SemaExpr.cpp revision 77a52233f7c0f162672652051bfe78b65ad4f789
1//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/ExprCXX.h"
18#include "clang/AST/ExprObjC.h"
19#include "clang/Lex/Preprocessor.h"
20#include "clang/Lex/LiteralSupport.h"
21#include "clang/Basic/Diagnostic.h"
22#include "clang/Basic/SourceManager.h"
23#include "clang/Basic/TargetInfo.h"
24#include "clang/Parse/DeclSpec.h"
25#include "clang/Parse/Scope.h"
26using namespace clang;
27
28//===----------------------------------------------------------------------===//
29//  Standard Promotions and Conversions
30//===----------------------------------------------------------------------===//
31
32/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
33void Sema::DefaultFunctionArrayConversion(Expr *&E) {
34  QualType Ty = E->getType();
35  assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
36
37  if (const ReferenceType *ref = Ty->getAsReferenceType()) {
38    ImpCastExprToType(E, ref->getPointeeType()); // C++ [expr]
39    Ty = E->getType();
40  }
41  if (Ty->isFunctionType())
42    ImpCastExprToType(E, Context.getPointerType(Ty));
43  else if (Ty->isArrayType()) {
44    // In C90 mode, arrays only promote to pointers if the array expression is
45    // an lvalue.  The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
46    // type 'array of type' is converted to an expression that has type 'pointer
47    // to type'...".  In C99 this was changed to: C99 6.3.2.1p3: "an expression
48    // that has type 'array of type' ...".  The relevant change is "an lvalue"
49    // (C90) to "an expression" (C99).
50    //
51    // C++ 4.2p1:
52    // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
53    // T" can be converted to an rvalue of type "pointer to T".
54    //
55    if (getLangOptions().C99 || getLangOptions().CPlusPlus ||
56        E->isLvalue(Context) == Expr::LV_Valid)
57      ImpCastExprToType(E, Context.getArrayDecayedType(Ty));
58  }
59}
60
61/// UsualUnaryConversions - Performs various conversions that are common to most
62/// operators (C99 6.3). The conversions of array and function types are
63/// sometimes surpressed. For example, the array->pointer conversion doesn't
64/// apply if the array is an argument to the sizeof or address (&) operators.
65/// In these instances, this routine should *not* be called.
66Expr *Sema::UsualUnaryConversions(Expr *&Expr) {
67  QualType Ty = Expr->getType();
68  assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
69
70  if (const ReferenceType *Ref = Ty->getAsReferenceType()) {
71    ImpCastExprToType(Expr, Ref->getPointeeType()); // C++ [expr]
72    Ty = Expr->getType();
73  }
74  if (Ty->isPromotableIntegerType()) // C99 6.3.1.1p2
75    ImpCastExprToType(Expr, Context.IntTy);
76  else
77    DefaultFunctionArrayConversion(Expr);
78
79  return Expr;
80}
81
82/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
83/// do not have a prototype. Arguments that have type float are promoted to
84/// double. All other argument types are converted by UsualUnaryConversions().
85void Sema::DefaultArgumentPromotion(Expr *&Expr) {
86  QualType Ty = Expr->getType();
87  assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
88
89  // If this is a 'float' (CVR qualified or typedef) promote to double.
90  if (const BuiltinType *BT = Ty->getAsBuiltinType())
91    if (BT->getKind() == BuiltinType::Float)
92      return ImpCastExprToType(Expr, Context.DoubleTy);
93
94  UsualUnaryConversions(Expr);
95}
96
97/// UsualArithmeticConversions - Performs various conversions that are common to
98/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
99/// routine returns the first non-arithmetic type found. The client is
100/// responsible for emitting appropriate error diagnostics.
101/// FIXME: verify the conversion rules for "complex int" are consistent with
102/// GCC.
103QualType Sema::UsualArithmeticConversions(Expr *&lhsExpr, Expr *&rhsExpr,
104                                          bool isCompAssign) {
105  if (!isCompAssign) {
106    UsualUnaryConversions(lhsExpr);
107    UsualUnaryConversions(rhsExpr);
108  }
109  // For conversion purposes, we ignore any qualifiers.
110  // For example, "const float" and "float" are equivalent.
111  QualType lhs =
112    Context.getCanonicalType(lhsExpr->getType()).getUnqualifiedType();
113  QualType rhs =
114    Context.getCanonicalType(rhsExpr->getType()).getUnqualifiedType();
115
116  // If both types are identical, no conversion is needed.
117  if (lhs == rhs)
118    return lhs;
119
120  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
121  // The caller can deal with this (e.g. pointer + int).
122  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
123    return lhs;
124
125  // At this point, we have two different arithmetic types.
126
127  // Handle complex types first (C99 6.3.1.8p1).
128  if (lhs->isComplexType() || rhs->isComplexType()) {
129    // if we have an integer operand, the result is the complex type.
130    if (rhs->isIntegerType() || rhs->isComplexIntegerType()) {
131      // convert the rhs to the lhs complex type.
132      if (!isCompAssign) ImpCastExprToType(rhsExpr, lhs);
133      return lhs;
134    }
135    if (lhs->isIntegerType() || lhs->isComplexIntegerType()) {
136      // convert the lhs to the rhs complex type.
137      if (!isCompAssign) ImpCastExprToType(lhsExpr, rhs);
138      return rhs;
139    }
140    // This handles complex/complex, complex/float, or float/complex.
141    // When both operands are complex, the shorter operand is converted to the
142    // type of the longer, and that is the type of the result. This corresponds
143    // to what is done when combining two real floating-point operands.
144    // The fun begins when size promotion occur across type domains.
145    // From H&S 6.3.4: When one operand is complex and the other is a real
146    // floating-point type, the less precise type is converted, within it's
147    // real or complex domain, to the precision of the other type. For example,
148    // when combining a "long double" with a "double _Complex", the
149    // "double _Complex" is promoted to "long double _Complex".
150    int result = Context.getFloatingTypeOrder(lhs, rhs);
151
152    if (result > 0) { // The left side is bigger, convert rhs.
153      rhs = Context.getFloatingTypeOfSizeWithinDomain(lhs, rhs);
154      if (!isCompAssign)
155        ImpCastExprToType(rhsExpr, rhs);
156    } else if (result < 0) { // The right side is bigger, convert lhs.
157      lhs = Context.getFloatingTypeOfSizeWithinDomain(rhs, lhs);
158      if (!isCompAssign)
159        ImpCastExprToType(lhsExpr, lhs);
160    }
161    // At this point, lhs and rhs have the same rank/size. Now, make sure the
162    // domains match. This is a requirement for our implementation, C99
163    // does not require this promotion.
164    if (lhs != rhs) { // Domains don't match, we have complex/float mix.
165      if (lhs->isRealFloatingType()) { // handle "double, _Complex double".
166        if (!isCompAssign)
167          ImpCastExprToType(lhsExpr, rhs);
168        return rhs;
169      } else { // handle "_Complex double, double".
170        if (!isCompAssign)
171          ImpCastExprToType(rhsExpr, lhs);
172        return lhs;
173      }
174    }
175    return lhs; // The domain/size match exactly.
176  }
177  // Now handle "real" floating types (i.e. float, double, long double).
178  if (lhs->isRealFloatingType() || rhs->isRealFloatingType()) {
179    // if we have an integer operand, the result is the real floating type.
180    if (rhs->isIntegerType() || rhs->isComplexIntegerType()) {
181      // convert rhs to the lhs floating point type.
182      if (!isCompAssign) ImpCastExprToType(rhsExpr, lhs);
183      return lhs;
184    }
185    if (lhs->isIntegerType() || lhs->isComplexIntegerType()) {
186      // convert lhs to the rhs floating point type.
187      if (!isCompAssign) ImpCastExprToType(lhsExpr, rhs);
188      return rhs;
189    }
190    // We have two real floating types, float/complex combos were handled above.
191    // Convert the smaller operand to the bigger result.
192    int result = Context.getFloatingTypeOrder(lhs, rhs);
193
194    if (result > 0) { // convert the rhs
195      if (!isCompAssign) ImpCastExprToType(rhsExpr, lhs);
196      return lhs;
197    }
198    if (result < 0) { // convert the lhs
199      if (!isCompAssign) ImpCastExprToType(lhsExpr, rhs); // convert the lhs
200      return rhs;
201    }
202    assert(0 && "Sema::UsualArithmeticConversions(): illegal float comparison");
203  }
204  if (lhs->isComplexIntegerType() || rhs->isComplexIntegerType()) {
205    // Handle GCC complex int extension.
206    const ComplexType *lhsComplexInt = lhs->getAsComplexIntegerType();
207    const ComplexType *rhsComplexInt = rhs->getAsComplexIntegerType();
208
209    if (lhsComplexInt && rhsComplexInt) {
210      if (Context.getIntegerTypeOrder(lhsComplexInt->getElementType(),
211                                      rhsComplexInt->getElementType()) >= 0) {
212        // convert the rhs
213        if (!isCompAssign) ImpCastExprToType(rhsExpr, lhs);
214        return lhs;
215      }
216      if (!isCompAssign)
217        ImpCastExprToType(lhsExpr, rhs); // convert the lhs
218      return rhs;
219    } else if (lhsComplexInt && rhs->isIntegerType()) {
220      // convert the rhs to the lhs complex type.
221      if (!isCompAssign) ImpCastExprToType(rhsExpr, lhs);
222      return lhs;
223    } else if (rhsComplexInt && lhs->isIntegerType()) {
224      // convert the lhs to the rhs complex type.
225      if (!isCompAssign) ImpCastExprToType(lhsExpr, rhs);
226      return rhs;
227    }
228  }
229  // Finally, we have two differing integer types.
230  // The rules for this case are in C99 6.3.1.8
231  int compare = Context.getIntegerTypeOrder(lhs, rhs);
232  bool lhsSigned = lhs->isSignedIntegerType(),
233       rhsSigned = rhs->isSignedIntegerType();
234  QualType destType;
235  if (lhsSigned == rhsSigned) {
236    // Same signedness; use the higher-ranked type
237    destType = compare >= 0 ? lhs : rhs;
238  } else if (compare != (lhsSigned ? 1 : -1)) {
239    // The unsigned type has greater than or equal rank to the
240    // signed type, so use the unsigned type
241    destType = lhsSigned ? rhs : lhs;
242  } else if (Context.getIntWidth(lhs) != Context.getIntWidth(rhs)) {
243    // The two types are different widths; if we are here, that
244    // means the signed type is larger than the unsigned type, so
245    // use the signed type.
246    destType = lhsSigned ? lhs : rhs;
247  } else {
248    // The signed type is higher-ranked than the unsigned type,
249    // but isn't actually any bigger (like unsigned int and long
250    // on most 32-bit systems).  Use the unsigned type corresponding
251    // to the signed type.
252    destType = Context.getCorrespondingUnsignedType(lhsSigned ? lhs : rhs);
253  }
254  if (!isCompAssign) {
255    ImpCastExprToType(lhsExpr, destType);
256    ImpCastExprToType(rhsExpr, destType);
257  }
258  return destType;
259}
260
261//===----------------------------------------------------------------------===//
262//  Semantic Analysis for various Expression Types
263//===----------------------------------------------------------------------===//
264
265
266/// ActOnStringLiteral - The specified tokens were lexed as pasted string
267/// fragments (e.g. "foo" "bar" L"baz").  The result string has to handle string
268/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
269/// multiple tokens.  However, the common case is that StringToks points to one
270/// string.
271///
272Action::ExprResult
273Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks) {
274  assert(NumStringToks && "Must have at least one string!");
275
276  StringLiteralParser Literal(StringToks, NumStringToks, PP, Context.Target);
277  if (Literal.hadError)
278    return ExprResult(true);
279
280  llvm::SmallVector<SourceLocation, 4> StringTokLocs;
281  for (unsigned i = 0; i != NumStringToks; ++i)
282    StringTokLocs.push_back(StringToks[i].getLocation());
283
284  // Verify that pascal strings aren't too large.
285  if (Literal.Pascal && Literal.GetStringLength() > 256)
286    return Diag(StringToks[0].getLocation(), diag::err_pascal_string_too_long,
287                SourceRange(StringToks[0].getLocation(),
288                            StringToks[NumStringToks-1].getLocation()));
289
290  QualType StrTy = Context.CharTy;
291  if (Literal.AnyWide) StrTy = Context.getWCharType();
292  if (Literal.Pascal) StrTy = Context.UnsignedCharTy;
293
294  // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
295  if (getLangOptions().CPlusPlus)
296    StrTy.addConst();
297
298  // Get an array type for the string, according to C99 6.4.5.  This includes
299  // the nul terminator character as well as the string length for pascal
300  // strings.
301  StrTy = Context.getConstantArrayType(StrTy,
302                                   llvm::APInt(32, Literal.GetStringLength()+1),
303                                       ArrayType::Normal, 0);
304
305  // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
306  return new StringLiteral(Literal.GetString(), Literal.GetStringLength(),
307                           Literal.AnyWide, StrTy,
308                           StringToks[0].getLocation(),
309                           StringToks[NumStringToks-1].getLocation());
310}
311
312/// DeclDefinedWithinScope - Return true if the specified decl is defined at or
313/// within the 'Within' scope.  The current Scope is CurScope.
314///
315/// NOTE: This method is extremely inefficient (linear scan), this should not be
316/// used in common cases.
317///
318static bool DeclDefinedWithinScope(ScopedDecl *D, Scope *Within,
319                                   Scope *CurScope) {
320  while (1) {
321    assert(CurScope && "CurScope not nested within 'Within'?");
322
323    // Check this scope for the decl.
324    if (CurScope->isDeclScope(D)) return true;
325
326    if (CurScope == Within) return false;
327    CurScope = CurScope->getParent();
328  }
329}
330
331/// ActOnIdentifierExpr - The parser read an identifier in expression context,
332/// validate it per-C99 6.5.1.  HasTrailingLParen indicates whether this
333/// identifier is used in a function call context.
334Sema::ExprResult Sema::ActOnIdentifierExpr(Scope *S, SourceLocation Loc,
335                                           IdentifierInfo &II,
336                                           bool HasTrailingLParen) {
337  // Could be enum-constant, value decl, instance variable, etc.
338  Decl *D = LookupDecl(&II, Decl::IDNS_Ordinary, S);
339
340  // If this reference is in an Objective-C method, then ivar lookup happens as
341  // well.
342  if (getCurMethodDecl()) {
343    ScopedDecl *SD = dyn_cast_or_null<ScopedDecl>(D);
344    // There are two cases to handle here.  1) scoped lookup could have failed,
345    // in which case we should look for an ivar.  2) scoped lookup could have
346    // found a decl, but that decl is outside the current method (i.e. a global
347    // variable).  In these two cases, we do a lookup for an ivar with this
348    // name, if the lookup suceeds, we replace it our current decl.
349    if (SD == 0 || SD->isDefinedOutsideFunctionOrMethod()) {
350      ObjCInterfaceDecl *IFace = getCurMethodDecl()->getClassInterface();
351      if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(&II)) {
352        // FIXME: This should use a new expr for a direct reference, don't turn
353        // this into Self->ivar, just return a BareIVarExpr or something.
354        IdentifierInfo &II = Context.Idents.get("self");
355        ExprResult SelfExpr = ActOnIdentifierExpr(S, Loc, II, false);
356        return new ObjCIvarRefExpr(IV, IV->getType(), Loc,
357                                 static_cast<Expr*>(SelfExpr.Val), true, true);
358      }
359    }
360    // Needed to implement property "super.method" notation.
361    if (SD == 0 && &II == SuperID) {
362      QualType T = Context.getPointerType(Context.getObjCInterfaceType(
363                     getCurMethodDecl()->getClassInterface()));
364      return new PredefinedExpr(Loc, T, PredefinedExpr::ObjCSuper);
365    }
366  }
367  // If we are parsing a block, check the block parameter list.
368  if (CurBlock) {
369    for (unsigned i = 0, e = CurBlock->Params.size(); i != e; ++i)
370      if (CurBlock->Params[i]->getIdentifier() == &II)
371        D = CurBlock->Params[i];
372  }
373  if (D == 0) {
374    // Otherwise, this could be an implicitly declared function reference (legal
375    // in C90, extension in C99).
376    if (HasTrailingLParen &&
377        !getLangOptions().CPlusPlus) // Not in C++.
378      D = ImplicitlyDefineFunction(Loc, II, S);
379    else {
380      // If this name wasn't predeclared and if this is not a function call,
381      // diagnose the problem.
382      return Diag(Loc, diag::err_undeclared_var_use, II.getName());
383    }
384  }
385
386  if (CXXFieldDecl *FD = dyn_cast<CXXFieldDecl>(D)) {
387    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
388      if (MD->isStatic())
389        // "invalid use of member 'x' in static member function"
390        return Diag(Loc, diag::err_invalid_member_use_in_static_method,
391                    FD->getName());
392      if (cast<CXXRecordDecl>(MD->getParent()) != FD->getParent())
393        // "invalid use of nonstatic data member 'x'"
394        return Diag(Loc, diag::err_invalid_non_static_member_use,
395                    FD->getName());
396
397      if (FD->isInvalidDecl())
398        return true;
399
400      // FIXME: Use DeclRefExpr or a new Expr for a direct CXXField reference.
