LiteralSupport.cpp revision 70f66ab053f36ab3df7a778d09bcb2b4b0fec1f8
1//===--- LiteralSupport.cpp - Code to parse and process literals ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the NumericLiteralParser, CharLiteralParser, and
11// StringLiteralParser interfaces.
12//
13//===----------------------------------------------------------------------===//
14
15#include "clang/Lex/LiteralSupport.h"
16#include "clang/Lex/Preprocessor.h"
17#include "clang/Basic/Diagnostic.h"
18#include "clang/Basic/SourceManager.h"
19#include "clang/Basic/TargetInfo.h"
20#include "llvm/ADT/StringExtras.h"
21using namespace clang;
22
23/// HexDigitValue - Return the value of the specified hex digit, or -1 if it's
24/// not valid.
25static int HexDigitValue(char C) {
26  if (C >= '0' && C <= '9') return C-'0';
27  if (C >= 'a' && C <= 'f') return C-'a'+10;
28  if (C >= 'A' && C <= 'F') return C-'A'+10;
29  return -1;
30}
31
32/// ProcessCharEscape - Parse a standard C escape sequence, which can occur in
33/// either a character or a string literal.
34static unsigned ProcessCharEscape(const char *&ThisTokBuf,
35                                  const char *ThisTokEnd, bool &HadError,
36                                  SourceLocation Loc, bool IsWide,
37                                  Preprocessor &PP) {
38  // Skip the '\' char.
39  ++ThisTokBuf;
40
41  // We know that this character can't be off the end of the buffer, because
42  // that would have been \", which would not have been the end of string.
43  unsigned ResultChar = *ThisTokBuf++;
44  switch (ResultChar) {
45  // These map to themselves.
46  case '\\': case '\'': case '"': case '?': break;
47
48    // These have fixed mappings.
49  case 'a':
50    // TODO: K&R: the meaning of '\\a' is different in traditional C
51    ResultChar = 7;
52    break;
53  case 'b':
54    ResultChar = 8;
55    break;
56  case 'e':
57    PP.Diag(Loc, diag::ext_nonstandard_escape, "e");
58    ResultChar = 27;
59    break;
60  case 'f':
61    ResultChar = 12;
62    break;
63  case 'n':
64    ResultChar = 10;
65    break;
66  case 'r':
67    ResultChar = 13;
68    break;
69  case 't':
70    ResultChar = 9;
71    break;
72  case 'v':
73    ResultChar = 11;
74    break;
75
76    //case 'u': case 'U':  // FIXME: UCNs.
77  case 'x': { // Hex escape.
78    ResultChar = 0;
79    if (ThisTokBuf == ThisTokEnd || !isxdigit(*ThisTokBuf)) {
80      PP.Diag(Loc, diag::err_hex_escape_no_digits);
81      HadError = 1;
82      break;
83    }
84
85    // Hex escapes are a maximal series of hex digits.
86    bool Overflow = false;
87    for (; ThisTokBuf != ThisTokEnd; ++ThisTokBuf) {
88      int CharVal = HexDigitValue(ThisTokBuf[0]);
89      if (CharVal == -1) break;
90      Overflow |= (ResultChar & 0xF0000000) ? true : false;  // About to shift out a digit?
91      ResultChar <<= 4;
92      ResultChar |= CharVal;
93    }
94
95    // See if any bits will be truncated when evaluated as a character.
96    unsigned CharWidth = PP.getTargetInfo().getCharWidth(IsWide);
97
98    if (CharWidth != 32 && (ResultChar >> CharWidth) != 0) {
99      Overflow = true;
100      ResultChar &= ~0U >> (32-CharWidth);
101    }
102
103    // Check for overflow.
104    if (Overflow)   // Too many digits to fit in
105      PP.Diag(Loc, diag::warn_hex_escape_too_large);
106    break;
107  }
108  case '0': case '1': case '2': case '3':
109  case '4': case '5': case '6': case '7': {
110    // Octal escapes.
