SemaExpr.cpp revision 28997ec3a493134a8642891944800ffc1c160bee
1//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/ExprCXX.h"
18#include "clang/AST/ExprObjC.h"
19#include "clang/Lex/Preprocessor.h"
20#include "clang/Lex/LiteralSupport.h"
21#include "clang/Basic/Diagnostic.h"
22#include "clang/Basic/SourceManager.h"
23#include "clang/Basic/TargetInfo.h"
24#include "clang/Parse/DeclSpec.h"
25#include "clang/Parse/Scope.h"
26using namespace clang;
27
28//===----------------------------------------------------------------------===//
29//  Standard Promotions and Conversions
30//===----------------------------------------------------------------------===//
31
32/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
33void Sema::DefaultFunctionArrayConversion(Expr *&E) {
34  QualType Ty = E->getType();
35  assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
36
37  if (const ReferenceType *ref = Ty->getAsReferenceType()) {
38    ImpCastExprToType(E, ref->getPointeeType()); // C++ [expr]
39    Ty = E->getType();
40  }
41  if (Ty->isFunctionType())
42    ImpCastExprToType(E, Context.getPointerType(Ty));
43  else if (Ty->isArrayType()) {
44    // In C90 mode, arrays only promote to pointers if the array expression is
45    // an lvalue.  The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
46    // type 'array of type' is converted to an expression that has type 'pointer
47    // to type'...".  In C99 this was changed to: C99 6.3.2.1p3: "an expression
48    // that has type 'array of type' ...".  The relevant change is "an lvalue"
49    // (C90) to "an expression" (C99).
50    //
51    // C++ 4.2p1:
52    // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
53    // T" can be converted to an rvalue of type "pointer to T".
54    //
55    if (getLangOptions().C99 || getLangOptions().CPlusPlus ||
56        E->isLvalue(Context) == Expr::LV_Valid)
57      ImpCastExprToType(E, Context.getArrayDecayedType(Ty));
58  }
59}
60
61/// UsualUnaryConversions - Performs various conversions that are common to most
62/// operators (C99 6.3). The conversions of array and function types are
63/// sometimes surpressed. For example, the array->pointer conversion doesn't
64/// apply if the array is an argument to the sizeof or address (&) operators.
65/// In these instances, this routine should *not* be called.
66Expr *Sema::UsualUnaryConversions(Expr *&Expr) {
67  QualType Ty = Expr->getType();
68  assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
69
70  if (const ReferenceType *Ref = Ty->getAsReferenceType()) {
71    ImpCastExprToType(Expr, Ref->getPointeeType()); // C++ [expr]
72    Ty = Expr->getType();
73  }
74  if (Ty->isPromotableIntegerType()) // C99 6.3.1.1p2
75    ImpCastExprToType(Expr, Context.IntTy);
76  else
77    DefaultFunctionArrayConversion(Expr);
78
79  return Expr;
80}
81
82/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
83/// do not have a prototype. Arguments that have type float are promoted to
84/// double. All other argument types are converted by UsualUnaryConversions().
85void Sema::DefaultArgumentPromotion(Expr *&Expr) {
86  QualType Ty = Expr->getType();
87  assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
88
89  // If this is a 'float' (CVR qualified or typedef) promote to double.
90  if (const BuiltinType *BT = Ty->getAsBuiltinType())
91    if (BT->getKind() == BuiltinType::Float)
92      return ImpCastExprToType(Expr, Context.DoubleTy);
93
94  UsualUnaryConversions(Expr);
95}
96
97/// UsualArithmeticConversions - Performs various conversions that are common to
98/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
99/// routine returns the first non-arithmetic type found. The client is
100/// responsible for emitting appropriate error diagnostics.
101/// FIXME: verify the conversion rules for "complex int" are consistent with
102/// GCC.
103QualType Sema::UsualArithmeticConversions(Expr *&lhsExpr, Expr *&rhsExpr,
104                                          bool isCompAssign) {
105  if (!isCompAssign) {
106    UsualUnaryConversions(lhsExpr);
107    UsualUnaryConversions(rhsExpr);
108  }
109  // For conversion purposes, we ignore any qualifiers.
110  // For example, "const float" and "float" are equivalent.
111  QualType lhs =
112    Context.getCanonicalType(lhsExpr->getType()).getUnqualifiedType();
113  QualType rhs =
114    Context.getCanonicalType(rhsExpr->getType()).getUnqualifiedType();
115
116  // If both types are identical, no conversion is needed.
117  if (lhs == rhs)
118    return lhs;
119
120  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
121  // The caller can deal with this (e.g. pointer + int).
122  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
123    return lhs;
124
125  // At this point, we have two different arithmetic types.
126
127  // Handle complex types first (C99 6.3.1.8p1).
128  if (lhs->isComplexType() || rhs->isComplexType()) {
129    // if we have an integer operand, the result is the complex type.
130    if (rhs->isIntegerType() || rhs->isComplexIntegerType()) {
131      // convert the rhs to the lhs complex type.
132      if (!isCompAssign) ImpCastExprToType(rhsExpr, lhs);
133      return lhs;
134    }
135    if (lhs->isIntegerType() || lhs->isComplexIntegerType()) {
136      // convert the lhs to the rhs complex type.
137      if (!isCompAssign) ImpCastExprToType(lhsExpr, rhs);
138      return rhs;
139    }
140    // This handles complex/complex, complex/float, or float/complex.
141    // When both operands are complex, the shorter operand is converted to the
142    // type of the longer, and that is the type of the result. This corresponds
143    // to what is done when combining two real floating-point operands.
144    // The fun begins when size promotion occur across type domains.
145    // From H&S 6.3.4: When one operand is complex and the other is a real
146    // floating-point type, the less precise type is converted, within it's
147    // real or complex domain, to the precision of the other type. For example,
148    // when combining a "long double" with a "double _Complex", the
149    // "double _Complex" is promoted to "long double _Complex".
150    int result = Context.getFloatingTypeOrder(lhs, rhs);
151
152    if (result > 0) { // The left side is bigger, convert rhs.
153      rhs = Context.getFloatingTypeOfSizeWithinDomain(lhs, rhs);
154      if (!isCompAssign)
155        ImpCastExprToType(rhsExpr, rhs);
156    } else if (result < 0) { // The right side is bigger, convert lhs.
157      lhs = Context.getFloatingTypeOfSizeWithinDomain(rhs, lhs);
158      if (!isCompAssign)
159        ImpCastExprToType(lhsExpr, lhs);
160    }
161    // At this point, lhs and rhs have the same rank/size. Now, make sure the
162    // domains match. This is a requirement for our implementation, C99
163    // does not require this promotion.
164    if (lhs != rhs) { // Domains don't match, we have complex/float mix.
165      if (lhs->isRealFloatingType()) { // handle "double, _Complex double".
166        if (!isCompAssign)
167          ImpCastExprToType(lhsExpr, rhs);
168        return rhs;
169      } else { // handle "_Complex double, double".
170        if (!isCompAssign)
171          ImpCastExprToType(rhsExpr, lhs);
172        return lhs;
173      }
174    }
175    return lhs; // The domain/size match exactly.
176  }
177  // Now handle "real" floating types (i.e. float, double, long double).
178  if (lhs->isRealFloatingType() || rhs->isRealFloatingType()) {
179    // if we have an integer operand, the result is the real floating type.
180    if (rhs->isIntegerType() || rhs->isComplexIntegerType()) {
181      // convert rhs to the lhs floating point type.
182      if (!isCompAssign) ImpCastExprToType(rhsExpr, lhs);
183      return lhs;
184    }
185    if (lhs->isIntegerType() || lhs->isComplexIntegerType()) {
186      // convert lhs to the rhs floating point type.
187      if (!isCompAssign) ImpCastExprToType(lhsExpr, rhs);
188      return rhs;
189    }
190    // We have two real floating types, float/complex combos were handled above.
191    // Convert the smaller operand to the bigger result.
192    int result = Context.getFloatingTypeOrder(lhs, rhs);
193
194    if (result > 0) { // convert the rhs
195      if (!isCompAssign) ImpCastExprToType(rhsExpr, lhs);
196      return lhs;
197    }
198    if (result < 0) { // convert the lhs
199      if (!isCompAssign) ImpCastExprToType(lhsExpr, rhs); // convert the lhs
200      return rhs;
201    }
202    assert(0 && "Sema::UsualArithmeticConversions(): illegal float comparison");
203  }
204  if (lhs->isComplexIntegerType() || rhs->isComplexIntegerType()) {
205    // Handle GCC complex int extension.
206    const ComplexType *lhsComplexInt = lhs->getAsComplexIntegerType();
207    const ComplexType *rhsComplexInt = rhs->getAsComplexIntegerType();
208
209    if (lhsComplexInt && rhsComplexInt) {
210      if (Context.getIntegerTypeOrder(lhsComplexInt->getElementType(),
211                                      rhsComplexInt->getElementType()) >= 0) {
212        // convert the rhs
213        if (!isCompAssign) ImpCastExprToType(rhsExpr, lhs);
214        return lhs;
215      }
216      if (!isCompAssign)
217        ImpCastExprToType(lhsExpr, rhs); // convert the lhs
218      return rhs;
219    } else if (lhsComplexInt && rhs->isIntegerType()) {
220      // convert the rhs to the lhs complex type.
221      if (!isCompAssign) ImpCastExprToType(rhsExpr, lhs);
222      return lhs;
223    } else if (rhsComplexInt && lhs->isIntegerType()) {
224      // convert the lhs to the rhs complex type.
225      if (!isCompAssign) ImpCastExprToType(lhsExpr, rhs);
226      return rhs;
227    }
228  }
229  // Finally, we have two differing integer types.
230  // The rules for this case are in C99 6.3.1.8
231  int compare = Context.getIntegerTypeOrder(lhs, rhs);
232  bool lhsSigned = lhs->isSignedIntegerType(),
233       rhsSigned = rhs->isSignedIntegerType();
234  QualType destType;
235  if (lhsSigned == rhsSigned) {
236    // Same signedness; use the higher-ranked type
237    destType = compare >= 0 ? lhs : rhs;
238  } else if (compare != (lhsSigned ? 1 : -1)) {
239    // The unsigned type has greater than or equal rank to the
240    // signed type, so use the unsigned type
241    destType = lhsSigned ? rhs : lhs;
242  } else if (Context.getIntWidth(lhs) != Context.getIntWidth(rhs)) {
243    // The two types are different widths; if we are here, that
244    // means the signed type is larger than the unsigned type, so
245    // use the signed type.
246    destType = lhsSigned ? lhs : rhs;
247  } else {
248    // The signed type is higher-ranked than the unsigned type,
249    // but isn't actually any bigger (like unsigned int and long
250    // on most 32-bit systems).  Use the unsigned type corresponding
251    // to the signed type.
252    destType = Context.getCorrespondingUnsignedType(lhsSigned ? lhs : rhs);
253  }
254  if (!isCompAssign) {
255    ImpCastExprToType(lhsExpr, destType);
256    ImpCastExprToType(rhsExpr, destType);
257  }
258  return destType;
259}
260
261//===----------------------------------------------------------------------===//
262//  Semantic Analysis for various Expression Types
263//===----------------------------------------------------------------------===//
264
265
266/// ActOnStringLiteral - The specified tokens were lexed as pasted string
267/// fragments (e.g. "foo" "bar" L"baz").  The result string has to handle string
268/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
269/// multiple tokens.  However, the common case is that StringToks points to one
270/// string.
271///
272Action::ExprResult
273Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks) {
274  assert(NumStringToks && "Must have at least one string!");
275
276  StringLiteralParser Literal(StringToks, NumStringToks, PP, Context.Target);
277  if (Literal.hadError)
278    return ExprResult(true);
279
280  llvm::SmallVector<SourceLocation, 4> StringTokLocs;
281  for (unsigned i = 0; i != NumStringToks; ++i)
282    StringTokLocs.push_back(StringToks[i].getLocation());
283
284  // Verify that pascal strings aren't too large.
285  if (Literal.Pascal && Literal.GetStringLength() > 256)
286    return Diag(StringToks[0].getLocation(), diag::err_pascal_string_too_long,
287                SourceRange(StringToks[0].getLocation(),
288                            StringToks[NumStringToks-1].getLocation()));
289
290  QualType StrTy = Context.CharTy;
291  if (Literal.AnyWide) StrTy = Context.getWCharType();
292  if (Literal.Pascal) StrTy = Context.UnsignedCharTy;
293
294  // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
295  if (getLangOptions().CPlusPlus)
296    StrTy.addConst();
297
298  // Get an array type for the string, according to C99 6.4.5.  This includes
299  // the nul terminator character as well as the string length for pascal
300  // strings.
301  StrTy = Context.getConstantArrayType(StrTy,
302                                   llvm::APInt(32, Literal.GetStringLength()+1),
303                                       ArrayType::Normal, 0);
304
305  // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
306  return new StringLiteral(Literal.GetString(), Literal.GetStringLength(),
307                           Literal.AnyWide, StrTy,
308                           StringToks[0].getLocation(),
309                           StringToks[NumStringToks-1].getLocation());
310}
311
312/// DeclDefinedWithinScope - Return true if the specified decl is defined at or
313/// within the 'Within' scope.  The current Scope is CurScope.
314///
315/// FIXME: This method is extremely inefficient (linear scan), this should not
316/// be used in common cases. Replace with the more modern DeclContext. We need
317/// to make sure both assignments below produce an error.
318///
319/// int main(int argc) {
320///   int xx;
321///   ^(int X) {
322///     xx = 4; // error (variable is not assignable)
323///     argc = 3; // no error.
324///   };
325/// }
326///
327static bool DeclDefinedWithinScope(ScopedDecl *D, Scope *Within,
328                                   Scope *CurScope) {
329  while (1) {
330    assert(CurScope && "CurScope not nested within 'Within'?");
331
332    // Check this scope for the decl.
333    if (CurScope->isDeclScope(D)) return true;
334
335    if (CurScope == Within) return false;
336    CurScope = CurScope->getParent();
337  }
338}
339
340/// ActOnIdentifierExpr - The parser read an identifier in expression context,
341/// validate it per-C99 6.5.1.  HasTrailingLParen indicates whether this
342/// identifier is used in a function call context.
343Sema::ExprResult Sema::ActOnIdentifierExpr(Scope *S, SourceLocation Loc,
344                                           IdentifierInfo &II,
345                                           bool HasTrailingLParen) {
346  // Could be enum-constant, value decl, instance variable, etc.
347  Decl *D = LookupDecl(&II, Decl::IDNS_Ordinary, S);
348
349  // If this reference is in an Objective-C method, then ivar lookup happens as
350  // well.
351  if (getCurMethodDecl()) {
352    ScopedDecl *SD = dyn_cast_or_null<ScopedDecl>(D);
353    // There are two cases to handle here.  1) scoped lookup could have failed,
354    // in which case we should look for an ivar.  2) scoped lookup could have
355    // found a decl, but that decl is outside the current method (i.e. a global
356    // variable).  In these two cases, we do a lookup for an ivar with this
357    // name, if the lookup suceeds, we replace it our current decl.
358    if (SD == 0 || SD->isDefinedOutsideFunctionOrMethod()) {
359      ObjCInterfaceDecl *IFace = getCurMethodDecl()->getClassInterface();
360      if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(&II)) {
361        // FIXME: This should use a new expr for a direct reference, don't turn
362        // this into Self->ivar, just return a BareIVarExpr or something.
363        IdentifierInfo &II = Context.Idents.get("self");
364        ExprResult SelfExpr = ActOnIdentifierExpr(S, Loc, II, false);
365        return new ObjCIvarRefExpr(IV, IV->getType(), Loc,
366                                 static_cast<Expr*>(SelfExpr.Val), true, true);
367      }
368    }
369    // Needed to implement property "super.method" notation.
370    if (SD == 0 && &II == SuperID) {
371      QualType T = Context.getPointerType(Context.getObjCInterfaceType(
372                     getCurMethodDecl()->getClassInterface()));
373      return new PredefinedExpr(Loc, T, PredefinedExpr::ObjCSuper);
374    }
375  }
376  // If we are parsing a block, check the block parameter list.
377  if (CurBlock) {
378    BlockSemaInfo *BLK = CurBlock;
379    do {
380      for (unsigned i = 0, e = BLK->Params.size(); i != e && D == 0; ++i)
381        if (BLK->Params[i]->getIdentifier() == &II)
382          D = BLK->Params[i];
383      if (D)
384        break; // Found!
385    } while ((BLK = BLK->PrevBlockInfo));  // Look through any enclosing blocks.
386  }
387  if (D == 0) {
388    // Otherwise, this could be an implicitly declared function reference (legal
389    // in C90, extension in C99).
390    if (HasTrailingLParen &&
391        !getLangOptions().CPlusPlus) // Not in C++.
392      D = ImplicitlyDefineFunction(Loc, II, S);
393    else {
394      // If this name wasn't predeclared and if this is not a function call,
395      // diagnose the problem.
