SemaExpr.cpp revision 077c1e7377edeef3438ba59cd8151177868b62d4
1//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/ExprCXX.h"
18#include "clang/AST/ExprObjC.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/Lex/Preprocessor.h"
21#include "clang/Lex/LiteralSupport.h"
22#include "clang/Basic/SourceManager.h"
23#include "clang/Basic/TargetInfo.h"
24#include "clang/Parse/DeclSpec.h"
25#include "clang/Parse/Designator.h"
26#include "clang/Parse/Scope.h"
27using namespace clang;
28
29/// \brief Determine whether the use of this declaration is valid, and
30/// emit any corresponding diagnostics.
31///
32/// This routine diagnoses various problems with referencing
33/// declarations that can occur when using a declaration. For example,
34/// it might warn if a deprecated or unavailable declaration is being
35/// used, or produce an error (and return true) if a C++0x deleted
36/// function is being used.
37///
38/// \returns true if there was an error (this declaration cannot be
39/// referenced), false otherwise.
40bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc) {
41  // See if the decl is deprecated.
42  if (D->getAttr<DeprecatedAttr>()) {
43    // Implementing deprecated stuff requires referencing deprecated
44    // stuff. Don't warn if we are implementing a deprecated
45    // construct.
46    bool isSilenced = false;
47
48    if (NamedDecl *ND = getCurFunctionOrMethodDecl()) {
49      // If this reference happens *in* a deprecated function or method, don't
50      // warn.
51      isSilenced = ND->getAttr<DeprecatedAttr>();
52
53      // If this is an Objective-C method implementation, check to see if the
54      // method was deprecated on the declaration, not the definition.
55      if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(ND)) {
56        // The semantic decl context of a ObjCMethodDecl is the
57        // ObjCImplementationDecl.
58        if (ObjCImplementationDecl *Impl
59              = dyn_cast<ObjCImplementationDecl>(MD->getParent())) {
60
61          MD = Impl->getClassInterface()->getMethod(MD->getSelector(),
62                                                    MD->isInstanceMethod());
63          isSilenced |= MD && MD->getAttr<DeprecatedAttr>();
64        }
65      }
66    }
67
68    if (!isSilenced)
69      Diag(Loc, diag::warn_deprecated) << D->getDeclName();
70  }
71
72  // See if this is a deleted function.
73  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
74    if (FD->isDeleted()) {
75      Diag(Loc, diag::err_deleted_function_use);
76      Diag(D->getLocation(), diag::note_unavailable_here) << true;
77      return true;
78    }
79  }
80
81  // See if the decl is unavailable
82  if (D->getAttr<UnavailableAttr>()) {
83    Diag(Loc, diag::warn_unavailable) << D->getDeclName();
84    Diag(D->getLocation(), diag::note_unavailable_here) << 0;
85  }
86
87  return false;
88}
89
90SourceRange Sema::getExprRange(ExprTy *E) const {
91  Expr *Ex = (Expr *)E;
92  return Ex? Ex->getSourceRange() : SourceRange();
93}
94
95//===----------------------------------------------------------------------===//
96//  Standard Promotions and Conversions
97//===----------------------------------------------------------------------===//
98
99/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
100void Sema::DefaultFunctionArrayConversion(Expr *&E) {
101  QualType Ty = E->getType();
102  assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
103
104  if (Ty->isFunctionType())
105    ImpCastExprToType(E, Context.getPointerType(Ty));
106  else if (Ty->isArrayType()) {
107    // In C90 mode, arrays only promote to pointers if the array expression is
108    // an lvalue.  The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
109    // type 'array of type' is converted to an expression that has type 'pointer
110    // to type'...".  In C99 this was changed to: C99 6.3.2.1p3: "an expression
111    // that has type 'array of type' ...".  The relevant change is "an lvalue"
112    // (C90) to "an expression" (C99).
113    //
114    // C++ 4.2p1:
115    // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
116    // T" can be converted to an rvalue of type "pointer to T".
117    //
118    if (getLangOptions().C99 || getLangOptions().CPlusPlus ||
119        E->isLvalue(Context) == Expr::LV_Valid)
120      ImpCastExprToType(E, Context.getArrayDecayedType(Ty));
121  }
122}
123
124/// UsualUnaryConversions - Performs various conversions that are common to most
125/// operators (C99 6.3). The conversions of array and function types are
126/// sometimes surpressed. For example, the array->pointer conversion doesn't
127/// apply if the array is an argument to the sizeof or address (&) operators.
128/// In these instances, this routine should *not* be called.
129Expr *Sema::UsualUnaryConversions(Expr *&Expr) {
130  QualType Ty = Expr->getType();
131  assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
132
133  if (Ty->isPromotableIntegerType()) // C99 6.3.1.1p2
134    ImpCastExprToType(Expr, Context.IntTy);
135  else
136    DefaultFunctionArrayConversion(Expr);
137
138  return Expr;
139}
140
141/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
142/// do not have a prototype. Arguments that have type float are promoted to
143/// double. All other argument types are converted by UsualUnaryConversions().
144void Sema::DefaultArgumentPromotion(Expr *&Expr) {
145  QualType Ty = Expr->getType();
146  assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
147
148  // If this is a 'float' (CVR qualified or typedef) promote to double.
149  if (const BuiltinType *BT = Ty->getAsBuiltinType())
150    if (BT->getKind() == BuiltinType::Float)
151      return ImpCastExprToType(Expr, Context.DoubleTy);
152
153  UsualUnaryConversions(Expr);
154}
155
156// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
157// will warn if the resulting type is not a POD type.
158void Sema::DefaultVariadicArgumentPromotion(Expr *&Expr, VariadicCallType CT) {
159  DefaultArgumentPromotion(Expr);
160
161  if (!Expr->getType()->isPODType()) {
162    Diag(Expr->getLocStart(),
163         diag::warn_cannot_pass_non_pod_arg_to_vararg) <<
164    Expr->getType() << CT;
165  }
166}
167
168
169/// UsualArithmeticConversions - Performs various conversions that are common to
170/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
171/// routine returns the first non-arithmetic type found. The client is
172/// responsible for emitting appropriate error diagnostics.
173/// FIXME: verify the conversion rules for "complex int" are consistent with
174/// GCC.
175QualType Sema::UsualArithmeticConversions(Expr *&lhsExpr, Expr *&rhsExpr,
176                                          bool isCompAssign) {
177  if (!isCompAssign) {
178    UsualUnaryConversions(lhsExpr);
179    UsualUnaryConversions(rhsExpr);
180  }
181
182  // For conversion purposes, we ignore any qualifiers.
183  // For example, "const float" and "float" are equivalent.
184  QualType lhs =
185    Context.getCanonicalType(lhsExpr->getType()).getUnqualifiedType();
186  QualType rhs =
187    Context.getCanonicalType(rhsExpr->getType()).getUnqualifiedType();
188
189  // If both types are identical, no conversion is needed.
190  if (lhs == rhs)
191    return lhs;
192
193  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
194  // The caller can deal with this (e.g. pointer + int).
195  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
196    return lhs;
197
198  QualType destType = UsualArithmeticConversionsType(lhs, rhs);
199  if (!isCompAssign) {
200    ImpCastExprToType(lhsExpr, destType);
201    ImpCastExprToType(rhsExpr, destType);
202  }
203  return destType;
204}
205
206QualType Sema::UsualArithmeticConversionsType(QualType lhs, QualType rhs) {
207  // Perform the usual unary conversions. We do this early so that
208  // integral promotions to "int" can allow us to exit early, in the
209  // lhs == rhs check. Also, for conversion purposes, we ignore any
210  // qualifiers.  For example, "const float" and "float" are
211  // equivalent.
212  if (lhs->isPromotableIntegerType())
213    lhs = Context.IntTy;
214  else
215    lhs = lhs.getUnqualifiedType();
216  if (rhs->isPromotableIntegerType())
217    rhs = Context.IntTy;
218  else
219    rhs = rhs.getUnqualifiedType();
220
221  // If both types are identical, no conversion is needed.
222  if (lhs == rhs)
223    return lhs;
224
225  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
226  // The caller can deal with this (e.g. pointer + int).
227  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
228    return lhs;
229
230  // At this point, we have two different arithmetic types.
231
232  // Handle complex types first (C99 6.3.1.8p1).
233  if (lhs->isComplexType() || rhs->isComplexType()) {
234    // if we have an integer operand, the result is the complex type.
235    if (rhs->isIntegerType() || rhs->isComplexIntegerType()) {
236      // convert the rhs to the lhs complex type.
237      return lhs;
238    }
239    if (lhs->isIntegerType() || lhs->isComplexIntegerType()) {
240      // convert the lhs to the rhs complex type.
241      return rhs;
242    }
243    // This handles complex/complex, complex/float, or float/complex.
244    // When both operands are complex, the shorter operand is converted to the
245    // type of the longer, and that is the type of the result. This corresponds
246    // to what is done when combining two real floating-point operands.
247    // The fun begins when size promotion occur across type domains.
248    // From H&S 6.3.4: When one operand is complex and the other is a real
249    // floating-point type, the less precise type is converted, within it's
250    // real or complex domain, to the precision of the other type. For example,
251    // when combining a "long double" with a "double _Complex", the
252    // "double _Complex" is promoted to "long double _Complex".
253    int result = Context.getFloatingTypeOrder(lhs, rhs);
254
255    if (result > 0) { // The left side is bigger, convert rhs.
256      rhs = Context.getFloatingTypeOfSizeWithinDomain(lhs, rhs);
257    } else if (result < 0) { // The right side is bigger, convert lhs.
258      lhs = Context.getFloatingTypeOfSizeWithinDomain(rhs, lhs);
259    }
260    // At this point, lhs and rhs have the same rank/size. Now, make sure the
261    // domains match. This is a requirement for our implementation, C99
262    // does not require this promotion.
263    if (lhs != rhs) { // Domains don't match, we have complex/float mix.
264      if (lhs->isRealFloatingType()) { // handle "double, _Complex double".
265        return rhs;
266      } else { // handle "_Complex double, double".
267        return lhs;
268      }
269    }
270    return lhs; // The domain/size match exactly.
271  }
272  // Now handle "real" floating types (i.e. float, double, long double).
273  if (lhs->isRealFloatingType() || rhs->isRealFloatingType()) {
274    // if we have an integer operand, the result is the real floating type.
275    if (rhs->isIntegerType()) {
276      // convert rhs to the lhs floating point type.
277      return lhs;
278    }
279    if (rhs->isComplexIntegerType()) {
280      // convert rhs to the complex floating point type.
281      return Context.getComplexType(lhs);
282    }
283    if (lhs->isIntegerType()) {
284      // convert lhs to the rhs floating point type.
285      return rhs;
286    }
287    if (lhs->isComplexIntegerType()) {
288      // convert lhs to the complex floating point type.
289      return Context.getComplexType(rhs);
290    }
291    // We have two real floating types, float/complex combos were handled above.
292    // Convert the smaller operand to the bigger result.
293    int result = Context.getFloatingTypeOrder(lhs, rhs);
294    if (result > 0) // convert the rhs
295      return lhs;
296    assert(result < 0 && "illegal float comparison");
297    return rhs;   // convert the lhs
298  }
299  if (lhs->isComplexIntegerType() || rhs->isComplexIntegerType()) {
300    // Handle GCC complex int extension.
301    const ComplexType *lhsComplexInt = lhs->getAsComplexIntegerType();
302    const ComplexType *rhsComplexInt = rhs->getAsComplexIntegerType();
303
304    if (lhsComplexInt && rhsComplexInt) {
305      if (Context.getIntegerTypeOrder(lhsComplexInt->getElementType(),
306                                      rhsComplexInt->getElementType()) >= 0)
307        return lhs; // convert the rhs
308      return rhs;
309    } else if (lhsComplexInt && rhs->isIntegerType()) {
310      // convert the rhs to the lhs complex type.
311      return lhs;
312    } else if (rhsComplexInt && lhs->isIntegerType()) {
313      // convert the lhs to the rhs complex type.
314      return rhs;
315    }
316  }
317  // Finally, we have two differing integer types.
318  // The rules for this case are in C99 6.3.1.8
319  int compare = Context.getIntegerTypeOrder(lhs, rhs);
320  bool lhsSigned = lhs->isSignedIntegerType(),
321       rhsSigned = rhs->isSignedIntegerType();
322  QualType destType;
323  if (lhsSigned == rhsSigned) {
324    // Same signedness; use the higher-ranked type
325    destType = compare >= 0 ? lhs : rhs;
326  } else if (compare != (lhsSigned ? 1 : -1)) {
327    // The unsigned type has greater than or equal rank to the
328    // signed type, so use the unsigned type
329    destType = lhsSigned ? rhs : lhs;
330  } else if (Context.getIntWidth(lhs) != Context.getIntWidth(rhs)) {
331    // The two types are different widths; if we are here, that
332    // means the signed type is larger than the unsigned type, so
333    // use the signed type.
334    destType = lhsSigned ? lhs : rhs;
335  } else {
336    // The signed type is higher-ranked than the unsigned type,
337    // but isn't actually any bigger (like unsigned int and long
338    // on most 32-bit systems).  Use the unsigned type corresponding
339    // to the signed type.
340    destType = Context.getCorrespondingUnsignedType(lhsSigned ? lhs : rhs);
341  }
342  return destType;
343}
344
345//===----------------------------------------------------------------------===//
346//  Semantic Analysis for various Expression Types
347//===----------------------------------------------------------------------===//
348
349
350/// ActOnStringLiteral - The specified tokens were lexed as pasted string
351/// fragments (e.g. "foo" "bar" L"baz").  The result string has to handle string
352/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
353/// multiple tokens.  However, the common case is that StringToks points to one
354/// string.
355///
356Action::OwningExprResult
357Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks) {
358  assert(NumStringToks && "Must have at least one string!");
359
360  StringLiteralParser Literal(StringToks, NumStringToks, PP);
361  if (Literal.hadError)
362    return ExprError();
363
364  llvm::SmallVector<SourceLocation, 4> StringTokLocs;
365  for (unsigned i = 0; i != NumStringToks; ++i)
366    StringTokLocs.push_back(StringToks[i].getLocation());
367
368  QualType StrTy = Context.CharTy;
369  if (Literal.AnyWide) StrTy = Context.getWCharType();
370  if (Literal.Pascal) StrTy = Context.UnsignedCharTy;
371
372  // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
373  if (getLangOptions().CPlusPlus)
374    StrTy.addConst();
375
376  // Get an array type for the string, according to C99 6.4.5.  This includes
377  // the nul terminator character as well as the string length for pascal
378  // strings.
379  StrTy = Context.getConstantArrayType(StrTy,
380                                 llvm::APInt(32, Literal.GetNumStringChars()+1),
381                                       ArrayType::Normal, 0);
382
383  // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
384  return Owned(StringLiteral::Create(Context, Literal.GetString(),
385                                     Literal.GetStringLength(),
386                                     Literal.AnyWide, StrTy,
387                                     &StringTokLocs[0],
388                                     StringTokLocs.size()));
389}
390
391/// ShouldSnapshotBlockValueReference - Return true if a reference inside of
392/// CurBlock to VD should cause it to be snapshotted (as we do for auto
393/// variables defined outside the block) or false if this is not needed (e.g.
394/// for values inside the block or for globals).
395///
396/// FIXME: This will create BlockDeclRefExprs for global variables,
397/// function references, etc which is suboptimal :) and breaks
398/// things like "integer constant expression" tests.
399static bool ShouldSnapshotBlockValueReference(BlockSemaInfo *CurBlock,
400                                              ValueDecl *VD) {
401  // If the value is defined inside the block, we couldn't snapshot it even if
402  // we wanted to.
403  if (CurBlock->TheDecl == VD->getDeclContext())
404    return false;
405
406  // If this is an enum constant or function, it is constant, don't snapshot.
407  if (isa<EnumConstantDecl>(VD) || isa<FunctionDecl>(VD))
408    return false;
409
410  // If this is a reference to an extern, static, or global variable, no need to
411  // snapshot it.
412  // FIXME: What about 'const' variables in C++?
413  if (const VarDecl *Var = dyn_cast<VarDecl>(VD))
414    return Var->hasLocalStorage();
415
416  return true;
417}
418
419
420
421/// ActOnIdentifierExpr - The parser read an identifier in expression context,
422/// validate it per-C99 6.5.1.  HasTrailingLParen indicates whether this
423/// identifier is used in a function call context.
424/// SS is only used for a C++ qualified-id (foo::bar) to indicate the
425/// class or namespace that the identifier must be a member of.
426Sema::OwningExprResult Sema::ActOnIdentifierExpr(Scope *S, SourceLocation Loc,
427                                                 IdentifierInfo &II,
428                                                 bool HasTrailingLParen,
429                                                 const CXXScopeSpec *SS,
430                                                 bool isAddressOfOperand) {
431  return ActOnDeclarationNameExpr(S, Loc, &II, HasTrailingLParen, SS,
432                                  isAddressOfOperand);
433}
434
435/// BuildDeclRefExpr - Build either a DeclRefExpr or a
436/// QualifiedDeclRefExpr based on whether or not SS is a
437/// nested-name-specifier.
438DeclRefExpr *
439Sema::BuildDeclRefExpr(NamedDecl *D, QualType Ty, SourceLocation Loc,
440                       bool TypeDependent, bool ValueDependent,
441                       const CXXScopeSpec *SS) {
442  if (SS && !SS->isEmpty())
443    return new (Context) QualifiedDeclRefExpr(D, Ty, Loc, TypeDependent,
444                                              ValueDependent,
445                                              SS->getRange().getBegin());
446  else
447    return new (Context) DeclRefExpr(D, Ty, Loc, TypeDependent, ValueDependent);
448}
449
450/// getObjectForAnonymousRecordDecl - Retrieve the (unnamed) field or
451/// variable corresponding to the anonymous union or struct whose type
452/// is Record.
453static Decl *getObjectForAnonymousRecordDecl(RecordDecl *Record) {
454  assert(Record->isAnonymousStructOrUnion() &&
455         "Record must be an anonymous struct or union!");
456
457  // FIXME: Once Decls are directly linked together, this will
458  // be an O(1) operation rather than a slow walk through DeclContext's
459  // vector (which itself will be eliminated). DeclGroups might make
460  // this even better.
461  DeclContext *Ctx = Record->getDeclContext();
462  for (DeclContext::decl_iterator D = Ctx->decls_begin(),
463                               DEnd = Ctx->decls_end();
464       D != DEnd; ++D) {
465    if (*D == Record) {
466      // The object for the anonymous struct/union directly
467      // follows its type in the list of declarations.
468      ++D;
469      assert(D != DEnd && "Missing object for anonymous record");
470      assert(!cast<NamedDecl>(*D)->getDeclName() && "Decl should be unnamed");
471      return *D;
472    }
473  }
474
475  assert(false && "Missing object for anonymous record");
476  return 0;
477}
478
479Sema::OwningExprResult
480Sema::BuildAnonymousStructUnionMemberReference(SourceLocation Loc,
481                                               FieldDecl *Field,
482                                               Expr *BaseObjectExpr,
483                                               SourceLocation OpLoc) {
484  assert(Field->getDeclContext()->isRecord() &&
485         cast<RecordDecl>(Field->getDeclContext())->isAnonymousStructOrUnion()
486         && "Field must be stored inside an anonymous struct or union");
487
488  // Construct the sequence of field member references
489  // we'll have to perform to get to the field in the anonymous
490  // union/struct. The list of members is built from the field
491  // outward, so traverse it backwards to go from an object in
492  // the current context to the field we found.
493  llvm::SmallVector<FieldDecl *, 4> AnonFields;
494  AnonFields.push_back(Field);
495  VarDecl *BaseObject = 0;
496  DeclContext *Ctx = Field->getDeclContext();
497  do {
498    RecordDecl *Record = cast<RecordDecl>(Ctx);
499    Decl *AnonObject = getObjectForAnonymousRecordDecl(Record);
500    if (FieldDecl *AnonField = dyn_cast<FieldDecl>(AnonObject))
501      AnonFields.push_back(AnonField);
502    else {
503      BaseObject = cast<VarDecl>(AnonObject);
504      break;
505    }
506    Ctx = Ctx->getParent();
507  } while (Ctx->isRecord() &&
508           cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion());
509
510  // Build the expression that refers to the base object, from
511  // which we will build a sequence of member references to each
512  // of the anonymous union objects and, eventually, the field we
513  // found via name lookup.
514  bool BaseObjectIsPointer = false;
515  unsigned ExtraQuals = 0;
516  if (BaseObject) {
517    // BaseObject is an anonymous struct/union variable (and is,
518    // therefore, not part of another non-anonymous record).
519    if (BaseObjectExpr) BaseObjectExpr->Destroy(Context);
520    BaseObjectExpr = new (Context) DeclRefExpr(BaseObject,BaseObject->getType(),
521                                               SourceLocation());
522    ExtraQuals
523      = Context.getCanonicalType(BaseObject->getType()).getCVRQualifiers();
524  } else if (BaseObjectExpr) {
525    // The caller provided the base object expression. Determine
526    // whether its a pointer and whether it adds any qualifiers to the
527    // anonymous struct/union fields we're looking into.
528    QualType ObjectType = BaseObjectExpr->getType();
529    if (const PointerType *ObjectPtr = ObjectType->getAsPointerType()) {
530      BaseObjectIsPointer = true;
531      ObjectType = ObjectPtr->getPointeeType();
532    }
533    ExtraQuals = Context.getCanonicalType(ObjectType).getCVRQualifiers();
534  } else {
535    // We've found a member of an anonymous struct/union that is
536    // inside a non-anonymous struct/union, so in a well-formed
537    // program our base object expression is "this".
538    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
539      if (!MD->isStatic()) {
540        QualType AnonFieldType
541          = Context.getTagDeclType(
542                     cast<RecordDecl>(AnonFields.back()->getDeclContext()));
543        QualType ThisType = Context.getTagDeclType(MD->getParent());
544        if ((Context.getCanonicalType(AnonFieldType)
545               == Context.getCanonicalType(ThisType)) ||
546            IsDerivedFrom(ThisType, AnonFieldType)) {
547          // Our base object expression is "this".
548          BaseObjectExpr = new (Context) CXXThisExpr(SourceLocation(),
549                                                     MD->getThisType(Context));
550          BaseObjectIsPointer = true;
551        }
552      } else {
553        return ExprError(Diag(Loc,diag::err_invalid_member_use_in_static_method)
554          << Field->getDeclName());
555      }
556      ExtraQuals = MD->getTypeQualifiers();
557    }
558
559    if (!BaseObjectExpr)
560      return ExprError(Diag(Loc, diag::err_invalid_non_static_member_use)
561        << Field->getDeclName());
562  }
563
564  // Build the implicit member references to the field of the
565  // anonymous struct/union.
566  Expr *Result = BaseObjectExpr;
567  for (llvm::SmallVector<FieldDecl *, 4>::reverse_iterator
568         FI = AnonFields.rbegin(), FIEnd = AnonFields.rend();
569       FI != FIEnd; ++FI) {
570    QualType MemberType = (*FI)->getType();
571    if (!(*FI)->isMutable()) {
572      unsigned combinedQualifiers
573        = MemberType.getCVRQualifiers() | ExtraQuals;
574      MemberType = MemberType.getQualifiedType(combinedQualifiers);
575    }
576    Result = new (Context) MemberExpr(Result, BaseObjectIsPointer, *FI,
577                                      OpLoc, MemberType);
578    BaseObjectIsPointer = false;
579    ExtraQuals = Context.getCanonicalType(MemberType).getCVRQualifiers();
580  }
581
582  return Owned(Result);
583}
584
585/// ActOnDeclarationNameExpr - The parser has read some kind of name
586/// (e.g., a C++ id-expression (C++ [expr.prim]p1)). This routine
587/// performs lookup on that name and returns an expression that refers
588/// to that name. This routine isn't directly called from the parser,
589/// because the parser doesn't know about DeclarationName. Rather,
590/// this routine is called by ActOnIdentifierExpr,
591/// ActOnOperatorFunctionIdExpr, and ActOnConversionFunctionExpr,
592/// which form the DeclarationName from the corresponding syntactic
593/// forms.
594///
595/// HasTrailingLParen indicates whether this identifier is used in a
596/// function call context.  LookupCtx is only used for a C++
597/// qualified-id (foo::bar) to indicate the class or namespace that
598/// the identifier must be a member of.
599///
600/// isAddressOfOperand means that this expression is the direct operand
601/// of an address-of operator. This matters because this is the only
602/// situation where a qualified name referencing a non-static member may
603/// appear outside a member function of this class.