401      ExprResult ThisExpr = ActOnCXXThis(SourceLocation());
402      return new MemberExpr(static_cast<Expr*>(ThisExpr.Val),
403                            true, FD, Loc, FD->getType());
404    }
405
406    return Diag(Loc, diag::err_invalid_non_static_member_use, FD->getName());
407  }
408  if (isa<TypedefDecl>(D))
409    return Diag(Loc, diag::err_unexpected_typedef, II.getName());
410  if (isa<ObjCInterfaceDecl>(D))
411    return Diag(Loc, diag::err_unexpected_interface, II.getName());
412  if (isa<NamespaceDecl>(D))
413    return Diag(Loc, diag::err_unexpected_namespace, II.getName());
414
415  // Make the DeclRefExpr or BlockDeclRefExpr for the decl.
416  ValueDecl *VD = cast<ValueDecl>(D);
417
418  // check if referencing an identifier with __attribute__((deprecated)).
419  if (VD->getAttr<DeprecatedAttr>())
420    Diag(Loc, diag::warn_deprecated, VD->getName());
421
422  // Only create DeclRefExpr's for valid Decl's.
423  if (VD->isInvalidDecl())
424    return true;
425
426  // If this reference is not in a block or if the referenced variable is
427  // within the block, create a normal DeclRefExpr.
428  //
429  // FIXME: This will create BlockDeclRefExprs for global variables,
430  // function references, enums constants, etc which is suboptimal :) and breaks
431  // things like "integer constant expression" tests.
432  //
433  if (!CurBlock || DeclDefinedWithinScope(VD, CurBlock->TheScope, S))
434    return new DeclRefExpr(VD, VD->getType(), Loc);
435
436  // If we are in a block and the variable is outside the current block,
437  // bind the variable reference with a BlockDeclRefExpr.
438
439  // If the variable is in the byref set, bind it directly, otherwise it will be
440  // bound by-copy, thus we make it const within the closure.
441  if (!CurBlock->ByRefVars.count(VD))
442    VD->getType().addConst();
443
444  return new BlockDeclRefExpr(VD, VD->getType(), Loc, false);
445}
446
447Sema::ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc,
448                                           tok::TokenKind Kind) {
449  PredefinedExpr::IdentType IT;
450
451  switch (Kind) {
452  default: assert(0 && "Unknown simple primary expr!");
453  case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
454  case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
455  case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
456  }
457
458  // Verify that this is in a function context.
459  if (getCurFunctionDecl() == 0 && getCurMethodDecl() == 0)
460    return Diag(Loc, diag::err_predef_outside_function);
461
462  // Pre-defined identifiers are of type char[x], where x is the length of the
463  // string.
464  unsigned Length;
465  if (getCurFunctionDecl())
466    Length = getCurFunctionDecl()->getIdentifier()->getLength();
467  else
468    Length = getCurMethodDecl()->getSynthesizedMethodSize();
469
470  llvm::APInt LengthI(32, Length + 1);
471  QualType ResTy = Context.CharTy.getQualifiedType(QualType::Const);
472  ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
473  return new PredefinedExpr(Loc, ResTy, IT);
474}
475
476Sema::ExprResult Sema::ActOnCharacterConstant(const Token &Tok) {
477  llvm::SmallString<16> CharBuffer;
478  CharBuffer.resize(Tok.getLength());
479  const char *ThisTokBegin = &CharBuffer[0];
480  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
481
482  CharLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
483                            Tok.getLocation(), PP);
484  if (Literal.hadError())
485    return ExprResult(true);
486
487  QualType type = getLangOptions().CPlusPlus ? Context.CharTy : Context.IntTy;
488
489  return new CharacterLiteral(Literal.getValue(), Literal.isWide(), type,
490                              Tok.getLocation());
491}
492
493Action::ExprResult Sema::ActOnNumericConstant(const Token &Tok) {
494  // fast path for a single digit (which is quite common). A single digit
495  // cannot have a trigraph, escaped newline, radix prefix, or type suffix.
496  if (Tok.getLength() == 1) {
497    const char *Ty = PP.getSourceManager().getCharacterData(Tok.getLocation());
498
499    unsigned IntSize =static_cast<unsigned>(Context.getTypeSize(Context.IntTy));
500    return ExprResult(new IntegerLiteral(llvm::APInt(IntSize, *Ty-'0'),
501                                         Context.IntTy,
502                                         Tok.getLocation()));
503  }
504  llvm::SmallString<512> IntegerBuffer;
505  IntegerBuffer.resize(Tok.getLength());
506  const char *ThisTokBegin = &IntegerBuffer[0];
507
508  // Get the spelling of the token, which eliminates trigraphs, etc.
509  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
510  NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
511                               Tok.getLocation(), PP);
512  if (Literal.hadError)
513    return ExprResult(true);
514
515  Expr *Res;
516
517  if (Literal.isFloatingLiteral()) {
518    QualType Ty;
519    if (Literal.isFloat)
520      Ty = Context.FloatTy;
521    else if (!Literal.isLong)
522      Ty = Context.DoubleTy;
523    else
524      Ty = Context.LongDoubleTy;
525
526    const llvm::fltSemantics &Format = Context.getFloatTypeSemantics(Ty);
527
528    // isExact will be set by GetFloatValue().
529    bool isExact = false;
530    Res = new FloatingLiteral(Literal.GetFloatValue(Format, &isExact), &isExact,
531                              Ty, Tok.getLocation());
532
533  } else if (!Literal.isIntegerLiteral()) {
534    return ExprResult(true);
535  } else {
536    QualType Ty;
537
538    // long long is a C99 feature.
539    if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
540        Literal.isLongLong)
541      Diag(Tok.getLocation(), diag::ext_longlong);
542
543    // Get the value in the widest-possible width.
544    llvm::APInt ResultVal(Context.Target.getIntMaxTWidth(), 0);
545
546    if (Literal.GetIntegerValue(ResultVal)) {
547      // If this value didn't fit into uintmax_t, warn and force to ull.
548      Diag(Tok.getLocation(), diag::warn_integer_too_large);
549      Ty = Context.UnsignedLongLongTy;
550      assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
551             "long long is not intmax_t?");
552    } else {
553      // If this value fits into a ULL, try to figure out what else it fits into
554      // according to the rules of C99 6.4.4.1p5.
555
556      // Octal, Hexadecimal, and integers with a U suffix are allowed to
557      // be an unsigned int.
558      bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
559
560      // Check from smallest to largest, picking the smallest type we can.
561      unsigned Width = 0;
562      if (!Literal.isLong && !Literal.isLongLong) {
563        // Are int/unsigned possibilities?
564        unsigned IntSize = Context.Target.getIntWidth();
565
566        // Does it fit in a unsigned int?
567        if (ResultVal.isIntN(IntSize)) {
568          // Does it fit in a signed int?
569          if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
570            Ty = Context.IntTy;
571          else if (AllowUnsigned)
572            Ty = Context.UnsignedIntTy;
573          Width = IntSize;
574        }
575      }
576
577      // Are long/unsigned long possibilities?
578      if (Ty.isNull() && !Literal.isLongLong) {
579        unsigned LongSize = Context.Target.getLongWidth();
580
581        // Does it fit in a unsigned long?
582        if (ResultVal.isIntN(LongSize)) {
583          // Does it fit in a signed long?
584          if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
585            Ty = Context.LongTy;
586          else if (AllowUnsigned)
587            Ty = Context.UnsignedLongTy;
588          Width = LongSize;
589        }
590      }
591
592      // Finally, check long long if needed.
593      if (Ty.isNull()) {
594        unsigned LongLongSize = Context.Target.getLongLongWidth();
595
596        // Does it fit in a unsigned long long?
597        if (ResultVal.isIntN(LongLongSize)) {
598          // Does it fit in a signed long long?
599          if (!Literal.isUnsigned && ResultVal[LongLongSize-1] == 0)
600            Ty = Context.LongLongTy;
601          else if (AllowUnsigned)
602            Ty = Context.UnsignedLongLongTy;
603          Width = LongLongSize;
604        }
605      }
606
607      // If we still couldn't decide a type, we probably have something that
608      // does not fit in a signed long long, but has no U suffix.
609      if (Ty.isNull()) {
610        Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
611        Ty = Context.UnsignedLongLongTy;
612        Width = Context.Target.getLongLongWidth();
613      }
614
615      if (ResultVal.getBitWidth() != Width)
616        ResultVal.trunc(Width);
617    }
618
619    Res = new IntegerLiteral(ResultVal, Ty, Tok.getLocation());
620  }
621
622  // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
623  if (Literal.isImaginary)
624    Res = new ImaginaryLiteral(Res, Context.getComplexType(Res->getType()));
625
626  return Res;
627}
628
629Action::ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R,
630                                        ExprTy *Val) {
631  Expr *E = (Expr *)Val;
632  assert((E != 0) && "ActOnParenExpr() missing expr");
633  return new ParenExpr(L, R, E);
634}
635
636/// The UsualUnaryConversions() function is *not* called by this routine.
637/// See C99 6.3.2.1p[2-4] for more details.
638QualType Sema::CheckSizeOfAlignOfOperand(QualType exprType,
639                                         SourceLocation OpLoc,
640                                         const SourceRange &ExprRange,
641                                         bool isSizeof) {
642  // C99 6.5.3.4p1:
643  if (isa<FunctionType>(exprType) && isSizeof)
644    // alignof(function) is allowed.
645    Diag(OpLoc, diag::ext_sizeof_function_type, ExprRange);
646  else if (exprType->isVoidType())
647    Diag(OpLoc, diag::ext_sizeof_void_type, isSizeof ? "sizeof" : "__alignof",
648         ExprRange);
649  else if (exprType->isIncompleteType()) {
650    Diag(OpLoc, isSizeof ? diag::err_sizeof_incomplete_type :
651                           diag::err_alignof_incomplete_type,
652         exprType.getAsString(), ExprRange);
653    return QualType(); // error
654  }
655  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
656  return Context.getSizeType();
657}
658
659Action::ExprResult Sema::
660ActOnSizeOfAlignOfTypeExpr(SourceLocation OpLoc, bool isSizeof,
661                           SourceLocation LPLoc, TypeTy *Ty,
662                           SourceLocation RPLoc) {
663  // If error parsing type, ignore.
664  if (Ty == 0) return true;
665
666  // Verify that this is a valid expression.
667  QualType ArgTy = QualType::getFromOpaquePtr(Ty);
668
669  QualType resultType =
670    CheckSizeOfAlignOfOperand(ArgTy, OpLoc, SourceRange(LPLoc, RPLoc),isSizeof);
671
672  if (resultType.isNull())
673    return true;
674  return new SizeOfAlignOfTypeExpr(isSizeof, ArgTy, resultType, OpLoc, RPLoc);
675}
676
677QualType Sema::CheckRealImagOperand(Expr *&V, SourceLocation Loc) {
678  DefaultFunctionArrayConversion(V);
679
680  // These operators return the element type of a complex type.
681  if (const ComplexType *CT = V->getType()->getAsComplexType())
682    return CT->getElementType();
683
684  // Otherwise they pass through real integer and floating point types here.
685  if (V->getType()->isArithmeticType())
686    return V->getType();
687
688  // Reject anything else.
689  Diag(Loc, diag::err_realimag_invalid_type, V->getType().getAsString());
690  return QualType();
691}
692
693
694
695Action::ExprResult Sema::ActOnPostfixUnaryOp(SourceLocation OpLoc,
696                                             tok::TokenKind Kind,
697                                             ExprTy *Input) {
698  UnaryOperator::Opcode Opc;
699  switch (Kind) {
700  default: assert(0 && "Unknown unary op!");
701  case tok::plusplus:   Opc = UnaryOperator::PostInc; break;
702  case tok::minusminus: Opc = UnaryOperator::PostDec; break;
703  }
704  QualType result = CheckIncrementDecrementOperand((Expr *)Input, OpLoc);
705  if (result.isNull())
706    return true;
707  return new UnaryOperator((Expr *)Input, Opc, result, OpLoc);
708}
709
710Action::ExprResult Sema::
711ActOnArraySubscriptExpr(ExprTy *Base, SourceLocation LLoc,
712                        ExprTy *Idx, SourceLocation RLoc) {
713  Expr *LHSExp = static_cast<Expr*>(Base), *RHSExp = static_cast<Expr*>(Idx);
714
715  // Perform default conversions.
716  DefaultFunctionArrayConversion(LHSExp);
717  DefaultFunctionArrayConversion(RHSExp);
718
719  QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
720
721  // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
722  // to the expression *((e1)+(e2)). This means the array "Base" may actually be
723  // in the subscript position. As a result, we need to derive the array base
724  // and index from the expression types.
725  Expr *BaseExpr, *IndexExpr;
726  QualType ResultType;
727  if (const PointerType *PTy = LHSTy->getAsPointerType()) {
728    BaseExpr = LHSExp;
729    IndexExpr = RHSExp;
730    // FIXME: need to deal with const...
731    ResultType = PTy->getPointeeType();
732  } else if (const PointerType *PTy = RHSTy->getAsPointerType()) {
733     // Handle the uncommon case of "123[Ptr]".
734    BaseExpr = RHSExp;
735    IndexExpr = LHSExp;
736    // FIXME: need to deal with const...
737    ResultType = PTy->getPointeeType();
738  } else if (const VectorType *VTy = LHSTy->getAsVectorType()) {
739    BaseExpr = LHSExp;    // vectors: V[123]
740    IndexExpr = RHSExp;
741
742    // Component access limited to variables (reject vec4.rg[1]).
743    if (!isa<DeclRefExpr>(BaseExpr) && !isa<ArraySubscriptExpr>(BaseExpr) &&
744        !isa<ExtVectorElementExpr>(BaseExpr))
745      return Diag(LLoc, diag::err_ext_vector_component_access,
746                  SourceRange(LLoc, RLoc));
747    // FIXME: need to deal with const...
748    ResultType = VTy->getElementType();
749  } else {
750    return Diag(LHSExp->getLocStart(), diag::err_typecheck_subscript_value,
751                RHSExp->getSourceRange());
752  }
753  // C99 6.5.2.1p1
754  if (!IndexExpr->getType()->isIntegerType())
755    return Diag(IndexExpr->getLocStart(), diag::err_typecheck_subscript,
756                IndexExpr->getSourceRange());
757
758  // C99 6.5.2.1p1: "shall have type "pointer to *object* type".  In practice,
759  // the following check catches trying to index a pointer to a function (e.g.
760  // void (*)(int)) and pointers to incomplete types.  Functions are not
761  // objects in C99.
762  if (!ResultType->isObjectType())
763    return Diag(BaseExpr->getLocStart(),
764                diag::err_typecheck_subscript_not_object,
765                BaseExpr->getType().getAsString(), BaseExpr->getSourceRange());
766
767  return new ArraySubscriptExpr(LHSExp, RHSExp, ResultType, RLoc);
768}
769
770QualType Sema::
771CheckExtVectorComponent(QualType baseType, SourceLocation OpLoc,
772                        IdentifierInfo &CompName, SourceLocation CompLoc) {
773  const ExtVectorType *vecType = baseType->getAsExtVectorType();
774
775  // This flag determines whether or not the component is to be treated as a
776  // special name, or a regular GLSL-style component access.
777  bool SpecialComponent = false;
778
779  // The vector accessor can't exceed the number of elements.
780  const char *compStr = CompName.getName();
781  if (strlen(compStr) > vecType->getNumElements()) {
782    Diag(OpLoc, diag::err_ext_vector_component_exceeds_length,
783                baseType.getAsString(), SourceRange(CompLoc));
784    return QualType();
785  }
786
787  // Check that we've found one of the special components, or that the component
788  // names must come from the same set.
789  if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
790      !strcmp(compStr, "e") || !strcmp(compStr, "o")) {
791    SpecialComponent = true;
792  } else if (vecType->getPointAccessorIdx(*compStr) != -1) {
793    do
794      compStr++;
795    while (*compStr && vecType->getPointAccessorIdx(*compStr) != -1);
796  } else if (vecType->getColorAccessorIdx(*compStr) != -1) {
797    do
798      compStr++;
799    while (*compStr && vecType->getColorAccessorIdx(*compStr) != -1);
800  } else if (vecType->getTextureAccessorIdx(*compStr) != -1) {
801    do
802      compStr++;
803    while (*compStr && vecType->getTextureAccessorIdx(*compStr) != -1);
804  }
805
806  if (!SpecialComponent && *compStr) {
807    // We didn't get to the end of the string. This means the component names
808    // didn't come from the same set *or* we encountered an illegal name.
809    Diag(OpLoc, diag::err_ext_vector_component_name_illegal,
810         std::string(compStr,compStr+1), SourceRange(CompLoc));
811    return QualType();
812  }
813  // Each component accessor can't exceed the vector type.
814  compStr = CompName.getName();
815  while (*compStr) {
816    if (vecType->isAccessorWithinNumElements(*compStr))
817      compStr++;
818    else
819      break;
820  }
821  if (!SpecialComponent && *compStr) {
822    // We didn't get to the end of the string. This means a component accessor
823    // exceeds the number of elements in the vector.
