SemaExpr.cpp revision 4b7a834e0fecddd9eaf1f4567867c718e4eebf50
1//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInit.h"
16#include "Lookup.h"
17#include "clang/Analysis/AnalysisContext.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/AST/DeclTemplate.h"
21#include "clang/AST/ExprCXX.h"
22#include "clang/AST/ExprObjC.h"
23#include "clang/Basic/PartialDiagnostic.h"
24#include "clang/Basic/SourceManager.h"
25#include "clang/Basic/TargetInfo.h"
26#include "clang/Lex/LiteralSupport.h"
27#include "clang/Lex/Preprocessor.h"
28#include "clang/Parse/DeclSpec.h"
29#include "clang/Parse/Designator.h"
30#include "clang/Parse/Scope.h"
31#include "clang/Parse/Template.h"
32using namespace clang;
33
34
35/// \brief Determine whether the use of this declaration is valid, and
36/// emit any corresponding diagnostics.
37///
38/// This routine diagnoses various problems with referencing
39/// declarations that can occur when using a declaration. For example,
40/// it might warn if a deprecated or unavailable declaration is being
41/// used, or produce an error (and return true) if a C++0x deleted
42/// function is being used.
43///
44/// If IgnoreDeprecated is set to true, this should not want about deprecated
45/// decls.
46///
47/// \returns true if there was an error (this declaration cannot be
48/// referenced), false otherwise.
49///
50bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc) {
51  // See if the decl is deprecated.
52  if (D->getAttr<DeprecatedAttr>()) {
53    EmitDeprecationWarning(D, Loc);
54  }
55
56  // See if the decl is unavailable
57  if (D->getAttr<UnavailableAttr>()) {
58    Diag(Loc, diag::warn_unavailable) << D->getDeclName();
59    Diag(D->getLocation(), diag::note_unavailable_here) << 0;
60  }
61
62  // See if this is a deleted function.
63  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
64    if (FD->isDeleted()) {
65      Diag(Loc, diag::err_deleted_function_use);
66      Diag(D->getLocation(), diag::note_unavailable_here) << true;
67      return true;
68    }
69  }
70
71  return false;
72}
73
74/// DiagnoseSentinelCalls - This routine checks on method dispatch calls
75/// (and other functions in future), which have been declared with sentinel
76/// attribute. It warns if call does not have the sentinel argument.
77///
78void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
79                                 Expr **Args, unsigned NumArgs) {
80  const SentinelAttr *attr = D->getAttr<SentinelAttr>();
81  if (!attr)
82    return;
83  int sentinelPos = attr->getSentinel();
84  int nullPos = attr->getNullPos();
85
86  // FIXME. ObjCMethodDecl and FunctionDecl need be derived from the same common
87  // base class. Then we won't be needing two versions of the same code.
88  unsigned int i = 0;
89  bool warnNotEnoughArgs = false;
90  int isMethod = 0;
91  if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
92    // skip over named parameters.
93    ObjCMethodDecl::param_iterator P, E = MD->param_end();
94    for (P = MD->param_begin(); (P != E && i < NumArgs); ++P) {
95      if (nullPos)
96        --nullPos;
97      else
98        ++i;
99    }
100    warnNotEnoughArgs = (P != E || i >= NumArgs);
101    isMethod = 1;
102  } else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
103    // skip over named parameters.
104    ObjCMethodDecl::param_iterator P, E = FD->param_end();
105    for (P = FD->param_begin(); (P != E && i < NumArgs); ++P) {
106      if (nullPos)
107        --nullPos;
108      else
109        ++i;
110    }
111    warnNotEnoughArgs = (P != E || i >= NumArgs);
112  } else if (VarDecl *V = dyn_cast<VarDecl>(D)) {
113    // block or function pointer call.
114    QualType Ty = V->getType();
115    if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) {
116      const FunctionType *FT = Ty->isFunctionPointerType()
117      ? Ty->getAs<PointerType>()->getPointeeType()->getAs<FunctionType>()
118      : Ty->getAs<BlockPointerType>()->getPointeeType()->getAs<FunctionType>();
119      if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT)) {
120        unsigned NumArgsInProto = Proto->getNumArgs();
121        unsigned k;
122        for (k = 0; (k != NumArgsInProto && i < NumArgs); k++) {
123          if (nullPos)
124            --nullPos;
125          else
126            ++i;
127        }
128        warnNotEnoughArgs = (k != NumArgsInProto || i >= NumArgs);
129      }
130      if (Ty->isBlockPointerType())
131        isMethod = 2;
132    } else
133      return;
134  } else
135    return;
136
137  if (warnNotEnoughArgs) {
138    Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
139    Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
140    return;
141  }
142  int sentinel = i;
143  while (sentinelPos > 0 && i < NumArgs-1) {
144    --sentinelPos;
145    ++i;
146  }
147  if (sentinelPos > 0) {
148    Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
149    Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
150    return;
151  }
152  while (i < NumArgs-1) {
153    ++i;
154    ++sentinel;
155  }
156  Expr *sentinelExpr = Args[sentinel];
157  if (sentinelExpr && (!isa<GNUNullExpr>(sentinelExpr) &&
158                       (!sentinelExpr->getType()->isPointerType() ||
159                        !sentinelExpr->isNullPointerConstant(Context,
160                                            Expr::NPC_ValueDependentIsNull)))) {
161    Diag(Loc, diag::warn_missing_sentinel) << isMethod;
162    Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
163  }
164  return;
165}
166
167SourceRange Sema::getExprRange(ExprTy *E) const {
168  Expr *Ex = (Expr *)E;
169  return Ex? Ex->getSourceRange() : SourceRange();
170}
171
172//===----------------------------------------------------------------------===//
173//  Standard Promotions and Conversions
174//===----------------------------------------------------------------------===//
175
176/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
177void Sema::DefaultFunctionArrayConversion(Expr *&E) {
178  QualType Ty = E->getType();
179  assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
180
181  if (Ty->isFunctionType())
182    ImpCastExprToType(E, Context.getPointerType(Ty),
183                      CastExpr::CK_FunctionToPointerDecay);
184  else if (Ty->isArrayType()) {
185    // In C90 mode, arrays only promote to pointers if the array expression is
186    // an lvalue.  The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
187    // type 'array of type' is converted to an expression that has type 'pointer
188    // to type'...".  In C99 this was changed to: C99 6.3.2.1p3: "an expression
189    // that has type 'array of type' ...".  The relevant change is "an lvalue"
190    // (C90) to "an expression" (C99).
191    //
192    // C++ 4.2p1:
193    // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
194    // T" can be converted to an rvalue of type "pointer to T".
195    //
196    if (getLangOptions().C99 || getLangOptions().CPlusPlus ||
197        E->isLvalue(Context) == Expr::LV_Valid)
198      ImpCastExprToType(E, Context.getArrayDecayedType(Ty),
199                        CastExpr::CK_ArrayToPointerDecay);
200  }
201}
202
203void Sema::DefaultFunctionArrayLvalueConversion(Expr *&E) {
204  DefaultFunctionArrayConversion(E);
205
206  QualType Ty = E->getType();
207  assert(!Ty.isNull() && "DefaultFunctionArrayLvalueConversion - missing type");
208  if (!Ty->isDependentType() && Ty.hasQualifiers() &&
209      (!getLangOptions().CPlusPlus || !Ty->isRecordType()) &&
210      E->isLvalue(Context) == Expr::LV_Valid) {
211    // C++ [conv.lval]p1:
212    //   [...] If T is a non-class type, the type of the rvalue is the
213    //   cv-unqualified version of T. Otherwise, the type of the
214    //   rvalue is T
215    //
216    // C99 6.3.2.1p2:
217    //   If the lvalue has qualified type, the value has the unqualified
218    //   version of the type of the lvalue; otherwise, the value has the
219    //   type of the lvalue.
220    ImpCastExprToType(E, Ty.getUnqualifiedType(), CastExpr::CK_NoOp);
221  }
222}
223
224
225/// UsualUnaryConversions - Performs various conversions that are common to most
226/// operators (C99 6.3). The conversions of array and function types are
227/// sometimes surpressed. For example, the array->pointer conversion doesn't
228/// apply if the array is an argument to the sizeof or address (&) operators.
229/// In these instances, this routine should *not* be called.
230Expr *Sema::UsualUnaryConversions(Expr *&Expr) {
231  QualType Ty = Expr->getType();
232  assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
233
234  // C99 6.3.1.1p2:
235  //
236  //   The following may be used in an expression wherever an int or
237  //   unsigned int may be used:
238  //     - an object or expression with an integer type whose integer
239  //       conversion rank is less than or equal to the rank of int
240  //       and unsigned int.
241  //     - A bit-field of type _Bool, int, signed int, or unsigned int.
242  //
243  //   If an int can represent all values of the original type, the
244  //   value is converted to an int; otherwise, it is converted to an
245  //   unsigned int. These are called the integer promotions. All
246  //   other types are unchanged by the integer promotions.
247  QualType PTy = Context.isPromotableBitField(Expr);
248  if (!PTy.isNull()) {
249    ImpCastExprToType(Expr, PTy, CastExpr::CK_IntegralCast);
250    return Expr;
251  }
252  if (Ty->isPromotableIntegerType()) {
253    QualType PT = Context.getPromotedIntegerType(Ty);
254    ImpCastExprToType(Expr, PT, CastExpr::CK_IntegralCast);
255    return Expr;
256  }
257
258  DefaultFunctionArrayLvalueConversion(Expr);
259  return Expr;
260}
261
262/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
263/// do not have a prototype. Arguments that have type float are promoted to
264/// double. All other argument types are converted by UsualUnaryConversions().
265void Sema::DefaultArgumentPromotion(Expr *&Expr) {
266  QualType Ty = Expr->getType();
267  assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
268
269  // If this is a 'float' (CVR qualified or typedef) promote to double.
270  if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
271    if (BT->getKind() == BuiltinType::Float)
272      return ImpCastExprToType(Expr, Context.DoubleTy,
273                               CastExpr::CK_FloatingCast);
274
275  UsualUnaryConversions(Expr);
276}
277
278/// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
279/// will warn if the resulting type is not a POD type, and rejects ObjC
280/// interfaces passed by value.  This returns true if the argument type is
281/// completely illegal.
282bool Sema::DefaultVariadicArgumentPromotion(Expr *&Expr, VariadicCallType CT) {
283  DefaultArgumentPromotion(Expr);
284
285  if (Expr->getType()->isObjCInterfaceType() &&
286      DiagRuntimeBehavior(Expr->getLocStart(),
287        PDiag(diag::err_cannot_pass_objc_interface_to_vararg)
288          << Expr->getType() << CT))
289    return true;
290
291  if (!Expr->getType()->isPODType() &&
292      DiagRuntimeBehavior(Expr->getLocStart(),
293                          PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg)
294                            << Expr->getType() << CT))
295    return true;
296
297  return false;
298}
299
300
301/// UsualArithmeticConversions - Performs various conversions that are common to
302/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
303/// routine returns the first non-arithmetic type found. The client is
304/// responsible for emitting appropriate error diagnostics.
305/// FIXME: verify the conversion rules for "complex int" are consistent with
306/// GCC.
307QualType Sema::UsualArithmeticConversions(Expr *&lhsExpr, Expr *&rhsExpr,
308                                          bool isCompAssign) {
309  if (!isCompAssign)
310    UsualUnaryConversions(lhsExpr);
311
312  UsualUnaryConversions(rhsExpr);
313
314  // For conversion purposes, we ignore any qualifiers.
315  // For example, "const float" and "float" are equivalent.
316  QualType lhs =
317    Context.getCanonicalType(lhsExpr->getType()).getUnqualifiedType();
318  QualType rhs =
319    Context.getCanonicalType(rhsExpr->getType()).getUnqualifiedType();
320
321  // If both types are identical, no conversion is needed.
322  if (lhs == rhs)
323    return lhs;
324
325  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
326  // The caller can deal with this (e.g. pointer + int).
327  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
328    return lhs;
329
330  // Perform bitfield promotions.
331  QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(lhsExpr);
332  if (!LHSBitfieldPromoteTy.isNull())
333    lhs = LHSBitfieldPromoteTy;
334  QualType RHSBitfieldPromoteTy = Context.isPromotableBitField(rhsExpr);
335  if (!RHSBitfieldPromoteTy.isNull())
336    rhs = RHSBitfieldPromoteTy;
337
338  QualType destType = Context.UsualArithmeticConversionsType(lhs, rhs);
339  if (!isCompAssign)
340    ImpCastExprToType(lhsExpr, destType, CastExpr::CK_Unknown);
341  ImpCastExprToType(rhsExpr, destType, CastExpr::CK_Unknown);
342  return destType;
343}
344
345//===----------------------------------------------------------------------===//
346//  Semantic Analysis for various Expression Types
347//===----------------------------------------------------------------------===//
348
349
350/// ActOnStringLiteral - The specified tokens were lexed as pasted string
351/// fragments (e.g. "foo" "bar" L"baz").  The result string has to handle string
352/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
353/// multiple tokens.  However, the common case is that StringToks points to one
354/// string.
355///
356Action::OwningExprResult
357Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks) {
358  assert(NumStringToks && "Must have at least one string!");
359
360  StringLiteralParser Literal(StringToks, NumStringToks, PP);
361  if (Literal.hadError)
362    return ExprError();
363
364  llvm::SmallVector<SourceLocation, 4> StringTokLocs;
365  for (unsigned i = 0; i != NumStringToks; ++i)
366    StringTokLocs.push_back(StringToks[i].getLocation());
367
368  QualType StrTy = Context.CharTy;
369  if (Literal.AnyWide) StrTy = Context.getWCharType();
370  if (Literal.Pascal) StrTy = Context.UnsignedCharTy;
371
372  // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
373  if (getLangOptions().CPlusPlus || getLangOptions().ConstStrings )
374    StrTy.addConst();
375
376  // Get an array type for the string, according to C99 6.4.5.  This includes
377  // the nul terminator character as well as the string length for pascal
378  // strings.
379  StrTy = Context.getConstantArrayType(StrTy,
380                                 llvm::APInt(32, Literal.GetNumStringChars()+1),
381                                       ArrayType::Normal, 0);
382
383  // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
384  return Owned(StringLiteral::Create(Context, Literal.GetString(),
385                                     Literal.GetStringLength(),
386                                     Literal.AnyWide, StrTy,
387                                     &StringTokLocs[0],
388                                     StringTokLocs.size()));
389}
390
391/// ShouldSnapshotBlockValueReference - Return true if a reference inside of
392/// CurBlock to VD should cause it to be snapshotted (as we do for auto
393/// variables defined outside the block) or false if this is not needed (e.g.
394/// for values inside the block or for globals).
395///
396/// This also keeps the 'hasBlockDeclRefExprs' in the BlockScopeInfo records
397/// up-to-date.
398///
399static bool ShouldSnapshotBlockValueReference(Sema &S, BlockScopeInfo *CurBlock,
400                                              ValueDecl *VD) {
401  // If the value is defined inside the block, we couldn't snapshot it even if
402  // we wanted to.
403  if (CurBlock->TheDecl == VD->getDeclContext())
404    return false;
405
406  // If this is an enum constant or function, it is constant, don't snapshot.
407  if (isa<EnumConstantDecl>(VD) || isa<FunctionDecl>(VD))
408    return false;
409
410  // If this is a reference to an extern, static, or global variable, no need to
411  // snapshot it.
412  // FIXME: What about 'const' variables in C++?
413  if (const VarDecl *Var = dyn_cast<VarDecl>(VD))
414    if (!Var->hasLocalStorage())
415      return false;
416
417  // Blocks that have these can't be constant.
418  CurBlock->hasBlockDeclRefExprs = true;
419
420  // If we have nested blocks, the decl may be declared in an outer block (in
421  // which case that outer block doesn't get "hasBlockDeclRefExprs") or it may
422  // be defined outside all of the current blocks (in which case the blocks do
423  // all get the bit).  Walk the nesting chain.
424  for (unsigned I = S.FunctionScopes.size() - 1; I; --I) {
425    BlockScopeInfo *NextBlock = dyn_cast<BlockScopeInfo>(S.FunctionScopes[I]);
426
427    if (!NextBlock)
428      continue;
429
430    // If we found the defining block for the variable, don't mark the block as
431    // having a reference outside it.
432    if (NextBlock->TheDecl == VD->getDeclContext())
433      break;
434
435    // Otherwise, the DeclRef from the inner block causes the outer one to need
436    // a snapshot as well.
437    NextBlock->hasBlockDeclRefExprs = true;
438  }
439
440  return true;
441}
442
443
444
445/// BuildDeclRefExpr - Build a DeclRefExpr.
446Sema::OwningExprResult
447Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, SourceLocation Loc,
448                       const CXXScopeSpec *SS) {
449  if (Context.getCanonicalType(Ty) == Context.UndeducedAutoTy) {
450    Diag(Loc,
451         diag::err_auto_variable_cannot_appear_in_own_initializer)
452      << D->getDeclName();
453    return ExprError();
454  }
455
456  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
457    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
458      if (const FunctionDecl *FD = MD->getParent()->isLocalClass()) {
459        if (VD->hasLocalStorage() && VD->getDeclContext() != CurContext) {
460          Diag(Loc, diag::err_reference_to_local_var_in_enclosing_function)
461            << D->getIdentifier() << FD->getDeclName();
462          Diag(D->getLocation(), diag::note_local_variable_declared_here)
463            << D->getIdentifier();
464          return ExprError();
465        }
466      }
467    }
468  }
469
470  MarkDeclarationReferenced(Loc, D);
471
472  return Owned(DeclRefExpr::Create(Context,
473                              SS? (NestedNameSpecifier *)SS->getScopeRep() : 0,
474                                   SS? SS->getRange() : SourceRange(),
475                                   D, Loc, Ty));
476}
477
478/// getObjectForAnonymousRecordDecl - Retrieve the (unnamed) field or
479/// variable corresponding to the anonymous union or struct whose type
480/// is Record.
481static Decl *getObjectForAnonymousRecordDecl(ASTContext &Context,
482                                             RecordDecl *Record) {
483  assert(Record->isAnonymousStructOrUnion() &&
484         "Record must be an anonymous struct or union!");
485
486  // FIXME: Once Decls are directly linked together, this will be an O(1)
487  // operation rather than a slow walk through DeclContext's vector (which
488  // itself will be eliminated). DeclGroups might make this even better.
489  DeclContext *Ctx = Record->getDeclContext();
490  for (DeclContext::decl_iterator D = Ctx->decls_begin(),
491                               DEnd = Ctx->decls_end();
492       D != DEnd; ++D) {
493    if (*D == Record) {
494      // The object for the anonymous struct/union directly
495      // follows its type in the list of declarations.
496      ++D;
497      assert(D != DEnd && "Missing object for anonymous record");
498      assert(!cast<NamedDecl>(*D)->getDeclName() && "Decl should be unnamed");
499      return *D;
500    }
501  }
502
503  assert(false && "Missing object for anonymous record");
504  return 0;
505}
506
507/// \brief Given a field that represents a member of an anonymous
508/// struct/union, build the path from that field's context to the
509/// actual member.
510///
511/// Construct the sequence of field member references we'll have to
512/// perform to get to the field in the anonymous union/struct. The
513/// list of members is built from the field outward, so traverse it
514/// backwards to go from an object in the current context to the field
515/// we found.
516///
517/// \returns The variable from which the field access should begin,
518/// for an anonymous struct/union that is not a member of another
519/// class. Otherwise, returns NULL.
520VarDecl *Sema::BuildAnonymousStructUnionMemberPath(FieldDecl *Field,
521                                   llvm::SmallVectorImpl<FieldDecl *> &Path) {
522  assert(Field->getDeclContext()->isRecord() &&
523         cast<RecordDecl>(Field->getDeclContext())->isAnonymousStructOrUnion()
524         && "Field must be stored inside an anonymous struct or union");
525
526  Path.push_back(Field);
527  VarDecl *BaseObject = 0;
528  DeclContext *Ctx = Field->getDeclContext();
529  do {
530    RecordDecl *Record = cast<RecordDecl>(Ctx);
531    Decl *AnonObject = getObjectForAnonymousRecordDecl(Context, Record);
532    if (FieldDecl *AnonField = dyn_cast<FieldDecl>(AnonObject))
533      Path.push_back(AnonField);
534    else {
535      BaseObject = cast<VarDecl>(AnonObject);
536      break;
537    }
538    Ctx = Ctx->getParent();
539  } while (Ctx->isRecord() &&
540           cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion());
541
542  return BaseObject;
543}
544
545Sema::OwningExprResult
546Sema::BuildAnonymousStructUnionMemberReference(SourceLocation Loc,
547                                               FieldDecl *Field,
548                                               Expr *BaseObjectExpr,
549                                               SourceLocation OpLoc) {
550  llvm::SmallVector<FieldDecl *, 4> AnonFields;
551  VarDecl *BaseObject = BuildAnonymousStructUnionMemberPath(Field,
552                                                            AnonFields);
553
554  // Build the expression that refers to the base object, from
555  // which we will build a sequence of member references to each
556  // of the anonymous union objects and, eventually, the field we
557  // found via name lookup.
558  bool BaseObjectIsPointer = false;
559  Qualifiers BaseQuals;
560  if (BaseObject) {
561    // BaseObject is an anonymous struct/union variable (and is,
562    // therefore, not part of another non-anonymous record).
563    if (BaseObjectExpr) BaseObjectExpr->Destroy(Context);
564    MarkDeclarationReferenced(Loc, BaseObject);
565    BaseObjectExpr = new (Context) DeclRefExpr(BaseObject,BaseObject->getType(),
566                                               SourceLocation());
567    BaseQuals
568      = Context.getCanonicalType(BaseObject->getType()).getQualifiers();
569  } else if (BaseObjectExpr) {
570    // The caller provided the base object expression. Determine
571    // whether its a pointer and whether it adds any qualifiers to the
572    // anonymous struct/union fields we're looking into.
573    QualType ObjectType = BaseObjectExpr->getType();
574    if (const PointerType *ObjectPtr = ObjectType->getAs<PointerType>()) {
575      BaseObjectIsPointer = true;
576      ObjectType = ObjectPtr->getPointeeType();
577    }
578    BaseQuals
579      = Context.getCanonicalType(ObjectType).getQualifiers();
580  } else {
581    // We've found a member of an anonymous struct/union that is
582    // inside a non-anonymous struct/union, so in a well-formed
583    // program our base object expression is "this".
584    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
585      if (!MD->isStatic()) {
586        QualType AnonFieldType
587          = Context.getTagDeclType(
588                     cast<RecordDecl>(AnonFields.back()->getDeclContext()));
589        QualType ThisType = Context.getTagDeclType(MD->getParent());
590        if ((Context.getCanonicalType(AnonFieldType)
591               == Context.getCanonicalType(ThisType)) ||
592            IsDerivedFrom(ThisType, AnonFieldType)) {
593          // Our base object expression is "this".
594          BaseObjectExpr = new (Context) CXXThisExpr(Loc,
595                                                     MD->getThisType(Context),
596                                                     /*isImplicit=*/true);
597          BaseObjectIsPointer = true;
598        }
599      } else {
600        return ExprError(Diag(Loc,diag::err_invalid_member_use_in_static_method)
601          << Field->getDeclName());
602      }
603      BaseQuals = Qualifiers::fromCVRMask(MD->getTypeQualifiers());
604    }
605
606    if (!BaseObjectExpr)
607      return ExprError(Diag(Loc, diag::err_invalid_non_static_member_use)
608        << Field->getDeclName());
609  }
610
611  // Build the implicit member references to the field of the
612  // anonymous struct/union.
613  Expr *Result = BaseObjectExpr;
614  Qualifiers ResultQuals = BaseQuals;
615  for (llvm::SmallVector<FieldDecl *, 4>::reverse_iterator
616         FI = AnonFields.rbegin(), FIEnd = AnonFields.rend();
617       FI != FIEnd; ++FI) {
618    QualType MemberType = (*FI)->getType();
619    Qualifiers MemberTypeQuals =
620      Context.getCanonicalType(MemberType).getQualifiers();
621
622    // CVR attributes from the base are picked up by members,
623    // except that 'mutable' members don't pick up 'const'.
624    if ((*FI)->isMutable())
625      ResultQuals.removeConst();
626
627    // GC attributes are never picked up by members.
628    ResultQuals.removeObjCGCAttr();
629
630    // TR 18037 does not allow fields to be declared with address spaces.
631    assert(!MemberTypeQuals.hasAddressSpace());
632
633    Qualifiers NewQuals = ResultQuals + MemberTypeQuals;
634    if (NewQuals != MemberTypeQuals)
635      MemberType = Context.getQualifiedType(MemberType, NewQuals);
636
637    MarkDeclarationReferenced(Loc, *FI);
638    PerformObjectMemberConversion(Result, /*FIXME:Qualifier=*/0, *FI);
639    // FIXME: Might this end up being a qualified name?
640    Result = new (Context) MemberExpr(Result, BaseObjectIsPointer, *FI,
641                                      OpLoc, MemberType);
642    BaseObjectIsPointer = false;
643    ResultQuals = NewQuals;
644  }
645
646  return Owned(Result);
647}
648
649/// Decomposes the given name into a DeclarationName, its location, and
650/// possibly a list of template arguments.
651///
652/// If this produces template arguments, it is permitted to call
653/// DecomposeTemplateName.
654///
655/// This actually loses a lot of source location information for
656/// non-standard name kinds; we should consider preserving that in
657/// some way.
658static void DecomposeUnqualifiedId(Sema &SemaRef,
659                                   const UnqualifiedId &Id,
660                                   TemplateArgumentListInfo &Buffer,
661                                   DeclarationName &Name,
662                                   SourceLocation &NameLoc,
663                             const TemplateArgumentListInfo *&TemplateArgs) {
664  if (Id.getKind() == UnqualifiedId::IK_TemplateId) {
665    Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc);
666    Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc);
667
668    ASTTemplateArgsPtr TemplateArgsPtr(SemaRef,
669                                       Id.TemplateId->getTemplateArgs(),
670                                       Id.TemplateId->NumArgs);
671    SemaRef.translateTemplateArguments(TemplateArgsPtr, Buffer);
672    TemplateArgsPtr.release();
673
674    TemplateName TName =
675      Sema::TemplateTy::make(Id.TemplateId->Template).getAsVal<TemplateName>();
676
677    Name = SemaRef.Context.getNameForTemplate(TName);
678    NameLoc = Id.TemplateId->TemplateNameLoc;
679    TemplateArgs = &Buffer;
680  } else {
681    Name = SemaRef.GetNameFromUnqualifiedId(Id);
682    NameLoc = Id.StartLocation;
683    TemplateArgs = 0;
684  }
685}
686
687/// Decompose the given template name into a list of lookup results.
688///
689/// The unqualified ID must name a non-dependent template, which can
690/// be more easily tested by checking whether DecomposeUnqualifiedId
691/// found template arguments.
692static void DecomposeTemplateName(LookupResult &R, const UnqualifiedId &Id) {
693  assert(Id.getKind() == UnqualifiedId::IK_TemplateId);
694  TemplateName TName =
695    Sema::TemplateTy::make(Id.TemplateId->Template).getAsVal<TemplateName>();
696
697  if (TemplateDecl *TD = TName.getAsTemplateDecl())
698    R.addDecl(TD);
699  else if (OverloadedTemplateStorage *OT = TName.getAsOverloadedTemplate())
700    for (OverloadedTemplateStorage::iterator I = OT->begin(), E = OT->end();
701           I != E; ++I)
702      R.addDecl(*I);
703
704  R.resolveKind();
705}
706
707/// Determines whether the given record is "fully-formed" at the given
708/// location, i.e. whether a qualified lookup into it is assured of
709/// getting consistent results already.
710static bool IsFullyFormedScope(Sema &SemaRef, CXXRecordDecl *Record) {
711  if (!Record->hasDefinition())
712    return false;
713
714  for (CXXRecordDecl::base_class_iterator I = Record->bases_begin(),
715         E = Record->bases_end(); I != E; ++I) {
716    CanQualType BaseT = SemaRef.Context.getCanonicalType((*I).getType());
717    CanQual<RecordType> BaseRT = BaseT->getAs<RecordType>();
718    if (!BaseRT) return false;
719
720    CXXRecordDecl *BaseRecord = cast<CXXRecordDecl>(BaseRT->getDecl());
721    if (!BaseRecord->hasDefinition() ||
722        !IsFullyFormedScope(SemaRef, BaseRecord))
723      return false;
724  }
725
726  return true;
727}
728
729/// Determines whether we can lookup this id-expression now or whether
730/// we have to wait until template instantiation is complete.
731static bool IsDependentIdExpression(Sema &SemaRef, const CXXScopeSpec &SS) {
732  DeclContext *DC = SemaRef.computeDeclContext(SS, false);
733
734  // If the qualifier scope isn't computable, it's definitely dependent.
735  if (!DC) return true;
736
737  // If the qualifier scope doesn't name a record, we can always look into it.
738  if (!isa<CXXRecordDecl>(DC)) return false;
739
740  // We can't look into record types unless they're fully-formed.
741  if (!IsFullyFormedScope(SemaRef, cast<CXXRecordDecl>(DC))) return true;
742
743  return false;
744}
745
746/// Determines if the given class is provably not derived from all of
747/// the prospective base classes.
748static bool IsProvablyNotDerivedFrom(Sema &SemaRef,
749                                     CXXRecordDecl *Record,
750                            const llvm::SmallPtrSet<CXXRecordDecl*, 4> &Bases) {
751  if (Bases.count(Record->getCanonicalDecl()))
752    return false;
753
754  RecordDecl *RD = Record->getDefinition();
755  if (!RD) return false;
756  Record = cast<CXXRecordDecl>(RD);
757
758  for (CXXRecordDecl::base_class_iterator I = Record->bases_begin(),
759         E = Record->bases_end(); I != E; ++I) {
760    CanQualType BaseT = SemaRef.Context.getCanonicalType((*I).getType());
761    CanQual<RecordType> BaseRT = BaseT->getAs<RecordType>();
762    if (!BaseRT) return false;
763
764    CXXRecordDecl *BaseRecord = cast<CXXRecordDecl>(BaseRT->getDecl());
765    if (!IsProvablyNotDerivedFrom(SemaRef, BaseRecord, Bases))
766      return false;
767  }
768
769  return true;
770}
771
772/// Determines if this is an instance member of a class.
773static bool IsInstanceMember(NamedDecl *D) {
774  assert(D->isCXXClassMember() &&
775         "checking whether non-member is instance member");
776
777  if (isa<FieldDecl>(D)) return true;
778
779  if (isa<CXXMethodDecl>(D))
780    return !cast<CXXMethodDecl>(D)->isStatic();
781
782  if (isa<FunctionTemplateDecl>(D)) {
783    D = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
784    return !cast<CXXMethodDecl>(D)->isStatic();
785  }
786
787  return false;
788}
789
790enum IMAKind {
791  /// The reference is definitely not an instance member access.
792  IMA_Static,
793
794  /// The reference may be an implicit instance member access.
795  IMA_Mixed,
796
797  /// The reference may be to an instance member, but it is invalid if
798  /// so, because the context is not an instance method.
799  IMA_Mixed_StaticContext,
800
801  /// The reference may be to an instance member, but it is invalid if
802  /// so, because the context is from an unrelated class.
803  IMA_Mixed_Unrelated,
804
805  /// The reference is definitely an implicit instance member access.
806  IMA_Instance,
807
808  /// The reference may be to an unresolved using declaration.
809  IMA_Unresolved,
810
811  /// The reference may be to an unresolved using declaration and the
812  /// context is not an instance method.
813  IMA_Unresolved_StaticContext,
814
815  /// The reference is to a member of an anonymous structure in a
816  /// non-class context.
817  IMA_AnonymousMember,
818
819  /// All possible referrents are instance members and the current
820  /// context is not an instance method.
821  IMA_Error_StaticContext,
822
823  /// All possible referrents are instance members of an unrelated
824  /// class.
825  IMA_Error_Unrelated
826};
827
828/// The given lookup names class member(s) and is not being used for
829/// an address-of-member expression.  Classify the type of access
830/// according to whether it's possible that this reference names an
831/// instance member.  This is best-effort; it is okay to
832/// conservatively answer "yes", in which case some errors will simply
833/// not be caught until template-instantiation.
834static IMAKind ClassifyImplicitMemberAccess(Sema &SemaRef,
835                                            const LookupResult &R) {
836  assert(!R.empty() && (*R.begin())->isCXXClassMember());
837
838  bool isStaticContext =
839    (!isa<CXXMethodDecl>(SemaRef.CurContext) ||
840     cast<CXXMethodDecl>(SemaRef.CurContext)->isStatic());
841
842  if (R.isUnresolvableResult())
843    return isStaticContext ? IMA_Unresolved_StaticContext : IMA_Unresolved;
844
845  // Collect all the declaring classes of instance members we find.
846  bool hasNonInstance = false;
847  llvm::SmallPtrSet<CXXRecordDecl*, 4> Classes;
848  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
849    NamedDecl *D = (*I)->getUnderlyingDecl();
850    if (IsInstanceMember(D)) {
851      CXXRecordDecl *R = cast<CXXRecordDecl>(D->getDeclContext());
852
853      // If this is a member of an anonymous record, move out to the
854      // innermost non-anonymous struct or union.  If there isn't one,
855      // that's a special case.
856      while (R->isAnonymousStructOrUnion()) {
857        R = dyn_cast<CXXRecordDecl>(R->getParent());
858        if (!R) return IMA_AnonymousMember;
859      }
860      Classes.insert(R->getCanonicalDecl());
861    }
862    else
863      hasNonInstance = true;
864  }
865
866  // If we didn't find any instance members, it can't be an implicit
867  // member reference.
868  if (Classes.empty())
869    return IMA_Static;
870
871  // If the current context is not an instance method, it can't be
872  // an implicit member reference.
873  if (isStaticContext)
874    return (hasNonInstance ? IMA_Mixed_StaticContext : IMA_Error_StaticContext);
875
876  // If we can prove that the current context is unrelated to all the
877  // declaring classes, it can't be an implicit member reference (in
878  // which case it's an error if any of those members are selected).
879  if (IsProvablyNotDerivedFrom(SemaRef,
880                        cast<CXXMethodDecl>(SemaRef.CurContext)->getParent(),
881                               Classes))
882    return (hasNonInstance ? IMA_Mixed_Unrelated : IMA_Error_Unrelated);
883
884  return (hasNonInstance ? IMA_Mixed : IMA_Instance);
885}
886
887/// Diagnose a reference to a field with no object available.
888static void DiagnoseInstanceReference(Sema &SemaRef,
889                                      const CXXScopeSpec &SS,
890                                      const LookupResult &R) {
891  SourceLocation Loc = R.getNameLoc();
892  SourceRange Range(Loc);
893  if (SS.isSet()) Range.setBegin(SS.getRange().getBegin());
894
895  if (R.getAsSingle<FieldDecl>()) {
896    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(SemaRef.CurContext)) {
897      if (MD->isStatic()) {
898        // "invalid use of member 'x' in static member function"
899        SemaRef.Diag(Loc, diag::err_invalid_member_use_in_static_method)
900          << Range << R.getLookupName();
901        return;
902      }
903    }
904
905    SemaRef.Diag(Loc, diag::err_invalid_non_static_member_use)
906      << R.getLookupName() << Range;
907    return;
908  }
909
910  SemaRef.Diag(Loc, diag::err_member_call_without_object) << Range;
911}
912
913/// Diagnose an empty lookup.
914///
915/// \return false if new lookup candidates were found
916bool Sema::DiagnoseEmptyLookup(Scope *S, const CXXScopeSpec &SS,
917                               LookupResult &R) {
918  DeclarationName Name = R.getLookupName();
919
920  unsigned diagnostic = diag::err_undeclared_var_use;
921  unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest;
922  if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
923      Name.getNameKind() == DeclarationName::CXXLiteralOperatorName ||
924      Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
925    diagnostic = diag::err_undeclared_use;
926    diagnostic_suggest = diag::err_undeclared_use_suggest;
927  }
928
929  // If the original lookup was an unqualified lookup, fake an
930  // unqualified lookup.  This is useful when (for example) the
931  // original lookup would not have found something because it was a
932  // dependent name.
933  for (DeclContext *DC = SS.isEmpty()? CurContext : 0;
934       DC; DC = DC->getParent()) {
935    if (isa<CXXRecordDecl>(DC)) {
936      LookupQualifiedName(R, DC);
937
938      if (!R.empty()) {
939        // Don't give errors about ambiguities in this lookup.
940        R.suppressDiagnostics();
941
942        CXXMethodDecl *CurMethod = dyn_cast<CXXMethodDecl>(CurContext);
943        bool isInstance = CurMethod &&
944                          CurMethod->isInstance() &&
945                          DC == CurMethod->getParent();
946
947        // Give a code modification hint to insert 'this->'.
948        // TODO: fixit for inserting 'Base<T>::' in the other cases.
949        // Actually quite difficult!
950        if (isInstance)
951          Diag(R.getNameLoc(), diagnostic) << Name
952            << CodeModificationHint::CreateInsertion(R.getNameLoc(),
953                                                     "this->");
954        else
955          Diag(R.getNameLoc(), diagnostic) << Name;
956
957        // Do we really want to note all of these?
958        for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
959          Diag((*I)->getLocation(), diag::note_dependent_var_use);
960
961        // Tell the callee to try to recover.
962        return false;
963      }
964    }
965  }
966
967  // We didn't find anything, so try to correct for a typo.
968  if (S && CorrectTypo(R, S, &SS)) {
969    if (isa<ValueDecl>(*R.begin()) || isa<FunctionTemplateDecl>(*R.begin())) {
970      if (SS.isEmpty())
971        Diag(R.getNameLoc(), diagnostic_suggest) << Name << R.getLookupName()
972          << CodeModificationHint::CreateReplacement(R.getNameLoc(),
973                                              R.getLookupName().getAsString());
974      else
975        Diag(R.getNameLoc(), diag::err_no_member_suggest)
976          << Name << computeDeclContext(SS, false) << R.getLookupName()
977          << SS.getRange()
978          << CodeModificationHint::CreateReplacement(R.getNameLoc(),
979                                              R.getLookupName().getAsString());
980      if (NamedDecl *ND = R.getAsSingle<NamedDecl>())
981        Diag(ND->getLocation(), diag::note_previous_decl)
982          << ND->getDeclName();
983
984      // Tell the callee to try to recover.
985      return false;
986    }
987
988    if (isa<TypeDecl>(*R.begin()) || isa<ObjCInterfaceDecl>(*R.begin())) {
989      // FIXME: If we ended up with a typo for a type name or
990      // Objective-C class name, we're in trouble because the parser
991      // is in the wrong place to recover. Suggest the typo
992      // correction, but don't make it a fix-it since we're not going
993      // to recover well anyway.
994      if (SS.isEmpty())
995        Diag(R.getNameLoc(), diagnostic_suggest) << Name << R.getLookupName();
996      else
997        Diag(R.getNameLoc(), diag::err_no_member_suggest)
998          << Name << computeDeclContext(SS, false) << R.getLookupName()
999          << SS.getRange();
1000
1001      // Don't try to recover; it won't work.
1002      return true;
1003    }
1004
1005    R.clear();
1006  }
1007
1008  // Emit a special diagnostic for failed member lookups.
1009  // FIXME: computing the declaration context might fail here (?)