111    --ThisTokBuf;
112    ResultChar = 0;
113
114    // Octal escapes are a series of octal digits with maximum length 3.
115    // "\0123" is a two digit sequence equal to "\012" "3".
116    unsigned NumDigits = 0;
117    do {
118      ResultChar <<= 3;
119      ResultChar |= *ThisTokBuf++ - '0';
120      ++NumDigits;
121    } while (ThisTokBuf != ThisTokEnd && NumDigits < 3 &&
122             ThisTokBuf[0] >= '0' && ThisTokBuf[0] <= '7');
123
124    // Check for overflow.  Reject '\777', but not L'\777'.
125    unsigned CharWidth = PP.getTargetInfo().getCharWidth(IsWide);
126
127    if (CharWidth != 32 && (ResultChar >> CharWidth) != 0) {
128      PP.Diag(Loc, diag::warn_octal_escape_too_large);
129      ResultChar &= ~0U >> (32-CharWidth);
130    }
131    break;
132  }
133
134    // Otherwise, these are not valid escapes.
135  case '(': case '{': case '[': case '%':
136    // GCC accepts these as extensions.  We warn about them as such though.
137    if (!PP.getLangOptions().NoExtensions) {
138      PP.Diag(Loc, diag::ext_nonstandard_escape,
139              std::string()+(char)ResultChar);
140      break;
141    }
142    // FALL THROUGH.
143  default:
144    if (isgraph(ThisTokBuf[0])) {
145      PP.Diag(Loc, diag::ext_unknown_escape, std::string()+(char)ResultChar);
146    } else {
147      PP.Diag(Loc, diag::ext_unknown_escape, "x"+llvm::utohexstr(ResultChar));
148    }
149    break;
150  }
151
152  return ResultChar;
153}
154
155
156
157
158///       integer-constant: [C99 6.4.4.1]
159///         decimal-constant integer-suffix
160///         octal-constant integer-suffix
161///         hexadecimal-constant integer-suffix
162///       decimal-constant:
163///         nonzero-digit
164///         decimal-constant digit
165///       octal-constant:
166///         0
167///         octal-constant octal-digit
168///       hexadecimal-constant:
169///         hexadecimal-prefix hexadecimal-digit
170///         hexadecimal-constant hexadecimal-digit
171///       hexadecimal-prefix: one of
172///         0x 0X
173///       integer-suffix:
174///         unsigned-suffix [long-suffix]
175///         unsigned-suffix [long-long-suffix]
176///         long-suffix [unsigned-suffix]
177///         long-long-suffix [unsigned-sufix]
178///       nonzero-digit:
179///         1 2 3 4 5 6 7 8 9
180///       octal-digit:
181///         0 1 2 3 4 5 6 7
182///       hexadecimal-digit:
183///         0 1 2 3 4 5 6 7 8 9
184///         a b c d e f
185///         A B C D E F
186///       unsigned-suffix: one of
187///         u U
188///       long-suffix: one of
189///         l L
190///       long-long-suffix: one of
191///         ll LL
192///
193///       floating-constant: [C99 6.4.4.2]
194///         TODO: add rules...
195///
196
197NumericLiteralParser::
198NumericLiteralParser(const char *begin, const char *end,
199                     SourceLocation TokLoc, Preprocessor &pp)
200  : PP(pp), ThisTokBegin(begin), ThisTokEnd(end) {
201  s = DigitsBegin = begin;
202  saw_exponent = false;
203  saw_period = false;
204  isLong = false;
205  isUnsigned = false;
206  isLongLong = false;
207  isFloat = false;
208  isImaginary = false;
209  hadError = false;
210
211  if (*s == '0') { // parse radix
212    s++;
213    if ((*s == 'x' || *s == 'X') && (isxdigit(s[1]) || s[1] == '.')) {
214      s++;
215      radix = 16;
216      DigitsBegin = s;
217      s = SkipHexDigits(s);
218      if (s == ThisTokEnd) {
219        // Done.