824    Diag(OpLoc, diag::err_ext_vector_component_exceeds_length,
825                baseType.getAsString(), SourceRange(CompLoc));
826    return QualType();
827  }
828
829  // If we have a special component name, verify that the current vector length
830  // is an even number, since all special component names return exactly half
831  // the elements.
832  if (SpecialComponent && (vecType->getNumElements() & 1U)) {
833    return QualType();
834  }
835
836  // The component accessor looks fine - now we need to compute the actual type.
837  // The vector type is implied by the component accessor. For example,
838  // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
839  // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
840  unsigned CompSize = SpecialComponent ? vecType->getNumElements() / 2
841                                       : strlen(CompName.getName());
842  if (CompSize == 1)
843    return vecType->getElementType();
844
845  QualType VT = Context.getExtVectorType(vecType->getElementType(), CompSize);
846  // Now look up the TypeDefDecl from the vector type. Without this,
847  // diagostics look bad. We want extended vector types to appear built-in.
848  for (unsigned i = 0, E = ExtVectorDecls.size(); i != E; ++i) {
849    if (ExtVectorDecls[i]->getUnderlyingType() == VT)
850      return Context.getTypedefType(ExtVectorDecls[i]);
851  }
852  return VT; // should never get here (a typedef type should always be found).
853}
854
855/// constructSetterName - Return the setter name for the given
856/// identifier, i.e. "set" + Name where the initial character of Name
857/// has been capitalized.
858// FIXME: Merge with same routine in Parser. But where should this
859// live?
860static IdentifierInfo *constructSetterName(IdentifierTable &Idents,
861                                           const IdentifierInfo *Name) {
862  unsigned N = Name->getLength();
863  char *SelectorName = new char[3 + N];
864  memcpy(SelectorName, "set", 3);
865  memcpy(&SelectorName[3], Name->getName(), N);
866  SelectorName[3] = toupper(SelectorName[3]);
867
868  IdentifierInfo *Setter =
869    &Idents.get(SelectorName, &SelectorName[3 + N]);
870  delete[] SelectorName;
871  return Setter;
872}
873
874Action::ExprResult Sema::
875ActOnMemberReferenceExpr(ExprTy *Base, SourceLocation OpLoc,
876                         tok::TokenKind OpKind, SourceLocation MemberLoc,
877                         IdentifierInfo &Member) {
878  Expr *BaseExpr = static_cast<Expr *>(Base);
879  assert(BaseExpr && "no record expression");
880
881  // Perform default conversions.
882  DefaultFunctionArrayConversion(BaseExpr);
883
884  QualType BaseType = BaseExpr->getType();
885  assert(!BaseType.isNull() && "no type for member expression");
886
887  // Get the type being accessed in BaseType.  If this is an arrow, the BaseExpr
888  // must have pointer type, and the accessed type is the pointee.
889  if (OpKind == tok::arrow) {
890    if (const PointerType *PT = BaseType->getAsPointerType())
891      BaseType = PT->getPointeeType();
892    else
893      return Diag(MemberLoc, diag::err_typecheck_member_reference_arrow,
894                  BaseType.getAsString(), BaseExpr->getSourceRange());
895  }
896
897  // Handle field access to simple records.  This also handles access to fields
898  // of the ObjC 'id' struct.
899  if (const RecordType *RTy = BaseType->getAsRecordType()) {
900    RecordDecl *RDecl = RTy->getDecl();
901    if (RTy->isIncompleteType())
902      return Diag(OpLoc, diag::err_typecheck_incomplete_tag, RDecl->getName(),
903                  BaseExpr->getSourceRange());
904    // The record definition is complete, now make sure the member is valid.
905    FieldDecl *MemberDecl = RDecl->getMember(&Member);
906    if (!MemberDecl)
907      return Diag(MemberLoc, diag::err_typecheck_no_member, Member.getName(),
908                  BaseExpr->getSourceRange());
909
910    // Figure out the type of the member; see C99 6.5.2.3p3
911    // FIXME: Handle address space modifiers
912    QualType MemberType = MemberDecl->getType();
913    unsigned combinedQualifiers =
914        MemberType.getCVRQualifiers() | BaseType.getCVRQualifiers();
915    MemberType = MemberType.getQualifiedType(combinedQualifiers);
916
917    return new MemberExpr(BaseExpr, OpKind == tok::arrow, MemberDecl,
918                          MemberLoc, MemberType);
919  }
920
921  // Handle access to Objective-C instance variables, such as "Obj->ivar" and
922  // (*Obj).ivar.
923  if (const ObjCInterfaceType *IFTy = BaseType->getAsObjCInterfaceType()) {
924    if (ObjCIvarDecl *IV = IFTy->getDecl()->lookupInstanceVariable(&Member))
925      return new ObjCIvarRefExpr(IV, IV->getType(), MemberLoc, BaseExpr,
926                                 OpKind == tok::arrow);
927    return Diag(MemberLoc, diag::err_typecheck_member_reference_ivar,
928                IFTy->getDecl()->getName(), Member.getName(),
929                BaseExpr->getSourceRange());
930  }
931
932  // Handle Objective-C property access, which is "Obj.property" where Obj is a
933  // pointer to a (potentially qualified) interface type.
934  const PointerType *PTy;
935  const ObjCInterfaceType *IFTy;
936  if (OpKind == tok::period && (PTy = BaseType->getAsPointerType()) &&
937      (IFTy = PTy->getPointeeType()->getAsObjCInterfaceType())) {
938    ObjCInterfaceDecl *IFace = IFTy->getDecl();
939
940    // Search for a declared property first.
941    if (ObjCPropertyDecl *PD = IFace->FindPropertyDeclaration(&Member))
942      return new ObjCPropertyRefExpr(PD, PD->getType(), MemberLoc, BaseExpr);
943
944    // Check protocols on qualified interfaces.
945    for (ObjCInterfaceType::qual_iterator I = IFTy->qual_begin(),
946         E = IFTy->qual_end(); I != E; ++I)
947      if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(&Member))
948        return new ObjCPropertyRefExpr(PD, PD->getType(), MemberLoc, BaseExpr);
949
950    // If that failed, look for an "implicit" property by seeing if the nullary
951    // selector is implemented.
952
953    // FIXME: The logic for looking up nullary and unary selectors should be
954    // shared with the code in ActOnInstanceMessage.
955
956    Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
957    ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Sel);
958
959    // If this reference is in an @implementation, check for 'private' methods.
960    if (!Getter)
961      if (ObjCMethodDecl *CurMeth = getCurMethodDecl())
962        if (ObjCInterfaceDecl *ClassDecl = CurMeth->getClassInterface())
963          if (ObjCImplementationDecl *ImpDecl =
964              ObjCImplementations[ClassDecl->getIdentifier()])
965            Getter = ImpDecl->getInstanceMethod(Sel);
966
967    if (Getter) {
968      // If we found a getter then this may be a valid dot-reference, we
969      // need to also look for the matching setter.
970      IdentifierInfo *SetterName = constructSetterName(PP.getIdentifierTable(),
971                                                       &Member);
972      Selector SetterSel = PP.getSelectorTable().getUnarySelector(SetterName);
973      ObjCMethodDecl *Setter = IFace->lookupInstanceMethod(SetterSel);
974
975      if (!Setter) {
976        if (ObjCMethodDecl *CurMeth = getCurMethodDecl())
977          if (ObjCInterfaceDecl *ClassDecl = CurMeth->getClassInterface())
978            if (ObjCImplementationDecl *ImpDecl =
979                ObjCImplementations[ClassDecl->getIdentifier()])
980              Setter = ImpDecl->getInstanceMethod(SetterSel);
981      }
982
983      // FIXME: There are some issues here. First, we are not
984      // diagnosing accesses to read-only properties because we do not
985      // know if this is a getter or setter yet. Second, we are
986      // checking that the type of the setter matches the type we
987      // expect.
988      return new ObjCPropertyRefExpr(Getter, Setter, Getter->getResultType(),
989                                     MemberLoc, BaseExpr);
990    }
991  }
992
993  // Handle 'field access' to vectors, such as 'V.xx'.
994  if (BaseType->isExtVectorType() && OpKind == tok::period) {
995    // Component access limited to variables (reject vec4.rg.g).
996    if (!isa<DeclRefExpr>(BaseExpr) && !isa<ArraySubscriptExpr>(BaseExpr) &&
997        !isa<ExtVectorElementExpr>(BaseExpr))
998      return Diag(MemberLoc, diag::err_ext_vector_component_access,
999                  BaseExpr->getSourceRange());
1000    QualType ret = CheckExtVectorComponent(BaseType, OpLoc, Member, MemberLoc);
1001    if (ret.isNull())
1002      return true;
1003    return new ExtVectorElementExpr(ret, BaseExpr, Member, MemberLoc);
1004  }
1005
1006  return Diag(MemberLoc, diag::err_typecheck_member_reference_struct_union,
1007              BaseType.getAsString(), BaseExpr->getSourceRange());
1008}
1009
1010/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
1011/// This provides the location of the left/right parens and a list of comma
1012/// locations.
1013Action::ExprResult Sema::
1014ActOnCallExpr(ExprTy *fn, SourceLocation LParenLoc,
1015              ExprTy **args, unsigned NumArgs,
1016              SourceLocation *CommaLocs, SourceLocation RParenLoc) {
1017  Expr *Fn = static_cast<Expr *>(fn);
1018  Expr **Args = reinterpret_cast<Expr**>(args);
1019  assert(Fn && "no function call expression");
1020  FunctionDecl *FDecl = NULL;
1021
1022  // Promote the function operand.
1023  UsualUnaryConversions(Fn);
1024
1025  // If we're directly calling a function, get the declaration for
1026  // that function.
1027  if (ImplicitCastExpr *IcExpr = dyn_cast<ImplicitCastExpr>(Fn))
1028    if (DeclRefExpr *DRExpr = dyn_cast<DeclRefExpr>(IcExpr->getSubExpr()))
1029      FDecl = dyn_cast<FunctionDecl>(DRExpr->getDecl());
1030
1031  // Make the call expr early, before semantic checks.  This guarantees cleanup
1032  // of arguments and function on error.
1033  llvm::OwningPtr<CallExpr> TheCall(new CallExpr(Fn, Args, NumArgs,
1034                                                 Context.BoolTy, RParenLoc));
1035  const FunctionType *FuncT;
1036  if (!Fn->getType()->isBlockPointerType()) {
1037    // C99 6.5.2.2p1 - "The expression that denotes the called function shall
1038    // have type pointer to function".
1039    const PointerType *PT = Fn->getType()->getAsPointerType();
1040    if (PT == 0)
1041      return Diag(LParenLoc, diag::err_typecheck_call_not_function,
1042                  Fn->getSourceRange());
1043    FuncT = PT->getPointeeType()->getAsFunctionType();
1044  } else { // This is a block call.
1045    FuncT = Fn->getType()->getAsBlockPointerType()->getPointeeType()->
1046                getAsFunctionType();
1047  }
1048  if (FuncT == 0)
1049    return Diag(LParenLoc, diag::err_typecheck_call_not_function,
1050                Fn->getSourceRange());
1051
1052  // We know the result type of the call, set it.
1053  TheCall->setType(FuncT->getResultType());
1054
1055  if (const FunctionTypeProto *Proto = dyn_cast<FunctionTypeProto>(FuncT)) {
1056    // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
1057    // assignment, to the types of the corresponding parameter, ...
1058    unsigned NumArgsInProto = Proto->getNumArgs();
1059    unsigned NumArgsToCheck = NumArgs;
1060
1061    // If too few arguments are available (and we don't have default
1062    // arguments for the remaining parameters), don't make the call.
1063    if (NumArgs < NumArgsInProto) {
1064      if (FDecl && NumArgs >= FDecl->getMinRequiredArguments()) {
1065        // Use default arguments for missing arguments
1066        NumArgsToCheck = NumArgsInProto;
1067        TheCall->setNumArgs(NumArgsInProto);
1068      } else
1069        return Diag(RParenLoc,
1070                    !Fn->getType()->isBlockPointerType()
1071                      ? diag::err_typecheck_call_too_few_args
1072                      : diag::err_typecheck_block_too_few_args,
1073                    Fn->getSourceRange());
1074    }
1075
1076    // If too many are passed and not variadic, error on the extras and drop
1077    // them.
1078    if (NumArgs > NumArgsInProto) {
1079      if (!Proto->isVariadic()) {
1080        Diag(Args[NumArgsInProto]->getLocStart(),
1081               !Fn->getType()->isBlockPointerType()
1082                 ? diag::err_typecheck_call_too_many_args
1083                 : diag::err_typecheck_block_too_many_args,
1084             Fn->getSourceRange(),
1085             SourceRange(Args[NumArgsInProto]->getLocStart(),
1086                         Args[NumArgs-1]->getLocEnd()));
1087        // This deletes the extra arguments.
1088        TheCall->setNumArgs(NumArgsInProto);
1089      }
1090      NumArgsToCheck = NumArgsInProto;
1091    }
1092
1093    // Continue to check argument types (even if we have too few/many args).
1094    for (unsigned i = 0; i != NumArgsToCheck; i++) {
1095      QualType ProtoArgType = Proto->getArgType(i);
1096
1097      Expr *Arg;
1098      if (i < NumArgs)
1099        Arg = Args[i];
1100      else
1101        Arg = new CXXDefaultArgExpr(FDecl->getParamDecl(i));
1102      QualType ArgType = Arg->getType();
1103
1104      // Compute implicit casts from the operand to the formal argument type.
1105      AssignConvertType ConvTy =
1106        CheckSingleAssignmentConstraints(ProtoArgType, Arg);
1107      TheCall->setArg(i, Arg);
1108
1109      if (DiagnoseAssignmentResult(ConvTy, Arg->getLocStart(), ProtoArgType,
1110                                   ArgType, Arg, "passing"))
1111        return true;
1112    }
1113
1114    // If this is a variadic call, handle args passed through "...".
1115    if (Proto->isVariadic()) {
1116      // Promote the arguments (C99 6.5.2.2p7).
1117      for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
1118        Expr *Arg = Args[i];
1119        DefaultArgumentPromotion(Arg);
1120        TheCall->setArg(i, Arg);
1121      }
1122    }
1123  } else {
1124    assert(isa<FunctionTypeNoProto>(FuncT) && "Unknown FunctionType!");
1125
1126    // Promote the arguments (C99 6.5.2.2p6).
1127    for (unsigned i = 0; i != NumArgs; i++) {
1128      Expr *Arg = Args[i];
1129      DefaultArgumentPromotion(Arg);
1130      TheCall->setArg(i, Arg);
1131    }
1132  }
1133
1134  // Do special checking on direct calls to functions.
1135  if (FDecl)
1136    return CheckFunctionCall(FDecl, TheCall.take());
1137
1138  return TheCall.take();
1139}
1140
1141Action::ExprResult Sema::
1142ActOnCompoundLiteral(SourceLocation LParenLoc, TypeTy *Ty,
1143                     SourceLocation RParenLoc, ExprTy *InitExpr) {
1144  assert((Ty != 0) && "ActOnCompoundLiteral(): missing type");
1145  QualType literalType = QualType::getFromOpaquePtr(Ty);
1146  // FIXME: put back this assert when initializers are worked out.
1147  //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
1148  Expr *literalExpr = static_cast<Expr*>(InitExpr);
1149
1150  if (literalType->isArrayType()) {
1151    if (literalType->isVariableArrayType())
1152      return Diag(LParenLoc,
1153                  diag::err_variable_object_no_init,
1154                  SourceRange(LParenLoc,
1155                              literalExpr->getSourceRange().getEnd()));
1156  } else if (literalType->isIncompleteType()) {
1157    return Diag(LParenLoc,
1158                diag::err_typecheck_decl_incomplete_type,
1159                literalType.getAsString(),
1160                SourceRange(LParenLoc,
1161                            literalExpr->getSourceRange().getEnd()));
1162  }
1163
1164  if (CheckInitializerTypes(literalExpr, literalType))
1165    return true;
1166
1167  bool isFileScope = !getCurFunctionDecl() && !getCurMethodDecl();
1168  if (isFileScope) { // 6.5.2.5p3
1169    if (CheckForConstantInitializer(literalExpr, literalType))
1170      return true;
1171  }
1172  return new CompoundLiteralExpr(LParenLoc, literalType, literalExpr, isFileScope);
1173}
1174
1175Action::ExprResult Sema::
1176ActOnInitList(SourceLocation LBraceLoc, ExprTy **initlist, unsigned NumInit,
1177              SourceLocation RBraceLoc) {
1178  Expr **InitList = reinterpret_cast<Expr**>(initlist);
1179
1180  // Semantic analysis for initializers is done by ActOnDeclarator() and
1181  // CheckInitializer() - it requires knowledge of the object being intialized.
1182
1183  InitListExpr *E = new InitListExpr(LBraceLoc, InitList, NumInit, RBraceLoc);
1184  E->setType(Context.VoidTy); // FIXME: just a place holder for now.
1185  return E;
1186}
1187
1188/// CheckCastTypes - Check type constraints for casting between types.
1189bool Sema::CheckCastTypes(SourceRange TyR, QualType castType, Expr *&castExpr) {
1190  UsualUnaryConversions(castExpr);
1191
1192  // C99 6.5.4p2: the cast type needs to be void or scalar and the expression
1193  // type needs to be scalar.