396      return Diag(Loc, diag::err_undeclared_var_use, II.getName());
397    }
398  }
399
400  if (CXXFieldDecl *FD = dyn_cast<CXXFieldDecl>(D)) {
401    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
402      if (MD->isStatic())
403        // "invalid use of member 'x' in static member function"
404        return Diag(Loc, diag::err_invalid_member_use_in_static_method,
405                    FD->getName());
406      if (cast<CXXRecordDecl>(MD->getParent()) != FD->getParent())
407        // "invalid use of nonstatic data member 'x'"
408        return Diag(Loc, diag::err_invalid_non_static_member_use,
409                    FD->getName());
410
411      if (FD->isInvalidDecl())
412        return true;
413
414      // FIXME: Use DeclRefExpr or a new Expr for a direct CXXField reference.
415      ExprResult ThisExpr = ActOnCXXThis(SourceLocation());
416      return new MemberExpr(static_cast<Expr*>(ThisExpr.Val),
417                            true, FD, Loc, FD->getType());
418    }
419
420    return Diag(Loc, diag::err_invalid_non_static_member_use, FD->getName());
421  }
422  if (isa<TypedefDecl>(D))
423    return Diag(Loc, diag::err_unexpected_typedef, II.getName());
424  if (isa<ObjCInterfaceDecl>(D))
425    return Diag(Loc, diag::err_unexpected_interface, II.getName());
426  if (isa<NamespaceDecl>(D))
427    return Diag(Loc, diag::err_unexpected_namespace, II.getName());
428
429  // Make the DeclRefExpr or BlockDeclRefExpr for the decl.
430  ValueDecl *VD = cast<ValueDecl>(D);
431
432  // check if referencing an identifier with __attribute__((deprecated)).
433  if (VD->getAttr<DeprecatedAttr>())
434    Diag(Loc, diag::warn_deprecated, VD->getName());
435
436  // Only create DeclRefExpr's for valid Decl's.
437  if (VD->isInvalidDecl())
438    return true;
439
440  // If this reference is not in a block or if the referenced variable is
441  // within the block, create a normal DeclRefExpr.
442  //
443  // FIXME: This will create BlockDeclRefExprs for global variables,
444  // function references, etc which is suboptimal :) and breaks
445  // things like "integer constant expression" tests.
446  //
447  if (!CurBlock || DeclDefinedWithinScope(VD, CurBlock->TheScope, S) ||
448      isa<EnumConstantDecl>(VD) || isa<ParmVarDecl>(VD))
449    return new DeclRefExpr(VD, VD->getType(), Loc);
450
451  // If we are in a block and the variable is outside the current block,
452  // bind the variable reference with a BlockDeclRefExpr.
453
454  // The BlocksAttr indicates the variable is bound by-reference.
455  if (VD->getAttr<BlocksAttr>())
456    return new BlockDeclRefExpr(VD, VD->getType(), Loc, true);
457
458  // Variable will be bound by-copy, make it const within the closure.
459  VD->getType().addConst();
460  return new BlockDeclRefExpr(VD, VD->getType(), Loc, false);
461}
462
463Sema::ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc,
464                                           tok::TokenKind Kind) {
465  PredefinedExpr::IdentType IT;
466
467  switch (Kind) {
468  default: assert(0 && "Unknown simple primary expr!");
469  case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
470  case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
471  case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
472  }
473
474  // Verify that this is in a function context.
475  if (getCurFunctionDecl() == 0 && getCurMethodDecl() == 0)
476    return Diag(Loc, diag::err_predef_outside_function);
477
478  // Pre-defined identifiers are of type char[x], where x is the length of the
479  // string.
480  unsigned Length;
481  if (getCurFunctionDecl())
482    Length = getCurFunctionDecl()->getIdentifier()->getLength();
483  else
484    Length = getCurMethodDecl()->getSynthesizedMethodSize();
485
486  llvm::APInt LengthI(32, Length + 1);
487  QualType ResTy = Context.CharTy.getQualifiedType(QualType::Const);
488  ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
489  return new PredefinedExpr(Loc, ResTy, IT);
490}
491
492Sema::ExprResult Sema::ActOnCharacterConstant(const Token &Tok) {
493  llvm::SmallString<16> CharBuffer;
494  CharBuffer.resize(Tok.getLength());
495  const char *ThisTokBegin = &CharBuffer[0];
496  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
497
498  CharLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
499                            Tok.getLocation(), PP);
500  if (Literal.hadError())
501    return ExprResult(true);
502
503  QualType type = getLangOptions().CPlusPlus ? Context.CharTy : Context.IntTy;
504
505  return new CharacterLiteral(Literal.getValue(), Literal.isWide(), type,
506                              Tok.getLocation());
507}
508
509Action::ExprResult Sema::ActOnNumericConstant(const Token &Tok) {
510  // fast path for a single digit (which is quite common). A single digit
511  // cannot have a trigraph, escaped newline, radix prefix, or type suffix.
512  if (Tok.getLength() == 1) {
513    const char *Ty = PP.getSourceManager().getCharacterData(Tok.getLocation());
514
515    unsigned IntSize =static_cast<unsigned>(Context.getTypeSize(Context.IntTy));
516    return ExprResult(new IntegerLiteral(llvm::APInt(IntSize, *Ty-'0'),
517                                         Context.IntTy,
518                                         Tok.getLocation()));
519  }
520  llvm::SmallString<512> IntegerBuffer;
521  IntegerBuffer.resize(Tok.getLength());
522  const char *ThisTokBegin = &IntegerBuffer[0];
523
524  // Get the spelling of the token, which eliminates trigraphs, etc.
525  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
526
527  // Add padding so that NumericLiteralParser can overread by one character.
528  if (!IntegerBuffer.empty()) {
529    IntegerBuffer.push_back(' ');
530    ThisTokBegin = &IntegerBuffer[0];
531  }
532
533  NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
534                               Tok.getLocation(), PP);
535  if (Literal.hadError)
536    return ExprResult(true);
537
538  Expr *Res;
539
540  if (Literal.isFloatingLiteral()) {
541    QualType Ty;
542    if (Literal.isFloat)
543      Ty = Context.FloatTy;
544    else if (!Literal.isLong)
545      Ty = Context.DoubleTy;
546    else
547      Ty = Context.LongDoubleTy;
548
549    const llvm::fltSemantics &Format = Context.getFloatTypeSemantics(Ty);
550
551    // isExact will be set by GetFloatValue().
552    bool isExact = false;
553    Res = new FloatingLiteral(Literal.GetFloatValue(Format, &isExact), &isExact,
554                              Ty, Tok.getLocation());
555
556  } else if (!Literal.isIntegerLiteral()) {
557    return ExprResult(true);
558  } else {
559    QualType Ty;
560
561    // long long is a C99 feature.
562    if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
563        Literal.isLongLong)
564      Diag(Tok.getLocation(), diag::ext_longlong);
565
566    // Get the value in the widest-possible width.
567    llvm::APInt ResultVal(Context.Target.getIntMaxTWidth(), 0);
568
569    if (Literal.GetIntegerValue(ResultVal)) {
570      // If this value didn't fit into uintmax_t, warn and force to ull.
571      Diag(Tok.getLocation(), diag::warn_integer_too_large);
572      Ty = Context.UnsignedLongLongTy;
573      assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
574             "long long is not intmax_t?");
575    } else {
576      // If this value fits into a ULL, try to figure out what else it fits into
577      // according to the rules of C99 6.4.4.1p5.
578
579      // Octal, Hexadecimal, and integers with a U suffix are allowed to
580      // be an unsigned int.
581      bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
582
583      // Check from smallest to largest, picking the smallest type we can.
584      unsigned Width = 0;
585      if (!Literal.isLong && !Literal.isLongLong) {
586        // Are int/unsigned possibilities?
587        unsigned IntSize = Context.Target.getIntWidth();
588
589        // Does it fit in a unsigned int?
590        if (ResultVal.isIntN(IntSize)) {
591          // Does it fit in a signed int?
592          if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
593            Ty = Context.IntTy;
594          else if (AllowUnsigned)
595            Ty = Context.UnsignedIntTy;
596          Width = IntSize;
597        }
598      }
599
600      // Are long/unsigned long possibilities?
601      if (Ty.isNull() && !Literal.isLongLong) {
602        unsigned LongSize = Context.Target.getLongWidth();
603
604        // Does it fit in a unsigned long?
605        if (ResultVal.isIntN(LongSize)) {
606          // Does it fit in a signed long?
607          if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
608            Ty = Context.LongTy;
609          else if (AllowUnsigned)
610            Ty = Context.UnsignedLongTy;
611          Width = LongSize;
612        }
613      }
614
615      // Finally, check long long if needed.
616      if (Ty.isNull()) {
617        unsigned LongLongSize = Context.Target.getLongLongWidth();
618
619        // Does it fit in a unsigned long long?
620        if (ResultVal.isIntN(LongLongSize)) {
621          // Does it fit in a signed long long?
622          if (!Literal.isUnsigned && ResultVal[LongLongSize-1] == 0)
623            Ty = Context.LongLongTy;
624          else if (AllowUnsigned)
625            Ty = Context.UnsignedLongLongTy;
626          Width = LongLongSize;
627        }
628      }
629
630      // If we still couldn't decide a type, we probably have something that
631      // does not fit in a signed long long, but has no U suffix.
632      if (Ty.isNull()) {
633        Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
634        Ty = Context.UnsignedLongLongTy;
635        Width = Context.Target.getLongLongWidth();
636      }
637
638      if (ResultVal.getBitWidth() != Width)
639        ResultVal.trunc(Width);
640    }
641
642    Res = new IntegerLiteral(ResultVal, Ty, Tok.getLocation());
643  }
644
645  // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
646  if (Literal.isImaginary)
647    Res = new ImaginaryLiteral(Res, Context.getComplexType(Res->getType()));
648
649  return Res;
650}
651
652Action::ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R,
653                                        ExprTy *Val) {
654  Expr *E = (Expr *)Val;
655  assert((E != 0) && "ActOnParenExpr() missing expr");
656  return new ParenExpr(L, R, E);
657}
658
659/// The UsualUnaryConversions() function is *not* called by this routine.
660/// See C99 6.3.2.1p[2-4] for more details.
661QualType Sema::CheckSizeOfAlignOfOperand(QualType exprType,
662                                         SourceLocation OpLoc,
663                                         const SourceRange &ExprRange,
664                                         bool isSizeof) {
665  // C99 6.5.3.4p1:
666  if (isa<FunctionType>(exprType) && isSizeof)
667    // alignof(function) is allowed.
668    Diag(OpLoc, diag::ext_sizeof_function_type, ExprRange);
669  else if (exprType->isVoidType())
670    Diag(OpLoc, diag::ext_sizeof_void_type, isSizeof ? "sizeof" : "__alignof",
671         ExprRange);
672  else if (exprType->isIncompleteType()) {
673    Diag(OpLoc, isSizeof ? diag::err_sizeof_incomplete_type :
674                           diag::err_alignof_incomplete_type,
675         exprType.getAsString(), ExprRange);
676    return QualType(); // error
677  }
678  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
679  return Context.getSizeType();
680}
681
682Action::ExprResult Sema::
683ActOnSizeOfAlignOfTypeExpr(SourceLocation OpLoc, bool isSizeof,
684                           SourceLocation LPLoc, TypeTy *Ty,
685                           SourceLocation RPLoc) {
686  // If error parsing type, ignore.
687  if (Ty == 0) return true;
688
689  // Verify that this is a valid expression.
690  QualType ArgTy = QualType::getFromOpaquePtr(Ty);
691
692  QualType resultType =
693    CheckSizeOfAlignOfOperand(ArgTy, OpLoc, SourceRange(LPLoc, RPLoc),isSizeof);
694
695  if (resultType.isNull())
696    return true;
697  return new SizeOfAlignOfTypeExpr(isSizeof, ArgTy, resultType, OpLoc, RPLoc);
698}
699
700QualType Sema::CheckRealImagOperand(Expr *&V, SourceLocation Loc) {
701  DefaultFunctionArrayConversion(V);
702
703  // These operators return the element type of a complex type.
704  if (const ComplexType *CT = V->getType()->getAsComplexType())
705    return CT->getElementType();
706
707  // Otherwise they pass through real integer and floating point types here.
708  if (V->getType()->isArithmeticType())
709    return V->getType();
710
711  // Reject anything else.
712  Diag(Loc, diag::err_realimag_invalid_type, V->getType().getAsString());
713  return QualType();
714}
715
716
717
718Action::ExprResult Sema::ActOnPostfixUnaryOp(SourceLocation OpLoc,
719                                             tok::TokenKind Kind,
720                                             ExprTy *Input) {
721  UnaryOperator::Opcode Opc;
722  switch (Kind) {
723  default: assert(0 && "Unknown unary op!");
724  case tok::plusplus:   Opc = UnaryOperator::PostInc; break;
725  case tok::minusminus: Opc = UnaryOperator::PostDec; break;
726  }
727  QualType result = CheckIncrementDecrementOperand((Expr *)Input, OpLoc);
728  if (result.isNull())
729    return true;
730  return new UnaryOperator((Expr *)Input, Opc, result, OpLoc);
731}
732
733Action::ExprResult Sema::
734ActOnArraySubscriptExpr(ExprTy *Base, SourceLocation LLoc,
735                        ExprTy *Idx, SourceLocation RLoc) {
736  Expr *LHSExp = static_cast<Expr*>(Base), *RHSExp = static_cast<Expr*>(Idx);
737
738  // Perform default conversions.
739  DefaultFunctionArrayConversion(LHSExp);
740  DefaultFunctionArrayConversion(RHSExp);
741
742  QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
743
744  // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
745  // to the expression *((e1)+(e2)). This means the array "Base" may actually be
746  // in the subscript position. As a result, we need to derive the array base
747  // and index from the expression types.
748  Expr *BaseExpr, *IndexExpr;
749  QualType ResultType;
750  if (const PointerType *PTy = LHSTy->getAsPointerType()) {
751    BaseExpr = LHSExp;
752    IndexExpr = RHSExp;
753    // FIXME: need to deal with const...
754    ResultType = PTy->getPointeeType();
755  } else if (const PointerType *PTy = RHSTy->getAsPointerType()) {
756     // Handle the uncommon case of "123[Ptr]".
757    BaseExpr = RHSExp;
758    IndexExpr = LHSExp;
759    // FIXME: need to deal with const...
760    ResultType = PTy->getPointeeType();
761  } else if (const VectorType *VTy = LHSTy->getAsVectorType()) {
762    BaseExpr = LHSExp;    // vectors: V[123]
763    IndexExpr = RHSExp;
764
765    // Component access limited to variables (reject vec4.rg[1]).
766    if (!isa<DeclRefExpr>(BaseExpr) && !isa<ArraySubscriptExpr>(BaseExpr) &&
767        !isa<ExtVectorElementExpr>(BaseExpr))
768      return Diag(LLoc, diag::err_ext_vector_component_access,
769                  SourceRange(LLoc, RLoc));
770    // FIXME: need to deal with const...
771    ResultType = VTy->getElementType();
772  } else {
773    return Diag(LHSExp->getLocStart(), diag::err_typecheck_subscript_value,
774                RHSExp->getSourceRange());
775  }
776  // C99 6.5.2.1p1
777  if (!IndexExpr->getType()->isIntegerType())
778    return Diag(IndexExpr->getLocStart(), diag::err_typecheck_subscript,
779                IndexExpr->getSourceRange());
780
781  // C99 6.5.2.1p1: "shall have type "pointer to *object* type".  In practice,
782  // the following check catches trying to index a pointer to a function (e.g.
783  // void (*)(int)) and pointers to incomplete types.  Functions are not
784  // objects in C99.
785  if (!ResultType->isObjectType())
786    return Diag(BaseExpr->getLocStart(),
787                diag::err_typecheck_subscript_not_object,
788                BaseExpr->getType().getAsString(), BaseExpr->getSourceRange());
789
790  return new ArraySubscriptExpr(LHSExp, RHSExp, ResultType, RLoc);
791}
792
793QualType Sema::
794CheckExtVectorComponent(QualType baseType, SourceLocation OpLoc,
795                        IdentifierInfo &CompName, SourceLocation CompLoc) {
796  const ExtVectorType *vecType = baseType->getAsExtVectorType();
797
798  // This flag determines whether or not the component is to be treated as a
799  // special name, or a regular GLSL-style component access.
800  bool SpecialComponent = false;
801
802  // The vector accessor can't exceed the number of elements.
803  const char *compStr = CompName.getName();
804  if (strlen(compStr) > vecType->getNumElements()) {
805    Diag(OpLoc, diag::err_ext_vector_component_exceeds_length,
806                baseType.getAsString(), SourceRange(CompLoc));
807    return QualType();
808  }
809
810  // Check that we've found one of the special components, or that the component
811  // names must come from the same set.
812  if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
813      !strcmp(compStr, "e") || !strcmp(compStr, "o")) {
814    SpecialComponent = true;
815  } else if (vecType->getPointAccessorIdx(*compStr) != -1) {
816    do
817      compStr++;
818    while (*compStr && vecType->getPointAccessorIdx(*compStr) != -1);
819  } else if (vecType->getColorAccessorIdx(*compStr) != -1) {
820    do
821      compStr++;
822    while (*compStr && vecType->getColorAccessorIdx(*compStr) != -1);
823  } else if (vecType->getTextureAccessorIdx(*compStr) != -1) {
824    do
825      compStr++;
826    while (*compStr && vecType->getTextureAccessorIdx(*compStr) != -1);
827  }
828
829  if (!SpecialComponent && *compStr) {
830    // We didn't get to the end of the string. This means the component names
831    // didn't come from the same set *or* we encountered an illegal name.