1010  if (!SS.isEmpty()) {
1011    Diag(R.getNameLoc(), diag::err_no_member)
1012      << Name << computeDeclContext(SS, false)
1013      << SS.getRange();
1014    return true;
1015  }
1016
1017  // Give up, we can't recover.
1018  Diag(R.getNameLoc(), diagnostic) << Name;
1019  return true;
1020}
1021
1022Sema::OwningExprResult Sema::ActOnIdExpression(Scope *S,
1023                                               const CXXScopeSpec &SS,
1024                                               UnqualifiedId &Id,
1025                                               bool HasTrailingLParen,
1026                                               bool isAddressOfOperand) {
1027  assert(!(isAddressOfOperand && HasTrailingLParen) &&
1028         "cannot be direct & operand and have a trailing lparen");
1029
1030  if (SS.isInvalid())
1031    return ExprError();
1032
1033  TemplateArgumentListInfo TemplateArgsBuffer;
1034
1035  // Decompose the UnqualifiedId into the following data.
1036  DeclarationName Name;
1037  SourceLocation NameLoc;
1038  const TemplateArgumentListInfo *TemplateArgs;
1039  DecomposeUnqualifiedId(*this, Id, TemplateArgsBuffer,
1040                         Name, NameLoc, TemplateArgs);
1041
1042  IdentifierInfo *II = Name.getAsIdentifierInfo();
1043
1044  // C++ [temp.dep.expr]p3:
1045  //   An id-expression is type-dependent if it contains:
1046  //     -- an identifier that was declared with a dependent type,
1047  //        (note: handled after lookup)
1048  //     -- a template-id that is dependent,
1049  //        (note: handled in BuildTemplateIdExpr)
1050  //     -- a conversion-function-id that specifies a dependent type,
1051  //     -- a nested-name-specifier that contains a class-name that
1052  //        names a dependent type.
1053  // Determine whether this is a member of an unknown specialization;
1054  // we need to handle these differently.
1055  if ((Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
1056       Name.getCXXNameType()->isDependentType()) ||
1057      (SS.isSet() && IsDependentIdExpression(*this, SS))) {
1058    return ActOnDependentIdExpression(SS, Name, NameLoc,
1059                                      isAddressOfOperand,
1060                                      TemplateArgs);
1061  }
1062
1063  // Perform the required lookup.
1064  LookupResult R(*this, Name, NameLoc, LookupOrdinaryName);
1065  if (TemplateArgs) {
1066    // Just re-use the lookup done by isTemplateName.
1067    DecomposeTemplateName(R, Id);
1068  } else {
1069    bool IvarLookupFollowUp = (!SS.isSet() && II && getCurMethodDecl());
1070    LookupParsedName(R, S, &SS, !IvarLookupFollowUp);
1071
1072    // If this reference is in an Objective-C method, then we need to do
1073    // some special Objective-C lookup, too.
1074    if (IvarLookupFollowUp) {
1075      OwningExprResult E(LookupInObjCMethod(R, S, II, true));
1076      if (E.isInvalid())
1077        return ExprError();
1078
1079      Expr *Ex = E.takeAs<Expr>();
1080      if (Ex) return Owned(Ex);
1081    }
1082  }
1083
1084  if (R.isAmbiguous())
1085    return ExprError();
1086
1087  // Determine whether this name might be a candidate for
1088  // argument-dependent lookup.
1089  bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen);
1090
1091  if (R.empty() && !ADL) {
1092    // Otherwise, this could be an implicitly declared function reference (legal
1093    // in C90, extension in C99, forbidden in C++).
1094    if (HasTrailingLParen && II && !getLangOptions().CPlusPlus) {
1095      NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S);
1096      if (D) R.addDecl(D);
1097    }
1098
1099    // If this name wasn't predeclared and if this is not a function
1100    // call, diagnose the problem.
1101    if (R.empty()) {
1102      if (DiagnoseEmptyLookup(S, SS, R))
1103        return ExprError();
1104
1105      assert(!R.empty() &&
1106             "DiagnoseEmptyLookup returned false but added no results");
1107
1108      // If we found an Objective-C instance variable, let
1109      // LookupInObjCMethod build the appropriate expression to
1110      // reference the ivar.
1111      if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) {
1112        R.clear();
1113        OwningExprResult E(LookupInObjCMethod(R, S, Ivar->getIdentifier()));
1114        assert(E.isInvalid() || E.get());
1115        return move(E);
1116      }
1117    }
1118  }
1119
1120  // This is guaranteed from this point on.
1121  assert(!R.empty() || ADL);
1122
1123  if (VarDecl *Var = R.getAsSingle<VarDecl>()) {
1124    // Warn about constructs like:
1125    //   if (void *X = foo()) { ... } else { X }.
1126    // In the else block, the pointer is always false.
1127
1128    if (Var->isDeclaredInCondition() && Var->getType()->isScalarType()) {
1129      Scope *CheckS = S;
1130      while (CheckS && CheckS->getControlParent()) {
1131        if (CheckS->isWithinElse() &&
1132            CheckS->getControlParent()->isDeclScope(DeclPtrTy::make(Var))) {
1133          ExprError(Diag(NameLoc, diag::warn_value_always_zero)
1134            << Var->getDeclName()
1135            << (Var->getType()->isPointerType()? 2 :
1136                Var->getType()->isBooleanType()? 1 : 0));
1137          break;
1138        }
1139
1140        // Move to the parent of this scope.
1141        CheckS = CheckS->getParent();
1142      }
1143    }
1144  } else if (FunctionDecl *Func = R.getAsSingle<FunctionDecl>()) {
1145    if (!getLangOptions().CPlusPlus && !Func->hasPrototype()) {
1146      // C99 DR 316 says that, if a function type comes from a
1147      // function definition (without a prototype), that type is only
1148      // used for checking compatibility. Therefore, when referencing
1149      // the function, we pretend that we don't have the full function
1150      // type.
1151      if (DiagnoseUseOfDecl(Func, NameLoc))
1152        return ExprError();
1153
1154      QualType T = Func->getType();
1155      QualType NoProtoType = T;
1156      if (const FunctionProtoType *Proto = T->getAs<FunctionProtoType>())
1157        NoProtoType = Context.getFunctionNoProtoType(Proto->getResultType());
1158      return BuildDeclRefExpr(Func, NoProtoType, NameLoc, &SS);
1159    }
1160  }
1161
1162  // Check whether this might be a C++ implicit instance member access.
1163  // C++ [expr.prim.general]p6:
1164  //   Within the definition of a non-static member function, an
1165  //   identifier that names a non-static member is transformed to a
1166  //   class member access expression.
1167  // But note that &SomeClass::foo is grammatically distinct, even
1168  // though we don't parse it that way.
1169  if (!R.empty() && (*R.begin())->isCXXClassMember()) {
1170    bool isAbstractMemberPointer = (isAddressOfOperand && !SS.isEmpty());
1171    if (!isAbstractMemberPointer)
1172      return BuildPossibleImplicitMemberExpr(SS, R, TemplateArgs);
1173  }
1174
1175  if (TemplateArgs)
1176    return BuildTemplateIdExpr(SS, R, ADL, *TemplateArgs);
1177
1178  return BuildDeclarationNameExpr(SS, R, ADL);
1179}
1180
1181/// Builds an expression which might be an implicit member expression.
1182Sema::OwningExprResult
1183Sema::BuildPossibleImplicitMemberExpr(const CXXScopeSpec &SS,
1184                                      LookupResult &R,
1185                                const TemplateArgumentListInfo *TemplateArgs) {
1186  switch (ClassifyImplicitMemberAccess(*this, R)) {
1187  case IMA_Instance:
1188    return BuildImplicitMemberExpr(SS, R, TemplateArgs, true);
1189
1190  case IMA_AnonymousMember:
1191    assert(R.isSingleResult());
1192    return BuildAnonymousStructUnionMemberReference(R.getNameLoc(),
1193                                                    R.getAsSingle<FieldDecl>());
1194
1195  case IMA_Mixed:
1196  case IMA_Mixed_Unrelated:
1197  case IMA_Unresolved:
1198    return BuildImplicitMemberExpr(SS, R, TemplateArgs, false);
1199
1200  case IMA_Static:
1201  case IMA_Mixed_StaticContext:
1202  case IMA_Unresolved_StaticContext:
1203    if (TemplateArgs)
1204      return BuildTemplateIdExpr(SS, R, false, *TemplateArgs);
1205    return BuildDeclarationNameExpr(SS, R, false);
1206
1207  case IMA_Error_StaticContext:
1208  case IMA_Error_Unrelated:
1209    DiagnoseInstanceReference(*this, SS, R);
1210    return ExprError();
1211  }
1212
1213  llvm_unreachable("unexpected instance member access kind");
1214  return ExprError();
1215}
1216
1217/// BuildQualifiedDeclarationNameExpr - Build a C++ qualified
1218/// declaration name, generally during template instantiation.
1219/// There's a large number of things which don't need to be done along
1220/// this path.
1221Sema::OwningExprResult
1222Sema::BuildQualifiedDeclarationNameExpr(const CXXScopeSpec &SS,
1223                                        DeclarationName Name,
1224                                        SourceLocation NameLoc) {
1225  DeclContext *DC;
1226  if (!(DC = computeDeclContext(SS, false)) ||
1227      DC->isDependentContext() ||
1228      RequireCompleteDeclContext(SS))
1229    return BuildDependentDeclRefExpr(SS, Name, NameLoc, 0);
1230
1231  LookupResult R(*this, Name, NameLoc, LookupOrdinaryName);
1232  LookupQualifiedName(R, DC);
1233
1234  if (R.isAmbiguous())
1235    return ExprError();
1236
1237  if (R.empty()) {
1238    Diag(NameLoc, diag::err_no_member) << Name << DC << SS.getRange();
1239    return ExprError();
1240  }
1241
1242  return BuildDeclarationNameExpr(SS, R, /*ADL*/ false);
1243}
1244
1245/// LookupInObjCMethod - The parser has read a name in, and Sema has
1246/// detected that we're currently inside an ObjC method.  Perform some
1247/// additional lookup.
1248///
1249/// Ideally, most of this would be done by lookup, but there's
1250/// actually quite a lot of extra work involved.
1251///
1252/// Returns a null sentinel to indicate trivial success.
1253Sema::OwningExprResult
1254Sema::LookupInObjCMethod(LookupResult &Lookup, Scope *S,
1255                         IdentifierInfo *II,
1256                         bool AllowBuiltinCreation) {
1257  SourceLocation Loc = Lookup.getNameLoc();
1258
1259  // There are two cases to handle here.  1) scoped lookup could have failed,
1260  // in which case we should look for an ivar.  2) scoped lookup could have
1261  // found a decl, but that decl is outside the current instance method (i.e.
1262  // a global variable).  In these two cases, we do a lookup for an ivar with
1263  // this name, if the lookup sucedes, we replace it our current decl.
1264
1265  // If we're in a class method, we don't normally want to look for
1266  // ivars.  But if we don't find anything else, and there's an
1267  // ivar, that's an error.
1268  bool IsClassMethod = getCurMethodDecl()->isClassMethod();
1269
1270  bool LookForIvars;
1271  if (Lookup.empty())
1272    LookForIvars = true;
1273  else if (IsClassMethod)
1274    LookForIvars = false;
1275  else
1276    LookForIvars = (Lookup.isSingleResult() &&
1277                    Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod());
1278  ObjCInterfaceDecl *IFace = 0;
1279  if (LookForIvars) {
1280    IFace = getCurMethodDecl()->getClassInterface();
1281    ObjCInterfaceDecl *ClassDeclared;
1282    if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
1283      // Diagnose using an ivar in a class method.
1284      if (IsClassMethod)
1285        return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
1286                         << IV->getDeclName());
1287
1288      // If we're referencing an invalid decl, just return this as a silent
1289      // error node.  The error diagnostic was already emitted on the decl.
1290      if (IV->isInvalidDecl())
1291        return ExprError();
1292
1293      // Check if referencing a field with __attribute__((deprecated)).
1294      if (DiagnoseUseOfDecl(IV, Loc))
1295        return ExprError();
1296
1297      // Diagnose the use of an ivar outside of the declaring class.
1298      if (IV->getAccessControl() == ObjCIvarDecl::Private &&
1299          ClassDeclared != IFace)
1300        Diag(Loc, diag::error_private_ivar_access) << IV->getDeclName();
1301
1302      // FIXME: This should use a new expr for a direct reference, don't
1303      // turn this into Self->ivar, just return a BareIVarExpr or something.
1304      IdentifierInfo &II = Context.Idents.get("self");
1305      UnqualifiedId SelfName;
1306      SelfName.setIdentifier(&II, SourceLocation());
1307      CXXScopeSpec SelfScopeSpec;
1308      OwningExprResult SelfExpr = ActOnIdExpression(S, SelfScopeSpec,
1309                                                    SelfName, false, false);
1310      MarkDeclarationReferenced(Loc, IV);
1311      return Owned(new (Context)
1312                   ObjCIvarRefExpr(IV, IV->getType(), Loc,
1313                                   SelfExpr.takeAs<Expr>(), true, true));
1314    }
1315  } else if (getCurMethodDecl()->isInstanceMethod()) {
1316    // We should warn if a local variable hides an ivar.
1317    ObjCInterfaceDecl *IFace = getCurMethodDecl()->getClassInterface();
1318    ObjCInterfaceDecl *ClassDeclared;
1319    if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
1320      if (IV->getAccessControl() != ObjCIvarDecl::Private ||
1321          IFace == ClassDeclared)
1322        Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
1323    }
1324  }
1325
1326  // Needed to implement property "super.method" notation.
1327  if (Lookup.empty() && II->isStr("super")) {
1328    QualType T;
1329
1330    if (getCurMethodDecl()->isInstanceMethod())
1331      T = Context.getObjCObjectPointerType(Context.getObjCInterfaceType(
1332                                    getCurMethodDecl()->getClassInterface()));
1333    else
1334      T = Context.getObjCClassType();
1335    return Owned(new (Context) ObjCSuperExpr(Loc, T));
1336  }
1337  if (Lookup.empty() && II && AllowBuiltinCreation) {
1338    // FIXME. Consolidate this with similar code in LookupName.
1339    if (unsigned BuiltinID = II->getBuiltinID()) {
1340      if (!(getLangOptions().CPlusPlus &&
1341            Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))) {
1342        NamedDecl *D = LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID,
1343                                           S, Lookup.isForRedeclaration(),
1344                                           Lookup.getNameLoc());
1345        if (D) Lookup.addDecl(D);
1346      }
1347    }
1348  }
1349  if (LangOpts.ObjCNonFragileABI2 && LookForIvars && Lookup.empty()) {
1350    ObjCIvarDecl *Ivar = SynthesizeNewPropertyIvar(IFace, II);
1351    if (Ivar)
1352      return LookupInObjCMethod(Lookup, S, II, AllowBuiltinCreation);
1353  }
1354  // Sentinel value saying that we didn't do anything special.
1355  return Owned((Expr*) 0);
1356}
1357
1358/// \brief Cast member's object to its own class if necessary.
1359bool
1360Sema::PerformObjectMemberConversion(Expr *&From,
1361                                    NestedNameSpecifier *Qualifier,
1362                                    NamedDecl *Member) {
1363  CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Member->getDeclContext());
1364  if (!RD)
1365    return false;
1366
1367  QualType DestRecordType;
1368  QualType DestType;
1369  QualType FromRecordType;
1370  QualType FromType = From->getType();
1371  bool PointerConversions = false;
1372  if (isa<FieldDecl>(Member)) {
1373    DestRecordType = Context.getCanonicalType(Context.getTypeDeclType(RD));
1374
1375    if (FromType->getAs<PointerType>()) {
1376      DestType = Context.getPointerType(DestRecordType);
1377      FromRecordType = FromType->getPointeeType();
1378      PointerConversions = true;
1379    } else {
1380      DestType = DestRecordType;
1381      FromRecordType = FromType;
1382    }
1383  } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member)) {
1384    if (Method->isStatic())
1385      return false;
1386
1387    DestType = Method->getThisType(Context);
1388    DestRecordType = DestType->getPointeeType();
1389
1390    if (FromType->getAs<PointerType>()) {
1391      FromRecordType = FromType->getPointeeType();
1392      PointerConversions = true;
1393    } else {
1394      FromRecordType = FromType;
1395      DestType = DestRecordType;
1396    }
1397  } else {
1398    // No conversion necessary.
1399    return false;
1400  }
1401
1402  if (DestType->isDependentType() || FromType->isDependentType())
1403    return false;
1404
1405  // If the unqualified types are the same, no conversion is necessary.
1406  if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
1407    return false;
1408
1409  // C++ [class.member.lookup]p8:
1410  //   [...] Ambiguities can often be resolved by qualifying a name with its
1411  //   class name.
1412  //
1413  // If the member was a qualified name and the qualified referred to a
1414  // specific base subobject type, we'll cast to that intermediate type
1415  // first and then to the object in which the member is declared. That allows
1416  // one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as:
1417  //
1418  //   class Base { public: int x; };
1419  //   class Derived1 : public Base { };
1420  //   class Derived2 : public Base { };
1421  //   class VeryDerived : public Derived1, public Derived2 { void f(); };
1422  //
1423  //   void VeryDerived::f() {
1424  //     x = 17; // error: ambiguous base subobjects
1425  //     Derived1::x = 17; // okay, pick the Base subobject of Derived1
1426  //   }
1427  QualType IntermediateRecordType;
1428  QualType IntermediateType;
1429  if (Qualifier) {
1430    if (const RecordType *IntermediateRecord
1431                           = Qualifier->getAsType()->getAs<RecordType>()) {
1432      IntermediateRecordType = QualType(IntermediateRecord, 0);
1433      IntermediateType = IntermediateRecordType;
1434      if (PointerConversions)
1435        IntermediateType = Context.getPointerType(IntermediateType);
1436    }
1437  }
1438
1439  if (!IntermediateType.isNull() &&
1440      IsDerivedFrom(FromRecordType, IntermediateRecordType) &&
1441      IsDerivedFrom(IntermediateRecordType, DestRecordType)) {
1442    if (CheckDerivedToBaseConversion(FromRecordType, IntermediateRecordType,
1443                                     From->getSourceRange().getBegin(),
1444                                     From->getSourceRange()) ||
1445        CheckDerivedToBaseConversion(IntermediateRecordType, DestRecordType,
1446                                     From->getSourceRange().getBegin(),
1447                                     From->getSourceRange()))
1448      return true;
1449
1450    ImpCastExprToType(From, IntermediateType, CastExpr::CK_DerivedToBase,
1451                      /*isLvalue=*/!PointerConversions);
1452    ImpCastExprToType(From, DestType, CastExpr::CK_DerivedToBase,
1453                      /*isLvalue=*/!PointerConversions);
1454    return false;
1455  }
1456
1457  if (CheckDerivedToBaseConversion(FromRecordType,
1458                                   DestRecordType,
1459                                   From->getSourceRange().getBegin(),
1460                                   From->getSourceRange()))
1461    return true;
1462
1463  ImpCastExprToType(From, DestType, CastExpr::CK_DerivedToBase,
1464                    /*isLvalue=*/true);
1465  return false;
1466}
1467
1468/// \brief Build a MemberExpr AST node.
1469static MemberExpr *BuildMemberExpr(ASTContext &C, Expr *Base, bool isArrow,
1470                                   const CXXScopeSpec &SS, ValueDecl *Member,
1471                                   SourceLocation Loc, QualType Ty,
1472                          const TemplateArgumentListInfo *TemplateArgs = 0) {
1473  NestedNameSpecifier *Qualifier = 0;
1474  SourceRange QualifierRange;
1475  if (SS.isSet()) {
1476    Qualifier = (NestedNameSpecifier *) SS.getScopeRep();
1477    QualifierRange = SS.getRange();
1478  }
1479
1480  return MemberExpr::Create(C, Base, isArrow, Qualifier, QualifierRange,
1481                            Member, Loc, TemplateArgs, Ty);
1482}
1483
1484/// Builds an implicit member access expression.  The current context
1485/// is known to be an instance method, and the given unqualified lookup
1486/// set is known to contain only instance members, at least one of which
1487/// is from an appropriate type.
1488Sema::OwningExprResult
1489Sema::BuildImplicitMemberExpr(const CXXScopeSpec &SS,
1490                              LookupResult &R,
1491                              const TemplateArgumentListInfo *TemplateArgs,
1492                              bool IsKnownInstance) {
1493  assert(!R.empty() && !R.isAmbiguous());
1494
1495  SourceLocation Loc = R.getNameLoc();
1496
1497  // We may have found a field within an anonymous union or struct
1498  // (C++ [class.union]).
1499  // FIXME: This needs to happen post-isImplicitMemberReference?
1500  // FIXME: template-ids inside anonymous structs?
1501  if (FieldDecl *FD = R.getAsSingle<FieldDecl>())
1502    if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion())
1503      return BuildAnonymousStructUnionMemberReference(Loc, FD);
1504
1505  // If this is known to be an instance access, go ahead and build a
1506  // 'this' expression now.
1507  QualType ThisType = cast<CXXMethodDecl>(CurContext)->getThisType(Context);
1508  Expr *This = 0; // null signifies implicit access
1509  if (IsKnownInstance) {
1510    SourceLocation Loc = R.getNameLoc();
1511    if (SS.getRange().isValid())
1512      Loc = SS.getRange().getBegin();
1513    This = new (Context) CXXThisExpr(Loc, ThisType, /*isImplicit=*/true);
1514  }
1515
1516  return BuildMemberReferenceExpr(ExprArg(*this, This), ThisType,
1517                                  /*OpLoc*/ SourceLocation(),
1518                                  /*IsArrow*/ true,
1519                                  SS,
1520                                  /*FirstQualifierInScope*/ 0,
1521                                  R, TemplateArgs);
1522}
1523
1524bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS,
1525                                      const LookupResult &R,
1526                                      bool HasTrailingLParen) {
1527  // Only when used directly as the postfix-expression of a call.
1528  if (!HasTrailingLParen)
1529    return false;
1530
1531  // Never if a scope specifier was provided.
1532  if (SS.isSet())
1533    return false;
1534
1535  // Only in C++ or ObjC++.
1536  if (!getLangOptions().CPlusPlus)
1537    return false;
1538
1539  // Turn off ADL when we find certain kinds of declarations during
1540  // normal lookup:
1541  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
1542    NamedDecl *D = *I;
1543
1544    // C++0x [basic.lookup.argdep]p3:
1545    //     -- a declaration of a class member
1546    // Since using decls preserve this property, we check this on the
1547    // original decl.
1548    if (D->isCXXClassMember())
1549      return false;
1550
1551    // C++0x [basic.lookup.argdep]p3:
1552    //     -- a block-scope function declaration that is not a
1553    //        using-declaration
1554    // NOTE: we also trigger this for function templates (in fact, we
1555    // don't check the decl type at all, since all other decl types
1556    // turn off ADL anyway).
1557    if (isa<UsingShadowDecl>(D))
1558      D = cast<UsingShadowDecl>(D)->getTargetDecl();
1559    else if (D->getDeclContext()->isFunctionOrMethod())
1560      return false;
1561
1562    // C++0x [basic.lookup.argdep]p3:
1563    //     -- a declaration that is neither a function or a function
1564    //        template
1565    // And also for builtin functions.
1566    if (isa<FunctionDecl>(D)) {
1567      FunctionDecl *FDecl = cast<FunctionDecl>(D);
1568
1569      // But also builtin functions.
1570      if (FDecl->getBuiltinID() && FDecl->isImplicit())
1571        return false;
1572    } else if (!isa<FunctionTemplateDecl>(D))
1573      return false;
1574  }
1575
1576  return true;
1577}
1578
1579
1580/// Diagnoses obvious problems with the use of the given declaration
1581/// as an expression.  This is only actually called for lookups that
1582/// were not overloaded, and it doesn't promise that the declaration
1583/// will in fact be used.
1584static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D) {
1585  if (isa<TypedefDecl>(D)) {
1586    S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName();
1587    return true;
1588  }
1589
1590  if (isa<ObjCInterfaceDecl>(D)) {
1591    S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName();
1592    return true;
1593  }
1594
1595  if (isa<NamespaceDecl>(D)) {
1596    S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName();
1597    return true;
1598  }
1599
1600  return false;
1601}
1602
1603Sema::OwningExprResult
1604Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
1605                               LookupResult &R,
1606                               bool NeedsADL) {
1607  // If this is a single, fully-resolved result and we don't need ADL,
1608  // just build an ordinary singleton decl ref.
1609  if (!NeedsADL && R.isSingleResult() && !R.getAsSingle<FunctionTemplateDecl>())
1610    return BuildDeclarationNameExpr(SS, R.getNameLoc(), R.getFoundDecl());
1611
1612  // We only need to check the declaration if there's exactly one
1613  // result, because in the overloaded case the results can only be
1614  // functions and function templates.
1615  if (R.isSingleResult() &&
1616      CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl()))
1617    return ExprError();
1618
1619  // Otherwise, just build an unresolved lookup expression.  Suppress
1620  // any lookup-related diagnostics; we'll hash these out later, when
1621  // we've picked a target.
1622  R.suppressDiagnostics();
1623
1624  bool Dependent
1625    = UnresolvedLookupExpr::ComputeDependence(R.begin(), R.end(), 0);
1626  UnresolvedLookupExpr *ULE
1627    = UnresolvedLookupExpr::Create(Context, Dependent, R.getNamingClass(),
1628                                   (NestedNameSpecifier*) SS.getScopeRep(),
1629                                   SS.getRange(),
1630                                   R.getLookupName(), R.getNameLoc(),
1631                                   NeedsADL, R.isOverloadedResult());
1632  ULE->addDecls(R.begin(), R.end());
1633
1634  return Owned(ULE);
1635}
1636
1637
1638/// \brief Complete semantic analysis for a reference to the given declaration.
1639Sema::OwningExprResult
1640Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
1641                               SourceLocation Loc, NamedDecl *D) {
1642  assert(D && "Cannot refer to a NULL declaration");
1643  assert(!isa<FunctionTemplateDecl>(D) &&
1644         "Cannot refer unambiguously to a function template");
1645
1646  if (CheckDeclInExpr(*this, Loc, D))
1647    return ExprError();
1648
1649  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) {
1650    // Specifically diagnose references to class templates that are missing
1651    // a template argument list.
1652    Diag(Loc, diag::err_template_decl_ref)
1653      << Template << SS.getRange();
1654    Diag(Template->getLocation(), diag::note_template_decl_here);
1655    return ExprError();
1656  }
1657
1658  // Make sure that we're referring to a value.
1659  ValueDecl *VD = dyn_cast<ValueDecl>(D);
1660  if (!VD) {
1661    Diag(Loc, diag::err_ref_non_value)
1662      << D << SS.getRange();
1663    Diag(D->getLocation(), diag::note_declared_at);
1664    return ExprError();
1665  }
1666
1667  // Check whether this declaration can be used. Note that we suppress
1668  // this check when we're going to perform argument-dependent lookup
1669  // on this function name, because this might not be the function
1670  // that overload resolution actually selects.
1671  if (DiagnoseUseOfDecl(VD, Loc))
1672    return ExprError();
1673
1674  // Only create DeclRefExpr's for valid Decl's.
1675  if (VD->isInvalidDecl())
1676    return ExprError();
1677
1678  // If the identifier reference is inside a block, and it refers to a value
1679  // that is outside the block, create a BlockDeclRefExpr instead of a
1680  // DeclRefExpr.  This ensures the value is treated as a copy-in snapshot when
1681  // the block is formed.
1682  //
1683  // We do not do this for things like enum constants, global variables, etc,
1684  // as they do not get snapshotted.
1685  //
1686  if (getCurBlock() &&
1687      ShouldSnapshotBlockValueReference(*this, getCurBlock(), VD)) {
1688    if (VD->getType().getTypePtr()->isVariablyModifiedType()) {
1689      Diag(Loc, diag::err_ref_vm_type);
1690      Diag(D->getLocation(), diag::note_declared_at);
1691      return ExprError();
1692    }
1693
1694    if (VD->getType()->isArrayType() && !VD->hasAttr<BlocksAttr>()) {
1695      Diag(Loc, diag::err_ref_array_type);
1696      Diag(D->getLocation(), diag::note_declared_at);
1697      return ExprError();
1698    }
1699
1700    MarkDeclarationReferenced(Loc, VD);
1701    QualType ExprTy = VD->getType().getNonReferenceType();
1702    // The BlocksAttr indicates the variable is bound by-reference.
1703    if (VD->getAttr<BlocksAttr>())
1704      return Owned(new (Context) BlockDeclRefExpr(VD, ExprTy, Loc, true));
1705    // This is to record that a 'const' was actually synthesize and added.
1706    bool constAdded = !ExprTy.isConstQualified();
1707    // Variable will be bound by-copy, make it const within the closure.
1708
1709    ExprTy.addConst();
1710    return Owned(new (Context) BlockDeclRefExpr(VD, ExprTy, Loc, false,
1711                                                constAdded));
1712  }
1713  // If this reference is not in a block or if the referenced variable is
1714  // within the block, create a normal DeclRefExpr.
1715
1716  return BuildDeclRefExpr(VD, VD->getType().getNonReferenceType(), Loc, &SS);
1717}
1718
1719Sema::OwningExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc,
1720                                                 tok::TokenKind Kind) {
1721  PredefinedExpr::IdentType IT;
1722
1723  switch (Kind) {
1724  default: assert(0 && "Unknown simple primary expr!");
1725  case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
1726  case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
1727  case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
1728  }
1729
1730  // Pre-defined identifiers are of type char[x], where x is the length of the
1731  // string.
1732
1733  Decl *currentDecl = getCurFunctionOrMethodDecl();
1734  if (!currentDecl) {
1735    Diag(Loc, diag::ext_predef_outside_function);
1736    currentDecl = Context.getTranslationUnitDecl();
1737  }
1738
1739  QualType ResTy;
1740  if (cast<DeclContext>(currentDecl)->isDependentContext()) {
1741    ResTy = Context.DependentTy;
1742  } else {
1743    unsigned Length = PredefinedExpr::ComputeName(IT, currentDecl).length();
1744
1745    llvm::APInt LengthI(32, Length + 1);
1746    ResTy = Context.CharTy.withConst();
1747    ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
1748  }
1749  return Owned(new (Context) PredefinedExpr(Loc, ResTy, IT));
1750}
1751
1752Sema::OwningExprResult Sema::ActOnCharacterConstant(const Token &Tok) {
1753  llvm::SmallString<16> CharBuffer;
1754  llvm::StringRef ThisTok = PP.getSpelling(Tok, CharBuffer);
1755
1756  CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(),
1757                            PP);
1758  if (Literal.hadError())
1759    return ExprError();
1760
1761  QualType Ty;
1762  if (!getLangOptions().CPlusPlus)
1763    Ty = Context.IntTy;   // 'x' and L'x' -> int in C.
1764  else if (Literal.isWide())
1765    Ty = Context.WCharTy; // L'x' -> wchar_t in C++.
1766  else if (Literal.isMultiChar())
1767    Ty = Context.IntTy;   // 'wxyz' -> int in C++.
1768  else
1769    Ty = Context.CharTy;  // 'x' -> char in C++
1770
1771  return Owned(new (Context) CharacterLiteral(Literal.getValue(),
1772                                              Literal.isWide(),
1773                                              Ty, Tok.getLocation()));
1774}
1775
1776Action::OwningExprResult Sema::ActOnNumericConstant(const Token &Tok) {
1777  // Fast path for a single digit (which is quite common).  A single digit
1778  // cannot have a trigraph, escaped newline, radix prefix, or type suffix.
1779  if (Tok.getLength() == 1) {
1780    const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
1781    unsigned IntSize = Context.Target.getIntWidth();
1782    return Owned(new (Context) IntegerLiteral(llvm::APInt(IntSize, Val-'0'),
1783                    Context.IntTy, Tok.getLocation()));
1784  }
1785
1786  llvm::SmallString<512> IntegerBuffer;
1787  // Add padding so that NumericLiteralParser can overread by one character.
1788  IntegerBuffer.resize(Tok.getLength()+1);
1789  const char *ThisTokBegin = &IntegerBuffer[0];
1790
1791  // Get the spelling of the token, which eliminates trigraphs, etc.
1792  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
1793
1794  NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
1795                               Tok.getLocation(), PP);
1796  if (Literal.hadError)
1797    return ExprError();
1798
1799  Expr *Res;
1800
1801  if (Literal.isFloatingLiteral()) {
1802    QualType Ty;
1803    if (Literal.isFloat)
1804      Ty = Context.FloatTy;
1805    else if (!Literal.isLong)
1806      Ty = Context.DoubleTy;
1807    else
1808      Ty = Context.LongDoubleTy;
1809
1810    const llvm::fltSemantics &Format = Context.getFloatTypeSemantics(Ty);
1811
1812    using llvm::APFloat;
1813    APFloat Val(Format);
1814
1815    APFloat::opStatus result = Literal.GetFloatValue(Val);
1816
1817    // Overflow is always an error, but underflow is only an error if
1818    // we underflowed to zero (APFloat reports denormals as underflow).
1819    if ((result & APFloat::opOverflow) ||
1820        ((result & APFloat::opUnderflow) && Val.isZero())) {
1821      unsigned diagnostic;
1822      llvm::SmallString<20> buffer;
1823      if (result & APFloat::opOverflow) {
1824        diagnostic = diag::warn_float_overflow;
1825        APFloat::getLargest(Format).toString(buffer);
1826      } else {
1827        diagnostic = diag::warn_float_underflow;
1828        APFloat::getSmallest(Format).toString(buffer);
1829      }
1830
1831      Diag(Tok.getLocation(), diagnostic)
1832        << Ty
1833        << llvm::StringRef(buffer.data(), buffer.size());
1834    }
1835
1836    bool isExact = (result == APFloat::opOK);
1837    Res = new (Context) FloatingLiteral(Val, isExact, Ty, Tok.getLocation());
1838
1839  } else if (!Literal.isIntegerLiteral()) {
1840    return ExprError();
1841  } else {
1842    QualType Ty;
1843
1844    // long long is a C99 feature.
1845    if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
1846        Literal.isLongLong)
1847      Diag(Tok.getLocation(), diag::ext_longlong);
1848
1849    // Get the value in the widest-possible width.
1850    llvm::APInt ResultVal(Context.Target.getIntMaxTWidth(), 0);
1851
1852    if (Literal.GetIntegerValue(ResultVal)) {
1853      // If this value didn't fit into uintmax_t, warn and force to ull.
1854      Diag(Tok.getLocation(), diag::warn_integer_too_large);
1855      Ty = Context.UnsignedLongLongTy;
1856      assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
1857             "long long is not intmax_t?");
1858    } else {
1859      // If this value fits into a ULL, try to figure out what else it fits into
1860      // according to the rules of C99 6.4.4.1p5.
1861
1862      // Octal, Hexadecimal, and integers with a U suffix are allowed to
1863      // be an unsigned int.
1864      bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
1865
1866      // Check from smallest to largest, picking the smallest type we can.
1867      unsigned Width = 0;
1868      if (!Literal.isLong && !Literal.isLongLong) {
1869        // Are int/unsigned possibilities?
1870        unsigned IntSize = Context.Target.getIntWidth();
1871
1872        // Does it fit in a unsigned int?
1873        if (ResultVal.isIntN(IntSize)) {
1874          // Does it fit in a signed int?
1875          if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
1876            Ty = Context.IntTy;
1877          else if (AllowUnsigned)
1878            Ty = Context.UnsignedIntTy;
1879          Width = IntSize;
1880        }
1881      }
1882
1883      // Are long/unsigned long possibilities?
1884      if (Ty.isNull() && !Literal.isLongLong) {
1885        unsigned LongSize = Context.Target.getLongWidth();
1886
1887        // Does it fit in a unsigned long?
1888        if (ResultVal.isIntN(LongSize)) {
1889          // Does it fit in a signed long?
1890          if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
1891            Ty = Context.LongTy;
1892          else if (AllowUnsigned)
1893            Ty = Context.UnsignedLongTy;
1894          Width = LongSize;
1895        }
1896      }
1897
1898      // Finally, check long long if needed.
1899      if (Ty.isNull()) {
1900        unsigned LongLongSize = Context.Target.getLongLongWidth();
1901
1902        // Does it fit in a unsigned long long?
1903        if (ResultVal.isIntN(LongLongSize)) {
1904          // Does it fit in a signed long long?
1905          if (!Literal.isUnsigned && ResultVal[LongLongSize-1] == 0)
1906            Ty = Context.LongLongTy;
1907          else if (AllowUnsigned)
1908            Ty = Context.UnsignedLongLongTy;
1909          Width = LongLongSize;
1910        }
1911      }
1912
1913      // If we still couldn't decide a type, we probably have something that
1914      // does not fit in a signed long long, but has no U suffix.
1915      if (Ty.isNull()) {
1916        Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
1917        Ty = Context.UnsignedLongLongTy;
1918        Width = Context.Target.getLongLongWidth();
1919      }
1920
1921      if (ResultVal.getBitWidth() != Width)
1922        ResultVal.trunc(Width);
1923    }
1924    Res = new (Context) IntegerLiteral(ResultVal, Ty, Tok.getLocation());
1925  }
1926
1927  // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
1928  if (Literal.isImaginary)
1929    Res = new (Context) ImaginaryLiteral(Res,
1930                                        Context.getComplexType(Res->getType()));
1931
1932  return Owned(Res);
1933}
1934
1935Action::OwningExprResult Sema::ActOnParenExpr(SourceLocation L,
1936                                              SourceLocation R, ExprArg Val) {
1937  Expr *E = Val.takeAs<Expr>();
1938  assert((E != 0) && "ActOnParenExpr() missing expr");
1939  return Owned(new (Context) ParenExpr(L, R, E));
1940}
1941
1942/// The UsualUnaryConversions() function is *not* called by this routine.
1943/// See C99 6.3.2.1p[2-4] for more details.
1944bool Sema::CheckSizeOfAlignOfOperand(QualType exprType,
1945                                     SourceLocation OpLoc,
1946                                     const SourceRange &ExprRange,
1947                                     bool isSizeof) {
1948  if (exprType->isDependentType())
1949    return false;
1950
1951  // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
1952  //   the result is the size of the referenced type."
1953  // C++ [expr.alignof]p3: "When alignof is applied to a reference type, the
1954  //   result shall be the alignment of the referenced type."
1955  if (const ReferenceType *Ref = exprType->getAs<ReferenceType>())
1956    exprType = Ref->getPointeeType();
1957
1958  // C99 6.5.3.4p1:
1959  if (exprType->isFunctionType()) {
1960    // alignof(function) is allowed as an extension.
1961    if (isSizeof)
1962      Diag(OpLoc, diag::ext_sizeof_function_type) << ExprRange;
1963    return false;
1964  }
1965
1966  // Allow sizeof(void)/alignof(void) as an extension.
1967  if (exprType->isVoidType()) {
1968    Diag(OpLoc, diag::ext_sizeof_void_type)
1969      << (isSizeof ? "sizeof" : "__alignof") << ExprRange;
1970    return false;
1971  }
1972
1973  if (RequireCompleteType(OpLoc, exprType,
1974                          PDiag(diag::err_sizeof_alignof_incomplete_type)
1975                          << int(!isSizeof) << ExprRange))
1976    return true;
1977
1978  // Reject sizeof(interface) and sizeof(interface<proto>) in 64-bit mode.