1194  if (castType->isVoidType()) {
1195    // Cast to void allows any expr type.
1196  } else if (!castType->isScalarType() && !castType->isVectorType()) {
1197    // GCC struct/union extension: allow cast to self.
1198    if (Context.getCanonicalType(castType) !=
1199        Context.getCanonicalType(castExpr->getType()) ||
1200        (!castType->isStructureType() && !castType->isUnionType())) {
1201      // Reject any other conversions to non-scalar types.
1202      return Diag(TyR.getBegin(), diag::err_typecheck_cond_expect_scalar,
1203                  castType.getAsString(), castExpr->getSourceRange());
1204    }
1205
1206    // accept this, but emit an ext-warn.
1207    Diag(TyR.getBegin(), diag::ext_typecheck_cast_nonscalar,
1208         castType.getAsString(), castExpr->getSourceRange());
1209  } else if (!castExpr->getType()->isScalarType() &&
1210             !castExpr->getType()->isVectorType()) {
1211    return Diag(castExpr->getLocStart(),
1212                diag::err_typecheck_expect_scalar_operand,
1213                castExpr->getType().getAsString(),castExpr->getSourceRange());
1214  } else if (castExpr->getType()->isVectorType()) {
1215    if (CheckVectorCast(TyR, castExpr->getType(), castType))
1216      return true;
1217  } else if (castType->isVectorType()) {
1218    if (CheckVectorCast(TyR, castType, castExpr->getType()))
1219      return true;
1220  }
1221  return false;
1222}
1223
1224bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty) {
1225  assert(VectorTy->isVectorType() && "Not a vector type!");
1226
1227  if (Ty->isVectorType() || Ty->isIntegerType()) {
1228    if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty))
1229      return Diag(R.getBegin(),
1230                  Ty->isVectorType() ?
1231                  diag::err_invalid_conversion_between_vectors :
1232                  diag::err_invalid_conversion_between_vector_and_integer,
1233                  VectorTy.getAsString().c_str(),
1234                  Ty.getAsString().c_str(), R);
1235  } else
1236    return Diag(R.getBegin(),
1237                diag::err_invalid_conversion_between_vector_and_scalar,
1238                VectorTy.getAsString().c_str(),
1239                Ty.getAsString().c_str(), R);
1240
1241  return false;
1242}
1243
1244Action::ExprResult Sema::
1245ActOnCastExpr(SourceLocation LParenLoc, TypeTy *Ty,
1246              SourceLocation RParenLoc, ExprTy *Op) {
1247  assert((Ty != 0) && (Op != 0) && "ActOnCastExpr(): missing type or expr");
1248
1249  Expr *castExpr = static_cast<Expr*>(Op);
1250  QualType castType = QualType::getFromOpaquePtr(Ty);
1251
1252  if (CheckCastTypes(SourceRange(LParenLoc, RParenLoc), castType, castExpr))
1253    return true;
1254  return new ExplicitCastExpr(castType, castExpr, LParenLoc);
1255}
1256
1257/// Note that lex is not null here, even if this is the gnu "x ?: y" extension.
1258/// In that case, lex = cond.
1259inline QualType Sema::CheckConditionalOperands( // C99 6.5.15
1260  Expr *&cond, Expr *&lex, Expr *&rex, SourceLocation questionLoc) {
1261  UsualUnaryConversions(cond);
1262  UsualUnaryConversions(lex);
1263  UsualUnaryConversions(rex);
1264  QualType condT = cond->getType();
1265  QualType lexT = lex->getType();
1266  QualType rexT = rex->getType();
1267
1268  // first, check the condition.
1269  if (!condT->isScalarType()) { // C99 6.5.15p2
1270    Diag(cond->getLocStart(), diag::err_typecheck_cond_expect_scalar,
1271         condT.getAsString());
1272    return QualType();
1273  }
1274
1275  // Now check the two expressions.
1276
1277  // If both operands have arithmetic type, do the usual arithmetic conversions
1278  // to find a common type: C99 6.5.15p3,5.
1279  if (lexT->isArithmeticType() && rexT->isArithmeticType()) {
1280    UsualArithmeticConversions(lex, rex);
1281    return lex->getType();
1282  }
1283
1284  // If both operands are the same structure or union type, the result is that
1285  // type.
1286  if (const RecordType *LHSRT = lexT->getAsRecordType()) {    // C99 6.5.15p3
1287    if (const RecordType *RHSRT = rexT->getAsRecordType())
1288      if (LHSRT->getDecl() == RHSRT->getDecl())
1289        // "If both the operands have structure or union type, the result has
1290        // that type."  This implies that CV qualifiers are dropped.
1291        return lexT.getUnqualifiedType();
1292  }
1293
1294  // C99 6.5.15p5: "If both operands have void type, the result has void type."
1295  // The following || allows only one side to be void (a GCC-ism).
1296  if (lexT->isVoidType() || rexT->isVoidType()) {
1297    if (!lexT->isVoidType())
1298      Diag(rex->getLocStart(), diag::ext_typecheck_cond_one_void,
1299           rex->getSourceRange());
1300    if (!rexT->isVoidType())
1301      Diag(lex->getLocStart(), diag::ext_typecheck_cond_one_void,
1302           lex->getSourceRange());
1303    ImpCastExprToType(lex, Context.VoidTy);
1304    ImpCastExprToType(rex, Context.VoidTy);
1305    return Context.VoidTy;
1306  }
1307  // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
1308  // the type of the other operand."
1309  if ((lexT->isPointerType() || lexT->isBlockPointerType() ||
1310       Context.isObjCObjectPointerType(lexT)) &&
1311      rex->isNullPointerConstant(Context)) {
1312    ImpCastExprToType(rex, lexT); // promote the null to a pointer.
1313    return lexT;
1314  }
1315  if ((rexT->isPointerType() || rexT->isBlockPointerType() ||
1316       Context.isObjCObjectPointerType(rexT)) &&
1317      lex->isNullPointerConstant(Context)) {
1318    ImpCastExprToType(lex, rexT); // promote the null to a pointer.
1319    return rexT;
1320  }
1321  // Handle the case where both operands are pointers before we handle null
1322  // pointer constants in case both operands are null pointer constants.
1323  if (const PointerType *LHSPT = lexT->getAsPointerType()) { // C99 6.5.15p3,6
1324    if (const PointerType *RHSPT = rexT->getAsPointerType()) {
1325      // get the "pointed to" types
1326      QualType lhptee = LHSPT->getPointeeType();
1327      QualType rhptee = RHSPT->getPointeeType();
1328
1329      // ignore qualifiers on void (C99 6.5.15p3, clause 6)
1330      if (lhptee->isVoidType() &&
1331          rhptee->isIncompleteOrObjectType()) {
1332        // Figure out necessary qualifiers (C99 6.5.15p6)
1333        QualType destPointee=lhptee.getQualifiedType(rhptee.getCVRQualifiers());
1334        QualType destType = Context.getPointerType(destPointee);
1335        ImpCastExprToType(lex, destType); // add qualifiers if necessary
1336        ImpCastExprToType(rex, destType); // promote to void*
1337        return destType;
1338      }
1339      if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
1340        QualType destPointee=rhptee.getQualifiedType(lhptee.getCVRQualifiers());
1341        QualType destType = Context.getPointerType(destPointee);
1342        ImpCastExprToType(lex, destType); // add qualifiers if necessary
1343        ImpCastExprToType(rex, destType); // promote to void*
1344        return destType;
1345      }
1346
1347      QualType compositeType = lexT;
1348
1349      // If either type is an Objective-C object type then check
1350      // compatibility according to Objective-C.
1351      if (Context.isObjCObjectPointerType(lexT) ||
1352          Context.isObjCObjectPointerType(rexT)) {
1353        // If both operands are interfaces and either operand can be
1354        // assigned to the other, use that type as the composite
1355        // type. This allows
1356        //   xxx ? (A*) a : (B*) b
1357        // where B is a subclass of A.
1358        //
1359        // Additionally, as for assignment, if either type is 'id'
1360        // allow silent coercion. Finally, if the types are
1361        // incompatible then make sure to use 'id' as the composite
1362        // type so the result is acceptable for sending messages to.
1363
1364        // FIXME: This code should not be localized to here. Also this
1365        // should use a compatible check instead of abusing the
1366        // canAssignObjCInterfaces code.
1367        const ObjCInterfaceType* LHSIface = lhptee->getAsObjCInterfaceType();
1368        const ObjCInterfaceType* RHSIface = rhptee->getAsObjCInterfaceType();
1369        if (LHSIface && RHSIface &&
1370            Context.canAssignObjCInterfaces(LHSIface, RHSIface)) {
1371          compositeType = lexT;
1372        } else if (LHSIface && RHSIface &&
1373                   Context.canAssignObjCInterfaces(LHSIface, RHSIface)) {
1374          compositeType = rexT;
1375        } else if (Context.isObjCIdType(lhptee) ||
1376                   Context.isObjCIdType(rhptee)) {
1377          // FIXME: This code looks wrong, because isObjCIdType checks
1378          // the struct but getObjCIdType returns the pointer to
1379          // struct. This is horrible and should be fixed.
1380          compositeType = Context.getObjCIdType();
1381        } else {
1382          QualType incompatTy = Context.getObjCIdType();
1383          ImpCastExprToType(lex, incompatTy);
1384          ImpCastExprToType(rex, incompatTy);
1385          return incompatTy;
1386        }
1387      } else if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
1388                                             rhptee.getUnqualifiedType())) {
1389        Diag(questionLoc, diag::warn_typecheck_cond_incompatible_pointers,
1390             lexT.getAsString(), rexT.getAsString(),
1391             lex->getSourceRange(), rex->getSourceRange());
1392        // In this situation, we assume void* type. No especially good
1393        // reason, but this is what gcc does, and we do have to pick
1394        // to get a consistent AST.
1395        QualType incompatTy = Context.getPointerType(Context.VoidTy);
1396        ImpCastExprToType(lex, incompatTy);
1397        ImpCastExprToType(rex, incompatTy);
1398        return incompatTy;
1399      }
1400      // The pointer types are compatible.
1401      // C99 6.5.15p6: If both operands are pointers to compatible types *or* to
1402      // differently qualified versions of compatible types, the result type is
1403      // a pointer to an appropriately qualified version of the *composite*
1404      // type.
1405      // FIXME: Need to calculate the composite type.
1406      // FIXME: Need to add qualifiers
1407      ImpCastExprToType(lex, compositeType);
1408      ImpCastExprToType(rex, compositeType);
1409      return compositeType;
1410    }
1411  }
1412  // Need to handle "id<xx>" explicitly. Unlike "id", whose canonical type
1413  // evaluates to "struct objc_object *" (and is handled above when comparing
1414  // id with statically typed objects).
1415  if (lexT->isObjCQualifiedIdType() || rexT->isObjCQualifiedIdType()) {
1416    // GCC allows qualified id and any Objective-C type to devolve to
1417    // id. Currently localizing to here until clear this should be
1418    // part of ObjCQualifiedIdTypesAreCompatible.
1419    if (ObjCQualifiedIdTypesAreCompatible(lexT, rexT, true) ||
1420        (lexT->isObjCQualifiedIdType() &&
1421         Context.isObjCObjectPointerType(rexT)) ||
1422        (rexT->isObjCQualifiedIdType() &&
1423         Context.isObjCObjectPointerType(lexT))) {
1424      // FIXME: This is not the correct composite type. This only
1425      // happens to work because id can more or less be used anywhere,
1426      // however this may change the type of method sends.
1427      // FIXME: gcc adds some type-checking of the arguments and emits
1428      // (confusing) incompatible comparison warnings in some
1429      // cases. Investigate.
1430      QualType compositeType = Context.getObjCIdType();
1431      ImpCastExprToType(lex, compositeType);
1432      ImpCastExprToType(rex, compositeType);
1433      return compositeType;
1434    }
1435  }
1436
1437  // Selection between block pointer types is ok as long as they are the same.
1438  if (lexT->isBlockPointerType() && rexT->isBlockPointerType() &&
1439      Context.getCanonicalType(lexT) == Context.getCanonicalType(rexT))
1440    return lexT;
1441
1442  // Otherwise, the operands are not compatible.
1443  Diag(questionLoc, diag::err_typecheck_cond_incompatible_operands,
1444       lexT.getAsString(), rexT.getAsString(),
1445       lex->getSourceRange(), rex->getSourceRange());
1446  return QualType();
1447}
1448
1449/// ActOnConditionalOp - Parse a ?: operation.  Note that 'LHS' may be null
1450/// in the case of a the GNU conditional expr extension.
1451Action::ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
1452                                            SourceLocation ColonLoc,
1453                                            ExprTy *Cond, ExprTy *LHS,
1454                                            ExprTy *RHS) {
1455  Expr *CondExpr = (Expr *) Cond;
1456  Expr *LHSExpr = (Expr *) LHS, *RHSExpr = (Expr *) RHS;
1457
1458  // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
1459  // was the condition.
1460  bool isLHSNull = LHSExpr == 0;
1461  if (isLHSNull)
1462    LHSExpr = CondExpr;
1463
1464  QualType result = CheckConditionalOperands(CondExpr, LHSExpr,
1465                                             RHSExpr, QuestionLoc);
1466  if (result.isNull())
1467    return true;
1468  return new ConditionalOperator(CondExpr, isLHSNull ? 0 : LHSExpr,
1469                                 RHSExpr, result);
1470}
1471
1472
1473// CheckPointerTypesForAssignment - This is a very tricky routine (despite
1474// being closely modeled after the C99 spec:-). The odd characteristic of this
1475// routine is it effectively iqnores the qualifiers on the top level pointee.
1476// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
1477// FIXME: add a couple examples in this comment.
1478Sema::AssignConvertType
1479Sema::CheckPointerTypesForAssignment(QualType lhsType, QualType rhsType) {
1480  QualType lhptee, rhptee;
1481
1482  // get the "pointed to" type (ignoring qualifiers at the top level)
1483  lhptee = lhsType->getAsPointerType()->getPointeeType();
1484  rhptee = rhsType->getAsPointerType()->getPointeeType();
1485
1486  // make sure we operate on the canonical type
1487  lhptee = Context.getCanonicalType(lhptee);
1488  rhptee = Context.getCanonicalType(rhptee);
1489
1490  AssignConvertType ConvTy = Compatible;
1491
1492  // C99 6.5.16.1p1: This following citation is common to constraints
1493  // 3 & 4 (below). ...and the type *pointed to* by the left has all the
1494  // qualifiers of the type *pointed to* by the right;
1495  // FIXME: Handle ASQualType
1496  if ((lhptee.getCVRQualifiers() & rhptee.getCVRQualifiers()) !=
1497       rhptee.getCVRQualifiers())
1498    ConvTy = CompatiblePointerDiscardsQualifiers;
1499
1500  // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
1501  // incomplete type and the other is a pointer to a qualified or unqualified
1502  // version of void...
1503  if (lhptee->isVoidType()) {
1504    if (rhptee->isIncompleteOrObjectType())
1505      return ConvTy;
1506
1507    // As an extension, we allow cast to/from void* to function pointer.
1508    assert(rhptee->isFunctionType());
1509    return FunctionVoidPointer;
1510  }
1511
1512  if (rhptee->isVoidType()) {
1513    if (lhptee->isIncompleteOrObjectType())
1514      return ConvTy;
1515
1516    // As an extension, we allow cast to/from void* to function pointer.
1517    assert(lhptee->isFunctionType());
1518    return FunctionVoidPointer;
1519  }
1520
1521  // Check for ObjC interfaces
1522  const ObjCInterfaceType* LHSIface = lhptee->getAsObjCInterfaceType();
1523  const ObjCInterfaceType* RHSIface = rhptee->getAsObjCInterfaceType();
1524  if (LHSIface && RHSIface &&
1525      Context.canAssignObjCInterfaces(LHSIface, RHSIface))
1526    return ConvTy;
1527
1528  // ID acts sort of like void* for ObjC interfaces
1529  if (LHSIface && Context.isObjCIdType(rhptee))
1530    return ConvTy;
1531  if (RHSIface && Context.isObjCIdType(lhptee))
1532    return ConvTy;
1533
1534  // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
1535  // unqualified versions of compatible types, ...
1536  if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
1537                                  rhptee.getUnqualifiedType()))
1538    return IncompatiblePointer; // this "trumps" PointerAssignDiscardsQualifiers
1539  return ConvTy;
1540}
1541
1542/// CheckBlockPointerTypesForAssignment - This routine determines whether two
1543/// block pointer types are compatible or whether a block and normal pointer
1544/// are compatible. It is more restrict than comparing two function pointer
1545// types.
1546Sema::AssignConvertType
1547Sema::CheckBlockPointerTypesForAssignment(QualType lhsType,
1548                                          QualType rhsType) {
1549  QualType lhptee, rhptee;
1550
1551  // get the "pointed to" type (ignoring qualifiers at the top level)
1552  lhptee = lhsType->getAsBlockPointerType()->getPointeeType();
1553  rhptee = rhsType->getAsBlockPointerType()->getPointeeType();
1554
1555  // make sure we operate on the canonical type
1556  lhptee = Context.getCanonicalType(lhptee);
1557  rhptee = Context.getCanonicalType(rhptee);
1558
1559  AssignConvertType ConvTy = Compatible;
1560
1561  // For blocks we enforce that qualifiers are identical.