832    Diag(OpLoc, diag::err_ext_vector_component_name_illegal,
833         std::string(compStr,compStr+1), SourceRange(CompLoc));
834    return QualType();
835  }
836  // Each component accessor can't exceed the vector type.
837  compStr = CompName.getName();
838  while (*compStr) {
839    if (vecType->isAccessorWithinNumElements(*compStr))
840      compStr++;
841    else
842      break;
843  }
844  if (!SpecialComponent && *compStr) {
845    // We didn't get to the end of the string. This means a component accessor
846    // exceeds the number of elements in the vector.
847    Diag(OpLoc, diag::err_ext_vector_component_exceeds_length,
848                baseType.getAsString(), SourceRange(CompLoc));
849    return QualType();
850  }
851
852  // If we have a special component name, verify that the current vector length
853  // is an even number, since all special component names return exactly half
854  // the elements.
855  if (SpecialComponent && (vecType->getNumElements() & 1U)) {
856    Diag(OpLoc, diag::err_ext_vector_component_requires_even,
857         baseType.getAsString(), SourceRange(CompLoc));
858    return QualType();
859  }
860
861  // The component accessor looks fine - now we need to compute the actual type.
862  // The vector type is implied by the component accessor. For example,
863  // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
864  // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
865  unsigned CompSize = SpecialComponent ? vecType->getNumElements() / 2
866                                       : strlen(CompName.getName());
867  if (CompSize == 1)
868    return vecType->getElementType();
869
870  QualType VT = Context.getExtVectorType(vecType->getElementType(), CompSize);
871  // Now look up the TypeDefDecl from the vector type. Without this,
872  // diagostics look bad. We want extended vector types to appear built-in.
873  for (unsigned i = 0, E = ExtVectorDecls.size(); i != E; ++i) {
874    if (ExtVectorDecls[i]->getUnderlyingType() == VT)
875      return Context.getTypedefType(ExtVectorDecls[i]);
876  }
877  return VT; // should never get here (a typedef type should always be found).
878}
879
880/// constructSetterName - Return the setter name for the given
881/// identifier, i.e. "set" + Name where the initial character of Name
882/// has been capitalized.
883// FIXME: Merge with same routine in Parser. But where should this
884// live?
885static IdentifierInfo *constructSetterName(IdentifierTable &Idents,
886                                           const IdentifierInfo *Name) {
887  unsigned N = Name->getLength();
888  char *SelectorName = new char[3 + N];
889  memcpy(SelectorName, "set", 3);
890  memcpy(&SelectorName[3], Name->getName(), N);
891  SelectorName[3] = toupper(SelectorName[3]);
892
893  IdentifierInfo *Setter =
894    &Idents.get(SelectorName, &SelectorName[3 + N]);
895  delete[] SelectorName;
896  return Setter;
897}
898
899Action::ExprResult Sema::
900ActOnMemberReferenceExpr(ExprTy *Base, SourceLocation OpLoc,
901                         tok::TokenKind OpKind, SourceLocation MemberLoc,
902                         IdentifierInfo &Member) {
903  Expr *BaseExpr = static_cast<Expr *>(Base);
904  assert(BaseExpr && "no record expression");
905
906  // Perform default conversions.
907  DefaultFunctionArrayConversion(BaseExpr);
908
909  QualType BaseType = BaseExpr->getType();
910  assert(!BaseType.isNull() && "no type for member expression");
911
912  // Get the type being accessed in BaseType.  If this is an arrow, the BaseExpr
913  // must have pointer type, and the accessed type is the pointee.
914  if (OpKind == tok::arrow) {
915    if (const PointerType *PT = BaseType->getAsPointerType())
916      BaseType = PT->getPointeeType();
917    else
918      return Diag(MemberLoc, diag::err_typecheck_member_reference_arrow,
919                  BaseType.getAsString(), BaseExpr->getSourceRange());
920  }
921
922  // Handle field access to simple records.  This also handles access to fields
923  // of the ObjC 'id' struct.
924  if (const RecordType *RTy = BaseType->getAsRecordType()) {
925    RecordDecl *RDecl = RTy->getDecl();
926    if (RTy->isIncompleteType())
927      return Diag(OpLoc, diag::err_typecheck_incomplete_tag, RDecl->getName(),
928                  BaseExpr->getSourceRange());
929    // The record definition is complete, now make sure the member is valid.
930    FieldDecl *MemberDecl = RDecl->getMember(&Member);
931    if (!MemberDecl)
932      return Diag(MemberLoc, diag::err_typecheck_no_member, Member.getName(),
933                  BaseExpr->getSourceRange());
934
935    // Figure out the type of the member; see C99 6.5.2.3p3
936    // FIXME: Handle address space modifiers
937    QualType MemberType = MemberDecl->getType();
938    unsigned combinedQualifiers =
939        MemberType.getCVRQualifiers() | BaseType.getCVRQualifiers();
940    MemberType = MemberType.getQualifiedType(combinedQualifiers);
941
942    return new MemberExpr(BaseExpr, OpKind == tok::arrow, MemberDecl,
943                          MemberLoc, MemberType);
944  }
945
946  // Handle access to Objective-C instance variables, such as "Obj->ivar" and
947  // (*Obj).ivar.
948  if (const ObjCInterfaceType *IFTy = BaseType->getAsObjCInterfaceType()) {
949    if (ObjCIvarDecl *IV = IFTy->getDecl()->lookupInstanceVariable(&Member))
950      return new ObjCIvarRefExpr(IV, IV->getType(), MemberLoc, BaseExpr,
951                                 OpKind == tok::arrow);
952    return Diag(MemberLoc, diag::err_typecheck_member_reference_ivar,
953                IFTy->getDecl()->getName(), Member.getName(),
954                BaseExpr->getSourceRange());
955  }
956
957  // Handle Objective-C property access, which is "Obj.property" where Obj is a
958  // pointer to a (potentially qualified) interface type.
959  const PointerType *PTy;
960  const ObjCInterfaceType *IFTy;
961  if (OpKind == tok::period && (PTy = BaseType->getAsPointerType()) &&
962      (IFTy = PTy->getPointeeType()->getAsObjCInterfaceType())) {
963    ObjCInterfaceDecl *IFace = IFTy->getDecl();
964
965    // Search for a declared property first.
966    if (ObjCPropertyDecl *PD = IFace->FindPropertyDeclaration(&Member))
967      return new ObjCPropertyRefExpr(PD, PD->getType(), MemberLoc, BaseExpr);
968
969    // Check protocols on qualified interfaces.
970    for (ObjCInterfaceType::qual_iterator I = IFTy->qual_begin(),
971         E = IFTy->qual_end(); I != E; ++I)
972      if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(&Member))
973        return new ObjCPropertyRefExpr(PD, PD->getType(), MemberLoc, BaseExpr);
974
975    // If that failed, look for an "implicit" property by seeing if the nullary
976    // selector is implemented.
977
978    // FIXME: The logic for looking up nullary and unary selectors should be
979    // shared with the code in ActOnInstanceMessage.
980
981    Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
982    ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Sel);
983
984    // If this reference is in an @implementation, check for 'private' methods.
985    if (!Getter)
986      if (ObjCMethodDecl *CurMeth = getCurMethodDecl())
987        if (ObjCInterfaceDecl *ClassDecl = CurMeth->getClassInterface())
988          if (ObjCImplementationDecl *ImpDecl =
989              ObjCImplementations[ClassDecl->getIdentifier()])
990            Getter = ImpDecl->getInstanceMethod(Sel);
991
992    if (Getter) {
993      // If we found a getter then this may be a valid dot-reference, we
994      // need to also look for the matching setter.
995      IdentifierInfo *SetterName = constructSetterName(PP.getIdentifierTable(),
996                                                       &Member);
997      Selector SetterSel = PP.getSelectorTable().getUnarySelector(SetterName);
998      ObjCMethodDecl *Setter = IFace->lookupInstanceMethod(SetterSel);
999
1000      if (!Setter) {
1001        if (ObjCMethodDecl *CurMeth = getCurMethodDecl())
1002          if (ObjCInterfaceDecl *ClassDecl = CurMeth->getClassInterface())
1003            if (ObjCImplementationDecl *ImpDecl =
1004                ObjCImplementations[ClassDecl->getIdentifier()])
1005              Setter = ImpDecl->getInstanceMethod(SetterSel);
1006      }
1007
1008      // FIXME: There are some issues here. First, we are not
1009      // diagnosing accesses to read-only properties because we do not
1010      // know if this is a getter or setter yet. Second, we are
1011      // checking that the type of the setter matches the type we
1012      // expect.
1013      return new ObjCPropertyRefExpr(Getter, Setter, Getter->getResultType(),
1014                                     MemberLoc, BaseExpr);
1015    }
1016  }
1017
1018  // Handle 'field access' to vectors, such as 'V.xx'.
1019  if (BaseType->isExtVectorType() && OpKind == tok::period) {
1020    // Component access limited to variables (reject vec4.rg.g).
1021    if (!isa<DeclRefExpr>(BaseExpr) && !isa<ArraySubscriptExpr>(BaseExpr) &&
1022        !isa<ExtVectorElementExpr>(BaseExpr))
1023      return Diag(MemberLoc, diag::err_ext_vector_component_access,
1024                  BaseExpr->getSourceRange());
1025    QualType ret = CheckExtVectorComponent(BaseType, OpLoc, Member, MemberLoc);
1026    if (ret.isNull())
1027      return true;
1028    return new ExtVectorElementExpr(ret, BaseExpr, Member, MemberLoc);
1029  }
1030
1031  return Diag(MemberLoc, diag::err_typecheck_member_reference_struct_union,
1032              BaseType.getAsString(), BaseExpr->getSourceRange());
1033}
1034
1035/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
1036/// This provides the location of the left/right parens and a list of comma
1037/// locations.
1038Action::ExprResult Sema::
1039ActOnCallExpr(ExprTy *fn, SourceLocation LParenLoc,
1040              ExprTy **args, unsigned NumArgs,
1041              SourceLocation *CommaLocs, SourceLocation RParenLoc) {
1042  Expr *Fn = static_cast<Expr *>(fn);
1043  Expr **Args = reinterpret_cast<Expr**>(args);
1044  assert(Fn && "no function call expression");
1045  FunctionDecl *FDecl = NULL;
1046
1047  // Promote the function operand.
1048  UsualUnaryConversions(Fn);
1049
1050  // If we're directly calling a function, get the declaration for
1051  // that function.
1052  if (ImplicitCastExpr *IcExpr = dyn_cast<ImplicitCastExpr>(Fn))
1053    if (DeclRefExpr *DRExpr = dyn_cast<DeclRefExpr>(IcExpr->getSubExpr()))
1054      FDecl = dyn_cast<FunctionDecl>(DRExpr->getDecl());
1055
1056  // Make the call expr early, before semantic checks.  This guarantees cleanup
1057  // of arguments and function on error.
1058  llvm::OwningPtr<CallExpr> TheCall(new CallExpr(Fn, Args, NumArgs,
1059                                                 Context.BoolTy, RParenLoc));
1060  const FunctionType *FuncT;
1061  if (!Fn->getType()->isBlockPointerType()) {
1062    // C99 6.5.2.2p1 - "The expression that denotes the called function shall
1063    // have type pointer to function".
1064    const PointerType *PT = Fn->getType()->getAsPointerType();
1065    if (PT == 0)
1066      return Diag(LParenLoc, diag::err_typecheck_call_not_function,
1067                  Fn->getSourceRange());
1068    FuncT = PT->getPointeeType()->getAsFunctionType();
1069  } else { // This is a block call.
1070    FuncT = Fn->getType()->getAsBlockPointerType()->getPointeeType()->
1071                getAsFunctionType();
1072  }
1073  if (FuncT == 0)
1074    return Diag(LParenLoc, diag::err_typecheck_call_not_function,
1075                Fn->getSourceRange());
1076
1077  // We know the result type of the call, set it.
1078  TheCall->setType(FuncT->getResultType());
1079
1080  if (const FunctionTypeProto *Proto = dyn_cast<FunctionTypeProto>(FuncT)) {
1081    // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
1082    // assignment, to the types of the corresponding parameter, ...
1083    unsigned NumArgsInProto = Proto->getNumArgs();
1084    unsigned NumArgsToCheck = NumArgs;
1085
1086    // If too few arguments are available (and we don't have default
1087    // arguments for the remaining parameters), don't make the call.
1088    if (NumArgs < NumArgsInProto) {
1089      if (FDecl && NumArgs >= FDecl->getMinRequiredArguments()) {
1090        // Use default arguments for missing arguments
1091        NumArgsToCheck = NumArgsInProto;
1092        TheCall->setNumArgs(NumArgsInProto);
1093      } else
1094        return Diag(RParenLoc,
1095                    !Fn->getType()->isBlockPointerType()
1096                      ? diag::err_typecheck_call_too_few_args
1097                      : diag::err_typecheck_block_too_few_args,
1098                    Fn->getSourceRange());
1099    }
1100
1101    // If too many are passed and not variadic, error on the extras and drop
1102    // them.
1103    if (NumArgs > NumArgsInProto) {
1104      if (!Proto->isVariadic()) {
1105        Diag(Args[NumArgsInProto]->getLocStart(),
1106               !Fn->getType()->isBlockPointerType()
1107                 ? diag::err_typecheck_call_too_many_args
1108                 : diag::err_typecheck_block_too_many_args,
1109             Fn->getSourceRange(),
1110             SourceRange(Args[NumArgsInProto]->getLocStart(),
1111                         Args[NumArgs-1]->getLocEnd()));
1112        // This deletes the extra arguments.
1113        TheCall->setNumArgs(NumArgsInProto);
1114      }
1115      NumArgsToCheck = NumArgsInProto;
1116    }
1117
1118    // Continue to check argument types (even if we have too few/many args).
1119    for (unsigned i = 0; i != NumArgsToCheck; i++) {
1120      QualType ProtoArgType = Proto->getArgType(i);
1121
1122      Expr *Arg;
1123      if (i < NumArgs)
1124        Arg = Args[i];
1125      else
1126        Arg = new CXXDefaultArgExpr(FDecl->getParamDecl(i));
1127      QualType ArgType = Arg->getType();
1128
1129      // Compute implicit casts from the operand to the formal argument type.
1130      AssignConvertType ConvTy =
1131        CheckSingleAssignmentConstraints(ProtoArgType, Arg);
1132      TheCall->setArg(i, Arg);
1133
1134      if (DiagnoseAssignmentResult(ConvTy, Arg->getLocStart(), ProtoArgType,
1135                                   ArgType, Arg, "passing"))
1136        return true;
1137    }
1138
1139    // If this is a variadic call, handle args passed through "...".
1140    if (Proto->isVariadic()) {
1141      // Promote the arguments (C99 6.5.2.2p7).
1142      for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
1143        Expr *Arg = Args[i];
1144        DefaultArgumentPromotion(Arg);
1145        TheCall->setArg(i, Arg);
1146      }
1147    }
1148  } else {
1149    assert(isa<FunctionTypeNoProto>(FuncT) && "Unknown FunctionType!");
1150
1151    // Promote the arguments (C99 6.5.2.2p6).
1152    for (unsigned i = 0; i != NumArgs; i++) {
1153      Expr *Arg = Args[i];
1154      DefaultArgumentPromotion(Arg);
1155      TheCall->setArg(i, Arg);
1156    }
1157  }
1158
1159  // Do special checking on direct calls to functions.
1160  if (FDecl)
1161    return CheckFunctionCall(FDecl, TheCall.take());
1162
1163  return TheCall.take();
1164}
1165
1166Action::ExprResult Sema::
1167ActOnCompoundLiteral(SourceLocation LParenLoc, TypeTy *Ty,
1168                     SourceLocation RParenLoc, ExprTy *InitExpr) {
1169  assert((Ty != 0) && "ActOnCompoundLiteral(): missing type");
1170  QualType literalType = QualType::getFromOpaquePtr(Ty);
1171  // FIXME: put back this assert when initializers are worked out.
1172  //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
1173  Expr *literalExpr = static_cast<Expr*>(InitExpr);
1174
1175  if (literalType->isArrayType()) {
1176    if (literalType->isVariableArrayType())
1177      return Diag(LParenLoc,
1178                  diag::err_variable_object_no_init,
1179                  SourceRange(LParenLoc,
1180                              literalExpr->getSourceRange().getEnd()));
1181  } else if (literalType->isIncompleteType()) {
1182    return Diag(LParenLoc,
1183                diag::err_typecheck_decl_incomplete_type,
1184                literalType.getAsString(),
1185                SourceRange(LParenLoc,
1186                            literalExpr->getSourceRange().getEnd()));
1187  }
1188
1189  if (CheckInitializerTypes(literalExpr, literalType))
1190    return true;
1191
1192  bool isFileScope = !getCurFunctionDecl() && !getCurMethodDecl();
1193  if (isFileScope) { // 6.5.2.5p3
1194    if (CheckForConstantInitializer(literalExpr, literalType))
1195      return true;
1196  }
1197  return new CompoundLiteralExpr(LParenLoc, literalType, literalExpr, isFileScope);
1198}
1199
1200Action::ExprResult Sema::
1201ActOnInitList(SourceLocation LBraceLoc, ExprTy **initlist, unsigned NumInit,
1202              SourceLocation RBraceLoc) {
1203  Expr **InitList = reinterpret_cast<Expr**>(initlist);
1204
1205  // Semantic analysis for initializers is done by ActOnDeclarator() and
1206  // CheckInitializer() - it requires knowledge of the object being intialized.