1979  if (LangOpts.ObjCNonFragileABI && exprType->isObjCInterfaceType()) {
1980    Diag(OpLoc, diag::err_sizeof_nonfragile_interface)
1981      << exprType << isSizeof << ExprRange;
1982    return true;
1983  }
1984
1985  return false;
1986}
1987
1988bool Sema::CheckAlignOfExpr(Expr *E, SourceLocation OpLoc,
1989                            const SourceRange &ExprRange) {
1990  E = E->IgnoreParens();
1991
1992  // alignof decl is always ok.
1993  if (isa<DeclRefExpr>(E))
1994    return false;
1995
1996  // Cannot know anything else if the expression is dependent.
1997  if (E->isTypeDependent())
1998    return false;
1999
2000  if (E->getBitField()) {
2001    Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 1 << ExprRange;
2002    return true;
2003  }
2004
2005  // Alignment of a field access is always okay, so long as it isn't a
2006  // bit-field.
2007  if (MemberExpr *ME = dyn_cast<MemberExpr>(E))
2008    if (isa<FieldDecl>(ME->getMemberDecl()))
2009      return false;
2010
2011  return CheckSizeOfAlignOfOperand(E->getType(), OpLoc, ExprRange, false);
2012}
2013
2014/// \brief Build a sizeof or alignof expression given a type operand.
2015Action::OwningExprResult
2016Sema::CreateSizeOfAlignOfExpr(TypeSourceInfo *TInfo,
2017                              SourceLocation OpLoc,
2018                              bool isSizeOf, SourceRange R) {
2019  if (!TInfo)
2020    return ExprError();
2021
2022  QualType T = TInfo->getType();
2023
2024  if (!T->isDependentType() &&
2025      CheckSizeOfAlignOfOperand(T, OpLoc, R, isSizeOf))
2026    return ExprError();
2027
2028  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
2029  return Owned(new (Context) SizeOfAlignOfExpr(isSizeOf, TInfo,
2030                                               Context.getSizeType(), OpLoc,
2031                                               R.getEnd()));
2032}
2033
2034/// \brief Build a sizeof or alignof expression given an expression
2035/// operand.
2036Action::OwningExprResult
2037Sema::CreateSizeOfAlignOfExpr(Expr *E, SourceLocation OpLoc,
2038                              bool isSizeOf, SourceRange R) {
2039  // Verify that the operand is valid.
2040  bool isInvalid = false;
2041  if (E->isTypeDependent()) {
2042    // Delay type-checking for type-dependent expressions.
2043  } else if (!isSizeOf) {
2044    isInvalid = CheckAlignOfExpr(E, OpLoc, R);
2045  } else if (E->getBitField()) {  // C99 6.5.3.4p1.
2046    Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 0;
2047    isInvalid = true;
2048  } else {
2049    isInvalid = CheckSizeOfAlignOfOperand(E->getType(), OpLoc, R, true);
2050  }
2051
2052  if (isInvalid)
2053    return ExprError();
2054
2055  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
2056  return Owned(new (Context) SizeOfAlignOfExpr(isSizeOf, E,
2057                                               Context.getSizeType(), OpLoc,
2058                                               R.getEnd()));
2059}
2060
2061/// ActOnSizeOfAlignOfExpr - Handle @c sizeof(type) and @c sizeof @c expr and
2062/// the same for @c alignof and @c __alignof
2063/// Note that the ArgRange is invalid if isType is false.
2064Action::OwningExprResult
2065Sema::ActOnSizeOfAlignOfExpr(SourceLocation OpLoc, bool isSizeof, bool isType,
2066                             void *TyOrEx, const SourceRange &ArgRange) {
2067  // If error parsing type, ignore.
2068  if (TyOrEx == 0) return ExprError();
2069
2070  if (isType) {
2071    TypeSourceInfo *TInfo;
2072    (void) GetTypeFromParser(TyOrEx, &TInfo);
2073    return CreateSizeOfAlignOfExpr(TInfo, OpLoc, isSizeof, ArgRange);
2074  }
2075
2076  Expr *ArgEx = (Expr *)TyOrEx;
2077  Action::OwningExprResult Result
2078    = CreateSizeOfAlignOfExpr(ArgEx, OpLoc, isSizeof, ArgEx->getSourceRange());
2079
2080  if (Result.isInvalid())
2081    DeleteExpr(ArgEx);
2082
2083  return move(Result);
2084}
2085
2086QualType Sema::CheckRealImagOperand(Expr *&V, SourceLocation Loc, bool isReal) {
2087  if (V->isTypeDependent())
2088    return Context.DependentTy;
2089
2090  // These operators return the element type of a complex type.
2091  if (const ComplexType *CT = V->getType()->getAs<ComplexType>())
2092    return CT->getElementType();
2093
2094  // Otherwise they pass through real integer and floating point types here.
2095  if (V->getType()->isArithmeticType())
2096    return V->getType();
2097
2098  // Reject anything else.
2099  Diag(Loc, diag::err_realimag_invalid_type) << V->getType()
2100    << (isReal ? "__real" : "__imag");
2101  return QualType();
2102}
2103
2104
2105
2106Action::OwningExprResult
2107Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
2108                          tok::TokenKind Kind, ExprArg Input) {
2109  UnaryOperator::Opcode Opc;
2110  switch (Kind) {
2111  default: assert(0 && "Unknown unary op!");
2112  case tok::plusplus:   Opc = UnaryOperator::PostInc; break;
2113  case tok::minusminus: Opc = UnaryOperator::PostDec; break;
2114  }
2115
2116  return BuildUnaryOp(S, OpLoc, Opc, move(Input));
2117}
2118
2119Action::OwningExprResult
2120Sema::ActOnArraySubscriptExpr(Scope *S, ExprArg Base, SourceLocation LLoc,
2121                              ExprArg Idx, SourceLocation RLoc) {
2122  // Since this might be a postfix expression, get rid of ParenListExprs.
2123  Base = MaybeConvertParenListExprToParenExpr(S, move(Base));
2124
2125  Expr *LHSExp = static_cast<Expr*>(Base.get()),
2126       *RHSExp = static_cast<Expr*>(Idx.get());
2127
2128  if (getLangOptions().CPlusPlus &&
2129      (LHSExp->isTypeDependent() || RHSExp->isTypeDependent())) {
2130    Base.release();
2131    Idx.release();
2132    return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
2133                                                  Context.DependentTy, RLoc));
2134  }
2135
2136  if (getLangOptions().CPlusPlus &&
2137      (LHSExp->getType()->isRecordType() ||
2138       LHSExp->getType()->isEnumeralType() ||
2139       RHSExp->getType()->isRecordType() ||
2140       RHSExp->getType()->isEnumeralType())) {
2141    return CreateOverloadedArraySubscriptExpr(LLoc, RLoc, move(Base),move(Idx));
2142  }
2143
2144  return CreateBuiltinArraySubscriptExpr(move(Base), LLoc, move(Idx), RLoc);
2145}
2146
2147
2148Action::OwningExprResult
2149Sema::CreateBuiltinArraySubscriptExpr(ExprArg Base, SourceLocation LLoc,
2150                                     ExprArg Idx, SourceLocation RLoc) {
2151  Expr *LHSExp = static_cast<Expr*>(Base.get());
2152  Expr *RHSExp = static_cast<Expr*>(Idx.get());
2153
2154  // Perform default conversions.
2155  if (!LHSExp->getType()->getAs<VectorType>())
2156      DefaultFunctionArrayLvalueConversion(LHSExp);
2157  DefaultFunctionArrayLvalueConversion(RHSExp);
2158
2159  QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
2160
2161  // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
2162  // to the expression *((e1)+(e2)). This means the array "Base" may actually be
2163  // in the subscript position. As a result, we need to derive the array base
2164  // and index from the expression types.
2165  Expr *BaseExpr, *IndexExpr;
2166  QualType ResultType;
2167  if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
2168    BaseExpr = LHSExp;
2169    IndexExpr = RHSExp;
2170    ResultType = Context.DependentTy;
2171  } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) {
2172    BaseExpr = LHSExp;
2173    IndexExpr = RHSExp;
2174    ResultType = PTy->getPointeeType();
2175  } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) {
2176     // Handle the uncommon case of "123[Ptr]".
2177    BaseExpr = RHSExp;
2178    IndexExpr = LHSExp;
2179    ResultType = PTy->getPointeeType();
2180  } else if (const ObjCObjectPointerType *PTy =
2181               LHSTy->getAs<ObjCObjectPointerType>()) {
2182    BaseExpr = LHSExp;
2183    IndexExpr = RHSExp;
2184    ResultType = PTy->getPointeeType();
2185  } else if (const ObjCObjectPointerType *PTy =
2186               RHSTy->getAs<ObjCObjectPointerType>()) {
2187     // Handle the uncommon case of "123[Ptr]".
2188    BaseExpr = RHSExp;
2189    IndexExpr = LHSExp;
2190    ResultType = PTy->getPointeeType();
2191  } else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) {
2192    BaseExpr = LHSExp;    // vectors: V[123]
2193    IndexExpr = RHSExp;
2194
2195    // FIXME: need to deal with const...
2196    ResultType = VTy->getElementType();
2197  } else if (LHSTy->isArrayType()) {
2198    // If we see an array that wasn't promoted by
2199    // DefaultFunctionArrayLvalueConversion, it must be an array that
2200    // wasn't promoted because of the C90 rule that doesn't
2201    // allow promoting non-lvalue arrays.  Warn, then
2202    // force the promotion here.
2203    Diag(LHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
2204        LHSExp->getSourceRange();
2205    ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy),
2206                      CastExpr::CK_ArrayToPointerDecay);
2207    LHSTy = LHSExp->getType();
2208
2209    BaseExpr = LHSExp;
2210    IndexExpr = RHSExp;
2211    ResultType = LHSTy->getAs<PointerType>()->getPointeeType();
2212  } else if (RHSTy->isArrayType()) {
2213    // Same as previous, except for 123[f().a] case
2214    Diag(RHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
2215        RHSExp->getSourceRange();
2216    ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy),
2217                      CastExpr::CK_ArrayToPointerDecay);
2218    RHSTy = RHSExp->getType();
2219
2220    BaseExpr = RHSExp;
2221    IndexExpr = LHSExp;
2222    ResultType = RHSTy->getAs<PointerType>()->getPointeeType();
2223  } else {
2224    return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
2225       << LHSExp->getSourceRange() << RHSExp->getSourceRange());
2226  }
2227  // C99 6.5.2.1p1
2228  if (!(IndexExpr->getType()->isIntegerType() &&
2229        IndexExpr->getType()->isScalarType()) && !IndexExpr->isTypeDependent())
2230    return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
2231                     << IndexExpr->getSourceRange());
2232
2233  if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
2234       IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
2235         && !IndexExpr->isTypeDependent())
2236    Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange();
2237
2238  // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
2239  // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
2240  // type. Note that Functions are not objects, and that (in C99 parlance)
2241  // incomplete types are not object types.
2242  if (ResultType->isFunctionType()) {
2243    Diag(BaseExpr->getLocStart(), diag::err_subscript_function_type)
2244      << ResultType << BaseExpr->getSourceRange();
2245    return ExprError();
2246  }
2247
2248  if (!ResultType->isDependentType() &&
2249      RequireCompleteType(LLoc, ResultType,
2250                          PDiag(diag::err_subscript_incomplete_type)
2251                            << BaseExpr->getSourceRange()))
2252    return ExprError();
2253
2254  // Diagnose bad cases where we step over interface counts.
2255  if (ResultType->isObjCInterfaceType() && LangOpts.ObjCNonFragileABI) {
2256    Diag(LLoc, diag::err_subscript_nonfragile_interface)
2257      << ResultType << BaseExpr->getSourceRange();
2258    return ExprError();
2259  }
2260
2261  Base.release();
2262  Idx.release();
2263  return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
2264                                                ResultType, RLoc));
2265}
2266
2267QualType Sema::
2268CheckExtVectorComponent(QualType baseType, SourceLocation OpLoc,
2269                        const IdentifierInfo *CompName,
2270                        SourceLocation CompLoc) {
2271  // FIXME: Share logic with ExtVectorElementExpr::containsDuplicateElements,
2272  // see FIXME there.
2273  //
2274  // FIXME: This logic can be greatly simplified by splitting it along
2275  // halving/not halving and reworking the component checking.
2276  const ExtVectorType *vecType = baseType->getAs<ExtVectorType>();
2277
2278  // The vector accessor can't exceed the number of elements.
2279  const char *compStr = CompName->getNameStart();
2280
2281  // This flag determines whether or not the component is one of the four
2282  // special names that indicate a subset of exactly half the elements are
2283  // to be selected.
2284  bool HalvingSwizzle = false;
2285
2286  // This flag determines whether or not CompName has an 's' char prefix,
2287  // indicating that it is a string of hex values to be used as vector indices.
2288  bool HexSwizzle = *compStr == 's' || *compStr == 'S';
2289
2290  // Check that we've found one of the special components, or that the component
2291  // names must come from the same set.
2292  if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
2293      !strcmp(compStr, "even") || !strcmp(compStr, "odd")) {
2294    HalvingSwizzle = true;
2295  } else if (vecType->getPointAccessorIdx(*compStr) != -1) {
2296    do
2297      compStr++;
2298    while (*compStr && vecType->getPointAccessorIdx(*compStr) != -1);
2299  } else if (HexSwizzle || vecType->getNumericAccessorIdx(*compStr) != -1) {
2300    do
2301      compStr++;
2302    while (*compStr && vecType->getNumericAccessorIdx(*compStr) != -1);
2303  }
2304
2305  if (!HalvingSwizzle && *compStr) {
2306    // We didn't get to the end of the string. This means the component names
2307    // didn't come from the same set *or* we encountered an illegal name.
2308    Diag(OpLoc, diag::err_ext_vector_component_name_illegal)
2309      << std::string(compStr,compStr+1) << SourceRange(CompLoc);
2310    return QualType();
2311  }
2312
2313  // Ensure no component accessor exceeds the width of the vector type it
2314  // operates on.
2315  if (!HalvingSwizzle) {
2316    compStr = CompName->getNameStart();
2317
2318    if (HexSwizzle)
2319      compStr++;
2320
2321    while (*compStr) {
2322      if (!vecType->isAccessorWithinNumElements(*compStr++)) {
2323        Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
2324          << baseType << SourceRange(CompLoc);
2325        return QualType();
2326      }
2327    }
2328  }
2329
2330  // The component accessor looks fine - now we need to compute the actual type.
2331  // The vector type is implied by the component accessor. For example,
2332  // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
2333  // vec4.s0 is a float, vec4.s23 is a vec3, etc.
2334  // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
2335  unsigned CompSize = HalvingSwizzle ? (vecType->getNumElements() + 1) / 2
2336                                     : CompName->getLength();
2337  if (HexSwizzle)
2338    CompSize--;
2339
2340  if (CompSize == 1)
2341    return vecType->getElementType();
2342
2343  QualType VT = Context.getExtVectorType(vecType->getElementType(), CompSize);
2344  // Now look up the TypeDefDecl from the vector type. Without this,
2345  // diagostics look bad. We want extended vector types to appear built-in.
2346  for (unsigned i = 0, E = ExtVectorDecls.size(); i != E; ++i) {
2347    if (ExtVectorDecls[i]->getUnderlyingType() == VT)
2348      return Context.getTypedefType(ExtVectorDecls[i]);
2349  }
2350  return VT; // should never get here (a typedef type should always be found).
2351}
2352
2353static Decl *FindGetterNameDeclFromProtocolList(const ObjCProtocolDecl*PDecl,
2354                                                IdentifierInfo *Member,
2355                                                const Selector &Sel,
2356                                                ASTContext &Context) {
2357
2358  if (ObjCPropertyDecl *PD = PDecl->FindPropertyDeclaration(Member))
2359    return PD;
2360  if (ObjCMethodDecl *OMD = PDecl->getInstanceMethod(Sel))
2361    return OMD;
2362
2363  for (ObjCProtocolDecl::protocol_iterator I = PDecl->protocol_begin(),
2364       E = PDecl->protocol_end(); I != E; ++I) {
2365    if (Decl *D = FindGetterNameDeclFromProtocolList(*I, Member, Sel,
2366                                                     Context))
2367      return D;
2368  }
2369  return 0;
2370}
2371
2372static Decl *FindGetterNameDecl(const ObjCObjectPointerType *QIdTy,
2373                                IdentifierInfo *Member,
2374                                const Selector &Sel,
2375                                ASTContext &Context) {
2376  // Check protocols on qualified interfaces.
2377  Decl *GDecl = 0;
2378  for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
2379       E = QIdTy->qual_end(); I != E; ++I) {
2380    if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(Member)) {
2381      GDecl = PD;
2382      break;
2383    }
2384    // Also must look for a getter name which uses property syntax.
2385    if (ObjCMethodDecl *OMD = (*I)->getInstanceMethod(Sel)) {
2386      GDecl = OMD;
2387      break;
2388    }
2389  }
2390  if (!GDecl) {
2391    for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
2392         E = QIdTy->qual_end(); I != E; ++I) {
2393      // Search in the protocol-qualifier list of current protocol.
2394      GDecl = FindGetterNameDeclFromProtocolList(*I, Member, Sel, Context);
2395      if (GDecl)
2396        return GDecl;
2397    }
2398  }
2399  return GDecl;
2400}
2401
2402Sema::OwningExprResult
2403Sema::ActOnDependentMemberExpr(ExprArg Base, QualType BaseType,
2404                               bool IsArrow, SourceLocation OpLoc,
2405                               const CXXScopeSpec &SS,
2406                               NamedDecl *FirstQualifierInScope,
2407                               DeclarationName Name, SourceLocation NameLoc,
2408                               const TemplateArgumentListInfo *TemplateArgs) {
2409  Expr *BaseExpr = Base.takeAs<Expr>();
2410
2411  // Even in dependent contexts, try to diagnose base expressions with
2412  // obviously wrong types, e.g.:
2413  //
2414  // T* t;
2415  // t.f;
2416  //
2417  // In Obj-C++, however, the above expression is valid, since it could be
2418  // accessing the 'f' property if T is an Obj-C interface. The extra check
2419  // allows this, while still reporting an error if T is a struct pointer.
2420  if (!IsArrow) {
2421    const PointerType *PT = BaseType->getAs<PointerType>();
2422    if (PT && (!getLangOptions().ObjC1 ||
2423               PT->getPointeeType()->isRecordType())) {
2424      assert(BaseExpr && "cannot happen with implicit member accesses");
2425      Diag(NameLoc, diag::err_typecheck_member_reference_struct_union)
2426        << BaseType << BaseExpr->getSourceRange();
2427      return ExprError();
2428    }
2429  }
2430
2431  assert(BaseType->isDependentType() || Name.isDependentName());
2432
2433  // Get the type being accessed in BaseType.  If this is an arrow, the BaseExpr
2434  // must have pointer type, and the accessed type is the pointee.
2435  return Owned(CXXDependentScopeMemberExpr::Create(Context, BaseExpr, BaseType,
2436                                                   IsArrow, OpLoc,
2437                 static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
2438                                                   SS.getRange(),
2439                                                   FirstQualifierInScope,
2440                                                   Name, NameLoc,
2441                                                   TemplateArgs));
2442}
2443
2444/// We know that the given qualified member reference points only to
2445/// declarations which do not belong to the static type of the base
2446/// expression.  Diagnose the problem.
2447static void DiagnoseQualifiedMemberReference(Sema &SemaRef,
2448                                             Expr *BaseExpr,
2449                                             QualType BaseType,
2450                                             const CXXScopeSpec &SS,
2451                                             const LookupResult &R) {
2452  // If this is an implicit member access, use a different set of
2453  // diagnostics.
2454  if (!BaseExpr)
2455    return DiagnoseInstanceReference(SemaRef, SS, R);
2456
2457  // FIXME: this is an exceedingly lame diagnostic for some of the more
2458  // complicated cases here.
2459  DeclContext *DC = R.getRepresentativeDecl()->getDeclContext();
2460  SemaRef.Diag(R.getNameLoc(), diag::err_not_direct_base_or_virtual)
2461    << SS.getRange() << DC << BaseType;
2462}
2463
2464// Check whether the declarations we found through a nested-name
2465// specifier in a member expression are actually members of the base
2466// type.  The restriction here is:
2467//
2468//   C++ [expr.ref]p2:
2469//     ... In these cases, the id-expression shall name a
2470//     member of the class or of one of its base classes.
2471//
2472// So it's perfectly legitimate for the nested-name specifier to name
2473// an unrelated class, and for us to find an overload set including
2474// decls from classes which are not superclasses, as long as the decl
2475// we actually pick through overload resolution is from a superclass.
2476bool Sema::CheckQualifiedMemberReference(Expr *BaseExpr,
2477                                         QualType BaseType,
2478                                         const CXXScopeSpec &SS,
2479                                         const LookupResult &R) {
2480  const RecordType *BaseRT = BaseType->getAs<RecordType>();
2481  if (!BaseRT) {
2482    // We can't check this yet because the base type is still
2483    // dependent.
2484    assert(BaseType->isDependentType());
2485    return false;
2486  }
2487  CXXRecordDecl *BaseRecord = cast<CXXRecordDecl>(BaseRT->getDecl());
2488
2489  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
2490    // If this is an implicit member reference and we find a
2491    // non-instance member, it's not an error.
2492    if (!BaseExpr && !IsInstanceMember((*I)->getUnderlyingDecl()))
2493      return false;
2494
2495    // Note that we use the DC of the decl, not the underlying decl.
2496    CXXRecordDecl *RecordD = cast<CXXRecordDecl>((*I)->getDeclContext());
2497    while (RecordD->isAnonymousStructOrUnion())
2498      RecordD = cast<CXXRecordDecl>(RecordD->getParent());
2499
2500    llvm::SmallPtrSet<CXXRecordDecl*,4> MemberRecord;
2501    MemberRecord.insert(RecordD->getCanonicalDecl());
2502
2503    if (!IsProvablyNotDerivedFrom(*this, BaseRecord, MemberRecord))
2504      return false;
2505  }
2506
2507  DiagnoseQualifiedMemberReference(*this, BaseExpr, BaseType, SS, R);
2508  return true;
2509}
2510
2511static bool
2512LookupMemberExprInRecord(Sema &SemaRef, LookupResult &R,
2513                         SourceRange BaseRange, const RecordType *RTy,
2514                         SourceLocation OpLoc, const CXXScopeSpec &SS) {
2515  RecordDecl *RDecl = RTy->getDecl();
2516  if (SemaRef.RequireCompleteType(OpLoc, QualType(RTy, 0),
2517                                  PDiag(diag::err_typecheck_incomplete_tag)
2518                                    << BaseRange))
2519    return true;
2520
2521  DeclContext *DC = RDecl;
2522  if (SS.isSet()) {
2523    // If the member name was a qualified-id, look into the
2524    // nested-name-specifier.
2525    DC = SemaRef.computeDeclContext(SS, false);
2526
2527    if (SemaRef.RequireCompleteDeclContext(SS)) {
2528      SemaRef.Diag(SS.getRange().getEnd(), diag::err_typecheck_incomplete_tag)
2529        << SS.getRange() << DC;
2530      return true;
2531    }
2532
2533    assert(DC && "Cannot handle non-computable dependent contexts in lookup");
2534
2535    if (!isa<TypeDecl>(DC)) {
2536      SemaRef.Diag(R.getNameLoc(), diag::err_qualified_member_nonclass)
2537        << DC << SS.getRange();
2538      return true;
2539    }
2540  }
2541
2542  // The record definition is complete, now look up the member.
2543  SemaRef.LookupQualifiedName(R, DC);
2544
2545  if (!R.empty())
2546    return false;
2547
2548  // We didn't find anything with the given name, so try to correct
2549  // for typos.
2550  DeclarationName Name = R.getLookupName();
2551  if (SemaRef.CorrectTypo(R, 0, &SS, DC) &&
2552      (isa<ValueDecl>(*R.begin()) || isa<FunctionTemplateDecl>(*R.begin()))) {
2553    SemaRef.Diag(R.getNameLoc(), diag::err_no_member_suggest)
2554      << Name << DC << R.getLookupName() << SS.getRange()
2555      << CodeModificationHint::CreateReplacement(R.getNameLoc(),
2556                                         R.getLookupName().getAsString());
2557    if (NamedDecl *ND = R.getAsSingle<NamedDecl>())
2558      SemaRef.Diag(ND->getLocation(), diag::note_previous_decl)
2559        << ND->getDeclName();
2560    return false;
2561  } else {
2562    R.clear();
2563  }
2564
2565  return false;
2566}
2567
2568Sema::OwningExprResult
2569Sema::BuildMemberReferenceExpr(ExprArg BaseArg, QualType BaseType,
2570                               SourceLocation OpLoc, bool IsArrow,
2571                               const CXXScopeSpec &SS,
2572                               NamedDecl *FirstQualifierInScope,
2573                               DeclarationName Name, SourceLocation NameLoc,
2574                               const TemplateArgumentListInfo *TemplateArgs) {
2575  Expr *Base = BaseArg.takeAs<Expr>();
2576
2577  if (BaseType->isDependentType() ||
2578      (SS.isSet() && isDependentScopeSpecifier(SS)))
2579    return ActOnDependentMemberExpr(ExprArg(*this, Base), BaseType,
2580                                    IsArrow, OpLoc,
2581                                    SS, FirstQualifierInScope,
2582                                    Name, NameLoc,
2583                                    TemplateArgs);
2584
2585  LookupResult R(*this, Name, NameLoc, LookupMemberName);
2586
2587  // Implicit member accesses.
2588  if (!Base) {
2589    QualType RecordTy = BaseType;
2590    if (IsArrow) RecordTy = RecordTy->getAs<PointerType>()->getPointeeType();
2591    if (LookupMemberExprInRecord(*this, R, SourceRange(),
2592                                 RecordTy->getAs<RecordType>(),
2593                                 OpLoc, SS))
2594      return ExprError();
2595
2596  // Explicit member accesses.
2597  } else {
2598    OwningExprResult Result =
2599      LookupMemberExpr(R, Base, IsArrow, OpLoc,
2600                       SS, /*ObjCImpDecl*/ DeclPtrTy());
2601
2602    if (Result.isInvalid()) {
2603      Owned(Base);
2604      return ExprError();
2605    }
2606
2607    if (Result.get())
2608      return move(Result);
2609  }
2610
2611  return BuildMemberReferenceExpr(ExprArg(*this, Base), BaseType,
2612                                  OpLoc, IsArrow, SS, FirstQualifierInScope,
2613                                  R, TemplateArgs);
2614}
2615
2616Sema::OwningExprResult
2617Sema::BuildMemberReferenceExpr(ExprArg Base, QualType BaseExprType,
2618                               SourceLocation OpLoc, bool IsArrow,
2619                               const CXXScopeSpec &SS,
2620                               NamedDecl *FirstQualifierInScope,
2621                               LookupResult &R,
2622                         const TemplateArgumentListInfo *TemplateArgs) {
2623  Expr *BaseExpr = Base.takeAs<Expr>();
2624  QualType BaseType = BaseExprType;
2625  if (IsArrow) {
2626    assert(BaseType->isPointerType());
2627    BaseType = BaseType->getAs<PointerType>()->getPointeeType();
2628  }
2629
2630  NestedNameSpecifier *Qualifier =
2631    static_cast<NestedNameSpecifier*>(SS.getScopeRep());
2632  DeclarationName MemberName = R.getLookupName();
2633  SourceLocation MemberLoc = R.getNameLoc();
2634
2635  if (R.isAmbiguous())
2636    return ExprError();
2637
2638  if (R.empty()) {
2639    // Rederive where we looked up.
2640    DeclContext *DC = (SS.isSet()
2641                       ? computeDeclContext(SS, false)
2642                       : BaseType->getAs<RecordType>()->getDecl());
2643
2644    Diag(R.getNameLoc(), diag::err_no_member)
2645      << MemberName << DC
2646      << (BaseExpr ? BaseExpr->getSourceRange() : SourceRange());
2647    return ExprError();
2648  }
2649
2650  // Diagnose lookups that find only declarations from a non-base
2651  // type.  This is possible for either qualified lookups (which may
2652  // have been qualified with an unrelated type) or implicit member
2653  // expressions (which were found with unqualified lookup and thus
2654  // may have come from an enclosing scope).  Note that it's okay for
2655  // lookup to find declarations from a non-base type as long as those
2656  // aren't the ones picked by overload resolution.
2657  if ((SS.isSet() || !BaseExpr ||
2658       (isa<CXXThisExpr>(BaseExpr) &&
2659        cast<CXXThisExpr>(BaseExpr)->isImplicit())) &&
2660      CheckQualifiedMemberReference(BaseExpr, BaseType, SS, R))
2661    return ExprError();
2662
2663  // Construct an unresolved result if we in fact got an unresolved
2664  // result.
2665  if (R.isOverloadedResult() || R.isUnresolvableResult()) {
2666    bool Dependent =
2667      BaseExprType->isDependentType() ||
2668      R.isUnresolvableResult() ||
2669      OverloadExpr::ComputeDependence(R.begin(), R.end(), TemplateArgs);
2670
2671    // Suppress any lookup-related diagnostics; we'll do these when we
2672    // pick a member.
2673    R.suppressDiagnostics();
2674
2675    UnresolvedMemberExpr *MemExpr
2676      = UnresolvedMemberExpr::Create(Context, Dependent,
2677                                     R.isUnresolvableResult(),
2678                                     BaseExpr, BaseExprType,
2679                                     IsArrow, OpLoc,
2680                                     Qualifier, SS.getRange(),
2681                                     MemberName, MemberLoc,
2682                                     TemplateArgs);
2683    MemExpr->addDecls(R.begin(), R.end());
2684
2685    return Owned(MemExpr);
2686  }
2687
2688  assert(R.isSingleResult());
2689  NamedDecl *MemberDecl = R.getFoundDecl();
2690
2691  // FIXME: diagnose the presence of template arguments now.
2692
2693  // If the decl being referenced had an error, return an error for this
2694  // sub-expr without emitting another error, in order to avoid cascading
2695  // error cases.
2696  if (MemberDecl->isInvalidDecl())
2697    return ExprError();
2698
2699  // Handle the implicit-member-access case.
2700  if (!BaseExpr) {
2701    // If this is not an instance member, convert to a non-member access.
2702    if (!IsInstanceMember(MemberDecl))
2703      return BuildDeclarationNameExpr(SS, R.getNameLoc(), MemberDecl);
2704
2705    SourceLocation Loc = R.getNameLoc();
2706    if (SS.getRange().isValid())
2707      Loc = SS.getRange().getBegin();
2708    BaseExpr = new (Context) CXXThisExpr(Loc, BaseExprType,/*isImplicit=*/true);
2709  }
2710
2711  bool ShouldCheckUse = true;
2712  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MemberDecl)) {
2713    // Don't diagnose the use of a virtual member function unless it's
2714    // explicitly qualified.
2715    if (MD->isVirtual() && !SS.isSet())
2716      ShouldCheckUse = false;
2717  }
2718
2719  // Check the use of this member.
2720  if (ShouldCheckUse && DiagnoseUseOfDecl(MemberDecl, MemberLoc)) {
2721    Owned(BaseExpr);
2722    return ExprError();
2723  }
2724
2725  if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl)) {
2726    // We may have found a field within an anonymous union or struct
2727    // (C++ [class.union]).
2728    if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion() &&
2729        !BaseType->getAs<RecordType>()->getDecl()->isAnonymousStructOrUnion())
2730      return BuildAnonymousStructUnionMemberReference(MemberLoc, FD,
2731                                                      BaseExpr, OpLoc);
2732
2733    // Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref]
2734    QualType MemberType = FD->getType();
2735    if (const ReferenceType *Ref = MemberType->getAs<ReferenceType>())
2736      MemberType = Ref->getPointeeType();
2737    else {
2738      Qualifiers BaseQuals = BaseType.getQualifiers();
2739      BaseQuals.removeObjCGCAttr();
2740      if (FD->isMutable()) BaseQuals.removeConst();
2741
2742      Qualifiers MemberQuals
2743        = Context.getCanonicalType(MemberType).getQualifiers();
2744
2745      Qualifiers Combined = BaseQuals + MemberQuals;
2746      if (Combined != MemberQuals)
2747        MemberType = Context.getQualifiedType(MemberType, Combined);
2748    }
2749
2750    MarkDeclarationReferenced(MemberLoc, FD);
2751    if (PerformObjectMemberConversion(BaseExpr, Qualifier, FD))
2752      return ExprError();
2753    return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS,
2754                                 FD, MemberLoc, MemberType));
2755  }
2756
2757  if (VarDecl *Var = dyn_cast<VarDecl>(MemberDecl)) {
2758    MarkDeclarationReferenced(MemberLoc, Var);
2759    return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS,
2760                                 Var, MemberLoc,
2761                                 Var->getType().getNonReferenceType()));
2762  }
2763
2764  if (FunctionDecl *MemberFn = dyn_cast<FunctionDecl>(MemberDecl)) {
2765    MarkDeclarationReferenced(MemberLoc, MemberDecl);
2766    return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS,
2767                                 MemberFn, MemberLoc,
2768                                 MemberFn->getType()));
2769  }
2770
2771  if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(MemberDecl)) {
2772    MarkDeclarationReferenced(MemberLoc, MemberDecl);
2773    return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS,
2774                                 Enum, MemberLoc, Enum->getType()));
2775  }
2776
2777  Owned(BaseExpr);
2778
2779  if (isa<TypeDecl>(MemberDecl))
2780    return ExprError(Diag(MemberLoc,diag::err_typecheck_member_reference_type)
2781                     << MemberName << int(IsArrow));
2782
2783  // We found a declaration kind that we didn't expect. This is a
2784  // generic error message that tells the user that she can't refer
2785  // to this member with '.' or '->'.
2786  return ExprError(Diag(MemberLoc,
2787                        diag::err_typecheck_member_reference_unknown)
2788      << MemberName << int(IsArrow));
2789}
2790
2791/// Look up the given member of the given non-type-dependent
2792/// expression.  This can return in one of two ways:
2793///  * If it returns a sentinel null-but-valid result, the caller will
2794///    assume that lookup was performed and the results written into
2795///    the provided structure.  It will take over from there.
2796///  * Otherwise, the returned expression will be produced in place of
2797///    an ordinary member expression.
2798///
2799/// The ObjCImpDecl bit is a gross hack that will need to be properly
2800/// fixed for ObjC++.
2801Sema::OwningExprResult
2802Sema::LookupMemberExpr(LookupResult &R, Expr *&BaseExpr,
2803                       bool &IsArrow, SourceLocation OpLoc,
2804                       const CXXScopeSpec &SS,
2805                       DeclPtrTy ObjCImpDecl) {
2806  assert(BaseExpr && "no base expression");
2807
2808  // Perform default conversions.
2809  DefaultFunctionArrayConversion(BaseExpr);
2810
2811  QualType BaseType = BaseExpr->getType();
2812  assert(!BaseType->isDependentType());
2813
2814  DeclarationName MemberName = R.getLookupName();
2815  SourceLocation MemberLoc = R.getNameLoc();
2816
2817  // If the user is trying to apply -> or . to a function pointer
2818  // type, it's probably because they forgot parentheses to call that
2819  // function. Suggest the addition of those parentheses, build the
2820  // call, and continue on.
2821  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
2822    if (const FunctionProtoType *Fun
2823          = Ptr->getPointeeType()->getAs<FunctionProtoType>()) {
2824      QualType ResultTy = Fun->getResultType();
2825      if (Fun->getNumArgs() == 0 &&
2826          ((!IsArrow && ResultTy->isRecordType()) ||
2827           (IsArrow && ResultTy->isPointerType() &&
2828            ResultTy->getAs<PointerType>()->getPointeeType()
2829                                                          ->isRecordType()))) {
2830        SourceLocation Loc = PP.getLocForEndOfToken(BaseExpr->getLocEnd());
2831        Diag(Loc, diag::err_member_reference_needs_call)
2832          << QualType(Fun, 0)
2833          << CodeModificationHint::CreateInsertion(Loc, "()");
2834
2835        OwningExprResult NewBase
2836          = ActOnCallExpr(0, ExprArg(*this, BaseExpr), Loc,
2837                          MultiExprArg(*this, 0, 0), 0, Loc);
2838        if (NewBase.isInvalid())
2839          return ExprError();
2840
2841        BaseExpr = NewBase.takeAs<Expr>();
2842        DefaultFunctionArrayConversion(BaseExpr);
2843        BaseType = BaseExpr->getType();
2844      }
2845    }
2846  }
2847
2848  // If this is an Objective-C pseudo-builtin and a definition is provided then
2849  // use that.
2850  if (BaseType->isObjCIdType()) {
2851    if (IsArrow) {
2852      // Handle the following exceptional case PObj->isa.
2853      if (const ObjCObjectPointerType *OPT =
2854          BaseType->getAs<ObjCObjectPointerType>()) {
2855        if (OPT->getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCId) &&
2856            MemberName.getAsIdentifierInfo()->isStr("isa"))
2857          return Owned(new (Context) ObjCIsaExpr(BaseExpr, true, MemberLoc,
2858                                                 Context.getObjCClassType()));
2859      }
2860    }
2861    // We have an 'id' type. Rather than fall through, we check if this
2862    // is a reference to 'isa'.
2863    if (BaseType != Context.ObjCIdRedefinitionType) {
2864      BaseType = Context.ObjCIdRedefinitionType;
2865      ImpCastExprToType(BaseExpr, BaseType, CastExpr::CK_BitCast);
2866    }
2867  }
2868
2869  // If this is an Objective-C pseudo-builtin and a definition is provided then
2870  // use that.
2871  if (Context.isObjCSelType(BaseType)) {
2872    // We have an 'SEL' type. Rather than fall through, we check if this
2873    // is a reference to 'sel_id'.
2874    if (BaseType != Context.ObjCSelRedefinitionType) {
2875      BaseType = Context.ObjCSelRedefinitionType;
2876      ImpCastExprToType(BaseExpr, BaseType, CastExpr::CK_BitCast);
2877    }
2878  }
2879
2880  assert(!BaseType.isNull() && "no type for member expression");
2881
2882  // Handle properties on ObjC 'Class' types.
2883  if (!IsArrow && BaseType->isObjCClassType()) {
2884    // Also must look for a getter name which uses property syntax.
2885    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
2886    Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
2887    if (ObjCMethodDecl *MD = getCurMethodDecl()) {
2888      ObjCInterfaceDecl *IFace = MD->getClassInterface();
2889      ObjCMethodDecl *Getter;
2890      // FIXME: need to also look locally in the implementation.
2891      if ((Getter = IFace->lookupClassMethod(Sel))) {
2892        // Check the use of this method.
2893        if (DiagnoseUseOfDecl(Getter, MemberLoc))
2894          return ExprError();
2895      }
2896      // If we found a getter then this may be a valid dot-reference, we
2897      // will look for the matching setter, in case it is needed.
2898      Selector SetterSel =
2899      SelectorTable::constructSetterName(PP.getIdentifierTable(),
2900                                         PP.getSelectorTable(), Member);
2901      ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel);
2902      if (!Setter) {
2903        // If this reference is in an @implementation, also check for 'private'
2904        // methods.
2905        Setter = IFace->lookupPrivateInstanceMethod(SetterSel);
2906      }
2907      // Look through local category implementations associated with the class.
2908      if (!Setter)
2909        Setter = IFace->getCategoryClassMethod(SetterSel);
2910
2911      if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
2912        return ExprError();
2913
2914      if (Getter || Setter) {
2915        QualType PType;
2916
2917        if (Getter)
2918          PType = Getter->getResultType();
2919        else
2920          // Get the expression type from Setter's incoming parameter.