1562  if (lhptee.getCVRQualifiers() != rhptee.getCVRQualifiers())
1563    ConvTy = CompatiblePointerDiscardsQualifiers;
1564
1565  if (!Context.typesAreBlockCompatible(lhptee, rhptee))
1566    return IncompatibleBlockPointer;
1567  return ConvTy;
1568}
1569
1570/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
1571/// has code to accommodate several GCC extensions when type checking
1572/// pointers. Here are some objectionable examples that GCC considers warnings:
1573///
1574///  int a, *pint;
1575///  short *pshort;
1576///  struct foo *pfoo;
1577///
1578///  pint = pshort; // warning: assignment from incompatible pointer type
1579///  a = pint; // warning: assignment makes integer from pointer without a cast
1580///  pint = a; // warning: assignment makes pointer from integer without a cast
1581///  pint = pfoo; // warning: assignment from incompatible pointer type
1582///
1583/// As a result, the code for dealing with pointers is more complex than the
1584/// C99 spec dictates.
1585///
1586Sema::AssignConvertType
1587Sema::CheckAssignmentConstraints(QualType lhsType, QualType rhsType) {
1588  // Get canonical types.  We're not formatting these types, just comparing
1589  // them.
1590  lhsType = Context.getCanonicalType(lhsType).getUnqualifiedType();
1591  rhsType = Context.getCanonicalType(rhsType).getUnqualifiedType();
1592
1593  if (lhsType == rhsType)
1594    return Compatible; // Common case: fast path an exact match.
1595
1596  if (lhsType->isReferenceType() || rhsType->isReferenceType()) {
1597    if (Context.typesAreCompatible(lhsType, rhsType))
1598      return Compatible;
1599    return Incompatible;
1600  }
1601
1602  if (lhsType->isObjCQualifiedIdType() || rhsType->isObjCQualifiedIdType()) {
1603    if (ObjCQualifiedIdTypesAreCompatible(lhsType, rhsType, false))
1604      return Compatible;
1605    // Relax integer conversions like we do for pointers below.
1606    if (rhsType->isIntegerType())
1607      return IntToPointer;
1608    if (lhsType->isIntegerType())
1609      return PointerToInt;
1610    return Incompatible;
1611  }
1612
1613  if (lhsType->isVectorType() || rhsType->isVectorType()) {
1614    // For ExtVector, allow vector splats; float -> <n x float>
1615    if (const ExtVectorType *LV = lhsType->getAsExtVectorType())
1616      if (LV->getElementType() == rhsType)
1617        return Compatible;
1618
1619    // If we are allowing lax vector conversions, and LHS and RHS are both
1620    // vectors, the total size only needs to be the same. This is a bitcast;
1621    // no bits are changed but the result type is different.
1622    if (getLangOptions().LaxVectorConversions &&
1623        lhsType->isVectorType() && rhsType->isVectorType()) {
1624      if (Context.getTypeSize(lhsType) == Context.getTypeSize(rhsType))
1625        return Compatible;
1626    }
1627    return Incompatible;
1628  }
1629
1630  if (lhsType->isArithmeticType() && rhsType->isArithmeticType())
1631    return Compatible;
1632
1633  if (isa<PointerType>(lhsType)) {
1634    if (rhsType->isIntegerType())
1635      return IntToPointer;
1636
1637    if (isa<PointerType>(rhsType))
1638      return CheckPointerTypesForAssignment(lhsType, rhsType);
1639
1640    if (rhsType->getAsBlockPointerType())
1641      if (lhsType->getAsPointerType()->getPointeeType()->isVoidType())
1642        return BlockVoidPointer;
1643
1644    return Incompatible;
1645  }
1646
1647  if (isa<BlockPointerType>(lhsType)) {
1648    if (rhsType->isIntegerType())
1649      return IntToPointer;
1650
1651    if (rhsType->isBlockPointerType())
1652      return CheckBlockPointerTypesForAssignment(lhsType, rhsType);
1653
1654    if (const PointerType *RHSPT = rhsType->getAsPointerType()) {
1655      if (RHSPT->getPointeeType()->isVoidType())
1656        return BlockVoidPointer;
1657    }
1658    return Incompatible;
1659  }
1660
1661  if (isa<PointerType>(rhsType)) {
1662    // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
1663    if (lhsType == Context.BoolTy)
1664      return Compatible;
1665
1666    if (lhsType->isIntegerType())
1667      return PointerToInt;
1668
1669    if (isa<PointerType>(lhsType))
1670      return CheckPointerTypesForAssignment(lhsType, rhsType);
1671
1672    if (isa<BlockPointerType>(lhsType) &&
1673        rhsType->getAsPointerType()->getPointeeType()->isVoidType())
1674      return BlockVoidPointer;
1675    return Incompatible;
1676  }
1677
1678  if (isa<TagType>(lhsType) && isa<TagType>(rhsType)) {
1679    if (Context.typesAreCompatible(lhsType, rhsType))
1680      return Compatible;
1681  }
1682  return Incompatible;
1683}
1684
1685Sema::AssignConvertType
1686Sema::CheckSingleAssignmentConstraints(QualType lhsType, Expr *&rExpr) {
1687  // C99 6.5.16.1p1: the left operand is a pointer and the right is
1688  // a null pointer constant.
1689  if ((lhsType->isPointerType() || lhsType->isObjCQualifiedIdType() ||
1690       lhsType->isBlockPointerType())
1691      && rExpr->isNullPointerConstant(Context)) {
1692    ImpCastExprToType(rExpr, lhsType);
1693    return Compatible;
1694  }
1695
1696  // We don't allow conversion of non-null-pointer constants to integers.
1697  if (lhsType->isBlockPointerType() && rExpr->getType()->isIntegerType())
1698    return IntToBlockPointer;
1699
1700  // This check seems unnatural, however it is necessary to ensure the proper
1701  // conversion of functions/arrays. If the conversion were done for all
1702  // DeclExpr's (created by ActOnIdentifierExpr), it would mess up the unary
1703  // expressions that surpress this implicit conversion (&, sizeof).
1704  //
1705  // Suppress this for references: C99 8.5.3p5.  FIXME: revisit when references
1706  // are better understood.
1707  if (!lhsType->isReferenceType())
1708    DefaultFunctionArrayConversion(rExpr);
1709
1710  Sema::AssignConvertType result =
1711    CheckAssignmentConstraints(lhsType, rExpr->getType());
1712
1713  // C99 6.5.16.1p2: The value of the right operand is converted to the
1714  // type of the assignment expression.
1715  if (rExpr->getType() != lhsType)
1716    ImpCastExprToType(rExpr, lhsType);
1717  return result;
1718}
1719
1720Sema::AssignConvertType
1721Sema::CheckCompoundAssignmentConstraints(QualType lhsType, QualType rhsType) {
1722  return CheckAssignmentConstraints(lhsType, rhsType);
1723}
1724
1725QualType Sema::InvalidOperands(SourceLocation loc, Expr *&lex, Expr *&rex) {
1726  Diag(loc, diag::err_typecheck_invalid_operands,
1727       lex->getType().getAsString(), rex->getType().getAsString(),
1728       lex->getSourceRange(), rex->getSourceRange());
1729  return QualType();
1730}
1731
1732inline QualType Sema::CheckVectorOperands(SourceLocation loc, Expr *&lex,
1733                                                              Expr *&rex) {
1734  // For conversion purposes, we ignore any qualifiers.
1735  // For example, "const float" and "float" are equivalent.
1736  QualType lhsType =
1737    Context.getCanonicalType(lex->getType()).getUnqualifiedType();
1738  QualType rhsType =
1739    Context.getCanonicalType(rex->getType()).getUnqualifiedType();
1740
1741  // If the vector types are identical, return.
1742  if (lhsType == rhsType)
1743    return lhsType;
1744
1745  // Handle the case of a vector & extvector type of the same size and element
1746  // type.  It would be nice if we only had one vector type someday.
1747  if (getLangOptions().LaxVectorConversions)
1748    if (const VectorType *LV = lhsType->getAsVectorType())
1749      if (const VectorType *RV = rhsType->getAsVectorType())
1750        if (LV->getElementType() == RV->getElementType() &&
1751            LV->getNumElements() == RV->getNumElements())
1752          return lhsType->isExtVectorType() ? lhsType : rhsType;
1753
1754  // If the lhs is an extended vector and the rhs is a scalar of the same type
1755  // or a literal, promote the rhs to the vector type.
1756  if (const ExtVectorType *V = lhsType->getAsExtVectorType()) {
1757    QualType eltType = V->getElementType();
1758
1759    if ((eltType->getAsBuiltinType() == rhsType->getAsBuiltinType()) ||
1760        (eltType->isIntegerType() && isa<IntegerLiteral>(rex)) ||
1761        (eltType->isFloatingType() && isa<FloatingLiteral>(rex))) {
1762      ImpCastExprToType(rex, lhsType);
1763      return lhsType;
1764    }
1765  }
1766
1767  // If the rhs is an extended vector and the lhs is a scalar of the same type,
1768  // promote the lhs to the vector type.
1769  if (const ExtVectorType *V = rhsType->getAsExtVectorType()) {
1770    QualType eltType = V->getElementType();
1771
1772    if ((eltType->getAsBuiltinType() == lhsType->getAsBuiltinType()) ||
1773        (eltType->isIntegerType() && isa<IntegerLiteral>(lex)) ||
1774        (eltType->isFloatingType() && isa<FloatingLiteral>(lex))) {
1775      ImpCastExprToType(lex, rhsType);
1776      return rhsType;
1777    }
1778  }
1779
1780  // You cannot convert between vector values of different size.
1781  Diag(loc, diag::err_typecheck_vector_not_convertable,
1782       lex->getType().getAsString(), rex->getType().getAsString(),
1783       lex->getSourceRange(), rex->getSourceRange());
1784  return QualType();
1785}
1786
1787inline QualType Sema::CheckMultiplyDivideOperands(
1788  Expr *&lex, Expr *&rex, SourceLocation loc, bool isCompAssign)
1789{
1790  QualType lhsType = lex->getType(), rhsType = rex->getType();
1791
1792  if (lhsType->isVectorType() || rhsType->isVectorType())
1793    return CheckVectorOperands(loc, lex, rex);
1794
1795  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
1796
1797  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
1798    return compType;
1799  return InvalidOperands(loc, lex, rex);
1800}
1801
1802inline QualType Sema::CheckRemainderOperands(
1803  Expr *&lex, Expr *&rex, SourceLocation loc, bool isCompAssign)
1804{
1805  QualType lhsType = lex->getType(), rhsType = rex->getType();
1806
1807  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
1808
1809  if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
1810    return compType;
1811  return InvalidOperands(loc, lex, rex);
1812}
1813
1814inline QualType Sema::CheckAdditionOperands( // C99 6.5.6
1815  Expr *&lex, Expr *&rex, SourceLocation loc, bool isCompAssign)
1816{
1817  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
1818    return CheckVectorOperands(loc, lex, rex);
1819
1820  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
1821
1822  // handle the common case first (both operands are arithmetic).
1823  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
1824    return compType;
1825
1826  // Put any potential pointer into PExp
1827  Expr* PExp = lex, *IExp = rex;
1828  if (IExp->getType()->isPointerType())
1829    std::swap(PExp, IExp);
1830
1831  if (const PointerType* PTy = PExp->getType()->getAsPointerType()) {
1832    if (IExp->getType()->isIntegerType()) {
1833      // Check for arithmetic on pointers to incomplete types
1834      if (!PTy->getPointeeType()->isObjectType()) {
1835        if (PTy->getPointeeType()->isVoidType()) {
1836          Diag(loc, diag::ext_gnu_void_ptr,
1837               lex->getSourceRange(), rex->getSourceRange());
1838        } else {
1839          Diag(loc, diag::err_typecheck_arithmetic_incomplete_type,
1840               lex->getType().getAsString(), lex->getSourceRange());
1841          return QualType();
1842        }
1843      }
1844      return PExp->getType();
1845    }
1846  }
1847
1848  return InvalidOperands(loc, lex, rex);
1849}
1850
1851// C99 6.5.6
1852QualType Sema::CheckSubtractionOperands(Expr *&lex, Expr *&rex,
1853                                        SourceLocation loc, bool isCompAssign) {
1854  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
1855    return CheckVectorOperands(loc, lex, rex);
1856
1857  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
1858
1859  // Enforce type constraints: C99 6.5.6p3.
1860
1861  // Handle the common case first (both operands are arithmetic).
1862  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
1863    return compType;
1864
1865  // Either ptr - int   or   ptr - ptr.
1866  if (const PointerType *LHSPTy = lex->getType()->getAsPointerType()) {
1867    QualType lpointee = LHSPTy->getPointeeType();
1868
1869    // The LHS must be an object type, not incomplete, function, etc.
1870    if (!lpointee->isObjectType()) {
1871      // Handle the GNU void* extension.
1872      if (lpointee->isVoidType()) {
1873        Diag(loc, diag::ext_gnu_void_ptr,
1874             lex->getSourceRange(), rex->getSourceRange());
1875      } else {
1876        Diag(loc, diag::err_typecheck_sub_ptr_object,
1877             lex->getType().getAsString(), lex->getSourceRange());
1878        return QualType();
1879      }
1880    }
1881
1882    // The result type of a pointer-int computation is the pointer type.
1883    if (rex->getType()->isIntegerType())
1884      return lex->getType();
1885
1886    // Handle pointer-pointer subtractions.
1887    if (const PointerType *RHSPTy = rex->getType()->getAsPointerType()) {
1888      QualType rpointee = RHSPTy->getPointeeType();
1889
1890      // RHS must be an object type, unless void (GNU).
1891      if (!rpointee->isObjectType()) {
1892        // Handle the GNU void* extension.
1893        if (rpointee->isVoidType()) {
1894          if (!lpointee->isVoidType())
1895            Diag(loc, diag::ext_gnu_void_ptr,
1896                 lex->getSourceRange(), rex->getSourceRange());
1897        } else {
1898          Diag(loc, diag::err_typecheck_sub_ptr_object,
1899               rex->getType().getAsString(), rex->getSourceRange());
1900          return QualType();
1901        }
1902      }
1903
1904      // Pointee types must be compatible.
1905      if (!Context.typesAreCompatible(
1906              Context.getCanonicalType(lpointee).getUnqualifiedType(),
1907              Context.getCanonicalType(rpointee).getUnqualifiedType())) {
1908        Diag(loc, diag::err_typecheck_sub_ptr_compatible,
1909             lex->getType().getAsString(), rex->getType().getAsString(),
1910             lex->getSourceRange(), rex->getSourceRange());
1911        return QualType();
1912      }
1913
1914      return Context.getPointerDiffType();
1915    }
1916  }
1917
1918  return InvalidOperands(loc, lex, rex);
1919}
1920
1921// C99 6.5.7
1922QualType Sema::CheckShiftOperands(Expr *&lex, Expr *&rex, SourceLocation loc,
1923                                  bool isCompAssign) {
1924  // C99 6.5.7p2: Each of the operands shall have integer type.
1925  if (!lex->getType()->isIntegerType() || !rex->getType()->isIntegerType())
1926    return InvalidOperands(loc, lex, rex);
1927
1928  // Shifts don't perform usual arithmetic conversions, they just do integer
1929  // promotions on each operand. C99 6.5.7p3
1930  if (!isCompAssign)
1931    UsualUnaryConversions(lex);
1932  UsualUnaryConversions(rex);
1933
1934  // "The type of the result is that of the promoted left operand."
1935  return lex->getType();
1936}
1937
1938static bool areComparableObjCInterfaces(QualType LHS, QualType RHS,
1939                                        ASTContext& Context) {
1940  const ObjCInterfaceType* LHSIface = LHS->getAsObjCInterfaceType();
1941  const ObjCInterfaceType* RHSIface = RHS->getAsObjCInterfaceType();
1942  // ID acts sort of like void* for ObjC interfaces
1943  if (LHSIface && Context.isObjCIdType(RHS))
1944    return true;
1945  if (RHSIface && Context.isObjCIdType(LHS))
1946    return true;
1947  if (!LHSIface || !RHSIface)
1948    return false;
1949  return Context.canAssignObjCInterfaces(LHSIface, RHSIface) ||
1950         Context.canAssignObjCInterfaces(RHSIface, LHSIface);
1951}
1952
1953// C99 6.5.8
1954QualType Sema::CheckCompareOperands(Expr *&lex, Expr *&rex, SourceLocation loc,
1955                                    bool isRelational) {
1956  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
1957    return CheckVectorCompareOperands(lex, rex, loc, isRelational);
1958
1959  // C99 6.5.8p3 / C99 6.5.9p4
1960  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
1961    UsualArithmeticConversions(lex, rex);
1962  else {
1963    UsualUnaryConversions(lex);
1964    UsualUnaryConversions(rex);
1965  }
1966  QualType lType = lex->getType();
1967  QualType rType = rex->getType();
1968
1969  // For non-floating point types, check for self-comparisons of the form
1970  // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
1971  // often indicate logic errors in the program.