604Sema::OwningExprResult
605Sema::ActOnDeclarationNameExpr(Scope *S, SourceLocation Loc,
606                               DeclarationName Name, bool HasTrailingLParen,
607                               const CXXScopeSpec *SS,
608                               bool isAddressOfOperand) {
609  // Could be enum-constant, value decl, instance variable, etc.
610  if (SS && SS->isInvalid())
611    return ExprError();
612  LookupResult Lookup = LookupParsedName(S, SS, Name, LookupOrdinaryName,
613                                         false, true, Loc);
614
615  NamedDecl *D = 0;
616  if (Lookup.isAmbiguous()) {
617    DiagnoseAmbiguousLookup(Lookup, Name, Loc,
618                            SS && SS->isSet() ? SS->getRange()
619                                              : SourceRange());
620    return ExprError();
621  } else
622    D = Lookup.getAsDecl();
623
624  // If this reference is in an Objective-C method, then ivar lookup happens as
625  // well.
626  IdentifierInfo *II = Name.getAsIdentifierInfo();
627  if (II && getCurMethodDecl()) {
628    // There are two cases to handle here.  1) scoped lookup could have failed,
629    // in which case we should look for an ivar.  2) scoped lookup could have
630    // found a decl, but that decl is outside the current instance method (i.e.
631    // a global variable).  In these two cases, we do a lookup for an ivar with
632    // this name, if the lookup sucedes, we replace it our current decl.
633    if (D == 0 || D->isDefinedOutsideFunctionOrMethod()) {
634      ObjCInterfaceDecl *IFace = getCurMethodDecl()->getClassInterface();
635      if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II)) {
636        // Check if referencing a field with __attribute__((deprecated)).
637        if (DiagnoseUseOfDecl(IV, Loc))
638          return ExprError();
639        bool IsClsMethod = getCurMethodDecl()->isClassMethod();
640        // If a class method attemps to use a free standing ivar, this is
641        // an error.
642        if (IsClsMethod && D && !D->isDefinedOutsideFunctionOrMethod())
643           return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
644                           << IV->getDeclName());
645        // If a class method uses a global variable, even if an ivar with
646        // same name exists, use the global.
647        if (!IsClsMethod) {
648          // FIXME: This should use a new expr for a direct reference, don't turn
649          // this into Self->ivar, just return a BareIVarExpr or something.
650          IdentifierInfo &II = Context.Idents.get("self");
651          OwningExprResult SelfExpr = ActOnIdentifierExpr(S, Loc, II, false);
652          ObjCIvarRefExpr *MRef = new (Context) ObjCIvarRefExpr(IV, IV->getType(),
653                                    Loc, static_cast<Expr*>(SelfExpr.release()),
654                                    true, true);
655          Context.setFieldDecl(IFace, IV, MRef);
656          return Owned(MRef);
657        }
658      }
659    }
660    else if (getCurMethodDecl()->isInstanceMethod()) {
661      // We should warn if a local variable hides an ivar.
662      ObjCInterfaceDecl *IFace = getCurMethodDecl()->getClassInterface();
663      if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II))
664        Diag(Loc, diag::warn_ivar_use_hidden)<<IV->getDeclName();
665    }
666    // Needed to implement property "super.method" notation.
667    if (D == 0 && II->isStr("super")) {
668      QualType T = Context.getPointerType(Context.getObjCInterfaceType(
669                     getCurMethodDecl()->getClassInterface()));
670      return Owned(new (Context) ObjCSuperExpr(Loc, T));
671    }
672  }
673
674  // Determine whether this name might be a candidate for
675  // argument-dependent lookup.
676  bool ADL = getLangOptions().CPlusPlus && (!SS || !SS->isSet()) &&
677             HasTrailingLParen;
678
679  if (ADL && D == 0) {
680    // We've seen something of the form
681    //
682    //   identifier(
683    //
684    // and we did not find any entity by the name
685    // "identifier". However, this identifier is still subject to
686    // argument-dependent lookup, so keep track of the name.
687    return Owned(new (Context) UnresolvedFunctionNameExpr(Name,
688                                                          Context.OverloadTy,
689                                                          Loc));
690  }
691
692  if (D == 0) {
693    // Otherwise, this could be an implicitly declared function reference (legal
694    // in C90, extension in C99).
695    if (HasTrailingLParen && II &&
696        !getLangOptions().CPlusPlus) // Not in C++.
697      D = ImplicitlyDefineFunction(Loc, *II, S);
698    else {
699      // If this name wasn't predeclared and if this is not a function call,
700      // diagnose the problem.
701      if (SS && !SS->isEmpty())
702        return ExprError(Diag(Loc, diag::err_typecheck_no_member)
703          << Name << SS->getRange());
704      else if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
705               Name.getNameKind() == DeclarationName::CXXConversionFunctionName)
706        return ExprError(Diag(Loc, diag::err_undeclared_use)
707          << Name.getAsString());
708      else
709        return ExprError(Diag(Loc, diag::err_undeclared_var_use) << Name);
710    }
711  }
712
713  // If this is an expression of the form &Class::member, don't build an
714  // implicit member ref, because we want a pointer to the member in general,
715  // not any specific instance's member.
716  if (isAddressOfOperand && SS && !SS->isEmpty() && !HasTrailingLParen) {
717    DeclContext *DC = static_cast<DeclContext*>(SS->getScopeRep());
718    if (D && isa<CXXRecordDecl>(DC)) {
719      QualType DType;
720      if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
721        DType = FD->getType().getNonReferenceType();
722      } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
723        DType = Method->getType();
724      } else if (isa<OverloadedFunctionDecl>(D)) {
725        DType = Context.OverloadTy;
726      }
727      // Could be an inner type. That's diagnosed below, so ignore it here.
728      if (!DType.isNull()) {
729        // The pointer is type- and value-dependent if it points into something
730        // dependent.
731        bool Dependent = false;
732        for (; DC; DC = DC->getParent()) {
733          // FIXME: could stop early at namespace scope.
734          if (DC->isRecord()) {
735            CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
736            if (Context.getTypeDeclType(Record)->isDependentType()) {
737              Dependent = true;
738              break;
739            }
740          }
741        }
742        return Owned(BuildDeclRefExpr(D, DType, Loc, Dependent, Dependent, SS));
743      }
744    }
745  }
746
747  // We may have found a field within an anonymous union or struct
748  // (C++ [class.union]).
749  if (FieldDecl *FD = dyn_cast<FieldDecl>(D))
750    if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion())
751      return BuildAnonymousStructUnionMemberReference(Loc, FD);
752
753  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
754    if (!MD->isStatic()) {
755      // C++ [class.mfct.nonstatic]p2:
756      //   [...] if name lookup (3.4.1) resolves the name in the
757      //   id-expression to a nonstatic nontype member of class X or of
758      //   a base class of X, the id-expression is transformed into a
759      //   class member access expression (5.2.5) using (*this) (9.3.2)
760      //   as the postfix-expression to the left of the '.' operator.
761      DeclContext *Ctx = 0;
762      QualType MemberType;
763      if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
764        Ctx = FD->getDeclContext();
765        MemberType = FD->getType();
766
767        if (const ReferenceType *RefType = MemberType->getAsReferenceType())
768          MemberType = RefType->getPointeeType();
769        else if (!FD->isMutable()) {
770          unsigned combinedQualifiers
771            = MemberType.getCVRQualifiers() | MD->getTypeQualifiers();
772          MemberType = MemberType.getQualifiedType(combinedQualifiers);
773        }
774      } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
775        if (!Method->isStatic()) {
776          Ctx = Method->getParent();
777          MemberType = Method->getType();
778        }
779      } else if (OverloadedFunctionDecl *Ovl
780                   = dyn_cast<OverloadedFunctionDecl>(D)) {
781        for (OverloadedFunctionDecl::function_iterator
782               Func = Ovl->function_begin(),
783               FuncEnd = Ovl->function_end();
784             Func != FuncEnd; ++Func) {
785          if (CXXMethodDecl *DMethod = dyn_cast<CXXMethodDecl>(*Func))
786            if (!DMethod->isStatic()) {
787              Ctx = Ovl->getDeclContext();
788              MemberType = Context.OverloadTy;
789              break;
790            }
791        }
792      }
793
794      if (Ctx && Ctx->isRecord()) {
795        QualType CtxType = Context.getTagDeclType(cast<CXXRecordDecl>(Ctx));
796        QualType ThisType = Context.getTagDeclType(MD->getParent());
797        if ((Context.getCanonicalType(CtxType)
798               == Context.getCanonicalType(ThisType)) ||
799            IsDerivedFrom(ThisType, CtxType)) {
800          // Build the implicit member access expression.
801          Expr *This = new (Context) CXXThisExpr(SourceLocation(),
802                                                 MD->getThisType(Context));
803          return Owned(new (Context) MemberExpr(This, true, D,
804                                                SourceLocation(), MemberType));
805        }
806      }
807    }
808  }
809
810  if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
811    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
812      if (MD->isStatic())
813        // "invalid use of member 'x' in static member function"
814        return ExprError(Diag(Loc,diag::err_invalid_member_use_in_static_method)
815          << FD->getDeclName());
816    }
817
818    // Any other ways we could have found the field in a well-formed
819    // program would have been turned into implicit member expressions
820    // above.
821    return ExprError(Diag(Loc, diag::err_invalid_non_static_member_use)
822      << FD->getDeclName());
823  }
824
825  if (isa<TypedefDecl>(D))
826    return ExprError(Diag(Loc, diag::err_unexpected_typedef) << Name);
827  if (isa<ObjCInterfaceDecl>(D))
828    return ExprError(Diag(Loc, diag::err_unexpected_interface) << Name);
829  if (isa<NamespaceDecl>(D))
830    return ExprError(Diag(Loc, diag::err_unexpected_namespace) << Name);
831
832  // Make the DeclRefExpr or BlockDeclRefExpr for the decl.
833  if (OverloadedFunctionDecl *Ovl = dyn_cast<OverloadedFunctionDecl>(D))
834    return Owned(BuildDeclRefExpr(Ovl, Context.OverloadTy, Loc,
835                                  false, false, SS));
836  else if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
837    return Owned(BuildDeclRefExpr(Template, Context.OverloadTy, Loc,
838                                  false, false, SS));
839  ValueDecl *VD = cast<ValueDecl>(D);
840
841  // Check whether this declaration can be used. Note that we suppress
842  // this check when we're going to perform argument-dependent lookup
843  // on this function name, because this might not be the function
844  // that overload resolution actually selects.
845  if (!(ADL && isa<FunctionDecl>(VD)) && DiagnoseUseOfDecl(VD, Loc))
846    return ExprError();
847
848  if (VarDecl *Var = dyn_cast<VarDecl>(VD)) {
849    // Warn about constructs like:
850    //   if (void *X = foo()) { ... } else { X }.
851    // In the else block, the pointer is always false.
852    if (Var->isDeclaredInCondition() && Var->getType()->isScalarType()) {
853      Scope *CheckS = S;
854      while (CheckS) {
855        if (CheckS->isWithinElse() &&
856            CheckS->getControlParent()->isDeclScope(Var)) {
857          if (Var->getType()->isBooleanType())
858            ExprError(Diag(Loc, diag::warn_value_always_false)
859              << Var->getDeclName());
860          else
861            ExprError(Diag(Loc, diag::warn_value_always_zero)
862              << Var->getDeclName());
863          break;
864        }
865
866        // Move up one more control parent to check again.
867        CheckS = CheckS->getControlParent();
868        if (CheckS)
869          CheckS = CheckS->getParent();
870      }
871    }
872  } else if (FunctionDecl *Func = dyn_cast<FunctionDecl>(VD)) {
873    if (!getLangOptions().CPlusPlus && !Func->hasPrototype()) {
874      // C99 DR 316 says that, if a function type comes from a
875      // function definition (without a prototype), that type is only
876      // used for checking compatibility. Therefore, when referencing
877      // the function, we pretend that we don't have the full function
878      // type.
879      QualType T = Func->getType();
880      QualType NoProtoType = T;
881      if (const FunctionProtoType *Proto = T->getAsFunctionProtoType())
882        NoProtoType = Context.getFunctionNoProtoType(Proto->getResultType());
883      return Owned(BuildDeclRefExpr(VD, NoProtoType, Loc, false, false, SS));
884    }
885  }
886
887  // Only create DeclRefExpr's for valid Decl's.
888  if (VD->isInvalidDecl())
889    return ExprError();
890
891  // If the identifier reference is inside a block, and it refers to a value
892  // that is outside the block, create a BlockDeclRefExpr instead of a
893  // DeclRefExpr.  This ensures the value is treated as a copy-in snapshot when
894  // the block is formed.
895  //
896  // We do not do this for things like enum constants, global variables, etc,
897  // as they do not get snapshotted.
898  //
899  if (CurBlock && ShouldSnapshotBlockValueReference(CurBlock, VD)) {
900    // Blocks that have these can't be constant.
901    CurBlock->hasBlockDeclRefExprs = true;
902
903    // The BlocksAttr indicates the variable is bound by-reference.
904    if (VD->getAttr<BlocksAttr>())
905      return Owned(new (Context) BlockDeclRefExpr(VD,
906                               VD->getType().getNonReferenceType(), Loc, true));
907
908    // Variable will be bound by-copy, make it const within the closure.
909    VD->getType().addConst();
910    return Owned(new (Context) BlockDeclRefExpr(VD,
911                             VD->getType().getNonReferenceType(), Loc, false));
912  }
913  // If this reference is not in a block or if the referenced variable is
914  // within the block, create a normal DeclRefExpr.
915
916  bool TypeDependent = false;
917  bool ValueDependent = false;
918  if (getLangOptions().CPlusPlus) {
919    // C++ [temp.dep.expr]p3:
920    //   An id-expression is type-dependent if it contains:
921    //     - an identifier that was declared with a dependent type,
922    if (VD->getType()->isDependentType())
923      TypeDependent = true;
924    //     - FIXME: a template-id that is dependent,
925    //     - a conversion-function-id that specifies a dependent type,
926    else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
927             Name.getCXXNameType()->isDependentType())
928      TypeDependent = true;
929    //     - a nested-name-specifier that contains a class-name that
930    //       names a dependent type.
931    else if (SS && !SS->isEmpty()) {
932      for (DeclContext *DC = static_cast<DeclContext*>(SS->getScopeRep());
933           DC; DC = DC->getParent()) {
934        // FIXME: could stop early at namespace scope.
935        if (DC->isRecord()) {
936          CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
937          if (Context.getTypeDeclType(Record)->isDependentType()) {
938            TypeDependent = true;
939            break;
940          }
941        }
942      }
943    }
944
945    // C++ [temp.dep.constexpr]p2:
946    //
947    //   An identifier is value-dependent if it is:
948    //     - a name declared with a dependent type,
949    if (TypeDependent)
950      ValueDependent = true;
951    //     - the name of a non-type template parameter,
952    else if (isa<NonTypeTemplateParmDecl>(VD))
953      ValueDependent = true;
954    //    - a constant with integral or enumeration type and is
955    //      initialized with an expression that is value-dependent
956    //      (FIXME!).
957  }
958
959  return Owned(BuildDeclRefExpr(VD, VD->getType().getNonReferenceType(), Loc,
960                                TypeDependent, ValueDependent, SS));
961}
962
963Sema::OwningExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc,
964                                                 tok::TokenKind Kind) {
965  PredefinedExpr::IdentType IT;
966
967  switch (Kind) {
968  default: assert(0 && "Unknown simple primary expr!");
969  case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
970  case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
971  case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
972  }
973
974  // Pre-defined identifiers are of type char[x], where x is the length of the
975  // string.
976  unsigned Length;
977  if (FunctionDecl *FD = getCurFunctionDecl())
978    Length = FD->getIdentifier()->getLength();
979  else if (ObjCMethodDecl *MD = getCurMethodDecl())
980    Length = MD->getSynthesizedMethodSize();
981  else {
982    Diag(Loc, diag::ext_predef_outside_function);
983    // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
984    Length = IT == PredefinedExpr::PrettyFunction ? strlen("top level") : 0;
985  }
986
987
988  llvm::APInt LengthI(32, Length + 1);
989  QualType ResTy = Context.CharTy.getQualifiedType(QualType::Const);
990  ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
991  return Owned(new (Context) PredefinedExpr(Loc, ResTy, IT));
992}
993
994Sema::OwningExprResult Sema::ActOnCharacterConstant(const Token &Tok) {
995  llvm::SmallString<16> CharBuffer;
996  CharBuffer.resize(Tok.getLength());
997  const char *ThisTokBegin = &CharBuffer[0];
998  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
999
1000  CharLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
1001                            Tok.getLocation(), PP);
1002  if (Literal.hadError())
1003    return ExprError();
1004
1005  QualType type = getLangOptions().CPlusPlus ? Context.CharTy : Context.IntTy;
1006
1007  return Owned(new (Context) CharacterLiteral(Literal.getValue(),
1008                                              Literal.isWide(),
1009                                              type, Tok.getLocation()));
1010}
1011
1012Action::OwningExprResult Sema::ActOnNumericConstant(const Token &Tok) {
1013  // Fast path for a single digit (which is quite common).  A single digit
1014  // cannot have a trigraph, escaped newline, radix prefix, or type suffix.
1015  if (Tok.getLength() == 1) {
1016    const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
1017    unsigned IntSize = Context.Target.getIntWidth();
1018    return Owned(new (Context) IntegerLiteral(llvm::APInt(IntSize, Val-'0'),
1019                    Context.IntTy, Tok.getLocation()));
1020  }
1021
1022  llvm::SmallString<512> IntegerBuffer;
1023  // Add padding so that NumericLiteralParser can overread by one character.
1024  IntegerBuffer.resize(Tok.getLength()+1);
1025  const char *ThisTokBegin = &IntegerBuffer[0];
1026
1027  // Get the spelling of the token, which eliminates trigraphs, etc.
1028  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
1029
1030  NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
1031                               Tok.getLocation(), PP);
1032  if (Literal.hadError)
1033    return ExprError();
1034
1035  Expr *Res;
1036
1037  if (Literal.isFloatingLiteral()) {
1038    QualType Ty;
1039    if (Literal.isFloat)
1040      Ty = Context.FloatTy;
1041    else if (!Literal.isLong)
1042      Ty = Context.DoubleTy;
1043    else
1044      Ty = Context.LongDoubleTy;
1045
1046    const llvm::fltSemantics &Format = Context.getFloatTypeSemantics(Ty);
1047
1048    // isExact will be set by GetFloatValue().
1049    bool isExact = false;
1050    Res = new (Context) FloatingLiteral(Literal.GetFloatValue(Format, &isExact),
1051                                        &isExact, Ty, Tok.getLocation());
1052
1053  } else if (!Literal.isIntegerLiteral()) {
1054    return ExprError();
1055  } else {
1056    QualType Ty;
1057
1058    // long long is a C99 feature.
1059    if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
1060        Literal.isLongLong)
1061      Diag(Tok.getLocation(), diag::ext_longlong);
1062
1063    // Get the value in the widest-possible width.
1064    llvm::APInt ResultVal(Context.Target.getIntMaxTWidth(), 0);
1065
1066    if (Literal.GetIntegerValue(ResultVal)) {
1067      // If this value didn't fit into uintmax_t, warn and force to ull.
1068      Diag(Tok.getLocation(), diag::warn_integer_too_large);
1069      Ty = Context.UnsignedLongLongTy;
1070      assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
1071             "long long is not intmax_t?");
1072    } else {
1073      // If this value fits into a ULL, try to figure out what else it fits into
1074      // according to the rules of C99 6.4.4.1p5.
1075
1076      // Octal, Hexadecimal, and integers with a U suffix are allowed to
1077      // be an unsigned int.
1078      bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
1079
1080      // Check from smallest to largest, picking the smallest type we can.
1081      unsigned Width = 0;
1082      if (!Literal.isLong && !Literal.isLongLong) {
1083        // Are int/unsigned possibilities?
1084        unsigned IntSize = Context.Target.getIntWidth();
1085
1086        // Does it fit in a unsigned int?
1087        if (ResultVal.isIntN(IntSize)) {
1088          // Does it fit in a signed int?
1089          if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
1090            Ty = Context.IntTy;
1091          else if (AllowUnsigned)
1092            Ty = Context.UnsignedIntTy;
1093          Width = IntSize;
1094        }
1095      }
1096
1097      // Are long/unsigned long possibilities?
1098      if (Ty.isNull() && !Literal.isLongLong) {
1099        unsigned LongSize = Context.Target.getLongWidth();
1100
1101        // Does it fit in a unsigned long?
1102        if (ResultVal.isIntN(LongSize)) {
1103          // Does it fit in a signed long?
1104          if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
1105            Ty = Context.LongTy;
1106          else if (AllowUnsigned)
1107            Ty = Context.UnsignedLongTy;
1108          Width = LongSize;
1109        }
1110      }
1111
1112      // Finally, check long long if needed.
1113      if (Ty.isNull()) {
1114        unsigned LongLongSize = Context.Target.getLongLongWidth();
1115
1116        // Does it fit in a unsigned long long?
1117        if (ResultVal.isIntN(LongLongSize)) {
1118          // Does it fit in a signed long long?
1119          if (!Literal.isUnsigned && ResultVal[LongLongSize-1] == 0)
1120            Ty = Context.LongLongTy;
1121          else if (AllowUnsigned)
1122            Ty = Context.UnsignedLongLongTy;
1123          Width = LongLongSize;
1124        }
1125      }
1126
1127      // If we still couldn't decide a type, we probably have something that
1128      // does not fit in a signed long long, but has no U suffix.
1129      if (Ty.isNull()) {
1130        Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
1131        Ty = Context.UnsignedLongLongTy;
1132        Width = Context.Target.getLongLongWidth();
1133      }
1134
1135      if (ResultVal.getBitWidth() != Width)
1136        ResultVal.trunc(Width);
1137    }
1138    Res = new (Context) IntegerLiteral(ResultVal, Ty, Tok.getLocation());
1139  }
1140
1141  // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
1142  if (Literal.isImaginary)
1143    Res = new (Context) ImaginaryLiteral(Res,
1144                                        Context.getComplexType(Res->getType()));
1145
1146  return Owned(Res);
1147}
1148
1149Action::OwningExprResult Sema::ActOnParenExpr(SourceLocation L,
1150                                              SourceLocation R, ExprArg Val) {
1151  Expr *E = (Expr *)Val.release();
1152  assert((E != 0) && "ActOnParenExpr() missing expr");
1153  return Owned(new (Context) ParenExpr(L, R, E));
1154}
1155
1156/// The UsualUnaryConversions() function is *not* called by this routine.
1157/// See C99 6.3.2.1p[2-4] for more details.
1158bool Sema::CheckSizeOfAlignOfOperand(QualType exprType,
1159                                     SourceLocation OpLoc,
1160                                     const SourceRange &ExprRange,
1161                                     bool isSizeof) {
1162  if (exprType->isDependentType())
1163    return false;
1164
1165  // C99 6.5.3.4p1:
1166  if (isa<FunctionType>(exprType)) {
1167    // alignof(function) is allowed.
1168    if (isSizeof)
1169      Diag(OpLoc, diag::ext_sizeof_function_type) << ExprRange;
1170    return false;
1171  }
1172
1173  if (exprType->isVoidType()) {
1174    Diag(OpLoc, diag::ext_sizeof_void_type)
1175      << (isSizeof ? "sizeof" : "__alignof") << ExprRange;
1176    return false;
1177  }
1178
1179  return DiagnoseIncompleteType(OpLoc, exprType,
1180                                isSizeof ? diag::err_sizeof_incomplete_type :
1181                                           diag::err_alignof_incomplete_type,
1182                                ExprRange);
1183}
1184
1185bool Sema::CheckAlignOfExpr(Expr *E, SourceLocation OpLoc,
1186                            const SourceRange &ExprRange) {
1187  E = E->IgnoreParens();
1188
1189  // alignof decl is always ok.
1190  if (isa<DeclRefExpr>(E))
1191    return false;
1192
1193  // Cannot know anything else if the expression is dependent.
1194  if (E->isTypeDependent())
1195    return false;
1196
1197  if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
1198    if (FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
1199      if (FD->isBitField()) {
1200        Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 1 << ExprRange;
1201        return true;
1202      }
1203      // Other fields are ok.
1204      return false;
1205    }
1206  }
1207  return CheckSizeOfAlignOfOperand(E->getType(), OpLoc, ExprRange, false);
1208}
1209
1210/// ActOnSizeOfAlignOfExpr - Handle @c sizeof(type) and @c sizeof @c expr and
1211/// the same for @c alignof and @c __alignof
1212/// Note that the ArgRange is invalid if isType is false.
