  if (!isa<llvm::PointerType>(Ops.RHS->getType())) {
1877    // pointer - int
1878    Value *Idx = Ops.RHS;
1879    unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
1880    if (Width < CGF.LLVMPointerWidth) {
1881      // Zero or sign extend the pointer value based on whether the index is
1882      // signed or not.
1883      const llvm::Type *IdxType = CGF.IntPtrTy;
1884      if (BinOp->getRHS()->getType()->isSignedIntegerType())
1885        Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
1886      else
1887        Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
1888    }
1889    Idx = Builder.CreateNeg(Idx, "sub.ptr.neg");
1890
1891    // Handle interface types, which are not represented with a concrete type.
1892    if (const ObjCObjectType *OIT = LHSElementType->getAs<ObjCObjectType>()) {
1893      llvm::Value *InterfaceSize =
1894        llvm::ConstantInt::get(Idx->getType(),
1895                               CGF.getContext().
1896                                 getTypeSizeInChars(OIT).getQuantity());
1897      Idx = Builder.CreateMul(Idx, InterfaceSize);
1898      const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1899      Value *LHSCasted = Builder.CreateBitCast(Ops.LHS, i8Ty);
1900      Value *Res = Builder.CreateGEP(LHSCasted, Idx, "add.ptr");
1901      return Builder.CreateBitCast(Res, Ops.LHS->getType());
1902    }
1903
1904    // Explicitly handle GNU void* and function pointer arithmetic
1905    // extensions. The GNU void* casts amount to no-ops since our void* type is
1906    // i8*, but this is future proof.
1907    if (LHSElementType->isVoidType() || LHSElementType->isFunctionType()) {
1908      const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1909      Value *LHSCasted = Builder.CreateBitCast(Ops.LHS, i8Ty);
1910      Value *Res = Builder.CreateGEP(LHSCasted, Idx, "sub.ptr");
1911      return Builder.CreateBitCast(Res, Ops.LHS->getType());
1912    }
1913
1914    return Builder.CreateInBoundsGEP(Ops.LHS, Idx, "sub.ptr");
1915  } else {
1916    // pointer - pointer
1917    Value *LHS = Ops.LHS;
1918    Value *RHS = Ops.RHS;
1919
1920    CharUnits ElementSize;
1921
1922    // Handle GCC extension for pointer arithmetic on void* and function pointer
1923    // types.
1924    if (LHSElementType->isVoidType() || LHSElementType->isFunctionType()) {
1925      ElementSize = CharUnits::One();
1926    } else {
1927      ElementSize = CGF.getContext().getTypeSizeInChars(LHSElementType);
1928    }
1929
1930    const llvm::Type *ResultType = ConvertType(Ops.Ty);
1931    LHS = Builder.CreatePtrToInt(LHS, ResultType, "sub.ptr.lhs.cast");
1932    RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
1933    Value *BytesBetween = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
1934
1935    // Optimize out the shift for element size of 1.
1936    if (ElementSize.isOne())
1937      return BytesBetween;
1938
1939    // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
1940    // pointer difference in C is only defined in the case where both operands
1941    // are pointing to elements of an array.
1942    Value *BytesPerElt =
1943        llvm::ConstantInt::get(ResultType, ElementSize.getQuantity());
1944    return Builder.CreateExactSDiv(BytesBetween, BytesPerElt, "sub.ptr.div");
1945  }
1946}
1947
1948Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
1949  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
1950  // RHS to the same size as the LHS.
1951  Value *RHS = Ops.RHS;
1952  if (Ops.LHS->getType() != RHS->getType())
1953    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
1954
1955  if (CGF.CatchUndefined
1956      && isa<llvm::IntegerType>(Ops.LHS->getType())) {
1957    unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth();
1958    llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
1959    CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS,
1960                                 llvm::ConstantInt::get(RHS->getType(), Width)),
1961                             Cont, CGF.getTrapBB());
1962    CGF.EmitBlock(Cont);
1963  }
1964
1965  return Builder.CreateShl(Ops.LHS, RHS, "shl");
1966}
1967
1968Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
1969  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
1970  // RHS to the same size as the LHS.