1972  if (!lType->isFloatingType()) {
1973    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens()))
1974      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens()))
1975        if (DRL->getDecl() == DRR->getDecl())
1976          Diag(loc, diag::warn_selfcomparison);
1977  }
1978
1979  if (isRelational) {
1980    if (lType->isRealType() && rType->isRealType())
1981      return Context.IntTy;
1982  } else {
1983    // Check for comparisons of floating point operands using != and ==.
1984    if (lType->isFloatingType()) {
1985      assert (rType->isFloatingType());
1986      CheckFloatComparison(loc,lex,rex);
1987    }
1988
1989    if (lType->isArithmeticType() && rType->isArithmeticType())
1990      return Context.IntTy;
1991  }
1992
1993  bool LHSIsNull = lex->isNullPointerConstant(Context);
1994  bool RHSIsNull = rex->isNullPointerConstant(Context);
1995
1996  // All of the following pointer related warnings are GCC extensions, except
1997  // when handling null pointer constants. One day, we can consider making them
1998  // errors (when -pedantic-errors is enabled).
1999  if (lType->isPointerType() && rType->isPointerType()) { // C99 6.5.8p2
2000    QualType LCanPointeeTy =
2001      Context.getCanonicalType(lType->getAsPointerType()->getPointeeType());
2002    QualType RCanPointeeTy =
2003      Context.getCanonicalType(rType->getAsPointerType()->getPointeeType());
2004
2005    if (!LHSIsNull && !RHSIsNull &&                       // C99 6.5.9p2
2006        !LCanPointeeTy->isVoidType() && !RCanPointeeTy->isVoidType() &&
2007        !Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
2008                                    RCanPointeeTy.getUnqualifiedType()) &&
2009        !areComparableObjCInterfaces(LCanPointeeTy, RCanPointeeTy, Context)) {
2010      Diag(loc, diag::ext_typecheck_comparison_of_distinct_pointers,
2011           lType.getAsString(), rType.getAsString(),
2012           lex->getSourceRange(), rex->getSourceRange());
2013    }
2014    ImpCastExprToType(rex, lType); // promote the pointer to pointer
2015    return Context.IntTy;
2016  }
2017  // Handle block pointer types.
2018  if (lType->isBlockPointerType() && rType->isBlockPointerType()) {
2019    QualType lpointee = lType->getAsBlockPointerType()->getPointeeType();
2020    QualType rpointee = rType->getAsBlockPointerType()->getPointeeType();
2021
2022    if (!LHSIsNull && !RHSIsNull &&
2023        !Context.typesAreBlockCompatible(lpointee, rpointee)) {
2024      Diag(loc, diag::err_typecheck_comparison_of_distinct_blocks,
2025           lType.getAsString(), rType.getAsString(),
2026           lex->getSourceRange(), rex->getSourceRange());
2027    }
2028    ImpCastExprToType(rex, lType); // promote the pointer to pointer
2029    return Context.IntTy;
2030  }
2031
2032  if ((lType->isObjCQualifiedIdType() || rType->isObjCQualifiedIdType())) {
2033    if (ObjCQualifiedIdTypesAreCompatible(lType, rType, true)) {
2034      ImpCastExprToType(rex, lType);
2035      return Context.IntTy;
2036    }
2037  }
2038  if ((lType->isPointerType() || lType->isObjCQualifiedIdType()) &&
2039       rType->isIntegerType()) {
2040    if (!RHSIsNull)
2041      Diag(loc, diag::ext_typecheck_comparison_of_pointer_integer,
2042           lType.getAsString(), rType.getAsString(),
2043           lex->getSourceRange(), rex->getSourceRange());
2044    ImpCastExprToType(rex, lType); // promote the integer to pointer
2045    return Context.IntTy;
2046  }
2047  if (lType->isIntegerType() &&
2048      (rType->isPointerType() || rType->isObjCQualifiedIdType())) {
2049    if (!LHSIsNull)
2050      Diag(loc, diag::ext_typecheck_comparison_of_pointer_integer,
2051           lType.getAsString(), rType.getAsString(),
2052           lex->getSourceRange(), rex->getSourceRange());
2053    ImpCastExprToType(lex, rType); // promote the integer to pointer
2054    return Context.IntTy;
2055  }
2056  // Handle block pointers.
2057  if (lType->isBlockPointerType() && rType->isIntegerType()) {
2058    if (!RHSIsNull)
2059      Diag(loc, diag::ext_typecheck_comparison_of_pointer_integer,
2060           lType.getAsString(), rType.getAsString(),
2061           lex->getSourceRange(), rex->getSourceRange());
2062    ImpCastExprToType(rex, lType); // promote the integer to pointer
2063    return Context.IntTy;
2064  }
2065  if (lType->isIntegerType() && rType->isBlockPointerType()) {
2066    if (!LHSIsNull)
2067      Diag(loc, diag::ext_typecheck_comparison_of_pointer_integer,
2068           lType.getAsString(), rType.getAsString(),
2069           lex->getSourceRange(), rex->getSourceRange());
2070    ImpCastExprToType(lex, rType); // promote the integer to pointer
2071    return Context.IntTy;
2072  }
2073  return InvalidOperands(loc, lex, rex);
2074}
2075
2076/// CheckVectorCompareOperands - vector comparisons are a clang extension that
2077/// operates on extended vector types.  Instead of producing an IntTy result,
2078/// like a scalar comparison, a vector comparison produces a vector of integer
2079/// types.
2080QualType Sema::CheckVectorCompareOperands(Expr *&lex, Expr *&rex,
2081                                          SourceLocation loc,
2082                                          bool isRelational) {
2083  // Check to make sure we're operating on vectors of the same type and width,
2084  // Allowing one side to be a scalar of element type.
2085  QualType vType = CheckVectorOperands(loc, lex, rex);
2086  if (vType.isNull())
2087    return vType;
2088
2089  QualType lType = lex->getType();
2090  QualType rType = rex->getType();
2091
2092  // For non-floating point types, check for self-comparisons of the form
2093  // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
2094  // often indicate logic errors in the program.
2095  if (!lType->isFloatingType()) {
2096    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens()))
2097      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens()))
2098        if (DRL->getDecl() == DRR->getDecl())
2099          Diag(loc, diag::warn_selfcomparison);
2100  }
2101
2102  // Check for comparisons of floating point operands using != and ==.
2103  if (!isRelational && lType->isFloatingType()) {
2104    assert (rType->isFloatingType());
2105    CheckFloatComparison(loc,lex,rex);
2106  }
2107
2108  // Return the type for the comparison, which is the same as vector type for
2109  // integer vectors, or an integer type of identical size and number of
2110  // elements for floating point vectors.
2111  if (lType->isIntegerType())
2112    return lType;
2113
2114  const VectorType *VTy = lType->getAsVectorType();
2115
2116  // FIXME: need to deal with non-32b int / non-64b long long
2117  unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
2118  if (TypeSize == 32) {
2119    return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
2120  }
2121  assert(TypeSize == 64 && "Unhandled vector element size in vector compare");
2122  return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
2123}
2124
2125inline QualType Sema::CheckBitwiseOperands(
2126  Expr *&lex, Expr *&rex, SourceLocation loc, bool isCompAssign)
2127{
2128  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
2129    return CheckVectorOperands(loc, lex, rex);
2130
2131  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
2132
2133  if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
2134    return compType;
2135  return InvalidOperands(loc, lex, rex);
2136}
2137
2138inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
2139  Expr *&lex, Expr *&rex, SourceLocation loc)
2140{
2141  UsualUnaryConversions(lex);
2142  UsualUnaryConversions(rex);
2143
2144  if (lex->getType()->isScalarType() && rex->getType()->isScalarType())
2145    return Context.IntTy;
2146  return InvalidOperands(loc, lex, rex);
2147}
2148
2149inline QualType Sema::CheckAssignmentOperands( // C99 6.5.16.1
2150  Expr *lex, Expr *&rex, SourceLocation loc, QualType compoundType)
2151{
2152  QualType lhsType = lex->getType();
2153  QualType rhsType = compoundType.isNull() ? rex->getType() : compoundType;
2154  Expr::isModifiableLvalueResult mlval = lex->isModifiableLvalue(Context);
2155
2156  switch (mlval) { // C99 6.5.16p2
2157  case Expr::MLV_Valid:
2158    break;
2159  case Expr::MLV_ConstQualified:
2160    Diag(loc, diag::err_typecheck_assign_const, lex->getSourceRange());
2161    return QualType();
2162  case Expr::MLV_ArrayType:
2163    Diag(loc, diag::err_typecheck_array_not_modifiable_lvalue,
2164         lhsType.getAsString(), lex->getSourceRange());
2165    return QualType();
2166  case Expr::MLV_NotObjectType:
2167    Diag(loc, diag::err_typecheck_non_object_not_modifiable_lvalue,
2168         lhsType.getAsString(), lex->getSourceRange());
2169    return QualType();
2170  case Expr::MLV_InvalidExpression:
2171    Diag(loc, diag::err_typecheck_expression_not_modifiable_lvalue,
2172         lex->getSourceRange());
2173    return QualType();
2174  case Expr::MLV_IncompleteType:
2175  case Expr::MLV_IncompleteVoidType:
2176    Diag(loc, diag::err_typecheck_incomplete_type_not_modifiable_lvalue,
2177         lhsType.getAsString(), lex->getSourceRange());
2178    return QualType();
2179  case Expr::MLV_DuplicateVectorComponents:
2180    Diag(loc, diag::err_typecheck_duplicate_vector_components_not_mlvalue,
2181         lex->getSourceRange());
2182    return QualType();
2183  }
2184
2185  AssignConvertType ConvTy;
2186  if (compoundType.isNull()) {
2187    // Simple assignment "x = y".
2188    ConvTy = CheckSingleAssignmentConstraints(lhsType, rex);
2189
2190    // If the RHS is a unary plus or minus, check to see if they = and + are
2191    // right next to each other.  If so, the user may have typo'd "x =+ 4"
2192    // instead of "x += 4".
2193    Expr *RHSCheck = rex;
2194    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
2195      RHSCheck = ICE->getSubExpr();
2196    if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
2197      if ((UO->getOpcode() == UnaryOperator::Plus ||
2198           UO->getOpcode() == UnaryOperator::Minus) &&
2199          loc.isFileID() && UO->getOperatorLoc().isFileID() &&
2200          // Only if the two operators are exactly adjacent.
2201          loc.getFileLocWithOffset(1) == UO->getOperatorLoc())
2202        Diag(loc, diag::warn_not_compound_assign,
2203             UO->getOpcode() == UnaryOperator::Plus ? "+" : "-",
2204             SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc()));
2205    }
2206  } else {
2207    // Compound assignment "x += y"
2208    ConvTy = CheckCompoundAssignmentConstraints(lhsType, rhsType);
2209  }
2210
2211  if (DiagnoseAssignmentResult(ConvTy, loc, lhsType, rhsType,
2212                               rex, "assigning"))
2213    return QualType();
2214
2215  // C99 6.5.16p3: The type of an assignment expression is the type of the
2216  // left operand unless the left operand has qualified type, in which case
2217  // it is the unqualified version of the type of the left operand.
2218  // C99 6.5.16.1p2: In simple assignment, the value of the right operand
2219  // is converted to the type of the assignment expression (above).
2220  // C++ 5.17p1: the type of the assignment expression is that of its left
2221  // oprdu.
2222  return lhsType.getUnqualifiedType();
2223}
2224
2225inline QualType Sema::CheckCommaOperands( // C99 6.5.17
2226  Expr *&lex, Expr *&rex, SourceLocation loc) {
2227
2228  // Comma performs lvalue conversion (C99 6.3.2.1), but not unary conversions.
2229  DefaultFunctionArrayConversion(rex);
2230  return rex->getType();
2231}
2232
2233/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
2234/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
2235QualType Sema::CheckIncrementDecrementOperand(Expr *op, SourceLocation OpLoc) {
2236  QualType resType = op->getType();
2237  assert(!resType.isNull() && "no type for increment/decrement expression");
2238
2239  // C99 6.5.2.4p1: We allow complex as a GCC extension.
2240  if (const PointerType *pt = resType->getAsPointerType()) {
2241    if (pt->getPointeeType()->isVoidType()) {
2242      Diag(OpLoc, diag::ext_gnu_void_ptr, op->getSourceRange());
2243    } else if (!pt->getPointeeType()->isObjectType()) {
2244      // C99 6.5.2.4p2, 6.5.6p2
2245      Diag(OpLoc, diag::err_typecheck_arithmetic_incomplete_type,
2246           resType.getAsString(), op->getSourceRange());
2247      return QualType();
2248    }
2249  } else if (!resType->isRealType()) {
2250    if (resType->isComplexType())
2251      // C99 does not support ++/-- on complex types.
2252      Diag(OpLoc, diag::ext_integer_increment_complex,
2253           resType.getAsString(), op->getSourceRange());
2254    else {
2255      Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement,
2256           resType.getAsString(), op->getSourceRange());
2257      return QualType();
2258    }
2259  }
2260  // At this point, we know we have a real, complex or pointer type.
2261  // Now make sure the operand is a modifiable lvalue.
2262  Expr::isModifiableLvalueResult mlval = op->isModifiableLvalue(Context);
2263  if (mlval != Expr::MLV_Valid) {
2264    // FIXME: emit a more precise diagnostic...
2265    Diag(OpLoc, diag::err_typecheck_invalid_lvalue_incr_decr,
2266         op->getSourceRange());
2267    return QualType();
2268  }
2269  return resType;
2270}
2271
2272/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
2273/// This routine allows us to typecheck complex/recursive expressions
2274/// where the declaration is needed for type checking. We only need to
2275/// handle cases when the expression references a function designator
2276/// or is an lvalue. Here are some examples:
2277///  - &(x) => x
2278///  - &*****f => f for f a function designator.
2279///  - &s.xx => s
2280///  - &s.zz[1].yy -> s, if zz is an array
2281///  - *(x + 1) -> x, if x is an array
2282///  - &"123"[2] -> 0
2283///  - & __real__ x -> x
2284static ValueDecl *getPrimaryDecl(Expr *E) {
2285  switch (E->getStmtClass()) {
2286  case Stmt::DeclRefExprClass:
2287    return cast<DeclRefExpr>(E)->getDecl();
2288  case Stmt::MemberExprClass:
2289    // Fields cannot be declared with a 'register' storage class.
2290    // &X->f is always ok, even if X is declared register.
2291    if (cast<MemberExpr>(E)->isArrow())
2292      return 0;
2293    return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
2294  case Stmt::ArraySubscriptExprClass: {
2295    // &X[4] and &4[X] refers to X if X is not a pointer.
2296
2297    ValueDecl *VD = getPrimaryDecl(cast<ArraySubscriptExpr>(E)->getBase());
2298    if (!VD || VD->getType()->isPointerType())
2299      return 0;
2300    else
2301      return VD;
2302  }
2303  case Stmt::UnaryOperatorClass: {
2304    UnaryOperator *UO = cast<UnaryOperator>(E);
2305
2306    switch(UO->getOpcode()) {
2307    case UnaryOperator::Deref: {
2308      // *(X + 1) refers to X if X is not a pointer.
2309      ValueDecl *VD = getPrimaryDecl(UO->getSubExpr());
2310      if (!VD || VD->getType()->isPointerType())
2311        return 0;
2312      return VD;
2313    }
2314    case UnaryOperator::Real:
2315    case UnaryOperator::Imag:
2316    case UnaryOperator::Extension:
2317      return getPrimaryDecl(UO->getSubExpr());
2318    default:
2319      return 0;
2320    }
2321  }
2322  case Stmt::BinaryOperatorClass: {
2323    BinaryOperator *BO = cast<BinaryOperator>(E);
2324
2325    // Handle cases involving pointer arithmetic. The result of an
2326    // Assign or AddAssign is not an lvalue so they can be ignored.
2327
2328    // (x + n) or (n + x) => x
2329    if (BO->getOpcode() == BinaryOperator::Add) {
2330      if (BO->getLHS()->getType()->isPointerType()) {
2331        return getPrimaryDecl(BO->getLHS());
2332      } else if (BO->getRHS()->getType()->isPointerType()) {
2333        return getPrimaryDecl(BO->getRHS());
2334      }
2335    }
2336
2337    return 0;
2338  }
2339  case Stmt::ParenExprClass:
2340    return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
2341  case Stmt::ImplicitCastExprClass:
2342    // &X[4] when X is an array, has an implicit cast from array to pointer.
2343    return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
2344  default:
2345    return 0;
2346  }
2347}
2348
2349/// CheckAddressOfOperand - The operand of & must be either a function
2350/// designator or an lvalue designating an object. If it is an lvalue, the
2351/// object cannot be declared with storage class register or be a bit field.
2352/// Note: The usual conversions are *not* applied to the operand of the &
2353/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
2354QualType Sema::CheckAddressOfOperand(Expr *op, SourceLocation OpLoc) {
2355  if (getLangOptions().C99) {
2356    // Implement C99-only parts of addressof rules.
2357    if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
2358      if (uOp->getOpcode() == UnaryOperator::Deref)
2359        // Per C99 6.5.3.2, the address of a deref always returns a valid result
2360        // (assuming the deref expression is valid).