1213Action::OwningExprResult
1214Sema::ActOnSizeOfAlignOfExpr(SourceLocation OpLoc, bool isSizeof, bool isType,
1215                             void *TyOrEx, const SourceRange &ArgRange) {
1216  // If error parsing type, ignore.
1217  if (TyOrEx == 0) return ExprError();
1218
1219  QualType ArgTy;
1220  SourceRange Range;
1221  if (isType) {
1222    ArgTy = QualType::getFromOpaquePtr(TyOrEx);
1223    Range = ArgRange;
1224
1225    // Verify that the operand is valid.
1226    if (CheckSizeOfAlignOfOperand(ArgTy, OpLoc, Range, isSizeof))
1227      return ExprError();
1228  } else {
1229    // Get the end location.
1230    Expr *ArgEx = (Expr *)TyOrEx;
1231    Range = ArgEx->getSourceRange();
1232    ArgTy = ArgEx->getType();
1233
1234    // Verify that the operand is valid.
1235    bool isInvalid;
1236    if (!isSizeof) {
1237      isInvalid = CheckAlignOfExpr(ArgEx, OpLoc, Range);
1238    } else if (ArgEx->isBitField()) {  // C99 6.5.3.4p1.
1239      Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 0;
1240      isInvalid = true;
1241    } else {
1242      isInvalid = CheckSizeOfAlignOfOperand(ArgTy, OpLoc, Range, true);
1243    }
1244
1245    if (isInvalid) {
1246      DeleteExpr(ArgEx);
1247      return ExprError();
1248    }
1249  }
1250
1251  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
1252  return Owned(new (Context) SizeOfAlignOfExpr(isSizeof, isType, TyOrEx,
1253                                               Context.getSizeType(), OpLoc,
1254                                               Range.getEnd()));
1255}
1256
1257QualType Sema::CheckRealImagOperand(Expr *&V, SourceLocation Loc, bool isReal) {
1258  if (V->isTypeDependent())
1259    return Context.DependentTy;
1260
1261  DefaultFunctionArrayConversion(V);
1262
1263  // These operators return the element type of a complex type.
1264  if (const ComplexType *CT = V->getType()->getAsComplexType())
1265    return CT->getElementType();
1266
1267  // Otherwise they pass through real integer and floating point types here.
1268  if (V->getType()->isArithmeticType())
1269    return V->getType();
1270
1271  // Reject anything else.
1272  Diag(Loc, diag::err_realimag_invalid_type) << V->getType()
1273    << (isReal ? "__real" : "__imag");
1274  return QualType();
1275}
1276
1277
1278
1279Action::OwningExprResult
1280Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
1281                          tok::TokenKind Kind, ExprArg Input) {
1282  Expr *Arg = (Expr *)Input.get();
1283
1284  UnaryOperator::Opcode Opc;
1285  switch (Kind) {
1286  default: assert(0 && "Unknown unary op!");
1287  case tok::plusplus:   Opc = UnaryOperator::PostInc; break;
1288  case tok::minusminus: Opc = UnaryOperator::PostDec; break;
1289  }
1290
1291  if (getLangOptions().CPlusPlus &&
1292      (Arg->getType()->isRecordType() || Arg->getType()->isEnumeralType())) {
1293    // Which overloaded operator?
1294    OverloadedOperatorKind OverOp =
1295      (Opc == UnaryOperator::PostInc)? OO_PlusPlus : OO_MinusMinus;
1296
1297    // C++ [over.inc]p1:
1298    //
1299    //     [...] If the function is a member function with one
1300    //     parameter (which shall be of type int) or a non-member
1301    //     function with two parameters (the second of which shall be
1302    //     of type int), it defines the postfix increment operator ++
1303    //     for objects of that type. When the postfix increment is
1304    //     called as a result of using the ++ operator, the int
1305    //     argument will have value zero.
1306    Expr *Args[2] = {
1307      Arg,
1308      new (Context) IntegerLiteral(llvm::APInt(Context.Target.getIntWidth(), 0,
1309                          /*isSigned=*/true), Context.IntTy, SourceLocation())
1310    };
1311
1312    // Build the candidate set for overloading
1313    OverloadCandidateSet CandidateSet;
1314    if (AddOperatorCandidates(OverOp, S, OpLoc, Args, 2, CandidateSet))
1315      return ExprError();
1316
1317    // Perform overload resolution.
1318    OverloadCandidateSet::iterator Best;
1319    switch (BestViableFunction(CandidateSet, Best)) {
1320    case OR_Success: {
1321      // We found a built-in operator or an overloaded operator.
1322      FunctionDecl *FnDecl = Best->Function;
1323
1324      if (FnDecl) {
1325        // We matched an overloaded operator. Build a call to that
1326        // operator.
1327
1328        // Convert the arguments.
1329        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
1330          if (PerformObjectArgumentInitialization(Arg, Method))
1331            return ExprError();
1332        } else {
1333          // Convert the arguments.
1334          if (PerformCopyInitialization(Arg,
1335                                        FnDecl->getParamDecl(0)->getType(),
1336                                        "passing"))
1337            return ExprError();
1338        }
1339
1340        // Determine the result type
1341        QualType ResultTy
1342          = FnDecl->getType()->getAsFunctionType()->getResultType();
1343        ResultTy = ResultTy.getNonReferenceType();
1344
1345        // Build the actual expression node.
1346        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
1347                                                 SourceLocation());
1348        UsualUnaryConversions(FnExpr);
1349
1350        Input.release();
1351        return Owned(new (Context) CXXOperatorCallExpr(Context, FnExpr, Args, 2,
1352                                                       ResultTy, OpLoc));
1353      } else {
1354        // We matched a built-in operator. Convert the arguments, then
1355        // break out so that we will build the appropriate built-in
1356        // operator node.
1357        if (PerformCopyInitialization(Arg, Best->BuiltinTypes.ParamTypes[0],
1358                                      "passing"))
1359          return ExprError();
1360
1361        break;
1362      }
1363    }
1364
1365    case OR_No_Viable_Function:
1366      // No viable function; fall through to handling this as a
1367      // built-in operator, which will produce an error message for us.
1368      break;
1369
1370    case OR_Ambiguous:
1371      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
1372          << UnaryOperator::getOpcodeStr(Opc)
1373          << Arg->getSourceRange();
1374      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1375      return ExprError();
1376
1377    case OR_Deleted:
1378      Diag(OpLoc, diag::err_ovl_deleted_oper)
1379        << Best->Function->isDeleted()
1380        << UnaryOperator::getOpcodeStr(Opc)
1381        << Arg->getSourceRange();
1382      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1383      return ExprError();
1384    }
1385
1386    // Either we found no viable overloaded operator or we matched a
1387    // built-in operator. In either case, fall through to trying to
1388    // build a built-in operation.
1389  }
1390
1391  QualType result = CheckIncrementDecrementOperand(Arg, OpLoc,
1392                                                 Opc == UnaryOperator::PostInc);
1393  if (result.isNull())
1394    return ExprError();
1395  Input.release();
1396  return Owned(new (Context) UnaryOperator(Arg, Opc, result, OpLoc));
1397}
1398
1399Action::OwningExprResult
1400Sema::ActOnArraySubscriptExpr(Scope *S, ExprArg Base, SourceLocation LLoc,
1401                              ExprArg Idx, SourceLocation RLoc) {
1402  Expr *LHSExp = static_cast<Expr*>(Base.get()),
1403       *RHSExp = static_cast<Expr*>(Idx.get());
1404
1405  if (getLangOptions().CPlusPlus &&
1406      (LHSExp->getType()->isRecordType() ||
1407       LHSExp->getType()->isEnumeralType() ||
1408       RHSExp->getType()->isRecordType() ||
1409       RHSExp->getType()->isEnumeralType())) {
1410    // Add the appropriate overloaded operators (C++ [over.match.oper])
1411    // to the candidate set.
1412    OverloadCandidateSet CandidateSet;
1413    Expr *Args[2] = { LHSExp, RHSExp };
1414    if (AddOperatorCandidates(OO_Subscript, S, LLoc, Args, 2, CandidateSet,
1415                              SourceRange(LLoc, RLoc)))
1416      return ExprError();
1417
1418    // Perform overload resolution.
1419    OverloadCandidateSet::iterator Best;
1420    switch (BestViableFunction(CandidateSet, Best)) {
1421    case OR_Success: {
1422      // We found a built-in operator or an overloaded operator.
1423      FunctionDecl *FnDecl = Best->Function;
1424
1425      if (FnDecl) {
1426        // We matched an overloaded operator. Build a call to that
1427        // operator.
1428
1429        // Convert the arguments.
1430        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
1431          if (PerformObjectArgumentInitialization(LHSExp, Method) ||
1432              PerformCopyInitialization(RHSExp,
1433                                        FnDecl->getParamDecl(0)->getType(),
1434                                        "passing"))
1435            return ExprError();
1436        } else {
1437          // Convert the arguments.
1438          if (PerformCopyInitialization(LHSExp,
1439                                        FnDecl->getParamDecl(0)->getType(),
1440                                        "passing") ||
1441              PerformCopyInitialization(RHSExp,
1442                                        FnDecl->getParamDecl(1)->getType(),
1443                                        "passing"))
1444            return ExprError();
1445        }
1446
1447        // Determine the result type
1448        QualType ResultTy
1449          = FnDecl->getType()->getAsFunctionType()->getResultType();
1450        ResultTy = ResultTy.getNonReferenceType();
1451
1452        // Build the actual expression node.
1453        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
1454                                                 SourceLocation());
1455        UsualUnaryConversions(FnExpr);
1456
1457        Base.release();
1458        Idx.release();
1459        return Owned(new (Context) CXXOperatorCallExpr(Context, FnExpr, Args, 2,
1460                                                       ResultTy, LLoc));
1461      } else {
1462        // We matched a built-in operator. Convert the arguments, then
1463        // break out so that we will build the appropriate built-in
1464        // operator node.
1465        if (PerformCopyInitialization(LHSExp, Best->BuiltinTypes.ParamTypes[0],
1466                                      "passing") ||
1467            PerformCopyInitialization(RHSExp, Best->BuiltinTypes.ParamTypes[1],
1468                                      "passing"))
1469          return ExprError();
1470
1471        break;
1472      }
1473    }
1474
1475    case OR_No_Viable_Function:
1476      // No viable function; fall through to handling this as a
1477      // built-in operator, which will produce an error message for us.
1478      break;
1479
1480    case OR_Ambiguous:
1481      Diag(LLoc,  diag::err_ovl_ambiguous_oper)
1482          << "[]"
1483          << LHSExp->getSourceRange() << RHSExp->getSourceRange();
1484      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1485      return ExprError();
1486
1487    case OR_Deleted:
1488      Diag(LLoc, diag::err_ovl_deleted_oper)
1489        << Best->Function->isDeleted()
1490        << "[]"
1491        << LHSExp->getSourceRange() << RHSExp->getSourceRange();
1492      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1493      return ExprError();
1494    }
1495
1496    // Either we found no viable overloaded operator or we matched a
1497    // built-in operator. In either case, fall through to trying to
1498    // build a built-in operation.
1499  }
1500
1501  // Perform default conversions.
1502  DefaultFunctionArrayConversion(LHSExp);
1503  DefaultFunctionArrayConversion(RHSExp);
1504
1505  QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
1506
1507  // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
1508  // to the expression *((e1)+(e2)). This means the array "Base" may actually be
1509  // in the subscript position. As a result, we need to derive the array base
1510  // and index from the expression types.
1511  Expr *BaseExpr, *IndexExpr;
1512  QualType ResultType;
1513  if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
1514    BaseExpr = LHSExp;
1515    IndexExpr = RHSExp;
1516    ResultType = Context.DependentTy;
1517  } else if (const PointerType *PTy = LHSTy->getAsPointerType()) {
1518    BaseExpr = LHSExp;
1519    IndexExpr = RHSExp;
1520    // FIXME: need to deal with const...
1521    ResultType = PTy->getPointeeType();
1522  } else if (const PointerType *PTy = RHSTy->getAsPointerType()) {
1523     // Handle the uncommon case of "123[Ptr]".
1524    BaseExpr = RHSExp;
1525    IndexExpr = LHSExp;
1526    // FIXME: need to deal with const...
1527    ResultType = PTy->getPointeeType();
1528  } else if (const VectorType *VTy = LHSTy->getAsVectorType()) {
1529    BaseExpr = LHSExp;    // vectors: V[123]
1530    IndexExpr = RHSExp;
1531
1532    // FIXME: need to deal with const...
1533    ResultType = VTy->getElementType();
1534  } else {
1535    return ExprError(Diag(LHSExp->getLocStart(),
1536      diag::err_typecheck_subscript_value) << RHSExp->getSourceRange());
1537  }
1538  // C99 6.5.2.1p1
1539  if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent())
1540    return ExprError(Diag(IndexExpr->getLocStart(),
1541      diag::err_typecheck_subscript) << IndexExpr->getSourceRange());
1542
1543  // C99 6.5.2.1p1: "shall have type "pointer to *object* type".  In practice,
1544  // the following check catches trying to index a pointer to a function (e.g.
1545  // void (*)(int)) and pointers to incomplete types.  Functions are not
1546  // objects in C99.
1547  if (!ResultType->isObjectType() && !ResultType->isDependentType())
1548    return ExprError(Diag(BaseExpr->getLocStart(),
1549                diag::err_typecheck_subscript_not_object)
1550      << BaseExpr->getType() << BaseExpr->getSourceRange());
1551
1552  Base.release();
1553  Idx.release();
1554  return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
1555                                                ResultType, RLoc));
1556}
1557
1558QualType Sema::
1559CheckExtVectorComponent(QualType baseType, SourceLocation OpLoc,
1560                        IdentifierInfo &CompName, SourceLocation CompLoc) {
1561  const ExtVectorType *vecType = baseType->getAsExtVectorType();
1562
1563  // The vector accessor can't exceed the number of elements.
1564  const char *compStr = CompName.getName();
1565
1566  // This flag determines whether or not the component is one of the four
1567  // special names that indicate a subset of exactly half the elements are
1568  // to be selected.
1569  bool HalvingSwizzle = false;
1570
1571  // This flag determines whether or not CompName has an 's' char prefix,
1572  // indicating that it is a string of hex values to be used as vector indices.
1573  bool HexSwizzle = *compStr == 's';
1574
1575  // Check that we've found one of the special components, or that the component
1576  // names must come from the same set.
1577  if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
1578      !strcmp(compStr, "even") || !strcmp(compStr, "odd")) {
1579    HalvingSwizzle = true;
1580  } else if (vecType->getPointAccessorIdx(*compStr) != -1) {
1581    do
1582      compStr++;
1583    while (*compStr && vecType->getPointAccessorIdx(*compStr) != -1);
1584  } else if (HexSwizzle || vecType->getNumericAccessorIdx(*compStr) != -1) {
1585    do
1586      compStr++;
1587    while (*compStr && vecType->getNumericAccessorIdx(*compStr) != -1);
1588  }
1589
1590  if (!HalvingSwizzle && *compStr) {
1591    // We didn't get to the end of the string. This means the component names
1592    // didn't come from the same set *or* we encountered an illegal name.
1593    Diag(OpLoc, diag::err_ext_vector_component_name_illegal)
1594      << std::string(compStr,compStr+1) << SourceRange(CompLoc);
1595    return QualType();
1596  }
1597
1598  // Ensure no component accessor exceeds the width of the vector type it
1599  // operates on.
1600  if (!HalvingSwizzle) {
1601    compStr = CompName.getName();
1602
1603    if (HexSwizzle)
1604      compStr++;
1605
1606    while (*compStr) {
1607      if (!vecType->isAccessorWithinNumElements(*compStr++)) {
1608        Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
1609          << baseType << SourceRange(CompLoc);
1610        return QualType();
1611      }
1612    }
1613  }
1614
1615  // If this is a halving swizzle, verify that the base type has an even
1616  // number of elements.
1617  if (HalvingSwizzle && (vecType->getNumElements() & 1U)) {
1618    Diag(OpLoc, diag::err_ext_vector_component_requires_even)
1619      << baseType << SourceRange(CompLoc);
1620    return QualType();
1621  }
1622
1623  // The component accessor looks fine - now we need to compute the actual type.
1624  // The vector type is implied by the component accessor. For example,
1625  // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
1626  // vec4.s0 is a float, vec4.s23 is a vec3, etc.
1627  // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
1628  unsigned CompSize = HalvingSwizzle ? vecType->getNumElements() / 2
1629                                     : CompName.getLength();
1630  if (HexSwizzle)
1631    CompSize--;
1632
1633  if (CompSize == 1)
1634    return vecType->getElementType();
1635
1636  QualType VT = Context.getExtVectorType(vecType->getElementType(), CompSize);
1637  // Now look up the TypeDefDecl from the vector type. Without this,
1638  // diagostics look bad. We want extended vector types to appear built-in.
1639  for (unsigned i = 0, E = ExtVectorDecls.size(); i != E; ++i) {
1640    if (ExtVectorDecls[i]->getUnderlyingType() == VT)
1641      return Context.getTypedefType(ExtVectorDecls[i]);
1642  }
1643  return VT; // should never get here (a typedef type should always be found).
1644}
1645
1646
1647/// constructSetterName - Return the setter name for the given
1648/// identifier, i.e. "set" + Name where the initial character of Name
1649/// has been capitalized.
1650// FIXME: Merge with same routine in Parser. But where should this
1651// live?
1652static IdentifierInfo *constructSetterName(IdentifierTable &Idents,
1653                                           const IdentifierInfo *Name) {
1654  llvm::SmallString<100> SelectorName;
1655  SelectorName = "set";
1656  SelectorName.append(Name->getName(), Name->getName()+Name->getLength());
1657  SelectorName[3] = toupper(SelectorName[3]);
1658  return &Idents.get(&SelectorName[0], &SelectorName[SelectorName.size()]);
1659}
1660
1661Action::OwningExprResult
1662Sema::ActOnMemberReferenceExpr(Scope *S, ExprArg Base, SourceLocation OpLoc,
1663                               tok::TokenKind OpKind, SourceLocation MemberLoc,
1664                               IdentifierInfo &Member) {
1665  Expr *BaseExpr = static_cast<Expr *>(Base.release());
1666  assert(BaseExpr && "no record expression");
1667
1668  // Perform default conversions.
1669  DefaultFunctionArrayConversion(BaseExpr);
1670
1671  QualType BaseType = BaseExpr->getType();
1672  assert(!BaseType.isNull() && "no type for member expression");
1673
1674  // Get the type being accessed in BaseType.  If this is an arrow, the BaseExpr
1675  // must have pointer type, and the accessed type is the pointee.
1676  if (OpKind == tok::arrow) {
1677    if (const PointerType *PT = BaseType->getAsPointerType())
1678      BaseType = PT->getPointeeType();
1679    else if (getLangOptions().CPlusPlus && BaseType->isRecordType())
1680      return Owned(BuildOverloadedArrowExpr(S, BaseExpr, OpLoc,
1681                                            MemberLoc, Member));
1682    else
1683      return ExprError(Diag(MemberLoc,
1684                            diag::err_typecheck_member_reference_arrow)
1685        << BaseType << BaseExpr->getSourceRange());
1686  }
1687
1688  // Handle field access to simple records.  This also handles access to fields
1689  // of the ObjC 'id' struct.
1690  if (const RecordType *RTy = BaseType->getAsRecordType()) {
1691    RecordDecl *RDecl = RTy->getDecl();
1692    if (DiagnoseIncompleteType(OpLoc, BaseType,
1693                               diag::err_typecheck_incomplete_tag,
1694                               BaseExpr->getSourceRange()))
1695      return ExprError();
1696
1697    // The record definition is complete, now make sure the member is valid.
1698    // FIXME: Qualified name lookup for C++ is a bit more complicated
1699    // than this.
1700    LookupResult Result
1701      = LookupQualifiedName(RDecl, DeclarationName(&Member),
1702                            LookupMemberName, false);
1703
1704    NamedDecl *MemberDecl = 0;
1705    if (!Result)
1706      return ExprError(Diag(MemberLoc, diag::err_typecheck_no_member)
1707               << &Member << BaseExpr->getSourceRange());
1708    else if (Result.isAmbiguous()) {
1709      DiagnoseAmbiguousLookup(Result, DeclarationName(&Member),
1710                              MemberLoc, BaseExpr->getSourceRange());
1711      return ExprError();
1712    } else
1713      MemberDecl = Result;
1714
1715    // If the decl being referenced had an error, return an error for this
1716    // sub-expr without emitting another error, in order to avoid cascading
1717    // error cases.
1718    if (MemberDecl->isInvalidDecl())
1719      return ExprError();
1720
1721    // Check the use of this field
1722    if (DiagnoseUseOfDecl(MemberDecl, MemberLoc))
1723      return ExprError();
1724
1725    if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl)) {
1726      // We may have found a field within an anonymous union or struct
1727      // (C++ [class.union]).
1728      if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion())
1729        return BuildAnonymousStructUnionMemberReference(MemberLoc, FD,
1730                                                        BaseExpr, OpLoc);
1731
1732      // Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref]
1733      // FIXME: Handle address space modifiers
1734      QualType MemberType = FD->getType();
1735      if (const ReferenceType *Ref = MemberType->getAsReferenceType())
1736        MemberType = Ref->getPointeeType();
1737      else {
1738        unsigned combinedQualifiers =
1739          MemberType.getCVRQualifiers() | BaseType.getCVRQualifiers();
1740        if (FD->isMutable())
1741          combinedQualifiers &= ~QualType::Const;
1742        MemberType = MemberType.getQualifiedType(combinedQualifiers);
1743      }
1744
1745      return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow, FD,
1746                                            MemberLoc, MemberType));
1747    } else if (CXXClassVarDecl *Var = dyn_cast<CXXClassVarDecl>(MemberDecl))
1748      return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow,
1749                                  Var, MemberLoc,
1750                                  Var->getType().getNonReferenceType()));
1751    else if (FunctionDecl *MemberFn = dyn_cast<FunctionDecl>(MemberDecl))
1752      return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow,
1753                                  MemberFn, MemberLoc, MemberFn->getType()));
1754    else if (OverloadedFunctionDecl *Ovl
1755             = dyn_cast<OverloadedFunctionDecl>(MemberDecl))
1756      return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow, Ovl,
1757                                  MemberLoc, Context.OverloadTy));
1758    else if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(MemberDecl))
1759      return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow,
1760                                            Enum, MemberLoc, Enum->getType()));
1761    else if (isa<TypeDecl>(MemberDecl))
1762      return ExprError(Diag(MemberLoc,diag::err_typecheck_member_reference_type)
1763        << DeclarationName(&Member) << int(OpKind == tok::arrow));
1764
1765    // We found a declaration kind that we didn't expect. This is a
1766    // generic error message that tells the user that she can't refer
1767    // to this member with '.' or '->'.
1768    return ExprError(Diag(MemberLoc,
1769                          diag::err_typecheck_member_reference_unknown)
1770      << DeclarationName(&Member) << int(OpKind == tok::arrow));
1771  }
1772
1773  // Handle access to Objective-C instance variables, such as "Obj->ivar" and
1774  // (*Obj).ivar.
1775  if (const ObjCInterfaceType *IFTy = BaseType->getAsObjCInterfaceType()) {
1776    if (ObjCIvarDecl *IV = IFTy->getDecl()->lookupInstanceVariable(&Member)) {
1777      // If the decl being referenced had an error, return an error for this
1778      // sub-expr without emitting another error, in order to avoid cascading
1779      // error cases.
1780      if (IV->isInvalidDecl())
1781        return ExprError();
1782
1783      // Check whether we can reference this field.
1784      if (DiagnoseUseOfDecl(IV, MemberLoc))
1785        return ExprError();
1786
1787      ObjCIvarRefExpr *MRef= new (Context) ObjCIvarRefExpr(IV, IV->getType(),
1788                                                 MemberLoc, BaseExpr,
1789                                                 OpKind == tok::arrow);
1790      Context.setFieldDecl(IFTy->getDecl(), IV, MRef);
1791      return Owned(MRef);
1792    }
1793    return ExprError(Diag(MemberLoc, diag::err_typecheck_member_reference_ivar)
1794                       << IFTy->getDecl()->getDeclName() << &Member
1795                       << BaseExpr->getSourceRange());
1796  }
1797
1798  // Handle Objective-C property access, which is "Obj.property" where Obj is a
1799  // pointer to a (potentially qualified) interface type.