1971  Value *RHS = Ops.RHS;
1972  if (Ops.LHS->getType() != RHS->getType())
1973    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
1974
1975  if (CGF.CatchUndefined
1976      && isa<llvm::IntegerType>(Ops.LHS->getType())) {
1977    unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth();
1978    llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
1979    CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS,
1980                                 llvm::ConstantInt::get(RHS->getType(), Width)),
1981                             Cont, CGF.getTrapBB());
1982    CGF.EmitBlock(Cont);
1983  }
1984
1985  if (Ops.Ty->hasUnsignedIntegerRepresentation())
1986    return Builder.CreateLShr(Ops.LHS, RHS, "shr");
1987  return Builder.CreateAShr(Ops.LHS, RHS, "shr");
1988}
1989
1990enum IntrinsicType { VCMPEQ, VCMPGT };
1991// return corresponding comparison intrinsic for given vector type
1992static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
1993                                        BuiltinType::Kind ElemKind) {
1994  switch (ElemKind) {
1995  default: assert(0 && "unexpected element type");
1996  case BuiltinType::Char_U:
1997  case BuiltinType::UChar:
1998    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
1999                            llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
2000    break;
2001  case BuiltinType::Char_S:
2002  case BuiltinType::SChar:
2003    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2004                            llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
2005    break;
2006  case BuiltinType::UShort:
2007    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2008                            llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
2009    break;
2010  case BuiltinType::Short:
2011    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2012                            llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
2013    break;
2014  case BuiltinType::UInt:
2015  case BuiltinType::ULong:
2016    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2017                            llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
2018    break;
2019  case BuiltinType::Int:
2020  case BuiltinType::Long:
2021    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2022                            llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
2023    break;
2024  case BuiltinType::Float:
2025    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
2026                            llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
2027    break;
2028  }
2029  return llvm::Intrinsic::not_intrinsic;
2030}
2031
2032Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
2033                                      unsigned SICmpOpc, unsigned FCmpOpc) {
2034  TestAndClearIgnoreResultAssign();
2035  Value *Result;
2036  QualType LHSTy = E->getLHS()->getType();
2037  if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
2038    assert(E->getOpcode() == BO_EQ ||
2039           E->getOpcode() == BO_NE);
2040    Value *LHS = CGF.EmitScalarExpr(E->getLHS());
2041    Value *RHS = CGF.EmitScalarExpr(E->getRHS());
2042    Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
2043                   CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
2044  } else if (!LHSTy->isAnyComplexType()) {
2045    Value *LHS = Visit(E->getLHS());
2046    Value *RHS = Visit(E->getRHS());
2047
2048    // If AltiVec, the comparison results in a numeric type, so we use
2049    // intrinsics comparing vectors and giving 0 or 1 as a result
2050    if (LHSTy->isVectorType() && CGF.getContext().getLangOptions().AltiVec) {
2051      // constants for mapping CR6 register bits to predicate result
2052      enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
2053
2054      llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
2055
2056      // in several cases vector arguments order will be reversed
2057      Value *FirstVecArg = LHS,
2058            *SecondVecArg = RHS;
2059
2060      QualType ElTy = LHSTy->getAs<VectorType>()->getElementType();
2061      Type *Ty = CGF.getContext().getCanonicalType(ElTy).getTypePtr();
2062      const BuiltinType *BTy = dyn_cast<BuiltinType>(Ty);
2063      BuiltinType::Kind ElementKind = BTy->getKind();
2064
2065      switch(E->getOpcode()) {
2066      default: assert(0 && "is not a comparison operation");
2067      case BO_EQ:
2068        CR6 = CR6_LT;
2069        ID = GetIntrinsic(VCMPEQ, ElementKind);
2070        break;
2071      case BO_NE:
2072        CR6 = CR6_EQ;
2073        ID = GetIntrinsic(VCMPEQ, ElementKind);
2074        break;
2075      case BO_LT:
2076        CR6 = CR6_LT;
2077        ID = GetIntrinsic(VCMPGT, ElementKind);
2078        std::swap(FirstVecArg, SecondVecArg);