2361        return uOp->getSubExpr()->getType();
2362    }
2363    // Technically, there should be a check for array subscript
2364    // expressions here, but the result of one is always an lvalue anyway.
2365  }
2366  ValueDecl *dcl = getPrimaryDecl(op);
2367  Expr::isLvalueResult lval = op->isLvalue(Context);
2368
2369  if (lval != Expr::LV_Valid) { // C99 6.5.3.2p1
2370    if (!dcl || !isa<FunctionDecl>(dcl)) {// allow function designators
2371      // FIXME: emit more specific diag...
2372      Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof,
2373           op->getSourceRange());
2374      return QualType();
2375    }
2376  } else if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(op)) { // C99 6.5.3.2p1
2377    if (MemExpr->getMemberDecl()->isBitField()) {
2378      Diag(OpLoc, diag::err_typecheck_address_of,
2379           std::string("bit-field"), op->getSourceRange());
2380      return QualType();
2381    }
2382  // Check for Apple extension for accessing vector components.
2383  } else if (isa<ArraySubscriptExpr>(op) &&
2384           cast<ArraySubscriptExpr>(op)->getBase()->getType()->isVectorType()) {
2385    Diag(OpLoc, diag::err_typecheck_address_of,
2386         std::string("vector"), op->getSourceRange());
2387    return QualType();
2388  } else if (dcl) { // C99 6.5.3.2p1
2389    // We have an lvalue with a decl. Make sure the decl is not declared
2390    // with the register storage-class specifier.
2391    if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
2392      if (vd->getStorageClass() == VarDecl::Register) {
2393        Diag(OpLoc, diag::err_typecheck_address_of,
2394             std::string("register variable"), op->getSourceRange());
2395        return QualType();
2396      }
2397    } else
2398      assert(0 && "Unknown/unexpected decl type");
2399  }
2400
2401  // If the operand has type "type", the result has type "pointer to type".
2402  return Context.getPointerType(op->getType());
2403}
2404
2405QualType Sema::CheckIndirectionOperand(Expr *op, SourceLocation OpLoc) {
2406  UsualUnaryConversions(op);
2407  QualType qType = op->getType();
2408
2409  if (const PointerType *PT = qType->getAsPointerType()) {
2410    // Note that per both C89 and C99, this is always legal, even
2411    // if ptype is an incomplete type or void.
2412    // It would be possible to warn about dereferencing a
2413    // void pointer, but it's completely well-defined,
2414    // and such a warning is unlikely to catch any mistakes.
2415    return PT->getPointeeType();
2416  }
2417  Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer,
2418       qType.getAsString(), op->getSourceRange());
2419  return QualType();
2420}
2421
2422static inline BinaryOperator::Opcode ConvertTokenKindToBinaryOpcode(
2423  tok::TokenKind Kind) {
2424  BinaryOperator::Opcode Opc;
2425  switch (Kind) {
2426  default: assert(0 && "Unknown binop!");
2427  case tok::star:                 Opc = BinaryOperator::Mul; break;
2428  case tok::slash:                Opc = BinaryOperator::Div; break;
2429  case tok::percent:              Opc = BinaryOperator::Rem; break;
2430  case tok::plus:                 Opc = BinaryOperator::Add; break;
2431  case tok::minus:                Opc = BinaryOperator::Sub; break;
2432  case tok::lessless:             Opc = BinaryOperator::Shl; break;
2433  case tok::greatergreater:       Opc = BinaryOperator::Shr; break;
2434  case tok::lessequal:            Opc = BinaryOperator::LE; break;
2435  case tok::less:                 Opc = BinaryOperator::LT; break;
2436  case tok::greaterequal:         Opc = BinaryOperator::GE; break;
2437  case tok::greater:              Opc = BinaryOperator::GT; break;
2438  case tok::exclaimequal:         Opc = BinaryOperator::NE; break;
2439  case tok::equalequal:           Opc = BinaryOperator::EQ; break;
2440  case tok::amp:                  Opc = BinaryOperator::And; break;
2441  case tok::caret:                Opc = BinaryOperator::Xor; break;
2442  case tok::pipe:                 Opc = BinaryOperator::Or; break;
2443  case tok::ampamp:               Opc = BinaryOperator::LAnd; break;
2444  case tok::pipepipe:             Opc = BinaryOperator::LOr; break;
2445  case tok::equal:                Opc = BinaryOperator::Assign; break;
2446  case tok::starequal:            Opc = BinaryOperator::MulAssign; break;
2447  case tok::slashequal:           Opc = BinaryOperator::DivAssign; break;
2448  case tok::percentequal:         Opc = BinaryOperator::RemAssign; break;
2449  case tok::plusequal:            Opc = BinaryOperator::AddAssign; break;
2450  case tok::minusequal:           Opc = BinaryOperator::SubAssign; break;
2451  case tok::lesslessequal:        Opc = BinaryOperator::ShlAssign; break;
2452  case tok::greatergreaterequal:  Opc = BinaryOperator::ShrAssign; break;
2453  case tok::ampequal:             Opc = BinaryOperator::AndAssign; break;
2454  case tok::caretequal:           Opc = BinaryOperator::XorAssign; break;
2455  case tok::pipeequal:            Opc = BinaryOperator::OrAssign; break;
2456  case tok::comma:                Opc = BinaryOperator::Comma; break;
2457  }
2458  return Opc;
2459}
2460
2461static inline UnaryOperator::Opcode ConvertTokenKindToUnaryOpcode(
2462  tok::TokenKind Kind) {
2463  UnaryOperator::Opcode Opc;
2464  switch (Kind) {
2465  default: assert(0 && "Unknown unary op!");
2466  case tok::plusplus:     Opc = UnaryOperator::PreInc; break;
2467  case tok::minusminus:   Opc = UnaryOperator::PreDec; break;
2468  case tok::amp:          Opc = UnaryOperator::AddrOf; break;
2469  case tok::star:         Opc = UnaryOperator::Deref; break;
2470  case tok::plus:         Opc = UnaryOperator::Plus; break;
2471  case tok::minus:        Opc = UnaryOperator::Minus; break;
2472  case tok::tilde:        Opc = UnaryOperator::Not; break;
2473  case tok::exclaim:      Opc = UnaryOperator::LNot; break;
2474  case tok::kw_sizeof:    Opc = UnaryOperator::SizeOf; break;
2475  case tok::kw___alignof: Opc = UnaryOperator::AlignOf; break;
2476  case tok::kw___real:    Opc = UnaryOperator::Real; break;
2477  case tok::kw___imag:    Opc = UnaryOperator::Imag; break;
2478  case tok::kw___extension__: Opc = UnaryOperator::Extension; break;
2479  }
2480  return Opc;
2481}
2482
2483// Binary Operators.  'Tok' is the token for the operator.
2484Action::ExprResult Sema::ActOnBinOp(SourceLocation TokLoc, tok::TokenKind Kind,
2485                                    ExprTy *LHS, ExprTy *RHS) {
2486  BinaryOperator::Opcode Opc = ConvertTokenKindToBinaryOpcode(Kind);
2487  Expr *lhs = (Expr *)LHS, *rhs = (Expr*)RHS;
2488
2489  assert((lhs != 0) && "ActOnBinOp(): missing left expression");
2490  assert((rhs != 0) && "ActOnBinOp(): missing right expression");
2491
2492  QualType ResultTy;  // Result type of the binary operator.
2493  QualType CompTy;    // Computation type for compound assignments (e.g. '+=')
2494
2495  switch (Opc) {
2496  default:
2497    assert(0 && "Unknown binary expr!");
2498  case BinaryOperator::Assign:
2499    ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, QualType());
2500    break;
2501  case BinaryOperator::Mul:
2502  case BinaryOperator::Div:
2503    ResultTy = CheckMultiplyDivideOperands(lhs, rhs, TokLoc);
2504    break;
2505  case BinaryOperator::Rem:
2506    ResultTy = CheckRemainderOperands(lhs, rhs, TokLoc);
2507    break;
2508  case BinaryOperator::Add:
2509    ResultTy = CheckAdditionOperands(lhs, rhs, TokLoc);
2510    break;
2511  case BinaryOperator::Sub:
2512    ResultTy = CheckSubtractionOperands(lhs, rhs, TokLoc);
2513    break;
2514  case BinaryOperator::Shl:
2515  case BinaryOperator::Shr:
2516    ResultTy = CheckShiftOperands(lhs, rhs, TokLoc);
2517    break;
2518  case BinaryOperator::LE:
2519  case BinaryOperator::LT:
2520  case BinaryOperator::GE:
2521  case BinaryOperator::GT:
2522    ResultTy = CheckCompareOperands(lhs, rhs, TokLoc, true);
2523    break;
2524  case BinaryOperator::EQ:
2525  case BinaryOperator::NE:
2526    ResultTy = CheckCompareOperands(lhs, rhs, TokLoc, false);
2527    break;
2528  case BinaryOperator::And:
2529  case BinaryOperator::Xor:
2530  case BinaryOperator::Or:
2531    ResultTy = CheckBitwiseOperands(lhs, rhs, TokLoc);
2532    break;
2533  case BinaryOperator::LAnd:
2534  case BinaryOperator::LOr:
2535    ResultTy = CheckLogicalOperands(lhs, rhs, TokLoc);
2536    break;
2537  case BinaryOperator::MulAssign:
2538  case BinaryOperator::DivAssign:
2539    CompTy = CheckMultiplyDivideOperands(lhs, rhs, TokLoc, true);
2540    if (!CompTy.isNull())
2541      ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
2542    break;
2543  case BinaryOperator::RemAssign:
2544    CompTy = CheckRemainderOperands(lhs, rhs, TokLoc, true);
2545    if (!CompTy.isNull())
2546      ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
2547    break;
2548  case BinaryOperator::AddAssign:
2549    CompTy = CheckAdditionOperands(lhs, rhs, TokLoc, true);
2550    if (!CompTy.isNull())
2551      ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
2552    break;
2553  case BinaryOperator::SubAssign:
2554    CompTy = CheckSubtractionOperands(lhs, rhs, TokLoc, true);
2555    if (!CompTy.isNull())
2556      ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
2557    break;
2558  case BinaryOperator::ShlAssign:
2559  case BinaryOperator::ShrAssign:
2560    CompTy = CheckShiftOperands(lhs, rhs, TokLoc, true);
2561    if (!CompTy.isNull())
2562      ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
2563    break;
2564  case BinaryOperator::AndAssign:
2565  case BinaryOperator::XorAssign:
2566  case BinaryOperator::OrAssign:
2567    CompTy = CheckBitwiseOperands(lhs, rhs, TokLoc, true);
2568    if (!CompTy.isNull())
2569      ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
2570    break;
2571  case BinaryOperator::Comma:
2572    ResultTy = CheckCommaOperands(lhs, rhs, TokLoc);
2573    break;
2574  }
2575  if (ResultTy.isNull())
2576    return true;
2577  if (CompTy.isNull())
2578    return new BinaryOperator(lhs, rhs, Opc, ResultTy, TokLoc);
2579  else
2580    return new CompoundAssignOperator(lhs, rhs, Opc, ResultTy, CompTy, TokLoc);
2581}
2582
2583// Unary Operators.  'Tok' is the token for the operator.
2584Action::ExprResult Sema::ActOnUnaryOp(SourceLocation OpLoc, tok::TokenKind Op,
2585                                      ExprTy *input) {
2586  Expr *Input = (Expr*)input;
2587  UnaryOperator::Opcode Opc = ConvertTokenKindToUnaryOpcode(Op);
2588  QualType resultType;
2589  switch (Opc) {
2590  default:
2591    assert(0 && "Unimplemented unary expr!");
2592  case UnaryOperator::PreInc:
2593  case UnaryOperator::PreDec:
2594    resultType = CheckIncrementDecrementOperand(Input, OpLoc);
2595    break;
2596  case UnaryOperator::AddrOf:
2597    resultType = CheckAddressOfOperand(Input, OpLoc);
2598    break;
2599  case UnaryOperator::Deref:
2600    DefaultFunctionArrayConversion(Input);
2601    resultType = CheckIndirectionOperand(Input, OpLoc);
2602    break;
2603  case UnaryOperator::Plus:
2604  case UnaryOperator::Minus:
2605    UsualUnaryConversions(Input);
2606    resultType = Input->getType();
2607    if (!resultType->isArithmeticType())  // C99 6.5.3.3p1
2608      return Diag(OpLoc, diag::err_typecheck_unary_expr,
2609                  resultType.getAsString());
2610    break;
2611  case UnaryOperator::Not: // bitwise complement
2612    UsualUnaryConversions(Input);
2613    resultType = Input->getType();
2614    // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
2615    if (resultType->isComplexType() || resultType->isComplexIntegerType())
2616      // C99 does not support '~' for complex conjugation.
2617      Diag(OpLoc, diag::ext_integer_complement_complex,
2618           resultType.getAsString(), Input->getSourceRange());
2619    else if (!resultType->isIntegerType())
2620      return Diag(OpLoc, diag::err_typecheck_unary_expr,
2621                  resultType.getAsString(), Input->getSourceRange());
2622    break;
2623  case UnaryOperator::LNot: // logical negation
2624    // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
2625    DefaultFunctionArrayConversion(Input);
2626    resultType = Input->getType();
2627    if (!resultType->isScalarType()) // C99 6.5.3.3p1
2628      return Diag(OpLoc, diag::err_typecheck_unary_expr,
2629                  resultType.getAsString());
2630    // LNot always has type int. C99 6.5.3.3p5.
2631    resultType = Context.IntTy;
2632    break;
2633  case UnaryOperator::SizeOf:
2634    resultType = CheckSizeOfAlignOfOperand(Input->getType(), OpLoc,
2635                                           Input->getSourceRange(), true);
2636    break;
2637  case UnaryOperator::AlignOf:
2638    resultType = CheckSizeOfAlignOfOperand(Input->getType(), OpLoc,
2639                                           Input->getSourceRange(), false);
2640    break;
2641  case UnaryOperator::Real:
2642  case UnaryOperator::Imag:
2643    resultType = CheckRealImagOperand(Input, OpLoc);
2644    break;
2645  case UnaryOperator::Extension:
2646    resultType = Input->getType();
2647    break;
2648  }
2649  if (resultType.isNull())
2650    return true;
2651  return new UnaryOperator(Input, Opc, resultType, OpLoc);
2652}
2653
2654/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
2655Sema::ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc,
2656                                      SourceLocation LabLoc,
2657                                      IdentifierInfo *LabelII) {
2658  // Look up the record for this label identifier.
2659  LabelStmt *&LabelDecl = LabelMap[LabelII];
2660
2661  // If we haven't seen this label yet, create a forward reference. It
2662  // will be validated and/or cleaned up in ActOnFinishFunctionBody.
2663  if (LabelDecl == 0)
2664    LabelDecl = new LabelStmt(LabLoc, LabelII, 0);
2665
2666  // Create the AST node.  The address of a label always has type 'void*'.
2667  return new AddrLabelExpr(OpLoc, LabLoc, LabelDecl,
2668                           Context.getPointerType(Context.VoidTy));
2669}
2670
2671Sema::ExprResult Sema::ActOnStmtExpr(SourceLocation LPLoc, StmtTy *substmt,
2672                                     SourceLocation RPLoc) { // "({..})"
2673  Stmt *SubStmt = static_cast<Stmt*>(substmt);
2674  assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
2675  CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
2676
2677  // FIXME: there are a variety of strange constraints to enforce here, for
2678  // example, it is not possible to goto into a stmt expression apparently.
2679  // More semantic analysis is needed.
2680
2681  // FIXME: the last statement in the compount stmt has its value used.  We
2682  // should not warn about it being unused.
2683
2684  // If there are sub stmts in the compound stmt, take the type of the last one
2685  // as the type of the stmtexpr.
2686  QualType Ty = Context.VoidTy;
2687
2688  if (!Compound->body_empty()) {
2689    Stmt *LastStmt = Compound->body_back();
2690    // If LastStmt is a label, skip down through into the body.
2691    while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt))
2692      LastStmt = Label->getSubStmt();
2693
2694    if (Expr *LastExpr = dyn_cast<Expr>(LastStmt))
2695      Ty = LastExpr->getType();
2696  }
2697
2698  return new StmtExpr(Compound, Ty, LPLoc, RPLoc);
2699}
2700
2701Sema::ExprResult Sema::ActOnBuiltinOffsetOf(SourceLocation BuiltinLoc,
2702                                            SourceLocation TypeLoc,
2703                                            TypeTy *argty,
2704                                            OffsetOfComponent *CompPtr,
2705                                            unsigned NumComponents,
2706                                            SourceLocation RPLoc) {
2707  QualType ArgTy = QualType::getFromOpaquePtr(argty);
2708  assert(!ArgTy.isNull() && "Missing type argument!");
2709
2710  // We must have at least one component that refers to the type, and the first
2711  // one is known to be a field designator.  Verify that the ArgTy represents
2712  // a struct/union/class.
2713  if (!ArgTy->isRecordType())
2714    return Diag(TypeLoc, diag::err_offsetof_record_type,ArgTy.getAsString());
2715
2716  // Otherwise, create a compound literal expression as the base, and
2717  // iteratively process the offsetof designators.