1800  const PointerType *PTy;
1801  const ObjCInterfaceType *IFTy;
1802  if (OpKind == tok::period && (PTy = BaseType->getAsPointerType()) &&
1803      (IFTy = PTy->getPointeeType()->getAsObjCInterfaceType())) {
1804    ObjCInterfaceDecl *IFace = IFTy->getDecl();
1805
1806    // Search for a declared property first.
1807    if (ObjCPropertyDecl *PD = IFace->FindPropertyDeclaration(&Member)) {
1808      // Check whether we can reference this property.
1809      if (DiagnoseUseOfDecl(PD, MemberLoc))
1810        return ExprError();
1811
1812      return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
1813                                                     MemberLoc, BaseExpr));
1814    }
1815
1816    // Check protocols on qualified interfaces.
1817    for (ObjCInterfaceType::qual_iterator I = IFTy->qual_begin(),
1818         E = IFTy->qual_end(); I != E; ++I)
1819      if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(&Member)) {
1820        // Check whether we can reference this property.
1821        if (DiagnoseUseOfDecl(PD, MemberLoc))
1822          return ExprError();
1823
1824        return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
1825                                                       MemberLoc, BaseExpr));
1826      }
1827
1828    // If that failed, look for an "implicit" property by seeing if the nullary
1829    // selector is implemented.
1830
1831    // FIXME: The logic for looking up nullary and unary selectors should be
1832    // shared with the code in ActOnInstanceMessage.
1833
1834    Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
1835    ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Sel);
1836
1837    // If this reference is in an @implementation, check for 'private' methods.
1838    if (!Getter)
1839      if (ObjCMethodDecl *CurMeth = getCurMethodDecl())
1840        if (ObjCInterfaceDecl *ClassDecl = CurMeth->getClassInterface())
1841          if (ObjCImplementationDecl *ImpDecl =
1842              ObjCImplementations[ClassDecl->getIdentifier()])
1843            Getter = ImpDecl->getInstanceMethod(Sel);
1844
1845    // Look through local category implementations associated with the class.
1846    if (!Getter) {
1847      for (unsigned i = 0; i < ObjCCategoryImpls.size() && !Getter; i++) {
1848        if (ObjCCategoryImpls[i]->getClassInterface() == IFace)
1849          Getter = ObjCCategoryImpls[i]->getInstanceMethod(Sel);
1850      }
1851    }
1852    if (Getter) {
1853      // Check if we can reference this property.
1854      if (DiagnoseUseOfDecl(Getter, MemberLoc))
1855        return ExprError();
1856
1857      // If we found a getter then this may be a valid dot-reference, we
1858      // will look for the matching setter, in case it is needed.
1859      IdentifierInfo *SetterName = constructSetterName(PP.getIdentifierTable(),
1860                                                       &Member);
1861      Selector SetterSel = PP.getSelectorTable().getUnarySelector(SetterName);
1862      ObjCMethodDecl *Setter = IFace->lookupInstanceMethod(SetterSel);
1863      if (!Setter) {
1864        // If this reference is in an @implementation, also check for 'private'
1865        // methods.
1866        if (ObjCMethodDecl *CurMeth = getCurMethodDecl())
1867          if (ObjCInterfaceDecl *ClassDecl = CurMeth->getClassInterface())
1868            if (ObjCImplementationDecl *ImpDecl =
1869                  ObjCImplementations[ClassDecl->getIdentifier()])
1870              Setter = ImpDecl->getInstanceMethod(SetterSel);
1871      }
1872      // Look through local category implementations associated with the class.
1873      if (!Setter) {
1874        for (unsigned i = 0; i < ObjCCategoryImpls.size() && !Setter; i++) {
1875          if (ObjCCategoryImpls[i]->getClassInterface() == IFace)
1876            Setter = ObjCCategoryImpls[i]->getInstanceMethod(SetterSel);
1877        }
1878      }
1879
1880      if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
1881        return ExprError();
1882
1883      // FIXME: we must check that the setter has property type.
1884      return Owned(new (Context) ObjCKVCRefExpr(Getter, Getter->getResultType(),
1885                                      Setter, MemberLoc, BaseExpr));
1886    }
1887
1888    return ExprError(Diag(MemberLoc, diag::err_property_not_found)
1889      << &Member << BaseType);
1890  }
1891  // Handle properties on qualified "id" protocols.
1892  const ObjCQualifiedIdType *QIdTy;
1893  if (OpKind == tok::period && (QIdTy = BaseType->getAsObjCQualifiedIdType())) {
1894    // Check protocols on qualified interfaces.
1895    for (ObjCQualifiedIdType::qual_iterator I = QIdTy->qual_begin(),
1896         E = QIdTy->qual_end(); I != E; ++I) {
1897      if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(&Member)) {
1898        // Check the use of this declaration
1899        if (DiagnoseUseOfDecl(PD, MemberLoc))
1900          return ExprError();
1901
1902        return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
1903                                                       MemberLoc, BaseExpr));
1904      }
1905      // Also must look for a getter name which uses property syntax.
1906      Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
1907      if (ObjCMethodDecl *OMD = (*I)->getInstanceMethod(Sel)) {
1908        // Check the use of this method.
1909        if (DiagnoseUseOfDecl(OMD, MemberLoc))
1910          return ExprError();
1911
1912        return Owned(new (Context) ObjCMessageExpr(BaseExpr, Sel,
1913                        OMD->getResultType(), OMD, OpLoc, MemberLoc, NULL, 0));
1914      }
1915    }
1916
1917    return ExprError(Diag(MemberLoc, diag::err_property_not_found)
1918                       << &Member << BaseType);
1919  }
1920  // Handle 'field access' to vectors, such as 'V.xx'.
1921  if (BaseType->isExtVectorType()) {
1922    QualType ret = CheckExtVectorComponent(BaseType, OpLoc, Member, MemberLoc);
1923    if (ret.isNull())
1924      return ExprError();
1925    return Owned(new (Context) ExtVectorElementExpr(ret, BaseExpr, Member,
1926                                                    MemberLoc));
1927  }
1928
1929  return ExprError(Diag(MemberLoc,
1930                        diag::err_typecheck_member_reference_struct_union)
1931                     << BaseType << BaseExpr->getSourceRange());
1932}
1933
1934/// ConvertArgumentsForCall - Converts the arguments specified in
1935/// Args/NumArgs to the parameter types of the function FDecl with
1936/// function prototype Proto. Call is the call expression itself, and
1937/// Fn is the function expression. For a C++ member function, this
1938/// routine does not attempt to convert the object argument. Returns
1939/// true if the call is ill-formed.
1940bool
1941Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
1942                              FunctionDecl *FDecl,
1943                              const FunctionProtoType *Proto,
1944                              Expr **Args, unsigned NumArgs,
1945                              SourceLocation RParenLoc) {
1946  // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
1947  // assignment, to the types of the corresponding parameter, ...
1948  unsigned NumArgsInProto = Proto->getNumArgs();
1949  unsigned NumArgsToCheck = NumArgs;
1950  bool Invalid = false;
1951
1952  // If too few arguments are available (and we don't have default
1953  // arguments for the remaining parameters), don't make the call.
1954  if (NumArgs < NumArgsInProto) {
1955    if (!FDecl || NumArgs < FDecl->getMinRequiredArguments())
1956      return Diag(RParenLoc, diag::err_typecheck_call_too_few_args)
1957        << Fn->getType()->isBlockPointerType() << Fn->getSourceRange();
1958    // Use default arguments for missing arguments
1959    NumArgsToCheck = NumArgsInProto;
1960    Call->setNumArgs(Context, NumArgsInProto);
1961  }
1962
1963  // If too many are passed and not variadic, error on the extras and drop
1964  // them.
1965  if (NumArgs > NumArgsInProto) {
1966    if (!Proto->isVariadic()) {
1967      Diag(Args[NumArgsInProto]->getLocStart(),
1968           diag::err_typecheck_call_too_many_args)
1969        << Fn->getType()->isBlockPointerType() << Fn->getSourceRange()
1970        << SourceRange(Args[NumArgsInProto]->getLocStart(),
1971                       Args[NumArgs-1]->getLocEnd());
1972      // This deletes the extra arguments.
1973      Call->setNumArgs(Context, NumArgsInProto);
1974      Invalid = true;
1975    }
1976    NumArgsToCheck = NumArgsInProto;
1977  }
1978
1979  // Continue to check argument types (even if we have too few/many args).
1980  for (unsigned i = 0; i != NumArgsToCheck; i++) {
1981    QualType ProtoArgType = Proto->getArgType(i);
1982
1983    Expr *Arg;
1984    if (i < NumArgs) {
1985      Arg = Args[i];
1986
1987      // Pass the argument.
1988      if (PerformCopyInitialization(Arg, ProtoArgType, "passing"))
1989        return true;
1990    } else
1991      // We already type-checked the argument, so we know it works.
1992      Arg = new (Context) CXXDefaultArgExpr(FDecl->getParamDecl(i));
1993    QualType ArgType = Arg->getType();
1994
1995    Call->setArg(i, Arg);
1996  }
1997
1998  // If this is a variadic call, handle args passed through "...".
1999  if (Proto->isVariadic()) {
2000    VariadicCallType CallType = VariadicFunction;
2001    if (Fn->getType()->isBlockPointerType())
2002      CallType = VariadicBlock; // Block
2003    else if (isa<MemberExpr>(Fn))
2004      CallType = VariadicMethod;
2005
2006    // Promote the arguments (C99 6.5.2.2p7).
2007    for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
2008      Expr *Arg = Args[i];
2009      DefaultVariadicArgumentPromotion(Arg, CallType);
2010      Call->setArg(i, Arg);
2011    }
2012  }
2013
2014  return Invalid;
2015}
2016
2017/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
2018/// This provides the location of the left/right parens and a list of comma
2019/// locations.
2020Action::OwningExprResult
2021Sema::ActOnCallExpr(Scope *S, ExprArg fn, SourceLocation LParenLoc,
2022                    MultiExprArg args,
2023                    SourceLocation *CommaLocs, SourceLocation RParenLoc) {
2024  unsigned NumArgs = args.size();
2025  Expr *Fn = static_cast<Expr *>(fn.release());
2026  Expr **Args = reinterpret_cast<Expr**>(args.release());
2027  assert(Fn && "no function call expression");
2028  FunctionDecl *FDecl = NULL;
2029  DeclarationName UnqualifiedName;
2030
2031  if (getLangOptions().CPlusPlus) {
2032    // Determine whether this is a dependent call inside a C++ template,
2033    // in which case we won't do any semantic analysis now.
2034    // FIXME: Will need to cache the results of name lookup (including ADL) in Fn.
2035    bool Dependent = false;
2036    if (Fn->isTypeDependent())
2037      Dependent = true;
2038    else if (Expr::hasAnyTypeDependentArguments(Args, NumArgs))
2039      Dependent = true;
2040
2041    if (Dependent)
2042      return Owned(new (Context) CallExpr(Context, Fn, Args, NumArgs,
2043                                          Context.DependentTy, RParenLoc));
2044
2045    // Determine whether this is a call to an object (C++ [over.call.object]).
2046    if (Fn->getType()->isRecordType())
2047      return Owned(BuildCallToObjectOfClassType(S, Fn, LParenLoc, Args, NumArgs,
2048                                                CommaLocs, RParenLoc));
2049
2050    // Determine whether this is a call to a member function.
2051    if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(Fn->IgnoreParens()))
2052      if (isa<OverloadedFunctionDecl>(MemExpr->getMemberDecl()) ||
2053          isa<CXXMethodDecl>(MemExpr->getMemberDecl()))
2054        return Owned(BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
2055                                               CommaLocs, RParenLoc));
2056  }
2057
2058  // If we're directly calling a function, get the appropriate declaration.
2059  DeclRefExpr *DRExpr = NULL;
2060  Expr *FnExpr = Fn;
2061  bool ADL = true;
2062  while (true) {
2063    if (ImplicitCastExpr *IcExpr = dyn_cast<ImplicitCastExpr>(FnExpr))
2064      FnExpr = IcExpr->getSubExpr();
2065    else if (ParenExpr *PExpr = dyn_cast<ParenExpr>(FnExpr)) {
2066      // Parentheses around a function disable ADL
2067      // (C++0x [basic.lookup.argdep]p1).
2068      ADL = false;
2069      FnExpr = PExpr->getSubExpr();
2070    } else if (isa<UnaryOperator>(FnExpr) &&
2071               cast<UnaryOperator>(FnExpr)->getOpcode()
2072                 == UnaryOperator::AddrOf) {
2073      FnExpr = cast<UnaryOperator>(FnExpr)->getSubExpr();
2074    } else if ((DRExpr = dyn_cast<DeclRefExpr>(FnExpr))) {
2075      // Qualified names disable ADL (C++0x [basic.lookup.argdep]p1).
2076      ADL &= !isa<QualifiedDeclRefExpr>(DRExpr);
2077      break;
2078    } else if (UnresolvedFunctionNameExpr *DepName
2079                 = dyn_cast<UnresolvedFunctionNameExpr>(FnExpr)) {
2080      UnqualifiedName = DepName->getName();
2081      break;
2082    } else {
2083      // Any kind of name that does not refer to a declaration (or
2084      // set of declarations) disables ADL (C++0x [basic.lookup.argdep]p3).
2085      ADL = false;
2086      break;
2087    }
2088  }
2089
2090  OverloadedFunctionDecl *Ovl = 0;
2091  if (DRExpr) {
2092    FDecl = dyn_cast<FunctionDecl>(DRExpr->getDecl());
2093    Ovl = dyn_cast<OverloadedFunctionDecl>(DRExpr->getDecl());
2094  }
2095
2096  if (Ovl || (getLangOptions().CPlusPlus && (FDecl || UnqualifiedName))) {
2097    // We don't perform ADL for implicit declarations of builtins.
2098    if (FDecl && FDecl->getBuiltinID(Context) && FDecl->isImplicit())
2099      ADL = false;
2100
2101    // We don't perform ADL in C.
2102    if (!getLangOptions().CPlusPlus)
2103      ADL = false;
2104
2105    if (Ovl || ADL) {
2106      FDecl = ResolveOverloadedCallFn(Fn, DRExpr? DRExpr->getDecl() : 0,
2107                                      UnqualifiedName, LParenLoc, Args,
2108                                      NumArgs, CommaLocs, RParenLoc, ADL);
2109      if (!FDecl)
2110        return ExprError();
2111
2112      // Update Fn to refer to the actual function selected.
2113      Expr *NewFn = 0;
2114      if (QualifiedDeclRefExpr *QDRExpr
2115            = dyn_cast_or_null<QualifiedDeclRefExpr>(DRExpr))
2116        NewFn = new (Context) QualifiedDeclRefExpr(FDecl, FDecl->getType(),
2117                                                   QDRExpr->getLocation(),
2118                                                   false, false,
2119                                          QDRExpr->getSourceRange().getBegin());
2120      else
2121        NewFn = new (Context) DeclRefExpr(FDecl, FDecl->getType(),
2122                                          Fn->getSourceRange().getBegin());
2123      Fn->Destroy(Context);
2124      Fn = NewFn;
2125    }
2126  }
2127
2128  // Promote the function operand.
2129  UsualUnaryConversions(Fn);
2130
2131  // Make the call expr early, before semantic checks.  This guarantees cleanup
2132  // of arguments and function on error.
2133  ExprOwningPtr<CallExpr> TheCall(this, new (Context) CallExpr(Context, Fn,
2134                                                               Args, NumArgs,
2135                                                               Context.BoolTy,
2136                                                               RParenLoc));
2137
2138  const FunctionType *FuncT;
2139  if (!Fn->getType()->isBlockPointerType()) {
2140    // C99 6.5.2.2p1 - "The expression that denotes the called function shall
2141    // have type pointer to function".
2142    const PointerType *PT = Fn->getType()->getAsPointerType();
2143    if (PT == 0)
2144      return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
2145        << Fn->getType() << Fn->getSourceRange());
2146    FuncT = PT->getPointeeType()->getAsFunctionType();
2147  } else { // This is a block call.
2148    FuncT = Fn->getType()->getAsBlockPointerType()->getPointeeType()->
2149                getAsFunctionType();
2150  }
2151  if (FuncT == 0)
2152    return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
2153      << Fn->getType() << Fn->getSourceRange());
2154
2155  // We know the result type of the call, set it.
2156  TheCall->setType(FuncT->getResultType().getNonReferenceType());
2157
2158  if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FuncT)) {
2159    if (ConvertArgumentsForCall(&*TheCall, Fn, FDecl, Proto, Args, NumArgs,
2160                                RParenLoc))
2161      return ExprError();
2162  } else {
2163    assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
2164
2165    // Promote the arguments (C99 6.5.2.2p6).
2166    for (unsigned i = 0; i != NumArgs; i++) {
2167      Expr *Arg = Args[i];
2168      DefaultArgumentPromotion(Arg);
2169      TheCall->setArg(i, Arg);
2170    }
2171  }
2172
2173  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
2174    if (!Method->isStatic())
2175      return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
2176        << Fn->getSourceRange());
2177
2178  // Do special checking on direct calls to functions.
2179  if (FDecl)
2180    return CheckFunctionCall(FDecl, TheCall.take());
2181
2182  return Owned(TheCall.take());
2183}
2184
2185Action::OwningExprResult
2186Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, TypeTy *Ty,
2187                           SourceLocation RParenLoc, ExprArg InitExpr) {
2188  assert((Ty != 0) && "ActOnCompoundLiteral(): missing type");
2189  QualType literalType = QualType::getFromOpaquePtr(Ty);
2190  // FIXME: put back this assert when initializers are worked out.
2191  //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
2192  Expr *literalExpr = static_cast<Expr*>(InitExpr.get());
2193
2194  if (literalType->isArrayType()) {
2195    if (literalType->isVariableArrayType())
2196      return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init)
2197        << SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd()));
2198  } else if (DiagnoseIncompleteType(LParenLoc, literalType,
2199                                    diag::err_typecheck_decl_incomplete_type,
2200                SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd())))
2201    return ExprError();
2202
2203  if (CheckInitializerTypes(literalExpr, literalType, LParenLoc,
2204                            DeclarationName(), /*FIXME:DirectInit=*/false))
2205    return ExprError();
2206
2207  bool isFileScope = getCurFunctionOrMethodDecl() == 0;
2208  if (isFileScope) { // 6.5.2.5p3
2209    if (CheckForConstantInitializer(literalExpr, literalType))
2210      return ExprError();
2211  }
2212  InitExpr.release();
2213  return Owned(new (Context) CompoundLiteralExpr(LParenLoc, literalType,
2214                                                 literalExpr, isFileScope));
2215}
2216
2217Action::OwningExprResult
2218Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg initlist,
2219                    InitListDesignations &Designators,
2220                    SourceLocation RBraceLoc) {
2221  unsigned NumInit = initlist.size();
2222  Expr **InitList = reinterpret_cast<Expr**>(initlist.release());
2223
2224  // Semantic analysis for initializers is done by ActOnDeclarator() and
2225  // CheckInitializer() - it requires knowledge of the object being intialized.
2226
2227  InitListExpr *E = new (Context) InitListExpr(LBraceLoc, InitList, NumInit,
2228                                               RBraceLoc);
2229  E->setType(Context.VoidTy); // FIXME: just a place holder for now.
2230  return Owned(E);
2231}
2232
2233/// CheckCastTypes - Check type constraints for casting between types.
2234bool Sema::CheckCastTypes(SourceRange TyR, QualType castType, Expr *&castExpr) {
2235  UsualUnaryConversions(castExpr);
2236
2237  // C99 6.5.4p2: the cast type needs to be void or scalar and the expression
2238  // type needs to be scalar.
2239  if (castType->isVoidType()) {
2240    // Cast to void allows any expr type.
2241  } else if (castType->isDependentType() || castExpr->isTypeDependent()) {
2242    // We can't check any more until template instantiation time.
2243  } else if (!castType->isScalarType() && !castType->isVectorType()) {
2244    if (Context.getCanonicalType(castType).getUnqualifiedType() ==
2245        Context.getCanonicalType(castExpr->getType().getUnqualifiedType()) &&
2246        (castType->isStructureType() || castType->isUnionType())) {
2247      // GCC struct/union extension: allow cast to self.
2248      Diag(TyR.getBegin(), diag::ext_typecheck_cast_nonscalar)
2249        << castType << castExpr->getSourceRange();
2250    } else if (castType->isUnionType()) {
2251      // GCC cast to union extension
2252      RecordDecl *RD = castType->getAsRecordType()->getDecl();
2253      RecordDecl::field_iterator Field, FieldEnd;
2254      for (Field = RD->field_begin(), FieldEnd = RD->field_end();
2255           Field != FieldEnd; ++Field) {
2256        if (Context.getCanonicalType(Field->getType()).getUnqualifiedType() ==
2257            Context.getCanonicalType(castExpr->getType()).getUnqualifiedType()) {
2258          Diag(TyR.getBegin(), diag::ext_typecheck_cast_to_union)
2259            << castExpr->getSourceRange();
2260          break;
2261        }
2262      }
2263      if (Field == FieldEnd)
2264        return Diag(TyR.getBegin(), diag::err_typecheck_cast_to_union_no_type)
2265          << castExpr->getType() << castExpr->getSourceRange();
2266    } else {
2267      // Reject any other conversions to non-scalar types.
2268      return Diag(TyR.getBegin(), diag::err_typecheck_cond_expect_scalar)
2269        << castType << castExpr->getSourceRange();
2270    }
2271  } else if (!castExpr->getType()->isScalarType() &&
2272             !castExpr->getType()->isVectorType()) {
2273    return Diag(castExpr->getLocStart(),
2274                diag::err_typecheck_expect_scalar_operand)
2275      << castExpr->getType() << castExpr->getSourceRange();
2276  } else if (castExpr->getType()->isVectorType()) {
2277    if (CheckVectorCast(TyR, castExpr->getType(), castType))
2278      return true;
2279  } else if (castType->isVectorType()) {
2280    if (CheckVectorCast(TyR, castType, castExpr->getType()))
2281      return true;
2282  }
2283  return false;
2284}
2285
2286bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty) {
2287  assert(VectorTy->isVectorType() && "Not a vector type!");
2288
2289  if (Ty->isVectorType() || Ty->isIntegerType()) {
2290    if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty))
2291      return Diag(R.getBegin(),
2292                  Ty->isVectorType() ?
2293                  diag::err_invalid_conversion_between_vectors :
2294                  diag::err_invalid_conversion_between_vector_and_integer)
2295        << VectorTy << Ty << R;
2296  } else
2297    return Diag(R.getBegin(),
2298                diag::err_invalid_conversion_between_vector_and_scalar)
2299      << VectorTy << Ty << R;
2300
2301  return false;
2302}
2303
2304Action::OwningExprResult
2305Sema::ActOnCastExpr(SourceLocation LParenLoc, TypeTy *Ty,
2306                    SourceLocation RParenLoc, ExprArg Op) {
2307  assert((Ty != 0) && (Op.get() != 0) &&
2308         "ActOnCastExpr(): missing type or expr");
2309
2310  Expr *castExpr = static_cast<Expr*>(Op.release());
2311  QualType castType = QualType::getFromOpaquePtr(Ty);
2312
2313  if (CheckCastTypes(SourceRange(LParenLoc, RParenLoc), castType, castExpr))
2314    return ExprError();
2315  return Owned(new (Context) CStyleCastExpr(castType, castExpr, castType,
2316                                            LParenLoc, RParenLoc));
2317}
2318
2319/// Note that lhs is not null here, even if this is the gnu "x ?: y" extension.
2320/// In that case, lhs = cond.
2321/// C99 6.5.15
2322QualType Sema::CheckConditionalOperands(Expr *&Cond, Expr *&LHS, Expr *&RHS,
2323                                        SourceLocation QuestionLoc) {
2324  UsualUnaryConversions(Cond);
2325  UsualUnaryConversions(LHS);
2326  UsualUnaryConversions(RHS);
2327  QualType CondTy = Cond->getType();
2328  QualType LHSTy = LHS->getType();
2329  QualType RHSTy = RHS->getType();
2330
2331  // first, check the condition.
2332  if (!Cond->isTypeDependent()) {
2333    if (!CondTy->isScalarType()) { // C99 6.5.15p2
2334      Diag(Cond->getLocStart(), diag::err_typecheck_cond_expect_scalar)
2335        << CondTy;
2336      return QualType();
2337    }
2338  }
2339
2340  // Now check the two expressions.