1207
1208  InitListExpr *E = new InitListExpr(LBraceLoc, InitList, NumInit, RBraceLoc);
1209  E->setType(Context.VoidTy); // FIXME: just a place holder for now.
1210  return E;
1211}
1212
1213/// CheckCastTypes - Check type constraints for casting between types.
1214bool Sema::CheckCastTypes(SourceRange TyR, QualType castType, Expr *&castExpr) {
1215  UsualUnaryConversions(castExpr);
1216
1217  // C99 6.5.4p2: the cast type needs to be void or scalar and the expression
1218  // type needs to be scalar.
1219  if (castType->isVoidType()) {
1220    // Cast to void allows any expr type.
1221  } else if (!castType->isScalarType() && !castType->isVectorType()) {
1222    // GCC struct/union extension: allow cast to self.
1223    if (Context.getCanonicalType(castType) !=
1224        Context.getCanonicalType(castExpr->getType()) ||
1225        (!castType->isStructureType() && !castType->isUnionType())) {
1226      // Reject any other conversions to non-scalar types.
1227      return Diag(TyR.getBegin(), diag::err_typecheck_cond_expect_scalar,
1228                  castType.getAsString(), castExpr->getSourceRange());
1229    }
1230
1231    // accept this, but emit an ext-warn.
1232    Diag(TyR.getBegin(), diag::ext_typecheck_cast_nonscalar,
1233         castType.getAsString(), castExpr->getSourceRange());
1234  } else if (!castExpr->getType()->isScalarType() &&
1235             !castExpr->getType()->isVectorType()) {
1236    return Diag(castExpr->getLocStart(),
1237                diag::err_typecheck_expect_scalar_operand,
1238                castExpr->getType().getAsString(),castExpr->getSourceRange());
1239  } else if (castExpr->getType()->isVectorType()) {
1240    if (CheckVectorCast(TyR, castExpr->getType(), castType))
1241      return true;
1242  } else if (castType->isVectorType()) {
1243    if (CheckVectorCast(TyR, castType, castExpr->getType()))
1244      return true;
1245  }
1246  return false;
1247}
1248
1249bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty) {
1250  assert(VectorTy->isVectorType() && "Not a vector type!");
1251
1252  if (Ty->isVectorType() || Ty->isIntegerType()) {
1253    if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty))
1254      return Diag(R.getBegin(),
1255                  Ty->isVectorType() ?
1256                  diag::err_invalid_conversion_between_vectors :
1257                  diag::err_invalid_conversion_between_vector_and_integer,
1258                  VectorTy.getAsString().c_str(),
1259                  Ty.getAsString().c_str(), R);
1260  } else
1261    return Diag(R.getBegin(),
1262                diag::err_invalid_conversion_between_vector_and_scalar,
1263                VectorTy.getAsString().c_str(),
1264                Ty.getAsString().c_str(), R);
1265
1266  return false;
1267}
1268
1269Action::ExprResult Sema::
1270ActOnCastExpr(SourceLocation LParenLoc, TypeTy *Ty,
1271              SourceLocation RParenLoc, ExprTy *Op) {
1272  assert((Ty != 0) && (Op != 0) && "ActOnCastExpr(): missing type or expr");
1273
1274  Expr *castExpr = static_cast<Expr*>(Op);
1275  QualType castType = QualType::getFromOpaquePtr(Ty);
1276
1277  if (CheckCastTypes(SourceRange(LParenLoc, RParenLoc), castType, castExpr))
1278    return true;
1279  return new ExplicitCastExpr(castType, castExpr, LParenLoc);
1280}
1281
1282/// Note that lex is not null here, even if this is the gnu "x ?: y" extension.
1283/// In that case, lex = cond.
1284inline QualType Sema::CheckConditionalOperands( // C99 6.5.15
1285  Expr *&cond, Expr *&lex, Expr *&rex, SourceLocation questionLoc) {
1286  UsualUnaryConversions(cond);
1287  UsualUnaryConversions(lex);
1288  UsualUnaryConversions(rex);
1289  QualType condT = cond->getType();
1290  QualType lexT = lex->getType();
1291  QualType rexT = rex->getType();
1292
1293  // first, check the condition.
1294  if (!condT->isScalarType()) { // C99 6.5.15p2
1295    Diag(cond->getLocStart(), diag::err_typecheck_cond_expect_scalar,
1296         condT.getAsString());
1297    return QualType();
1298  }
1299
1300  // Now check the two expressions.
1301
1302  // If both operands have arithmetic type, do the usual arithmetic conversions
1303  // to find a common type: C99 6.5.15p3,5.
1304  if (lexT->isArithmeticType() && rexT->isArithmeticType()) {
1305    UsualArithmeticConversions(lex, rex);
1306    return lex->getType();
1307  }
1308
1309  // If both operands are the same structure or union type, the result is that
1310  // type.
1311  if (const RecordType *LHSRT = lexT->getAsRecordType()) {    // C99 6.5.15p3
1312    if (const RecordType *RHSRT = rexT->getAsRecordType())
1313      if (LHSRT->getDecl() == RHSRT->getDecl())
1314        // "If both the operands have structure or union type, the result has
1315        // that type."  This implies that CV qualifiers are dropped.
1316        return lexT.getUnqualifiedType();
1317  }
1318
1319  // C99 6.5.15p5: "If both operands have void type, the result has void type."
1320  // The following || allows only one side to be void (a GCC-ism).
1321  if (lexT->isVoidType() || rexT->isVoidType()) {
1322    if (!lexT->isVoidType())
1323      Diag(rex->getLocStart(), diag::ext_typecheck_cond_one_void,
1324           rex->getSourceRange());
1325    if (!rexT->isVoidType())
1326      Diag(lex->getLocStart(), diag::ext_typecheck_cond_one_void,
1327           lex->getSourceRange());
1328    ImpCastExprToType(lex, Context.VoidTy);
1329    ImpCastExprToType(rex, Context.VoidTy);
1330    return Context.VoidTy;
1331  }
1332  // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
1333  // the type of the other operand."
1334  if ((lexT->isPointerType() || lexT->isBlockPointerType() ||
1335       Context.isObjCObjectPointerType(lexT)) &&
1336      rex->isNullPointerConstant(Context)) {
1337    ImpCastExprToType(rex, lexT); // promote the null to a pointer.
1338    return lexT;
1339  }
1340  if ((rexT->isPointerType() || rexT->isBlockPointerType() ||
1341       Context.isObjCObjectPointerType(rexT)) &&
1342      lex->isNullPointerConstant(Context)) {
1343    ImpCastExprToType(lex, rexT); // promote the null to a pointer.
1344    return rexT;
1345  }
1346  // Handle the case where both operands are pointers before we handle null
1347  // pointer constants in case both operands are null pointer constants.
1348  if (const PointerType *LHSPT = lexT->getAsPointerType()) { // C99 6.5.15p3,6
1349    if (const PointerType *RHSPT = rexT->getAsPointerType()) {
1350      // get the "pointed to" types
1351      QualType lhptee = LHSPT->getPointeeType();
1352      QualType rhptee = RHSPT->getPointeeType();
1353
1354      // ignore qualifiers on void (C99 6.5.15p3, clause 6)
1355      if (lhptee->isVoidType() &&
1356          rhptee->isIncompleteOrObjectType()) {
1357        // Figure out necessary qualifiers (C99 6.5.15p6)
1358        QualType destPointee=lhptee.getQualifiedType(rhptee.getCVRQualifiers());
1359        QualType destType = Context.getPointerType(destPointee);
1360        ImpCastExprToType(lex, destType); // add qualifiers if necessary
1361        ImpCastExprToType(rex, destType); // promote to void*
1362        return destType;
1363      }
1364      if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
1365        QualType destPointee=rhptee.getQualifiedType(lhptee.getCVRQualifiers());
1366        QualType destType = Context.getPointerType(destPointee);
1367        ImpCastExprToType(lex, destType); // add qualifiers if necessary
1368        ImpCastExprToType(rex, destType); // promote to void*
1369        return destType;
1370      }
1371
1372      QualType compositeType = lexT;
1373
1374      // If either type is an Objective-C object type then check
1375      // compatibility according to Objective-C.
1376      if (Context.isObjCObjectPointerType(lexT) ||
1377          Context.isObjCObjectPointerType(rexT)) {
1378        // If both operands are interfaces and either operand can be
1379        // assigned to the other, use that type as the composite
1380        // type. This allows
1381        //   xxx ? (A*) a : (B*) b
1382        // where B is a subclass of A.
1383        //
1384        // Additionally, as for assignment, if either type is 'id'
1385        // allow silent coercion. Finally, if the types are
1386        // incompatible then make sure to use 'id' as the composite
1387        // type so the result is acceptable for sending messages to.
1388
1389        // FIXME: This code should not be localized to here. Also this
1390        // should use a compatible check instead of abusing the
1391        // canAssignObjCInterfaces code.
1392        const ObjCInterfaceType* LHSIface = lhptee->getAsObjCInterfaceType();
1393        const ObjCInterfaceType* RHSIface = rhptee->getAsObjCInterfaceType();
1394        if (LHSIface && RHSIface &&
1395            Context.canAssignObjCInterfaces(LHSIface, RHSIface)) {
1396          compositeType = lexT;
1397        } else if (LHSIface && RHSIface &&
1398                   Context.canAssignObjCInterfaces(LHSIface, RHSIface)) {
1399          compositeType = rexT;
1400        } else if (Context.isObjCIdType(lhptee) ||
1401                   Context.isObjCIdType(rhptee)) {
1402          // FIXME: This code looks wrong, because isObjCIdType checks
1403          // the struct but getObjCIdType returns the pointer to
1404          // struct. This is horrible and should be fixed.
1405          compositeType = Context.getObjCIdType();
1406        } else {
1407          QualType incompatTy = Context.getObjCIdType();
1408          ImpCastExprToType(lex, incompatTy);
1409          ImpCastExprToType(rex, incompatTy);
1410          return incompatTy;
1411        }
1412      } else if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
1413                                             rhptee.getUnqualifiedType())) {
1414        Diag(questionLoc, diag::warn_typecheck_cond_incompatible_pointers,
1415             lexT.getAsString(), rexT.getAsString(),
1416             lex->getSourceRange(), rex->getSourceRange());
1417        // In this situation, we assume void* type. No especially good
1418        // reason, but this is what gcc does, and we do have to pick
1419        // to get a consistent AST.
1420        QualType incompatTy = Context.getPointerType(Context.VoidTy);
1421        ImpCastExprToType(lex, incompatTy);
1422        ImpCastExprToType(rex, incompatTy);
1423        return incompatTy;
1424      }
1425      // The pointer types are compatible.
1426      // C99 6.5.15p6: If both operands are pointers to compatible types *or* to
1427      // differently qualified versions of compatible types, the result type is
1428      // a pointer to an appropriately qualified version of the *composite*
1429      // type.
1430      // FIXME: Need to calculate the composite type.
1431      // FIXME: Need to add qualifiers
1432      ImpCastExprToType(lex, compositeType);
1433      ImpCastExprToType(rex, compositeType);
1434      return compositeType;
1435    }
1436  }
1437  // Need to handle "id<xx>" explicitly. Unlike "id", whose canonical type
1438  // evaluates to "struct objc_object *" (and is handled above when comparing
1439  // id with statically typed objects).
1440  if (lexT->isObjCQualifiedIdType() || rexT->isObjCQualifiedIdType()) {
1441    // GCC allows qualified id and any Objective-C type to devolve to
1442    // id. Currently localizing to here until clear this should be
1443    // part of ObjCQualifiedIdTypesAreCompatible.
1444    if (ObjCQualifiedIdTypesAreCompatible(lexT, rexT, true) ||
1445        (lexT->isObjCQualifiedIdType() &&
1446         Context.isObjCObjectPointerType(rexT)) ||
1447        (rexT->isObjCQualifiedIdType() &&
1448         Context.isObjCObjectPointerType(lexT))) {
1449      // FIXME: This is not the correct composite type. This only
1450      // happens to work because id can more or less be used anywhere,
1451      // however this may change the type of method sends.
1452      // FIXME: gcc adds some type-checking of the arguments and emits
1453      // (confusing) incompatible comparison warnings in some
1454      // cases. Investigate.
1455      QualType compositeType = Context.getObjCIdType();
1456      ImpCastExprToType(lex, compositeType);
1457      ImpCastExprToType(rex, compositeType);
1458      return compositeType;
1459    }
1460  }
1461
1462  // Selection between block pointer types is ok as long as they are the same.
1463  if (lexT->isBlockPointerType() && rexT->isBlockPointerType() &&
1464      Context.getCanonicalType(lexT) == Context.getCanonicalType(rexT))
1465    return lexT;
1466
1467  // Otherwise, the operands are not compatible.
1468  Diag(questionLoc, diag::err_typecheck_cond_incompatible_operands,
1469       lexT.getAsString(), rexT.getAsString(),
1470       lex->getSourceRange(), rex->getSourceRange());
1471  return QualType();
1472}
1473
1474/// ActOnConditionalOp - Parse a ?: operation.  Note that 'LHS' may be null
1475/// in the case of a the GNU conditional expr extension.
1476Action::ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
1477                                            SourceLocation ColonLoc,
1478                                            ExprTy *Cond, ExprTy *LHS,
1479                                            ExprTy *RHS) {
1480  Expr *CondExpr = (Expr *) Cond;
1481  Expr *LHSExpr = (Expr *) LHS, *RHSExpr = (Expr *) RHS;
1482
1483  // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
1484  // was the condition.
1485  bool isLHSNull = LHSExpr == 0;
1486  if (isLHSNull)
1487    LHSExpr = CondExpr;
1488
1489  QualType result = CheckConditionalOperands(CondExpr, LHSExpr,
1490                                             RHSExpr, QuestionLoc);
1491  if (result.isNull())
1492    return true;
1493  return new ConditionalOperator(CondExpr, isLHSNull ? 0 : LHSExpr,
1494                                 RHSExpr, result);
1495}
1496
1497
1498// CheckPointerTypesForAssignment - This is a very tricky routine (despite
1499// being closely modeled after the C99 spec:-). The odd characteristic of this
1500// routine is it effectively iqnores the qualifiers on the top level pointee.
1501// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
1502// FIXME: add a couple examples in this comment.
1503Sema::AssignConvertType
1504Sema::CheckPointerTypesForAssignment(QualType lhsType, QualType rhsType) {
1505  QualType lhptee, rhptee;
1506
1507  // get the "pointed to" type (ignoring qualifiers at the top level)
1508  lhptee = lhsType->getAsPointerType()->getPointeeType();
1509  rhptee = rhsType->getAsPointerType()->getPointeeType();
1510
1511  // make sure we operate on the canonical type
1512  lhptee = Context.getCanonicalType(lhptee);
1513  rhptee = Context.getCanonicalType(rhptee);
1514
1515  AssignConvertType ConvTy = Compatible;
1516
1517  // C99 6.5.16.1p1: This following citation is common to constraints
1518  // 3 & 4 (below). ...and the type *pointed to* by the left has all the
1519  // qualifiers of the type *pointed to* by the right;
1520  // FIXME: Handle ASQualType
1521  if ((lhptee.getCVRQualifiers() & rhptee.getCVRQualifiers()) !=
1522       rhptee.getCVRQualifiers())
1523    ConvTy = CompatiblePointerDiscardsQualifiers;
1524
1525  // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
1526  // incomplete type and the other is a pointer to a qualified or unqualified
1527  // version of void...
1528  if (lhptee->isVoidType()) {
1529    if (rhptee->isIncompleteOrObjectType())
1530      return ConvTy;
1531
1532    // As an extension, we allow cast to/from void* to function pointer.
1533    assert(rhptee->isFunctionType());
1534    return FunctionVoidPointer;
1535  }
1536
1537  if (rhptee->isVoidType()) {
1538    if (lhptee->isIncompleteOrObjectType())
1539      return ConvTy;
1540
1541    // As an extension, we allow cast to/from void* to function pointer.
1542    assert(lhptee->isFunctionType());
1543    return FunctionVoidPointer;
1544  }
1545
1546  // Check for ObjC interfaces
1547  const ObjCInterfaceType* LHSIface = lhptee->getAsObjCInterfaceType();
1548  const ObjCInterfaceType* RHSIface = rhptee->getAsObjCInterfaceType();
1549  if (LHSIface && RHSIface &&
1550      Context.canAssignObjCInterfaces(LHSIface, RHSIface))
1551    return ConvTy;
1552
1553  // ID acts sort of like void* for ObjC interfaces
1554  if (LHSIface && Context.isObjCIdType(rhptee))
1555    return ConvTy;
1556  if (RHSIface && Context.isObjCIdType(lhptee))
1557    return ConvTy;
1558
1559  // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
1560  // unqualified versions of compatible types, ...
1561  if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
1562                                  rhptee.getUnqualifiedType()))
1563    return IncompatiblePointer; // this "trumps" PointerAssignDiscardsQualifiers
1564  return ConvTy;
1565}
1566
1567/// CheckBlockPointerTypesForAssignment - This routine determines whether two
1568/// block pointer types are compatible or whether a block and normal pointer
1569/// are compatible. It is more restrict than comparing two function pointer
1570// types.