2079        break;
2080      case BO_GT:
2081        CR6 = CR6_LT;
2082        ID = GetIntrinsic(VCMPGT, ElementKind);
2083        break;
2084      case BO_LE:
2085        if (ElementKind == BuiltinType::Float) {
2086          CR6 = CR6_LT;
2087          ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2088          std::swap(FirstVecArg, SecondVecArg);
2089        }
2090        else {
2091          CR6 = CR6_EQ;
2092          ID = GetIntrinsic(VCMPGT, ElementKind);
2093        }
2094        break;
2095      case BO_GE:
2096        if (ElementKind == BuiltinType::Float) {
2097          CR6 = CR6_LT;
2098          ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2099        }
2100        else {
2101          CR6 = CR6_EQ;
2102          ID = GetIntrinsic(VCMPGT, ElementKind);
2103          std::swap(FirstVecArg, SecondVecArg);
2104        }
2105        break;
2106      }
2107
2108      Value *CR6Param = llvm::ConstantInt::get(CGF.Int32Ty, CR6);
2109      llvm::Function *F = CGF.CGM.getIntrinsic(ID);
2110      Result = Builder.CreateCall3(F, CR6Param, FirstVecArg, SecondVecArg, "");
2111      return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
2112    }
2113
2114    if (LHS->getType()->isFPOrFPVectorTy()) {
2115      Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
2116                                  LHS, RHS, "cmp");
2117    } else if (LHSTy->hasSignedIntegerRepresentation()) {
2118      Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
2119                                  LHS, RHS, "cmp");
2120    } else {
2121      // Unsigned integers and pointers.
2122      Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2123                                  LHS, RHS, "cmp");
2124    }
2125
2126    // If this is a vector comparison, sign extend the result to the appropriate
2127    // vector integer type and return it (don't convert to bool).
2128    if (LHSTy->isVectorType())
2129      return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2130
2131  } else {
2132    // Complex Comparison: can only be an equality comparison.
2133    CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS());
2134    CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS());
2135
2136    QualType CETy = LHSTy->getAs<ComplexType>()->getElementType();
2137
2138    Value *ResultR, *ResultI;
2139    if (CETy->isRealFloatingType()) {
2140      ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
2141                                   LHS.first, RHS.first, "cmp.r");
2142      ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
2143                                   LHS.second, RHS.second, "cmp.i");
2144    } else {
2145      // Complex comparisons can only be equality comparisons.  As such, signed
2146      // and unsigned opcodes are the same.
2147      ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2148                                   LHS.first, RHS.first, "cmp.r");
2149      ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2150                                   LHS.second, RHS.second, "cmp.i");
2151    }
2152
2153    if (E->getOpcode() == BO_EQ) {
2154      Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
2155    } else {
2156      assert(E->getOpcode() == BO_NE &&
2157             "Complex comparison other than == or != ?");
2158      Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
2159    }
2160  }
2161
2162  return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
2163}
2164
2165Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
2166  bool Ignore = TestAndClearIgnoreResultAssign();
2167
2168  // __block variables need to have the rhs evaluated first, plus this should
2169  // improve codegen just a little.
2170  Value *RHS = Visit(E->getRHS());
2171  LValue LHS = EmitCheckedLValue(E->getLHS());
2172
2173  // Store the value into the LHS.  Bit-fields are handled specially
2174  // because the result is altered by the store, i.e., [C99 6.5.16p1]
2175  // 'An assignment expression has the value of the left operand after
2176  // the assignment...'.
2177  if (LHS.isBitField())
2178    CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, E->getType(),
2179                                       &RHS);
2180  else
2181    CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS, E->getType());
2182
2183  // If the result is clearly ignored, return now.
2184  if (Ignore)
2185    return 0;
2186
2187  // The result of an assignment in C is the assigned r-value.
2188  if (!CGF.getContext().getLangOptions().CPlusPlus)
2189    return RHS;
2190
2191  // Objective-C property assignment never reloads the value following a store.
2192  if (LHS.isPropertyRef())
2193    return RHS;
2194
2195  // If the lvalue is non-volatile, return the computed value of the assignment.