220      } else if (*s == '.') {
221        s++;
222        saw_period = true;
223        s = SkipHexDigits(s);
224      }
225      // A binary exponent can appear with or with a '.'. If dotted, the
226      // binary exponent is required.
227      if ((*s == 'p' || *s == 'P') && PP.getLangOptions().HexFloats) {
228        const char *Exponent = s;
229        s++;
230        saw_exponent = true;
231        if (*s == '+' || *s == '-')  s++; // sign
232        const char *first_non_digit = SkipDigits(s);
233        if (first_non_digit != s) {
234          s = first_non_digit;
235        } else {
236          Diag(PP.AdvanceToTokenCharacter(TokLoc, Exponent-begin),
237               diag::err_exponent_has_no_digits);
238          return;
239        }
240      } else if (saw_period) {
241        Diag(PP.AdvanceToTokenCharacter(TokLoc, s-begin),
242             diag::err_hexconstant_requires_exponent);
243        return;
244      }
245    } else if (*s == 'b' || *s == 'B') {
246      // 0b101010 is a GCC extension.
247      ++s;
248      radix = 2;
249      DigitsBegin = s;
250      s = SkipBinaryDigits(s);
251      if (s == ThisTokEnd) {
252        // Done.
253      } else if (isxdigit(*s)) {
254        Diag(PP.AdvanceToTokenCharacter(TokLoc, s-begin),
255             diag::err_invalid_binary_digit, std::string(s, s+1));
256        return;
257      }
258      PP.Diag(TokLoc, diag::ext_binary_literal);
259    } else {
260      // For now, the radix is set to 8. If we discover that we have a
261      // floating point constant, the radix will change to 10. Octal floating
262      // point constants are not permitted (only decimal and hexadecimal).
263      radix = 8;
264      DigitsBegin = s;
265      s = SkipOctalDigits(s);
266      if (s == ThisTokEnd) {
267        // Done.
268      } else if (isxdigit(*s) && !(*s == 'e' || *s == 'E')) {
269        Diag(PP.AdvanceToTokenCharacter(TokLoc, s-begin),
270             diag::err_invalid_octal_digit, std::string(s, s+1));
271        return;
272      } else if (*s == '.') {
273        s++;
274        radix = 10;
275        saw_period = true;
276        s = SkipDigits(s);
277      }
278      if (*s == 'e' || *s == 'E') { // exponent
279        const char *Exponent = s;
280        s++;
281        radix = 10;
282        saw_exponent = true;
283        if (*s == '+' || *s == '-')  s++; // sign
284        const char *first_non_digit = SkipDigits(s);
285        if (first_non_digit != s) {
286          s = first_non_digit;
287        } else {
288          Diag(PP.AdvanceToTokenCharacter(TokLoc, Exponent-begin),
289               diag::err_exponent_has_no_digits);
290          return;
291        }
292      }
293    }
294  } else { // the first digit is non-zero
295    radix = 10;
296    s = SkipDigits(s);
297    if (s == ThisTokEnd) {
298      // Done.
299    } else if (isxdigit(*s) && !(*s == 'e' || *s == 'E')) {
300      Diag(PP.AdvanceToTokenCharacter(TokLoc, s-begin),
301           diag::err_invalid_decimal_digit, std::string(s, s+1));
302      return;
303    } else if (*s == '.') {
304      s++;
305      saw_period = true;
306      s = SkipDigits(s);
307    }
308    if (*s == 'e' || *s == 'E') { // exponent
309      const char *Exponent = s;
310      s++;
311      saw_exponent = true;
312      if (*s == '+' || *s == '-')  s++; // sign
313      const char *first_non_digit = SkipDigits(s);
314      if (first_non_digit != s) {
315        s = first_non_digit;
316      } else {
317        Diag(PP.AdvanceToTokenCharacter(TokLoc, Exponent-begin),
318             diag::err_exponent_has_no_digits);
319        return;
320      }
321    }
322  }
323
324  SuffixBegin = s;
325
326  // Parse the suffix.  At this point we can classify whether we have an FP or
327  // integer constant.