1571Sema::AssignConvertType
1572Sema::CheckBlockPointerTypesForAssignment(QualType lhsType,
1573                                          QualType rhsType) {
1574  QualType lhptee, rhptee;
1575
1576  // get the "pointed to" type (ignoring qualifiers at the top level)
1577  lhptee = lhsType->getAsBlockPointerType()->getPointeeType();
1578  rhptee = rhsType->getAsBlockPointerType()->getPointeeType();
1579
1580  // make sure we operate on the canonical type
1581  lhptee = Context.getCanonicalType(lhptee);
1582  rhptee = Context.getCanonicalType(rhptee);
1583
1584  AssignConvertType ConvTy = Compatible;
1585
1586  // For blocks we enforce that qualifiers are identical.
1587  if (lhptee.getCVRQualifiers() != rhptee.getCVRQualifiers())
1588    ConvTy = CompatiblePointerDiscardsQualifiers;
1589
1590  if (!Context.typesAreBlockCompatible(lhptee, rhptee))
1591    return IncompatibleBlockPointer;
1592  return ConvTy;
1593}
1594
1595/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
1596/// has code to accommodate several GCC extensions when type checking
1597/// pointers. Here are some objectionable examples that GCC considers warnings:
1598///
1599///  int a, *pint;
1600///  short *pshort;
1601///  struct foo *pfoo;
1602///
1603///  pint = pshort; // warning: assignment from incompatible pointer type
1604///  a = pint; // warning: assignment makes integer from pointer without a cast
1605///  pint = a; // warning: assignment makes pointer from integer without a cast
1606///  pint = pfoo; // warning: assignment from incompatible pointer type
1607///
1608/// As a result, the code for dealing with pointers is more complex than the
1609/// C99 spec dictates.
1610///
1611Sema::AssignConvertType
1612Sema::CheckAssignmentConstraints(QualType lhsType, QualType rhsType) {
1613  // Get canonical types.  We're not formatting these types, just comparing
1614  // them.
1615  lhsType = Context.getCanonicalType(lhsType).getUnqualifiedType();
1616  rhsType = Context.getCanonicalType(rhsType).getUnqualifiedType();
1617
1618  if (lhsType == rhsType)
1619    return Compatible; // Common case: fast path an exact match.
1620
1621  if (lhsType->isReferenceType() || rhsType->isReferenceType()) {
1622    if (Context.typesAreCompatible(lhsType, rhsType))
1623      return Compatible;
1624    return Incompatible;
1625  }
1626
1627  if (lhsType->isObjCQualifiedIdType() || rhsType->isObjCQualifiedIdType()) {
1628    if (ObjCQualifiedIdTypesAreCompatible(lhsType, rhsType, false))
1629      return Compatible;
1630    // Relax integer conversions like we do for pointers below.
1631    if (rhsType->isIntegerType())
1632      return IntToPointer;
1633    if (lhsType->isIntegerType())
1634      return PointerToInt;
1635    return Incompatible;
1636  }
1637
1638  if (lhsType->isVectorType() || rhsType->isVectorType()) {
1639    // For ExtVector, allow vector splats; float -> <n x float>
1640    if (const ExtVectorType *LV = lhsType->getAsExtVectorType())
1641      if (LV->getElementType() == rhsType)
1642        return Compatible;
1643
1644    // If we are allowing lax vector conversions, and LHS and RHS are both
1645    // vectors, the total size only needs to be the same. This is a bitcast;
1646    // no bits are changed but the result type is different.
1647    if (getLangOptions().LaxVectorConversions &&
1648        lhsType->isVectorType() && rhsType->isVectorType()) {
1649      if (Context.getTypeSize(lhsType) == Context.getTypeSize(rhsType))
1650        return Compatible;
1651    }
1652    return Incompatible;
1653  }
1654
1655  if (lhsType->isArithmeticType() && rhsType->isArithmeticType())
1656    return Compatible;
1657
1658  if (isa<PointerType>(lhsType)) {
1659    if (rhsType->isIntegerType())
1660      return IntToPointer;
1661
1662    if (isa<PointerType>(rhsType))
1663      return CheckPointerTypesForAssignment(lhsType, rhsType);
1664
1665    if (rhsType->getAsBlockPointerType()) {
1666      if (lhsType->getAsPointerType()->getPointeeType()->isVoidType())
1667        return BlockVoidPointer;
1668
1669      // Treat block pointers as objects.
1670      if (getLangOptions().ObjC1 &&
1671          lhsType == Context.getCanonicalType(Context.getObjCIdType()))
1672        return Compatible;
1673    }
1674    return Incompatible;
1675  }
1676
1677  if (isa<BlockPointerType>(lhsType)) {
1678    if (rhsType->isIntegerType())
1679      return IntToPointer;
1680
1681    // Treat block pointers as objects.
1682    if (getLangOptions().ObjC1 &&
1683        rhsType == Context.getCanonicalType(Context.getObjCIdType()))
1684      return Compatible;
1685
1686    if (rhsType->isBlockPointerType())
1687      return CheckBlockPointerTypesForAssignment(lhsType, rhsType);
1688
1689    if (const PointerType *RHSPT = rhsType->getAsPointerType()) {
1690      if (RHSPT->getPointeeType()->isVoidType())
1691        return BlockVoidPointer;
1692    }
1693    return Incompatible;
1694  }
1695
1696  if (isa<PointerType>(rhsType)) {
1697    // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
1698    if (lhsType == Context.BoolTy)
1699      return Compatible;
1700
1701    if (lhsType->isIntegerType())
1702      return PointerToInt;
1703
1704    if (isa<PointerType>(lhsType))
1705      return CheckPointerTypesForAssignment(lhsType, rhsType);
1706
1707    if (isa<BlockPointerType>(lhsType) &&
1708        rhsType->getAsPointerType()->getPointeeType()->isVoidType())
1709      return BlockVoidPointer;
1710    return Incompatible;
1711  }
1712
1713  if (isa<TagType>(lhsType) && isa<TagType>(rhsType)) {
1714    if (Context.typesAreCompatible(lhsType, rhsType))
1715      return Compatible;
1716  }
1717  return Incompatible;
1718}
1719
1720Sema::AssignConvertType
1721Sema::CheckSingleAssignmentConstraints(QualType lhsType, Expr *&rExpr) {
1722  // C99 6.5.16.1p1: the left operand is a pointer and the right is
1723  // a null pointer constant.
1724  if ((lhsType->isPointerType() || lhsType->isObjCQualifiedIdType() ||
1725       lhsType->isBlockPointerType())
1726      && rExpr->isNullPointerConstant(Context)) {
1727    ImpCastExprToType(rExpr, lhsType);
1728    return Compatible;
1729  }
1730
1731  // We don't allow conversion of non-null-pointer constants to integers.
1732  if (lhsType->isBlockPointerType() && rExpr->getType()->isIntegerType())
1733    return IntToBlockPointer;
1734
1735  // This check seems unnatural, however it is necessary to ensure the proper
1736  // conversion of functions/arrays. If the conversion were done for all
1737  // DeclExpr's (created by ActOnIdentifierExpr), it would mess up the unary
1738  // expressions that surpress this implicit conversion (&, sizeof).
1739  //
1740  // Suppress this for references: C99 8.5.3p5.  FIXME: revisit when references
1741  // are better understood.
1742  if (!lhsType->isReferenceType())
1743    DefaultFunctionArrayConversion(rExpr);
1744
1745  Sema::AssignConvertType result =
1746    CheckAssignmentConstraints(lhsType, rExpr->getType());
1747
1748  // C99 6.5.16.1p2: The value of the right operand is converted to the
1749  // type of the assignment expression.
1750  if (rExpr->getType() != lhsType)
1751    ImpCastExprToType(rExpr, lhsType);
1752  return result;
1753}
1754
1755Sema::AssignConvertType
1756Sema::CheckCompoundAssignmentConstraints(QualType lhsType, QualType rhsType) {
1757  return CheckAssignmentConstraints(lhsType, rhsType);
1758}
1759
1760QualType Sema::InvalidOperands(SourceLocation loc, Expr *&lex, Expr *&rex) {
1761  Diag(loc, diag::err_typecheck_invalid_operands,
1762       lex->getType().getAsString(), rex->getType().getAsString(),
1763       lex->getSourceRange(), rex->getSourceRange());
1764  return QualType();
1765}
1766
1767inline QualType Sema::CheckVectorOperands(SourceLocation loc, Expr *&lex,
1768                                                              Expr *&rex) {
1769  // For conversion purposes, we ignore any qualifiers.
1770  // For example, "const float" and "float" are equivalent.
1771  QualType lhsType =
1772    Context.getCanonicalType(lex->getType()).getUnqualifiedType();
1773  QualType rhsType =
1774    Context.getCanonicalType(rex->getType()).getUnqualifiedType();
1775
1776  // If the vector types are identical, return.
1777  if (lhsType == rhsType)
1778    return lhsType;
1779
1780  // Handle the case of a vector & extvector type of the same size and element
1781  // type.  It would be nice if we only had one vector type someday.
1782  if (getLangOptions().LaxVectorConversions)
1783    if (const VectorType *LV = lhsType->getAsVectorType())
1784      if (const VectorType *RV = rhsType->getAsVectorType())
1785        if (LV->getElementType() == RV->getElementType() &&
1786            LV->getNumElements() == RV->getNumElements())
1787          return lhsType->isExtVectorType() ? lhsType : rhsType;
1788
1789  // If the lhs is an extended vector and the rhs is a scalar of the same type
1790  // or a literal, promote the rhs to the vector type.
1791  if (const ExtVectorType *V = lhsType->getAsExtVectorType()) {
1792    QualType eltType = V->getElementType();
1793
1794    if ((eltType->getAsBuiltinType() == rhsType->getAsBuiltinType()) ||
1795        (eltType->isIntegerType() && isa<IntegerLiteral>(rex)) ||
1796        (eltType->isFloatingType() && isa<FloatingLiteral>(rex))) {
1797      ImpCastExprToType(rex, lhsType);
1798      return lhsType;
1799    }
1800  }
1801
1802  // If the rhs is an extended vector and the lhs is a scalar of the same type,
1803  // promote the lhs to the vector type.
1804  if (const ExtVectorType *V = rhsType->getAsExtVectorType()) {
1805    QualType eltType = V->getElementType();
1806
1807    if ((eltType->getAsBuiltinType() == lhsType->getAsBuiltinType()) ||
1808        (eltType->isIntegerType() && isa<IntegerLiteral>(lex)) ||
1809        (eltType->isFloatingType() && isa<FloatingLiteral>(lex))) {
1810      ImpCastExprToType(lex, rhsType);
1811      return rhsType;
1812    }
1813  }
1814
1815  // You cannot convert between vector values of different size.
1816  Diag(loc, diag::err_typecheck_vector_not_convertable,
1817       lex->getType().getAsString(), rex->getType().getAsString(),
1818       lex->getSourceRange(), rex->getSourceRange());
1819  return QualType();
1820}
1821
1822inline QualType Sema::CheckMultiplyDivideOperands(
1823  Expr *&lex, Expr *&rex, SourceLocation loc, bool isCompAssign)
1824{
1825  QualType lhsType = lex->getType(), rhsType = rex->getType();
1826
1827  if (lhsType->isVectorType() || rhsType->isVectorType())
1828    return CheckVectorOperands(loc, lex, rex);
1829
1830  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
1831
1832  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
1833    return compType;
1834  return InvalidOperands(loc, lex, rex);
1835}
1836
1837inline QualType Sema::CheckRemainderOperands(
1838  Expr *&lex, Expr *&rex, SourceLocation loc, bool isCompAssign)
1839{
1840  QualType lhsType = lex->getType(), rhsType = rex->getType();
1841
1842  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
1843
1844  if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
1845    return compType;
1846  return InvalidOperands(loc, lex, rex);
1847}
1848
1849inline QualType Sema::CheckAdditionOperands( // C99 6.5.6
1850  Expr *&lex, Expr *&rex, SourceLocation loc, bool isCompAssign)
1851{
1852  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
1853    return CheckVectorOperands(loc, lex, rex);
1854
1855  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
1856
1857  // handle the common case first (both operands are arithmetic).
1858  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
1859    return compType;
1860
1861  // Put any potential pointer into PExp
1862  Expr* PExp = lex, *IExp = rex;
1863  if (IExp->getType()->isPointerType())
1864    std::swap(PExp, IExp);
1865
1866  if (const PointerType* PTy = PExp->getType()->getAsPointerType()) {
1867    if (IExp->getType()->isIntegerType()) {
1868      // Check for arithmetic on pointers to incomplete types
1869      if (!PTy->getPointeeType()->isObjectType()) {
1870        if (PTy->getPointeeType()->isVoidType()) {
1871          Diag(loc, diag::ext_gnu_void_ptr,
1872               lex->getSourceRange(), rex->getSourceRange());
1873        } else {
1874          Diag(loc, diag::err_typecheck_arithmetic_incomplete_type,
1875               lex->getType().getAsString(), lex->getSourceRange());
1876          return QualType();
1877        }
1878      }
1879      return PExp->getType();
1880    }
1881  }
1882
1883  return InvalidOperands(loc, lex, rex);
1884}
1885
1886// C99 6.5.6
1887QualType Sema::CheckSubtractionOperands(Expr *&lex, Expr *&rex,
1888                                        SourceLocation loc, bool isCompAssign) {
1889  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
1890    return CheckVectorOperands(loc, lex, rex);
1891
1892  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
1893
1894  // Enforce type constraints: C99 6.5.6p3.
1895
1896  // Handle the common case first (both operands are arithmetic).
1897  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
1898    return compType;
1899
1900  // Either ptr - int   or   ptr - ptr.
1901  if (const PointerType *LHSPTy = lex->getType()->getAsPointerType()) {
1902    QualType lpointee = LHSPTy->getPointeeType();
1903
1904    // The LHS must be an object type, not incomplete, function, etc.
1905    if (!lpointee->isObjectType()) {
1906      // Handle the GNU void* extension.
1907      if (lpointee->isVoidType()) {
1908        Diag(loc, diag::ext_gnu_void_ptr,
1909             lex->getSourceRange(), rex->getSourceRange());
1910      } else {
1911        Diag(loc, diag::err_typecheck_sub_ptr_object,
1912             lex->getType().getAsString(), lex->getSourceRange());
1913        return QualType();
1914      }
1915    }
1916
1917    // The result type of a pointer-int computation is the pointer type.
1918    if (rex->getType()->isIntegerType())
1919      return lex->getType();
1920
1921    // Handle pointer-pointer subtractions.
1922    if (const PointerType *RHSPTy = rex->getType()->getAsPointerType()) {
1923      QualType rpointee = RHSPTy->getPointeeType();
1924
1925      // RHS must be an object type, unless void (GNU).
1926      if (!rpointee->isObjectType()) {
1927        // Handle the GNU void* extension.
1928        if (rpointee->isVoidType()) {
1929          if (!lpointee->isVoidType())
1930            Diag(loc, diag::ext_gnu_void_ptr,
1931                 lex->getSourceRange(), rex->getSourceRange());
1932        } else {
1933          Diag(loc, diag::err_typecheck_sub_ptr_object,
1934               rex->getType().getAsString(), rex->getSourceRange());
1935          return QualType();
1936        }
1937      }
1938
1939      // Pointee types must be compatible.
1940      if (!Context.typesAreCompatible(
1941              Context.getCanonicalType(lpointee).getUnqualifiedType(),
1942              Context.getCanonicalType(rpointee).getUnqualifiedType())) {
1943        Diag(loc, diag::err_typecheck_sub_ptr_compatible,
1944             lex->getType().getAsString(), rex->getType().getAsString(),
1945             lex->getSourceRange(), rex->getSourceRange());
1946        return QualType();
1947      }
1948
1949      return Context.getPointerDiffType();
1950    }
1951  }
1952
1953  return InvalidOperands(loc, lex, rex);
1954}
1955
1956// C99 6.5.7
1957QualType Sema::CheckShiftOperands(Expr *&lex, Expr *&rex, SourceLocation loc,
1958                                  bool isCompAssign) {
1959  // C99 6.5.7p2: Each of the operands shall have integer type.
1960  if (!lex->getType()->isIntegerType() || !rex->getType()->isIntegerType())
1961    return InvalidOperands(loc, lex, rex);
1962
1963  // Shifts don't perform usual arithmetic conversions, they just do integer
1964  // promotions on each operand. C99 6.5.7p3
1965  if (!isCompAssign)
1966    UsualUnaryConversions(lex);
1967  UsualUnaryConversions(rex);
1968
1969  // "The type of the result is that of the promoted left operand."