2921          PType = (*(Setter->param_end() -1))->getType();
2922        // FIXME: we must check that the setter has property type.
2923        return Owned(new (Context) ObjCImplicitSetterGetterRefExpr(Getter,
2924                                                  PType,
2925                                                  Setter, MemberLoc, BaseExpr));
2926      }
2927      return ExprError(Diag(MemberLoc, diag::err_property_not_found)
2928                       << MemberName << BaseType);
2929    }
2930  }
2931
2932  if (BaseType->isObjCClassType() &&
2933      BaseType != Context.ObjCClassRedefinitionType) {
2934    BaseType = Context.ObjCClassRedefinitionType;
2935    ImpCastExprToType(BaseExpr, BaseType, CastExpr::CK_BitCast);
2936  }
2937
2938  if (IsArrow) {
2939    if (const PointerType *PT = BaseType->getAs<PointerType>())
2940      BaseType = PT->getPointeeType();
2941    else if (BaseType->isObjCObjectPointerType())
2942      ;
2943    else if (BaseType->isRecordType()) {
2944      // Recover from arrow accesses to records, e.g.:
2945      //   struct MyRecord foo;
2946      //   foo->bar
2947      // This is actually well-formed in C++ if MyRecord has an
2948      // overloaded operator->, but that should have been dealt with
2949      // by now.
2950      Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
2951        << BaseType << int(IsArrow) << BaseExpr->getSourceRange()
2952        << CodeModificationHint::CreateReplacement(OpLoc, ".");
2953      IsArrow = false;
2954    } else {
2955      Diag(MemberLoc, diag::err_typecheck_member_reference_arrow)
2956        << BaseType << BaseExpr->getSourceRange();
2957      return ExprError();
2958    }
2959  } else {
2960    // Recover from dot accesses to pointers, e.g.:
2961    //   type *foo;
2962    //   foo.bar
2963    // This is actually well-formed in two cases:
2964    //   - 'type' is an Objective C type
2965    //   - 'bar' is a pseudo-destructor name which happens to refer to
2966    //     the appropriate pointer type
2967    if (MemberName.getNameKind() != DeclarationName::CXXDestructorName) {
2968      const PointerType *PT = BaseType->getAs<PointerType>();
2969      if (PT && PT->getPointeeType()->isRecordType()) {
2970        Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
2971          << BaseType << int(IsArrow) << BaseExpr->getSourceRange()
2972          << CodeModificationHint::CreateReplacement(OpLoc, "->");
2973        BaseType = PT->getPointeeType();
2974        IsArrow = true;
2975      }
2976    }
2977  }
2978
2979  // Handle field access to simple records.  This also handles access
2980  // to fields of the ObjC 'id' struct.
2981  if (const RecordType *RTy = BaseType->getAs<RecordType>()) {
2982    if (LookupMemberExprInRecord(*this, R, BaseExpr->getSourceRange(),
2983                                 RTy, OpLoc, SS))
2984      return ExprError();
2985    return Owned((Expr*) 0);
2986  }
2987
2988  // Handle access to Objective-C instance variables, such as "Obj->ivar" and
2989  // (*Obj).ivar.
2990  if ((IsArrow && BaseType->isObjCObjectPointerType()) ||
2991      (!IsArrow && BaseType->isObjCInterfaceType())) {
2992    const ObjCObjectPointerType *OPT = BaseType->getAs<ObjCObjectPointerType>();
2993    const ObjCInterfaceType *IFaceT =
2994      OPT ? OPT->getInterfaceType() : BaseType->getAs<ObjCInterfaceType>();
2995    if (IFaceT) {
2996      IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
2997
2998      ObjCInterfaceDecl *IDecl = IFaceT->getDecl();
2999      ObjCInterfaceDecl *ClassDeclared;
3000      ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
3001
3002      if (!IV) {
3003        // Attempt to correct for typos in ivar names.
3004        LookupResult Res(*this, R.getLookupName(), R.getNameLoc(),
3005                         LookupMemberName);
3006        if (CorrectTypo(Res, 0, 0, IDecl) &&
3007            (IV = Res.getAsSingle<ObjCIvarDecl>())) {
3008          Diag(R.getNameLoc(),
3009               diag::err_typecheck_member_reference_ivar_suggest)
3010            << IDecl->getDeclName() << MemberName << IV->getDeclName()
3011            << CodeModificationHint::CreateReplacement(R.getNameLoc(),
3012                                                       IV->getNameAsString());
3013          Diag(IV->getLocation(), diag::note_previous_decl)
3014            << IV->getDeclName();
3015        }
3016      }
3017
3018      if (IV) {
3019        // If the decl being referenced had an error, return an error for this
3020        // sub-expr without emitting another error, in order to avoid cascading
3021        // error cases.
3022        if (IV->isInvalidDecl())
3023          return ExprError();
3024
3025        // Check whether we can reference this field.
3026        if (DiagnoseUseOfDecl(IV, MemberLoc))
3027          return ExprError();
3028        if (IV->getAccessControl() != ObjCIvarDecl::Public &&
3029            IV->getAccessControl() != ObjCIvarDecl::Package) {
3030          ObjCInterfaceDecl *ClassOfMethodDecl = 0;
3031          if (ObjCMethodDecl *MD = getCurMethodDecl())
3032            ClassOfMethodDecl =  MD->getClassInterface();
3033          else if (ObjCImpDecl && getCurFunctionDecl()) {
3034            // Case of a c-function declared inside an objc implementation.
3035            // FIXME: For a c-style function nested inside an objc implementation
3036            // class, there is no implementation context available, so we pass
3037            // down the context as argument to this routine. Ideally, this context
3038            // need be passed down in the AST node and somehow calculated from the
3039            // AST for a function decl.
3040            Decl *ImplDecl = ObjCImpDecl.getAs<Decl>();
3041            if (ObjCImplementationDecl *IMPD =
3042                dyn_cast<ObjCImplementationDecl>(ImplDecl))
3043              ClassOfMethodDecl = IMPD->getClassInterface();
3044            else if (ObjCCategoryImplDecl* CatImplClass =
3045                        dyn_cast<ObjCCategoryImplDecl>(ImplDecl))
3046              ClassOfMethodDecl = CatImplClass->getClassInterface();
3047          }
3048
3049          if (IV->getAccessControl() == ObjCIvarDecl::Private) {
3050            if (ClassDeclared != IDecl ||
3051                ClassOfMethodDecl != ClassDeclared)
3052              Diag(MemberLoc, diag::error_private_ivar_access)
3053                << IV->getDeclName();
3054          } else if (!IDecl->isSuperClassOf(ClassOfMethodDecl))
3055            // @protected
3056            Diag(MemberLoc, diag::error_protected_ivar_access)
3057              << IV->getDeclName();
3058        }
3059
3060        return Owned(new (Context) ObjCIvarRefExpr(IV, IV->getType(),
3061                                                   MemberLoc, BaseExpr,
3062                                                   IsArrow));
3063      }
3064      return ExprError(Diag(MemberLoc, diag::err_typecheck_member_reference_ivar)
3065                         << IDecl->getDeclName() << MemberName
3066                         << BaseExpr->getSourceRange());
3067    }
3068  }
3069  // Handle properties on 'id' and qualified "id".
3070  if (!IsArrow && (BaseType->isObjCIdType() ||
3071                   BaseType->isObjCQualifiedIdType())) {
3072    const ObjCObjectPointerType *QIdTy = BaseType->getAs<ObjCObjectPointerType>();
3073    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
3074
3075    // Check protocols on qualified interfaces.
3076    Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
3077    if (Decl *PMDecl = FindGetterNameDecl(QIdTy, Member, Sel, Context)) {
3078      if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(PMDecl)) {
3079        // Check the use of this declaration
3080        if (DiagnoseUseOfDecl(PD, MemberLoc))
3081          return ExprError();
3082
3083        return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
3084                                                       MemberLoc, BaseExpr));
3085      }
3086      if (ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(PMDecl)) {
3087        // Check the use of this method.
3088        if (DiagnoseUseOfDecl(OMD, MemberLoc))
3089          return ExprError();
3090
3091        return Owned(new (Context) ObjCMessageExpr(Context, BaseExpr, Sel,
3092                                                   OMD->getResultType(),
3093                                                   OMD, OpLoc, MemberLoc,
3094                                                   NULL, 0));
3095      }
3096    }
3097
3098    return ExprError(Diag(MemberLoc, diag::err_property_not_found)
3099                       << MemberName << BaseType);
3100  }
3101  // Handle Objective-C property access, which is "Obj.property" where Obj is a
3102  // pointer to a (potentially qualified) interface type.
3103  const ObjCObjectPointerType *OPT;
3104  if (!IsArrow && (OPT = BaseType->getAsObjCInterfacePointerType())) {
3105    const ObjCInterfaceType *IFaceT = OPT->getInterfaceType();
3106    ObjCInterfaceDecl *IFace = IFaceT->getDecl();
3107    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
3108
3109    // Search for a declared property first.
3110    if (ObjCPropertyDecl *PD = IFace->FindPropertyDeclaration(Member)) {
3111      // Check whether we can reference this property.
3112      if (DiagnoseUseOfDecl(PD, MemberLoc))
3113        return ExprError();
3114      QualType ResTy = PD->getType();
3115      Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
3116      ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Sel);
3117      if (DiagnosePropertyAccessorMismatch(PD, Getter, MemberLoc))
3118        ResTy = Getter->getResultType();
3119      return Owned(new (Context) ObjCPropertyRefExpr(PD, ResTy,
3120                                                     MemberLoc, BaseExpr));
3121    }
3122    // Check protocols on qualified interfaces.
3123    for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
3124         E = OPT->qual_end(); I != E; ++I)
3125      if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(Member)) {
3126        // Check whether we can reference this property.
3127        if (DiagnoseUseOfDecl(PD, MemberLoc))
3128          return ExprError();
3129
3130        return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
3131                                                       MemberLoc, BaseExpr));
3132      }
3133    // If that failed, look for an "implicit" property by seeing if the nullary
3134    // selector is implemented.
3135
3136    // FIXME: The logic for looking up nullary and unary selectors should be
3137    // shared with the code in ActOnInstanceMessage.
3138
3139    Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
3140    ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Sel);
3141
3142    // If this reference is in an @implementation, check for 'private' methods.
3143    if (!Getter)
3144      Getter = IFace->lookupPrivateInstanceMethod(Sel);
3145
3146    // Look through local category implementations associated with the class.
3147    if (!Getter)
3148      Getter = IFace->getCategoryInstanceMethod(Sel);
3149    if (Getter) {
3150      // Check if we can reference this property.
3151      if (DiagnoseUseOfDecl(Getter, MemberLoc))
3152        return ExprError();
3153    }
3154    // If we found a getter then this may be a valid dot-reference, we
3155    // will look for the matching setter, in case it is needed.
3156    Selector SetterSel =
3157      SelectorTable::constructSetterName(PP.getIdentifierTable(),
3158                                         PP.getSelectorTable(), Member);
3159    ObjCMethodDecl *Setter = IFace->lookupInstanceMethod(SetterSel);
3160    if (!Setter) {
3161      // If this reference is in an @implementation, also check for 'private'
3162      // methods.
3163      Setter = IFace->lookupPrivateInstanceMethod(SetterSel);
3164    }
3165    // Look through local category implementations associated with the class.
3166    if (!Setter)
3167      Setter = IFace->getCategoryInstanceMethod(SetterSel);
3168
3169    if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
3170      return ExprError();
3171
3172    if (Getter) {
3173      QualType PType;
3174      PType = Getter->getResultType();
3175      return Owned(new (Context) ObjCImplicitSetterGetterRefExpr(Getter, PType,
3176                                      Setter, MemberLoc, BaseExpr));
3177    }
3178
3179    // Attempt to correct for typos in property names.
3180    LookupResult Res(*this, R.getLookupName(), R.getNameLoc(),
3181                     LookupOrdinaryName);
3182    if (CorrectTypo(Res, 0, 0, IFace, false, OPT) &&
3183        Res.getAsSingle<ObjCPropertyDecl>()) {
3184      Diag(R.getNameLoc(), diag::err_property_not_found_suggest)
3185        << MemberName << BaseType << Res.getLookupName()
3186        << CodeModificationHint::CreateReplacement(R.getNameLoc(),
3187                                           Res.getLookupName().getAsString());
3188      ObjCPropertyDecl *Property = Res.getAsSingle<ObjCPropertyDecl>();
3189      Diag(Property->getLocation(), diag::note_previous_decl)
3190        << Property->getDeclName();
3191
3192      return LookupMemberExpr(Res, BaseExpr, IsArrow, OpLoc, SS,
3193                              ObjCImpDecl);
3194    }
3195    Diag(MemberLoc, diag::err_property_not_found)
3196      << MemberName << BaseType;
3197    if (Setter && !Getter)
3198      Diag(Setter->getLocation(), diag::note_getter_unavailable)
3199        << MemberName << BaseExpr->getSourceRange();
3200    return ExprError();
3201  }
3202
3203  // Handle the following exceptional case (*Obj).isa.
3204  if (!IsArrow &&
3205      BaseType->isSpecificBuiltinType(BuiltinType::ObjCId) &&
3206      MemberName.getAsIdentifierInfo()->isStr("isa"))
3207    return Owned(new (Context) ObjCIsaExpr(BaseExpr, false, MemberLoc,
3208                                           Context.getObjCClassType()));
3209
3210  // Handle 'field access' to vectors, such as 'V.xx'.
3211  if (BaseType->isExtVectorType()) {
3212    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
3213    QualType ret = CheckExtVectorComponent(BaseType, OpLoc, Member, MemberLoc);
3214    if (ret.isNull())
3215      return ExprError();
3216    return Owned(new (Context) ExtVectorElementExpr(ret, BaseExpr, *Member,
3217                                                    MemberLoc));
3218  }
3219
3220  Diag(MemberLoc, diag::err_typecheck_member_reference_struct_union)
3221    << BaseType << BaseExpr->getSourceRange();
3222
3223  return ExprError();
3224}
3225
3226/// The main callback when the parser finds something like
3227///   expression . [nested-name-specifier] identifier
3228///   expression -> [nested-name-specifier] identifier
3229/// where 'identifier' encompasses a fairly broad spectrum of
3230/// possibilities, including destructor and operator references.
3231///
3232/// \param OpKind either tok::arrow or tok::period
3233/// \param HasTrailingLParen whether the next token is '(', which
3234///   is used to diagnose mis-uses of special members that can
3235///   only be called
3236/// \param ObjCImpDecl the current ObjC @implementation decl;
3237///   this is an ugly hack around the fact that ObjC @implementations
3238///   aren't properly put in the context chain
3239Sema::OwningExprResult Sema::ActOnMemberAccessExpr(Scope *S, ExprArg BaseArg,
3240                                                   SourceLocation OpLoc,
3241                                                   tok::TokenKind OpKind,
3242                                                   const CXXScopeSpec &SS,
3243                                                   UnqualifiedId &Id,
3244                                                   DeclPtrTy ObjCImpDecl,
3245                                                   bool HasTrailingLParen) {
3246  if (SS.isSet() && SS.isInvalid())
3247    return ExprError();
3248
3249  TemplateArgumentListInfo TemplateArgsBuffer;
3250
3251  // Decompose the name into its component parts.
3252  DeclarationName Name;
3253  SourceLocation NameLoc;
3254  const TemplateArgumentListInfo *TemplateArgs;
3255  DecomposeUnqualifiedId(*this, Id, TemplateArgsBuffer,
3256                         Name, NameLoc, TemplateArgs);
3257
3258  bool IsArrow = (OpKind == tok::arrow);
3259
3260  NamedDecl *FirstQualifierInScope
3261    = (!SS.isSet() ? 0 : FindFirstQualifierInScope(S,
3262                       static_cast<NestedNameSpecifier*>(SS.getScopeRep())));
3263
3264  // This is a postfix expression, so get rid of ParenListExprs.
3265  BaseArg = MaybeConvertParenListExprToParenExpr(S, move(BaseArg));
3266
3267  Expr *Base = BaseArg.takeAs<Expr>();
3268  OwningExprResult Result(*this);
3269  if (Base->getType()->isDependentType() || Name.isDependentName()) {
3270    Result = ActOnDependentMemberExpr(ExprArg(*this, Base), Base->getType(),
3271                                      IsArrow, OpLoc,
3272                                      SS, FirstQualifierInScope,
3273                                      Name, NameLoc,
3274                                      TemplateArgs);
3275  } else {
3276    LookupResult R(*this, Name, NameLoc, LookupMemberName);
3277    if (TemplateArgs) {
3278      // Re-use the lookup done for the template name.
3279      DecomposeTemplateName(R, Id);
3280    } else {
3281      Result = LookupMemberExpr(R, Base, IsArrow, OpLoc,
3282                                SS, ObjCImpDecl);
3283
3284      if (Result.isInvalid()) {
3285        Owned(Base);
3286        return ExprError();
3287      }
3288
3289      if (Result.get()) {
3290        // The only way a reference to a destructor can be used is to
3291        // immediately call it, which falls into this case.  If the
3292        // next token is not a '(', produce a diagnostic and build the
3293        // call now.
3294        if (!HasTrailingLParen &&
3295            Id.getKind() == UnqualifiedId::IK_DestructorName)
3296          return DiagnoseDtorReference(NameLoc, move(Result));
3297
3298        return move(Result);
3299      }
3300    }
3301
3302    Result = BuildMemberReferenceExpr(ExprArg(*this, Base), Base->getType(),
3303                                      OpLoc, IsArrow, SS, FirstQualifierInScope,
3304                                      R, TemplateArgs);
3305  }
3306
3307  return move(Result);
3308}
3309
3310Sema::OwningExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc,
3311                                                    FunctionDecl *FD,
3312                                                    ParmVarDecl *Param) {
3313  if (Param->hasUnparsedDefaultArg()) {
3314    Diag (CallLoc,
3315          diag::err_use_of_default_argument_to_function_declared_later) <<
3316      FD << cast<CXXRecordDecl>(FD->getDeclContext())->getDeclName();
3317    Diag(UnparsedDefaultArgLocs[Param],
3318          diag::note_default_argument_declared_here);
3319  } else {
3320    if (Param->hasUninstantiatedDefaultArg()) {
3321      Expr *UninstExpr = Param->getUninstantiatedDefaultArg();
3322
3323      // Instantiate the expression.
3324      MultiLevelTemplateArgumentList ArgList
3325        = getTemplateInstantiationArgs(FD, 0, /*RelativeToPrimary=*/true);
3326
3327      InstantiatingTemplate Inst(*this, CallLoc, Param,
3328                                 ArgList.getInnermost().getFlatArgumentList(),
3329                                 ArgList.getInnermost().flat_size());
3330
3331      OwningExprResult Result = SubstExpr(UninstExpr, ArgList);
3332      if (Result.isInvalid())
3333        return ExprError();
3334
3335      // Check the expression as an initializer for the parameter.
3336      InitializedEntity Entity
3337        = InitializedEntity::InitializeParameter(Param);
3338      InitializationKind Kind
3339        = InitializationKind::CreateCopy(Param->getLocation(),
3340               /*FIXME:EqualLoc*/UninstExpr->getSourceRange().getBegin());
3341      Expr *ResultE = Result.takeAs<Expr>();
3342
3343      InitializationSequence InitSeq(*this, Entity, Kind, &ResultE, 1);
3344      Result = InitSeq.Perform(*this, Entity, Kind,
3345                               MultiExprArg(*this, (void**)&ResultE, 1));
3346      if (Result.isInvalid())
3347        return ExprError();
3348
3349      // Build the default argument expression.
3350      return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param,
3351                                             Result.takeAs<Expr>()));
3352    }
3353
3354    // If the default expression creates temporaries, we need to
3355    // push them to the current stack of expression temporaries so they'll
3356    // be properly destroyed.
3357    // FIXME: We should really be rebuilding the default argument with new
3358    // bound temporaries; see the comment in PR5810.
3359    for (unsigned i = 0, e = Param->getNumDefaultArgTemporaries(); i != e; ++i)
3360      ExprTemporaries.push_back(Param->getDefaultArgTemporary(i));
3361  }
3362
3363  // We already type-checked the argument, so we know it works.
3364  return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param));
3365}
3366
3367/// ConvertArgumentsForCall - Converts the arguments specified in
3368/// Args/NumArgs to the parameter types of the function FDecl with
3369/// function prototype Proto. Call is the call expression itself, and
3370/// Fn is the function expression. For a C++ member function, this
3371/// routine does not attempt to convert the object argument. Returns
3372/// true if the call is ill-formed.
3373bool
3374Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
3375                              FunctionDecl *FDecl,
3376                              const FunctionProtoType *Proto,
3377                              Expr **Args, unsigned NumArgs,
3378                              SourceLocation RParenLoc) {
3379  // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
3380  // assignment, to the types of the corresponding parameter, ...
3381  unsigned NumArgsInProto = Proto->getNumArgs();
3382  bool Invalid = false;
3383
3384  // If too few arguments are available (and we don't have default
3385  // arguments for the remaining parameters), don't make the call.
3386  if (NumArgs < NumArgsInProto) {
3387    if (!FDecl || NumArgs < FDecl->getMinRequiredArguments())
3388      return Diag(RParenLoc, diag::err_typecheck_call_too_few_args)
3389        << Fn->getType()->isBlockPointerType() << Fn->getSourceRange();
3390    Call->setNumArgs(Context, NumArgsInProto);
3391  }
3392
3393  // If too many are passed and not variadic, error on the extras and drop
3394  // them.
3395  if (NumArgs > NumArgsInProto) {
3396    if (!Proto->isVariadic()) {
3397      Diag(Args[NumArgsInProto]->getLocStart(),
3398           diag::err_typecheck_call_too_many_args)
3399        << Fn->getType()->isBlockPointerType() << Fn->getSourceRange()
3400        << SourceRange(Args[NumArgsInProto]->getLocStart(),
3401                       Args[NumArgs-1]->getLocEnd());
3402      // This deletes the extra arguments.
3403      Call->setNumArgs(Context, NumArgsInProto);
3404      return true;
3405    }
3406  }
3407  llvm::SmallVector<Expr *, 8> AllArgs;
3408  VariadicCallType CallType =
3409    Proto->isVariadic() ? VariadicFunction : VariadicDoesNotApply;
3410  if (Fn->getType()->isBlockPointerType())
3411    CallType = VariadicBlock; // Block
3412  else if (isa<MemberExpr>(Fn))
3413    CallType = VariadicMethod;
3414  Invalid = GatherArgumentsForCall(Call->getSourceRange().getBegin(), FDecl,
3415                                   Proto, 0, Args, NumArgs, AllArgs, CallType);
3416  if (Invalid)
3417    return true;
3418  unsigned TotalNumArgs = AllArgs.size();
3419  for (unsigned i = 0; i < TotalNumArgs; ++i)
3420    Call->setArg(i, AllArgs[i]);
3421
3422  return false;
3423}
3424
3425bool Sema::GatherArgumentsForCall(SourceLocation CallLoc,
3426                                  FunctionDecl *FDecl,
3427                                  const FunctionProtoType *Proto,
3428                                  unsigned FirstProtoArg,
3429                                  Expr **Args, unsigned NumArgs,
3430                                  llvm::SmallVector<Expr *, 8> &AllArgs,
3431                                  VariadicCallType CallType) {
3432  unsigned NumArgsInProto = Proto->getNumArgs();
3433  unsigned NumArgsToCheck = NumArgs;
3434  bool Invalid = false;
3435  if (NumArgs != NumArgsInProto)
3436    // Use default arguments for missing arguments
3437    NumArgsToCheck = NumArgsInProto;
3438  unsigned ArgIx = 0;
3439  // Continue to check argument types (even if we have too few/many args).
3440  for (unsigned i = FirstProtoArg; i != NumArgsToCheck; i++) {
3441    QualType ProtoArgType = Proto->getArgType(i);
3442
3443    Expr *Arg;
3444    if (ArgIx < NumArgs) {
3445      Arg = Args[ArgIx++];
3446
3447      if (RequireCompleteType(Arg->getSourceRange().getBegin(),
3448                              ProtoArgType,
3449                              PDiag(diag::err_call_incomplete_argument)
3450                              << Arg->getSourceRange()))
3451        return true;
3452
3453      // Pass the argument
3454      ParmVarDecl *Param = 0;
3455      if (FDecl && i < FDecl->getNumParams())
3456        Param = FDecl->getParamDecl(i);
3457
3458
3459      InitializedEntity Entity =
3460        Param? InitializedEntity::InitializeParameter(Param)
3461             : InitializedEntity::InitializeParameter(ProtoArgType);
3462      OwningExprResult ArgE = PerformCopyInitialization(Entity,
3463                                                        SourceLocation(),
3464                                                        Owned(Arg));
3465      if (ArgE.isInvalid())
3466        return true;
3467
3468      Arg = ArgE.takeAs<Expr>();
3469    } else {
3470      ParmVarDecl *Param = FDecl->getParamDecl(i);
3471
3472      OwningExprResult ArgExpr =
3473        BuildCXXDefaultArgExpr(CallLoc, FDecl, Param);
3474      if (ArgExpr.isInvalid())
3475        return true;
3476
3477      Arg = ArgExpr.takeAs<Expr>();
3478    }
3479    AllArgs.push_back(Arg);
3480  }
3481
3482  // If this is a variadic call, handle args passed through "...".
3483  if (CallType != VariadicDoesNotApply) {
3484    // Promote the arguments (C99 6.5.2.2p7).
3485    for (unsigned i = ArgIx; i < NumArgs; i++) {
3486      Expr *Arg = Args[i];
3487      Invalid |= DefaultVariadicArgumentPromotion(Arg, CallType);
3488      AllArgs.push_back(Arg);
3489    }
3490  }
3491  return Invalid;
3492}
3493
3494/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
3495/// This provides the location of the left/right parens and a list of comma
3496/// locations.
3497Action::OwningExprResult
3498Sema::ActOnCallExpr(Scope *S, ExprArg fn, SourceLocation LParenLoc,
3499                    MultiExprArg args,
3500                    SourceLocation *CommaLocs, SourceLocation RParenLoc) {
3501  unsigned NumArgs = args.size();
3502
3503  // Since this might be a postfix expression, get rid of ParenListExprs.
3504  fn = MaybeConvertParenListExprToParenExpr(S, move(fn));
3505
3506  Expr *Fn = fn.takeAs<Expr>();
3507  Expr **Args = reinterpret_cast<Expr**>(args.release());
3508  assert(Fn && "no function call expression");
3509
3510  if (getLangOptions().CPlusPlus) {
3511    // If this is a pseudo-destructor expression, build the call immediately.
3512    if (isa<CXXPseudoDestructorExpr>(Fn)) {
3513      if (NumArgs > 0) {
3514        // Pseudo-destructor calls should not have any arguments.
3515        Diag(Fn->getLocStart(), diag::err_pseudo_dtor_call_with_args)
3516          << CodeModificationHint::CreateRemoval(
3517                                    SourceRange(Args[0]->getLocStart(),
3518                                                Args[NumArgs-1]->getLocEnd()));
3519
3520        for (unsigned I = 0; I != NumArgs; ++I)
3521          Args[I]->Destroy(Context);
3522
3523        NumArgs = 0;
3524      }
3525
3526      return Owned(new (Context) CallExpr(Context, Fn, 0, 0, Context.VoidTy,
3527                                          RParenLoc));
3528    }
3529
3530    // Determine whether this is a dependent call inside a C++ template,
3531    // in which case we won't do any semantic analysis now.
3532    // FIXME: Will need to cache the results of name lookup (including ADL) in
3533    // Fn.
3534    bool Dependent = false;
3535    if (Fn->isTypeDependent())
3536      Dependent = true;
3537    else if (Expr::hasAnyTypeDependentArguments(Args, NumArgs))
3538      Dependent = true;
3539
3540    if (Dependent)
3541      return Owned(new (Context) CallExpr(Context, Fn, Args, NumArgs,
3542                                          Context.DependentTy, RParenLoc));
3543
3544    // Determine whether this is a call to an object (C++ [over.call.object]).
3545    if (Fn->getType()->isRecordType())
3546      return Owned(BuildCallToObjectOfClassType(S, Fn, LParenLoc, Args, NumArgs,
3547                                                CommaLocs, RParenLoc));
3548
3549    Expr *NakedFn = Fn->IgnoreParens();
3550
3551    // Determine whether this is a call to an unresolved member function.
3552    if (UnresolvedMemberExpr *MemE = dyn_cast<UnresolvedMemberExpr>(NakedFn)) {
3553      // If lookup was unresolved but not dependent (i.e. didn't find
3554      // an unresolved using declaration), it has to be an overloaded
3555      // function set, which means it must contain either multiple
3556      // declarations (all methods or method templates) or a single
3557      // method template.
3558      assert((MemE->getNumDecls() > 1) ||
3559             isa<FunctionTemplateDecl>(*MemE->decls_begin()));
3560      (void)MemE;
3561
3562      return BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
3563                                       CommaLocs, RParenLoc);
3564    }
3565
3566    // Determine whether this is a call to a member function.
3567    if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(NakedFn)) {
3568      NamedDecl *MemDecl = MemExpr->getMemberDecl();
3569      if (isa<CXXMethodDecl>(MemDecl))
3570        return BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
3571                                         CommaLocs, RParenLoc);
3572    }
3573
3574    // Determine whether this is a call to a pointer-to-member function.
3575    if (BinaryOperator *BO = dyn_cast<BinaryOperator>(NakedFn)) {
3576      if (BO->getOpcode() == BinaryOperator::PtrMemD ||
3577          BO->getOpcode() == BinaryOperator::PtrMemI) {
3578        if (const FunctionProtoType *FPT =
3579              dyn_cast<FunctionProtoType>(BO->getType())) {
3580          QualType ResultTy = FPT->getResultType().getNonReferenceType();
3581
3582          ExprOwningPtr<CXXMemberCallExpr>
3583            TheCall(this, new (Context) CXXMemberCallExpr(Context, BO, Args,
3584                                                          NumArgs, ResultTy,
3585                                                          RParenLoc));
3586
3587          if (CheckCallReturnType(FPT->getResultType(),
3588                                  BO->getRHS()->getSourceRange().getBegin(),
3589                                  TheCall.get(), 0))
3590            return ExprError();
3591
3592          if (ConvertArgumentsForCall(&*TheCall, BO, 0, FPT, Args, NumArgs,
3593                                      RParenLoc))
3594            return ExprError();
3595
3596          return Owned(MaybeBindToTemporary(TheCall.release()).release());
3597        }
3598        return ExprError(Diag(Fn->getLocStart(),
3599                              diag::err_typecheck_call_not_function)
3600                              << Fn->getType() << Fn->getSourceRange());
3601      }
3602    }
3603  }
3604
3605  // If we're directly calling a function, get the appropriate declaration.
3606  // Also, in C++, keep track of whether we should perform argument-dependent
3607  // lookup and whether there were any explicitly-specified template arguments.
3608
3609  Expr *NakedFn = Fn->IgnoreParens();
3610  if (isa<UnresolvedLookupExpr>(NakedFn)) {
3611    UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(NakedFn);
3612    return BuildOverloadedCallExpr(Fn, ULE, LParenLoc, Args, NumArgs,
3613                                   CommaLocs, RParenLoc);
3614  }
3615
3616  NamedDecl *NDecl = 0;
3617  if (isa<DeclRefExpr>(NakedFn))
3618    NDecl = cast<DeclRefExpr>(NakedFn)->getDecl();
3619
3620  return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, Args, NumArgs, RParenLoc);
3621}
3622
3623/// BuildResolvedCallExpr - Build a call to a resolved expression,
3624/// i.e. an expression not of \p OverloadTy.  The expression should
3625/// unary-convert to an expression of function-pointer or
3626/// block-pointer type.
3627///
3628/// \param NDecl the declaration being called, if available
3629Sema::OwningExprResult
3630Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl,
3631                            SourceLocation LParenLoc,
3632                            Expr **Args, unsigned NumArgs,
3633                            SourceLocation RParenLoc) {
3634  FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(NDecl);
3635
3636  // Promote the function operand.
3637  UsualUnaryConversions(Fn);
3638
3639  // Make the call expr early, before semantic checks.  This guarantees cleanup
3640  // of arguments and function on error.
3641  ExprOwningPtr<CallExpr> TheCall(this, new (Context) CallExpr(Context, Fn,
3642                                                               Args, NumArgs,
3643                                                               Context.BoolTy,
3644                                                               RParenLoc));
3645
3646  const FunctionType *FuncT;
3647  if (!Fn->getType()->isBlockPointerType()) {
3648    // C99 6.5.2.2p1 - "The expression that denotes the called function shall
3649    // have type pointer to function".
3650    const PointerType *PT = Fn->getType()->getAs<PointerType>();
3651    if (PT == 0)
3652      return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
3653        << Fn->getType() << Fn->getSourceRange());
3654    FuncT = PT->getPointeeType()->getAs<FunctionType>();
3655  } else { // This is a block call.
3656    FuncT = Fn->getType()->getAs<BlockPointerType>()->getPointeeType()->
3657                getAs<FunctionType>();
3658  }
3659  if (FuncT == 0)
3660    return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
3661      << Fn->getType() << Fn->getSourceRange());
3662
3663  // Check for a valid return type
3664  if (CheckCallReturnType(FuncT->getResultType(),
3665                          Fn->getSourceRange().getBegin(), TheCall.get(),
3666                          FDecl))
3667    return ExprError();
3668
3669  // We know the result type of the call, set it.
3670  TheCall->setType(FuncT->getResultType().getNonReferenceType());
3671
3672  if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FuncT)) {
3673    if (ConvertArgumentsForCall(&*TheCall, Fn, FDecl, Proto, Args, NumArgs,
3674                                RParenLoc))
3675      return ExprError();
3676  } else {
3677    assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
3678
3679    if (FDecl) {
3680      // Check if we have too few/too many template arguments, based
3681      // on our knowledge of the function definition.
3682      const FunctionDecl *Def = 0;
3683      if (FDecl->getBody(Def) && NumArgs != Def->param_size()) {
3684        const FunctionProtoType *Proto =
3685            Def->getType()->getAs<FunctionProtoType>();
3686        if (!Proto || !(Proto->isVariadic() && NumArgs >= Def->param_size())) {
3687          Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
3688            << (NumArgs > Def->param_size()) << FDecl << Fn->getSourceRange();
3689        }
3690      }
3691    }
3692
3693    // Promote the arguments (C99 6.5.2.2p6).
3694    for (unsigned i = 0; i != NumArgs; i++) {
3695      Expr *Arg = Args[i];
3696      DefaultArgumentPromotion(Arg);
3697      if (RequireCompleteType(Arg->getSourceRange().getBegin(),
3698                              Arg->getType(),
3699                              PDiag(diag::err_call_incomplete_argument)
3700                                << Arg->getSourceRange()))
3701        return ExprError();
3702      TheCall->setArg(i, Arg);
3703    }
3704  }
3705
3706  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
3707    if (!Method->isStatic())
3708      return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
3709        << Fn->getSourceRange());
3710
3711  // Check for sentinels
3712  if (NDecl)
3713    DiagnoseSentinelCalls(NDecl, LParenLoc, Args, NumArgs);
3714
3715  // Do special checking on direct calls to functions.
3716  if (FDecl) {
3717    if (CheckFunctionCall(FDecl, TheCall.get()))
3718      return ExprError();
3719
3720    if (unsigned BuiltinID = FDecl->getBuiltinID())
3721      return CheckBuiltinFunctionCall(BuiltinID, TheCall.take());
3722  } else if (NDecl) {
3723    if (CheckBlockCall(NDecl, TheCall.get()))
3724      return ExprError();
3725  }
3726
3727  return MaybeBindToTemporary(TheCall.take());
3728}
3729
3730Action::OwningExprResult
3731Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, TypeTy *Ty,
3732                           SourceLocation RParenLoc, ExprArg InitExpr) {
3733  assert((Ty != 0) && "ActOnCompoundLiteral(): missing type");
3734  // FIXME: put back this assert when initializers are worked out.
3735  //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
3736
3737  TypeSourceInfo *TInfo;
3738  QualType literalType = GetTypeFromParser(Ty, &TInfo);
3739  if (!TInfo)
3740    TInfo = Context.getTrivialTypeSourceInfo(literalType);
3741
3742  return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, move(InitExpr));
3743}
3744
3745Action::OwningExprResult
3746Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo,
3747                               SourceLocation RParenLoc, ExprArg InitExpr) {
3748  QualType literalType = TInfo->getType();
3749  Expr *literalExpr = static_cast<Expr*>(InitExpr.get());
3750
3751  if (literalType->isArrayType()) {
3752    if (literalType->isVariableArrayType())
3753      return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init)
3754        << SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd()));
3755  } else if (!literalType->isDependentType() &&
3756             RequireCompleteType(LParenLoc, literalType,
3757                      PDiag(diag::err_typecheck_decl_incomplete_type)
3758                        << SourceRange(LParenLoc,
3759                                       literalExpr->getSourceRange().getEnd())))
3760    return ExprError();
3761
3762  InitializedEntity Entity
3763    = InitializedEntity::InitializeTemporary(literalType);
3764  InitializationKind Kind
3765    = InitializationKind::CreateCast(SourceRange(LParenLoc, RParenLoc),
3766                                     /*IsCStyleCast=*/true);
3767  InitializationSequence InitSeq(*this, Entity, Kind, &literalExpr, 1);
3768  OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
3769                                   MultiExprArg(*this, (void**)&literalExpr, 1),
3770                                            &literalType);
3771  if (Result.isInvalid())
3772    return ExprError();
3773  InitExpr.release();
3774  literalExpr = static_cast<Expr*>(Result.get());
3775
3776  bool isFileScope = getCurFunctionOrMethodDecl() == 0;
3777  if (isFileScope) { // 6.5.2.5p3
3778    if (CheckForConstantInitializer(literalExpr, literalType))
3779      return ExprError();
3780  }
3781
3782  Result.release();
3783
3784  return Owned(new (Context) CompoundLiteralExpr(LParenLoc, TInfo, literalType,
3785                                                 literalExpr, isFileScope));
3786}
3787
3788Action::OwningExprResult
3789Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg initlist,
3790                    SourceLocation RBraceLoc) {
3791  unsigned NumInit = initlist.size();
3792  Expr **InitList = reinterpret_cast<Expr**>(initlist.release());
3793
3794  // Semantic analysis for initializers is done by ActOnDeclarator() and
3795  // CheckInitializer() - it requires knowledge of the object being intialized.
3796
3797  InitListExpr *E = new (Context) InitListExpr(LBraceLoc, InitList, NumInit,
3798                                               RBraceLoc);
3799  E->setType(Context.VoidTy); // FIXME: just a place holder for now.
3800  return Owned(E);
3801}
3802
3803static CastExpr::CastKind getScalarCastKind(ASTContext &Context,
3804                                            QualType SrcTy, QualType DestTy) {
3805  if (Context.hasSameUnqualifiedType(SrcTy, DestTy))
3806    return CastExpr::CK_NoOp;
3807
3808  if (SrcTy->hasPointerRepresentation()) {
3809    if (DestTy->hasPointerRepresentation())
3810      return DestTy->isObjCObjectPointerType() ?