2196  if (!LHS.isVolatileQualified())
2197    return RHS;
2198
2199  // Otherwise, reload the value.
2200  return EmitLoadOfLValue(LHS, E->getType());
2201}
2202
2203Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
2204  const llvm::Type *ResTy = ConvertType(E->getType());
2205
2206  // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
2207  // If we have 1 && X, just emit X without inserting the control flow.
2208  if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getLHS())) {
2209    if (Cond == 1) { // If we have 1 && X, just emit X.
2210      Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2211      // ZExt result to int or bool.
2212      return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
2213    }
2214
2215    // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
2216    if (!CGF.ContainsLabel(E->getRHS()))
2217      return llvm::Constant::getNullValue(ResTy);
2218  }
2219
2220  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
2221  llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
2222
2223  // Branch on the LHS first.  If it is false, go to the failure (cont) block.
2224  CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock);
2225
2226  // Any edges into the ContBlock are now from an (indeterminate number of)
2227  // edges from this first condition.  All of these values will be false.  Start
2228  // setting up the PHI node in the Cont Block for this.
2229  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext),
2230                                            "", ContBlock);
2231  PN->reserveOperandSpace(2);  // Normal case, two inputs.
2232  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
2233       PI != PE; ++PI)
2234    PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
2235
2236  CGF.BeginConditionalBranch();
2237  CGF.EmitBlock(RHSBlock);
2238  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2239  CGF.EndConditionalBranch();
2240
2241  // Reaquire the RHS block, as there may be subblocks inserted.
2242  RHSBlock = Builder.GetInsertBlock();
2243
2244  // Emit an unconditional branch from this block to ContBlock.  Insert an entry
2245  // into the phi node for the edge with the value of RHSCond.
2246  CGF.EmitBlock(ContBlock);
2247  PN->addIncoming(RHSCond, RHSBlock);
2248
2249  // ZExt result to int.
2250  return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
2251}
2252
2253Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
2254  const llvm::Type *ResTy = ConvertType(E->getType());
2255
2256  // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
2257  // If we have 0 || X, just emit X without inserting the control flow.
2258  if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getLHS())) {
2259    if (Cond == -1) { // If we have 0 || X, just emit X.
2260      Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2261      // ZExt result to int or bool.
2262      return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
2263    }
2264
2265    // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
2266    if (!CGF.ContainsLabel(E->getRHS()))
2267      return llvm::ConstantInt::get(ResTy, 1);
2268  }
2269
2270  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
2271  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
2272
2273  // Branch on the LHS first.  If it is true, go to the success (cont) block.
2274  CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock);
2275
2276  // Any edges into the ContBlock are now from an (indeterminate number of)
2277  // edges from this first condition.  All of these values will be true.  Start
2278  // setting up the PHI node in the Cont Block for this.
2279  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext),
2280                                            "", ContBlock);
2281  PN->reserveOperandSpace(2);  // Normal case, two inputs.
2282  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
2283       PI != PE; ++PI)
2284    PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
2285
2286  CGF.BeginConditionalBranch();
2287
2288  // Emit the RHS condition as a bool value.
2289  CGF.EmitBlock(RHSBlock);
2290  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2291
2292  CGF.EndConditionalBranch();
2293
2294  // Reaquire the RHS block, as there may be subblocks inserted.
2295  RHSBlock = Builder.GetInsertBlock();
2296
2297  // Emit an unconditional branch from this block to ContBlock.  Insert an entry
2298  // into the phi node for the edge with the value of RHSCond.
2299  CGF.EmitBlock(ContBlock);
2300  PN->addIncoming(RHSCond, RHSBlock);
2301
2302  // ZExt result to int.
2303  return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
2304}
2305
2306Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
2307  CGF.EmitStmt(E->getLHS());
2308  CGF.EnsureInsertPoint();
2309  return Visit(E->getRHS());
2310}
2311
2312//===----------------------------------------------------------------------===//
2313//                             Other Operators
2314//===----------------------------------------------------------------------===//
2315
2316/// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
2317/// expression is cheap enough and side-effect-free enough to evaluate
2318/// unconditionally instead of conditionally.  This is used to convert control
2319/// flow into selects in some cases.