328  bool isFPConstant = isFloatingLiteral();
329
330  // Loop over all of the characters of the suffix.  If we see something bad,
331  // we break out of the loop.
332  for (; s != ThisTokEnd; ++s) {
333    switch (*s) {
334    case 'f':      // FP Suffix for "float"
335    case 'F':
336      if (!isFPConstant) break;  // Error for integer constant.
337      if (isFloat || isLong) break; // FF, LF invalid.
338      isFloat = true;
339      continue;  // Success.
340    case 'u':
341    case 'U':
342      if (isFPConstant) break;  // Error for floating constant.
343      if (isUnsigned) break;    // Cannot be repeated.
344      isUnsigned = true;
345      continue;  // Success.
346    case 'l':
347    case 'L':
348      if (isLong || isLongLong) break;  // Cannot be repeated.
349      if (isFloat) break;               // LF invalid.
350
351      // Check for long long.  The L's need to be adjacent and the same case.
352      if (s+1 != ThisTokEnd && s[1] == s[0]) {
353        if (isFPConstant) break;        // long long invalid for floats.
354        isLongLong = true;
355        ++s;  // Eat both of them.
356      } else {
357        isLong = true;
358      }
359      continue;  // Success.
360    case 'i':
361      if (PP.getLangOptions().Microsoft) {
362        // Allow i8, i16, i32, i64, and i128.
363        if (++s == ThisTokEnd) break;
364        switch (*s) {
365          case '8':
366            s++; // i8 suffix
367            break;
368          case '1':
369            if (++s == ThisTokEnd) break;
370            if (*s == '6') s++; // i16 suffix
371            else if (*s == '2') {
372              if (++s == ThisTokEnd) break;
373              if (*s == '8') s++; // i128 suffix
374            }
375            break;
376          case '3':
377            if (++s == ThisTokEnd) break;
378            if (*s == '2') s++; // i32 suffix
379            break;
380          case '6':
381            if (++s == ThisTokEnd) break;
382            if (*s == '4') s++; // i64 suffix
383            break;
384          default:
385            break;
386        }
387        break;
388      }
389      // fall through.
390    case 'I':
391    case 'j':
392    case 'J':
393      if (isImaginary) break;   // Cannot be repeated.
394      PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s-begin),
395              diag::ext_imaginary_constant);
396      isImaginary = true;
397      continue;  // Success.
398    }
399    // If we reached here, there was an error.
400    break;
401  }
402
403  // Report an error if there are any.
404  if (s != ThisTokEnd) {
405    Diag(PP.AdvanceToTokenCharacter(TokLoc, s-begin),
406         isFPConstant ? diag::err_invalid_suffix_float_constant :
407                        diag::err_invalid_suffix_integer_constant,
408         std::string(SuffixBegin, ThisTokEnd));
409    return;
410  }
411}
412
413/// GetIntegerValue - Convert this numeric literal value to an APInt that
414/// matches Val's input width.  If there is an overflow, set Val to the low bits
415/// of the result and return true.  Otherwise, return false.
416bool NumericLiteralParser::GetIntegerValue(llvm::APInt &Val) {
417  Val = 0;
418  s = DigitsBegin;
419
420  llvm::APInt RadixVal(Val.getBitWidth(), radix);
421  llvm::APInt CharVal(Val.getBitWidth(), 0);
422  llvm::APInt OldVal = Val;
423
424  bool OverflowOccurred = false;
425  while (s < SuffixBegin) {
426    unsigned C = HexDigitValue(*s++);
427
428    // If this letter is out of bound for this radix, reject it.
429    assert(C < radix && "NumericLiteralParser ctor should have rejected this");
430
431    CharVal = C;
432
433    // Add the digit to the value in the appropriate radix.  If adding in digits
434    // made the value smaller, then this overflowed.