3811                CastExpr::CK_AnyPointerToObjCPointerCast :
3812                CastExpr::CK_BitCast;
3813    if (DestTy->isIntegerType())
3814      return CastExpr::CK_PointerToIntegral;
3815  }
3816
3817  if (SrcTy->isIntegerType()) {
3818    if (DestTy->isIntegerType())
3819      return CastExpr::CK_IntegralCast;
3820    if (DestTy->hasPointerRepresentation())
3821      return CastExpr::CK_IntegralToPointer;
3822    if (DestTy->isRealFloatingType())
3823      return CastExpr::CK_IntegralToFloating;
3824  }
3825
3826  if (SrcTy->isRealFloatingType()) {
3827    if (DestTy->isRealFloatingType())
3828      return CastExpr::CK_FloatingCast;
3829    if (DestTy->isIntegerType())
3830      return CastExpr::CK_FloatingToIntegral;
3831  }
3832
3833  // FIXME: Assert here.
3834  // assert(false && "Unhandled cast combination!");
3835  return CastExpr::CK_Unknown;
3836}
3837
3838/// CheckCastTypes - Check type constraints for casting between types.
3839bool Sema::CheckCastTypes(SourceRange TyR, QualType castType, Expr *&castExpr,
3840                          CastExpr::CastKind& Kind,
3841                          CXXMethodDecl *& ConversionDecl,
3842                          bool FunctionalStyle) {
3843  if (getLangOptions().CPlusPlus)
3844    return CXXCheckCStyleCast(TyR, castType, castExpr, Kind, FunctionalStyle,
3845                              ConversionDecl);
3846
3847  DefaultFunctionArrayLvalueConversion(castExpr);
3848
3849  // C99 6.5.4p2: the cast type needs to be void or scalar and the expression
3850  // type needs to be scalar.
3851  if (castType->isVoidType()) {
3852    // Cast to void allows any expr type.
3853    Kind = CastExpr::CK_ToVoid;
3854    return false;
3855  }
3856
3857  if (!castType->isScalarType() && !castType->isVectorType()) {
3858    if (Context.hasSameUnqualifiedType(castType, castExpr->getType()) &&
3859        (castType->isStructureType() || castType->isUnionType())) {
3860      // GCC struct/union extension: allow cast to self.
3861      // FIXME: Check that the cast destination type is complete.
3862      Diag(TyR.getBegin(), diag::ext_typecheck_cast_nonscalar)
3863        << castType << castExpr->getSourceRange();
3864      Kind = CastExpr::CK_NoOp;
3865      return false;
3866    }
3867
3868    if (castType->isUnionType()) {
3869      // GCC cast to union extension
3870      RecordDecl *RD = castType->getAs<RecordType>()->getDecl();
3871      RecordDecl::field_iterator Field, FieldEnd;
3872      for (Field = RD->field_begin(), FieldEnd = RD->field_end();
3873           Field != FieldEnd; ++Field) {
3874        if (Context.hasSameUnqualifiedType(Field->getType(),
3875                                           castExpr->getType())) {
3876          Diag(TyR.getBegin(), diag::ext_typecheck_cast_to_union)
3877            << castExpr->getSourceRange();
3878          break;
3879        }
3880      }
3881      if (Field == FieldEnd)
3882        return Diag(TyR.getBegin(), diag::err_typecheck_cast_to_union_no_type)
3883          << castExpr->getType() << castExpr->getSourceRange();
3884      Kind = CastExpr::CK_ToUnion;
3885      return false;
3886    }
3887
3888    // Reject any other conversions to non-scalar types.
3889    return Diag(TyR.getBegin(), diag::err_typecheck_cond_expect_scalar)
3890      << castType << castExpr->getSourceRange();
3891  }
3892
3893  if (!castExpr->getType()->isScalarType() &&
3894      !castExpr->getType()->isVectorType()) {
3895    return Diag(castExpr->getLocStart(),
3896                diag::err_typecheck_expect_scalar_operand)
3897      << castExpr->getType() << castExpr->getSourceRange();
3898  }
3899
3900  if (castType->isExtVectorType())
3901    return CheckExtVectorCast(TyR, castType, castExpr, Kind);
3902
3903  if (castType->isVectorType())
3904    return CheckVectorCast(TyR, castType, castExpr->getType(), Kind);
3905  if (castExpr->getType()->isVectorType())
3906    return CheckVectorCast(TyR, castExpr->getType(), castType, Kind);
3907
3908  if (getLangOptions().ObjC1 && isa<ObjCSuperExpr>(castExpr))
3909    return Diag(castExpr->getLocStart(), diag::err_illegal_super_cast) << TyR;
3910
3911  if (isa<ObjCSelectorExpr>(castExpr))
3912    return Diag(castExpr->getLocStart(), diag::err_cast_selector_expr);
3913
3914  if (!castType->isArithmeticType()) {
3915    QualType castExprType = castExpr->getType();
3916    if (!castExprType->isIntegralType() && castExprType->isArithmeticType())
3917      return Diag(castExpr->getLocStart(),
3918                  diag::err_cast_pointer_from_non_pointer_int)
3919        << castExprType << castExpr->getSourceRange();
3920  } else if (!castExpr->getType()->isArithmeticType()) {
3921    if (!castType->isIntegralType() && castType->isArithmeticType())
3922      return Diag(castExpr->getLocStart(),
3923                  diag::err_cast_pointer_to_non_pointer_int)
3924        << castType << castExpr->getSourceRange();
3925  }
3926
3927  Kind = getScalarCastKind(Context, castExpr->getType(), castType);
3928  return false;
3929}
3930
3931bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
3932                           CastExpr::CastKind &Kind) {
3933  assert(VectorTy->isVectorType() && "Not a vector type!");
3934
3935  if (Ty->isVectorType() || Ty->isIntegerType()) {
3936    if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty))
3937      return Diag(R.getBegin(),
3938                  Ty->isVectorType() ?
3939                  diag::err_invalid_conversion_between_vectors :
3940                  diag::err_invalid_conversion_between_vector_and_integer)
3941        << VectorTy << Ty << R;
3942  } else
3943    return Diag(R.getBegin(),
3944                diag::err_invalid_conversion_between_vector_and_scalar)
3945      << VectorTy << Ty << R;
3946
3947  Kind = CastExpr::CK_BitCast;
3948  return false;
3949}
3950
3951bool Sema::CheckExtVectorCast(SourceRange R, QualType DestTy, Expr *&CastExpr,
3952                              CastExpr::CastKind &Kind) {
3953  assert(DestTy->isExtVectorType() && "Not an extended vector type!");
3954
3955  QualType SrcTy = CastExpr->getType();
3956
3957  // If SrcTy is a VectorType, the total size must match to explicitly cast to
3958  // an ExtVectorType.
3959  if (SrcTy->isVectorType()) {
3960    if (Context.getTypeSize(DestTy) != Context.getTypeSize(SrcTy))
3961      return Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
3962        << DestTy << SrcTy << R;
3963    Kind = CastExpr::CK_BitCast;
3964    return false;
3965  }
3966
3967  // All non-pointer scalars can be cast to ExtVector type.  The appropriate
3968  // conversion will take place first from scalar to elt type, and then
3969  // splat from elt type to vector.
3970  if (SrcTy->isPointerType())
3971    return Diag(R.getBegin(),
3972                diag::err_invalid_conversion_between_vector_and_scalar)
3973      << DestTy << SrcTy << R;
3974
3975  QualType DestElemTy = DestTy->getAs<ExtVectorType>()->getElementType();
3976  ImpCastExprToType(CastExpr, DestElemTy,
3977                    getScalarCastKind(Context, SrcTy, DestElemTy));
3978
3979  Kind = CastExpr::CK_VectorSplat;
3980  return false;
3981}
3982
3983Action::OwningExprResult
3984Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc, TypeTy *Ty,
3985                    SourceLocation RParenLoc, ExprArg Op) {
3986  assert((Ty != 0) && (Op.get() != 0) &&
3987         "ActOnCastExpr(): missing type or expr");
3988
3989  TypeSourceInfo *castTInfo;
3990  QualType castType = GetTypeFromParser(Ty, &castTInfo);
3991  if (!castTInfo)
3992    castTInfo = Context.getTrivialTypeSourceInfo(castType);
3993
3994  // If the Expr being casted is a ParenListExpr, handle it specially.
3995  Expr *castExpr = (Expr *)Op.get();
3996  if (isa<ParenListExpr>(castExpr))
3997    return ActOnCastOfParenListExpr(S, LParenLoc, RParenLoc, move(Op),
3998                                    castTInfo);
3999
4000  return BuildCStyleCastExpr(LParenLoc, castTInfo, RParenLoc, move(Op));
4001}
4002
4003Action::OwningExprResult
4004Sema::BuildCStyleCastExpr(SourceLocation LParenLoc, TypeSourceInfo *Ty,
4005                          SourceLocation RParenLoc, ExprArg Op) {
4006  Expr *castExpr = static_cast<Expr*>(Op.get());
4007
4008  CXXMethodDecl *Method = 0;
4009  CastExpr::CastKind Kind = CastExpr::CK_Unknown;
4010  if (CheckCastTypes(SourceRange(LParenLoc, RParenLoc), Ty->getType(), castExpr,
4011                     Kind, Method))
4012    return ExprError();
4013
4014  if (Method) {
4015    // FIXME: preserve type source info here
4016    OwningExprResult CastArg = BuildCXXCastArgument(LParenLoc, Ty->getType(),
4017                                                    Kind, Method, move(Op));
4018
4019    if (CastArg.isInvalid())
4020      return ExprError();
4021
4022    castExpr = CastArg.takeAs<Expr>();
4023  } else {
4024    Op.release();
4025  }
4026
4027  return Owned(new (Context) CStyleCastExpr(Ty->getType().getNonReferenceType(),
4028                                            Kind, castExpr, Ty,
4029                                            LParenLoc, RParenLoc));
4030}
4031
4032/// This is not an AltiVec-style cast, so turn the ParenListExpr into a sequence
4033/// of comma binary operators.
4034Action::OwningExprResult
4035Sema::MaybeConvertParenListExprToParenExpr(Scope *S, ExprArg EA) {
4036  Expr *expr = EA.takeAs<Expr>();
4037  ParenListExpr *E = dyn_cast<ParenListExpr>(expr);
4038  if (!E)
4039    return Owned(expr);
4040
4041  OwningExprResult Result(*this, E->getExpr(0));
4042
4043  for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i)
4044    Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, move(Result),
4045                        Owned(E->getExpr(i)));
4046
4047  return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), move(Result));
4048}
4049
4050Action::OwningExprResult
4051Sema::ActOnCastOfParenListExpr(Scope *S, SourceLocation LParenLoc,
4052                               SourceLocation RParenLoc, ExprArg Op,
4053                               TypeSourceInfo *TInfo) {
4054  ParenListExpr *PE = (ParenListExpr *)Op.get();
4055  QualType Ty = TInfo->getType();
4056
4057  // If this is an altivec initializer, '(' type ')' '(' init, ..., init ')'
4058  // then handle it as such.
4059  if (getLangOptions().AltiVec && Ty->isVectorType()) {
4060    if (PE->getNumExprs() == 0) {
4061      Diag(PE->getExprLoc(), diag::err_altivec_empty_initializer);
4062      return ExprError();
4063    }
4064
4065    llvm::SmallVector<Expr *, 8> initExprs;
4066    for (unsigned i = 0, e = PE->getNumExprs(); i != e; ++i)
4067      initExprs.push_back(PE->getExpr(i));
4068
4069    // FIXME: This means that pretty-printing the final AST will produce curly
4070    // braces instead of the original commas.
4071    Op.release();
4072    InitListExpr *E = new (Context) InitListExpr(LParenLoc, &initExprs[0],
4073                                                 initExprs.size(), RParenLoc);
4074    E->setType(Ty);
4075    return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, Owned(E));
4076  } else {
4077    // This is not an AltiVec-style cast, so turn the ParenListExpr into a
4078    // sequence of BinOp comma operators.
4079    Op = MaybeConvertParenListExprToParenExpr(S, move(Op));
4080    return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, move(Op));
4081  }
4082}
4083
4084Action::OwningExprResult Sema::ActOnParenOrParenListExpr(SourceLocation L,
4085                                                  SourceLocation R,
4086                                                  MultiExprArg Val,
4087                                                  TypeTy *TypeOfCast) {
4088  unsigned nexprs = Val.size();
4089  Expr **exprs = reinterpret_cast<Expr**>(Val.release());
4090  assert((exprs != 0) && "ActOnParenOrParenListExpr() missing expr list");
4091  Expr *expr;
4092  if (nexprs == 1 && TypeOfCast && !TypeIsVectorType(TypeOfCast))
4093    expr = new (Context) ParenExpr(L, R, exprs[0]);
4094  else
4095    expr = new (Context) ParenListExpr(Context, L, exprs, nexprs, R);
4096  return Owned(expr);
4097}
4098
4099/// Note that lhs is not null here, even if this is the gnu "x ?: y" extension.
4100/// In that case, lhs = cond.
4101/// C99 6.5.15
4102QualType Sema::CheckConditionalOperands(Expr *&Cond, Expr *&LHS, Expr *&RHS,
4103                                        SourceLocation QuestionLoc) {
4104  // C++ is sufficiently different to merit its own checker.
4105  if (getLangOptions().CPlusPlus)
4106    return CXXCheckConditionalOperands(Cond, LHS, RHS, QuestionLoc);
4107
4108  CheckSignCompare(LHS, RHS, QuestionLoc);
4109
4110  UsualUnaryConversions(Cond);
4111  UsualUnaryConversions(LHS);
4112  UsualUnaryConversions(RHS);
4113  QualType CondTy = Cond->getType();
4114  QualType LHSTy = LHS->getType();
4115  QualType RHSTy = RHS->getType();
4116
4117  // first, check the condition.
4118  if (!CondTy->isScalarType()) { // C99 6.5.15p2
4119    Diag(Cond->getLocStart(), diag::err_typecheck_cond_expect_scalar)
4120      << CondTy;
4121    return QualType();
4122  }
4123
4124  // Now check the two expressions.
4125  if (LHSTy->isVectorType() || RHSTy->isVectorType())
4126    return CheckVectorOperands(QuestionLoc, LHS, RHS);
4127
4128  // If both operands have arithmetic type, do the usual arithmetic conversions
4129  // to find a common type: C99 6.5.15p3,5.
4130  if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
4131    UsualArithmeticConversions(LHS, RHS);
4132    return LHS->getType();
4133  }
4134
4135  // If both operands are the same structure or union type, the result is that
4136  // type.
4137  if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) {    // C99 6.5.15p3
4138    if (const RecordType *RHSRT = RHSTy->getAs<RecordType>())
4139      if (LHSRT->getDecl() == RHSRT->getDecl())
4140        // "If both the operands have structure or union type, the result has
4141        // that type."  This implies that CV qualifiers are dropped.
4142        return LHSTy.getUnqualifiedType();
4143    // FIXME: Type of conditional expression must be complete in C mode.
4144  }
4145
4146  // C99 6.5.15p5: "If both operands have void type, the result has void type."
4147  // The following || allows only one side to be void (a GCC-ism).
4148  if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
4149    if (!LHSTy->isVoidType())
4150      Diag(RHS->getLocStart(), diag::ext_typecheck_cond_one_void)
4151        << RHS->getSourceRange();
4152    if (!RHSTy->isVoidType())
4153      Diag(LHS->getLocStart(), diag::ext_typecheck_cond_one_void)
4154        << LHS->getSourceRange();
4155    ImpCastExprToType(LHS, Context.VoidTy, CastExpr::CK_ToVoid);
4156    ImpCastExprToType(RHS, Context.VoidTy, CastExpr::CK_ToVoid);
4157    return Context.VoidTy;
4158  }
4159  // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
4160  // the type of the other operand."
4161  if ((LHSTy->isAnyPointerType() || LHSTy->isBlockPointerType()) &&
4162      RHS->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
4163    // promote the null to a pointer.
4164    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_Unknown);
4165    return LHSTy;
4166  }
4167  if ((RHSTy->isAnyPointerType() || RHSTy->isBlockPointerType()) &&
4168      LHS->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
4169    ImpCastExprToType(LHS, RHSTy, CastExpr::CK_Unknown);
4170    return RHSTy;
4171  }
4172
4173  // All objective-c pointer type analysis is done here.
4174  QualType compositeType = FindCompositeObjCPointerType(LHS, RHS,
4175                                                        QuestionLoc);
4176  if (!compositeType.isNull())
4177    return compositeType;
4178
4179
4180  // Handle block pointer types.
4181  if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType()) {
4182    if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
4183      if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
4184        QualType destType = Context.getPointerType(Context.VoidTy);
4185        ImpCastExprToType(LHS, destType, CastExpr::CK_BitCast);
4186        ImpCastExprToType(RHS, destType, CastExpr::CK_BitCast);
4187        return destType;
4188      }
4189      Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
4190      << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
4191      return QualType();
4192    }
4193    // We have 2 block pointer types.
4194    if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
4195      // Two identical block pointer types are always compatible.
4196      return LHSTy;
4197    }
4198    // The block pointer types aren't identical, continue checking.
4199    QualType lhptee = LHSTy->getAs<BlockPointerType>()->getPointeeType();
4200    QualType rhptee = RHSTy->getAs<BlockPointerType>()->getPointeeType();
4201
4202    if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
4203                                    rhptee.getUnqualifiedType())) {
4204      Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers)
4205      << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
4206      // In this situation, we assume void* type. No especially good
4207      // reason, but this is what gcc does, and we do have to pick
4208      // to get a consistent AST.
4209      QualType incompatTy = Context.getPointerType(Context.VoidTy);
4210      ImpCastExprToType(LHS, incompatTy, CastExpr::CK_BitCast);
4211      ImpCastExprToType(RHS, incompatTy, CastExpr::CK_BitCast);
4212      return incompatTy;
4213    }
4214    // The block pointer types are compatible.
4215    ImpCastExprToType(LHS, LHSTy, CastExpr::CK_BitCast);
4216    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast);
4217    return LHSTy;
4218  }
4219
4220  // Check constraints for C object pointers types (C99 6.5.15p3,6).
4221  if (LHSTy->isPointerType() && RHSTy->isPointerType()) {
4222    // get the "pointed to" types
4223    QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
4224    QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
4225
4226    // ignore qualifiers on void (C99 6.5.15p3, clause 6)
4227    if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
4228      // Figure out necessary qualifiers (C99 6.5.15p6)
4229      QualType destPointee
4230        = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
4231      QualType destType = Context.getPointerType(destPointee);
4232      // Add qualifiers if necessary.
4233      ImpCastExprToType(LHS, destType, CastExpr::CK_NoOp);
4234      // Promote to void*.
4235      ImpCastExprToType(RHS, destType, CastExpr::CK_BitCast);
4236      return destType;
4237    }
4238    if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
4239      QualType destPointee
4240        = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
4241      QualType destType = Context.getPointerType(destPointee);
4242      // Add qualifiers if necessary.
4243      ImpCastExprToType(RHS, destType, CastExpr::CK_NoOp);
4244      // Promote to void*.
4245      ImpCastExprToType(LHS, destType, CastExpr::CK_BitCast);
4246      return destType;
4247    }
4248
4249    if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
4250      // Two identical pointer types are always compatible.
4251      return LHSTy;
4252    }
4253    if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
4254                                    rhptee.getUnqualifiedType())) {
4255      Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers)
4256        << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
4257      // In this situation, we assume void* type. No especially good
4258      // reason, but this is what gcc does, and we do have to pick
4259      // to get a consistent AST.
4260      QualType incompatTy = Context.getPointerType(Context.VoidTy);
4261      ImpCastExprToType(LHS, incompatTy, CastExpr::CK_BitCast);
4262      ImpCastExprToType(RHS, incompatTy, CastExpr::CK_BitCast);
4263      return incompatTy;
4264    }
4265    // The pointer types are compatible.
4266    // C99 6.5.15p6: If both operands are pointers to compatible types *or* to
4267    // differently qualified versions of compatible types, the result type is
4268    // a pointer to an appropriately qualified version of the *composite*
4269    // type.
4270    // FIXME: Need to calculate the composite type.
4271    // FIXME: Need to add qualifiers
4272    ImpCastExprToType(LHS, LHSTy, CastExpr::CK_BitCast);
4273    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast);
4274    return LHSTy;
4275  }
4276
4277  // GCC compatibility: soften pointer/integer mismatch.
4278  if (RHSTy->isPointerType() && LHSTy->isIntegerType()) {
4279    Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch)
4280      << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
4281    ImpCastExprToType(LHS, RHSTy, CastExpr::CK_IntegralToPointer);
4282    return RHSTy;
4283  }
4284  if (LHSTy->isPointerType() && RHSTy->isIntegerType()) {
4285    Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch)
4286      << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
4287    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_IntegralToPointer);
4288    return LHSTy;
4289  }
4290
4291  // Otherwise, the operands are not compatible.
4292  Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
4293    << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
4294  return QualType();
4295}
4296
4297/// FindCompositeObjCPointerType - Helper method to find composite type of
4298/// two objective-c pointer types of the two input expressions.
4299QualType Sema::FindCompositeObjCPointerType(Expr *&LHS, Expr *&RHS,
4300                                        SourceLocation QuestionLoc) {
4301  QualType LHSTy = LHS->getType();
4302  QualType RHSTy = RHS->getType();
4303
4304  // Handle things like Class and struct objc_class*.  Here we case the result
4305  // to the pseudo-builtin, because that will be implicitly cast back to the
4306  // redefinition type if an attempt is made to access its fields.
4307  if (LHSTy->isObjCClassType() &&
4308      (RHSTy.getDesugaredType() == Context.ObjCClassRedefinitionType)) {
4309    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast);
4310    return LHSTy;
4311  }
4312  if (RHSTy->isObjCClassType() &&
4313      (LHSTy.getDesugaredType() == Context.ObjCClassRedefinitionType)) {
4314    ImpCastExprToType(LHS, RHSTy, CastExpr::CK_BitCast);
4315    return RHSTy;
4316  }
4317  // And the same for struct objc_object* / id
4318  if (LHSTy->isObjCIdType() &&
4319      (RHSTy.getDesugaredType() == Context.ObjCIdRedefinitionType)) {
4320    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast);
4321    return LHSTy;
4322  }
4323  if (RHSTy->isObjCIdType() &&
4324      (LHSTy.getDesugaredType() == Context.ObjCIdRedefinitionType)) {
4325    ImpCastExprToType(LHS, RHSTy, CastExpr::CK_BitCast);
4326    return RHSTy;
4327  }
4328  // And the same for struct objc_selector* / SEL
4329  if (Context.isObjCSelType(LHSTy) &&
4330      (RHSTy.getDesugaredType() == Context.ObjCSelRedefinitionType)) {
4331    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast);
4332    return LHSTy;
4333  }
4334  if (Context.isObjCSelType(RHSTy) &&
4335      (LHSTy.getDesugaredType() == Context.ObjCSelRedefinitionType)) {
4336    ImpCastExprToType(LHS, RHSTy, CastExpr::CK_BitCast);
4337    return RHSTy;
4338  }
4339  // Check constraints for Objective-C object pointers types.
4340  if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) {
4341
4342    if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
4343      // Two identical object pointer types are always compatible.
4344      return LHSTy;
4345    }
4346    const ObjCObjectPointerType *LHSOPT = LHSTy->getAs<ObjCObjectPointerType>();
4347    const ObjCObjectPointerType *RHSOPT = RHSTy->getAs<ObjCObjectPointerType>();
4348    QualType compositeType = LHSTy;
4349
4350    // If both operands are interfaces and either operand can be
4351    // assigned to the other, use that type as the composite
4352    // type. This allows
4353    //   xxx ? (A*) a : (B*) b
4354    // where B is a subclass of A.
4355    //
4356    // Additionally, as for assignment, if either type is 'id'
4357    // allow silent coercion. Finally, if the types are
4358    // incompatible then make sure to use 'id' as the composite
4359    // type so the result is acceptable for sending messages to.
4360
4361    // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
4362    // It could return the composite type.
4363    if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) {
4364      compositeType = RHSOPT->isObjCBuiltinType() ? RHSTy : LHSTy;
4365    } else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) {
4366      compositeType = LHSOPT->isObjCBuiltinType() ? LHSTy : RHSTy;
4367    } else if ((LHSTy->isObjCQualifiedIdType() ||
4368                RHSTy->isObjCQualifiedIdType()) &&
4369               Context.ObjCQualifiedIdTypesAreCompatible(LHSTy, RHSTy, true)) {
4370      // Need to handle "id<xx>" explicitly.
4371      // GCC allows qualified id and any Objective-C type to devolve to
4372      // id. Currently localizing to here until clear this should be
4373      // part of ObjCQualifiedIdTypesAreCompatible.
4374      compositeType = Context.getObjCIdType();
4375    } else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) {
4376      compositeType = Context.getObjCIdType();
4377    } else if (!(compositeType =
4378                 Context.areCommonBaseCompatible(LHSOPT, RHSOPT)).isNull())
4379      ;
4380    else {
4381      Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands)
4382      << LHSTy << RHSTy
4383      << LHS->getSourceRange() << RHS->getSourceRange();
4384      QualType incompatTy = Context.getObjCIdType();
4385      ImpCastExprToType(LHS, incompatTy, CastExpr::CK_BitCast);
4386      ImpCastExprToType(RHS, incompatTy, CastExpr::CK_BitCast);
4387      return incompatTy;
4388    }
4389    // The object pointer types are compatible.
4390    ImpCastExprToType(LHS, compositeType, CastExpr::CK_BitCast);
4391    ImpCastExprToType(RHS, compositeType, CastExpr::CK_BitCast);
4392    return compositeType;
4393  }
4394  // Check Objective-C object pointer types and 'void *'
4395  if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) {
4396    QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
4397    QualType rhptee = RHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
4398    QualType destPointee
4399    = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
4400    QualType destType = Context.getPointerType(destPointee);
4401    // Add qualifiers if necessary.
4402    ImpCastExprToType(LHS, destType, CastExpr::CK_NoOp);
4403    // Promote to void*.
4404    ImpCastExprToType(RHS, destType, CastExpr::CK_BitCast);
4405    return destType;
4406  }
4407  if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) {
4408    QualType lhptee = LHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
4409    QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
4410    QualType destPointee
4411    = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
4412    QualType destType = Context.getPointerType(destPointee);
4413    // Add qualifiers if necessary.
4414    ImpCastExprToType(RHS, destType, CastExpr::CK_NoOp);
4415    // Promote to void*.
4416    ImpCastExprToType(LHS, destType, CastExpr::CK_BitCast);
4417    return destType;
4418  }
4419  return QualType();
4420}
4421
4422/// ActOnConditionalOp - Parse a ?: operation.  Note that 'LHS' may be null
4423/// in the case of a the GNU conditional expr extension.
4424Action::OwningExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
4425                                                  SourceLocation ColonLoc,
4426                                                  ExprArg Cond, ExprArg LHS,
4427                                                  ExprArg RHS) {
4428  Expr *CondExpr = (Expr *) Cond.get();
4429  Expr *LHSExpr = (Expr *) LHS.get(), *RHSExpr = (Expr *) RHS.get();
4430
4431  // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
4432  // was the condition.
4433  bool isLHSNull = LHSExpr == 0;
4434  if (isLHSNull)
4435    LHSExpr = CondExpr;
4436
4437  QualType result = CheckConditionalOperands(CondExpr, LHSExpr,
4438                                             RHSExpr, QuestionLoc);
4439  if (result.isNull())
4440    return ExprError();
4441
4442  Cond.release();
4443  LHS.release();
4444  RHS.release();
4445  return Owned(new (Context) ConditionalOperator(CondExpr, QuestionLoc,
4446                                                 isLHSNull ? 0 : LHSExpr,
4447                                                 ColonLoc, RHSExpr, result));
4448}
4449
4450// CheckPointerTypesForAssignment - This is a very tricky routine (despite
4451// being closely modeled after the C99 spec:-). The odd characteristic of this
4452// routine is it effectively iqnores the qualifiers on the top level pointee.
4453// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
4454// FIXME: add a couple examples in this comment.
4455Sema::AssignConvertType
4456Sema::CheckPointerTypesForAssignment(QualType lhsType, QualType rhsType) {
4457  QualType lhptee, rhptee;
4458
4459  if ((lhsType->isObjCClassType() &&
4460       (rhsType.getDesugaredType() == Context.ObjCClassRedefinitionType)) ||
4461     (rhsType->isObjCClassType() &&
4462       (lhsType.getDesugaredType() == Context.ObjCClassRedefinitionType))) {
4463      return Compatible;
4464  }
4465
4466  // get the "pointed to" type (ignoring qualifiers at the top level)
4467  lhptee = lhsType->getAs<PointerType>()->getPointeeType();
4468  rhptee = rhsType->getAs<PointerType>()->getPointeeType();
4469
4470  // make sure we operate on the canonical type
4471  lhptee = Context.getCanonicalType(lhptee);
4472  rhptee = Context.getCanonicalType(rhptee);
4473
4474  AssignConvertType ConvTy = Compatible;
4475
4476  // C99 6.5.16.1p1: This following citation is common to constraints
4477  // 3 & 4 (below). ...and the type *pointed to* by the left has all the
4478  // qualifiers of the type *pointed to* by the right;
4479  // FIXME: Handle ExtQualType
4480  if (!lhptee.isAtLeastAsQualifiedAs(rhptee))
4481    ConvTy = CompatiblePointerDiscardsQualifiers;
4482
4483  // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
4484  // incomplete type and the other is a pointer to a qualified or unqualified
4485  // version of void...
4486  if (lhptee->isVoidType()) {
4487    if (rhptee->isIncompleteOrObjectType())
4488      return ConvTy;
4489
4490    // As an extension, we allow cast to/from void* to function pointer.
4491    assert(rhptee->isFunctionType());
4492    return FunctionVoidPointer;
4493  }
4494
4495  if (rhptee->isVoidType()) {
4496    if (lhptee->isIncompleteOrObjectType())
4497      return ConvTy;
4498
4499    // As an extension, we allow cast to/from void* to function pointer.
4500    assert(lhptee->isFunctionType());
4501    return FunctionVoidPointer;
4502  }
4503  // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
4504  // unqualified versions of compatible types, ...
4505  lhptee = lhptee.getUnqualifiedType();
4506  rhptee = rhptee.getUnqualifiedType();
4507  if (!Context.typesAreCompatible(lhptee, rhptee)) {
4508    // Check if the pointee types are compatible ignoring the sign.
4509    // We explicitly check for char so that we catch "char" vs
4510    // "unsigned char" on systems where "char" is unsigned.
4511    if (lhptee->isCharType())
4512      lhptee = Context.UnsignedCharTy;
4513    else if (lhptee->isSignedIntegerType())
4514      lhptee = Context.getCorrespondingUnsignedType(lhptee);
4515
4516    if (rhptee->isCharType())
4517      rhptee = Context.UnsignedCharTy;
4518    else if (rhptee->isSignedIntegerType())
4519      rhptee = Context.getCorrespondingUnsignedType(rhptee);
4520
4521    if (lhptee == rhptee) {
4522      // Types are compatible ignoring the sign. Qualifier incompatibility
4523      // takes priority over sign incompatibility because the sign
4524      // warning can be disabled.
4525      if (ConvTy != Compatible)
4526        return ConvTy;
4527      return IncompatiblePointerSign;
4528    }
4529
4530    // If we are a multi-level pointer, it's possible that our issue is simply
4531    // one of qualification - e.g. char ** -> const char ** is not allowed. If
4532    // the eventual target type is the same and the pointers have the same
4533    // level of indirection, this must be the issue.
4534    if (lhptee->isPointerType() && rhptee->isPointerType()) {
4535      do {
4536        lhptee = lhptee->getAs<PointerType>()->getPointeeType();
4537        rhptee = rhptee->getAs<PointerType>()->getPointeeType();
4538
4539        lhptee = Context.getCanonicalType(lhptee);
4540        rhptee = Context.getCanonicalType(rhptee);
4541      } while (lhptee->isPointerType() && rhptee->isPointerType());
4542
4543      if (Context.hasSameUnqualifiedType(lhptee, rhptee))
4544        return IncompatibleNestedPointerQualifiers;
4545    }
4546
4547    // General pointer incompatibility takes priority over qualifiers.
4548    return IncompatiblePointer;
4549  }
4550  return ConvTy;
4551}
4552
4553/// CheckBlockPointerTypesForAssignment - This routine determines whether two
4554/// block pointer types are compatible or whether a block and normal pointer
4555/// are compatible. It is more restrict than comparing two function pointer
4556// types.
4557Sema::AssignConvertType
4558Sema::CheckBlockPointerTypesForAssignment(QualType lhsType,
4559                                          QualType rhsType) {
4560  QualType lhptee, rhptee;
4561
4562  // get the "pointed to" type (ignoring qualifiers at the top level)
4563  lhptee = lhsType->getAs<BlockPointerType>()->getPointeeType();
4564  rhptee = rhsType->getAs<BlockPointerType>()->getPointeeType();
4565
4566  // make sure we operate on the canonical type
4567  lhptee = Context.getCanonicalType(lhptee);
4568  rhptee = Context.getCanonicalType(rhptee);
4569
4570  AssignConvertType ConvTy = Compatible;
4571
4572  // For blocks we enforce that qualifiers are identical.
4573  if (lhptee.getLocalCVRQualifiers() != rhptee.getLocalCVRQualifiers())
4574    ConvTy = CompatiblePointerDiscardsQualifiers;
4575
4576  if (!Context.typesAreCompatible(lhptee, rhptee))
4577    return IncompatibleBlockPointer;
4578  return ConvTy;
4579}
4580
4581/// CheckObjCPointerTypesForAssignment - Compares two objective-c pointer types
4582/// for assignment compatibility.
4583Sema::AssignConvertType
4584Sema::CheckObjCPointerTypesForAssignment(QualType lhsType, QualType rhsType) {
4585  if (lhsType->isObjCBuiltinType() || rhsType->isObjCBuiltinType())
4586    return Compatible;
4587  QualType lhptee =
4588  lhsType->getAs<ObjCObjectPointerType>()->getPointeeType();
4589  QualType rhptee =
4590  rhsType->getAs<ObjCObjectPointerType>()->getPointeeType();
4591  // make sure we operate on the canonical type
4592  lhptee = Context.getCanonicalType(lhptee);
4593  rhptee = Context.getCanonicalType(rhptee);
4594  if (!lhptee.isAtLeastAsQualifiedAs(rhptee))
4595    return CompatiblePointerDiscardsQualifiers;
4596
4597  if (Context.typesAreCompatible(lhsType, rhsType))
4598    return Compatible;
4599  if (lhsType->isObjCQualifiedIdType() || rhsType->isObjCQualifiedIdType())
4600    return IncompatibleObjCQualifiedId;
4601  return IncompatiblePointer;
4602}
4603
4604/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
4605/// has code to accommodate several GCC extensions when type checking
4606/// pointers. Here are some objectionable examples that GCC considers warnings:
4607///
4608///  int a, *pint;
4609///  short *pshort;
4610///  struct foo *pfoo;
4611///
4612///  pint = pshort; // warning: assignment from incompatible pointer type
4613///  a = pint; // warning: assignment makes integer from pointer without a cast
4614///  pint = a; // warning: assignment makes pointer from integer without a cast
4615///  pint = pfoo; // warning: assignment from incompatible pointer type
4616///
4617/// As a result, the code for dealing with pointers is more complex than the
4618/// C99 spec dictates.
4619///
4620Sema::AssignConvertType
4621Sema::CheckAssignmentConstraints(QualType lhsType, QualType rhsType) {
4622  // Get canonical types.  We're not formatting these types, just comparing
4623  // them.
4624  lhsType = Context.getCanonicalType(lhsType).getUnqualifiedType();
4625  rhsType = Context.getCanonicalType(rhsType).getUnqualifiedType();
4626
4627  if (lhsType == rhsType)
4628    return Compatible; // Common case: fast path an exact match.
4629
4630  if ((lhsType->isObjCClassType() &&
4631       (rhsType.getDesugaredType() == Context.ObjCClassRedefinitionType)) ||
4632     (rhsType->isObjCClassType() &&
4633       (lhsType.getDesugaredType() == Context.ObjCClassRedefinitionType))) {
4634      return Compatible;
4635  }
4636
4637  // If the left-hand side is a reference type, then we are in a
4638  // (rare!) case where we've allowed the use of references in C,
4639  // e.g., as a parameter type in a built-in function. In this case,
4640  // just make sure that the type referenced is compatible with the
4641  // right-hand side type. The caller is responsible for adjusting
4642  // lhsType so that the resulting expression does not have reference
4643  // type.
4644  if (const ReferenceType *lhsTypeRef = lhsType->getAs<ReferenceType>()) {
4645    if (Context.typesAreCompatible(lhsTypeRef->getPointeeType(), rhsType))
4646      return Compatible;
4647    return Incompatible;
4648  }
4649  // Allow scalar to ExtVector assignments, and assignments of an ExtVector type
4650  // to the same ExtVector type.
4651  if (lhsType->isExtVectorType()) {
4652    if (rhsType->isExtVectorType())
4653      return lhsType == rhsType ? Compatible : Incompatible;
4654    if (!rhsType->isVectorType() && rhsType->isArithmeticType())
4655      return Compatible;
4656  }
4657
4658  if (lhsType->isVectorType() || rhsType->isVectorType()) {
4659    // If we are allowing lax vector conversions, and LHS and RHS are both
4660    // vectors, the total size only needs to be the same. This is a bitcast;
4661    // no bits are changed but the result type is different.
4662    if (getLangOptions().LaxVectorConversions &&
4663        lhsType->isVectorType() && rhsType->isVectorType()) {
4664      if (Context.getTypeSize(lhsType) == Context.getTypeSize(rhsType))
4665        return IncompatibleVectors;
4666    }
4667    return Incompatible;
4668  }
4669
4670  if (lhsType->isArithmeticType() && rhsType->isArithmeticType())
4671    return Compatible;
4672
4673  if (isa<PointerType>(lhsType)) {
4674    if (rhsType->isIntegerType())
4675      return IntToPointer;
4676
4677    if (isa<PointerType>(rhsType))
4678      return CheckPointerTypesForAssignment(lhsType, rhsType);
4679
4680    // In general, C pointers are not compatible with ObjC object pointers.
4681    if (isa<ObjCObjectPointerType>(rhsType)) {
4682      if (lhsType->isVoidPointerType()) // an exception to the rule.
4683        return Compatible;
4684      return IncompatiblePointer;
4685    }
4686    if (rhsType->getAs<BlockPointerType>()) {
4687      if (lhsType->getAs<PointerType>()->getPointeeType()->isVoidType())
4688        return Compatible;
4689
4690      // Treat block pointers as objects.
4691      if (getLangOptions().ObjC1 && lhsType->isObjCIdType())
4692        return Compatible;
4693    }
4694    return Incompatible;
4695  }
4696
4697  if (isa<BlockPointerType>(lhsType)) {
4698    if (rhsType->isIntegerType())
4699      return IntToBlockPointer;
4700
4701    // Treat block pointers as objects.
4702    if (getLangOptions().ObjC1 && rhsType->isObjCIdType())
4703      return Compatible;
4704
4705    if (rhsType->isBlockPointerType())
4706      return CheckBlockPointerTypesForAssignment(lhsType, rhsType);
4707
4708    if (const PointerType *RHSPT = rhsType->getAs<PointerType>()) {
4709      if (RHSPT->getPointeeType()->isVoidType())
4710        return Compatible;
4711    }
4712    return Incompatible;
4713  }
4714
4715  if (isa<ObjCObjectPointerType>(lhsType)) {
4716    if (rhsType->isIntegerType())
4717      return IntToPointer;
4718
4719    // In general, C pointers are not compatible with ObjC object pointers.