1970  return lex->getType();
1971}
1972
1973static bool areComparableObjCInterfaces(QualType LHS, QualType RHS,
1974                                        ASTContext& Context) {
1975  const ObjCInterfaceType* LHSIface = LHS->getAsObjCInterfaceType();
1976  const ObjCInterfaceType* RHSIface = RHS->getAsObjCInterfaceType();
1977  // ID acts sort of like void* for ObjC interfaces
1978  if (LHSIface && Context.isObjCIdType(RHS))
1979    return true;
1980  if (RHSIface && Context.isObjCIdType(LHS))
1981    return true;
1982  if (!LHSIface || !RHSIface)
1983    return false;
1984  return Context.canAssignObjCInterfaces(LHSIface, RHSIface) ||
1985         Context.canAssignObjCInterfaces(RHSIface, LHSIface);
1986}
1987
1988// C99 6.5.8
1989QualType Sema::CheckCompareOperands(Expr *&lex, Expr *&rex, SourceLocation loc,
1990                                    bool isRelational) {
1991  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
1992    return CheckVectorCompareOperands(lex, rex, loc, isRelational);
1993
1994  // C99 6.5.8p3 / C99 6.5.9p4
1995  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
1996    UsualArithmeticConversions(lex, rex);
1997  else {
1998    UsualUnaryConversions(lex);
1999    UsualUnaryConversions(rex);
2000  }
2001  QualType lType = lex->getType();
2002  QualType rType = rex->getType();
2003
2004  // For non-floating point types, check for self-comparisons of the form
2005  // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
2006  // often indicate logic errors in the program.
2007  if (!lType->isFloatingType()) {
2008    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens()))
2009      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens()))
2010        if (DRL->getDecl() == DRR->getDecl())
2011          Diag(loc, diag::warn_selfcomparison);
2012  }
2013
2014  if (isRelational) {
2015    if (lType->isRealType() && rType->isRealType())
2016      return Context.IntTy;
2017  } else {
2018    // Check for comparisons of floating point operands using != and ==.
2019    if (lType->isFloatingType()) {
2020      assert (rType->isFloatingType());
2021      CheckFloatComparison(loc,lex,rex);
2022    }
2023
2024    if (lType->isArithmeticType() && rType->isArithmeticType())
2025      return Context.IntTy;
2026  }
2027
2028  bool LHSIsNull = lex->isNullPointerConstant(Context);
2029  bool RHSIsNull = rex->isNullPointerConstant(Context);
2030
2031  // All of the following pointer related warnings are GCC extensions, except
2032  // when handling null pointer constants. One day, we can consider making them
2033  // errors (when -pedantic-errors is enabled).
2034  if (lType->isPointerType() && rType->isPointerType()) { // C99 6.5.8p2
2035    QualType LCanPointeeTy =
2036      Context.getCanonicalType(lType->getAsPointerType()->getPointeeType());
2037    QualType RCanPointeeTy =
2038      Context.getCanonicalType(rType->getAsPointerType()->getPointeeType());
2039
2040    if (!LHSIsNull && !RHSIsNull &&                       // C99 6.5.9p2
2041        !LCanPointeeTy->isVoidType() && !RCanPointeeTy->isVoidType() &&
2042        !Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
2043                                    RCanPointeeTy.getUnqualifiedType()) &&
2044        !areComparableObjCInterfaces(LCanPointeeTy, RCanPointeeTy, Context)) {
2045      Diag(loc, diag::ext_typecheck_comparison_of_distinct_pointers,
2046           lType.getAsString(), rType.getAsString(),
2047           lex->getSourceRange(), rex->getSourceRange());
2048    }
2049    ImpCastExprToType(rex, lType); // promote the pointer to pointer
2050    return Context.IntTy;
2051  }
2052  // Handle block pointer types.
2053  if (lType->isBlockPointerType() && rType->isBlockPointerType()) {
2054    QualType lpointee = lType->getAsBlockPointerType()->getPointeeType();
2055    QualType rpointee = rType->getAsBlockPointerType()->getPointeeType();
2056
2057    if (!LHSIsNull && !RHSIsNull &&
2058        !Context.typesAreBlockCompatible(lpointee, rpointee)) {
2059      Diag(loc, diag::err_typecheck_comparison_of_distinct_blocks,
2060           lType.getAsString(), rType.getAsString(),
2061           lex->getSourceRange(), rex->getSourceRange());
2062    }
2063    ImpCastExprToType(rex, lType); // promote the pointer to pointer
2064    return Context.IntTy;
2065  }
2066  // Allow block pointers to be compared with null pointer constants.
2067  if ((lType->isBlockPointerType() && rType->isPointerType()) ||
2068      (lType->isPointerType() && rType->isBlockPointerType())) {
2069    if (!LHSIsNull && !RHSIsNull) {
2070      Diag(loc, diag::err_typecheck_comparison_of_distinct_blocks,
2071           lType.getAsString(), rType.getAsString(),
2072           lex->getSourceRange(), rex->getSourceRange());
2073    }
2074    ImpCastExprToType(rex, lType); // promote the pointer to pointer
2075    return Context.IntTy;
2076  }
2077
2078  if ((lType->isObjCQualifiedIdType() || rType->isObjCQualifiedIdType())) {
2079    if (ObjCQualifiedIdTypesAreCompatible(lType, rType, true)) {
2080      ImpCastExprToType(rex, lType);
2081      return Context.IntTy;
2082    }
2083  }
2084  if ((lType->isPointerType() || lType->isObjCQualifiedIdType()) &&
2085       rType->isIntegerType()) {
2086    if (!RHSIsNull)
2087      Diag(loc, diag::ext_typecheck_comparison_of_pointer_integer,
2088           lType.getAsString(), rType.getAsString(),
2089           lex->getSourceRange(), rex->getSourceRange());
2090    ImpCastExprToType(rex, lType); // promote the integer to pointer
2091    return Context.IntTy;
2092  }
2093  if (lType->isIntegerType() &&
2094      (rType->isPointerType() || rType->isObjCQualifiedIdType())) {
2095    if (!LHSIsNull)
2096      Diag(loc, diag::ext_typecheck_comparison_of_pointer_integer,
2097           lType.getAsString(), rType.getAsString(),
2098           lex->getSourceRange(), rex->getSourceRange());
2099    ImpCastExprToType(lex, rType); // promote the integer to pointer
2100    return Context.IntTy;
2101  }
2102  // Handle block pointers.
2103  if (lType->isBlockPointerType() && rType->isIntegerType()) {
2104    if (!RHSIsNull)
2105      Diag(loc, diag::ext_typecheck_comparison_of_pointer_integer,
2106           lType.getAsString(), rType.getAsString(),
2107           lex->getSourceRange(), rex->getSourceRange());
2108    ImpCastExprToType(rex, lType); // promote the integer to pointer
2109    return Context.IntTy;
2110  }
2111  if (lType->isIntegerType() && rType->isBlockPointerType()) {
2112    if (!LHSIsNull)
2113      Diag(loc, diag::ext_typecheck_comparison_of_pointer_integer,
2114           lType.getAsString(), rType.getAsString(),
2115           lex->getSourceRange(), rex->getSourceRange());
2116    ImpCastExprToType(lex, rType); // promote the integer to pointer
2117    return Context.IntTy;
2118  }
2119  return InvalidOperands(loc, lex, rex);
2120}
2121
2122/// CheckVectorCompareOperands - vector comparisons are a clang extension that
2123/// operates on extended vector types.  Instead of producing an IntTy result,
2124/// like a scalar comparison, a vector comparison produces a vector of integer
2125/// types.
2126QualType Sema::CheckVectorCompareOperands(Expr *&lex, Expr *&rex,
2127                                          SourceLocation loc,
2128                                          bool isRelational) {
2129  // Check to make sure we're operating on vectors of the same type and width,
2130  // Allowing one side to be a scalar of element type.
2131  QualType vType = CheckVectorOperands(loc, lex, rex);
2132  if (vType.isNull())
2133    return vType;
2134
2135  QualType lType = lex->getType();
2136  QualType rType = rex->getType();
2137
2138  // For non-floating point types, check for self-comparisons of the form
2139  // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
2140  // often indicate logic errors in the program.
2141  if (!lType->isFloatingType()) {
2142    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens()))
2143      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens()))
2144        if (DRL->getDecl() == DRR->getDecl())
2145          Diag(loc, diag::warn_selfcomparison);
2146  }
2147
2148  // Check for comparisons of floating point operands using != and ==.
2149  if (!isRelational && lType->isFloatingType()) {
2150    assert (rType->isFloatingType());
2151    CheckFloatComparison(loc,lex,rex);
2152  }
2153
2154  // Return the type for the comparison, which is the same as vector type for
2155  // integer vectors, or an integer type of identical size and number of
2156  // elements for floating point vectors.
2157  if (lType->isIntegerType())
2158    return lType;
2159
2160  const VectorType *VTy = lType->getAsVectorType();
2161
2162  // FIXME: need to deal with non-32b int / non-64b long long
2163  unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
2164  if (TypeSize == 32) {
2165    return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
2166  }
2167  assert(TypeSize == 64 && "Unhandled vector element size in vector compare");
2168  return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
2169}
2170
2171inline QualType Sema::CheckBitwiseOperands(
2172  Expr *&lex, Expr *&rex, SourceLocation loc, bool isCompAssign)
2173{
2174  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
2175    return CheckVectorOperands(loc, lex, rex);
2176
2177  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
2178
2179  if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
2180    return compType;
2181  return InvalidOperands(loc, lex, rex);
2182}
2183
2184inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
2185  Expr *&lex, Expr *&rex, SourceLocation loc)
2186{
2187  UsualUnaryConversions(lex);
2188  UsualUnaryConversions(rex);
2189
2190  if (lex->getType()->isScalarType() && rex->getType()->isScalarType())
2191    return Context.IntTy;
2192  return InvalidOperands(loc, lex, rex);
2193}
2194
2195inline QualType Sema::CheckAssignmentOperands( // C99 6.5.16.1
2196  Expr *lex, Expr *&rex, SourceLocation loc, QualType compoundType)
2197{
2198  QualType lhsType = lex->getType();
2199  QualType rhsType = compoundType.isNull() ? rex->getType() : compoundType;
2200  Expr::isModifiableLvalueResult mlval = lex->isModifiableLvalue(Context);
2201
2202  switch (mlval) { // C99 6.5.16p2
2203  case Expr::MLV_Valid:
2204    break;
2205  case Expr::MLV_ConstQualified:
2206    Diag(loc, diag::err_typecheck_assign_const, lex->getSourceRange());
2207    return QualType();
2208  case Expr::MLV_ArrayType:
2209    Diag(loc, diag::err_typecheck_array_not_modifiable_lvalue,
2210         lhsType.getAsString(), lex->getSourceRange());
2211    return QualType();
2212  case Expr::MLV_NotObjectType:
2213    Diag(loc, diag::err_typecheck_non_object_not_modifiable_lvalue,
2214         lhsType.getAsString(), lex->getSourceRange());
2215    return QualType();
2216  case Expr::MLV_InvalidExpression:
2217    Diag(loc, diag::err_typecheck_expression_not_modifiable_lvalue,
2218         lex->getSourceRange());
2219    return QualType();
2220  case Expr::MLV_IncompleteType:
2221  case Expr::MLV_IncompleteVoidType:
2222    Diag(loc, diag::err_typecheck_incomplete_type_not_modifiable_lvalue,
2223         lhsType.getAsString(), lex->getSourceRange());
2224    return QualType();
2225  case Expr::MLV_DuplicateVectorComponents:
2226    Diag(loc, diag::err_typecheck_duplicate_vector_components_not_mlvalue,
2227         lex->getSourceRange());
2228    return QualType();
2229  case Expr::MLV_NotBlockQualified:
2230    Diag(loc, diag::err_block_decl_ref_not_modifiable_lvalue,
2231         lex->getSourceRange());
2232    return QualType();
2233  }
2234
2235  AssignConvertType ConvTy;
2236  if (compoundType.isNull()) {
2237    // Simple assignment "x = y".
2238    ConvTy = CheckSingleAssignmentConstraints(lhsType, rex);
2239
2240    // If the RHS is a unary plus or minus, check to see if they = and + are
2241    // right next to each other.  If so, the user may have typo'd "x =+ 4"
2242    // instead of "x += 4".
2243    Expr *RHSCheck = rex;
2244    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
2245      RHSCheck = ICE->getSubExpr();
2246    if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
2247      if ((UO->getOpcode() == UnaryOperator::Plus ||
2248           UO->getOpcode() == UnaryOperator::Minus) &&
2249          loc.isFileID() && UO->getOperatorLoc().isFileID() &&
2250          // Only if the two operators are exactly adjacent.
2251          loc.getFileLocWithOffset(1) == UO->getOperatorLoc())
2252        Diag(loc, diag::warn_not_compound_assign,
2253             UO->getOpcode() == UnaryOperator::Plus ? "+" : "-",
2254             SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc()));
2255    }
2256  } else {
2257    // Compound assignment "x += y"
2258    ConvTy = CheckCompoundAssignmentConstraints(lhsType, rhsType);
2259  }
2260
2261  if (DiagnoseAssignmentResult(ConvTy, loc, lhsType, rhsType,
2262                               rex, "assigning"))
2263    return QualType();
2264
2265  // C99 6.5.16p3: The type of an assignment expression is the type of the
2266  // left operand unless the left operand has qualified type, in which case
2267  // it is the unqualified version of the type of the left operand.
2268  // C99 6.5.16.1p2: In simple assignment, the value of the right operand
2269  // is converted to the type of the assignment expression (above).
2270  // C++ 5.17p1: the type of the assignment expression is that of its left
2271  // oprdu.
2272  return lhsType.getUnqualifiedType();
2273}
2274
2275inline QualType Sema::CheckCommaOperands( // C99 6.5.17
2276  Expr *&lex, Expr *&rex, SourceLocation loc) {
2277
2278  // Comma performs lvalue conversion (C99 6.3.2.1), but not unary conversions.
2279  DefaultFunctionArrayConversion(rex);
2280  return rex->getType();
2281}
2282
2283/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
2284/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
2285QualType Sema::CheckIncrementDecrementOperand(Expr *op, SourceLocation OpLoc) {
2286  QualType resType = op->getType();
2287  assert(!resType.isNull() && "no type for increment/decrement expression");
2288
2289  // C99 6.5.2.4p1: We allow complex as a GCC extension.
2290  if (const PointerType *pt = resType->getAsPointerType()) {
2291    if (pt->getPointeeType()->isVoidType()) {
2292      Diag(OpLoc, diag::ext_gnu_void_ptr, op->getSourceRange());
2293    } else if (!pt->getPointeeType()->isObjectType()) {
2294      // C99 6.5.2.4p2, 6.5.6p2
2295      Diag(OpLoc, diag::err_typecheck_arithmetic_incomplete_type,
2296           resType.getAsString(), op->getSourceRange());
2297      return QualType();
2298    }
2299  } else if (!resType->isRealType()) {
2300    if (resType->isComplexType())
2301      // C99 does not support ++/-- on complex types.
2302      Diag(OpLoc, diag::ext_integer_increment_complex,
2303           resType.getAsString(), op->getSourceRange());
2304    else {
2305      Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement,
2306           resType.getAsString(), op->getSourceRange());
2307      return QualType();
2308    }
2309  }
2310  // At this point, we know we have a real, complex or pointer type.
2311  // Now make sure the operand is a modifiable lvalue.
2312  Expr::isModifiableLvalueResult mlval = op->isModifiableLvalue(Context);
2313  if (mlval != Expr::MLV_Valid) {
2314    // FIXME: emit a more precise diagnostic...
2315    Diag(OpLoc, diag::err_typecheck_invalid_lvalue_incr_decr,
2316         op->getSourceRange());
2317    return QualType();
2318  }
2319  return resType;
2320}
2321
2322/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
2323/// This routine allows us to typecheck complex/recursive expressions
2324/// where the declaration is needed for type checking. We only need to
2325/// handle cases when the expression references a function designator
2326/// or is an lvalue. Here are some examples:
2327///  - &(x) => x
2328///  - &*****f => f for f a function designator.
2329///  - &s.xx => s
2330///  - &s.zz[1].yy -> s, if zz is an array
2331///  - *(x + 1) -> x, if x is an array
2332///  - &"123"[2] -> 0
2333///  - & __real__ x -> x
2334static ValueDecl *getPrimaryDecl(Expr *E) {
2335  switch (E->getStmtClass()) {
2336  case Stmt::DeclRefExprClass:
2337    return cast<DeclRefExpr>(E)->getDecl();
2338  case Stmt::MemberExprClass:
2339    // Fields cannot be declared with a 'register' storage class.
2340    // &X->f is always ok, even if X is declared register.
2341    if (cast<MemberExpr>(E)->isArrow())
2342      return 0;
2343    return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
2344  case Stmt::ArraySubscriptExprClass: {
2345    // &X[4] and &4[X] refers to X if X is not a pointer.
2346
2347    ValueDecl *VD = getPrimaryDecl(cast<ArraySubscriptExpr>(E)->getBase());
2348    if (!VD || VD->getType()->isPointerType())
2349      return 0;
2350    else
2351      return VD;
2352  }
2353  case Stmt::UnaryOperatorClass: {
2354    UnaryOperator *UO = cast<UnaryOperator>(E);
2355
2356    switch(UO->getOpcode()) {
2357    case UnaryOperator::Deref: {
2358      // *(X + 1) refers to X if X is not a pointer.
2359      ValueDecl *VD = getPrimaryDecl(UO->getSubExpr());
2360      if (!VD || VD->getType()->isPointerType())
2361        return 0;
2362      return VD;
2363    }
2364    case UnaryOperator::Real:
2365    case UnaryOperator::Imag:
2366    case UnaryOperator::Extension:
2367      return getPrimaryDecl(UO->getSubExpr());
2368    default:
2369      return 0;
2370    }
2371  }
2372  case Stmt::BinaryOperatorClass: {
2373    BinaryOperator *BO = cast<BinaryOperator>(E);
2374
2375    // Handle cases involving pointer arithmetic. The result of an
2376    // Assign or AddAssign is not an lvalue so they can be ignored.