435    OldVal = Val;
436
437    // Multiply by radix, did overflow occur on the multiply?
438    Val *= RadixVal;
439    OverflowOccurred |= Val.udiv(RadixVal) != OldVal;
440
441    OldVal = Val;
442    // Add value, did overflow occur on the value?
443    Val += CharVal;
444    OverflowOccurred |= Val.ult(OldVal);
445    OverflowOccurred |= Val.ult(CharVal);
446  }
447  return OverflowOccurred;
448}
449
450llvm::APFloat NumericLiteralParser::
451GetFloatValue(const llvm::fltSemantics &Format, bool* isExact) {
452  using llvm::APFloat;
453
454  llvm::SmallVector<char,256> floatChars;
455  for (unsigned i = 0, n = ThisTokEnd-ThisTokBegin; i != n; ++i)
456    floatChars.push_back(ThisTokBegin[i]);
457
458  floatChars.push_back('\0');
459
460  APFloat V (Format, APFloat::fcZero, false);
461  APFloat::opStatus status;
462
463  status = V.convertFromString(&floatChars[0],APFloat::rmNearestTiesToEven);
464
465  if (isExact)
466    *isExact = status == APFloat::opOK;
467
468  return V;
469}
470
471void NumericLiteralParser::Diag(SourceLocation Loc, unsigned DiagID,
472          const std::string &M) {
473  PP.Diag(Loc, DiagID, M);
474  hadError = true;
475}
476
477
478CharLiteralParser::CharLiteralParser(const char *begin, const char *end,
479                                     SourceLocation Loc, Preprocessor &PP) {
480  // At this point we know that the character matches the regex "L?'.*'".
481  HadError = false;
482  Value = 0;
483
484  // Determine if this is a wide character.
485  IsWide = begin[0] == 'L';
486  if (IsWide) ++begin;
487
488  // Skip over the entry quote.
489  assert(begin[0] == '\'' && "Invalid token lexed");
490  ++begin;
491
492  // FIXME: This assumes that 'int' is 32-bits in overflow calculation, and the
493  // size of "value".
494  assert(PP.getTargetInfo().getIntWidth() == 32 &&
495         "Assumes sizeof(int) == 4 for now");
496  // FIXME: This assumes that wchar_t is 32-bits for now.
497  assert(PP.getTargetInfo().getWCharWidth() == 32 &&
498         "Assumes sizeof(wchar_t) == 4 for now");
499  // FIXME: This extensively assumes that 'char' is 8-bits.
500  assert(PP.getTargetInfo().getCharWidth() == 8 &&
501         "Assumes char is 8 bits");
502
503  bool isFirstChar = true;
504  bool isMultiChar = false;
505  while (begin[0] != '\'') {
506    unsigned ResultChar;
507    if (begin[0] != '\\')     // If this is a normal character, consume it.
508      ResultChar = *begin++;
509    else                      // Otherwise, this is an escape character.
510      ResultChar = ProcessCharEscape(begin, end, HadError, Loc, IsWide, PP);
511
512    // If this is a multi-character constant (e.g. 'abc'), handle it.  These are
513    // implementation defined (C99 6.4.4.4p10).
514    if (!isFirstChar) {
515      // If this is the second character being processed, do special handling.
516      if (!isMultiChar) {
517        isMultiChar = true;
518
519        // Warn about discarding the top bits for multi-char wide-character
520        // constants (L'abcd').
521        if (IsWide)
522          PP.Diag(Loc, diag::warn_extraneous_wide_char_constant);
523      }
524
525      if (IsWide) {
526        // Emulate GCC's (unintentional?) behavior: L'ab' -> L'b'.
527        Value = 0;
528      } else {
529        // Narrow character literals act as though their value is concatenated
530        // in this implementation.