2341  if ((LHS && LHS->isTypeDependent()) || (RHS && RHS->isTypeDependent()))
2342    return Context.DependentTy;
2343
2344  // If both operands have arithmetic type, do the usual arithmetic conversions
2345  // to find a common type: C99 6.5.15p3,5.
2346  if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
2347    UsualArithmeticConversions(LHS, RHS);
2348    return LHS->getType();
2349  }
2350
2351  // If both operands are the same structure or union type, the result is that
2352  // type.
2353  if (const RecordType *LHSRT = LHSTy->getAsRecordType()) {    // C99 6.5.15p3
2354    if (const RecordType *RHSRT = RHSTy->getAsRecordType())
2355      if (LHSRT->getDecl() == RHSRT->getDecl())
2356        // "If both the operands have structure or union type, the result has
2357        // that type."  This implies that CV qualifiers are dropped.
2358        return LHSTy.getUnqualifiedType();
2359  }
2360
2361  // C99 6.5.15p5: "If both operands have void type, the result has void type."
2362  // The following || allows only one side to be void (a GCC-ism).
2363  if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
2364    if (!LHSTy->isVoidType())
2365      Diag(RHS->getLocStart(), diag::ext_typecheck_cond_one_void)
2366        << RHS->getSourceRange();
2367    if (!RHSTy->isVoidType())
2368      Diag(LHS->getLocStart(), diag::ext_typecheck_cond_one_void)
2369        << LHS->getSourceRange();
2370    ImpCastExprToType(LHS, Context.VoidTy);
2371    ImpCastExprToType(RHS, Context.VoidTy);
2372    return Context.VoidTy;
2373  }
2374  // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
2375  // the type of the other operand."
2376  if ((LHSTy->isPointerType() || LHSTy->isBlockPointerType() ||
2377       Context.isObjCObjectPointerType(LHSTy)) &&
2378      RHS->isNullPointerConstant(Context)) {
2379    ImpCastExprToType(RHS, LHSTy); // promote the null to a pointer.
2380    return LHSTy;
2381  }
2382  if ((RHSTy->isPointerType() || RHSTy->isBlockPointerType() ||
2383       Context.isObjCObjectPointerType(RHSTy)) &&
2384      LHS->isNullPointerConstant(Context)) {
2385    ImpCastExprToType(LHS, RHSTy); // promote the null to a pointer.
2386    return RHSTy;
2387  }
2388
2389  // Handle the case where both operands are pointers before we handle null
2390  // pointer constants in case both operands are null pointer constants.
2391  if (const PointerType *LHSPT = LHSTy->getAsPointerType()) { // C99 6.5.15p3,6
2392    if (const PointerType *RHSPT = RHSTy->getAsPointerType()) {
2393      // get the "pointed to" types
2394      QualType lhptee = LHSPT->getPointeeType();
2395      QualType rhptee = RHSPT->getPointeeType();
2396
2397      // ignore qualifiers on void (C99 6.5.15p3, clause 6)
2398      if (lhptee->isVoidType() &&
2399          rhptee->isIncompleteOrObjectType()) {
2400        // Figure out necessary qualifiers (C99 6.5.15p6)
2401        QualType destPointee=lhptee.getQualifiedType(rhptee.getCVRQualifiers());
2402        QualType destType = Context.getPointerType(destPointee);
2403        ImpCastExprToType(LHS, destType); // add qualifiers if necessary
2404        ImpCastExprToType(RHS, destType); // promote to void*
2405        return destType;
2406      }
2407      if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
2408        QualType destPointee=rhptee.getQualifiedType(lhptee.getCVRQualifiers());
2409        QualType destType = Context.getPointerType(destPointee);
2410        ImpCastExprToType(LHS, destType); // add qualifiers if necessary
2411        ImpCastExprToType(RHS, destType); // promote to void*
2412        return destType;
2413      }
2414
2415      if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
2416        // Two identical pointer types are always compatible.
2417        return LHSTy;
2418      }
2419
2420      QualType compositeType = LHSTy;
2421
2422      // If either type is an Objective-C object type then check
2423      // compatibility according to Objective-C.
2424      if (Context.isObjCObjectPointerType(LHSTy) ||
2425          Context.isObjCObjectPointerType(RHSTy)) {
2426        // If both operands are interfaces and either operand can be
2427        // assigned to the other, use that type as the composite
2428        // type. This allows
2429        //   xxx ? (A*) a : (B*) b
2430        // where B is a subclass of A.
2431        //
2432        // Additionally, as for assignment, if either type is 'id'
2433        // allow silent coercion. Finally, if the types are
2434        // incompatible then make sure to use 'id' as the composite
2435        // type so the result is acceptable for sending messages to.
2436
2437        // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
2438        // It could return the composite type.
2439        const ObjCInterfaceType* LHSIface = lhptee->getAsObjCInterfaceType();
2440        const ObjCInterfaceType* RHSIface = rhptee->getAsObjCInterfaceType();
2441        if (LHSIface && RHSIface &&
2442            Context.canAssignObjCInterfaces(LHSIface, RHSIface)) {
2443          compositeType = LHSTy;
2444        } else if (LHSIface && RHSIface &&
2445                   Context.canAssignObjCInterfaces(RHSIface, LHSIface)) {
2446          compositeType = RHSTy;
2447        } else if (Context.isObjCIdStructType(lhptee) ||
2448                   Context.isObjCIdStructType(rhptee)) {
2449          compositeType = Context.getObjCIdType();
2450        } else {
2451          Diag(QuestionLoc, diag::ext_typecheck_comparison_of_distinct_pointers)
2452               << LHSTy << RHSTy
2453               << LHS->getSourceRange() << RHS->getSourceRange();
2454          QualType incompatTy = Context.getObjCIdType();
2455          ImpCastExprToType(LHS, incompatTy);
2456          ImpCastExprToType(RHS, incompatTy);
2457          return incompatTy;
2458        }
2459      } else if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
2460                                             rhptee.getUnqualifiedType())) {
2461        Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers)
2462          << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
2463        // In this situation, we assume void* type. No especially good
2464        // reason, but this is what gcc does, and we do have to pick
2465        // to get a consistent AST.
2466        QualType incompatTy = Context.getPointerType(Context.VoidTy);
2467        ImpCastExprToType(LHS, incompatTy);
2468        ImpCastExprToType(RHS, incompatTy);
2469        return incompatTy;
2470      }
2471      // The pointer types are compatible.
2472      // C99 6.5.15p6: If both operands are pointers to compatible types *or* to
2473      // differently qualified versions of compatible types, the result type is
2474      // a pointer to an appropriately qualified version of the *composite*
2475      // type.
2476      // FIXME: Need to calculate the composite type.
2477      // FIXME: Need to add qualifiers
2478      ImpCastExprToType(LHS, compositeType);
2479      ImpCastExprToType(RHS, compositeType);
2480      return compositeType;
2481    }
2482  }
2483
2484  // Selection between block pointer types is ok as long as they are the same.
2485  if (LHSTy->isBlockPointerType() && RHSTy->isBlockPointerType() &&
2486      Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy))
2487    return LHSTy;
2488
2489  // Need to handle "id<xx>" explicitly. Unlike "id", whose canonical type
2490  // evaluates to "struct objc_object *" (and is handled above when comparing
2491  // id with statically typed objects).
2492  if (LHSTy->isObjCQualifiedIdType() || RHSTy->isObjCQualifiedIdType()) {
2493    // GCC allows qualified id and any Objective-C type to devolve to
2494    // id. Currently localizing to here until clear this should be
2495    // part of ObjCQualifiedIdTypesAreCompatible.
2496    if (ObjCQualifiedIdTypesAreCompatible(LHSTy, RHSTy, true) ||
2497        (LHSTy->isObjCQualifiedIdType() &&
2498         Context.isObjCObjectPointerType(RHSTy)) ||
2499        (RHSTy->isObjCQualifiedIdType() &&
2500         Context.isObjCObjectPointerType(LHSTy))) {
2501      // FIXME: This is not the correct composite type. This only
2502      // happens to work because id can more or less be used anywhere,
2503      // however this may change the type of method sends.
2504      // FIXME: gcc adds some type-checking of the arguments and emits
2505      // (confusing) incompatible comparison warnings in some
2506      // cases. Investigate.
2507      QualType compositeType = Context.getObjCIdType();
2508      ImpCastExprToType(LHS, compositeType);
2509      ImpCastExprToType(RHS, compositeType);
2510      return compositeType;
2511    }
2512  }
2513
2514  // Otherwise, the operands are not compatible.
2515  Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
2516    << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
2517  return QualType();
2518}
2519
2520/// ActOnConditionalOp - Parse a ?: operation.  Note that 'LHS' may be null
2521/// in the case of a the GNU conditional expr extension.
2522Action::OwningExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
2523                                                  SourceLocation ColonLoc,
2524                                                  ExprArg Cond, ExprArg LHS,
2525                                                  ExprArg RHS) {
2526  Expr *CondExpr = (Expr *) Cond.get();
2527  Expr *LHSExpr = (Expr *) LHS.get(), *RHSExpr = (Expr *) RHS.get();
2528
2529  // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
2530  // was the condition.
2531  bool isLHSNull = LHSExpr == 0;
2532  if (isLHSNull)
2533    LHSExpr = CondExpr;
2534
2535  QualType result = CheckConditionalOperands(CondExpr, LHSExpr,
2536                                             RHSExpr, QuestionLoc);
2537  if (result.isNull())
2538    return ExprError();
2539
2540  Cond.release();
2541  LHS.release();
2542  RHS.release();
2543  return Owned(new (Context) ConditionalOperator(CondExpr,
2544                                                 isLHSNull ? 0 : LHSExpr,
2545                                                 RHSExpr, result));
2546}
2547
2548
2549// CheckPointerTypesForAssignment - This is a very tricky routine (despite
2550// being closely modeled after the C99 spec:-). The odd characteristic of this
2551// routine is it effectively iqnores the qualifiers on the top level pointee.
2552// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
2553// FIXME: add a couple examples in this comment.
2554Sema::AssignConvertType
2555Sema::CheckPointerTypesForAssignment(QualType lhsType, QualType rhsType) {
2556  QualType lhptee, rhptee;
2557
2558  // get the "pointed to" type (ignoring qualifiers at the top level)
2559  lhptee = lhsType->getAsPointerType()->getPointeeType();
2560  rhptee = rhsType->getAsPointerType()->getPointeeType();
2561
2562  // make sure we operate on the canonical type
2563  lhptee = Context.getCanonicalType(lhptee);
2564  rhptee = Context.getCanonicalType(rhptee);
2565
2566  AssignConvertType ConvTy = Compatible;
2567
2568  // C99 6.5.16.1p1: This following citation is common to constraints
2569  // 3 & 4 (below). ...and the type *pointed to* by the left has all the
2570  // qualifiers of the type *pointed to* by the right;
2571  // FIXME: Handle ExtQualType
2572  if (!lhptee.isAtLeastAsQualifiedAs(rhptee))
2573    ConvTy = CompatiblePointerDiscardsQualifiers;
2574
2575  // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
2576  // incomplete type and the other is a pointer to a qualified or unqualified
2577  // version of void...
2578  if (lhptee->isVoidType()) {
2579    if (rhptee->isIncompleteOrObjectType())
2580      return ConvTy;
2581
2582    // As an extension, we allow cast to/from void* to function pointer.
2583    assert(rhptee->isFunctionType());
2584    return FunctionVoidPointer;
2585  }
2586
2587  if (rhptee->isVoidType()) {
2588    if (lhptee->isIncompleteOrObjectType())
2589      return ConvTy;
2590
2591    // As an extension, we allow cast to/from void* to function pointer.
2592    assert(lhptee->isFunctionType());
2593    return FunctionVoidPointer;
2594  }
2595  // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
2596  // unqualified versions of compatible types, ...
2597  if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
2598                                  rhptee.getUnqualifiedType()))
2599    return IncompatiblePointer; // this "trumps" PointerAssignDiscardsQualifiers
2600  return ConvTy;
2601}
2602
2603/// CheckBlockPointerTypesForAssignment - This routine determines whether two
2604/// block pointer types are compatible or whether a block and normal pointer
2605/// are compatible. It is more restrict than comparing two function pointer
2606// types.
2607Sema::AssignConvertType
2608Sema::CheckBlockPointerTypesForAssignment(QualType lhsType,
2609                                          QualType rhsType) {
2610  QualType lhptee, rhptee;
2611
2612  // get the "pointed to" type (ignoring qualifiers at the top level)
2613  lhptee = lhsType->getAsBlockPointerType()->getPointeeType();
2614  rhptee = rhsType->getAsBlockPointerType()->getPointeeType();
2615
2616  // make sure we operate on the canonical type
2617  lhptee = Context.getCanonicalType(lhptee);
2618  rhptee = Context.getCanonicalType(rhptee);
2619
2620  AssignConvertType ConvTy = Compatible;
2621
2622  // For blocks we enforce that qualifiers are identical.
2623  if (lhptee.getCVRQualifiers() != rhptee.getCVRQualifiers())
2624    ConvTy = CompatiblePointerDiscardsQualifiers;
2625
2626  if (!Context.typesAreBlockCompatible(lhptee, rhptee))
2627    return IncompatibleBlockPointer;
2628  return ConvTy;
2629}
2630
2631/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
2632/// has code to accommodate several GCC extensions when type checking
2633/// pointers. Here are some objectionable examples that GCC considers warnings:
2634///
2635///  int a, *pint;
2636///  short *pshort;
2637///  struct foo *pfoo;
2638///
2639///  pint = pshort; // warning: assignment from incompatible pointer type
2640///  a = pint; // warning: assignment makes integer from pointer without a cast
2641///  pint = a; // warning: assignment makes pointer from integer without a cast
2642///  pint = pfoo; // warning: assignment from incompatible pointer type
2643///
2644/// As a result, the code for dealing with pointers is more complex than the
2645/// C99 spec dictates.
2646///
2647Sema::AssignConvertType
2648Sema::CheckAssignmentConstraints(QualType lhsType, QualType rhsType) {
2649  // Get canonical types.  We're not formatting these types, just comparing
2650  // them.
2651  lhsType = Context.getCanonicalType(lhsType).getUnqualifiedType();
2652  rhsType = Context.getCanonicalType(rhsType).getUnqualifiedType();
2653
2654  if (lhsType == rhsType)
2655    return Compatible; // Common case: fast path an exact match.
2656
2657  // If the left-hand side is a reference type, then we are in a
2658  // (rare!) case where we've allowed the use of references in C,
2659  // e.g., as a parameter type in a built-in function. In this case,
2660  // just make sure that the type referenced is compatible with the
2661  // right-hand side type. The caller is responsible for adjusting
2662  // lhsType so that the resulting expression does not have reference
2663  // type.
2664  if (const ReferenceType *lhsTypeRef = lhsType->getAsReferenceType()) {
2665    if (Context.typesAreCompatible(lhsTypeRef->getPointeeType(), rhsType))
2666      return Compatible;
2667    return Incompatible;
2668  }
2669
2670  if (lhsType->isObjCQualifiedIdType() || rhsType->isObjCQualifiedIdType()) {
2671    if (ObjCQualifiedIdTypesAreCompatible(lhsType, rhsType, false))
2672      return Compatible;
2673    // Relax integer conversions like we do for pointers below.
2674    if (rhsType->isIntegerType())
2675      return IntToPointer;
2676    if (lhsType->isIntegerType())
2677      return PointerToInt;
2678    return IncompatibleObjCQualifiedId;
2679  }
2680
2681  if (lhsType->isVectorType() || rhsType->isVectorType()) {
2682    // For ExtVector, allow vector splats; float -> <n x float>
2683    if (const ExtVectorType *LV = lhsType->getAsExtVectorType())
2684      if (LV->getElementType() == rhsType)
2685        return Compatible;
2686
2687    // If we are allowing lax vector conversions, and LHS and RHS are both
2688    // vectors, the total size only needs to be the same. This is a bitcast;
2689    // no bits are changed but the result type is different.
2690    if (getLangOptions().LaxVectorConversions &&
2691        lhsType->isVectorType() && rhsType->isVectorType()) {
2692      if (Context.getTypeSize(lhsType) == Context.getTypeSize(rhsType))
2693        return IncompatibleVectors;
2694    }
2695    return Incompatible;
2696  }
2697
2698  if (lhsType->isArithmeticType() && rhsType->isArithmeticType())
2699    return Compatible;
2700
2701  if (isa<PointerType>(lhsType)) {
2702    if (rhsType->isIntegerType())
2703      return IntToPointer;
2704
2705    if (isa<PointerType>(rhsType))
2706      return CheckPointerTypesForAssignment(lhsType, rhsType);
2707
2708    if (rhsType->getAsBlockPointerType()) {
2709      if (lhsType->getAsPointerType()->getPointeeType()->isVoidType())
2710        return Compatible;
2711
2712      // Treat block pointers as objects.
2713      if (getLangOptions().ObjC1 &&
2714          lhsType == Context.getCanonicalType(Context.getObjCIdType()))
2715        return Compatible;
2716    }
2717    return Incompatible;
2718  }
2719
2720  if (isa<BlockPointerType>(lhsType)) {
2721    if (rhsType->isIntegerType())
2722      return IntToBlockPointer;
2723
2724    // Treat block pointers as objects.
2725    if (getLangOptions().ObjC1 &&
2726        rhsType == Context.getCanonicalType(Context.getObjCIdType()))
2727      return Compatible;
2728
2729    if (rhsType->isBlockPointerType())
2730      return CheckBlockPointerTypesForAssignment(lhsType, rhsType);
2731
2732    if (const PointerType *RHSPT = rhsType->getAsPointerType()) {
2733      if (RHSPT->getPointeeType()->isVoidType())
2734        return Compatible;
2735    }
2736    return Incompatible;
2737  }
2738
2739  if (isa<PointerType>(rhsType)) {
2740    // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
2741    if (lhsType == Context.BoolTy)
2742      return Compatible;
2743
2744    if (lhsType->isIntegerType())
2745      return PointerToInt;
2746
2747    if (isa<PointerType>(lhsType))
2748      return CheckPointerTypesForAssignment(lhsType, rhsType);
2749
2750    if (isa<BlockPointerType>(lhsType) &&
2751        rhsType->getAsPointerType()->getPointeeType()->isVoidType())
2752      return Compatible;
2753    return Incompatible;
2754  }
2755
2756  if (isa<TagType>(lhsType) && isa<TagType>(rhsType)) {
2757    if (Context.typesAreCompatible(lhsType, rhsType))
2758      return Compatible;
2759  }
2760  return Incompatible;
2761}
2762
2763Sema::AssignConvertType
2764Sema::CheckSingleAssignmentConstraints(QualType lhsType, Expr *&rExpr) {
2765  if (getLangOptions().CPlusPlus) {
2766    if (!lhsType->isRecordType()) {
2767      // C++ 5.17p3: If the left operand is not of class type, the
2768      // expression is implicitly converted (C++ 4) to the
2769      // cv-unqualified type of the left operand.
2770      if (PerformImplicitConversion(rExpr, lhsType.getUnqualifiedType(),
2771                                    "assigning"))
2772        return Incompatible;
2773      else
2774        return Compatible;
2775    }
2776
2777    // FIXME: Currently, we fall through and treat C++ classes like C
2778    // structures.
2779  }
2780
2781  // C99 6.5.16.1p1: the left operand is a pointer and the right is
2782  // a null pointer constant.
2783  if ((lhsType->isPointerType() ||
2784       lhsType->isObjCQualifiedIdType() ||
2785       lhsType->isBlockPointerType())
2786      && rExpr->isNullPointerConstant(Context)) {
2787    ImpCastExprToType(rExpr, lhsType);
2788    return Compatible;
2789  }
2790
2791  // This check seems unnatural, however it is necessary to ensure the proper
2792  // conversion of functions/arrays. If the conversion were done for all
2793  // DeclExpr's (created by ActOnIdentifierExpr), it would mess up the unary
2794  // expressions that surpress this implicit conversion (&, sizeof).
2795  //
2796  // Suppress this for references: C++ 8.5.3p5.
2797  if (!lhsType->isReferenceType())
2798    DefaultFunctionArrayConversion(rExpr);
2799
2800  Sema::AssignConvertType result =
2801    CheckAssignmentConstraints(lhsType, rExpr->getType());
2802
2803  // C99 6.5.16.1p2: The value of the right operand is converted to the
2804  // type of the assignment expression.
2805  // CheckAssignmentConstraints allows the left-hand side to be a reference,
2806  // so that we can use references in built-in functions even in C.
2807  // The getNonReferenceType() call makes sure that the resulting expression
2808  // does not have reference type.
2809  if (rExpr->getType() != lhsType)
2810    ImpCastExprToType(rExpr, lhsType.getNonReferenceType());
2811  return result;
2812}
2813
2814Sema::AssignConvertType
2815Sema::CheckCompoundAssignmentConstraints(QualType lhsType, QualType rhsType) {
2816  return CheckAssignmentConstraints(lhsType, rhsType);
2817}
2818
2819QualType Sema::InvalidOperands(SourceLocation Loc, Expr *&lex, Expr *&rex) {
2820  Diag(Loc, diag::err_typecheck_invalid_operands)
2821    << lex->getType() << rex->getType()
2822    << lex->getSourceRange() << rex->getSourceRange();
2823  return QualType();
2824}
2825
2826inline QualType Sema::CheckVectorOperands(SourceLocation Loc, Expr *&lex,
2827                                                              Expr *&rex) {
2828  // For conversion purposes, we ignore any qualifiers.
2829  // For example, "const float" and "float" are equivalent.
2830  QualType lhsType =
2831    Context.getCanonicalType(lex->getType()).getUnqualifiedType();
2832  QualType rhsType =
2833    Context.getCanonicalType(rex->getType()).getUnqualifiedType();
2834
2835  // If the vector types are identical, return.
2836  if (lhsType == rhsType)
2837    return lhsType;
2838
2839  // Handle the case of a vector & extvector type of the same size and element
2840  // type.  It would be nice if we only had one vector type someday.
2841  if (getLangOptions().LaxVectorConversions) {
2842    // FIXME: Should we warn here?
2843    if (const VectorType *LV = lhsType->getAsVectorType()) {
2844      if (const VectorType *RV = rhsType->getAsVectorType())
2845        if (LV->getElementType() == RV->getElementType() &&
2846            LV->getNumElements() == RV->getNumElements()) {
2847          return lhsType->isExtVectorType() ? lhsType : rhsType;
2848        }
2849    }
2850  }
2851
2852  // If the lhs is an extended vector and the rhs is a scalar of the same type
2853  // or a literal, promote the rhs to the vector type.
2854  if (const ExtVectorType *V = lhsType->getAsExtVectorType()) {
2855    QualType eltType = V->getElementType();
2856
2857    if ((eltType->getAsBuiltinType() == rhsType->getAsBuiltinType()) ||
2858        (eltType->isIntegerType() && isa<IntegerLiteral>(rex)) ||
2859        (eltType->isFloatingType() && isa<FloatingLiteral>(rex))) {
2860      ImpCastExprToType(rex, lhsType);
2861      return lhsType;
2862    }
2863  }
2864
2865  // If the rhs is an extended vector and the lhs is a scalar of the same type,
2866  // promote the lhs to the vector type.
2867  if (const ExtVectorType *V = rhsType->getAsExtVectorType()) {
2868    QualType eltType = V->getElementType();
2869
2870    if ((eltType->getAsBuiltinType() == lhsType->getAsBuiltinType()) ||
2871        (eltType->isIntegerType() && isa<IntegerLiteral>(lex)) ||
2872        (eltType->isFloatingType() && isa<FloatingLiteral>(lex))) {
2873      ImpCastExprToType(lex, rhsType);
2874      return rhsType;
2875    }
2876  }
2877
2878  // You cannot convert between vector values of different size.
2879  Diag(Loc, diag::err_typecheck_vector_not_convertable)
2880    << lex->getType() << rex->getType()
2881    << lex->getSourceRange() << rex->getSourceRange();
2882  return QualType();
2883}
2884
2885inline QualType Sema::CheckMultiplyDivideOperands(
2886  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
2887{
2888  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
2889    return CheckVectorOperands(Loc, lex, rex);
2890
2891  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
2892
2893  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
2894    return compType;
2895  return InvalidOperands(Loc, lex, rex);
2896}
2897
2898inline QualType Sema::CheckRemainderOperands(
2899  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
2900{
2901  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
2902    if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
2903      return CheckVectorOperands(Loc, lex, rex);
2904    return InvalidOperands(Loc, lex, rex);
2905  }
2906
2907  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
2908
2909  if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
2910    return compType;
2911  return InvalidOperands(Loc, lex, rex);
2912}
2913
2914inline QualType Sema::CheckAdditionOperands( // C99 6.5.6
2915  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
2916{
2917  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
2918    return CheckVectorOperands(Loc, lex, rex);
2919
2920  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
2921
2922  // handle the common case first (both operands are arithmetic).