4720    if (isa<PointerType>(rhsType)) {
4721      if (rhsType->isVoidPointerType()) // an exception to the rule.
4722        return Compatible;
4723      return IncompatiblePointer;
4724    }
4725    if (rhsType->isObjCObjectPointerType()) {
4726      return CheckObjCPointerTypesForAssignment(lhsType, rhsType);
4727    }
4728    if (const PointerType *RHSPT = rhsType->getAs<PointerType>()) {
4729      if (RHSPT->getPointeeType()->isVoidType())
4730        return Compatible;
4731    }
4732    // Treat block pointers as objects.
4733    if (rhsType->isBlockPointerType())
4734      return Compatible;
4735    return Incompatible;
4736  }
4737  if (isa<PointerType>(rhsType)) {
4738    // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
4739    if (lhsType == Context.BoolTy)
4740      return Compatible;
4741
4742    if (lhsType->isIntegerType())
4743      return PointerToInt;
4744
4745    if (isa<PointerType>(lhsType))
4746      return CheckPointerTypesForAssignment(lhsType, rhsType);
4747
4748    if (isa<BlockPointerType>(lhsType) &&
4749        rhsType->getAs<PointerType>()->getPointeeType()->isVoidType())
4750      return Compatible;
4751    return Incompatible;
4752  }
4753  if (isa<ObjCObjectPointerType>(rhsType)) {
4754    // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
4755    if (lhsType == Context.BoolTy)
4756      return Compatible;
4757
4758    if (lhsType->isIntegerType())
4759      return PointerToInt;
4760
4761    // In general, C pointers are not compatible with ObjC object pointers.
4762    if (isa<PointerType>(lhsType)) {
4763      if (lhsType->isVoidPointerType()) // an exception to the rule.
4764        return Compatible;
4765      return IncompatiblePointer;
4766    }
4767    if (isa<BlockPointerType>(lhsType) &&
4768        rhsType->getAs<PointerType>()->getPointeeType()->isVoidType())
4769      return Compatible;
4770    return Incompatible;
4771  }
4772
4773  if (isa<TagType>(lhsType) && isa<TagType>(rhsType)) {
4774    if (Context.typesAreCompatible(lhsType, rhsType))
4775      return Compatible;
4776  }
4777  return Incompatible;
4778}
4779
4780/// \brief Constructs a transparent union from an expression that is
4781/// used to initialize the transparent union.
4782static void ConstructTransparentUnion(ASTContext &C, Expr *&E,
4783                                      QualType UnionType, FieldDecl *Field) {
4784  // Build an initializer list that designates the appropriate member
4785  // of the transparent union.
4786  InitListExpr *Initializer = new (C) InitListExpr(SourceLocation(),
4787                                                   &E, 1,
4788                                                   SourceLocation());
4789  Initializer->setType(UnionType);
4790  Initializer->setInitializedFieldInUnion(Field);
4791
4792  // Build a compound literal constructing a value of the transparent
4793  // union type from this initializer list.
4794  TypeSourceInfo *unionTInfo = C.getTrivialTypeSourceInfo(UnionType);
4795  E = new (C) CompoundLiteralExpr(SourceLocation(), unionTInfo, UnionType,
4796                                  Initializer, false);
4797}
4798
4799Sema::AssignConvertType
4800Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType, Expr *&rExpr) {
4801  QualType FromType = rExpr->getType();
4802
4803  // If the ArgType is a Union type, we want to handle a potential
4804  // transparent_union GCC extension.
4805  const RecordType *UT = ArgType->getAsUnionType();
4806  if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
4807    return Incompatible;
4808
4809  // The field to initialize within the transparent union.
4810  RecordDecl *UD = UT->getDecl();
4811  FieldDecl *InitField = 0;
4812  // It's compatible if the expression matches any of the fields.
4813  for (RecordDecl::field_iterator it = UD->field_begin(),
4814         itend = UD->field_end();
4815       it != itend; ++it) {
4816    if (it->getType()->isPointerType()) {
4817      // If the transparent union contains a pointer type, we allow:
4818      // 1) void pointer
4819      // 2) null pointer constant
4820      if (FromType->isPointerType())
4821        if (FromType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
4822          ImpCastExprToType(rExpr, it->getType(), CastExpr::CK_BitCast);
4823          InitField = *it;
4824          break;
4825        }
4826
4827      if (rExpr->isNullPointerConstant(Context,
4828                                       Expr::NPC_ValueDependentIsNull)) {
4829        ImpCastExprToType(rExpr, it->getType(), CastExpr::CK_IntegralToPointer);
4830        InitField = *it;
4831        break;
4832      }
4833    }
4834
4835    if (CheckAssignmentConstraints(it->getType(), rExpr->getType())
4836          == Compatible) {
4837      InitField = *it;
4838      break;
4839    }
4840  }
4841
4842  if (!InitField)
4843    return Incompatible;
4844
4845  ConstructTransparentUnion(Context, rExpr, ArgType, InitField);
4846  return Compatible;
4847}
4848
4849Sema::AssignConvertType
4850Sema::CheckSingleAssignmentConstraints(QualType lhsType, Expr *&rExpr) {
4851  if (getLangOptions().CPlusPlus) {
4852    if (!lhsType->isRecordType()) {
4853      // C++ 5.17p3: If the left operand is not of class type, the
4854      // expression is implicitly converted (C++ 4) to the
4855      // cv-unqualified type of the left operand.
4856      if (PerformImplicitConversion(rExpr, lhsType.getUnqualifiedType(),
4857                                    AA_Assigning))
4858        return Incompatible;
4859      return Compatible;
4860    }
4861
4862    // FIXME: Currently, we fall through and treat C++ classes like C
4863    // structures.
4864  }
4865
4866  // C99 6.5.16.1p1: the left operand is a pointer and the right is
4867  // a null pointer constant.
4868  if ((lhsType->isPointerType() ||
4869       lhsType->isObjCObjectPointerType() ||
4870       lhsType->isBlockPointerType())
4871      && rExpr->isNullPointerConstant(Context,
4872                                      Expr::NPC_ValueDependentIsNull)) {
4873    ImpCastExprToType(rExpr, lhsType, CastExpr::CK_Unknown);
4874    return Compatible;
4875  }
4876
4877  // This check seems unnatural, however it is necessary to ensure the proper
4878  // conversion of functions/arrays. If the conversion were done for all
4879  // DeclExpr's (created by ActOnIdExpression), it would mess up the unary
4880  // expressions that surpress this implicit conversion (&, sizeof).
4881  //
4882  // Suppress this for references: C++ 8.5.3p5.
4883  if (!lhsType->isReferenceType())
4884    DefaultFunctionArrayLvalueConversion(rExpr);
4885
4886  Sema::AssignConvertType result =
4887    CheckAssignmentConstraints(lhsType, rExpr->getType());
4888
4889  // C99 6.5.16.1p2: The value of the right operand is converted to the
4890  // type of the assignment expression.
4891  // CheckAssignmentConstraints allows the left-hand side to be a reference,
4892  // so that we can use references in built-in functions even in C.
4893  // The getNonReferenceType() call makes sure that the resulting expression
4894  // does not have reference type.
4895  if (result != Incompatible && rExpr->getType() != lhsType)
4896    ImpCastExprToType(rExpr, lhsType.getNonReferenceType(),
4897                      CastExpr::CK_Unknown);
4898  return result;
4899}
4900
4901QualType Sema::InvalidOperands(SourceLocation Loc, Expr *&lex, Expr *&rex) {
4902  Diag(Loc, diag::err_typecheck_invalid_operands)
4903    << lex->getType() << rex->getType()
4904    << lex->getSourceRange() << rex->getSourceRange();
4905  return QualType();
4906}
4907
4908QualType Sema::CheckVectorOperands(SourceLocation Loc, Expr *&lex, Expr *&rex) {
4909  // For conversion purposes, we ignore any qualifiers.
4910  // For example, "const float" and "float" are equivalent.
4911  QualType lhsType =
4912    Context.getCanonicalType(lex->getType()).getUnqualifiedType();
4913  QualType rhsType =
4914    Context.getCanonicalType(rex->getType()).getUnqualifiedType();
4915
4916  // If the vector types are identical, return.
4917  if (lhsType == rhsType)
4918    return lhsType;
4919
4920  // Handle the case of a vector & extvector type of the same size and element
4921  // type.  It would be nice if we only had one vector type someday.
4922  if (getLangOptions().LaxVectorConversions) {
4923    // FIXME: Should we warn here?
4924    if (const VectorType *LV = lhsType->getAs<VectorType>()) {
4925      if (const VectorType *RV = rhsType->getAs<VectorType>())
4926        if (LV->getElementType() == RV->getElementType() &&
4927            LV->getNumElements() == RV->getNumElements()) {
4928          return lhsType->isExtVectorType() ? lhsType : rhsType;
4929        }
4930    }
4931  }
4932
4933  // Canonicalize the ExtVector to the LHS, remember if we swapped so we can
4934  // swap back (so that we don't reverse the inputs to a subtract, for instance.
4935  bool swapped = false;
4936  if (rhsType->isExtVectorType()) {
4937    swapped = true;
4938    std::swap(rex, lex);
4939    std::swap(rhsType, lhsType);
4940  }
4941
4942  // Handle the case of an ext vector and scalar.
4943  if (const ExtVectorType *LV = lhsType->getAs<ExtVectorType>()) {
4944    QualType EltTy = LV->getElementType();
4945    if (EltTy->isIntegralType() && rhsType->isIntegralType()) {
4946      if (Context.getIntegerTypeOrder(EltTy, rhsType) >= 0) {
4947        ImpCastExprToType(rex, lhsType, CastExpr::CK_IntegralCast);
4948        if (swapped) std::swap(rex, lex);
4949        return lhsType;
4950      }
4951    }
4952    if (EltTy->isRealFloatingType() && rhsType->isScalarType() &&
4953        rhsType->isRealFloatingType()) {
4954      if (Context.getFloatingTypeOrder(EltTy, rhsType) >= 0) {
4955        ImpCastExprToType(rex, lhsType, CastExpr::CK_FloatingCast);
4956        if (swapped) std::swap(rex, lex);
4957        return lhsType;
4958      }
4959    }
4960  }
4961
4962  // Vectors of different size or scalar and non-ext-vector are errors.
4963  Diag(Loc, diag::err_typecheck_vector_not_convertable)
4964    << lex->getType() << rex->getType()
4965    << lex->getSourceRange() << rex->getSourceRange();
4966  return QualType();
4967}
4968
4969QualType Sema::CheckMultiplyDivideOperands(
4970  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign, bool isDiv) {
4971  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
4972    return CheckVectorOperands(Loc, lex, rex);
4973
4974  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
4975
4976  if (!lex->getType()->isArithmeticType() ||
4977      !rex->getType()->isArithmeticType())
4978    return InvalidOperands(Loc, lex, rex);
4979
4980  // Check for division by zero.
4981  if (isDiv &&
4982      rex->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull))
4983    DiagRuntimeBehavior(Loc, PDiag(diag::warn_division_by_zero)
4984                                     << rex->getSourceRange());
4985
4986  return compType;
4987}
4988
4989QualType Sema::CheckRemainderOperands(
4990  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign) {
4991  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
4992    if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
4993      return CheckVectorOperands(Loc, lex, rex);
4994    return InvalidOperands(Loc, lex, rex);
4995  }
4996
4997  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
4998
4999  if (!lex->getType()->isIntegerType() || !rex->getType()->isIntegerType())
5000    return InvalidOperands(Loc, lex, rex);
5001
5002  // Check for remainder by zero.
5003  if (rex->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull))
5004    DiagRuntimeBehavior(Loc, PDiag(diag::warn_remainder_by_zero)
5005                                 << rex->getSourceRange());
5006
5007  return compType;
5008}
5009
5010QualType Sema::CheckAdditionOperands( // C99 6.5.6
5011  Expr *&lex, Expr *&rex, SourceLocation Loc, QualType* CompLHSTy) {
5012  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
5013    QualType compType = CheckVectorOperands(Loc, lex, rex);
5014    if (CompLHSTy) *CompLHSTy = compType;
5015    return compType;
5016  }
5017
5018  QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy);
5019
5020  // handle the common case first (both operands are arithmetic).
5021  if (lex->getType()->isArithmeticType() &&
5022      rex->getType()->isArithmeticType()) {
5023    if (CompLHSTy) *CompLHSTy = compType;
5024    return compType;
5025  }
5026
5027  // Put any potential pointer into PExp
5028  Expr* PExp = lex, *IExp = rex;
5029  if (IExp->getType()->isAnyPointerType())
5030    std::swap(PExp, IExp);
5031
5032  if (PExp->getType()->isAnyPointerType()) {
5033
5034    if (IExp->getType()->isIntegerType()) {
5035      QualType PointeeTy = PExp->getType()->getPointeeType();
5036
5037      // Check for arithmetic on pointers to incomplete types.
5038      if (PointeeTy->isVoidType()) {
5039        if (getLangOptions().CPlusPlus) {
5040          Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
5041            << lex->getSourceRange() << rex->getSourceRange();
5042          return QualType();
5043        }
5044
5045        // GNU extension: arithmetic on pointer to void
5046        Diag(Loc, diag::ext_gnu_void_ptr)
5047          << lex->getSourceRange() << rex->getSourceRange();
5048      } else if (PointeeTy->isFunctionType()) {
5049        if (getLangOptions().CPlusPlus) {
5050          Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
5051            << lex->getType() << lex->getSourceRange();
5052          return QualType();
5053        }
5054
5055        // GNU extension: arithmetic on pointer to function
5056        Diag(Loc, diag::ext_gnu_ptr_func_arith)
5057          << lex->getType() << lex->getSourceRange();
5058      } else {
5059        // Check if we require a complete type.
5060        if (((PExp->getType()->isPointerType() &&
5061              !PExp->getType()->isDependentType()) ||
5062              PExp->getType()->isObjCObjectPointerType()) &&
5063             RequireCompleteType(Loc, PointeeTy,
5064                           PDiag(diag::err_typecheck_arithmetic_incomplete_type)
5065                             << PExp->getSourceRange()
5066                             << PExp->getType()))
5067          return QualType();
5068      }
5069      // Diagnose bad cases where we step over interface counts.
5070      if (PointeeTy->isObjCInterfaceType() && LangOpts.ObjCNonFragileABI) {
5071        Diag(Loc, diag::err_arithmetic_nonfragile_interface)
5072          << PointeeTy << PExp->getSourceRange();
5073        return QualType();
5074      }
5075
5076      if (CompLHSTy) {
5077        QualType LHSTy = Context.isPromotableBitField(lex);
5078        if (LHSTy.isNull()) {
5079          LHSTy = lex->getType();
5080          if (LHSTy->isPromotableIntegerType())
5081            LHSTy = Context.getPromotedIntegerType(LHSTy);
5082        }
5083        *CompLHSTy = LHSTy;
5084      }
5085      return PExp->getType();
5086    }
5087  }
5088
5089  return InvalidOperands(Loc, lex, rex);
5090}
5091
5092// C99 6.5.6
5093QualType Sema::CheckSubtractionOperands(Expr *&lex, Expr *&rex,
5094                                        SourceLocation Loc, QualType* CompLHSTy) {
5095  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
5096    QualType compType = CheckVectorOperands(Loc, lex, rex);
5097    if (CompLHSTy) *CompLHSTy = compType;
5098    return compType;
5099  }
5100
5101  QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy);
5102
5103  // Enforce type constraints: C99 6.5.6p3.
5104
5105  // Handle the common case first (both operands are arithmetic).
5106  if (lex->getType()->isArithmeticType()
5107      && rex->getType()->isArithmeticType()) {
5108    if (CompLHSTy) *CompLHSTy = compType;
5109    return compType;
5110  }
5111
5112  // Either ptr - int   or   ptr - ptr.
5113  if (lex->getType()->isAnyPointerType()) {
5114    QualType lpointee = lex->getType()->getPointeeType();
5115
5116    // The LHS must be an completely-defined object type.
5117
5118    bool ComplainAboutVoid = false;
5119    Expr *ComplainAboutFunc = 0;
5120    if (lpointee->isVoidType()) {
5121      if (getLangOptions().CPlusPlus) {
5122        Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
5123          << lex->getSourceRange() << rex->getSourceRange();
5124        return QualType();
5125      }
5126
5127      // GNU C extension: arithmetic on pointer to void
5128      ComplainAboutVoid = true;
5129    } else if (lpointee->isFunctionType()) {
5130      if (getLangOptions().CPlusPlus) {
5131        Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
5132          << lex->getType() << lex->getSourceRange();
5133        return QualType();
5134      }
5135
5136      // GNU C extension: arithmetic on pointer to function
5137      ComplainAboutFunc = lex;
5138    } else if (!lpointee->isDependentType() &&
5139               RequireCompleteType(Loc, lpointee,
5140                                   PDiag(diag::err_typecheck_sub_ptr_object)
5141                                     << lex->getSourceRange()
5142                                     << lex->getType()))
5143      return QualType();
5144
5145    // Diagnose bad cases where we step over interface counts.
5146    if (lpointee->isObjCInterfaceType() && LangOpts.ObjCNonFragileABI) {
5147      Diag(Loc, diag::err_arithmetic_nonfragile_interface)
5148        << lpointee << lex->getSourceRange();
5149      return QualType();
5150    }
5151
5152    // The result type of a pointer-int computation is the pointer type.
5153    if (rex->getType()->isIntegerType()) {
5154      if (ComplainAboutVoid)
5155        Diag(Loc, diag::ext_gnu_void_ptr)
5156          << lex->getSourceRange() << rex->getSourceRange();
5157      if (ComplainAboutFunc)
5158        Diag(Loc, diag::ext_gnu_ptr_func_arith)
5159          << ComplainAboutFunc->getType()
5160          << ComplainAboutFunc->getSourceRange();
5161
5162      if (CompLHSTy) *CompLHSTy = lex->getType();
5163      return lex->getType();
5164    }
5165
5166    // Handle pointer-pointer subtractions.
5167    if (const PointerType *RHSPTy = rex->getType()->getAs<PointerType>()) {
5168      QualType rpointee = RHSPTy->getPointeeType();
5169
5170      // RHS must be a completely-type object type.
5171      // Handle the GNU void* extension.
5172      if (rpointee->isVoidType()) {
5173        if (getLangOptions().CPlusPlus) {
5174          Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
5175            << lex->getSourceRange() << rex->getSourceRange();
5176          return QualType();
5177        }
5178
5179        ComplainAboutVoid = true;
5180      } else if (rpointee->isFunctionType()) {
5181        if (getLangOptions().CPlusPlus) {
5182          Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
5183            << rex->getType() << rex->getSourceRange();
5184          return QualType();
5185        }
5186
5187        // GNU extension: arithmetic on pointer to function
5188        if (!ComplainAboutFunc)
5189          ComplainAboutFunc = rex;
5190      } else if (!rpointee->isDependentType() &&
5191                 RequireCompleteType(Loc, rpointee,
5192                                     PDiag(diag::err_typecheck_sub_ptr_object)
5193                                       << rex->getSourceRange()
5194                                       << rex->getType()))
5195        return QualType();
5196
5197      if (getLangOptions().CPlusPlus) {
5198        // Pointee types must be the same: C++ [expr.add]
5199        if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
5200          Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
5201            << lex->getType() << rex->getType()
5202            << lex->getSourceRange() << rex->getSourceRange();
5203          return QualType();
5204        }
5205      } else {
5206        // Pointee types must be compatible C99 6.5.6p3
5207        if (!Context.typesAreCompatible(
5208                Context.getCanonicalType(lpointee).getUnqualifiedType(),
5209                Context.getCanonicalType(rpointee).getUnqualifiedType())) {
5210          Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
5211            << lex->getType() << rex->getType()
5212            << lex->getSourceRange() << rex->getSourceRange();
5213          return QualType();
5214        }
5215      }
5216
5217      if (ComplainAboutVoid)
5218        Diag(Loc, diag::ext_gnu_void_ptr)
5219          << lex->getSourceRange() << rex->getSourceRange();
5220      if (ComplainAboutFunc)
5221        Diag(Loc, diag::ext_gnu_ptr_func_arith)
5222          << ComplainAboutFunc->getType()
5223          << ComplainAboutFunc->getSourceRange();
5224
5225      if (CompLHSTy) *CompLHSTy = lex->getType();
5226      return Context.getPointerDiffType();
5227    }
5228  }
5229
5230  return InvalidOperands(Loc, lex, rex);
5231}
5232
5233// C99 6.5.7
5234QualType Sema::CheckShiftOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
5235                                  bool isCompAssign) {
5236  // C99 6.5.7p2: Each of the operands shall have integer type.
5237  if (!lex->getType()->isIntegerType() || !rex->getType()->isIntegerType())
5238    return InvalidOperands(Loc, lex, rex);
5239
5240  // Vector shifts promote their scalar inputs to vector type.
5241  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
5242    return CheckVectorOperands(Loc, lex, rex);
5243
5244  // Shifts don't perform usual arithmetic conversions, they just do integer
5245  // promotions on each operand. C99 6.5.7p3
5246  QualType LHSTy = Context.isPromotableBitField(lex);
5247  if (LHSTy.isNull()) {
5248    LHSTy = lex->getType();
5249    if (LHSTy->isPromotableIntegerType())
5250      LHSTy = Context.getPromotedIntegerType(LHSTy);
5251  }
5252  if (!isCompAssign)
5253    ImpCastExprToType(lex, LHSTy, CastExpr::CK_IntegralCast);
5254
5255  UsualUnaryConversions(rex);
5256
5257  // Sanity-check shift operands
5258  llvm::APSInt Right;
5259  // Check right/shifter operand
5260  if (!rex->isValueDependent() &&
5261      rex->isIntegerConstantExpr(Right, Context)) {
5262    if (Right.isNegative())
5263      Diag(Loc, diag::warn_shift_negative) << rex->getSourceRange();
5264    else {
5265      llvm::APInt LeftBits(Right.getBitWidth(),
5266                          Context.getTypeSize(lex->getType()));
5267      if (Right.uge(LeftBits))
5268        Diag(Loc, diag::warn_shift_gt_typewidth) << rex->getSourceRange();
5269    }
5270  }
5271
5272  // "The type of the result is that of the promoted left operand."
5273  return LHSTy;
5274}
5275
5276// C99 6.5.8, C++ [expr.rel]
5277QualType Sema::CheckCompareOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
5278                                    unsigned OpaqueOpc, bool isRelational) {
5279  BinaryOperator::Opcode Opc = (BinaryOperator::Opcode)OpaqueOpc;
5280
5281  // Handle vector comparisons separately.
5282  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
5283    return CheckVectorCompareOperands(lex, rex, Loc, isRelational);
5284
5285  CheckSignCompare(lex, rex, Loc, &Opc);
5286
5287  // C99 6.5.8p3 / C99 6.5.9p4
5288  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
5289    UsualArithmeticConversions(lex, rex);
5290  else {
5291    UsualUnaryConversions(lex);
5292    UsualUnaryConversions(rex);
5293  }
5294  QualType lType = lex->getType();
5295  QualType rType = rex->getType();
5296
5297  if (!lType->isFloatingType()
5298      && !(lType->isBlockPointerType() && isRelational)) {
5299    // For non-floating point types, check for self-comparisons of the form
5300    // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
5301    // often indicate logic errors in the program.
5302    // NOTE: Don't warn about comparisons of enum constants. These can arise
5303    //  from macro expansions, and are usually quite deliberate.
5304    Expr *LHSStripped = lex->IgnoreParens();
5305    Expr *RHSStripped = rex->IgnoreParens();
5306    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LHSStripped))
5307      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RHSStripped))
5308        if (DRL->getDecl() == DRR->getDecl() &&
5309            !isa<EnumConstantDecl>(DRL->getDecl()))
5310          DiagRuntimeBehavior(Loc, PDiag(diag::warn_selfcomparison));
5311
5312    if (isa<CastExpr>(LHSStripped))
5313      LHSStripped = LHSStripped->IgnoreParenCasts();
5314    if (isa<CastExpr>(RHSStripped))
5315      RHSStripped = RHSStripped->IgnoreParenCasts();
5316
5317    // Warn about comparisons against a string constant (unless the other
5318    // operand is null), the user probably wants strcmp.
5319    Expr *literalString = 0;
5320    Expr *literalStringStripped = 0;
5321    if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
5322        !RHSStripped->isNullPointerConstant(Context,
5323                                            Expr::NPC_ValueDependentIsNull)) {
5324      literalString = lex;
5325      literalStringStripped = LHSStripped;
5326    } else if ((isa<StringLiteral>(RHSStripped) ||
5327                isa<ObjCEncodeExpr>(RHSStripped)) &&
5328               !LHSStripped->isNullPointerConstant(Context,
5329                                            Expr::NPC_ValueDependentIsNull)) {
5330      literalString = rex;
5331      literalStringStripped = RHSStripped;
5332    }
5333
5334    if (literalString) {
5335      std::string resultComparison;
5336      switch (Opc) {
5337      case BinaryOperator::LT: resultComparison = ") < 0"; break;
5338      case BinaryOperator::GT: resultComparison = ") > 0"; break;
5339      case BinaryOperator::LE: resultComparison = ") <= 0"; break;
5340      case BinaryOperator::GE: resultComparison = ") >= 0"; break;
5341      case BinaryOperator::EQ: resultComparison = ") == 0"; break;
5342      case BinaryOperator::NE: resultComparison = ") != 0"; break;
5343      default: assert(false && "Invalid comparison operator");
5344      }
5345
5346      DiagRuntimeBehavior(Loc,
5347        PDiag(diag::warn_stringcompare)
5348          << isa<ObjCEncodeExpr>(literalStringStripped)
5349          << literalString->getSourceRange()
5350          << CodeModificationHint::CreateReplacement(SourceRange(Loc), ", ")
5351          << CodeModificationHint::CreateInsertion(lex->getLocStart(),
5352                                                   "strcmp(")
5353          << CodeModificationHint::CreateInsertion(
5354                                         PP.getLocForEndOfToken(rex->getLocEnd()),
5355                                         resultComparison));
5356    }
5357  }
5358
5359  // The result of comparisons is 'bool' in C++, 'int' in C.
5360  QualType ResultTy = getLangOptions().CPlusPlus ? Context.BoolTy:Context.IntTy;
5361
5362  if (isRelational) {
5363    if (lType->isRealType() && rType->isRealType())
5364      return ResultTy;
5365  } else {
5366    // Check for comparisons of floating point operands using != and ==.
5367    if (lType->isFloatingType() && rType->isFloatingType())
5368      CheckFloatComparison(Loc,lex,rex);
5369
5370    if (lType->isArithmeticType() && rType->isArithmeticType())
5371      return ResultTy;
5372  }
5373
5374  bool LHSIsNull = lex->isNullPointerConstant(Context,
5375                                              Expr::NPC_ValueDependentIsNull);
5376  bool RHSIsNull = rex->isNullPointerConstant(Context,
5377                                              Expr::NPC_ValueDependentIsNull);
5378
5379  // All of the following pointer related warnings are GCC extensions, except
5380  // when handling null pointer constants. One day, we can consider making them
5381  // errors (when -pedantic-errors is enabled).
5382  if (lType->isPointerType() && rType->isPointerType()) { // C99 6.5.8p2
5383    QualType LCanPointeeTy =
5384      Context.getCanonicalType(lType->getAs<PointerType>()->getPointeeType());
5385    QualType RCanPointeeTy =
5386      Context.getCanonicalType(rType->getAs<PointerType>()->getPointeeType());
5387
5388    if (getLangOptions().CPlusPlus) {
5389      if (LCanPointeeTy == RCanPointeeTy)
5390        return ResultTy;
5391      if (!isRelational &&
5392          (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
5393        // Valid unless comparison between non-null pointer and function pointer
5394        // This is a gcc extension compatibility comparison.
5395        if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
5396            && !LHSIsNull && !RHSIsNull) {
5397          Diag(Loc, diag::ext_typecheck_comparison_of_fptr_to_void)
5398            << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5399          ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
5400          return ResultTy;
5401        }
5402      }
5403      // C++ [expr.rel]p2:
5404      //   [...] Pointer conversions (4.10) and qualification
5405      //   conversions (4.4) are performed on pointer operands (or on
5406      //   a pointer operand and a null pointer constant) to bring
5407      //   them to their composite pointer type. [...]
5408      //
5409      // C++ [expr.eq]p1 uses the same notion for (in)equality
5410      // comparisons of pointers.
5411      bool NonStandardCompositeType = false;
5412      QualType T = FindCompositePointerType(lex, rex,
5413                              isSFINAEContext()? 0 : &NonStandardCompositeType);
5414      if (T.isNull()) {
5415        Diag(Loc, diag::err_typecheck_comparison_of_distinct_pointers)
5416          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5417        return QualType();
5418      } else if (NonStandardCompositeType) {
5419        Diag(Loc,
5420             diag::ext_typecheck_comparison_of_distinct_pointers_nonstandard)
5421          << lType << rType << T
5422          << lex->getSourceRange() << rex->getSourceRange();
5423      }
5424
5425      ImpCastExprToType(lex, T, CastExpr::CK_BitCast);
5426      ImpCastExprToType(rex, T, CastExpr::CK_BitCast);
5427      return ResultTy;
5428    }
5429    // C99 6.5.9p2 and C99 6.5.8p2
5430    if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
5431                                   RCanPointeeTy.getUnqualifiedType())) {
5432      // Valid unless a relational comparison of function pointers
5433      if (isRelational && LCanPointeeTy->isFunctionType()) {
5434        Diag(Loc, diag::ext_typecheck_ordered_comparison_of_function_pointers)
5435          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5436      }
5437    } else if (!isRelational &&
5438               (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
5439      // Valid unless comparison between non-null pointer and function pointer
5440      if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
5441          && !LHSIsNull && !RHSIsNull) {
5442        Diag(Loc, diag::ext_typecheck_comparison_of_fptr_to_void)
5443          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5444      }
5445    } else {
5446      // Invalid
5447      Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
5448        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5449    }
5450    if (LCanPointeeTy != RCanPointeeTy)
5451      ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
5452    return ResultTy;
5453  }
5454
5455  if (getLangOptions().CPlusPlus) {
5456    // Comparison of pointers with null pointer constants and equality
5457    // comparisons of member pointers to null pointer constants.
5458    if (RHSIsNull &&
5459        (lType->isPointerType() ||
5460         (!isRelational && lType->isMemberPointerType()))) {
5461      ImpCastExprToType(rex, lType, CastExpr::CK_NullToMemberPointer);
5462      return ResultTy;
5463    }
5464    if (LHSIsNull &&
5465        (rType->isPointerType() ||
5466         (!isRelational && rType->isMemberPointerType()))) {
5467      ImpCastExprToType(lex, rType, CastExpr::CK_NullToMemberPointer);
5468      return ResultTy;
5469    }
5470
5471    // Comparison of member pointers.
5472    if (!isRelational &&
5473        lType->isMemberPointerType() && rType->isMemberPointerType()) {
5474      // C++ [expr.eq]p2:
5475      //   In addition, pointers to members can be compared, or a pointer to
5476      //   member and a null pointer constant. Pointer to member conversions
5477      //   (4.11) and qualification conversions (4.4) are performed to bring
5478      //   them to a common type. If one operand is a null pointer constant,
5479      //   the common type is the type of the other operand. Otherwise, the
5480      //   common type is a pointer to member type similar (4.4) to the type
5481      //   of one of the operands, with a cv-qualification signature (4.4)
5482      //   that is the union of the cv-qualification signatures of the operand
5483      //   types.
5484      bool NonStandardCompositeType = false;
5485      QualType T = FindCompositePointerType(lex, rex,
5486                              isSFINAEContext()? 0 : &NonStandardCompositeType);
5487      if (T.isNull()) {
5488        Diag(Loc, diag::err_typecheck_comparison_of_distinct_pointers)
5489          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5490        return QualType();
5491      } else if (NonStandardCompositeType) {
5492        Diag(Loc,
5493             diag::ext_typecheck_comparison_of_distinct_pointers_nonstandard)
5494          << lType << rType << T
5495          << lex->getSourceRange() << rex->getSourceRange();
5496      }
5497
5498      ImpCastExprToType(lex, T, CastExpr::CK_BitCast);
5499      ImpCastExprToType(rex, T, CastExpr::CK_BitCast);
5500      return ResultTy;
5501    }
5502
5503    // Comparison of nullptr_t with itself.
5504    if (lType->isNullPtrType() && rType->isNullPtrType())
5505      return ResultTy;
5506  }
5507
5508  // Handle block pointer types.
5509  if (!isRelational && lType->isBlockPointerType() && rType->isBlockPointerType()) {
5510    QualType lpointee = lType->getAs<BlockPointerType>()->getPointeeType();
5511    QualType rpointee = rType->getAs<BlockPointerType>()->getPointeeType();
5512
5513    if (!LHSIsNull && !RHSIsNull &&
5514        !Context.typesAreCompatible(lpointee, rpointee)) {
5515      Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
5516        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5517    }
5518    ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
5519    return ResultTy;
5520  }
5521  // Allow block pointers to be compared with null pointer constants.
5522  if (!isRelational
5523      && ((lType->isBlockPointerType() && rType->isPointerType())
5524          || (lType->isPointerType() && rType->isBlockPointerType()))) {
5525    if (!LHSIsNull && !RHSIsNull) {
5526      if (!((rType->isPointerType() && rType->getAs<PointerType>()
5527             ->getPointeeType()->isVoidType())
5528            || (lType->isPointerType() && lType->getAs<PointerType>()
5529                ->getPointeeType()->isVoidType())))
5530        Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
5531          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5532    }
5533    ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
5534    return ResultTy;
5535  }
5536
5537  if ((lType->isObjCObjectPointerType() || rType->isObjCObjectPointerType())) {
5538    if (lType->isPointerType() || rType->isPointerType()) {
5539      const PointerType *LPT = lType->getAs<PointerType>();
5540      const PointerType *RPT = rType->getAs<PointerType>();
5541      bool LPtrToVoid = LPT ?
5542        Context.getCanonicalType(LPT->getPointeeType())->isVoidType() : false;
5543      bool RPtrToVoid = RPT ?
5544        Context.getCanonicalType(RPT->getPointeeType())->isVoidType() : false;
5545
5546      if (!LPtrToVoid && !RPtrToVoid &&
5547          !Context.typesAreCompatible(lType, rType)) {
5548        Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
5549          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5550      }
5551      ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
5552      return ResultTy;
5553    }
5554    if (lType->isObjCObjectPointerType() && rType->isObjCObjectPointerType()) {
5555      if (!Context.areComparableObjCPointerTypes(lType, rType))
5556        Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
5557          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5558      ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
5559      return ResultTy;
5560    }
5561  }
5562  if (lType->isAnyPointerType() && rType->isIntegerType()) {
5563    unsigned DiagID = 0;
5564    if (RHSIsNull) {
5565      if (isRelational)
5566        DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
5567    } else if (isRelational)
5568      DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
5569    else
5570      DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
5571
5572    if (DiagID) {
5573      Diag(Loc, DiagID)
5574        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5575    }
5576    ImpCastExprToType(rex, lType, CastExpr::CK_IntegralToPointer);
5577    return ResultTy;
5578  }
5579  if (lType->isIntegerType() && rType->isAnyPointerType()) {
5580    unsigned DiagID = 0;
5581    if (LHSIsNull) {
5582      if (isRelational)
5583        DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
5584    } else if (isRelational)
5585      DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
5586    else
5587      DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
5588
5589    if (DiagID) {
5590      Diag(Loc, DiagID)
5591        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5592    }
5593    ImpCastExprToType(lex, rType, CastExpr::CK_IntegralToPointer);
5594    return ResultTy;
5595  }
5596  // Handle block pointers.
5597  if (!isRelational && RHSIsNull
5598      && lType->isBlockPointerType() && rType->isIntegerType()) {
5599    ImpCastExprToType(rex, lType, CastExpr::CK_IntegralToPointer);
5600    return ResultTy;
5601  }
5602  if (!isRelational && LHSIsNull
5603      && lType->isIntegerType() && rType->isBlockPointerType()) {
5604    ImpCastExprToType(lex, rType, CastExpr::CK_IntegralToPointer);
5605    return ResultTy;
5606  }
5607  return InvalidOperands(Loc, lex, rex);
5608}
5609
5610/// CheckVectorCompareOperands - vector comparisons are a clang extension that
5611/// operates on extended vector types.  Instead of producing an IntTy result,
5612/// like a scalar comparison, a vector comparison produces a vector of integer
5613/// types.
5614QualType Sema::CheckVectorCompareOperands(Expr *&lex, Expr *&rex,
5615                                          SourceLocation Loc,
5616                                          bool isRelational) {
5617  // Check to make sure we're operating on vectors of the same type and width,
5618  // Allowing one side to be a scalar of element type.
5619  QualType vType = CheckVectorOperands(Loc, lex, rex);
5620  if (vType.isNull())
5621    return vType;
5622
5623  QualType lType = lex->getType();
5624  QualType rType = rex->getType();
5625
5626  // For non-floating point types, check for self-comparisons of the form
5627  // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
5628  // often indicate logic errors in the program.
5629  if (!lType->isFloatingType()) {
5630    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens()))
5631      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens()))
5632        if (DRL->getDecl() == DRR->getDecl())
5633          DiagRuntimeBehavior(Loc, PDiag(diag::warn_selfcomparison));
5634  }
5635
5636  // Check for comparisons of floating point operands using != and ==.
5637  if (!isRelational && lType->isFloatingType()) {
5638    assert (rType->isFloatingType());
5639    CheckFloatComparison(Loc,lex,rex);
5640  }
5641
5642  // Return the type for the comparison, which is the same as vector type for
5643  // integer vectors, or an integer type of identical size and number of
5644  // elements for floating point vectors.
5645  if (lType->isIntegerType())
5646    return lType;
5647
5648  const VectorType *VTy = lType->getAs<VectorType>();
5649  unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
5650  if (TypeSize == Context.getTypeSize(Context.IntTy))
5651    return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
5652  if (TypeSize == Context.getTypeSize(Context.LongTy))
5653    return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
5654
5655  assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
5656         "Unhandled vector element size in vector compare");
5657  return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
5658}
5659
5660inline QualType Sema::CheckBitwiseOperands(
5661  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign) {
5662  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
5663    return CheckVectorOperands(Loc, lex, rex);
5664
5665  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
5666
5667  if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
5668    return compType;
5669  return InvalidOperands(Loc, lex, rex);
5670}
5671
5672inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
5673  Expr *&lex, Expr *&rex, SourceLocation Loc) {
5674  if (!Context.getLangOptions().CPlusPlus) {
5675    UsualUnaryConversions(lex);
5676    UsualUnaryConversions(rex);
5677
5678    if (!lex->getType()->isScalarType() || !rex->getType()->isScalarType())
5679      return InvalidOperands(Loc, lex, rex);
5680
5681    return Context.IntTy;
5682  }
5683
5684  // C++ [expr.log.and]p1
5685  // C++ [expr.log.or]p1
5686  // The operands are both implicitly converted to type bool (clause 4).