531        if (((Value << 8) >> 8) != Value)
532          PP.Diag(Loc, diag::warn_char_constant_too_large);
533        Value <<= 8;
534      }
535    }
536
537    Value += ResultChar;
538    isFirstChar = false;
539  }
540
541  // If this is a single narrow character, sign extend it (e.g. '\xFF' is "-1")
542  // if 'char' is signed for this target (C99 6.4.4.4p10).  Note that multiple
543  // character constants are not sign extended in the this implementation:
544  // '\xFF\xFF' = 65536 and '\x0\xFF' = 255, which matches GCC.
545  if (!IsWide && !isMultiChar && (Value & 128) &&
546      PP.getTargetInfo().isCharSigned())
547    Value = (signed char)Value;
548}
549
550
551///       string-literal: [C99 6.4.5]
552///          " [s-char-sequence] "
553///         L" [s-char-sequence] "
554///       s-char-sequence:
555///         s-char
556///         s-char-sequence s-char
557///       s-char:
558///         any source character except the double quote ",
559///           backslash \, or newline character
560///         escape-character
561///         universal-character-name
562///       escape-character: [C99 6.4.4.4]
563///         \ escape-code
564///         universal-character-name
565///       escape-code:
566///         character-escape-code
567///         octal-escape-code
568///         hex-escape-code
569///       character-escape-code: one of
570///         n t b r f v a
571///         \ ' " ?
572///       octal-escape-code:
573///         octal-digit
574///         octal-digit octal-digit
575///         octal-digit octal-digit octal-digit
576///       hex-escape-code:
577///         x hex-digit
578///         hex-escape-code hex-digit
579///       universal-character-name:
580///         \u hex-quad
581///         \U hex-quad hex-quad
582///       hex-quad:
583///         hex-digit hex-digit hex-digit hex-digit
584///
585StringLiteralParser::
586StringLiteralParser(const Token *StringToks, unsigned NumStringToks,
587                    Preprocessor &pp, TargetInfo &t)
588  : PP(pp), Target(t) {
589  // Scan all of the string portions, remember the max individual token length,
590  // computing a bound on the concatenated string length, and see whether any
591  // piece is a wide-string.  If any of the string portions is a wide-string
592  // literal, the result is a wide-string literal [C99 6.4.5p4].
593  MaxTokenLength = StringToks[0].getLength();
594  SizeBound = StringToks[0].getLength()-2;  // -2 for "".
595  AnyWide = StringToks[0].is(tok::wide_string_literal);
596
597  hadError = false;
598
599  // Implement Translation Phase #6: concatenation of string literals
600  /// (C99 5.1.1.2p1).  The common case is only one string fragment.
601  for (unsigned i = 1; i != NumStringToks; ++i) {
602    // The string could be shorter than this if it needs cleaning, but this is a
603    // reasonable bound, which is all we need.
604    SizeBound += StringToks[i].getLength()-2;  // -2 for "".
605
606    // Remember maximum string piece length.
607    if (StringToks[i].getLength() > MaxTokenLength)
608      MaxTokenLength = StringToks[i].getLength();
609
610    // Remember if we see any wide strings.
611    AnyWide |= StringToks[i].is(tok::wide_string_literal);
612  }
613
614
615  // Include space for the null terminator.
616  ++SizeBound;
617
618  // TODO: K&R warning: "traditional C rejects string constant concatenation"
619
620  // Get the width in bytes of wchar_t.  If no wchar_t strings are used, do not
621  // query the target.  As such, wchar_tByteWidth is only valid if AnyWide=true.
622  wchar_tByteWidth = ~0U;
623  if (AnyWide) {
624    wchar_tByteWidth = Target.getWCharWidth();
625    assert((wchar_tByteWidth & 7) == 0 && "Assumes wchar_t is byte multiple!");
626    wchar_tByteWidth /= 8;
627  }
628
629  // The output buffer size needs to be large enough to hold wide characters.
630  // This is a worst-case assumption which basically corresponds to L"" "long".