2923  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
2924    return compType;
2925
2926  // Put any potential pointer into PExp
2927  Expr* PExp = lex, *IExp = rex;
2928  if (IExp->getType()->isPointerType())
2929    std::swap(PExp, IExp);
2930
2931  if (const PointerType* PTy = PExp->getType()->getAsPointerType()) {
2932    if (IExp->getType()->isIntegerType()) {
2933      // Check for arithmetic on pointers to incomplete types
2934      if (!PTy->getPointeeType()->isObjectType()) {
2935        if (PTy->getPointeeType()->isVoidType()) {
2936          if (getLangOptions().CPlusPlus) {
2937            Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
2938              << lex->getSourceRange() << rex->getSourceRange();
2939            return QualType();
2940          }
2941
2942          // GNU extension: arithmetic on pointer to void
2943          Diag(Loc, diag::ext_gnu_void_ptr)
2944            << lex->getSourceRange() << rex->getSourceRange();
2945        } else if (PTy->getPointeeType()->isFunctionType()) {
2946          if (getLangOptions().CPlusPlus) {
2947            Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
2948              << lex->getType() << lex->getSourceRange();
2949            return QualType();
2950          }
2951
2952          // GNU extension: arithmetic on pointer to function
2953          Diag(Loc, diag::ext_gnu_ptr_func_arith)
2954            << lex->getType() << lex->getSourceRange();
2955        } else {
2956          DiagnoseIncompleteType(Loc, PTy->getPointeeType(),
2957                                 diag::err_typecheck_arithmetic_incomplete_type,
2958                                 lex->getSourceRange(), SourceRange(),
2959                                 lex->getType());
2960          return QualType();
2961        }
2962      }
2963      return PExp->getType();
2964    }
2965  }
2966
2967  return InvalidOperands(Loc, lex, rex);
2968}
2969
2970// C99 6.5.6
2971QualType Sema::CheckSubtractionOperands(Expr *&lex, Expr *&rex,
2972                                        SourceLocation Loc, bool isCompAssign) {
2973  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
2974    return CheckVectorOperands(Loc, lex, rex);
2975
2976  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
2977
2978  // Enforce type constraints: C99 6.5.6p3.
2979
2980  // Handle the common case first (both operands are arithmetic).
2981  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
2982    return compType;
2983
2984  // Either ptr - int   or   ptr - ptr.
2985  if (const PointerType *LHSPTy = lex->getType()->getAsPointerType()) {
2986    QualType lpointee = LHSPTy->getPointeeType();
2987
2988    // The LHS must be an object type, not incomplete, function, etc.
2989    if (!lpointee->isObjectType()) {
2990      // Handle the GNU void* extension.
2991      if (lpointee->isVoidType()) {
2992        Diag(Loc, diag::ext_gnu_void_ptr)
2993          << lex->getSourceRange() << rex->getSourceRange();
2994      } else if (lpointee->isFunctionType()) {
2995        if (getLangOptions().CPlusPlus) {
2996          Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
2997            << lex->getType() << lex->getSourceRange();
2998          return QualType();
2999        }
3000
3001        // GNU extension: arithmetic on pointer to function
3002        Diag(Loc, diag::ext_gnu_ptr_func_arith)
3003          << lex->getType() << lex->getSourceRange();
3004      } else {
3005        Diag(Loc, diag::err_typecheck_sub_ptr_object)
3006          << lex->getType() << lex->getSourceRange();
3007        return QualType();
3008      }
3009    }
3010
3011    // The result type of a pointer-int computation is the pointer type.
3012    if (rex->getType()->isIntegerType())
3013      return lex->getType();
3014
3015    // Handle pointer-pointer subtractions.
3016    if (const PointerType *RHSPTy = rex->getType()->getAsPointerType()) {
3017      QualType rpointee = RHSPTy->getPointeeType();
3018
3019      // RHS must be an object type, unless void (GNU).
3020      if (!rpointee->isObjectType()) {
3021        // Handle the GNU void* extension.
3022        if (rpointee->isVoidType()) {
3023          if (!lpointee->isVoidType())
3024            Diag(Loc, diag::ext_gnu_void_ptr)
3025              << lex->getSourceRange() << rex->getSourceRange();
3026        } else if (rpointee->isFunctionType()) {
3027          if (getLangOptions().CPlusPlus) {
3028            Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
3029              << rex->getType() << rex->getSourceRange();
3030            return QualType();
3031          }
3032
3033          // GNU extension: arithmetic on pointer to function
3034          if (!lpointee->isFunctionType())
3035            Diag(Loc, diag::ext_gnu_ptr_func_arith)
3036              << lex->getType() << lex->getSourceRange();
3037        } else {
3038          Diag(Loc, diag::err_typecheck_sub_ptr_object)
3039            << rex->getType() << rex->getSourceRange();
3040          return QualType();
3041        }
3042      }
3043
3044      // Pointee types must be compatible.
3045      if (!Context.typesAreCompatible(
3046              Context.getCanonicalType(lpointee).getUnqualifiedType(),
3047              Context.getCanonicalType(rpointee).getUnqualifiedType())) {
3048        Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
3049          << lex->getType() << rex->getType()
3050          << lex->getSourceRange() << rex->getSourceRange();
3051        return QualType();
3052      }
3053
3054      return Context.getPointerDiffType();
3055    }
3056  }
3057
3058  return InvalidOperands(Loc, lex, rex);
3059}
3060
3061// C99 6.5.7
3062QualType Sema::CheckShiftOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
3063                                  bool isCompAssign) {
3064  // C99 6.5.7p2: Each of the operands shall have integer type.
3065  if (!lex->getType()->isIntegerType() || !rex->getType()->isIntegerType())
3066    return InvalidOperands(Loc, lex, rex);
3067
3068  // Shifts don't perform usual arithmetic conversions, they just do integer
3069  // promotions on each operand. C99 6.5.7p3
3070  if (!isCompAssign)
3071    UsualUnaryConversions(lex);
3072  UsualUnaryConversions(rex);
3073
3074  // "The type of the result is that of the promoted left operand."
3075  return lex->getType();
3076}
3077
3078// C99 6.5.8
3079QualType Sema::CheckCompareOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
3080                                    bool isRelational) {
3081  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
3082    return CheckVectorCompareOperands(lex, rex, Loc, isRelational);
3083
3084  // C99 6.5.8p3 / C99 6.5.9p4
3085  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
3086    UsualArithmeticConversions(lex, rex);
3087  else {
3088    UsualUnaryConversions(lex);
3089    UsualUnaryConversions(rex);
3090  }
3091  QualType lType = lex->getType();
3092  QualType rType = rex->getType();
3093
3094  // For non-floating point types, check for self-comparisons of the form
3095  // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
3096  // often indicate logic errors in the program.
3097  if (!lType->isFloatingType()) {
3098    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens()))
3099      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens()))
3100        if (DRL->getDecl() == DRR->getDecl())
3101          Diag(Loc, diag::warn_selfcomparison);
3102  }
3103
3104  // The result of comparisons is 'bool' in C++, 'int' in C.
3105  QualType ResultTy = getLangOptions().CPlusPlus? Context.BoolTy : Context.IntTy;
3106
3107  if (isRelational) {
3108    if (lType->isRealType() && rType->isRealType())
3109      return ResultTy;
3110  } else {
3111    // Check for comparisons of floating point operands using != and ==.
3112    if (lType->isFloatingType()) {
3113      assert (rType->isFloatingType());
3114      CheckFloatComparison(Loc,lex,rex);
3115    }
3116
3117    if (lType->isArithmeticType() && rType->isArithmeticType())
3118      return ResultTy;
3119  }
3120
3121  bool LHSIsNull = lex->isNullPointerConstant(Context);
3122  bool RHSIsNull = rex->isNullPointerConstant(Context);
3123
3124  // All of the following pointer related warnings are GCC extensions, except
3125  // when handling null pointer constants. One day, we can consider making them
3126  // errors (when -pedantic-errors is enabled).
3127  if (lType->isPointerType() && rType->isPointerType()) { // C99 6.5.8p2
3128    QualType LCanPointeeTy =
3129      Context.getCanonicalType(lType->getAsPointerType()->getPointeeType());
3130    QualType RCanPointeeTy =
3131      Context.getCanonicalType(rType->getAsPointerType()->getPointeeType());
3132
3133    if (!LHSIsNull && !RHSIsNull &&                       // C99 6.5.9p2
3134        !LCanPointeeTy->isVoidType() && !RCanPointeeTy->isVoidType() &&
3135        !Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
3136                                    RCanPointeeTy.getUnqualifiedType()) &&
3137        !Context.areComparableObjCPointerTypes(lType, rType)) {
3138      Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
3139        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
3140    }
3141    ImpCastExprToType(rex, lType); // promote the pointer to pointer
3142    return ResultTy;
3143  }
3144  // Handle block pointer types.
3145  if (lType->isBlockPointerType() && rType->isBlockPointerType()) {
3146    QualType lpointee = lType->getAsBlockPointerType()->getPointeeType();
3147    QualType rpointee = rType->getAsBlockPointerType()->getPointeeType();
3148
3149    if (!LHSIsNull && !RHSIsNull &&
3150        !Context.typesAreBlockCompatible(lpointee, rpointee)) {
3151      Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
3152        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
3153    }
3154    ImpCastExprToType(rex, lType); // promote the pointer to pointer
3155    return ResultTy;
3156  }
3157  // Allow block pointers to be compared with null pointer constants.
3158  if ((lType->isBlockPointerType() && rType->isPointerType()) ||
3159      (lType->isPointerType() && rType->isBlockPointerType())) {
3160    if (!LHSIsNull && !RHSIsNull) {
3161      Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
3162        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
3163    }
3164    ImpCastExprToType(rex, lType); // promote the pointer to pointer
3165    return ResultTy;
3166  }
3167
3168  if ((lType->isObjCQualifiedIdType() || rType->isObjCQualifiedIdType())) {
3169    if (lType->isPointerType() || rType->isPointerType()) {
3170      const PointerType *LPT = lType->getAsPointerType();
3171      const PointerType *RPT = rType->getAsPointerType();
3172      bool LPtrToVoid = LPT ?
3173        Context.getCanonicalType(LPT->getPointeeType())->isVoidType() : false;
3174      bool RPtrToVoid = RPT ?
3175        Context.getCanonicalType(RPT->getPointeeType())->isVoidType() : false;
3176
3177      if (!LPtrToVoid && !RPtrToVoid &&
3178          !Context.typesAreCompatible(lType, rType)) {
3179        Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
3180          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
3181        ImpCastExprToType(rex, lType);
3182        return ResultTy;
3183      }
3184      ImpCastExprToType(rex, lType);
3185      return ResultTy;
3186    }
3187    if (ObjCQualifiedIdTypesAreCompatible(lType, rType, true)) {
3188      ImpCastExprToType(rex, lType);
3189      return ResultTy;
3190    } else {
3191      if ((lType->isObjCQualifiedIdType() && rType->isObjCQualifiedIdType())) {
3192        Diag(Loc, diag::warn_incompatible_qualified_id_operands)
3193          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
3194        ImpCastExprToType(rex, lType);
3195        return ResultTy;
3196      }
3197    }
3198  }
3199  if ((lType->isPointerType() || lType->isObjCQualifiedIdType()) &&
3200       rType->isIntegerType()) {
3201    if (!RHSIsNull)
3202      Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer)
3203        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
3204    ImpCastExprToType(rex, lType); // promote the integer to pointer
3205    return ResultTy;
3206  }
3207  if (lType->isIntegerType() &&
3208      (rType->isPointerType() || rType->isObjCQualifiedIdType())) {
3209    if (!LHSIsNull)
3210      Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer)
3211        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
3212    ImpCastExprToType(lex, rType); // promote the integer to pointer
3213    return ResultTy;
3214  }
3215  // Handle block pointers.
3216  if (lType->isBlockPointerType() && rType->isIntegerType()) {
3217    if (!RHSIsNull)
3218      Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer)
3219        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
3220    ImpCastExprToType(rex, lType); // promote the integer to pointer
3221    return ResultTy;
3222  }
3223  if (lType->isIntegerType() && rType->isBlockPointerType()) {
3224    if (!LHSIsNull)
3225      Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer)
3226        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
3227    ImpCastExprToType(lex, rType); // promote the integer to pointer
3228    return ResultTy;
3229  }
3230  return InvalidOperands(Loc, lex, rex);
3231}
3232
3233/// CheckVectorCompareOperands - vector comparisons are a clang extension that
3234/// operates on extended vector types.  Instead of producing an IntTy result,
3235/// like a scalar comparison, a vector comparison produces a vector of integer
3236/// types.
3237QualType Sema::CheckVectorCompareOperands(Expr *&lex, Expr *&rex,
3238                                          SourceLocation Loc,
3239                                          bool isRelational) {
3240  // Check to make sure we're operating on vectors of the same type and width,
3241  // Allowing one side to be a scalar of element type.
3242  QualType vType = CheckVectorOperands(Loc, lex, rex);
3243  if (vType.isNull())
3244    return vType;
3245
3246  QualType lType = lex->getType();
3247  QualType rType = rex->getType();
3248
3249  // For non-floating point types, check for self-comparisons of the form
3250  // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
3251  // often indicate logic errors in the program.
3252  if (!lType->isFloatingType()) {
3253    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens()))
3254      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens()))
3255        if (DRL->getDecl() == DRR->getDecl())
3256          Diag(Loc, diag::warn_selfcomparison);
3257  }
3258
3259  // Check for comparisons of floating point operands using != and ==.
3260  if (!isRelational && lType->isFloatingType()) {
3261    assert (rType->isFloatingType());
3262    CheckFloatComparison(Loc,lex,rex);
3263  }
3264
3265  // Return the type for the comparison, which is the same as vector type for
3266  // integer vectors, or an integer type of identical size and number of
3267  // elements for floating point vectors.
3268  if (lType->isIntegerType())
3269    return lType;
3270
3271  const VectorType *VTy = lType->getAsVectorType();
3272  unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
3273  if (TypeSize == Context.getTypeSize(Context.IntTy))
3274    return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
3275  else if (TypeSize == Context.getTypeSize(Context.LongTy))
3276    return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
3277
3278  assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
3279         "Unhandled vector element size in vector compare");
3280  return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
3281}
3282
3283inline QualType Sema::CheckBitwiseOperands(
3284  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
3285{
3286  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
3287    return CheckVectorOperands(Loc, lex, rex);
3288
3289  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
3290
3291  if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
3292    return compType;
3293  return InvalidOperands(Loc, lex, rex);
3294}
3295
3296inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
3297  Expr *&lex, Expr *&rex, SourceLocation Loc)
3298{
3299  UsualUnaryConversions(lex);
3300  UsualUnaryConversions(rex);
3301
3302  if (lex->getType()->isScalarType() && rex->getType()->isScalarType())
3303    return Context.IntTy;
3304  return InvalidOperands(Loc, lex, rex);
3305}
3306
3307/// IsReadonlyProperty - Verify that otherwise a valid l-value expression
3308/// is a read-only property; return true if so. A readonly property expression
3309/// depends on various declarations and thus must be treated specially.
3310///
3311static bool IsReadonlyProperty(Expr *E, Sema &S)
3312{
3313  if (E->getStmtClass() == Expr::ObjCPropertyRefExprClass) {
3314    const ObjCPropertyRefExpr* PropExpr = cast<ObjCPropertyRefExpr>(E);
3315    if (ObjCPropertyDecl *PDecl = PropExpr->getProperty()) {
3316      QualType BaseType = PropExpr->getBase()->getType();
3317      if (const PointerType *PTy = BaseType->getAsPointerType())
3318        if (const ObjCInterfaceType *IFTy =
3319            PTy->getPointeeType()->getAsObjCInterfaceType())
3320          if (ObjCInterfaceDecl *IFace = IFTy->getDecl())
3321            if (S.isPropertyReadonly(PDecl, IFace))
3322              return true;
3323    }
3324  }
3325  return false;
3326}
3327
3328/// CheckForModifiableLvalue - Verify that E is a modifiable lvalue.  If not,
3329/// emit an error and return true.  If so, return false.
3330static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
3331  Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context);
3332  if (IsLV == Expr::MLV_Valid && IsReadonlyProperty(E, S))
3333    IsLV = Expr::MLV_ReadonlyProperty;
3334  if (IsLV == Expr::MLV_Valid)
3335    return false;
3336
3337  unsigned Diag = 0;
3338  bool NeedType = false;
3339  switch (IsLV) { // C99 6.5.16p2
3340  default: assert(0 && "Unknown result from isModifiableLvalue!");
3341  case Expr::MLV_ConstQualified: Diag = diag::err_typecheck_assign_const; break;
3342  case Expr::MLV_ArrayType:
3343    Diag = diag::err_typecheck_array_not_modifiable_lvalue;
3344    NeedType = true;
3345    break;
3346  case Expr::MLV_NotObjectType:
3347    Diag = diag::err_typecheck_non_object_not_modifiable_lvalue;
3348    NeedType = true;
3349    break;
3350  case Expr::MLV_LValueCast:
3351    Diag = diag::err_typecheck_lvalue_casts_not_supported;
3352    break;
3353  case Expr::MLV_InvalidExpression:
3354    Diag = diag::err_typecheck_expression_not_modifiable_lvalue;
3355    break;
3356  case Expr::MLV_IncompleteType:
3357  case Expr::MLV_IncompleteVoidType:
3358    return S.DiagnoseIncompleteType(Loc, E->getType(),
3359                      diag::err_typecheck_incomplete_type_not_modifiable_lvalue,
3360                                    E->getSourceRange());
3361  case Expr::MLV_DuplicateVectorComponents:
3362    Diag = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
3363    break;
3364  case Expr::MLV_NotBlockQualified:
3365    Diag = diag::err_block_decl_ref_not_modifiable_lvalue;
3366    break;
3367  case Expr::MLV_ReadonlyProperty:
3368    Diag = diag::error_readonly_property_assignment;
3369    break;
3370  case Expr::MLV_NoSetterProperty:
3371    Diag = diag::error_nosetter_property_assignment;
3372    break;
3373  }
3374
3375  if (NeedType)
3376    S.Diag(Loc, Diag) << E->getType() << E->getSourceRange();
3377  else
3378    S.Diag(Loc, Diag) << E->getSourceRange();
3379  return true;
3380}
3381
3382
3383
3384// C99 6.5.16.1
3385QualType Sema::CheckAssignmentOperands(Expr *LHS, Expr *&RHS,
3386                                       SourceLocation Loc,
3387                                       QualType CompoundType) {
3388  // Verify that LHS is a modifiable lvalue, and emit error if not.
3389  if (CheckForModifiableLvalue(LHS, Loc, *this))
3390    return QualType();
3391
3392  QualType LHSType = LHS->getType();
3393  QualType RHSType = CompoundType.isNull() ? RHS->getType() : CompoundType;
3394
3395  AssignConvertType ConvTy;
3396  if (CompoundType.isNull()) {
3397    // Simple assignment "x = y".
3398    ConvTy = CheckSingleAssignmentConstraints(LHSType, RHS);
3399    // Special case of NSObject attributes on c-style pointer types.
3400    if (ConvTy == IncompatiblePointer &&
3401        ((Context.isObjCNSObjectType(LHSType) &&
3402          Context.isObjCObjectPointerType(RHSType)) ||
3403         (Context.isObjCNSObjectType(RHSType) &&
3404          Context.isObjCObjectPointerType(LHSType))))
3405      ConvTy = Compatible;
3406
3407    // If the RHS is a unary plus or minus, check to see if they = and + are
3408    // right next to each other.  If so, the user may have typo'd "x =+ 4"
3409    // instead of "x += 4".
3410    Expr *RHSCheck = RHS;
3411    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
3412      RHSCheck = ICE->getSubExpr();
3413    if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
3414      if ((UO->getOpcode() == UnaryOperator::Plus ||
3415           UO->getOpcode() == UnaryOperator::Minus) &&
3416          Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
3417          // Only if the two operators are exactly adjacent.
3418          Loc.getFileLocWithOffset(1) == UO->getOperatorLoc())
3419        Diag(Loc, diag::warn_not_compound_assign)
3420          << (UO->getOpcode() == UnaryOperator::Plus ? "+" : "-")
3421          << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
3422    }
3423  } else {
3424    // Compound assignment "x += y"
3425    ConvTy = CheckCompoundAssignmentConstraints(LHSType, RHSType);
3426  }
3427
3428  if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
3429                               RHS, "assigning"))
3430    return QualType();
3431
3432  // C99 6.5.16p3: The type of an assignment expression is the type of the
3433  // left operand unless the left operand has qualified type, in which case
3434  // it is the unqualified version of the type of the left operand.
3435  // C99 6.5.16.1p2: In simple assignment, the value of the right operand
3436  // is converted to the type of the assignment expression (above).
3437  // C++ 5.17p1: the type of the assignment expression is that of its left
3438  // oprdu.
3439  return LHSType.getUnqualifiedType();
3440}
3441
3442// C99 6.5.17
3443QualType Sema::CheckCommaOperands(Expr *LHS, Expr *&RHS, SourceLocation Loc) {
3444  // FIXME: what is required for LHS?
3445
3446  // Comma performs lvalue conversion (C99 6.3.2.1), but not unary conversions.
3447  DefaultFunctionArrayConversion(RHS);
3448  return RHS->getType();
3449}
3450
3451/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
3452/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
3453QualType Sema::CheckIncrementDecrementOperand(Expr *Op, SourceLocation OpLoc,
3454                                              bool isInc) {
3455  if (Op->isTypeDependent())
3456    return Context.DependentTy;
3457
3458  QualType ResType = Op->getType();
3459  assert(!ResType.isNull() && "no type for increment/decrement expression");
3460
3461  if (getLangOptions().CPlusPlus && ResType->isBooleanType()) {
3462    // Decrement of bool is not allowed.
3463    if (!isInc) {
3464      Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
3465      return QualType();
3466    }
3467    // Increment of bool sets it to true, but is deprecated.
3468    Diag(OpLoc, diag::warn_increment_bool) << Op->getSourceRange();
3469  } else if (ResType->isRealType()) {
3470    // OK!
3471  } else if (const PointerType *PT = ResType->getAsPointerType()) {
3472    // C99 6.5.2.4p2, 6.5.6p2
3473    if (PT->getPointeeType()->isObjectType()) {
3474      // Pointer to object is ok!
3475    } else if (PT->getPointeeType()->isVoidType()) {
3476      if (getLangOptions().CPlusPlus) {
3477        Diag(OpLoc, diag::err_typecheck_pointer_arith_void_type)
3478          << Op->getSourceRange();
3479        return QualType();
3480      }
3481
3482      // Pointer to void is a GNU extension in C.
3483      Diag(OpLoc, diag::ext_gnu_void_ptr) << Op->getSourceRange();
3484    } else if (PT->getPointeeType()->isFunctionType()) {
3485      if (getLangOptions().CPlusPlus) {
3486        Diag(OpLoc, diag::err_typecheck_pointer_arith_function_type)
3487          << Op->getType() << Op->getSourceRange();
3488        return QualType();
3489      }
3490
3491      Diag(OpLoc, diag::ext_gnu_ptr_func_arith)
3492        << ResType << Op->getSourceRange();
3493      return QualType();
3494    } else {
3495      DiagnoseIncompleteType(OpLoc, PT->getPointeeType(),
3496                             diag::err_typecheck_arithmetic_incomplete_type,
3497                             Op->getSourceRange(), SourceRange(),
3498                             ResType);
3499      return QualType();
3500    }
3501  } else if (ResType->isComplexType()) {
3502    // C99 does not support ++/-- on complex types, we allow as an extension.
3503    Diag(OpLoc, diag::ext_integer_increment_complex)
3504      << ResType << Op->getSourceRange();
3505  } else {
3506    Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
3507      << ResType << Op->getSourceRange();
3508    return QualType();
3509  }
3510  // At this point, we know we have a real, complex or pointer type.
3511  // Now make sure the operand is a modifiable lvalue.
3512  if (CheckForModifiableLvalue(Op, OpLoc, *this))
3513    return QualType();
3514  return ResType;
3515}
3516
3517/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
3518/// This routine allows us to typecheck complex/recursive expressions
3519/// where the declaration is needed for type checking. We only need to
3520/// handle cases when the expression references a function designator
3521/// or is an lvalue. Here are some examples:
3522///  - &(x) => x
3523///  - &*****f => f for f a function designator.