2377
2378    // (x + n) or (n + x) => x
2379    if (BO->getOpcode() == BinaryOperator::Add) {
2380      if (BO->getLHS()->getType()->isPointerType()) {
2381        return getPrimaryDecl(BO->getLHS());
2382      } else if (BO->getRHS()->getType()->isPointerType()) {
2383        return getPrimaryDecl(BO->getRHS());
2384      }
2385    }
2386
2387    return 0;
2388  }
2389  case Stmt::ParenExprClass:
2390    return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
2391  case Stmt::ImplicitCastExprClass:
2392    // &X[4] when X is an array, has an implicit cast from array to pointer.
2393    return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
2394  default:
2395    return 0;
2396  }
2397}
2398
2399/// CheckAddressOfOperand - The operand of & must be either a function
2400/// designator or an lvalue designating an object. If it is an lvalue, the
2401/// object cannot be declared with storage class register or be a bit field.
2402/// Note: The usual conversions are *not* applied to the operand of the &
2403/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
2404QualType Sema::CheckAddressOfOperand(Expr *op, SourceLocation OpLoc) {
2405  if (getLangOptions().C99) {
2406    // Implement C99-only parts of addressof rules.
2407    if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
2408      if (uOp->getOpcode() == UnaryOperator::Deref)
2409        // Per C99 6.5.3.2, the address of a deref always returns a valid result
2410        // (assuming the deref expression is valid).
2411        return uOp->getSubExpr()->getType();
2412    }
2413    // Technically, there should be a check for array subscript
2414    // expressions here, but the result of one is always an lvalue anyway.
2415  }
2416  ValueDecl *dcl = getPrimaryDecl(op);
2417  Expr::isLvalueResult lval = op->isLvalue(Context);
2418
2419  if (lval != Expr::LV_Valid) { // C99 6.5.3.2p1
2420    if (!dcl || !isa<FunctionDecl>(dcl)) {// allow function designators
2421      // FIXME: emit more specific diag...
2422      Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof,
2423           op->getSourceRange());
2424      return QualType();
2425    }
2426  } else if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(op)) { // C99 6.5.3.2p1
2427    if (MemExpr->getMemberDecl()->isBitField()) {
2428      Diag(OpLoc, diag::err_typecheck_address_of,
2429           std::string("bit-field"), op->getSourceRange());
2430      return QualType();
2431    }
2432  // Check for Apple extension for accessing vector components.
2433  } else if (isa<ArraySubscriptExpr>(op) &&
2434           cast<ArraySubscriptExpr>(op)->getBase()->getType()->isVectorType()) {
2435    Diag(OpLoc, diag::err_typecheck_address_of,
2436         std::string("vector"), op->getSourceRange());
2437    return QualType();
2438  } else if (dcl) { // C99 6.5.3.2p1
2439    // We have an lvalue with a decl. Make sure the decl is not declared
2440    // with the register storage-class specifier.
2441    if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
2442      if (vd->getStorageClass() == VarDecl::Register) {
2443        Diag(OpLoc, diag::err_typecheck_address_of,
2444             std::string("register variable"), op->getSourceRange());
2445        return QualType();
2446      }
2447    } else
2448      assert(0 && "Unknown/unexpected decl type");
2449  }
2450
2451  // If the operand has type "type", the result has type "pointer to type".
2452  return Context.getPointerType(op->getType());
2453}
2454
2455QualType Sema::CheckIndirectionOperand(Expr *op, SourceLocation OpLoc) {
2456  UsualUnaryConversions(op);
2457  QualType qType = op->getType();
2458
2459  if (const PointerType *PT = qType->getAsPointerType()) {
2460    // Note that per both C89 and C99, this is always legal, even
2461    // if ptype is an incomplete type or void.
2462    // It would be possible to warn about dereferencing a
2463    // void pointer, but it's completely well-defined,
2464    // and such a warning is unlikely to catch any mistakes.
2465    return PT->getPointeeType();
2466  }
2467  Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer,
2468       qType.getAsString(), op->getSourceRange());
2469  return QualType();
2470}
2471
2472static inline BinaryOperator::Opcode ConvertTokenKindToBinaryOpcode(
2473  tok::TokenKind Kind) {
2474  BinaryOperator::Opcode Opc;
2475  switch (Kind) {
2476  default: assert(0 && "Unknown binop!");
2477  case tok::star:                 Opc = BinaryOperator::Mul; break;
2478  case tok::slash:                Opc = BinaryOperator::Div; break;
2479  case tok::percent:              Opc = BinaryOperator::Rem; break;
2480  case tok::plus:                 Opc = BinaryOperator::Add; break;
2481  case tok::minus:                Opc = BinaryOperator::Sub; break;
2482  case tok::lessless:             Opc = BinaryOperator::Shl; break;
2483  case tok::greatergreater:       Opc = BinaryOperator::Shr; break;
2484  case tok::lessequal:            Opc = BinaryOperator::LE; break;
2485  case tok::less:                 Opc = BinaryOperator::LT; break;
2486  case tok::greaterequal:         Opc = BinaryOperator::GE; break;
2487  case tok::greater:              Opc = BinaryOperator::GT; break;
2488  case tok::exclaimequal:         Opc = BinaryOperator::NE; break;
2489  case tok::equalequal:           Opc = BinaryOperator::EQ; break;
2490  case tok::amp:                  Opc = BinaryOperator::And; break;
2491  case tok::caret:                Opc = BinaryOperator::Xor; break;
2492  case tok::pipe:                 Opc = BinaryOperator::Or; break;
2493  case tok::ampamp:               Opc = BinaryOperator::LAnd; break;
2494  case tok::pipepipe:             Opc = BinaryOperator::LOr; break;
2495  case tok::equal:                Opc = BinaryOperator::Assign; break;
2496  case tok::starequal:            Opc = BinaryOperator::MulAssign; break;
2497  case tok::slashequal:           Opc = BinaryOperator::DivAssign; break;
2498  case tok::percentequal:         Opc = BinaryOperator::RemAssign; break;
2499  case tok::plusequal:            Opc = BinaryOperator::AddAssign; break;
2500  case tok::minusequal:           Opc = BinaryOperator::SubAssign; break;
2501  case tok::lesslessequal:        Opc = BinaryOperator::ShlAssign; break;
2502  case tok::greatergreaterequal:  Opc = BinaryOperator::ShrAssign; break;
2503  case tok::ampequal:             Opc = BinaryOperator::AndAssign; break;
2504  case tok::caretequal:           Opc = BinaryOperator::XorAssign; break;
2505  case tok::pipeequal:            Opc = BinaryOperator::OrAssign; break;
2506  case tok::comma:                Opc = BinaryOperator::Comma; break;
2507  }
2508  return Opc;
2509}
2510
2511static inline UnaryOperator::Opcode ConvertTokenKindToUnaryOpcode(
2512  tok::TokenKind Kind) {
2513  UnaryOperator::Opcode Opc;
2514  switch (Kind) {
2515  default: assert(0 && "Unknown unary op!");
2516  case tok::plusplus:     Opc = UnaryOperator::PreInc; break;
2517  case tok::minusminus:   Opc = UnaryOperator::PreDec; break;
2518  case tok::amp:          Opc = UnaryOperator::AddrOf; break;
2519  case tok::star:         Opc = UnaryOperator::Deref; break;
2520  case tok::plus:         Opc = UnaryOperator::Plus; break;
2521  case tok::minus:        Opc = UnaryOperator::Minus; break;
2522  case tok::tilde:        Opc = UnaryOperator::Not; break;
2523  case tok::exclaim:      Opc = UnaryOperator::LNot; break;
2524  case tok::kw_sizeof:    Opc = UnaryOperator::SizeOf; break;
2525  case tok::kw___alignof: Opc = UnaryOperator::AlignOf; break;
2526  case tok::kw___real:    Opc = UnaryOperator::Real; break;
2527  case tok::kw___imag:    Opc = UnaryOperator::Imag; break;
2528  case tok::kw___extension__: Opc = UnaryOperator::Extension; break;
2529  }
2530  return Opc;
2531}
2532
2533// Binary Operators.  'Tok' is the token for the operator.
2534Action::ExprResult Sema::ActOnBinOp(SourceLocation TokLoc, tok::TokenKind Kind,
2535                                    ExprTy *LHS, ExprTy *RHS) {
2536  BinaryOperator::Opcode Opc = ConvertTokenKindToBinaryOpcode(Kind);
2537  Expr *lhs = (Expr *)LHS, *rhs = (Expr*)RHS;
2538
2539  assert((lhs != 0) && "ActOnBinOp(): missing left expression");
2540  assert((rhs != 0) && "ActOnBinOp(): missing right expression");
2541
2542  QualType ResultTy;  // Result type of the binary operator.
2543  QualType CompTy;    // Computation type for compound assignments (e.g. '+=')
2544
2545  switch (Opc) {
2546  default:
2547    assert(0 && "Unknown binary expr!");
2548  case BinaryOperator::Assign:
2549    ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, QualType());
2550    break;
2551  case BinaryOperator::Mul:
2552  case BinaryOperator::Div:
2553    ResultTy = CheckMultiplyDivideOperands(lhs, rhs, TokLoc);
2554    break;
2555  case BinaryOperator::Rem:
2556    ResultTy = CheckRemainderOperands(lhs, rhs, TokLoc);
2557    break;
2558  case BinaryOperator::Add:
2559    ResultTy = CheckAdditionOperands(lhs, rhs, TokLoc);
2560    break;
2561  case BinaryOperator::Sub:
2562    ResultTy = CheckSubtractionOperands(lhs, rhs, TokLoc);
2563    break;
2564  case BinaryOperator::Shl:
2565  case BinaryOperator::Shr:
2566    ResultTy = CheckShiftOperands(lhs, rhs, TokLoc);
2567    break;
2568  case BinaryOperator::LE:
2569  case BinaryOperator::LT:
2570  case BinaryOperator::GE:
2571  case BinaryOperator::GT:
2572    ResultTy = CheckCompareOperands(lhs, rhs, TokLoc, true);
2573    break;
2574  case BinaryOperator::EQ:
2575  case BinaryOperator::NE:
2576    ResultTy = CheckCompareOperands(lhs, rhs, TokLoc, false);
2577    break;
2578  case BinaryOperator::And:
2579  case BinaryOperator::Xor:
2580  case BinaryOperator::Or:
2581    ResultTy = CheckBitwiseOperands(lhs, rhs, TokLoc);
2582    break;
2583  case BinaryOperator::LAnd:
2584  case BinaryOperator::LOr:
2585    ResultTy = CheckLogicalOperands(lhs, rhs, TokLoc);
2586    break;
2587  case BinaryOperator::MulAssign:
2588  case BinaryOperator::DivAssign:
2589    CompTy = CheckMultiplyDivideOperands(lhs, rhs, TokLoc, true);
2590    if (!CompTy.isNull())
2591      ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
2592    break;
2593  case BinaryOperator::RemAssign:
2594    CompTy = CheckRemainderOperands(lhs, rhs, TokLoc, true);
2595    if (!CompTy.isNull())
2596      ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
2597    break;
2598  case BinaryOperator::AddAssign:
2599    CompTy = CheckAdditionOperands(lhs, rhs, TokLoc, true);
2600    if (!CompTy.isNull())
2601      ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
2602    break;
2603  case BinaryOperator::SubAssign:
2604    CompTy = CheckSubtractionOperands(lhs, rhs, TokLoc, true);
2605    if (!CompTy.isNull())
2606      ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
2607    break;
2608  case BinaryOperator::ShlAssign:
2609  case BinaryOperator::ShrAssign:
2610    CompTy = CheckShiftOperands(lhs, rhs, TokLoc, true);
2611    if (!CompTy.isNull())
2612      ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
2613    break;
2614  case BinaryOperator::AndAssign:
2615  case BinaryOperator::XorAssign:
2616  case BinaryOperator::OrAssign:
2617    CompTy = CheckBitwiseOperands(lhs, rhs, TokLoc, true);
2618    if (!CompTy.isNull())
2619      ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
2620    break;
2621  case BinaryOperator::Comma:
2622    ResultTy = CheckCommaOperands(lhs, rhs, TokLoc);
2623    break;
2624  }
2625  if (ResultTy.isNull())
2626    return true;
2627  if (CompTy.isNull())
2628    return new BinaryOperator(lhs, rhs, Opc, ResultTy, TokLoc);
2629  else
2630    return new CompoundAssignOperator(lhs, rhs, Opc, ResultTy, CompTy, TokLoc);
2631}
2632
2633// Unary Operators.  'Tok' is the token for the operator.
2634Action::ExprResult Sema::ActOnUnaryOp(SourceLocation OpLoc, tok::TokenKind Op,
2635                                      ExprTy *input) {
2636  Expr *Input = (Expr*)input;
2637  UnaryOperator::Opcode Opc = ConvertTokenKindToUnaryOpcode(Op);
2638  QualType resultType;
2639  switch (Opc) {
2640  default:
2641    assert(0 && "Unimplemented unary expr!");
2642  case UnaryOperator::PreInc:
2643  case UnaryOperator::PreDec:
2644    resultType = CheckIncrementDecrementOperand(Input, OpLoc);
2645    break;
2646  case UnaryOperator::AddrOf:
2647    resultType = CheckAddressOfOperand(Input, OpLoc);
2648    break;
2649  case UnaryOperator::Deref:
2650    DefaultFunctionArrayConversion(Input);
2651    resultType = CheckIndirectionOperand(Input, OpLoc);
2652    break;
2653  case UnaryOperator::Plus:
2654  case UnaryOperator::Minus:
2655    UsualUnaryConversions(Input);
2656    resultType = Input->getType();
2657    if (!resultType->isArithmeticType())  // C99 6.5.3.3p1
2658      return Diag(OpLoc, diag::err_typecheck_unary_expr,
2659                  resultType.getAsString());
2660    break;
2661  case UnaryOperator::Not: // bitwise complement
2662    UsualUnaryConversions(Input);
2663    resultType = Input->getType();
2664    // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
2665    if (resultType->isComplexType() || resultType->isComplexIntegerType())
2666      // C99 does not support '~' for complex conjugation.
2667      Diag(OpLoc, diag::ext_integer_complement_complex,
2668           resultType.getAsString(), Input->getSourceRange());
2669    else if (!resultType->isIntegerType())
2670      return Diag(OpLoc, diag::err_typecheck_unary_expr,
2671                  resultType.getAsString(), Input->getSourceRange());
2672    break;
2673  case UnaryOperator::LNot: // logical negation
2674    // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
2675    DefaultFunctionArrayConversion(Input);
2676    resultType = Input->getType();
2677    if (!resultType->isScalarType()) // C99 6.5.3.3p1
2678      return Diag(OpLoc, diag::err_typecheck_unary_expr,
2679                  resultType.getAsString());
2680    // LNot always has type int. C99 6.5.3.3p5.
2681    resultType = Context.IntTy;
2682    break;
2683  case UnaryOperator::SizeOf:
2684    resultType = CheckSizeOfAlignOfOperand(Input->getType(), OpLoc,
2685                                           Input->getSourceRange(), true);
2686    break;
2687  case UnaryOperator::AlignOf:
2688    resultType = CheckSizeOfAlignOfOperand(Input->getType(), OpLoc,
2689                                           Input->getSourceRange(), false);
2690    break;
2691  case UnaryOperator::Real:
2692  case UnaryOperator::Imag:
2693    resultType = CheckRealImagOperand(Input, OpLoc);
2694    break;
2695  case UnaryOperator::Extension:
2696    resultType = Input->getType();
2697    break;
2698  }
2699  if (resultType.isNull())
2700    return true;
2701  return new UnaryOperator(Input, Opc, resultType, OpLoc);
2702}
2703
2704/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
2705Sema::ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc,
2706                                      SourceLocation LabLoc,
2707                                      IdentifierInfo *LabelII) {
2708  // Look up the record for this label identifier.
2709  LabelStmt *&LabelDecl = LabelMap[LabelII];
2710
2711  // If we haven't seen this label yet, create a forward reference. It
2712  // will be validated and/or cleaned up in ActOnFinishFunctionBody.
2713  if (LabelDecl == 0)
2714    LabelDecl = new LabelStmt(LabLoc, LabelII, 0);
2715
2716  // Create the AST node.  The address of a label always has type 'void*'.
2717  return new AddrLabelExpr(OpLoc, LabLoc, LabelDecl,
2718                           Context.getPointerType(Context.VoidTy));
2719}
2720
2721Sema::ExprResult Sema::ActOnStmtExpr(SourceLocation LPLoc, StmtTy *substmt,
2722                                     SourceLocation RPLoc) { // "({..})"
2723  Stmt *SubStmt = static_cast<Stmt*>(substmt);
2724  assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
2725  CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
2726
2727  // FIXME: there are a variety of strange constraints to enforce here, for
2728  // example, it is not possible to goto into a stmt expression apparently.
2729  // More semantic analysis is needed.
2730
2731  // FIXME: the last statement in the compount stmt has its value used.  We
2732  // should not warn about it being unused.
2733
2734  // If there are sub stmts in the compound stmt, take the type of the last one
2735  // as the type of the stmtexpr.
2736  QualType Ty = Context.VoidTy;
2737
2738  if (!Compound->body_empty()) {
2739    Stmt *LastStmt = Compound->body_back();
2740    // If LastStmt is a label, skip down through into the body.