631  if (AnyWide)
632    SizeBound *= wchar_tByteWidth;
633
634  // Size the temporary buffer to hold the result string data.
635  ResultBuf.resize(SizeBound);
636
637  // Likewise, but for each string piece.
638  llvm::SmallString<512> TokenBuf;
639  TokenBuf.resize(MaxTokenLength);
640
641  // Loop over all the strings, getting their spelling, and expanding them to
642  // wide strings as appropriate.
643  ResultPtr = &ResultBuf[0];   // Next byte to fill in.
644
645  Pascal = false;
646
647  for (unsigned i = 0, e = NumStringToks; i != e; ++i) {
648    const char *ThisTokBuf = &TokenBuf[0];
649    // Get the spelling of the token, which eliminates trigraphs, etc.  We know
650    // that ThisTokBuf points to a buffer that is big enough for the whole token
651    // and 'spelled' tokens can only shrink.
652    unsigned ThisTokLen = PP.getSpelling(StringToks[i], ThisTokBuf);
653    const char *ThisTokEnd = ThisTokBuf+ThisTokLen-1;  // Skip end quote.
654
655    // TODO: Input character set mapping support.
656
657    // Skip L marker for wide strings.
658    bool ThisIsWide = false;
659    if (ThisTokBuf[0] == 'L') {
660      ++ThisTokBuf;
661      ThisIsWide = true;
662    }
663
664    assert(ThisTokBuf[0] == '"' && "Expected quote, lexer broken?");
665    ++ThisTokBuf;
666
667    // Check if this is a pascal string
668    if (pp.getLangOptions().PascalStrings && ThisTokBuf + 1 != ThisTokEnd &&
669        ThisTokBuf[0] == '\\' && ThisTokBuf[1] == 'p') {
670
671      // If the \p sequence is found in the first token, we have a pascal string
672      // Otherwise, if we already have a pascal string, ignore the first \p
673      if (i == 0) {
674        ++ThisTokBuf;
675        Pascal = true;
676      } else if (Pascal)
677        ThisTokBuf += 2;
678    }
679
680    while (ThisTokBuf != ThisTokEnd) {
681      // Is this a span of non-escape characters?
682      if (ThisTokBuf[0] != '\\') {
683        const char *InStart = ThisTokBuf;
684        do {
685          ++ThisTokBuf;
686        } while (ThisTokBuf != ThisTokEnd && ThisTokBuf[0] != '\\');
687
688        // Copy the character span over.
689        unsigned Len = ThisTokBuf-InStart;
690        if (!AnyWide) {
691          memcpy(ResultPtr, InStart, Len);
692          ResultPtr += Len;
693        } else {
694          // Note: our internal rep of wide char tokens is always little-endian.
695          for (; Len; --Len, ++InStart) {
696            *ResultPtr++ = InStart[0];
697            // Add zeros at the end.
698            for (unsigned i = 1, e = wchar_tByteWidth; i != e; ++i)
699            *ResultPtr++ = 0;
700          }
701        }
702        continue;
703      }
704
705      // Otherwise, this is an escape character.  Process it.
706      unsigned ResultChar = ProcessCharEscape(ThisTokBuf, ThisTokEnd, hadError,
707                                              StringToks[i].getLocation(),
708                                              ThisIsWide, PP);
709
710      // Note: our internal rep of wide char tokens is always little-endian.
711      *ResultPtr++ = ResultChar & 0xFF;
712
713      if (AnyWide) {
714        for (unsigned i = 1, e = wchar_tByteWidth; i != e; ++i)
715          *ResultPtr++ = ResultChar >> i*8;
716      }
717    }
718  }
719
720  // Add zero terminator.
721  *ResultPtr = 0;
722  if (AnyWide) {
723    for (unsigned i = 1, e = wchar_tByteWidth; i != e; ++i)
724    *ResultPtr++ = 0;
725  }
726
727  if (Pascal)
728    ResultBuf[0] = ResultPtr-&ResultBuf[0]-1;
729}
730