3524///  - &s.xx => s
3525///  - &s.zz[1].yy -> s, if zz is an array
3526///  - *(x + 1) -> x, if x is an array
3527///  - &"123"[2] -> 0
3528///  - & __real__ x -> x
3529static NamedDecl *getPrimaryDecl(Expr *E) {
3530  switch (E->getStmtClass()) {
3531  case Stmt::DeclRefExprClass:
3532  case Stmt::QualifiedDeclRefExprClass:
3533    return cast<DeclRefExpr>(E)->getDecl();
3534  case Stmt::MemberExprClass:
3535    // Fields cannot be declared with a 'register' storage class.
3536    // &X->f is always ok, even if X is declared register.
3537    if (cast<MemberExpr>(E)->isArrow())
3538      return 0;
3539    return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
3540  case Stmt::ArraySubscriptExprClass: {
3541    // &X[4] and &4[X] refers to X if X is not a pointer.
3542
3543    NamedDecl *D = getPrimaryDecl(cast<ArraySubscriptExpr>(E)->getBase());
3544    ValueDecl *VD = dyn_cast_or_null<ValueDecl>(D);
3545    if (!VD || VD->getType()->isPointerType())
3546      return 0;
3547    else
3548      return VD;
3549  }
3550  case Stmt::UnaryOperatorClass: {
3551    UnaryOperator *UO = cast<UnaryOperator>(E);
3552
3553    switch(UO->getOpcode()) {
3554    case UnaryOperator::Deref: {
3555      // *(X + 1) refers to X if X is not a pointer.
3556      if (NamedDecl *D = getPrimaryDecl(UO->getSubExpr())) {
3557        ValueDecl *VD = dyn_cast<ValueDecl>(D);
3558        if (!VD || VD->getType()->isPointerType())
3559          return 0;
3560        return VD;
3561      }
3562      return 0;
3563    }
3564    case UnaryOperator::Real:
3565    case UnaryOperator::Imag:
3566    case UnaryOperator::Extension:
3567      return getPrimaryDecl(UO->getSubExpr());
3568    default:
3569      return 0;
3570    }
3571  }
3572  case Stmt::BinaryOperatorClass: {
3573    BinaryOperator *BO = cast<BinaryOperator>(E);
3574
3575    // Handle cases involving pointer arithmetic. The result of an
3576    // Assign or AddAssign is not an lvalue so they can be ignored.
3577
3578    // (x + n) or (n + x) => x
3579    if (BO->getOpcode() == BinaryOperator::Add) {
3580      if (BO->getLHS()->getType()->isPointerType()) {
3581        return getPrimaryDecl(BO->getLHS());
3582      } else if (BO->getRHS()->getType()->isPointerType()) {
3583        return getPrimaryDecl(BO->getRHS());
3584      }
3585    }
3586
3587    return 0;
3588  }
3589  case Stmt::ParenExprClass:
3590    return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
3591  case Stmt::ImplicitCastExprClass:
3592    // &X[4] when X is an array, has an implicit cast from array to pointer.
3593    return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
3594  default:
3595    return 0;
3596  }
3597}
3598
3599/// CheckAddressOfOperand - The operand of & must be either a function
3600/// designator or an lvalue designating an object. If it is an lvalue, the
3601/// object cannot be declared with storage class register or be a bit field.
3602/// Note: The usual conversions are *not* applied to the operand of the &
3603/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
3604/// In C++, the operand might be an overloaded function name, in which case
3605/// we allow the '&' but retain the overloaded-function type.
3606QualType Sema::CheckAddressOfOperand(Expr *op, SourceLocation OpLoc) {
3607  if (op->isTypeDependent())
3608    return Context.DependentTy;
3609
3610  if (getLangOptions().C99) {
3611    // Implement C99-only parts of addressof rules.
3612    if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
3613      if (uOp->getOpcode() == UnaryOperator::Deref)
3614        // Per C99 6.5.3.2, the address of a deref always returns a valid result
3615        // (assuming the deref expression is valid).
3616        return uOp->getSubExpr()->getType();
3617    }
3618    // Technically, there should be a check for array subscript
3619    // expressions here, but the result of one is always an lvalue anyway.
3620  }
3621  NamedDecl *dcl = getPrimaryDecl(op);
3622  Expr::isLvalueResult lval = op->isLvalue(Context);
3623
3624  if (lval != Expr::LV_Valid) { // C99 6.5.3.2p1
3625    if (!dcl || !isa<FunctionDecl>(dcl)) {// allow function designators
3626      // FIXME: emit more specific diag...
3627      Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
3628        << op->getSourceRange();
3629      return QualType();
3630    }
3631  } else if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(op)) { // C99 6.5.3.2p1
3632    if (FieldDecl *Field = dyn_cast<FieldDecl>(MemExpr->getMemberDecl())) {
3633      if (Field->isBitField()) {
3634        Diag(OpLoc, diag::err_typecheck_address_of)
3635          << "bit-field" << op->getSourceRange();
3636        return QualType();
3637      }
3638    }
3639  // Check for Apple extension for accessing vector components.
3640  } else if (isa<ExtVectorElementExpr>(op) || (isa<ArraySubscriptExpr>(op) &&
3641           cast<ArraySubscriptExpr>(op)->getBase()->getType()->isVectorType())){
3642    Diag(OpLoc, diag::err_typecheck_address_of)
3643      << "vector element" << op->getSourceRange();
3644    return QualType();
3645  } else if (dcl) { // C99 6.5.3.2p1
3646    // We have an lvalue with a decl. Make sure the decl is not declared
3647    // with the register storage-class specifier.
3648    if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
3649      if (vd->getStorageClass() == VarDecl::Register) {
3650        Diag(OpLoc, diag::err_typecheck_address_of)
3651          << "register variable" << op->getSourceRange();
3652        return QualType();
3653      }
3654    } else if (isa<OverloadedFunctionDecl>(dcl)) {
3655      return Context.OverloadTy;
3656    } else if (isa<FieldDecl>(dcl)) {
3657      // Okay: we can take the address of a field.
3658      // Could be a pointer to member, though, if there is an explicit
3659      // scope qualifier for the class.
3660      if (isa<QualifiedDeclRefExpr>(op)) {
3661        DeclContext *Ctx = dcl->getDeclContext();
3662        if (Ctx && Ctx->isRecord())
3663          return Context.getMemberPointerType(op->getType(),
3664                Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
3665      }
3666    } else if (isa<FunctionDecl>(dcl)) {
3667      // Okay: we can take the address of a function.
3668      // As above.
3669      if (isa<QualifiedDeclRefExpr>(op)) {
3670        DeclContext *Ctx = dcl->getDeclContext();
3671        if (Ctx && Ctx->isRecord())
3672          return Context.getMemberPointerType(op->getType(),
3673                Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
3674      }
3675    }
3676    else
3677      assert(0 && "Unknown/unexpected decl type");
3678  }
3679
3680  // If the operand has type "type", the result has type "pointer to type".
3681  return Context.getPointerType(op->getType());
3682}
3683
3684QualType Sema::CheckIndirectionOperand(Expr *Op, SourceLocation OpLoc) {
3685  if (Op->isTypeDependent())
3686    return Context.DependentTy;
3687
3688  UsualUnaryConversions(Op);
3689  QualType Ty = Op->getType();
3690
3691  // Note that per both C89 and C99, this is always legal, even if ptype is an
3692  // incomplete type or void.  It would be possible to warn about dereferencing
3693  // a void pointer, but it's completely well-defined, and such a warning is
3694  // unlikely to catch any mistakes.
3695  if (const PointerType *PT = Ty->getAsPointerType())
3696    return PT->getPointeeType();
3697
3698  Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
3699    << Ty << Op->getSourceRange();
3700  return QualType();
3701}
3702
3703static inline BinaryOperator::Opcode ConvertTokenKindToBinaryOpcode(
3704  tok::TokenKind Kind) {
3705  BinaryOperator::Opcode Opc;
3706  switch (Kind) {
3707  default: assert(0 && "Unknown binop!");
3708  case tok::periodstar:           Opc = BinaryOperator::PtrMemD; break;
3709  case tok::arrowstar:            Opc = BinaryOperator::PtrMemI; break;
3710  case tok::star:                 Opc = BinaryOperator::Mul; break;
3711  case tok::slash:                Opc = BinaryOperator::Div; break;
3712  case tok::percent:              Opc = BinaryOperator::Rem; break;
3713  case tok::plus:                 Opc = BinaryOperator::Add; break;
3714  case tok::minus:                Opc = BinaryOperator::Sub; break;
3715  case tok::lessless:             Opc = BinaryOperator::Shl; break;
3716  case tok::greatergreater:       Opc = BinaryOperator::Shr; break;
3717  case tok::lessequal:            Opc = BinaryOperator::LE; break;
3718  case tok::less:                 Opc = BinaryOperator::LT; break;
3719  case tok::greaterequal:         Opc = BinaryOperator::GE; break;
3720  case tok::greater:              Opc = BinaryOperator::GT; break;
3721  case tok::exclaimequal:         Opc = BinaryOperator::NE; break;
3722  case tok::equalequal:           Opc = BinaryOperator::EQ; break;
3723  case tok::amp:                  Opc = BinaryOperator::And; break;
3724  case tok::caret:                Opc = BinaryOperator::Xor; break;
3725  case tok::pipe:                 Opc = BinaryOperator::Or; break;
3726  case tok::ampamp:               Opc = BinaryOperator::LAnd; break;
3727  case tok::pipepipe:             Opc = BinaryOperator::LOr; break;
3728  case tok::equal:                Opc = BinaryOperator::Assign; break;
3729  case tok::starequal:            Opc = BinaryOperator::MulAssign; break;
3730  case tok::slashequal:           Opc = BinaryOperator::DivAssign; break;
3731  case tok::percentequal:         Opc = BinaryOperator::RemAssign; break;
3732  case tok::plusequal:            Opc = BinaryOperator::AddAssign; break;
3733  case tok::minusequal:           Opc = BinaryOperator::SubAssign; break;
3734  case tok::lesslessequal:        Opc = BinaryOperator::ShlAssign; break;
3735  case tok::greatergreaterequal:  Opc = BinaryOperator::ShrAssign; break;
3736  case tok::ampequal:             Opc = BinaryOperator::AndAssign; break;
3737  case tok::caretequal:           Opc = BinaryOperator::XorAssign; break;
3738  case tok::pipeequal:            Opc = BinaryOperator::OrAssign; break;
3739  case tok::comma:                Opc = BinaryOperator::Comma; break;
3740  }
3741  return Opc;
3742}
3743
3744static inline UnaryOperator::Opcode ConvertTokenKindToUnaryOpcode(
3745  tok::TokenKind Kind) {
3746  UnaryOperator::Opcode Opc;
3747  switch (Kind) {
3748  default: assert(0 && "Unknown unary op!");
3749  case tok::plusplus:     Opc = UnaryOperator::PreInc; break;
3750  case tok::minusminus:   Opc = UnaryOperator::PreDec; break;
3751  case tok::amp:          Opc = UnaryOperator::AddrOf; break;
3752  case tok::star:         Opc = UnaryOperator::Deref; break;
3753  case tok::plus:         Opc = UnaryOperator::Plus; break;
3754  case tok::minus:        Opc = UnaryOperator::Minus; break;
3755  case tok::tilde:        Opc = UnaryOperator::Not; break;
3756  case tok::exclaim:      Opc = UnaryOperator::LNot; break;
3757  case tok::kw___real:    Opc = UnaryOperator::Real; break;
3758  case tok::kw___imag:    Opc = UnaryOperator::Imag; break;
3759  case tok::kw___extension__: Opc = UnaryOperator::Extension; break;
3760  }
3761  return Opc;
3762}
3763
3764/// CreateBuiltinBinOp - Creates a new built-in binary operation with
3765/// operator @p Opc at location @c TokLoc. This routine only supports
3766/// built-in operations; ActOnBinOp handles overloaded operators.
3767Action::OwningExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
3768                                                  unsigned Op,
3769                                                  Expr *lhs, Expr *rhs) {
3770  QualType ResultTy;  // Result type of the binary operator.
3771  QualType CompTy;    // Computation type for compound assignments (e.g. '+=')
3772  BinaryOperator::Opcode Opc = (BinaryOperator::Opcode)Op;
3773
3774  switch (Opc) {
3775  default:
3776    assert(0 && "Unknown binary expr!");
3777  case BinaryOperator::Assign:
3778    ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, QualType());
3779    break;
3780  case BinaryOperator::PtrMemD:
3781  case BinaryOperator::PtrMemI:
3782    ResultTy = CheckPointerToMemberOperands(lhs, rhs, OpLoc,
3783                                            Opc == BinaryOperator::PtrMemI);
3784    break;
3785  case BinaryOperator::Mul:
3786  case BinaryOperator::Div:
3787    ResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc);
3788    break;
3789  case BinaryOperator::Rem:
3790    ResultTy = CheckRemainderOperands(lhs, rhs, OpLoc);
3791    break;
3792  case BinaryOperator::Add:
3793    ResultTy = CheckAdditionOperands(lhs, rhs, OpLoc);
3794    break;
3795  case BinaryOperator::Sub:
3796    ResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc);
3797    break;
3798  case BinaryOperator::Shl:
3799  case BinaryOperator::Shr:
3800    ResultTy = CheckShiftOperands(lhs, rhs, OpLoc);
3801    break;
3802  case BinaryOperator::LE:
3803  case BinaryOperator::LT:
3804  case BinaryOperator::GE:
3805  case BinaryOperator::GT:
3806    ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, true);
3807    break;
3808  case BinaryOperator::EQ:
3809  case BinaryOperator::NE:
3810    ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, false);
3811    break;
3812  case BinaryOperator::And:
3813  case BinaryOperator::Xor:
3814  case BinaryOperator::Or:
3815    ResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc);
3816    break;
3817  case BinaryOperator::LAnd:
3818  case BinaryOperator::LOr:
3819    ResultTy = CheckLogicalOperands(lhs, rhs, OpLoc);
3820    break;
3821  case BinaryOperator::MulAssign:
3822  case BinaryOperator::DivAssign:
3823    CompTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, true);
3824    if (!CompTy.isNull())
3825      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy);
3826    break;
3827  case BinaryOperator::RemAssign:
3828    CompTy = CheckRemainderOperands(lhs, rhs, OpLoc, true);
3829    if (!CompTy.isNull())
3830      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy);
3831    break;
3832  case BinaryOperator::AddAssign:
3833    CompTy = CheckAdditionOperands(lhs, rhs, OpLoc, true);
3834    if (!CompTy.isNull())
3835      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy);
3836    break;
3837  case BinaryOperator::SubAssign:
3838    CompTy = CheckSubtractionOperands(lhs, rhs, OpLoc, true);
3839    if (!CompTy.isNull())
3840      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy);
3841    break;
3842  case BinaryOperator::ShlAssign:
3843  case BinaryOperator::ShrAssign:
3844    CompTy = CheckShiftOperands(lhs, rhs, OpLoc, true);
3845    if (!CompTy.isNull())
3846      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy);
3847    break;
3848  case BinaryOperator::AndAssign:
3849  case BinaryOperator::XorAssign:
3850  case BinaryOperator::OrAssign:
3851    CompTy = CheckBitwiseOperands(lhs, rhs, OpLoc, true);
3852    if (!CompTy.isNull())
3853      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy);
3854    break;
3855  case BinaryOperator::Comma:
3856    ResultTy = CheckCommaOperands(lhs, rhs, OpLoc);
3857    break;
3858  }
3859  if (ResultTy.isNull())
3860    return ExprError();
3861  if (CompTy.isNull())
3862    return Owned(new (Context) BinaryOperator(lhs, rhs, Opc, ResultTy, OpLoc));
3863  else
3864    return Owned(new (Context) CompoundAssignOperator(lhs, rhs, Opc, ResultTy,
3865                                                      CompTy, OpLoc));
3866}
3867
3868// Binary Operators.  'Tok' is the token for the operator.
3869Action::OwningExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
3870                                          tok::TokenKind Kind,
3871                                          ExprArg LHS, ExprArg RHS) {
3872  BinaryOperator::Opcode Opc = ConvertTokenKindToBinaryOpcode(Kind);
3873  Expr *lhs = (Expr *)LHS.release(), *rhs = (Expr*)RHS.release();
3874
3875  assert((lhs != 0) && "ActOnBinOp(): missing left expression");
3876  assert((rhs != 0) && "ActOnBinOp(): missing right expression");
3877
3878  // If either expression is type-dependent, just build the AST.
3879  // FIXME: We'll need to perform some caching of the result of name
3880  // lookup for operator+.
3881  if (lhs->isTypeDependent() || rhs->isTypeDependent()) {
3882    if (Opc > BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign)
3883      return Owned(new (Context) CompoundAssignOperator(lhs, rhs, Opc,
3884                                              Context.DependentTy,
3885                                              Context.DependentTy, TokLoc));
3886    else
3887      return Owned(new (Context) BinaryOperator(lhs, rhs, Opc,
3888                                                Context.DependentTy, TokLoc));
3889  }
3890
3891  if (getLangOptions().CPlusPlus && Opc != BinaryOperator::PtrMemD &&
3892      (lhs->getType()->isRecordType() || lhs->getType()->isEnumeralType() ||
3893       rhs->getType()->isRecordType() || rhs->getType()->isEnumeralType())) {
3894    // If this is one of the assignment operators, we only perform
3895    // overload resolution if the left-hand side is a class or
3896    // enumeration type (C++ [expr.ass]p3).
3897    if (Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign &&
3898        !(lhs->getType()->isRecordType() || lhs->getType()->isEnumeralType())) {
3899      return CreateBuiltinBinOp(TokLoc, Opc, lhs, rhs);
3900    }
3901
3902    // Determine which overloaded operator we're dealing with.
3903    static const OverloadedOperatorKind OverOps[] = {
3904      // Overloading .* is not possible.
3905      static_cast<OverloadedOperatorKind>(0), OO_ArrowStar,
3906      OO_Star, OO_Slash, OO_Percent,
3907      OO_Plus, OO_Minus,
3908      OO_LessLess, OO_GreaterGreater,
3909      OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
3910      OO_EqualEqual, OO_ExclaimEqual,
3911      OO_Amp,
3912      OO_Caret,
3913      OO_Pipe,
3914      OO_AmpAmp,
3915      OO_PipePipe,
3916      OO_Equal, OO_StarEqual,
3917      OO_SlashEqual, OO_PercentEqual,
3918      OO_PlusEqual, OO_MinusEqual,
3919      OO_LessLessEqual, OO_GreaterGreaterEqual,
3920      OO_AmpEqual, OO_CaretEqual,
3921      OO_PipeEqual,
3922      OO_Comma
3923    };
3924    OverloadedOperatorKind OverOp = OverOps[Opc];
3925
3926    // Add the appropriate overloaded operators (C++ [over.match.oper])
3927    // to the candidate set.
3928    OverloadCandidateSet CandidateSet;
3929    Expr *Args[2] = { lhs, rhs };
3930    if (AddOperatorCandidates(OverOp, S, TokLoc, Args, 2, CandidateSet))
3931      return ExprError();
3932
3933    // Perform overload resolution.
3934    OverloadCandidateSet::iterator Best;
3935    switch (BestViableFunction(CandidateSet, Best)) {
3936    case OR_Success: {
3937      // We found a built-in operator or an overloaded operator.
3938      FunctionDecl *FnDecl = Best->Function;
3939
3940      if (FnDecl) {
3941        // We matched an overloaded operator. Build a call to that
3942        // operator.
3943
3944        // Convert the arguments.
3945        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
3946          if (PerformObjectArgumentInitialization(lhs, Method) ||
3947              PerformCopyInitialization(rhs, FnDecl->getParamDecl(0)->getType(),
3948                                        "passing"))
3949            return ExprError();
3950        } else {
3951          // Convert the arguments.
3952          if (PerformCopyInitialization(lhs, FnDecl->getParamDecl(0)->getType(),
3953                                        "passing") ||
3954              PerformCopyInitialization(rhs, FnDecl->getParamDecl(1)->getType(),
3955                                        "passing"))
3956            return ExprError();
3957        }
3958
3959        // Determine the result type
3960        QualType ResultTy
3961          = FnDecl->getType()->getAsFunctionType()->getResultType();
3962        ResultTy = ResultTy.getNonReferenceType();
3963
3964        // Build the actual expression node.
3965        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
3966                                                 SourceLocation());
3967        UsualUnaryConversions(FnExpr);
3968
3969        return Owned(new (Context) CXXOperatorCallExpr(Context, FnExpr, Args, 2,
3970                                                       ResultTy, TokLoc));
3971      } else {
3972        // We matched a built-in operator. Convert the arguments, then
3973        // break out so that we will build the appropriate built-in
3974        // operator node.
3975        if (PerformImplicitConversion(lhs, Best->BuiltinTypes.ParamTypes[0],
3976                                      Best->Conversions[0], "passing") ||
3977            PerformImplicitConversion(rhs, Best->BuiltinTypes.ParamTypes[1],
3978                                      Best->Conversions[1], "passing"))
3979          return ExprError();
3980
3981        break;
3982      }
3983    }
3984
3985    case OR_No_Viable_Function:
3986      // No viable function; fall through to handling this as a
3987      // built-in operator, which will produce an error message for us.
3988      break;
3989
3990    case OR_Ambiguous:
3991      Diag(TokLoc,  diag::err_ovl_ambiguous_oper)
3992          << BinaryOperator::getOpcodeStr(Opc)
3993          << lhs->getSourceRange() << rhs->getSourceRange();
3994      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3995      return ExprError();
3996
3997    case OR_Deleted:
3998      Diag(TokLoc, diag::err_ovl_deleted_oper)
3999        << Best->Function->isDeleted()
4000        << BinaryOperator::getOpcodeStr(Opc)
4001        << lhs->getSourceRange() << rhs->getSourceRange();
4002      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4003      return ExprError();
4004    }
4005
4006    // Either we found no viable overloaded operator or we matched a
4007    // built-in operator. In either case, fall through to trying to
4008    // build a built-in operation.
4009  }
4010
4011  // Build a built-in binary operation.
4012  return CreateBuiltinBinOp(TokLoc, Opc, lhs, rhs);
4013}
4014
4015// Unary Operators.  'Tok' is the token for the operator.
4016Action::OwningExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
4017                                            tok::TokenKind Op, ExprArg input) {
4018  // FIXME: Input is modified later, but smart pointer not reassigned.
4019  Expr *Input = (Expr*)input.get();
4020  UnaryOperator::Opcode Opc = ConvertTokenKindToUnaryOpcode(Op);
4021
4022  if (getLangOptions().CPlusPlus &&
4023      (Input->getType()->isRecordType()
4024       || Input->getType()->isEnumeralType())) {
4025    // Determine which overloaded operator we're dealing with.
4026    static const OverloadedOperatorKind OverOps[] = {
4027      OO_None, OO_None,
4028      OO_PlusPlus, OO_MinusMinus,
4029      OO_Amp, OO_Star,
4030      OO_Plus, OO_Minus,
4031      OO_Tilde, OO_Exclaim,
4032      OO_None, OO_None,
4033      OO_None,
4034      OO_None
4035    };
4036    OverloadedOperatorKind OverOp = OverOps[Opc];
4037
4038    // Add the appropriate overloaded operators (C++ [over.match.oper])
4039    // to the candidate set.
4040    OverloadCandidateSet CandidateSet;
4041    if (OverOp != OO_None &&
4042        AddOperatorCandidates(OverOp, S, OpLoc, &Input, 1, CandidateSet))
4043      return ExprError();
4044
4045    // Perform overload resolution.
4046    OverloadCandidateSet::iterator Best;
4047    switch (BestViableFunction(CandidateSet, Best)) {
4048    case OR_Success: {
4049      // We found a built-in operator or an overloaded operator.
4050      FunctionDecl *FnDecl = Best->Function;
4051
4052      if (FnDecl) {
4053        // We matched an overloaded operator. Build a call to that
4054        // operator.
4055
4056        // Convert the arguments.
4057        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
4058          if (PerformObjectArgumentInitialization(Input, Method))
4059            return ExprError();
4060        } else {
4061          // Convert the arguments.
4062          if (PerformCopyInitialization(Input,
4063                                        FnDecl->getParamDecl(0)->getType(),
4064                                        "passing"))
4065            return ExprError();
4066        }
4067
4068        // Determine the result type
4069        QualType ResultTy
4070          = FnDecl->getType()->getAsFunctionType()->getResultType();
4071        ResultTy = ResultTy.getNonReferenceType();
4072
4073        // Build the actual expression node.