2320static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
2321                                                   CodeGenFunction &CGF) {
2322  if (const ParenExpr *PE = dyn_cast<ParenExpr>(E))
2323    return isCheapEnoughToEvaluateUnconditionally(PE->getSubExpr(), CGF);
2324
2325  // TODO: Allow anything we can constant fold to an integer or fp constant.
2326  if (isa<IntegerLiteral>(E) || isa<CharacterLiteral>(E) ||
2327      isa<FloatingLiteral>(E))
2328    return true;
2329
2330  // Non-volatile automatic variables too, to get "cond ? X : Y" where
2331  // X and Y are local variables.
2332  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
2333    if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
2334      if (VD->hasLocalStorage() && !(CGF.getContext()
2335                                     .getCanonicalType(VD->getType())
2336                                     .isVolatileQualified()))
2337        return true;
2338
2339  return false;
2340}
2341
2342
2343Value *ScalarExprEmitter::
2344VisitConditionalOperator(const ConditionalOperator *E) {
2345  TestAndClearIgnoreResultAssign();
2346  // If the condition constant folds and can be elided, try to avoid emitting
2347  // the condition and the dead arm.
2348  if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getCond())){
2349    Expr *Live = E->getLHS(), *Dead = E->getRHS();
2350    if (Cond == -1)
2351      std::swap(Live, Dead);
2352
2353    // If the dead side doesn't have labels we need, and if the Live side isn't
2354    // the gnu missing ?: extension (which we could handle, but don't bother
2355    // to), just emit the Live part.
2356    if ((!Dead || !CGF.ContainsLabel(Dead)) &&  // No labels in dead part
2357        Live)                                   // Live part isn't missing.
2358      return Visit(Live);
2359  }
2360
2361  // OpenCL: If the condition is a vector, we can treat this condition like
2362  // the select function.
2363  if (CGF.getContext().getLangOptions().OpenCL
2364      && E->getCond()->getType()->isVectorType()) {
2365    llvm::Value *CondV = CGF.EmitScalarExpr(E->getCond());
2366    llvm::Value *LHS = Visit(E->getLHS());
2367    llvm::Value *RHS = Visit(E->getRHS());
2368
2369    const llvm::Type *condType = ConvertType(E->getCond()->getType());
2370    const llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
2371
2372    unsigned numElem = vecTy->getNumElements();
2373    const llvm::Type *elemType = vecTy->getElementType();
2374
2375    std::vector<llvm::Constant*> Zvals;
2376    for (unsigned i = 0; i < numElem; ++i)
2377      Zvals.push_back(llvm::ConstantInt::get(elemType,0));
2378
2379    llvm::Value *zeroVec = llvm::ConstantVector::get(Zvals);
2380    llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
2381    llvm::Value *tmp = Builder.CreateSExt(TestMSB,
2382                                          llvm::VectorType::get(elemType,
2383                                                                numElem),
2384                                          "sext");
2385    llvm::Value *tmp2 = Builder.CreateNot(tmp);
2386
2387    // Cast float to int to perform ANDs if necessary.
2388    llvm::Value *RHSTmp = RHS;
2389    llvm::Value *LHSTmp = LHS;
2390    bool wasCast = false;
2391    const llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
2392    if (rhsVTy->getElementType()->isFloatTy()) {
2393      RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
2394      LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
2395      wasCast = true;
2396    }
2397
2398    llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
2399    llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
2400    llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
2401    if (wasCast)
2402      tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
2403
2404    return tmp5;
2405  }
2406
2407  // If this is a really simple expression (like x ? 4 : 5), emit this as a
2408  // select instead of as control flow.  We can only do this if it is cheap and
2409  // safe to evaluate the LHS and RHS unconditionally.
2410  if (E->getLHS() && isCheapEnoughToEvaluateUnconditionally(E->getLHS(),
2411                                                            CGF) &&
2412      isCheapEnoughToEvaluateUnconditionally(E->getRHS(), CGF)) {
2413    llvm::Value *CondV = CGF.EvaluateExprAsBool(E->getCond());
2414    llvm::Value *LHS = Visit(E->getLHS());
2415    llvm::Value *RHS = Visit(E->getRHS());
2416    return Builder.CreateSelect(CondV, LHS, RHS, "cond");
2417  }
2418
2419  llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
2420  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
2421  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
2422
2423  // If we don't have the GNU missing condition extension, emit a branch on bool
2424  // the normal way.