5687  StandardConversionSequence LHS;
5688  if (!IsStandardConversion(lex, Context.BoolTy,
5689                            /*InOverloadResolution=*/false, LHS))
5690    return InvalidOperands(Loc, lex, rex);
5691
5692  if (PerformImplicitConversion(lex, Context.BoolTy, LHS,
5693                                AA_Passing, /*IgnoreBaseAccess=*/false))
5694    return InvalidOperands(Loc, lex, rex);
5695
5696  StandardConversionSequence RHS;
5697  if (!IsStandardConversion(rex, Context.BoolTy,
5698                            /*InOverloadResolution=*/false, RHS))
5699    return InvalidOperands(Loc, lex, rex);
5700
5701  if (PerformImplicitConversion(rex, Context.BoolTy, RHS,
5702                                AA_Passing, /*IgnoreBaseAccess=*/false))
5703    return InvalidOperands(Loc, lex, rex);
5704
5705  // C++ [expr.log.and]p2
5706  // C++ [expr.log.or]p2
5707  // The result is a bool.
5708  return Context.BoolTy;
5709}
5710
5711/// IsReadonlyProperty - Verify that otherwise a valid l-value expression
5712/// is a read-only property; return true if so. A readonly property expression
5713/// depends on various declarations and thus must be treated specially.
5714///
5715static bool IsReadonlyProperty(Expr *E, Sema &S) {
5716  if (E->getStmtClass() == Expr::ObjCPropertyRefExprClass) {
5717    const ObjCPropertyRefExpr* PropExpr = cast<ObjCPropertyRefExpr>(E);
5718    if (ObjCPropertyDecl *PDecl = PropExpr->getProperty()) {
5719      QualType BaseType = PropExpr->getBase()->getType();
5720      if (const ObjCObjectPointerType *OPT =
5721            BaseType->getAsObjCInterfacePointerType())
5722        if (ObjCInterfaceDecl *IFace = OPT->getInterfaceDecl())
5723          if (S.isPropertyReadonly(PDecl, IFace))
5724            return true;
5725    }
5726  }
5727  return false;
5728}
5729
5730/// CheckForModifiableLvalue - Verify that E is a modifiable lvalue.  If not,
5731/// emit an error and return true.  If so, return false.
5732static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
5733  SourceLocation OrigLoc = Loc;
5734  Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
5735                                                              &Loc);
5736  if (IsLV == Expr::MLV_Valid && IsReadonlyProperty(E, S))
5737    IsLV = Expr::MLV_ReadonlyProperty;
5738  if (IsLV == Expr::MLV_Valid)
5739    return false;
5740
5741  unsigned Diag = 0;
5742  bool NeedType = false;
5743  switch (IsLV) { // C99 6.5.16p2
5744  case Expr::MLV_ConstQualified: Diag = diag::err_typecheck_assign_const; break;
5745  case Expr::MLV_ArrayType:
5746    Diag = diag::err_typecheck_array_not_modifiable_lvalue;
5747    NeedType = true;
5748    break;
5749  case Expr::MLV_NotObjectType:
5750    Diag = diag::err_typecheck_non_object_not_modifiable_lvalue;
5751    NeedType = true;
5752    break;
5753  case Expr::MLV_LValueCast:
5754    Diag = diag::err_typecheck_lvalue_casts_not_supported;
5755    break;
5756  case Expr::MLV_Valid:
5757    llvm_unreachable("did not take early return for MLV_Valid");
5758  case Expr::MLV_InvalidExpression:
5759  case Expr::MLV_MemberFunction:
5760  case Expr::MLV_ClassTemporary:
5761    Diag = diag::err_typecheck_expression_not_modifiable_lvalue;
5762    break;
5763  case Expr::MLV_IncompleteType:
5764  case Expr::MLV_IncompleteVoidType:
5765    return S.RequireCompleteType(Loc, E->getType(),
5766                PDiag(diag::err_typecheck_incomplete_type_not_modifiable_lvalue)
5767                  << E->getSourceRange());
5768  case Expr::MLV_DuplicateVectorComponents:
5769    Diag = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
5770    break;
5771  case Expr::MLV_NotBlockQualified:
5772    Diag = diag::err_block_decl_ref_not_modifiable_lvalue;
5773    break;
5774  case Expr::MLV_ReadonlyProperty:
5775    Diag = diag::error_readonly_property_assignment;
5776    break;
5777  case Expr::MLV_NoSetterProperty:
5778    Diag = diag::error_nosetter_property_assignment;
5779    break;
5780  case Expr::MLV_SubObjCPropertySetting:
5781    Diag = diag::error_no_subobject_property_setting;
5782    break;
5783  case Expr::MLV_SubObjCPropertyGetterSetting:
5784    Diag = diag::error_no_subobject_property_getter_setting;
5785    break;
5786  }
5787
5788  SourceRange Assign;
5789  if (Loc != OrigLoc)
5790    Assign = SourceRange(OrigLoc, OrigLoc);
5791  if (NeedType)
5792    S.Diag(Loc, Diag) << E->getType() << E->getSourceRange() << Assign;
5793  else
5794    S.Diag(Loc, Diag) << E->getSourceRange() << Assign;
5795  return true;
5796}
5797
5798
5799
5800// C99 6.5.16.1
5801QualType Sema::CheckAssignmentOperands(Expr *LHS, Expr *&RHS,
5802                                       SourceLocation Loc,
5803                                       QualType CompoundType) {
5804  // Verify that LHS is a modifiable lvalue, and emit error if not.
5805  if (CheckForModifiableLvalue(LHS, Loc, *this))
5806    return QualType();
5807
5808  QualType LHSType = LHS->getType();
5809  QualType RHSType = CompoundType.isNull() ? RHS->getType() : CompoundType;
5810
5811  AssignConvertType ConvTy;
5812  if (CompoundType.isNull()) {
5813    // Simple assignment "x = y".
5814    ConvTy = CheckSingleAssignmentConstraints(LHSType, RHS);
5815    // Special case of NSObject attributes on c-style pointer types.
5816    if (ConvTy == IncompatiblePointer &&
5817        ((Context.isObjCNSObjectType(LHSType) &&
5818          RHSType->isObjCObjectPointerType()) ||
5819         (Context.isObjCNSObjectType(RHSType) &&
5820          LHSType->isObjCObjectPointerType())))
5821      ConvTy = Compatible;
5822
5823    // If the RHS is a unary plus or minus, check to see if they = and + are
5824    // right next to each other.  If so, the user may have typo'd "x =+ 4"
5825    // instead of "x += 4".
5826    Expr *RHSCheck = RHS;
5827    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
5828      RHSCheck = ICE->getSubExpr();
5829    if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
5830      if ((UO->getOpcode() == UnaryOperator::Plus ||
5831           UO->getOpcode() == UnaryOperator::Minus) &&
5832          Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
5833          // Only if the two operators are exactly adjacent.
5834          Loc.getFileLocWithOffset(1) == UO->getOperatorLoc() &&
5835          // And there is a space or other character before the subexpr of the
5836          // unary +/-.  We don't want to warn on "x=-1".
5837          Loc.getFileLocWithOffset(2) != UO->getSubExpr()->getLocStart() &&
5838          UO->getSubExpr()->getLocStart().isFileID()) {
5839        Diag(Loc, diag::warn_not_compound_assign)
5840          << (UO->getOpcode() == UnaryOperator::Plus ? "+" : "-")
5841          << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
5842      }
5843    }
5844  } else {
5845    // Compound assignment "x += y"
5846    ConvTy = CheckAssignmentConstraints(LHSType, RHSType);
5847  }
5848
5849  if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
5850                               RHS, AA_Assigning))
5851    return QualType();
5852
5853  // C99 6.5.16p3: The type of an assignment expression is the type of the
5854  // left operand unless the left operand has qualified type, in which case
5855  // it is the unqualified version of the type of the left operand.
5856  // C99 6.5.16.1p2: In simple assignment, the value of the right operand
5857  // is converted to the type of the assignment expression (above).
5858  // C++ 5.17p1: the type of the assignment expression is that of its left
5859  // operand.
5860  return LHSType.getUnqualifiedType();
5861}
5862
5863// C99 6.5.17
5864QualType Sema::CheckCommaOperands(Expr *LHS, Expr *&RHS, SourceLocation Loc) {
5865  // Comma performs lvalue conversion (C99 6.3.2.1), but not unary conversions.
5866  // C++ does not perform this conversion (C++ [expr.comma]p1).
5867  if (!getLangOptions().CPlusPlus)
5868    DefaultFunctionArrayLvalueConversion(RHS);
5869
5870  // FIXME: Check that RHS type is complete in C mode (it's legal for it to be
5871  // incomplete in C++).
5872
5873  return RHS->getType();
5874}
5875
5876/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
5877/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
5878QualType Sema::CheckIncrementDecrementOperand(Expr *Op, SourceLocation OpLoc,
5879                                              bool isInc) {
5880  if (Op->isTypeDependent())
5881    return Context.DependentTy;
5882
5883  QualType ResType = Op->getType();
5884  assert(!ResType.isNull() && "no type for increment/decrement expression");
5885
5886  if (getLangOptions().CPlusPlus && ResType->isBooleanType()) {
5887    // Decrement of bool is not allowed.
5888    if (!isInc) {
5889      Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
5890      return QualType();
5891    }
5892    // Increment of bool sets it to true, but is deprecated.
5893    Diag(OpLoc, diag::warn_increment_bool) << Op->getSourceRange();
5894  } else if (ResType->isRealType()) {
5895    // OK!
5896  } else if (ResType->isAnyPointerType()) {
5897    QualType PointeeTy = ResType->getPointeeType();
5898
5899    // C99 6.5.2.4p2, 6.5.6p2
5900    if (PointeeTy->isVoidType()) {
5901      if (getLangOptions().CPlusPlus) {
5902        Diag(OpLoc, diag::err_typecheck_pointer_arith_void_type)
5903          << Op->getSourceRange();
5904        return QualType();
5905      }
5906
5907      // Pointer to void is a GNU extension in C.
5908      Diag(OpLoc, diag::ext_gnu_void_ptr) << Op->getSourceRange();
5909    } else if (PointeeTy->isFunctionType()) {
5910      if (getLangOptions().CPlusPlus) {
5911        Diag(OpLoc, diag::err_typecheck_pointer_arith_function_type)
5912          << Op->getType() << Op->getSourceRange();
5913        return QualType();
5914      }
5915
5916      Diag(OpLoc, diag::ext_gnu_ptr_func_arith)
5917        << ResType << Op->getSourceRange();
5918    } else if (RequireCompleteType(OpLoc, PointeeTy,
5919                           PDiag(diag::err_typecheck_arithmetic_incomplete_type)
5920                             << Op->getSourceRange()
5921                             << ResType))
5922      return QualType();
5923    // Diagnose bad cases where we step over interface counts.
5924    else if (PointeeTy->isObjCInterfaceType() && LangOpts.ObjCNonFragileABI) {
5925      Diag(OpLoc, diag::err_arithmetic_nonfragile_interface)
5926        << PointeeTy << Op->getSourceRange();
5927      return QualType();
5928    }
5929  } else if (ResType->isAnyComplexType()) {
5930    // C99 does not support ++/-- on complex types, we allow as an extension.
5931    Diag(OpLoc, diag::ext_integer_increment_complex)
5932      << ResType << Op->getSourceRange();
5933  } else {
5934    Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
5935      << ResType << int(isInc) << Op->getSourceRange();
5936    return QualType();
5937  }
5938  // At this point, we know we have a real, complex or pointer type.
5939  // Now make sure the operand is a modifiable lvalue.
5940  if (CheckForModifiableLvalue(Op, OpLoc, *this))
5941    return QualType();
5942  return ResType;
5943}
5944
5945/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
5946/// This routine allows us to typecheck complex/recursive expressions
5947/// where the declaration is needed for type checking. We only need to
5948/// handle cases when the expression references a function designator
5949/// or is an lvalue. Here are some examples:
5950///  - &(x) => x
5951///  - &*****f => f for f a function designator.
5952///  - &s.xx => s
5953///  - &s.zz[1].yy -> s, if zz is an array
5954///  - *(x + 1) -> x, if x is an array
5955///  - &"123"[2] -> 0
5956///  - & __real__ x -> x
5957static NamedDecl *getPrimaryDecl(Expr *E) {
5958  switch (E->getStmtClass()) {
5959  case Stmt::DeclRefExprClass:
5960    return cast<DeclRefExpr>(E)->getDecl();
5961  case Stmt::MemberExprClass:
5962    // If this is an arrow operator, the address is an offset from
5963    // the base's value, so the object the base refers to is
5964    // irrelevant.
5965    if (cast<MemberExpr>(E)->isArrow())
5966      return 0;
5967    // Otherwise, the expression refers to a part of the base
5968    return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
5969  case Stmt::ArraySubscriptExprClass: {
5970    // FIXME: This code shouldn't be necessary!  We should catch the implicit
5971    // promotion of register arrays earlier.
5972    Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
5973    if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
5974      if (ICE->getSubExpr()->getType()->isArrayType())
5975        return getPrimaryDecl(ICE->getSubExpr());
5976    }
5977    return 0;
5978  }
5979  case Stmt::UnaryOperatorClass: {
5980    UnaryOperator *UO = cast<UnaryOperator>(E);
5981
5982    switch(UO->getOpcode()) {
5983    case UnaryOperator::Real:
5984    case UnaryOperator::Imag:
5985    case UnaryOperator::Extension:
5986      return getPrimaryDecl(UO->getSubExpr());
5987    default:
5988      return 0;
5989    }
5990  }
5991  case Stmt::ParenExprClass:
5992    return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
5993  case Stmt::ImplicitCastExprClass:
5994    // If the result of an implicit cast is an l-value, we care about
5995    // the sub-expression; otherwise, the result here doesn't matter.
5996    return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
5997  default:
5998    return 0;
5999  }
6000}
6001
6002/// CheckAddressOfOperand - The operand of & must be either a function
6003/// designator or an lvalue designating an object. If it is an lvalue, the
6004/// object cannot be declared with storage class register or be a bit field.
6005/// Note: The usual conversions are *not* applied to the operand of the &
6006/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
6007/// In C++, the operand might be an overloaded function name, in which case
6008/// we allow the '&' but retain the overloaded-function type.
6009QualType Sema::CheckAddressOfOperand(Expr *op, SourceLocation OpLoc) {
6010  // Make sure to ignore parentheses in subsequent checks
6011  op = op->IgnoreParens();
6012
6013  if (op->isTypeDependent())
6014    return Context.DependentTy;
6015
6016  if (getLangOptions().C99) {
6017    // Implement C99-only parts of addressof rules.
6018    if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
6019      if (uOp->getOpcode() == UnaryOperator::Deref)
6020        // Per C99 6.5.3.2, the address of a deref always returns a valid result
6021        // (assuming the deref expression is valid).
6022        return uOp->getSubExpr()->getType();
6023    }
6024    // Technically, there should be a check for array subscript
6025    // expressions here, but the result of one is always an lvalue anyway.
6026  }
6027  NamedDecl *dcl = getPrimaryDecl(op);
6028  Expr::isLvalueResult lval = op->isLvalue(Context);
6029
6030  MemberExpr *ME = dyn_cast<MemberExpr>(op);
6031  if (lval == Expr::LV_MemberFunction && ME &&
6032      isa<CXXMethodDecl>(ME->getMemberDecl())) {
6033    ValueDecl *dcl = cast<MemberExpr>(op)->getMemberDecl();
6034    // &f where f is a member of the current object, or &o.f, or &p->f
6035    // All these are not allowed, and we need to catch them before the dcl
6036    // branch of the if, below.
6037    Diag(OpLoc, diag::err_unqualified_pointer_member_function)
6038        << dcl;
6039    // FIXME: Improve this diagnostic and provide a fixit.
6040
6041    // Now recover by acting as if the function had been accessed qualified.
6042    return Context.getMemberPointerType(op->getType(),
6043                Context.getTypeDeclType(cast<RecordDecl>(dcl->getDeclContext()))
6044                       .getTypePtr());
6045  } else if (lval == Expr::LV_ClassTemporary) {
6046    Diag(OpLoc, isSFINAEContext()? diag::err_typecheck_addrof_class_temporary
6047                                 : diag::ext_typecheck_addrof_class_temporary)
6048      << op->getType() << op->getSourceRange();
6049    if (isSFINAEContext())
6050      return QualType();
6051  } else if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
6052    // C99 6.5.3.2p1
6053    // The operand must be either an l-value or a function designator
6054    if (!op->getType()->isFunctionType()) {
6055      // FIXME: emit more specific diag...
6056      Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
6057        << op->getSourceRange();
6058      return QualType();
6059    }
6060  } else if (op->getBitField()) { // C99 6.5.3.2p1
6061    // The operand cannot be a bit-field
6062    Diag(OpLoc, diag::err_typecheck_address_of)
6063      << "bit-field" << op->getSourceRange();
6064        return QualType();
6065  } else if (op->refersToVectorElement()) {
6066    // The operand cannot be an element of a vector
6067    Diag(OpLoc, diag::err_typecheck_address_of)
6068      << "vector element" << op->getSourceRange();
6069    return QualType();
6070  } else if (isa<ObjCPropertyRefExpr>(op)) {
6071    // cannot take address of a property expression.
6072    Diag(OpLoc, diag::err_typecheck_address_of)
6073      << "property expression" << op->getSourceRange();
6074    return QualType();
6075  } else if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(op)) {
6076    // FIXME: Can LHS ever be null here?
6077    if (!CheckAddressOfOperand(CO->getTrueExpr(), OpLoc).isNull())
6078      return CheckAddressOfOperand(CO->getFalseExpr(), OpLoc);
6079  } else if (isa<UnresolvedLookupExpr>(op)) {
6080    return Context.OverloadTy;
6081  } else if (dcl) { // C99 6.5.3.2p1
6082    // We have an lvalue with a decl. Make sure the decl is not declared
6083    // with the register storage-class specifier.
6084    if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
6085      if (vd->getStorageClass() == VarDecl::Register) {
6086        Diag(OpLoc, diag::err_typecheck_address_of)
6087          << "register variable" << op->getSourceRange();
6088        return QualType();
6089      }
6090    } else if (isa<FunctionTemplateDecl>(dcl)) {
6091      return Context.OverloadTy;
6092    } else if (FieldDecl *FD = dyn_cast<FieldDecl>(dcl)) {
6093      // Okay: we can take the address of a field.
6094      // Could be a pointer to member, though, if there is an explicit
6095      // scope qualifier for the class.
6096      if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier()) {
6097        DeclContext *Ctx = dcl->getDeclContext();
6098        if (Ctx && Ctx->isRecord()) {
6099          if (FD->getType()->isReferenceType()) {
6100            Diag(OpLoc,
6101                 diag::err_cannot_form_pointer_to_member_of_reference_type)
6102              << FD->getDeclName() << FD->getType();
6103            return QualType();
6104          }
6105
6106          return Context.getMemberPointerType(op->getType(),
6107                Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
6108        }
6109      }
6110    } else if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(dcl)) {
6111      // Okay: we can take the address of a function.
6112      // As above.
6113      if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier() &&
6114          MD->isInstance())
6115        return Context.getMemberPointerType(op->getType(),
6116              Context.getTypeDeclType(MD->getParent()).getTypePtr());
6117    } else if (!isa<FunctionDecl>(dcl))
6118      assert(0 && "Unknown/unexpected decl type");
6119  }
6120
6121  if (lval == Expr::LV_IncompleteVoidType) {
6122    // Taking the address of a void variable is technically illegal, but we
6123    // allow it in cases which are otherwise valid.
6124    // Example: "extern void x; void* y = &x;".
6125    Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
6126  }
6127
6128  // If the operand has type "type", the result has type "pointer to type".
6129  return Context.getPointerType(op->getType());
6130}
6131
6132QualType Sema::CheckIndirectionOperand(Expr *Op, SourceLocation OpLoc) {
6133  if (Op->isTypeDependent())
6134    return Context.DependentTy;
6135
6136  UsualUnaryConversions(Op);
6137  QualType Ty = Op->getType();
6138
6139  // Note that per both C89 and C99, this is always legal, even if ptype is an
6140  // incomplete type or void.  It would be possible to warn about dereferencing
6141  // a void pointer, but it's completely well-defined, and such a warning is
6142  // unlikely to catch any mistakes.
6143  if (const PointerType *PT = Ty->getAs<PointerType>())
6144    return PT->getPointeeType();
6145
6146  if (const ObjCObjectPointerType *OPT = Ty->getAs<ObjCObjectPointerType>())
6147    return OPT->getPointeeType();
6148
6149  Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
6150    << Ty << Op->getSourceRange();
6151  return QualType();
6152}
6153
6154static inline BinaryOperator::Opcode ConvertTokenKindToBinaryOpcode(
6155  tok::TokenKind Kind) {
6156  BinaryOperator::Opcode Opc;
6157  switch (Kind) {
6158  default: assert(0 && "Unknown binop!");
6159  case tok::periodstar:           Opc = BinaryOperator::PtrMemD; break;
6160  case tok::arrowstar:            Opc = BinaryOperator::PtrMemI; break;
6161  case tok::star:                 Opc = BinaryOperator::Mul; break;
6162  case tok::slash:                Opc = BinaryOperator::Div; break;
6163  case tok::percent:              Opc = BinaryOperator::Rem; break;
6164  case tok::plus:                 Opc = BinaryOperator::Add; break;
6165  case tok::minus:                Opc = BinaryOperator::Sub; break;
6166  case tok::lessless:             Opc = BinaryOperator::Shl; break;
6167  case tok::greatergreater:       Opc = BinaryOperator::Shr; break;
6168  case tok::lessequal:            Opc = BinaryOperator::LE; break;
6169  case tok::less:                 Opc = BinaryOperator::LT; break;
6170  case tok::greaterequal:         Opc = BinaryOperator::GE; break;
6171  case tok::greater:              Opc = BinaryOperator::GT; break;
6172  case tok::exclaimequal:         Opc = BinaryOperator::NE; break;
6173  case tok::equalequal:           Opc = BinaryOperator::EQ; break;
6174  case tok::amp:                  Opc = BinaryOperator::And; break;
6175  case tok::caret:                Opc = BinaryOperator::Xor; break;
6176  case tok::pipe:                 Opc = BinaryOperator::Or; break;
6177  case tok::ampamp:               Opc = BinaryOperator::LAnd; break;
6178  case tok::pipepipe:             Opc = BinaryOperator::LOr; break;
6179  case tok::equal:                Opc = BinaryOperator::Assign; break;
6180  case tok::starequal:            Opc = BinaryOperator::MulAssign; break;
6181  case tok::slashequal:           Opc = BinaryOperator::DivAssign; break;
6182  case tok::percentequal:         Opc = BinaryOperator::RemAssign; break;
6183  case tok::plusequal:            Opc = BinaryOperator::AddAssign; break;
6184  case tok::minusequal:           Opc = BinaryOperator::SubAssign; break;
6185  case tok::lesslessequal:        Opc = BinaryOperator::ShlAssign; break;
6186  case tok::greatergreaterequal:  Opc = BinaryOperator::ShrAssign; break;
6187  case tok::ampequal:             Opc = BinaryOperator::AndAssign; break;
6188  case tok::caretequal:           Opc = BinaryOperator::XorAssign; break;
6189  case tok::pipeequal:            Opc = BinaryOperator::OrAssign; break;
6190  case tok::comma:                Opc = BinaryOperator::Comma; break;
6191  }
6192  return Opc;
6193}
6194
6195static inline UnaryOperator::Opcode ConvertTokenKindToUnaryOpcode(
6196  tok::TokenKind Kind) {
6197  UnaryOperator::Opcode Opc;
6198  switch (Kind) {
6199  default: assert(0 && "Unknown unary op!");
6200  case tok::plusplus:     Opc = UnaryOperator::PreInc; break;
6201  case tok::minusminus:   Opc = UnaryOperator::PreDec; break;
6202  case tok::amp:          Opc = UnaryOperator::AddrOf; break;
6203  case tok::star:         Opc = UnaryOperator::Deref; break;
6204  case tok::plus:         Opc = UnaryOperator::Plus; break;
6205  case tok::minus:        Opc = UnaryOperator::Minus; break;
6206  case tok::tilde:        Opc = UnaryOperator::Not; break;
6207  case tok::exclaim:      Opc = UnaryOperator::LNot; break;
6208  case tok::kw___real:    Opc = UnaryOperator::Real; break;
6209  case tok::kw___imag:    Opc = UnaryOperator::Imag; break;
6210  case tok::kw___extension__: Opc = UnaryOperator::Extension; break;
6211  }
6212  return Opc;
6213}
6214
6215/// CreateBuiltinBinOp - Creates a new built-in binary operation with
6216/// operator @p Opc at location @c TokLoc. This routine only supports
6217/// built-in operations; ActOnBinOp handles overloaded operators.
6218Action::OwningExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
6219                                                  unsigned Op,
6220                                                  Expr *lhs, Expr *rhs) {
6221  QualType ResultTy;     // Result type of the binary operator.
6222  BinaryOperator::Opcode Opc = (BinaryOperator::Opcode)Op;
6223  // The following two variables are used for compound assignment operators
6224  QualType CompLHSTy;    // Type of LHS after promotions for computation
6225  QualType CompResultTy; // Type of computation result
6226
6227  switch (Opc) {
6228  case BinaryOperator::Assign:
6229    ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, QualType());
6230    break;
6231  case BinaryOperator::PtrMemD:
6232  case BinaryOperator::PtrMemI:
6233    ResultTy = CheckPointerToMemberOperands(lhs, rhs, OpLoc,
6234                                            Opc == BinaryOperator::PtrMemI);
6235    break;
6236  case BinaryOperator::Mul:
6237  case BinaryOperator::Div:
6238    ResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, false,
6239                                           Opc == BinaryOperator::Div);
6240    break;
6241  case BinaryOperator::Rem:
6242    ResultTy = CheckRemainderOperands(lhs, rhs, OpLoc);
6243    break;
6244  case BinaryOperator::Add:
6245    ResultTy = CheckAdditionOperands(lhs, rhs, OpLoc);
6246    break;
6247  case BinaryOperator::Sub:
6248    ResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc);
6249    break;
6250  case BinaryOperator::Shl:
6251  case BinaryOperator::Shr:
6252    ResultTy = CheckShiftOperands(lhs, rhs, OpLoc);
6253    break;
6254  case BinaryOperator::LE:
6255  case BinaryOperator::LT:
6256  case BinaryOperator::GE:
6257  case BinaryOperator::GT:
6258    ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, true);
6259    break;
6260  case BinaryOperator::EQ:
6261  case BinaryOperator::NE:
6262    ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, false);
6263    break;
6264  case BinaryOperator::And:
6265  case BinaryOperator::Xor:
6266  case BinaryOperator::Or:
6267    ResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc);
6268    break;
6269  case BinaryOperator::LAnd:
6270  case BinaryOperator::LOr:
6271    ResultTy = CheckLogicalOperands(lhs, rhs, OpLoc);
6272    break;
6273  case BinaryOperator::MulAssign:
6274  case BinaryOperator::DivAssign:
6275    CompResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, true,
6276                                              Opc == BinaryOperator::DivAssign);
6277    CompLHSTy = CompResultTy;
6278    if (!CompResultTy.isNull())
6279      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
6280    break;
6281  case BinaryOperator::RemAssign:
6282    CompResultTy = CheckRemainderOperands(lhs, rhs, OpLoc, true);
6283    CompLHSTy = CompResultTy;
6284    if (!CompResultTy.isNull())
6285      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
6286    break;
6287  case BinaryOperator::AddAssign:
6288    CompResultTy = CheckAdditionOperands(lhs, rhs, OpLoc, &CompLHSTy);
6289    if (!CompResultTy.isNull())
6290      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
6291    break;
6292  case BinaryOperator::SubAssign:
6293    CompResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc, &CompLHSTy);
6294    if (!CompResultTy.isNull())
6295      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
6296    break;
6297  case BinaryOperator::ShlAssign:
6298  case BinaryOperator::ShrAssign:
6299    CompResultTy = CheckShiftOperands(lhs, rhs, OpLoc, true);
6300    CompLHSTy = CompResultTy;
6301    if (!CompResultTy.isNull())
6302      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
6303    break;
6304  case BinaryOperator::AndAssign:
6305  case BinaryOperator::XorAssign:
6306  case BinaryOperator::OrAssign:
6307    CompResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc, true);
6308    CompLHSTy = CompResultTy;
6309    if (!CompResultTy.isNull())
6310      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
6311    break;
6312  case BinaryOperator::Comma:
6313    ResultTy = CheckCommaOperands(lhs, rhs, OpLoc);
6314    break;
6315  }
6316  if (ResultTy.isNull())
6317    return ExprError();
6318  if (CompResultTy.isNull())
6319    return Owned(new (Context) BinaryOperator(lhs, rhs, Opc, ResultTy, OpLoc));
6320  else
6321    return Owned(new (Context) CompoundAssignOperator(lhs, rhs, Opc, ResultTy,
6322                                                      CompLHSTy, CompResultTy,
6323                                                      OpLoc));
6324}
6325
6326/// SuggestParentheses - Emit a diagnostic together with a fixit hint that wraps
6327/// ParenRange in parentheses.
6328static void SuggestParentheses(Sema &Self, SourceLocation Loc,
6329                               const PartialDiagnostic &PD,
6330                               SourceRange ParenRange,
6331                      const PartialDiagnostic &SecondPD = PartialDiagnostic(0),
6332                               SourceRange SecondParenRange = SourceRange()) {
6333  SourceLocation EndLoc = Self.PP.getLocForEndOfToken(ParenRange.getEnd());
6334  if (!ParenRange.getEnd().isFileID() || EndLoc.isInvalid()) {
6335    // We can't display the parentheses, so just dig the
6336    // warning/error and return.
6337    Self.Diag(Loc, PD);
6338    return;
6339  }
6340
6341  Self.Diag(Loc, PD)
6342    << CodeModificationHint::CreateInsertion(ParenRange.getBegin(), "(")
6343    << CodeModificationHint::CreateInsertion(EndLoc, ")");
6344
6345  if (!SecondPD.getDiagID())
6346    return;
6347
6348  EndLoc = Self.PP.getLocForEndOfToken(SecondParenRange.getEnd());
6349  if (!SecondParenRange.getEnd().isFileID() || EndLoc.isInvalid()) {
6350    // We can't display the parentheses, so just dig the
6351    // warning/error and return.
6352    Self.Diag(Loc, SecondPD);
6353    return;
6354  }
6355
6356  Self.Diag(Loc, SecondPD)
6357    << CodeModificationHint::CreateInsertion(SecondParenRange.getBegin(), "(")
6358    << CodeModificationHint::CreateInsertion(EndLoc, ")");
6359}
6360
6361/// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison
6362/// operators are mixed in a way that suggests that the programmer forgot that
6363/// comparison operators have higher precedence. The most typical example of
6364/// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1".
6365static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperator::Opcode Opc,
6366                                      SourceLocation OpLoc,Expr *lhs,Expr *rhs){
6367  typedef BinaryOperator BinOp;
6368  BinOp::Opcode lhsopc = static_cast<BinOp::Opcode>(-1),
6369                rhsopc = static_cast<BinOp::Opcode>(-1);
6370  if (BinOp *BO = dyn_cast<BinOp>(lhs))
6371    lhsopc = BO->getOpcode();
6372  if (BinOp *BO = dyn_cast<BinOp>(rhs))
6373    rhsopc = BO->getOpcode();
6374
6375  // Subs are not binary operators.
6376  if (lhsopc == -1 && rhsopc == -1)
6377    return;
6378
6379  // Bitwise operations are sometimes used as eager logical ops.
6380  // Don't diagnose this.
6381  if ((BinOp::isComparisonOp(lhsopc) || BinOp::isBitwiseOp(lhsopc)) &&
6382      (BinOp::isComparisonOp(rhsopc) || BinOp::isBitwiseOp(rhsopc)))
6383    return;
6384
6385  if (BinOp::isComparisonOp(lhsopc))
6386    SuggestParentheses(Self, OpLoc,
6387      PDiag(diag::warn_precedence_bitwise_rel)
6388          << SourceRange(lhs->getLocStart(), OpLoc)
6389          << BinOp::getOpcodeStr(Opc) << BinOp::getOpcodeStr(lhsopc),
6390      lhs->getSourceRange(),
6391      PDiag(diag::note_precedence_bitwise_first)
6392          << BinOp::getOpcodeStr(Opc),
6393      SourceRange(cast<BinOp>(lhs)->getRHS()->getLocStart(), rhs->getLocEnd()));
6394  else if (BinOp::isComparisonOp(rhsopc))
6395    SuggestParentheses(Self, OpLoc,
6396      PDiag(diag::warn_precedence_bitwise_rel)
6397          << SourceRange(OpLoc, rhs->getLocEnd())
6398          << BinOp::getOpcodeStr(Opc) << BinOp::getOpcodeStr(rhsopc),
6399      rhs->getSourceRange(),
6400      PDiag(diag::note_precedence_bitwise_first)
6401        << BinOp::getOpcodeStr(Opc),
6402      SourceRange(lhs->getLocEnd(), cast<BinOp>(rhs)->getLHS()->getLocStart()));
6403}
6404
6405/// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky
6406/// precedence. This currently diagnoses only "arg1 'bitwise' arg2 'eq' arg3".
6407/// But it could also warn about arg1 && arg2 || arg3, as GCC 4.3+ does.
6408static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperator::Opcode Opc,
6409                                    SourceLocation OpLoc, Expr *lhs, Expr *rhs){
6410  if (BinaryOperator::isBitwiseOp(Opc))
6411    DiagnoseBitwisePrecedence(Self, Opc, OpLoc, lhs, rhs);
6412}
6413
6414// Binary Operators.  'Tok' is the token for the operator.
6415Action::OwningExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
6416                                          tok::TokenKind Kind,
6417                                          ExprArg LHS, ExprArg RHS) {
6418  BinaryOperator::Opcode Opc = ConvertTokenKindToBinaryOpcode(Kind);
6419  Expr *lhs = LHS.takeAs<Expr>(), *rhs = RHS.takeAs<Expr>();
6420
6421  assert((lhs != 0) && "ActOnBinOp(): missing left expression");
6422  assert((rhs != 0) && "ActOnBinOp(): missing right expression");
6423
6424  // Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0"
6425  DiagnoseBinOpPrecedence(*this, Opc, TokLoc, lhs, rhs);
6426
6427  return BuildBinOp(S, TokLoc, Opc, lhs, rhs);
6428}
6429
6430Action::OwningExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc,
6431                                          BinaryOperator::Opcode Opc,
6432                                          Expr *lhs, Expr *rhs) {
6433  if (getLangOptions().CPlusPlus &&
6434      (lhs->getType()->isOverloadableType() ||
6435       rhs->getType()->isOverloadableType())) {
6436    // Find all of the overloaded operators visible from this
6437    // point. We perform both an operator-name lookup from the local
6438    // scope and an argument-dependent lookup based on the types of
6439    // the arguments.
6440    UnresolvedSet<16> Functions;
6441    OverloadedOperatorKind OverOp = BinaryOperator::getOverloadedOperator(Opc);
6442    if (S && OverOp != OO_None)
6443      LookupOverloadedOperatorName(OverOp, S, lhs->getType(), rhs->getType(),
6444                                   Functions);
6445
6446    // Build the (potentially-overloaded, potentially-dependent)
6447    // binary operation.
6448    return CreateOverloadedBinOp(OpLoc, Opc, Functions, lhs, rhs);
6449  }
6450
6451  // Build a built-in binary operation.
6452  return CreateBuiltinBinOp(OpLoc, Opc, lhs, rhs);
6453}
6454
6455Action::OwningExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
6456                                                    unsigned OpcIn,
6457                                                    ExprArg InputArg) {
6458  UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
6459
6460  // FIXME: Input is modified below, but InputArg is not updated appropriately.
6461  Expr *Input = (Expr *)InputArg.get();
6462  QualType resultType;
6463  switch (Opc) {
6464  case UnaryOperator::OffsetOf:
6465    assert(false && "Invalid unary operator");
6466    break;
6467
6468  case UnaryOperator::PreInc:
6469  case UnaryOperator::PreDec:
6470  case UnaryOperator::PostInc:
6471  case UnaryOperator::PostDec:
6472    resultType = CheckIncrementDecrementOperand(Input, OpLoc,
6473                                                Opc == UnaryOperator::PreInc ||
6474                                                Opc == UnaryOperator::PostInc);
6475    break;
6476  case UnaryOperator::AddrOf:
6477    resultType = CheckAddressOfOperand(Input, OpLoc);
6478    break;
6479  case UnaryOperator::Deref:
6480    DefaultFunctionArrayLvalueConversion(Input);
6481    resultType = CheckIndirectionOperand(Input, OpLoc);
6482    break;
6483  case UnaryOperator::Plus:
6484  case UnaryOperator::Minus:
6485    UsualUnaryConversions(Input);
6486    resultType = Input->getType();
6487    if (resultType->isDependentType())
6488      break;
6489    if (resultType->isArithmeticType()) // C99 6.5.3.3p1
6490      break;
6491    else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6-7
6492             resultType->isEnumeralType())
6493      break;
6494    else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6
6495             Opc == UnaryOperator::Plus &&
6496             resultType->isPointerType())
6497      break;
6498
6499    return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
6500      << resultType << Input->getSourceRange());
6501  case UnaryOperator::Not: // bitwise complement
6502    UsualUnaryConversions(Input);
6503    resultType = Input->getType();
6504    if (resultType->isDependentType())
6505      break;
6506    // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
6507    if (resultType->isComplexType() || resultType->isComplexIntegerType())
6508      // C99 does not support '~' for complex conjugation.
6509      Diag(OpLoc, diag::ext_integer_complement_complex)
6510        << resultType << Input->getSourceRange();
6511    else if (!resultType->isIntegerType())
6512      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
6513        << resultType << Input->getSourceRange());
6514    break;
6515  case UnaryOperator::LNot: // logical negation
6516    // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
6517    DefaultFunctionArrayLvalueConversion(Input);
6518    resultType = Input->getType();
6519    if (resultType->isDependentType())
6520      break;
6521    if (!resultType->isScalarType()) // C99 6.5.3.3p1
6522      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
6523        << resultType << Input->getSourceRange());
6524    // LNot always has type int. C99 6.5.3.3p5.
6525    // In C++, it's bool. C++ 5.3.1p8
6526    resultType = getLangOptions().CPlusPlus ? Context.BoolTy : Context.IntTy;
6527    break;
6528  case UnaryOperator::Real:
6529  case UnaryOperator::Imag:
6530    resultType = CheckRealImagOperand(Input, OpLoc, Opc == UnaryOperator::Real);
6531    break;
6532  case UnaryOperator::Extension:
6533    resultType = Input->getType();
6534    break;
6535  }
6536  if (resultType.isNull())
6537    return ExprError();
6538
6539  InputArg.release();
6540  return Owned(new (Context) UnaryOperator(Input, Opc, resultType, OpLoc));
6541}
6542
6543Action::OwningExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc,
6544                                            UnaryOperator::Opcode Opc,
6545                                            ExprArg input) {
6546  Expr *Input = (Expr*)input.get();
6547  if (getLangOptions().CPlusPlus && Input->getType()->isOverloadableType() &&
6548      Opc != UnaryOperator::Extension) {
6549    // Find all of the overloaded operators visible from this
6550    // point. We perform both an operator-name lookup from the local
6551    // scope and an argument-dependent lookup based on the types of
6552    // the arguments.