2741    while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt))
2742      LastStmt = Label->getSubStmt();
2743
2744    if (Expr *LastExpr = dyn_cast<Expr>(LastStmt))
2745      Ty = LastExpr->getType();
2746  }
2747
2748  return new StmtExpr(Compound, Ty, LPLoc, RPLoc);
2749}
2750
2751Sema::ExprResult Sema::ActOnBuiltinOffsetOf(SourceLocation BuiltinLoc,
2752                                            SourceLocation TypeLoc,
2753                                            TypeTy *argty,
2754                                            OffsetOfComponent *CompPtr,
2755                                            unsigned NumComponents,
2756                                            SourceLocation RPLoc) {
2757  QualType ArgTy = QualType::getFromOpaquePtr(argty);
2758  assert(!ArgTy.isNull() && "Missing type argument!");
2759
2760  // We must have at least one component that refers to the type, and the first
2761  // one is known to be a field designator.  Verify that the ArgTy represents
2762  // a struct/union/class.
2763  if (!ArgTy->isRecordType())
2764    return Diag(TypeLoc, diag::err_offsetof_record_type,ArgTy.getAsString());
2765
2766  // Otherwise, create a compound literal expression as the base, and
2767  // iteratively process the offsetof designators.
2768  Expr *Res = new CompoundLiteralExpr(SourceLocation(), ArgTy, 0, false);
2769
2770  // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
2771  // GCC extension, diagnose them.
2772  if (NumComponents != 1)
2773    Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator,
2774         SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd));
2775
2776  for (unsigned i = 0; i != NumComponents; ++i) {
2777    const OffsetOfComponent &OC = CompPtr[i];
2778    if (OC.isBrackets) {
2779      // Offset of an array sub-field.  TODO: Should we allow vector elements?
2780      const ArrayType *AT = Context.getAsArrayType(Res->getType());
2781      if (!AT) {
2782        delete Res;
2783        return Diag(OC.LocEnd, diag::err_offsetof_array_type,
2784                    Res->getType().getAsString());
2785      }
2786
2787      // FIXME: C++: Verify that operator[] isn't overloaded.
2788
2789      // C99 6.5.2.1p1
2790      Expr *Idx = static_cast<Expr*>(OC.U.E);
2791      if (!Idx->getType()->isIntegerType())
2792        return Diag(Idx->getLocStart(), diag::err_typecheck_subscript,
2793                    Idx->getSourceRange());
2794
2795      Res = new ArraySubscriptExpr(Res, Idx, AT->getElementType(), OC.LocEnd);
2796      continue;
2797    }
2798
2799    const RecordType *RC = Res->getType()->getAsRecordType();
2800    if (!RC) {
2801      delete Res;
2802      return Diag(OC.LocEnd, diag::err_offsetof_record_type,
2803                  Res->getType().getAsString());
2804    }
2805
2806    // Get the decl corresponding to this.
2807    RecordDecl *RD = RC->getDecl();
2808    FieldDecl *MemberDecl = RD->getMember(OC.U.IdentInfo);
2809    if (!MemberDecl)
2810      return Diag(BuiltinLoc, diag::err_typecheck_no_member,
2811                  OC.U.IdentInfo->getName(),
2812                  SourceRange(OC.LocStart, OC.LocEnd));
2813
2814    // FIXME: C++: Verify that MemberDecl isn't a static field.
2815    // FIXME: Verify that MemberDecl isn't a bitfield.
2816    // MemberDecl->getType() doesn't get the right qualifiers, but it doesn't
2817    // matter here.
2818    Res = new MemberExpr(Res, false, MemberDecl, OC.LocEnd, MemberDecl->getType());
2819  }
2820
2821  return new UnaryOperator(Res, UnaryOperator::OffsetOf, Context.getSizeType(),
2822                           BuiltinLoc);
2823}
2824
2825
2826Sema::ExprResult Sema::ActOnTypesCompatibleExpr(SourceLocation BuiltinLoc,
2827                                                TypeTy *arg1, TypeTy *arg2,
2828                                                SourceLocation RPLoc) {
2829  QualType argT1 = QualType::getFromOpaquePtr(arg1);
2830  QualType argT2 = QualType::getFromOpaquePtr(arg2);
2831
2832  assert((!argT1.isNull() && !argT2.isNull()) && "Missing type argument(s)");
2833
2834  return new TypesCompatibleExpr(Context.IntTy, BuiltinLoc, argT1, argT2,RPLoc);
2835}
2836
2837Sema::ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc, ExprTy *cond,
2838                                       ExprTy *expr1, ExprTy *expr2,
2839                                       SourceLocation RPLoc) {
2840  Expr *CondExpr = static_cast<Expr*>(cond);
2841  Expr *LHSExpr = static_cast<Expr*>(expr1);
2842  Expr *RHSExpr = static_cast<Expr*>(expr2);
2843
2844  assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
2845
2846  // The conditional expression is required to be a constant expression.
2847  llvm::APSInt condEval(32);
2848  SourceLocation ExpLoc;
2849  if (!CondExpr->isIntegerConstantExpr(condEval, Context, &ExpLoc))
2850    return Diag(ExpLoc, diag::err_typecheck_choose_expr_requires_constant,
2851                 CondExpr->getSourceRange());
2852
2853  // If the condition is > zero, then the AST type is the same as the LSHExpr.
2854  QualType resType = condEval.getZExtValue() ? LHSExpr->getType() :
2855                                               RHSExpr->getType();
2856  return new ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr, resType, RPLoc);
2857}
2858
2859//===----------------------------------------------------------------------===//
2860// Clang Extensions.
2861//===----------------------------------------------------------------------===//
2862
2863/// ActOnBlockStart - This callback is invoked when a block literal is started.
2864void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *BlockScope,
2865                           Declarator &ParamInfo) {
2866  // Analyze block parameters.
2867  BlockSemaInfo *BSI = new BlockSemaInfo();
2868
2869  // Add BSI to CurBlock.
2870  BSI->PrevBlockInfo = CurBlock;
2871  CurBlock = BSI;
2872
2873  BSI->ReturnType = 0;
2874  BSI->TheScope = BlockScope;
2875
2876  // Analyze arguments to block.
2877  assert(ParamInfo.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2878         "Not a function declarator!");
2879  DeclaratorChunk::FunctionTypeInfo &FTI = ParamInfo.getTypeObject(0).Fun;
2880
2881  BSI->hasPrototype = FTI.hasPrototype;
2882  BSI->isVariadic = true;
2883
2884  // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs function that takes
2885  // no arguments, not a function that takes a single void argument.
2886  if (FTI.hasPrototype &&
2887      FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2888      (!((ParmVarDecl *)FTI.ArgInfo[0].Param)->getType().getCVRQualifiers() &&
2889        ((ParmVarDecl *)FTI.ArgInfo[0].Param)->getType()->isVoidType())) {
2890    // empty arg list, don't push any params.
2891    BSI->isVariadic = false;
2892  } else if (FTI.hasPrototype) {
2893    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
2894      BSI->Params.push_back((ParmVarDecl *)FTI.ArgInfo[i].Param);
2895    BSI->isVariadic = FTI.isVariadic;
2896  }
2897}
2898
2899/// ActOnBlockError - If there is an error parsing a block, this callback
2900/// is invoked to pop the information about the block from the action impl.
2901void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
2902  // Ensure that CurBlock is deleted.
2903  llvm::OwningPtr<BlockSemaInfo> CC(CurBlock);
2904
2905  // Pop off CurBlock, handle nested blocks.
2906  CurBlock = CurBlock->PrevBlockInfo;
2907
2908  // FIXME: Delete the ParmVarDecl objects as well???
2909
2910}
2911
2912/// ActOnBlockStmtExpr - This is called when the body of a block statement
2913/// literal was successfully completed.  ^(int x){...}
2914Sema::ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc, StmtTy *body,
2915                                          Scope *CurScope) {
2916  // Ensure that CurBlock is deleted.
2917  llvm::OwningPtr<BlockSemaInfo> BSI(CurBlock);
2918  llvm::OwningPtr<CompoundStmt> Body(static_cast<CompoundStmt*>(body));
2919
2920  // Pop off CurBlock, handle nested blocks.
2921  CurBlock = CurBlock->PrevBlockInfo;
2922
2923  QualType RetTy = Context.VoidTy;
2924  if (BSI->ReturnType)
2925    RetTy = QualType(BSI->ReturnType, 0);
2926
2927  llvm::SmallVector<QualType, 8> ArgTypes;
2928  for (unsigned i = 0, e = BSI->Params.size(); i != e; ++i)
2929    ArgTypes.push_back(BSI->Params[i]->getType());
2930
2931  QualType BlockTy;
2932  if (!BSI->hasPrototype)
2933    BlockTy = Context.getFunctionTypeNoProto(RetTy);
2934  else
2935    BlockTy = Context.getFunctionType(RetTy, &ArgTypes[0], ArgTypes.size(),
2936                                      BSI->isVariadic);
2937
2938  BlockTy = Context.getBlockPointerType(BlockTy);
2939  return new BlockExpr(CaretLoc, BlockTy, &BSI->Params[0], BSI->Params.size(),
2940                       Body.take());
2941}
2942
2943/// ExprsMatchFnType - return true if the Exprs in array Args have
2944/// QualTypes that match the QualTypes of the arguments of the FnType.
2945/// The number of arguments has already been validated to match the number of
2946/// arguments in FnType.
2947static bool ExprsMatchFnType(Expr **Args, const FunctionTypeProto *FnType,
2948                             ASTContext &Context) {
2949  unsigned NumParams = FnType->getNumArgs();
2950  for (unsigned i = 0; i != NumParams; ++i) {
2951    QualType ExprTy = Context.getCanonicalType(Args[i]->getType());
2952    QualType ParmTy = Context.getCanonicalType(FnType->getArgType(i));
2953
2954    if (ExprTy.getUnqualifiedType() != ParmTy.getUnqualifiedType())
2955      return false;
2956  }
2957  return true;
2958}
2959
2960Sema::ExprResult Sema::ActOnOverloadExpr(ExprTy **args, unsigned NumArgs,
2961                                         SourceLocation *CommaLocs,
2962                                         SourceLocation BuiltinLoc,
2963                                         SourceLocation RParenLoc) {
2964  // __builtin_overload requires at least 2 arguments
2965  if (NumArgs < 2)
2966    return Diag(RParenLoc, diag::err_typecheck_call_too_few_args,
2967                SourceRange(BuiltinLoc, RParenLoc));
2968
2969  // The first argument is required to be a constant expression.  It tells us
2970  // the number of arguments to pass to each of the functions to be overloaded.
2971  Expr **Args = reinterpret_cast<Expr**>(args);
2972  Expr *NParamsExpr = Args[0];
2973  llvm::APSInt constEval(32);
2974  SourceLocation ExpLoc;
2975  if (!NParamsExpr->isIntegerConstantExpr(constEval, Context, &ExpLoc))
2976    return Diag(ExpLoc, diag::err_overload_expr_requires_non_zero_constant,
2977                NParamsExpr->getSourceRange());
2978
2979  // Verify that the number of parameters is > 0
2980  unsigned NumParams = constEval.getZExtValue();
2981  if (NumParams == 0)
2982    return Diag(ExpLoc, diag::err_overload_expr_requires_non_zero_constant,
2983                NParamsExpr->getSourceRange());
2984  // Verify that we have at least 1 + NumParams arguments to the builtin.
2985  if ((NumParams + 1) > NumArgs)
2986    return Diag(RParenLoc, diag::err_typecheck_call_too_few_args,
2987                SourceRange(BuiltinLoc, RParenLoc));
2988
2989  // Figure out the return type, by matching the args to one of the functions
2990  // listed after the parameters.
2991  OverloadExpr *OE = 0;
2992  for (unsigned i = NumParams + 1; i < NumArgs; ++i) {
2993    // UsualUnaryConversions will convert the function DeclRefExpr into a
2994    // pointer to function.
2995    Expr *Fn = UsualUnaryConversions(Args[i]);
2996    const FunctionTypeProto *FnType = 0;
2997    if (const PointerType *PT = Fn->getType()->getAsPointerType())
2998      FnType = PT->getPointeeType()->getAsFunctionTypeProto();
2999
3000    // The Expr type must be FunctionTypeProto, since FunctionTypeProto has no
3001    // parameters, and the number of parameters must match the value passed to
3002    // the builtin.
3003    if (!FnType || (FnType->getNumArgs() != NumParams))
3004      return Diag(Fn->getExprLoc(), diag::err_overload_incorrect_fntype,
3005                  Fn->getSourceRange());
3006
3007    // Scan the parameter list for the FunctionType, checking the QualType of
3008    // each parameter against the QualTypes of the arguments to the builtin.
3009    // If they match, return a new OverloadExpr.
3010    if (ExprsMatchFnType(Args+1, FnType, Context)) {
3011      if (OE)
3012        return Diag(Fn->getExprLoc(), diag::err_overload_multiple_match,
3013                    OE->getFn()->getSourceRange());
3014      // Remember our match, and continue processing the remaining arguments
3015      // to catch any errors.
3016      OE = new OverloadExpr(Args, NumArgs, i, FnType->getResultType(),
3017                            BuiltinLoc, RParenLoc);
3018    }
3019  }
3020  // Return the newly created OverloadExpr node, if we succeded in matching
3021  // exactly one of the candidate functions.
3022  if (OE)
3023    return OE;
3024
3025  // If we didn't find a matching function Expr in the __builtin_overload list
3026  // the return an error.
3027  std::string typeNames;
3028  for (unsigned i = 0; i != NumParams; ++i) {
3029    if (i != 0) typeNames += ", ";
3030    typeNames += Args[i+1]->getType().getAsString();
3031  }
3032
3033  return Diag(BuiltinLoc, diag::err_overload_no_match, typeNames,
3034              SourceRange(BuiltinLoc, RParenLoc));
3035}
3036
3037Sema::ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
3038                                  ExprTy *expr, TypeTy *type,
3039                                  SourceLocation RPLoc) {
3040  Expr *E = static_cast<Expr*>(expr);
3041  QualType T = QualType::getFromOpaquePtr(type);
3042
3043  InitBuiltinVaListType();
3044
3045  // Get the va_list type
3046  QualType VaListType = Context.getBuiltinVaListType();
3047  // Deal with implicit array decay; for example, on x86-64,
3048  // va_list is an array, but it's supposed to decay to
3049  // a pointer for va_arg.
3050  if (VaListType->isArrayType())
3051    VaListType = Context.getArrayDecayedType(VaListType);
3052  // Make sure the input expression also decays appropriately.
3053  UsualUnaryConversions(E);
3054
3055  if (CheckAssignmentConstraints(VaListType, E->getType()) != Compatible)
3056    return Diag(E->getLocStart(),
3057                diag::err_first_argument_to_va_arg_not_of_type_va_list,
3058                E->getType().getAsString(),
3059                E->getSourceRange());
3060
3061  // FIXME: Warn if a non-POD type is passed in.
3062
3063  return new VAArgExpr(BuiltinLoc, E, T, RPLoc);
3064}
3065
3066bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
3067                                    SourceLocation Loc,
3068                                    QualType DstType, QualType SrcType,
3069                                    Expr *SrcExpr, const char *Flavor) {
3070  // Decode the result (notice that AST's are still created for extensions).
3071  bool isInvalid = false;
3072  unsigned DiagKind;
3073  switch (ConvTy) {
3074  default: assert(0 && "Unknown conversion type");
3075  case Compatible: return false;
3076  case PointerToInt:
3077    DiagKind = diag::ext_typecheck_convert_pointer_int;
3078    break;
3079  case IntToPointer:
3080    DiagKind = diag::ext_typecheck_convert_int_pointer;
3081    break;
3082  case IncompatiblePointer:
3083    DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
3084    break;
3085  case FunctionVoidPointer:
3086    DiagKind = diag::ext_typecheck_convert_pointer_void_func;
3087    break;
3088  case CompatiblePointerDiscardsQualifiers:
3089    // If the qualifiers lost were because we were applying the
3090    // (deprecated) C++ conversion from a string literal to a char*
3091    // (or wchar_t*), then there was no error (C++ 4.2p2).  FIXME:
3092    // Ideally, this check would be performed in
3093    // CheckPointerTypesForAssignment. However, that would require a
3094    // bit of refactoring (so that the second argument is an
3095    // expression, rather than a type), which should be done as part
3096    // of a larger effort to fix CheckPointerTypesForAssignment for
3097    // C++ semantics.
3098    if (getLangOptions().CPlusPlus &&
3099        IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
3100      return false;
3101    DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
3102    break;
3103  case IntToBlockPointer:
3104    DiagKind = diag::err_int_to_block_pointer;
3105    break;
3106  case IncompatibleBlockPointer:
3107    DiagKind = diag::ext_typecheck_convert_incompatible_block_pointer;
3108    break;
3109  case BlockVoidPointer:
3110    DiagKind = diag::ext_typecheck_convert_pointer_void_block;
3111    break;
3112  case Incompatible:
3113    DiagKind = diag::err_typecheck_convert_incompatible;
3114    isInvalid = true;
3115    break;
3116  }
3117
3118  Diag(Loc, DiagKind, DstType.getAsString(), SrcType.getAsString(), Flavor,
3119       SrcExpr->getSourceRange());
3120  return isInvalid;
3121}
3122