2425  if (E->getLHS()) {
2426    // Otherwise, just use EmitBranchOnBoolExpr to get small and simple code for
2427    // the branch on bool.
2428    CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock);
2429  } else {
2430    // Otherwise, for the ?: extension, evaluate the conditional and then
2431    // convert it to bool the hard way.  We do this explicitly because we need
2432    // the unconverted value for the missing middle value of the ?:.
2433    Expr *save = E->getSAVE();
2434    assert(save && "VisitConditionalOperator - save is null");
2435    // Intentianlly not doing direct assignment to ConditionalSaveExprs[save] !!
2436    Value *SaveVal = CGF.EmitScalarExpr(save);
2437    CGF.ConditionalSaveExprs[save] = SaveVal;
2438    Value *CondVal = Visit(E->getCond());
2439    // In some cases, EmitScalarConversion will delete the "CondVal" expression
2440    // if there are no extra uses (an optimization).  Inhibit this by making an
2441    // extra dead use, because we're going to add a use of CondVal later.  We
2442    // don't use the builder for this, because we don't want it to get optimized
2443    // away.  This leaves dead code, but the ?: extension isn't common.
2444    new llvm::BitCastInst(CondVal, CondVal->getType(), "dummy?:holder",
2445                          Builder.GetInsertBlock());
2446
2447    Value *CondBoolVal =
2448      CGF.EmitScalarConversion(CondVal, E->getCond()->getType(),
2449                               CGF.getContext().BoolTy);
2450    Builder.CreateCondBr(CondBoolVal, LHSBlock, RHSBlock);
2451  }
2452
2453  CGF.BeginConditionalBranch();
2454  CGF.EmitBlock(LHSBlock);
2455
2456  // Handle the GNU extension for missing LHS.
2457  Value *LHS = Visit(E->getTrueExpr());
2458
2459  CGF.EndConditionalBranch();
2460  LHSBlock = Builder.GetInsertBlock();
2461  CGF.EmitBranch(ContBlock);
2462
2463  CGF.BeginConditionalBranch();
2464  CGF.EmitBlock(RHSBlock);
2465
2466  Value *RHS = Visit(E->getRHS());
2467  CGF.EndConditionalBranch();
2468  RHSBlock = Builder.GetInsertBlock();
2469  CGF.EmitBranch(ContBlock);
2470
2471  CGF.EmitBlock(ContBlock);
2472
2473  // If the LHS or RHS is a throw expression, it will be legitimately null.
2474  if (!LHS)
2475    return RHS;
2476  if (!RHS)
2477    return LHS;
2478
2479  // Create a PHI node for the real part.
2480  llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), "cond");
2481  PN->reserveOperandSpace(2);
2482  PN->addIncoming(LHS, LHSBlock);
2483  PN->addIncoming(RHS, RHSBlock);
2484  return PN;
2485}
2486
2487Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
2488  return Visit(E->getChosenSubExpr(CGF.getContext()));
2489}
2490
2491Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
2492  llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
2493  llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
2494
2495  // If EmitVAArg fails, we fall back to the LLVM instruction.
2496  if (!ArgPtr)
2497    return Builder.CreateVAArg(ArgValue, ConvertType(VE->getType()));
2498
2499  // FIXME Volatility.
2500  return Builder.CreateLoad(ArgPtr);
2501}
2502
2503Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *BE) {
2504  return CGF.BuildBlockLiteralTmp(BE);
2505}
2506
2507//===----------------------------------------------------------------------===//
2508//                         Entry Point into this File
2509//===----------------------------------------------------------------------===//
2510
2511/// EmitScalarExpr - Emit the computation of the specified expression of scalar
2512/// type, ignoring the result.