6553    UnresolvedSet<16> Functions;
6554    OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
6555    if (S && OverOp != OO_None)
6556      LookupOverloadedOperatorName(OverOp, S, Input->getType(), QualType(),
6557                                   Functions);
6558
6559    return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, move(input));
6560  }
6561
6562  return CreateBuiltinUnaryOp(OpLoc, Opc, move(input));
6563}
6564
6565// Unary Operators.  'Tok' is the token for the operator.
6566Action::OwningExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
6567                                            tok::TokenKind Op, ExprArg input) {
6568  return BuildUnaryOp(S, OpLoc, ConvertTokenKindToUnaryOpcode(Op), move(input));
6569}
6570
6571/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
6572Sema::OwningExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc,
6573                                            SourceLocation LabLoc,
6574                                            IdentifierInfo *LabelII) {
6575  // Look up the record for this label identifier.
6576  LabelStmt *&LabelDecl = getLabelMap()[LabelII];
6577
6578  // If we haven't seen this label yet, create a forward reference. It
6579  // will be validated and/or cleaned up in ActOnFinishFunctionBody.
6580  if (LabelDecl == 0)
6581    LabelDecl = new (Context) LabelStmt(LabLoc, LabelII, 0);
6582
6583  // Create the AST node.  The address of a label always has type 'void*'.
6584  return Owned(new (Context) AddrLabelExpr(OpLoc, LabLoc, LabelDecl,
6585                                       Context.getPointerType(Context.VoidTy)));
6586}
6587
6588Sema::OwningExprResult
6589Sema::ActOnStmtExpr(SourceLocation LPLoc, StmtArg substmt,
6590                    SourceLocation RPLoc) { // "({..})"
6591  Stmt *SubStmt = static_cast<Stmt*>(substmt.get());
6592  assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
6593  CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
6594
6595  bool isFileScope
6596    = (getCurFunctionOrMethodDecl() == 0) && (getCurBlock() == 0);
6597  if (isFileScope)
6598    return ExprError(Diag(LPLoc, diag::err_stmtexpr_file_scope));
6599
6600  // FIXME: there are a variety of strange constraints to enforce here, for
6601  // example, it is not possible to goto into a stmt expression apparently.
6602  // More semantic analysis is needed.
6603
6604  // If there are sub stmts in the compound stmt, take the type of the last one
6605  // as the type of the stmtexpr.
6606  QualType Ty = Context.VoidTy;
6607
6608  if (!Compound->body_empty()) {
6609    Stmt *LastStmt = Compound->body_back();
6610    // If LastStmt is a label, skip down through into the body.
6611    while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt))
6612      LastStmt = Label->getSubStmt();
6613
6614    if (Expr *LastExpr = dyn_cast<Expr>(LastStmt))
6615      Ty = LastExpr->getType();
6616  }
6617
6618  // FIXME: Check that expression type is complete/non-abstract; statement
6619  // expressions are not lvalues.
6620
6621  substmt.release();
6622  return Owned(new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc));
6623}
6624
6625Sema::OwningExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
6626                                                  SourceLocation BuiltinLoc,
6627                                                  SourceLocation TypeLoc,
6628                                                  TypeTy *argty,
6629                                                  OffsetOfComponent *CompPtr,
6630                                                  unsigned NumComponents,
6631                                                  SourceLocation RPLoc) {
6632  // FIXME: This function leaks all expressions in the offset components on
6633  // error.
6634  // FIXME: Preserve type source info.
6635  QualType ArgTy = GetTypeFromParser(argty);
6636  assert(!ArgTy.isNull() && "Missing type argument!");
6637
6638  bool Dependent = ArgTy->isDependentType();
6639
6640  // We must have at least one component that refers to the type, and the first
6641  // one is known to be a field designator.  Verify that the ArgTy represents
6642  // a struct/union/class.
6643  if (!Dependent && !ArgTy->isRecordType())
6644    return ExprError(Diag(TypeLoc, diag::err_offsetof_record_type) << ArgTy);
6645
6646  // FIXME: Type must be complete per C99 7.17p3 because a declaring a variable
6647  // with an incomplete type would be illegal.
6648
6649  // Otherwise, create a null pointer as the base, and iteratively process
6650  // the offsetof designators.
6651  QualType ArgTyPtr = Context.getPointerType(ArgTy);
6652  Expr* Res = new (Context) ImplicitValueInitExpr(ArgTyPtr);
6653  Res = new (Context) UnaryOperator(Res, UnaryOperator::Deref,
6654                                    ArgTy, SourceLocation());
6655
6656  // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
6657  // GCC extension, diagnose them.
6658  // FIXME: This diagnostic isn't actually visible because the location is in
6659  // a system header!
6660  if (NumComponents != 1)
6661    Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator)
6662      << SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd);
6663
6664  if (!Dependent) {
6665    bool DidWarnAboutNonPOD = false;
6666
6667    if (RequireCompleteType(TypeLoc, Res->getType(),
6668                            diag::err_offsetof_incomplete_type))
6669      return ExprError();
6670
6671    // FIXME: Dependent case loses a lot of information here. And probably
6672    // leaks like a sieve.
6673    for (unsigned i = 0; i != NumComponents; ++i) {
6674      const OffsetOfComponent &OC = CompPtr[i];
6675      if (OC.isBrackets) {
6676        // Offset of an array sub-field.  TODO: Should we allow vector elements?
6677        const ArrayType *AT = Context.getAsArrayType(Res->getType());
6678        if (!AT) {
6679          Res->Destroy(Context);
6680          return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
6681            << Res->getType());
6682        }
6683
6684        // FIXME: C++: Verify that operator[] isn't overloaded.
6685
6686        // Promote the array so it looks more like a normal array subscript
6687        // expression.
6688        DefaultFunctionArrayLvalueConversion(Res);
6689
6690        // C99 6.5.2.1p1
6691        Expr *Idx = static_cast<Expr*>(OC.U.E);
6692        // FIXME: Leaks Res
6693        if (!Idx->isTypeDependent() && !Idx->getType()->isIntegerType())
6694          return ExprError(Diag(Idx->getLocStart(),
6695                                diag::err_typecheck_subscript_not_integer)
6696            << Idx->getSourceRange());
6697
6698        Res = new (Context) ArraySubscriptExpr(Res, Idx, AT->getElementType(),
6699                                               OC.LocEnd);
6700        continue;
6701      }
6702
6703      const RecordType *RC = Res->getType()->getAs<RecordType>();
6704      if (!RC) {
6705        Res->Destroy(Context);
6706        return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
6707          << Res->getType());
6708      }
6709
6710      // Get the decl corresponding to this.
6711      RecordDecl *RD = RC->getDecl();
6712      if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
6713        if (!CRD->isPOD() && !DidWarnAboutNonPOD &&
6714            DiagRuntimeBehavior(BuiltinLoc,
6715                                PDiag(diag::warn_offsetof_non_pod_type)
6716                                  << SourceRange(CompPtr[0].LocStart, OC.LocEnd)
6717                                  << Res->getType()))
6718          DidWarnAboutNonPOD = true;
6719      }
6720
6721      LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName);
6722      LookupQualifiedName(R, RD);
6723
6724      FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>();
6725      // FIXME: Leaks Res
6726      if (!MemberDecl)
6727        return ExprError(Diag(BuiltinLoc, diag::err_no_member)
6728         << OC.U.IdentInfo << RD << SourceRange(OC.LocStart, OC.LocEnd));
6729
6730      // FIXME: C++: Verify that MemberDecl isn't a static field.
6731      // FIXME: Verify that MemberDecl isn't a bitfield.
6732      if (cast<RecordDecl>(MemberDecl->getDeclContext())->isAnonymousStructOrUnion()) {
6733        Res = BuildAnonymousStructUnionMemberReference(
6734            OC.LocEnd, MemberDecl, Res, OC.LocEnd).takeAs<Expr>();
6735      } else {
6736        PerformObjectMemberConversion(Res, /*Qualifier=*/0, MemberDecl);
6737        // MemberDecl->getType() doesn't get the right qualifiers, but it
6738        // doesn't matter here.
6739        Res = new (Context) MemberExpr(Res, false, MemberDecl, OC.LocEnd,
6740                MemberDecl->getType().getNonReferenceType());
6741      }
6742    }
6743  }
6744
6745  return Owned(new (Context) UnaryOperator(Res, UnaryOperator::OffsetOf,
6746                                           Context.getSizeType(), BuiltinLoc));
6747}
6748
6749
6750Sema::OwningExprResult Sema::ActOnTypesCompatibleExpr(SourceLocation BuiltinLoc,
6751                                                      TypeTy *arg1,TypeTy *arg2,
6752                                                      SourceLocation RPLoc) {
6753  // FIXME: Preserve type source info.
6754  QualType argT1 = GetTypeFromParser(arg1);
6755  QualType argT2 = GetTypeFromParser(arg2);
6756
6757  assert((!argT1.isNull() && !argT2.isNull()) && "Missing type argument(s)");
6758
6759  if (getLangOptions().CPlusPlus) {
6760    Diag(BuiltinLoc, diag::err_types_compatible_p_in_cplusplus)
6761      << SourceRange(BuiltinLoc, RPLoc);
6762    return ExprError();
6763  }
6764
6765  return Owned(new (Context) TypesCompatibleExpr(Context.IntTy, BuiltinLoc,
6766                                                 argT1, argT2, RPLoc));
6767}
6768
6769Sema::OwningExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
6770                                             ExprArg cond,
6771                                             ExprArg expr1, ExprArg expr2,
6772                                             SourceLocation RPLoc) {
6773  Expr *CondExpr = static_cast<Expr*>(cond.get());
6774  Expr *LHSExpr = static_cast<Expr*>(expr1.get());
6775  Expr *RHSExpr = static_cast<Expr*>(expr2.get());
6776
6777  assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
6778
6779  QualType resType;
6780  bool ValueDependent = false;
6781  if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
6782    resType = Context.DependentTy;
6783    ValueDependent = true;
6784  } else {
6785    // The conditional expression is required to be a constant expression.
6786    llvm::APSInt condEval(32);
6787    SourceLocation ExpLoc;
6788    if (!CondExpr->isIntegerConstantExpr(condEval, Context, &ExpLoc))
6789      return ExprError(Diag(ExpLoc,
6790                       diag::err_typecheck_choose_expr_requires_constant)
6791        << CondExpr->getSourceRange());
6792
6793    // If the condition is > zero, then the AST type is the same as the LSHExpr.
6794    resType = condEval.getZExtValue() ? LHSExpr->getType() : RHSExpr->getType();
6795    ValueDependent = condEval.getZExtValue() ? LHSExpr->isValueDependent()
6796                                             : RHSExpr->isValueDependent();
6797  }
6798
6799  cond.release(); expr1.release(); expr2.release();
6800  return Owned(new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
6801                                        resType, RPLoc,
6802                                        resType->isDependentType(),
6803                                        ValueDependent));
6804}
6805
6806//===----------------------------------------------------------------------===//
6807// Clang Extensions.
6808//===----------------------------------------------------------------------===//
6809
6810/// ActOnBlockStart - This callback is invoked when a block literal is started.
6811void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *BlockScope) {
6812  BlockDecl *Block = BlockDecl::Create(Context, CurContext, CaretLoc);
6813  PushBlockScope(BlockScope, Block);
6814  CurContext->addDecl(Block);
6815  PushDeclContext(BlockScope, Block);
6816}
6817
6818void Sema::ActOnBlockArguments(Declarator &ParamInfo, Scope *CurScope) {
6819  assert(ParamInfo.getIdentifier()==0 && "block-id should have no identifier!");
6820  BlockScopeInfo *CurBlock = getCurBlock();
6821
6822  if (ParamInfo.getNumTypeObjects() == 0
6823      || ParamInfo.getTypeObject(0).Kind != DeclaratorChunk::Function) {
6824    ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
6825    QualType T = GetTypeForDeclarator(ParamInfo, CurScope);
6826
6827    if (T->isArrayType()) {
6828      Diag(ParamInfo.getSourceRange().getBegin(),
6829           diag::err_block_returns_array);
6830      return;
6831    }
6832
6833    // The parameter list is optional, if there was none, assume ().
6834    if (!T->isFunctionType())
6835      T = Context.getFunctionType(T, 0, 0, false, 0, false, false, 0, 0, false,
6836                                  CC_Default);
6837
6838    CurBlock->hasPrototype = true;
6839    CurBlock->isVariadic = false;
6840    // Check for a valid sentinel attribute on this block.
6841    if (CurBlock->TheDecl->getAttr<SentinelAttr>()) {
6842      Diag(ParamInfo.getAttributes()->getLoc(),
6843           diag::warn_attribute_sentinel_not_variadic) << 1;
6844      // FIXME: remove the attribute.
6845    }
6846    QualType RetTy = T.getTypePtr()->getAs<FunctionType>()->getResultType();
6847
6848    // Do not allow returning a objc interface by-value.
6849    if (RetTy->isObjCInterfaceType()) {
6850      Diag(ParamInfo.getSourceRange().getBegin(),
6851           diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy;
6852      return;
6853    }
6854
6855    CurBlock->ReturnType = RetTy;
6856    return;
6857  }
6858
6859  // Analyze arguments to block.
6860  assert(ParamInfo.getTypeObject(0).Kind == DeclaratorChunk::Function &&
6861         "Not a function declarator!");
6862  DeclaratorChunk::FunctionTypeInfo &FTI = ParamInfo.getTypeObject(0).Fun;
6863
6864  CurBlock->hasPrototype = FTI.hasPrototype;
6865  CurBlock->isVariadic = true;
6866
6867  // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs function that takes
6868  // no arguments, not a function that takes a single void argument.
6869  if (FTI.hasPrototype &&
6870      FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
6871     (!FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType().getCVRQualifiers()&&
6872        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType())) {
6873    // empty arg list, don't push any params.
6874    CurBlock->isVariadic = false;
6875  } else if (FTI.hasPrototype) {
6876    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
6877      ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
6878      if (Param->getIdentifier() == 0 &&
6879          !Param->isImplicit() &&
6880          !Param->isInvalidDecl() &&
6881          !getLangOptions().CPlusPlus)
6882        Diag(Param->getLocation(), diag::err_parameter_name_omitted);
6883      CurBlock->Params.push_back(Param);
6884    }
6885    CurBlock->isVariadic = FTI.isVariadic;
6886  }
6887  CurBlock->TheDecl->setParams(CurBlock->Params.data(),
6888                               CurBlock->Params.size());
6889  CurBlock->TheDecl->setIsVariadic(CurBlock->isVariadic);
6890  ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
6891  for (BlockDecl::param_iterator AI = CurBlock->TheDecl->param_begin(),
6892         E = CurBlock->TheDecl->param_end(); AI != E; ++AI) {
6893    (*AI)->setOwningFunction(CurBlock->TheDecl);
6894
6895    // If this has an identifier, add it to the scope stack.
6896    if ((*AI)->getIdentifier())
6897      PushOnScopeChains(*AI, CurBlock->TheScope);
6898  }
6899
6900  // Check for a valid sentinel attribute on this block.
6901  if (!CurBlock->isVariadic &&
6902      CurBlock->TheDecl->getAttr<SentinelAttr>()) {
6903    Diag(ParamInfo.getAttributes()->getLoc(),
6904         diag::warn_attribute_sentinel_not_variadic) << 1;
6905    // FIXME: remove the attribute.
6906  }
6907
6908  // Analyze the return type.
6909  QualType T = GetTypeForDeclarator(ParamInfo, CurScope);
6910  QualType RetTy = T->getAs<FunctionType>()->getResultType();
6911
6912  // Do not allow returning a objc interface by-value.
6913  if (RetTy->isObjCInterfaceType()) {
6914    Diag(ParamInfo.getSourceRange().getBegin(),
6915         diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy;
6916  } else if (!RetTy->isDependentType())
6917    CurBlock->ReturnType = RetTy;
6918}
6919
6920/// ActOnBlockError - If there is an error parsing a block, this callback
6921/// is invoked to pop the information about the block from the action impl.
6922void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
6923  // Pop off CurBlock, handle nested blocks.
6924  PopDeclContext();
6925  PopFunctionOrBlockScope();
6926  // FIXME: Delete the ParmVarDecl objects as well???
6927}
6928
6929/// ActOnBlockStmtExpr - This is called when the body of a block statement
6930/// literal was successfully completed.  ^(int x){...}
6931Sema::OwningExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
6932                                                StmtArg body, Scope *CurScope) {
6933  // If blocks are disabled, emit an error.
6934  if (!LangOpts.Blocks)
6935    Diag(CaretLoc, diag::err_blocks_disable);
6936
6937  BlockScopeInfo *BSI = cast<BlockScopeInfo>(FunctionScopes.back());
6938
6939  PopDeclContext();
6940
6941  QualType RetTy = Context.VoidTy;
6942  if (!BSI->ReturnType.isNull())
6943    RetTy = BSI->ReturnType;
6944
6945  llvm::SmallVector<QualType, 8> ArgTypes;
6946  for (unsigned i = 0, e = BSI->Params.size(); i != e; ++i)
6947    ArgTypes.push_back(BSI->Params[i]->getType());
6948
6949  bool NoReturn = BSI->TheDecl->getAttr<NoReturnAttr>();
6950  QualType BlockTy;
6951  if (!BSI->hasPrototype)
6952    BlockTy = Context.getFunctionType(RetTy, 0, 0, false, 0, false, false, 0, 0,
6953                                      NoReturn, CC_Default);
6954  else
6955    BlockTy = Context.getFunctionType(RetTy, ArgTypes.data(), ArgTypes.size(),
6956                                      BSI->isVariadic, 0, false, false, 0, 0,
6957                                      NoReturn, CC_Default);
6958
6959  // FIXME: Check that return/parameter types are complete/non-abstract
6960  DiagnoseUnusedParameters(BSI->Params.begin(), BSI->Params.end());
6961  BlockTy = Context.getBlockPointerType(BlockTy);
6962
6963  // If needed, diagnose invalid gotos and switches in the block.
6964  if (FunctionNeedsScopeChecking() && !hasAnyErrorsInThisFunction())
6965    DiagnoseInvalidJumps(static_cast<CompoundStmt*>(body.get()));
6966
6967  BSI->TheDecl->setBody(body.takeAs<CompoundStmt>());
6968
6969  bool Good = true;
6970  // Check goto/label use.
6971  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
6972         I = BSI->LabelMap.begin(), E = BSI->LabelMap.end(); I != E; ++I) {
6973    LabelStmt *L = I->second;
6974
6975    // Verify that we have no forward references left.  If so, there was a goto
6976    // or address of a label taken, but no definition of it.
6977    if (L->getSubStmt() != 0)
6978      continue;
6979
6980    // Emit error.
6981    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
6982    Good = false;
6983  }
6984  if (!Good) {
6985    PopFunctionOrBlockScope();
6986    return ExprError();
6987  }
6988
6989  AnalysisContext AC(BSI->TheDecl);
6990  CheckFallThroughForBlock(BlockTy, BSI->TheDecl->getBody(), AC);
6991  CheckUnreachable(AC);
6992  Expr *Result = new (Context) BlockExpr(BSI->TheDecl, BlockTy,
6993                                         BSI->hasBlockDeclRefExprs);
6994  PopFunctionOrBlockScope();
6995  return Owned(Result);
6996}
6997
6998Sema::OwningExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
6999                                        ExprArg expr, TypeTy *type,
7000                                        SourceLocation RPLoc) {
7001  QualType T = GetTypeFromParser(type);
7002  Expr *E = static_cast<Expr*>(expr.get());
7003  Expr *OrigExpr = E;
7004
7005  InitBuiltinVaListType();
7006
7007  // Get the va_list type
7008  QualType VaListType = Context.getBuiltinVaListType();
7009  if (VaListType->isArrayType()) {
7010    // Deal with implicit array decay; for example, on x86-64,
7011    // va_list is an array, but it's supposed to decay to
7012    // a pointer for va_arg.
7013    VaListType = Context.getArrayDecayedType(VaListType);
7014    // Make sure the input expression also decays appropriately.
7015    UsualUnaryConversions(E);
7016  } else {
7017    // Otherwise, the va_list argument must be an l-value because
7018    // it is modified by va_arg.
7019    if (!E->isTypeDependent() &&
7020        CheckForModifiableLvalue(E, BuiltinLoc, *this))
7021      return ExprError();
7022  }
7023
7024  if (!E->isTypeDependent() &&
7025      !Context.hasSameType(VaListType, E->getType())) {
7026    return ExprError(Diag(E->getLocStart(),
7027                         diag::err_first_argument_to_va_arg_not_of_type_va_list)
7028      << OrigExpr->getType() << E->getSourceRange());
7029  }
7030
7031  // FIXME: Check that type is complete/non-abstract
7032  // FIXME: Warn if a non-POD type is passed in.
7033
7034  expr.release();
7035  return Owned(new (Context) VAArgExpr(BuiltinLoc, E, T.getNonReferenceType(),
7036                                       RPLoc));
7037}
7038
7039Sema::OwningExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
7040  // The type of __null will be int or long, depending on the size of
7041  // pointers on the target.
7042  QualType Ty;
7043  if (Context.Target.getPointerWidth(0) == Context.Target.getIntWidth())
7044    Ty = Context.IntTy;
7045  else
7046    Ty = Context.LongTy;
7047
7048  return Owned(new (Context) GNUNullExpr(Ty, TokenLoc));
7049}
7050
7051static void
7052MakeObjCStringLiteralCodeModificationHint(Sema& SemaRef,
7053                                          QualType DstType,
7054                                          Expr *SrcExpr,
7055                                          CodeModificationHint &Hint) {
7056  if (!SemaRef.getLangOptions().ObjC1)
7057    return;
7058
7059  const ObjCObjectPointerType *PT = DstType->getAs<ObjCObjectPointerType>();
7060  if (!PT)
7061    return;
7062
7063  // Check if the destination is of type 'id'.
7064  if (!PT->isObjCIdType()) {
7065    // Check if the destination is the 'NSString' interface.
7066    const ObjCInterfaceDecl *ID = PT->getInterfaceDecl();
7067    if (!ID || !ID->getIdentifier()->isStr("NSString"))
7068      return;
7069  }
7070
7071  // Strip off any parens and casts.
7072  StringLiteral *SL = dyn_cast<StringLiteral>(SrcExpr->IgnoreParenCasts());
7073  if (!SL || SL->isWide())
7074    return;
7075
7076  Hint = CodeModificationHint::CreateInsertion(SL->getLocStart(), "@");
7077}
7078
7079bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
7080                                    SourceLocation Loc,
7081                                    QualType DstType, QualType SrcType,
7082                                    Expr *SrcExpr, AssignmentAction Action) {
7083  // Decode the result (notice that AST's are still created for extensions).
7084  bool isInvalid = false;
7085  unsigned DiagKind;
7086  CodeModificationHint Hint;
7087
7088  switch (ConvTy) {
7089  default: assert(0 && "Unknown conversion type");
7090  case Compatible: return false;
7091  case PointerToInt:
7092    DiagKind = diag::ext_typecheck_convert_pointer_int;
7093    break;
7094  case IntToPointer:
7095    DiagKind = diag::ext_typecheck_convert_int_pointer;
7096    break;
7097  case IncompatiblePointer:
7098    MakeObjCStringLiteralCodeModificationHint(*this, DstType, SrcExpr, Hint);
7099    DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
7100    break;
7101  case IncompatiblePointerSign:
7102    DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
7103    break;
7104  case FunctionVoidPointer:
7105    DiagKind = diag::ext_typecheck_convert_pointer_void_func;
7106    break;
7107  case CompatiblePointerDiscardsQualifiers:
7108    // If the qualifiers lost were because we were applying the
7109    // (deprecated) C++ conversion from a string literal to a char*
7110    // (or wchar_t*), then there was no error (C++ 4.2p2).  FIXME:
7111    // Ideally, this check would be performed in
7112    // CheckPointerTypesForAssignment. However, that would require a
7113    // bit of refactoring (so that the second argument is an
7114    // expression, rather than a type), which should be done as part
7115    // of a larger effort to fix CheckPointerTypesForAssignment for
7116    // C++ semantics.
7117    if (getLangOptions().CPlusPlus &&
7118        IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
7119      return false;
7120    DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
7121    break;
7122  case IncompatibleNestedPointerQualifiers:
7123    DiagKind = diag::ext_nested_pointer_qualifier_mismatch;
7124    break;
7125  case IntToBlockPointer:
7126    DiagKind = diag::err_int_to_block_pointer;
7127    break;
7128  case IncompatibleBlockPointer:
7129    DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
7130    break;
7131  case IncompatibleObjCQualifiedId:
7132    // FIXME: Diagnose the problem in ObjCQualifiedIdTypesAreCompatible, since
7133    // it can give a more specific diagnostic.
7134    DiagKind = diag::warn_incompatible_qualified_id;
7135    break;
7136  case IncompatibleVectors:
7137    DiagKind = diag::warn_incompatible_vectors;
7138    break;
7139  case Incompatible:
7140    DiagKind = diag::err_typecheck_convert_incompatible;
7141    isInvalid = true;
7142    break;
7143  }
7144
7145  Diag(Loc, DiagKind) << DstType << SrcType << Action
7146    << SrcExpr->getSourceRange() << Hint;
7147  return isInvalid;
7148}
7149
7150bool Sema::VerifyIntegerConstantExpression(const Expr *E, llvm::APSInt *Result){
7151  llvm::APSInt ICEResult;
7152  if (E->isIntegerConstantExpr(ICEResult, Context)) {
7153    if (Result)
7154      *Result = ICEResult;
7155    return false;
7156  }
7157
7158  Expr::EvalResult EvalResult;
7159
7160  if (!E->Evaluate(EvalResult, Context) || !EvalResult.Val.isInt() ||
7161      EvalResult.HasSideEffects) {
7162    Diag(E->getExprLoc(), diag::err_expr_not_ice) << E->getSourceRange();
7163
7164    if (EvalResult.Diag) {
7165      // We only show the note if it's not the usual "invalid subexpression"
7166      // or if it's actually in a subexpression.
7167      if (EvalResult.Diag != diag::note_invalid_subexpr_in_ice ||
7168          E->IgnoreParens() != EvalResult.DiagExpr->IgnoreParens())
7169        Diag(EvalResult.DiagLoc, EvalResult.Diag);
7170    }
7171
7172    return true;
7173  }
7174
7175  Diag(E->getExprLoc(), diag::ext_expr_not_ice) <<
7176    E->getSourceRange();
7177
7178  if (EvalResult.Diag &&
7179      Diags.getDiagnosticLevel(diag::ext_expr_not_ice) != Diagnostic::Ignored)
7180    Diag(EvalResult.DiagLoc, EvalResult.Diag);
7181
7182  if (Result)
7183    *Result = EvalResult.Val.getInt();
7184  return false;
7185}
7186
7187void
7188Sema::PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext) {
7189  ExprEvalContexts.push_back(
7190        ExpressionEvaluationContextRecord(NewContext, ExprTemporaries.size()));
7191}
7192
7193void
7194Sema::PopExpressionEvaluationContext() {
7195  // Pop the current expression evaluation context off the stack.
7196  ExpressionEvaluationContextRecord Rec = ExprEvalContexts.back();
7197  ExprEvalContexts.pop_back();
7198
7199  if (Rec.Context == PotentiallyPotentiallyEvaluated) {
7200    if (Rec.PotentiallyReferenced) {
7201      // Mark any remaining declarations in the current position of the stack
7202      // as "referenced". If they were not meant to be referenced, semantic
7203      // analysis would have eliminated them (e.g., in ActOnCXXTypeId).
7204      for (PotentiallyReferencedDecls::iterator
7205             I = Rec.PotentiallyReferenced->begin(),
7206             IEnd = Rec.PotentiallyReferenced->end();
7207           I != IEnd; ++I)
7208        MarkDeclarationReferenced(I->first, I->second);
7209    }
7210
7211    if (Rec.PotentiallyDiagnosed) {
7212      // Emit any pending diagnostics.
7213      for (PotentiallyEmittedDiagnostics::iterator
7214                I = Rec.PotentiallyDiagnosed->begin(),
7215             IEnd = Rec.PotentiallyDiagnosed->end();
7216           I != IEnd; ++I)
7217        Diag(I->first, I->second);
7218    }
7219  }
7220
7221  // When are coming out of an unevaluated context, clear out any
7222  // temporaries that we may have created as part of the evaluation of
7223  // the expression in that context: they aren't relevant because they
7224  // will never be constructed.
7225  if (Rec.Context == Unevaluated &&
7226      ExprTemporaries.size() > Rec.NumTemporaries)
7227    ExprTemporaries.erase(ExprTemporaries.begin() + Rec.NumTemporaries,
7228                          ExprTemporaries.end());
7229
7230  // Destroy the popped expression evaluation record.
7231  Rec.Destroy();
7232}
7233
7234/// \brief Note that the given declaration was referenced in the source code.
7235///
7236/// This routine should be invoke whenever a given declaration is referenced
7237/// in the source code, and where that reference occurred. If this declaration
7238/// reference means that the the declaration is used (C++ [basic.def.odr]p2,
7239/// C99 6.9p3), then the declaration will be marked as used.
7240///
7241/// \param Loc the location where the declaration was referenced.
7242///
7243/// \param D the declaration that has been referenced by the source code.
7244void Sema::MarkDeclarationReferenced(SourceLocation Loc, Decl *D) {
7245  assert(D && "No declaration?");
7246
7247  if (D->isUsed())
7248    return;
7249
7250  // Mark a parameter or variable declaration "used", regardless of whether we're in a
7251  // template or not. The reason for this is that unevaluated expressions
7252  // (e.g. (void)sizeof()) constitute a use for warning purposes (-Wunused-variables and
7253  // -Wunused-parameters)
7254  if (isa<ParmVarDecl>(D) ||
7255      (isa<VarDecl>(D) && D->getDeclContext()->isFunctionOrMethod()))
7256    D->setUsed(true);
7257
7258  // Do not mark anything as "used" within a dependent context; wait for
7259  // an instantiation.
7260  if (CurContext->isDependentContext())
7261    return;
7262
7263  switch (ExprEvalContexts.back().Context) {
7264    case Unevaluated:
7265      // We are in an expression that is not potentially evaluated; do nothing.
7266      return;
7267
7268    case PotentiallyEvaluated:
7269      // We are in a potentially-evaluated expression, so this declaration is
7270      // "used"; handle this below.
7271      break;
7272
7273    case PotentiallyPotentiallyEvaluated:
7274      // We are in an expression that may be potentially evaluated; queue this
7275      // declaration reference until we know whether the expression is
7276      // potentially evaluated.
7277      ExprEvalContexts.back().addReferencedDecl(Loc, D);
7278      return;
7279  }
7280
7281  // Note that this declaration has been used.
7282  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
7283    unsigned TypeQuals;
7284    if (Constructor->isImplicit() && Constructor->isDefaultConstructor()) {
7285        if (!Constructor->isUsed())
7286          DefineImplicitDefaultConstructor(Loc, Constructor);
7287    } else if (Constructor->isImplicit() &&
7288               Constructor->isCopyConstructor(TypeQuals)) {
7289      if (!Constructor->isUsed())
7290        DefineImplicitCopyConstructor(Loc, Constructor, TypeQuals);
7291    }
7292
7293    MaybeMarkVirtualMembersReferenced(Loc, Constructor);
7294  } else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(D)) {
7295    if (Destructor->isImplicit() && !Destructor->isUsed())
7296      DefineImplicitDestructor(Loc, Destructor);
7297
7298  } else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(D)) {
7299    if (MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() &&
7300        MethodDecl->getOverloadedOperator() == OO_Equal) {
7301      if (!MethodDecl->isUsed())
7302        DefineImplicitOverloadedAssign(Loc, MethodDecl);
7303    }
7304  }
7305  if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
7306    // Implicit instantiation of function templates and member functions of
7307    // class templates.
7308    if (!Function->getBody() && Function->isImplicitlyInstantiable()) {
7309      bool AlreadyInstantiated = false;
7310      if (FunctionTemplateSpecializationInfo *SpecInfo
7311                                = Function->getTemplateSpecializationInfo()) {
7312        if (SpecInfo->getPointOfInstantiation().isInvalid())
7313          SpecInfo->setPointOfInstantiation(Loc);
7314        else if (SpecInfo->getTemplateSpecializationKind()
7315                   == TSK_ImplicitInstantiation)
7316          AlreadyInstantiated = true;
7317      } else if (MemberSpecializationInfo *MSInfo
7318                                  = Function->getMemberSpecializationInfo()) {
7319        if (MSInfo->getPointOfInstantiation().isInvalid())
7320          MSInfo->setPointOfInstantiation(Loc);
7321        else if (MSInfo->getTemplateSpecializationKind()
7322                   == TSK_ImplicitInstantiation)
7323          AlreadyInstantiated = true;
7324      }
7325
7326      if (!AlreadyInstantiated) {
7327        if (isa<CXXRecordDecl>(Function->getDeclContext()) &&
7328            cast<CXXRecordDecl>(Function->getDeclContext())->isLocalClass())
7329          PendingLocalImplicitInstantiations.push_back(std::make_pair(Function,
7330                                                                      Loc));
7331        else
7332          PendingImplicitInstantiations.push_back(std::make_pair(Function,
7333                                                                 Loc));
7334      }
7335    }
7336
7337    // FIXME: keep track of references to static functions
7338    Function->setUsed(true);
7339
7340    return;
7341  }
7342
7343  if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
7344    // Implicit instantiation of static data members of class templates.
7345    if (Var->isStaticDataMember() &&
7346        Var->getInstantiatedFromStaticDataMember()) {
7347      MemberSpecializationInfo *MSInfo = Var->getMemberSpecializationInfo();
7348      assert(MSInfo && "Missing member specialization information?");
7349      if (MSInfo->getPointOfInstantiation().isInvalid() &&
7350          MSInfo->getTemplateSpecializationKind()== TSK_ImplicitInstantiation) {
7351        MSInfo->setPointOfInstantiation(Loc);
7352        PendingImplicitInstantiations.push_back(std::make_pair(Var, Loc));
7353      }
7354    }
7355
7356    // FIXME: keep track of references to static data?
7357
7358    D->setUsed(true);
7359    return;
7360  }
7361}
7362
7363/// \brief Emit a diagnostic that describes an effect on the run-time behavior
7364/// of the program being compiled.
7365///
7366/// This routine emits the given diagnostic when the code currently being
7367/// type-checked is "potentially evaluated", meaning that there is a
7368/// possibility that the code will actually be executable. Code in sizeof()
7369/// expressions, code used only during overload resolution, etc., are not
7370/// potentially evaluated. This routine will suppress such diagnostics or,
7371/// in the absolutely nutty case of potentially potentially evaluated
7372/// expressions (C++ typeid), queue the diagnostic to potentially emit it
7373/// later.
7374///
7375/// This routine should be used for all diagnostics that describe the run-time
7376/// behavior of a program, such as passing a non-POD value through an ellipsis.
7377/// Failure to do so will likely result in spurious diagnostics or failures
7378/// during overload resolution or within sizeof/alignof/typeof/typeid.
7379bool Sema::DiagRuntimeBehavior(SourceLocation Loc,
7380                               const PartialDiagnostic &PD) {
7381  switch (ExprEvalContexts.back().Context ) {
7382  case Unevaluated:
7383    // The argument will never be evaluated, so don't complain.
7384    break;
7385
7386  case PotentiallyEvaluated:
7387    Diag(Loc, PD);
7388    return true;
7389
7390  case PotentiallyPotentiallyEvaluated:
7391    ExprEvalContexts.back().addDiagnostic(Loc, PD);
7392    break;
7393  }
7394
7395  return false;
7396}
7397
7398bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
7399                               CallExpr *CE, FunctionDecl *FD) {
7400  if (ReturnType->isVoidType() || !ReturnType->isIncompleteType())
7401    return false;
7402
7403  PartialDiagnostic Note =
7404    FD ? PDiag(diag::note_function_with_incomplete_return_type_declared_here)
7405    << FD->getDeclName() : PDiag();
7406  SourceLocation NoteLoc = FD ? FD->getLocation() : SourceLocation();
7407
7408  if (RequireCompleteType(Loc, ReturnType,
7409                          FD ?
7410                          PDiag(diag::err_call_function_incomplete_return)
7411                            << CE->getSourceRange() << FD->getDeclName() :
7412                          PDiag(diag::err_call_incomplete_return)
7413                            << CE->getSourceRange(),
7414                          std::make_pair(NoteLoc, Note)))
7415    return true;
7416
7417  return false;
7418}
7419
7420// Diagnose the common s/=/==/ typo.  Note that adding parentheses
7421// will prevent this condition from triggering, which is what we want.
7422void Sema::DiagnoseAssignmentAsCondition(Expr *E) {
7423  SourceLocation Loc;
7424
7425  unsigned diagnostic = diag::warn_condition_is_assignment;
7426
7427  if (isa<BinaryOperator>(E)) {
7428    BinaryOperator *Op = cast<BinaryOperator>(E);
7429    if (Op->getOpcode() != BinaryOperator::Assign)
7430      return;
7431
7432    // Greylist some idioms by putting them into a warning subcategory.
7433    if (ObjCMessageExpr *ME
7434          = dyn_cast<ObjCMessageExpr>(Op->getRHS()->IgnoreParenCasts())) {
7435      Selector Sel = ME->getSelector();
7436
7437      // self = [<foo> init...]
7438      if (isSelfExpr(Op->getLHS())
7439          && Sel.getIdentifierInfoForSlot(0)->getName().startswith("init"))
7440        diagnostic = diag::warn_condition_is_idiomatic_assignment;
7441
7442      // <foo> = [<bar> nextObject]
7443      else if (Sel.isUnarySelector() &&
7444               Sel.getIdentifierInfoForSlot(0)->getName() == "nextObject")
7445        diagnostic = diag::warn_condition_is_idiomatic_assignment;
7446    }
7447
7448    Loc = Op->getOperatorLoc();
7449  } else if (isa<CXXOperatorCallExpr>(E)) {
7450    CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(E);
7451    if (Op->getOperator() != OO_Equal)
7452      return;
7453
7454    Loc = Op->getOperatorLoc();
7455  } else {
7456    // Not an assignment.
7457    return;
7458  }
7459
7460  SourceLocation Open = E->getSourceRange().getBegin();
7461  SourceLocation Close = PP.getLocForEndOfToken(E->getSourceRange().getEnd());
7462
7463  Diag(Loc, diagnostic)
7464    << E->getSourceRange()
7465    << CodeModificationHint::CreateInsertion(Open, "(")
7466    << CodeModificationHint::CreateInsertion(Close, ")");
7467  Diag(Loc, diag::note_condition_assign_to_comparison)
7468    << CodeModificationHint::CreateReplacement(Loc, "==");
7469}
7470
7471bool Sema::CheckBooleanCondition(Expr *&E, SourceLocation Loc) {
7472  DiagnoseAssignmentAsCondition(E);
7473
7474  if (!E->isTypeDependent()) {
7475    DefaultFunctionArrayLvalueConversion(E);
7476
7477    QualType T = E->getType();
7478
7479    if (getLangOptions().CPlusPlus) {
7480      if (CheckCXXBooleanCondition(E)) // C++ 6.4p4
7481        return true;
7482    } else if (!T->isScalarType()) { // C99 6.8.4.1p1
7483      Diag(Loc, diag::err_typecheck_statement_requires_scalar)
7484        << T << E->getSourceRange();
7485      return true;
7486    }
7487  }
7488
7489  return false;
7490}
7491