4074        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
4075                                                 SourceLocation());
4076        UsualUnaryConversions(FnExpr);
4077
4078        input.release();
4079        return Owned(new (Context) CXXOperatorCallExpr(Context, FnExpr, &Input,
4080                                                       1, ResultTy, OpLoc));
4081      } else {
4082        // We matched a built-in operator. Convert the arguments, then
4083        // break out so that we will build the appropriate built-in
4084        // operator node.
4085        if (PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0],
4086                                      Best->Conversions[0], "passing"))
4087          return ExprError();
4088
4089        break;
4090      }
4091    }
4092
4093    case OR_No_Viable_Function:
4094      // No viable function; fall through to handling this as a
4095      // built-in operator, which will produce an error message for us.
4096      break;
4097
4098    case OR_Ambiguous:
4099      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
4100          << UnaryOperator::getOpcodeStr(Opc)
4101          << Input->getSourceRange();
4102      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4103      return ExprError();
4104
4105    case OR_Deleted:
4106      Diag(OpLoc, diag::err_ovl_deleted_oper)
4107        << Best->Function->isDeleted()
4108        << UnaryOperator::getOpcodeStr(Opc)
4109        << Input->getSourceRange();
4110      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4111      return ExprError();
4112    }
4113
4114    // Either we found no viable overloaded operator or we matched a
4115    // built-in operator. In either case, fall through to trying to
4116    // build a built-in operation.
4117  }
4118
4119  QualType resultType;
4120  switch (Opc) {
4121  default:
4122    assert(0 && "Unimplemented unary expr!");
4123  case UnaryOperator::PreInc:
4124  case UnaryOperator::PreDec:
4125    resultType = CheckIncrementDecrementOperand(Input, OpLoc,
4126                                                Opc == UnaryOperator::PreInc);
4127    break;
4128  case UnaryOperator::AddrOf:
4129    resultType = CheckAddressOfOperand(Input, OpLoc);
4130    break;
4131  case UnaryOperator::Deref:
4132    DefaultFunctionArrayConversion(Input);
4133    resultType = CheckIndirectionOperand(Input, OpLoc);
4134    break;
4135  case UnaryOperator::Plus:
4136  case UnaryOperator::Minus:
4137    UsualUnaryConversions(Input);
4138    resultType = Input->getType();
4139    if (resultType->isDependentType())
4140      break;
4141    if (resultType->isArithmeticType()) // C99 6.5.3.3p1
4142      break;
4143    else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6-7
4144             resultType->isEnumeralType())
4145      break;
4146    else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6
4147             Opc == UnaryOperator::Plus &&
4148             resultType->isPointerType())
4149      break;
4150
4151    return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
4152      << resultType << Input->getSourceRange());
4153  case UnaryOperator::Not: // bitwise complement
4154    UsualUnaryConversions(Input);
4155    resultType = Input->getType();
4156    if (resultType->isDependentType())
4157      break;
4158    // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
4159    if (resultType->isComplexType() || resultType->isComplexIntegerType())
4160      // C99 does not support '~' for complex conjugation.
4161      Diag(OpLoc, diag::ext_integer_complement_complex)
4162        << resultType << Input->getSourceRange();
4163    else if (!resultType->isIntegerType())
4164      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
4165        << resultType << Input->getSourceRange());
4166    break;
4167  case UnaryOperator::LNot: // logical negation
4168    // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
4169    DefaultFunctionArrayConversion(Input);
4170    resultType = Input->getType();
4171    if (resultType->isDependentType())
4172      break;
4173    if (!resultType->isScalarType()) // C99 6.5.3.3p1
4174      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
4175        << resultType << Input->getSourceRange());
4176    // LNot always has type int. C99 6.5.3.3p5.
4177    // In C++, it's bool. C++ 5.3.1p8
4178    resultType = getLangOptions().CPlusPlus ? Context.BoolTy : Context.IntTy;
4179    break;
4180  case UnaryOperator::Real:
4181  case UnaryOperator::Imag:
4182    resultType = CheckRealImagOperand(Input, OpLoc, Opc == UnaryOperator::Real);
4183    break;
4184  case UnaryOperator::Extension:
4185    resultType = Input->getType();
4186    break;
4187  }
4188  if (resultType.isNull())
4189    return ExprError();
4190  input.release();
4191  return Owned(new (Context) UnaryOperator(Input, Opc, resultType, OpLoc));
4192}
4193
4194/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
4195Sema::ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc,
4196                                      SourceLocation LabLoc,
4197                                      IdentifierInfo *LabelII) {
4198  // Look up the record for this label identifier.
4199  llvm::DenseMap<IdentifierInfo*, Action::StmtTy*>::iterator I =
4200    ActiveScope->LabelMap.find(LabelII);
4201
4202  LabelStmt *LabelDecl;
4203
4204  // If we haven't seen this label yet, create a forward reference. It
4205  // will be validated and/or cleaned up in ActOnFinishFunctionBody.
4206  if (I == ActiveScope->LabelMap.end()) {
4207    LabelDecl = new (Context) LabelStmt(LabLoc, LabelII, 0);
4208
4209    ActiveScope->LabelMap.insert(std::make_pair(LabelII, LabelDecl));
4210  } else
4211    LabelDecl = static_cast<LabelStmt *>(I->second);
4212
4213  // Create the AST node.  The address of a label always has type 'void*'.
4214  return new (Context) AddrLabelExpr(OpLoc, LabLoc, LabelDecl,
4215                                     Context.getPointerType(Context.VoidTy));
4216}
4217
4218Sema::ExprResult Sema::ActOnStmtExpr(SourceLocation LPLoc, StmtTy *substmt,
4219                                     SourceLocation RPLoc) { // "({..})"
4220  Stmt *SubStmt = static_cast<Stmt*>(substmt);
4221  assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
4222  CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
4223
4224  bool isFileScope = getCurFunctionOrMethodDecl() == 0;
4225  if (isFileScope) {
4226    return Diag(LPLoc, diag::err_stmtexpr_file_scope);
4227  }
4228
4229  // FIXME: there are a variety of strange constraints to enforce here, for
4230  // example, it is not possible to goto into a stmt expression apparently.
4231  // More semantic analysis is needed.
4232
4233  // FIXME: the last statement in the compount stmt has its value used.  We
4234  // should not warn about it being unused.
4235
4236  // If there are sub stmts in the compound stmt, take the type of the last one
4237  // as the type of the stmtexpr.
4238  QualType Ty = Context.VoidTy;
4239
4240  if (!Compound->body_empty()) {
4241    Stmt *LastStmt = Compound->body_back();
4242    // If LastStmt is a label, skip down through into the body.
4243    while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt))
4244      LastStmt = Label->getSubStmt();
4245
4246    if (Expr *LastExpr = dyn_cast<Expr>(LastStmt))
4247      Ty = LastExpr->getType();
4248  }
4249
4250  return new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc);
4251}
4252
4253Sema::ExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
4254                                            SourceLocation BuiltinLoc,
4255                                            SourceLocation TypeLoc,
4256                                            TypeTy *argty,
4257                                            OffsetOfComponent *CompPtr,
4258                                            unsigned NumComponents,
4259                                            SourceLocation RPLoc) {
4260  QualType ArgTy = QualType::getFromOpaquePtr(argty);
4261  assert(!ArgTy.isNull() && "Missing type argument!");
4262
4263  bool Dependent = ArgTy->isDependentType();
4264
4265  // We must have at least one component that refers to the type, and the first
4266  // one is known to be a field designator.  Verify that the ArgTy represents
4267  // a struct/union/class.
4268  if (!Dependent && !ArgTy->isRecordType())
4269    return Diag(TypeLoc, diag::err_offsetof_record_type) << ArgTy;
4270
4271  // Otherwise, create a null pointer as the base, and iteratively process
4272  // the offsetof designators.
4273  QualType ArgTyPtr = Context.getPointerType(ArgTy);
4274  Expr* Res = new (Context) ImplicitValueInitExpr(ArgTyPtr);
4275  Res = new (Context) UnaryOperator(Res, UnaryOperator::Deref,
4276                                    ArgTy, SourceLocation());
4277
4278  // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
4279  // GCC extension, diagnose them.
4280  // FIXME: This diagnostic isn't actually visible because the location is in
4281  // a system header!
4282  if (NumComponents != 1)
4283    Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator)
4284      << SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd);
4285
4286  if (!Dependent) {
4287    // FIXME: Dependent case loses a lot of information here. And probably
4288    // leaks like a sieve.
4289    for (unsigned i = 0; i != NumComponents; ++i) {
4290      const OffsetOfComponent &OC = CompPtr[i];
4291      if (OC.isBrackets) {
4292        // Offset of an array sub-field.  TODO: Should we allow vector elements?
4293        const ArrayType *AT = Context.getAsArrayType(Res->getType());
4294        if (!AT) {
4295          Res->Destroy(Context);
4296          return Diag(OC.LocEnd, diag::err_offsetof_array_type)
4297            << Res->getType();
4298        }
4299
4300        // FIXME: C++: Verify that operator[] isn't overloaded.
4301
4302        // Promote the array so it looks more like a normal array subscript
4303        // expression.
4304        DefaultFunctionArrayConversion(Res);
4305
4306        // C99 6.5.2.1p1
4307        Expr *Idx = static_cast<Expr*>(OC.U.E);
4308        if (!Idx->isTypeDependent() && !Idx->getType()->isIntegerType())
4309          return Diag(Idx->getLocStart(), diag::err_typecheck_subscript)
4310            << Idx->getSourceRange();
4311
4312        Res = new (Context) ArraySubscriptExpr(Res, Idx, AT->getElementType(),
4313                                               OC.LocEnd);
4314        continue;
4315      }
4316
4317      const RecordType *RC = Res->getType()->getAsRecordType();
4318      if (!RC) {
4319        Res->Destroy(Context);
4320        return Diag(OC.LocEnd, diag::err_offsetof_record_type)
4321          << Res->getType();
4322      }
4323
4324      // Get the decl corresponding to this.
4325      RecordDecl *RD = RC->getDecl();
4326      FieldDecl *MemberDecl
4327        = dyn_cast_or_null<FieldDecl>(LookupQualifiedName(RD, OC.U.IdentInfo,
4328                                                          LookupMemberName)
4329                                        .getAsDecl());
4330      if (!MemberDecl)
4331        return Diag(BuiltinLoc, diag::err_typecheck_no_member)
4332         << OC.U.IdentInfo << SourceRange(OC.LocStart, OC.LocEnd);
4333
4334      // FIXME: C++: Verify that MemberDecl isn't a static field.
4335      // FIXME: Verify that MemberDecl isn't a bitfield.
4336      // MemberDecl->getType() doesn't get the right qualifiers, but it doesn't
4337      // matter here.
4338      Res = new (Context) MemberExpr(Res, false, MemberDecl, OC.LocEnd,
4339                                   MemberDecl->getType().getNonReferenceType());
4340    }
4341  }
4342
4343  return new (Context) UnaryOperator(Res, UnaryOperator::OffsetOf,
4344                                     Context.getSizeType(), BuiltinLoc);
4345}
4346
4347
4348Sema::ExprResult Sema::ActOnTypesCompatibleExpr(SourceLocation BuiltinLoc,
4349                                                TypeTy *arg1, TypeTy *arg2,
4350                                                SourceLocation RPLoc) {
4351  QualType argT1 = QualType::getFromOpaquePtr(arg1);
4352  QualType argT2 = QualType::getFromOpaquePtr(arg2);
4353
4354  assert((!argT1.isNull() && !argT2.isNull()) && "Missing type argument(s)");
4355
4356  return new (Context) TypesCompatibleExpr(Context.IntTy, BuiltinLoc, argT1,
4357                                           argT2, RPLoc);
4358}
4359
4360Sema::ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc, ExprTy *cond,
4361                                       ExprTy *expr1, ExprTy *expr2,
4362                                       SourceLocation RPLoc) {
4363  Expr *CondExpr = static_cast<Expr*>(cond);
4364  Expr *LHSExpr = static_cast<Expr*>(expr1);
4365  Expr *RHSExpr = static_cast<Expr*>(expr2);
4366
4367  assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
4368
4369  QualType resType;
4370  if (CondExpr->isValueDependent()) {
4371    resType = Context.DependentTy;
4372  } else {
4373    // The conditional expression is required to be a constant expression.
4374    llvm::APSInt condEval(32);
4375    SourceLocation ExpLoc;
4376    if (!CondExpr->isIntegerConstantExpr(condEval, Context, &ExpLoc))
4377      return Diag(ExpLoc, diag::err_typecheck_choose_expr_requires_constant)
4378        << CondExpr->getSourceRange();
4379
4380    // If the condition is > zero, then the AST type is the same as the LSHExpr.
4381    resType = condEval.getZExtValue() ? LHSExpr->getType() : RHSExpr->getType();
4382  }
4383
4384  return new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
4385                                  resType, RPLoc);
4386}
4387
4388//===----------------------------------------------------------------------===//
4389// Clang Extensions.
4390//===----------------------------------------------------------------------===//
4391
4392/// ActOnBlockStart - This callback is invoked when a block literal is started.
4393void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *BlockScope) {
4394  // Analyze block parameters.
4395  BlockSemaInfo *BSI = new BlockSemaInfo();
4396
4397  // Add BSI to CurBlock.
4398  BSI->PrevBlockInfo = CurBlock;
4399  CurBlock = BSI;
4400  ActiveScope = BlockScope;
4401
4402  BSI->ReturnType = 0;
4403  BSI->TheScope = BlockScope;
4404  BSI->hasBlockDeclRefExprs = false;
4405
4406  BSI->TheDecl = BlockDecl::Create(Context, CurContext, CaretLoc);
4407  PushDeclContext(BlockScope, BSI->TheDecl);
4408}
4409
4410void Sema::ActOnBlockArguments(Declarator &ParamInfo, Scope *CurScope) {
4411  assert(ParamInfo.getIdentifier() == 0 && "block-id should have no identifier!");
4412
4413  if (ParamInfo.getNumTypeObjects() == 0
4414      || ParamInfo.getTypeObject(0).Kind != DeclaratorChunk::Function) {
4415    QualType T = GetTypeForDeclarator(ParamInfo, CurScope);
4416
4417    // The type is entirely optional as well, if none, use DependentTy.
4418    if (T.isNull())
4419      T = Context.DependentTy;
4420
4421    // The parameter list is optional, if there was none, assume ().
4422    if (!T->isFunctionType())
4423      T = Context.getFunctionType(T, NULL, 0, 0, 0);
4424
4425    CurBlock->hasPrototype = true;
4426    CurBlock->isVariadic = false;
4427    Type *RetTy = T.getTypePtr()->getAsFunctionType()->getResultType()
4428      .getTypePtr();
4429
4430    if (!RetTy->isDependentType())
4431      CurBlock->ReturnType = RetTy;
4432    return;
4433  }
4434
4435  // Analyze arguments to block.
4436  assert(ParamInfo.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4437         "Not a function declarator!");
4438  DeclaratorChunk::FunctionTypeInfo &FTI = ParamInfo.getTypeObject(0).Fun;
4439
4440  CurBlock->hasPrototype = FTI.hasPrototype;
4441  CurBlock->isVariadic = true;
4442
4443  // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs function that takes
4444  // no arguments, not a function that takes a single void argument.
4445  if (FTI.hasPrototype &&
4446      FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
4447      (!((ParmVarDecl *)FTI.ArgInfo[0].Param)->getType().getCVRQualifiers() &&
4448        ((ParmVarDecl *)FTI.ArgInfo[0].Param)->getType()->isVoidType())) {
4449    // empty arg list, don't push any params.
4450    CurBlock->isVariadic = false;
4451  } else if (FTI.hasPrototype) {
4452    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
4453      CurBlock->Params.push_back((ParmVarDecl *)FTI.ArgInfo[i].Param);
4454    CurBlock->isVariadic = FTI.isVariadic;
4455    QualType T = GetTypeForDeclarator (ParamInfo, CurScope);
4456
4457    Type* RetTy = T.getTypePtr()->getAsFunctionType()->getResultType()
4458      .getTypePtr();
4459
4460    if (!RetTy->isDependentType())
4461      CurBlock->ReturnType = RetTy;
4462  }
4463  CurBlock->TheDecl->setArgs(&CurBlock->Params[0], CurBlock->Params.size());
4464
4465  for (BlockDecl::param_iterator AI = CurBlock->TheDecl->param_begin(),
4466       E = CurBlock->TheDecl->param_end(); AI != E; ++AI)
4467    // If this has an identifier, add it to the scope stack.
4468    if ((*AI)->getIdentifier())
4469      PushOnScopeChains(*AI, CurBlock->TheScope);
4470}
4471
4472/// ActOnBlockError - If there is an error parsing a block, this callback
4473/// is invoked to pop the information about the block from the action impl.
4474void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
4475  // Ensure that CurBlock is deleted.
4476  llvm::OwningPtr<BlockSemaInfo> CC(CurBlock);
4477
4478  // Pop off CurBlock, handle nested blocks.
4479  CurBlock = CurBlock->PrevBlockInfo;
4480
4481  // FIXME: Delete the ParmVarDecl objects as well???
4482
4483}
4484
4485/// ActOnBlockStmtExpr - This is called when the body of a block statement
4486/// literal was successfully completed.  ^(int x){...}
4487Sema::ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc, StmtTy *body,
4488                                          Scope *CurScope) {
4489  // Ensure that CurBlock is deleted.
4490  llvm::OwningPtr<BlockSemaInfo> BSI(CurBlock);
4491  ExprOwningPtr<CompoundStmt> Body(this, static_cast<CompoundStmt*>(body));
4492
4493  PopDeclContext();
4494
4495  // Before poping CurBlock, set ActiveScope to this scopes parent.
4496  ActiveScope = CurBlock->TheScope->getParent();
4497
4498  // Pop off CurBlock, handle nested blocks.
4499  CurBlock = CurBlock->PrevBlockInfo;
4500
4501  QualType RetTy = Context.VoidTy;
4502  if (BSI->ReturnType)
4503    RetTy = QualType(BSI->ReturnType, 0);
4504
4505  llvm::SmallVector<QualType, 8> ArgTypes;
4506  for (unsigned i = 0, e = BSI->Params.size(); i != e; ++i)
4507    ArgTypes.push_back(BSI->Params[i]->getType());
4508
4509  QualType BlockTy;
4510  if (!BSI->hasPrototype)
4511    BlockTy = Context.getFunctionNoProtoType(RetTy);
4512  else
4513    BlockTy = Context.getFunctionType(RetTy, &ArgTypes[0], ArgTypes.size(),
4514                                      BSI->isVariadic, 0);
4515
4516  BlockTy = Context.getBlockPointerType(BlockTy);
4517
4518  BSI->TheDecl->setBody(Body.take());
4519  return new (Context) BlockExpr(BSI->TheDecl, BlockTy, BSI->hasBlockDeclRefExprs);
4520}
4521
4522Sema::ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
4523                                  ExprTy *expr, TypeTy *type,
4524                                  SourceLocation RPLoc) {
4525  Expr *E = static_cast<Expr*>(expr);
4526  QualType T = QualType::getFromOpaquePtr(type);
4527
4528  InitBuiltinVaListType();
4529
4530  // Get the va_list type
4531  QualType VaListType = Context.getBuiltinVaListType();
4532  // Deal with implicit array decay; for example, on x86-64,
4533  // va_list is an array, but it's supposed to decay to
4534  // a pointer for va_arg.
4535  if (VaListType->isArrayType())
4536    VaListType = Context.getArrayDecayedType(VaListType);
4537  // Make sure the input expression also decays appropriately.
4538  UsualUnaryConversions(E);
4539
4540  if (CheckAssignmentConstraints(VaListType, E->getType()) != Compatible)
4541    return Diag(E->getLocStart(),
4542                diag::err_first_argument_to_va_arg_not_of_type_va_list)
4543      << E->getType() << E->getSourceRange();
4544
4545  // FIXME: Warn if a non-POD type is passed in.
4546
4547  return new (Context) VAArgExpr(BuiltinLoc, E, T.getNonReferenceType(), RPLoc);
4548}
4549
4550Sema::ExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
4551  // The type of __null will be int or long, depending on the size of
4552  // pointers on the target.
4553  QualType Ty;
4554  if (Context.Target.getPointerWidth(0) == Context.Target.getIntWidth())
4555    Ty = Context.IntTy;
4556  else
4557    Ty = Context.LongTy;
4558
4559  return new (Context) GNUNullExpr(Ty, TokenLoc);
4560}
4561
4562bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
4563                                    SourceLocation Loc,
4564                                    QualType DstType, QualType SrcType,
4565                                    Expr *SrcExpr, const char *Flavor) {
4566  // Decode the result (notice that AST's are still created for extensions).
4567  bool isInvalid = false;
4568  unsigned DiagKind;
4569  switch (ConvTy) {
4570  default: assert(0 && "Unknown conversion type");
4571  case Compatible: return false;
4572  case PointerToInt:
4573    DiagKind = diag::ext_typecheck_convert_pointer_int;
4574    break;
4575  case IntToPointer:
4576    DiagKind = diag::ext_typecheck_convert_int_pointer;
4577    break;
4578  case IncompatiblePointer:
4579    DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
4580    break;
4581  case FunctionVoidPointer:
4582    DiagKind = diag::ext_typecheck_convert_pointer_void_func;
4583    break;
4584  case CompatiblePointerDiscardsQualifiers:
4585    // If the qualifiers lost were because we were applying the
4586    // (deprecated) C++ conversion from a string literal to a char*
4587    // (or wchar_t*), then there was no error (C++ 4.2p2).  FIXME:
4588    // Ideally, this check would be performed in
4589    // CheckPointerTypesForAssignment. However, that would require a
4590    // bit of refactoring (so that the second argument is an
4591    // expression, rather than a type), which should be done as part
4592    // of a larger effort to fix CheckPointerTypesForAssignment for
4593    // C++ semantics.
4594    if (getLangOptions().CPlusPlus &&
4595        IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
4596      return false;
4597    DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
4598    break;
4599  case IntToBlockPointer:
4600    DiagKind = diag::err_int_to_block_pointer;
4601    break;
4602  case IncompatibleBlockPointer:
4603    DiagKind = diag::ext_typecheck_convert_incompatible_block_pointer;
4604    break;
4605  case IncompatibleObjCQualifiedId:
4606    // FIXME: Diagnose the problem in ObjCQualifiedIdTypesAreCompatible, since
4607    // it can give a more specific diagnostic.
4608    DiagKind = diag::warn_incompatible_qualified_id;
4609    break;
4610  case IncompatibleVectors:
4611    DiagKind = diag::warn_incompatible_vectors;
4612    break;
4613  case Incompatible:
4614    DiagKind = diag::err_typecheck_convert_incompatible;
4615    isInvalid = true;
4616    break;
4617  }
4618
4619  Diag(Loc, DiagKind) << DstType << SrcType << Flavor
4620    << SrcExpr->getSourceRange();
4621  return isInvalid;
4622}
4623
4624bool Sema::VerifyIntegerConstantExpression(const Expr* E, llvm::APSInt *Result)
4625{
4626  Expr::EvalResult EvalResult;
4627
4628  if (!E->Evaluate(EvalResult, Context) || !EvalResult.Val.isInt() ||
4629      EvalResult.HasSideEffects) {
4630    Diag(E->getExprLoc(), diag::err_expr_not_ice) << E->getSourceRange();
4631
4632    if (EvalResult.Diag) {
4633      // We only show the note if it's not the usual "invalid subexpression"
4634      // or if it's actually in a subexpression.
4635      if (EvalResult.Diag != diag::note_invalid_subexpr_in_ice ||
4636          E->IgnoreParens() != EvalResult.DiagExpr->IgnoreParens())
4637        Diag(EvalResult.DiagLoc, EvalResult.Diag);
4638    }
4639
4640    return true;
4641  }
4642
4643  if (EvalResult.Diag) {
4644    Diag(E->getExprLoc(), diag::ext_expr_not_ice) <<
4645      E->getSourceRange();
4646
4647    // Print the reason it's not a constant.
4648    if (Diags.getDiagnosticLevel(diag::ext_expr_not_ice) != Diagnostic::Ignored)
4649      Diag(EvalResult.DiagLoc, EvalResult.Diag);
4650  }
4651
4652  if (Result)
4653    *Result = EvalResult.Val.getInt();
4654  return false;
4655}
4656