2513Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
2514  assert(E && !hasAggregateLLVMType(E->getType()) &&
2515         "Invalid scalar expression to emit");
2516
2517  return ScalarExprEmitter(*this, IgnoreResultAssign)
2518    .Visit(const_cast<Expr*>(E));
2519}
2520
2521/// EmitScalarConversion - Emit a conversion from the specified type to the
2522/// specified destination type, both of which are LLVM scalar types.
2523Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
2524                                             QualType DstTy) {
2525  assert(!hasAggregateLLVMType(SrcTy) && !hasAggregateLLVMType(DstTy) &&
2526         "Invalid scalar expression to emit");
2527  return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
2528}
2529
2530/// EmitComplexToScalarConversion - Emit a conversion from the specified complex
2531/// type to the specified destination type, where the destination type is an
2532/// LLVM scalar type.
2533Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
2534                                                      QualType SrcTy,
2535                                                      QualType DstTy) {
2536  assert(SrcTy->isAnyComplexType() && !hasAggregateLLVMType(DstTy) &&
2537         "Invalid complex -> scalar conversion");
2538  return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy,
2539                                                                DstTy);
2540}
2541
2542
2543llvm::Value *CodeGenFunction::
2544EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2545                        bool isInc, bool isPre) {
2546  return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
2547}
2548
2549LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
2550  llvm::Value *V;
2551  // object->isa or (*object).isa
2552  // Generate code as for: *(Class*)object
2553  // build Class* type
2554  const llvm::Type *ClassPtrTy = ConvertType(E->getType());
2555
2556  Expr *BaseExpr = E->getBase();
2557  if (BaseExpr->isRValue()) {
2558    V = CreateTempAlloca(ClassPtrTy, "resval");
2559    llvm::Value *Src = EmitScalarExpr(BaseExpr);
2560    Builder.CreateStore(Src, V);
2561    V = ScalarExprEmitter(*this).EmitLoadOfLValue(
2562      MakeAddrLValue(V, E->getType()), E->getType());
2563  } else {
2564    if (E->isArrow())
2565      V = ScalarExprEmitter(*this).EmitLoadOfLValue(BaseExpr);
2566    else
2567      V = EmitLValue(BaseExpr).getAddress();
2568  }
2569
2570  // build Class* type
2571  ClassPtrTy = ClassPtrTy->getPointerTo();
2572  V = Builder.CreateBitCast(V, ClassPtrTy);
2573  return MakeAddrLValue(V, E->getType());
2574}
2575
2576
2577LValue CodeGenFunction::EmitCompoundAssignOperatorLValue(
2578                                            const CompoundAssignOperator *E) {
2579  ScalarExprEmitter Scalar(*this);
2580  Value *Result = 0;
2581  switch (E->getOpcode()) {
2582#define COMPOUND_OP(Op)                                                       \
2583    case BO_##Op##Assign:                                                     \
2584      return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
2585                                             Result)
2586  COMPOUND_OP(Mul);
2587  COMPOUND_OP(Div);
2588  COMPOUND_OP(Rem);
2589  COMPOUND_OP(Add);
2590  COMPOUND_OP(Sub);
2591  COMPOUND_OP(Shl);
2592  COMPOUND_OP(Shr);
2593  COMPOUND_OP(And);
2594  COMPOUND_OP(Xor);
2595  COMPOUND_OP(Or);
2596#undef COMPOUND_OP
2597
2598  case BO_PtrMemD:
2599  case BO_PtrMemI:
2600  case BO_Mul:
2601  case BO_Div:
2602  case BO_Rem:
2603  case BO_Add:
2604  case BO_Sub:
2605  case BO_Shl:
2606  case BO_Shr:
2607  case BO_LT:
2608  case BO_GT:
2609  case BO_LE:
2610  case BO_GE:
2611  case BO_EQ:
2612  case BO_NE:
2613  case BO_And:
2614  case BO_Xor:
2615  case BO_Or:
2616  case BO_LAnd:
2617  case BO_LOr:
2618  case BO_Assign:
2619  case BO_Comma:
2620    assert(false && "Not valid compound assignment operators");
2621    break;
2622  }
2623
2624  llvm_unreachable("Unhandled compound assignment operator");
2625}
2626