2718  Expr *Res = new CompoundLiteralExpr(SourceLocation(), ArgTy, 0, false);
2719
2720  // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
2721  // GCC extension, diagnose them.
2722  if (NumComponents != 1)
2723    Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator,
2724         SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd));
2725
2726  for (unsigned i = 0; i != NumComponents; ++i) {
2727    const OffsetOfComponent &OC = CompPtr[i];
2728    if (OC.isBrackets) {
2729      // Offset of an array sub-field.  TODO: Should we allow vector elements?
2730      const ArrayType *AT = Context.getAsArrayType(Res->getType());
2731      if (!AT) {
2732        delete Res;
2733        return Diag(OC.LocEnd, diag::err_offsetof_array_type,
2734                    Res->getType().getAsString());
2735      }
2736
2737      // FIXME: C++: Verify that operator[] isn't overloaded.
2738
2739      // C99 6.5.2.1p1
2740      Expr *Idx = static_cast<Expr*>(OC.U.E);
2741      if (!Idx->getType()->isIntegerType())
2742        return Diag(Idx->getLocStart(), diag::err_typecheck_subscript,
2743                    Idx->getSourceRange());
2744
2745      Res = new ArraySubscriptExpr(Res, Idx, AT->getElementType(), OC.LocEnd);
2746      continue;
2747    }
2748
2749    const RecordType *RC = Res->getType()->getAsRecordType();
2750    if (!RC) {
2751      delete Res;
2752      return Diag(OC.LocEnd, diag::err_offsetof_record_type,
2753                  Res->getType().getAsString());
2754    }
2755
2756    // Get the decl corresponding to this.
2757    RecordDecl *RD = RC->getDecl();
2758    FieldDecl *MemberDecl = RD->getMember(OC.U.IdentInfo);
2759    if (!MemberDecl)
2760      return Diag(BuiltinLoc, diag::err_typecheck_no_member,
2761                  OC.U.IdentInfo->getName(),
2762                  SourceRange(OC.LocStart, OC.LocEnd));
2763
2764    // FIXME: C++: Verify that MemberDecl isn't a static field.
2765    // FIXME: Verify that MemberDecl isn't a bitfield.
2766    // MemberDecl->getType() doesn't get the right qualifiers, but it doesn't
2767    // matter here.
2768    Res = new MemberExpr(Res, false, MemberDecl, OC.LocEnd, MemberDecl->getType());
2769  }
2770
2771  return new UnaryOperator(Res, UnaryOperator::OffsetOf, Context.getSizeType(),
2772                           BuiltinLoc);
2773}
2774
2775
2776Sema::ExprResult Sema::ActOnTypesCompatibleExpr(SourceLocation BuiltinLoc,
2777                                                TypeTy *arg1, TypeTy *arg2,
2778                                                SourceLocation RPLoc) {
2779  QualType argT1 = QualType::getFromOpaquePtr(arg1);
2780  QualType argT2 = QualType::getFromOpaquePtr(arg2);
2781
2782  assert((!argT1.isNull() && !argT2.isNull()) && "Missing type argument(s)");
2783
2784  return new TypesCompatibleExpr(Context.IntTy, BuiltinLoc, argT1, argT2,RPLoc);
2785}
2786
2787Sema::ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc, ExprTy *cond,
2788                                       ExprTy *expr1, ExprTy *expr2,
2789                                       SourceLocation RPLoc) {
2790  Expr *CondExpr = static_cast<Expr*>(cond);
2791  Expr *LHSExpr = static_cast<Expr*>(expr1);
2792  Expr *RHSExpr = static_cast<Expr*>(expr2);
2793
2794  assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
2795
2796  // The conditional expression is required to be a constant expression.
2797  llvm::APSInt condEval(32);
2798  SourceLocation ExpLoc;
2799  if (!CondExpr->isIntegerConstantExpr(condEval, Context, &ExpLoc))
2800    return Diag(ExpLoc, diag::err_typecheck_choose_expr_requires_constant,
2801                 CondExpr->getSourceRange());
2802
2803  // If the condition is > zero, then the AST type is the same as the LSHExpr.
2804  QualType resType = condEval.getZExtValue() ? LHSExpr->getType() :
2805                                               RHSExpr->getType();
2806  return new ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr, resType, RPLoc);
2807}
2808
2809//===----------------------------------------------------------------------===//
2810// Clang Extensions.
2811//===----------------------------------------------------------------------===//
2812
2813/// ActOnBlockStart - This callback is invoked when a block literal is started.
2814void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *BlockScope,
2815                           Declarator &ParamInfo) {
2816  // Analyze block parameters.
2817  BlockSemaInfo *BSI = new BlockSemaInfo();
2818
2819  // Add BSI to CurBlock.
2820  BSI->PrevBlockInfo = CurBlock;
2821  CurBlock = BSI;
2822
2823  BSI->ReturnType = 0;
2824  BSI->TheScope = BlockScope;
2825
2826  // Analyze arguments to block.
2827  assert(ParamInfo.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2828         "Not a function declarator!");
2829  DeclaratorChunk::FunctionTypeInfo &FTI = ParamInfo.getTypeObject(0).Fun;
2830
2831  BSI->hasPrototype = FTI.hasPrototype;
2832  BSI->isVariadic = true;
2833
2834  // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs function that takes
2835  // no arguments, not a function that takes a single void argument.
2836  if (FTI.hasPrototype &&
2837      FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2838      (!((ParmVarDecl *)FTI.ArgInfo[0].Param)->getType().getCVRQualifiers() &&
2839        ((ParmVarDecl *)FTI.ArgInfo[0].Param)->getType()->isVoidType())) {
2840    // empty arg list, don't push any params.
2841    BSI->isVariadic = false;
2842  } else if (FTI.hasPrototype) {
2843    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
2844      BSI->Params.push_back((ParmVarDecl *)FTI.ArgInfo[i].Param);
2845    BSI->isVariadic = FTI.isVariadic;
2846  }
2847}
2848
2849/// ActOnBlockError - If there is an error parsing a block, this callback
2850/// is invoked to pop the information about the block from the action impl.
2851void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
2852  // Ensure that CurBlock is deleted.
2853  llvm::OwningPtr<BlockSemaInfo> CC(CurBlock);
2854
2855  // Pop off CurBlock, handle nested blocks.
2856  CurBlock = CurBlock->PrevBlockInfo;
2857
2858  // FIXME: Delete the ParmVarDecl objects as well???
2859
2860}
2861
2862/// ActOnBlockStmtExpr - This is called when the body of a block statement
2863/// literal was successfully completed.  ^(int x){...}
2864Sema::ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc, StmtTy *body,
2865                                          Scope *CurScope) {
2866  // Ensure that CurBlock is deleted.
2867  llvm::OwningPtr<BlockSemaInfo> BSI(CurBlock);
2868  llvm::OwningPtr<CompoundStmt> Body(static_cast<CompoundStmt*>(body));
2869
2870  // Pop off CurBlock, handle nested blocks.
2871  CurBlock = CurBlock->PrevBlockInfo;
2872
2873  QualType RetTy = Context.VoidTy;
2874  if (BSI->ReturnType)
2875    RetTy = QualType(BSI->ReturnType, 0);
2876
2877  llvm::SmallVector<QualType, 8> ArgTypes;
2878  for (unsigned i = 0, e = BSI->Params.size(); i != e; ++i)
2879    ArgTypes.push_back(BSI->Params[i]->getType());
2880
2881  QualType BlockTy;
2882  if (!BSI->hasPrototype)
2883    BlockTy = Context.getFunctionTypeNoProto(RetTy);
2884  else
2885    BlockTy = Context.getFunctionType(RetTy, &ArgTypes[0], ArgTypes.size(),
2886                                      BSI->isVariadic);
2887
2888  BlockTy = Context.getBlockPointerType(BlockTy);
2889  return new BlockStmtExpr(CaretLoc, BlockTy,
2890                           &BSI->Params[0], BSI->Params.size(), Body.take());
2891}
2892
2893/// ActOnBlockExprExpr - This is called when the body of a block
2894/// expression literal was successfully completed.  ^(int x)[foo bar: x]
2895Sema::ExprResult Sema::ActOnBlockExprExpr(SourceLocation CaretLoc, ExprTy *body,
2896                                      Scope *CurScope) {
2897  // Ensure that CurBlock is deleted.
2898  llvm::OwningPtr<BlockSemaInfo> BSI(CurBlock);
2899  llvm::OwningPtr<Expr> Body(static_cast<Expr*>(body));
2900
2901  // Pop off CurBlock, handle nested blocks.
2902  CurBlock = CurBlock->PrevBlockInfo;
2903
2904  if (BSI->ReturnType) {
2905    Diag(CaretLoc, diag::err_return_in_block_expression);
2906    return true;
2907  }
2908
2909  QualType RetTy = Body->getType();
2910
2911  llvm::SmallVector<QualType, 8> ArgTypes;
2912  for (unsigned i = 0, e = BSI->Params.size(); i != e; ++i)
2913    ArgTypes.push_back(BSI->Params[i]->getType());
2914
2915  QualType BlockTy;
2916  if (!BSI->hasPrototype)
2917    BlockTy = Context.getFunctionTypeNoProto(RetTy);
2918  else
2919    BlockTy = Context.getFunctionType(RetTy, &ArgTypes[0], ArgTypes.size(),
2920                                      BSI->isVariadic);
2921
2922  BlockTy = Context.getBlockPointerType(BlockTy);
2923  return new BlockExprExpr(CaretLoc, BlockTy,
2924                           &BSI->Params[0], BSI->Params.size(), Body.take());
2925}
2926
2927/// ExprsMatchFnType - return true if the Exprs in array Args have
2928/// QualTypes that match the QualTypes of the arguments of the FnType.
2929/// The number of arguments has already been validated to match the number of
2930/// arguments in FnType.
2931static bool ExprsMatchFnType(Expr **Args, const FunctionTypeProto *FnType,
2932                             ASTContext &Context) {
2933  unsigned NumParams = FnType->getNumArgs();
2934  for (unsigned i = 0; i != NumParams; ++i) {
2935    QualType ExprTy = Context.getCanonicalType(Args[i]->getType());
2936    QualType ParmTy = Context.getCanonicalType(FnType->getArgType(i));
2937
2938    if (ExprTy.getUnqualifiedType() != ParmTy.getUnqualifiedType())
2939      return false;
2940  }
2941  return true;
2942}
2943
2944Sema::ExprResult Sema::ActOnOverloadExpr(ExprTy **args, unsigned NumArgs,
2945                                         SourceLocation *CommaLocs,
2946                                         SourceLocation BuiltinLoc,
2947                                         SourceLocation RParenLoc) {
2948  // __builtin_overload requires at least 2 arguments
2949  if (NumArgs < 2)
2950    return Diag(RParenLoc, diag::err_typecheck_call_too_few_args,
2951                SourceRange(BuiltinLoc, RParenLoc));
2952
2953  // The first argument is required to be a constant expression.  It tells us
2954  // the number of arguments to pass to each of the functions to be overloaded.
2955  Expr **Args = reinterpret_cast<Expr**>(args);
2956  Expr *NParamsExpr = Args[0];
2957  llvm::APSInt constEval(32);
2958  SourceLocation ExpLoc;
2959  if (!NParamsExpr->isIntegerConstantExpr(constEval, Context, &ExpLoc))
2960    return Diag(ExpLoc, diag::err_overload_expr_requires_non_zero_constant,
2961                NParamsExpr->getSourceRange());
2962
2963  // Verify that the number of parameters is > 0
2964  unsigned NumParams = constEval.getZExtValue();
2965  if (NumParams == 0)
2966    return Diag(ExpLoc, diag::err_overload_expr_requires_non_zero_constant,
2967                NParamsExpr->getSourceRange());
2968  // Verify that we have at least 1 + NumParams arguments to the builtin.
2969  if ((NumParams + 1) > NumArgs)
2970    return Diag(RParenLoc, diag::err_typecheck_call_too_few_args,
2971                SourceRange(BuiltinLoc, RParenLoc));
2972
2973  // Figure out the return type, by matching the args to one of the functions
2974  // listed after the parameters.
2975  OverloadExpr *OE = 0;
2976  for (unsigned i = NumParams + 1; i < NumArgs; ++i) {
2977    // UsualUnaryConversions will convert the function DeclRefExpr into a
2978    // pointer to function.
2979    Expr *Fn = UsualUnaryConversions(Args[i]);
2980    const FunctionTypeProto *FnType = 0;
2981    if (const PointerType *PT = Fn->getType()->getAsPointerType())
2982      FnType = PT->getPointeeType()->getAsFunctionTypeProto();
2983
2984    // The Expr type must be FunctionTypeProto, since FunctionTypeProto has no
2985    // parameters, and the number of parameters must match the value passed to
2986    // the builtin.
2987    if (!FnType || (FnType->getNumArgs() != NumParams))
2988      return Diag(Fn->getExprLoc(), diag::err_overload_incorrect_fntype,
2989                  Fn->getSourceRange());
2990
2991    // Scan the parameter list for the FunctionType, checking the QualType of
2992    // each parameter against the QualTypes of the arguments to the builtin.
2993    // If they match, return a new OverloadExpr.
2994    if (ExprsMatchFnType(Args+1, FnType, Context)) {
2995      if (OE)
2996        return Diag(Fn->getExprLoc(), diag::err_overload_multiple_match,
2997                    OE->getFn()->getSourceRange());
2998      // Remember our match, and continue processing the remaining arguments
2999      // to catch any errors.
3000      OE = new OverloadExpr(Args, NumArgs, i, FnType->getResultType(),
3001                            BuiltinLoc, RParenLoc);
3002    }
3003  }
3004  // Return the newly created OverloadExpr node, if we succeded in matching
3005  // exactly one of the candidate functions.
3006  if (OE)
3007    return OE;
3008
3009  // If we didn't find a matching function Expr in the __builtin_overload list
3010  // the return an error.
3011  std::string typeNames;
3012  for (unsigned i = 0; i != NumParams; ++i) {
3013    if (i != 0) typeNames += ", ";
3014    typeNames += Args[i+1]->getType().getAsString();
3015  }
3016
3017  return Diag(BuiltinLoc, diag::err_overload_no_match, typeNames,
3018              SourceRange(BuiltinLoc, RParenLoc));
3019}
3020
3021Sema::ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
3022                                  ExprTy *expr, TypeTy *type,
3023                                  SourceLocation RPLoc) {
3024  Expr *E = static_cast<Expr*>(expr);
3025  QualType T = QualType::getFromOpaquePtr(type);
3026
3027  InitBuiltinVaListType();
3028
3029  // Get the va_list type
3030  QualType VaListType = Context.getBuiltinVaListType();
3031  // Deal with implicit array decay; for example, on x86-64,
3032  // va_list is an array, but it's supposed to decay to
3033  // a pointer for va_arg.
3034  if (VaListType->isArrayType())
3035    VaListType = Context.getArrayDecayedType(VaListType);
3036  // Make sure the input expression also decays appropriately.
3037  UsualUnaryConversions(E);
3038
3039  if (CheckAssignmentConstraints(VaListType, E->getType()) != Compatible)
3040    return Diag(E->getLocStart(),
3041                diag::err_first_argument_to_va_arg_not_of_type_va_list,
3042                E->getType().getAsString(),
3043                E->getSourceRange());
3044
3045  // FIXME: Warn if a non-POD type is passed in.
3046
3047  return new VAArgExpr(BuiltinLoc, E, T, RPLoc);
3048}
3049
3050bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
3051                                    SourceLocation Loc,
3052                                    QualType DstType, QualType SrcType,
3053                                    Expr *SrcExpr, const char *Flavor) {
3054  // Decode the result (notice that AST's are still created for extensions).
3055  bool isInvalid = false;
3056  unsigned DiagKind;
3057  switch (ConvTy) {
3058  default: assert(0 && "Unknown conversion type");
3059  case Compatible: return false;
3060  case PointerToInt:
3061    DiagKind = diag::ext_typecheck_convert_pointer_int;
3062    break;
3063  case IntToPointer:
3064    DiagKind = diag::ext_typecheck_convert_int_pointer;
3065    break;
3066  case IncompatiblePointer:
3067    DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
3068    break;
3069  case FunctionVoidPointer:
3070    DiagKind = diag::ext_typecheck_convert_pointer_void_func;
3071    break;
3072  case CompatiblePointerDiscardsQualifiers:
3073    // If the qualifiers lost were because we were applying the
3074    // (deprecated) C++ conversion from a string literal to a char*
3075    // (or wchar_t*), then there was no error (C++ 4.2p2).  FIXME:
3076    // Ideally, this check would be performed in
3077    // CheckPointerTypesForAssignment. However, that would require a
3078    // bit of refactoring (so that the second argument is an
3079    // expression, rather than a type), which should be done as part
3080    // of a larger effort to fix CheckPointerTypesForAssignment for
3081    // C++ semantics.
3082    if (getLangOptions().CPlusPlus &&
3083        IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
3084      return false;
3085    DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
3086    break;
3087  case IntToBlockPointer:
3088    DiagKind = diag::err_int_to_block_pointer;
3089    break;
3090  case IncompatibleBlockPointer:
3091    DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
3092    break;
3093  case BlockVoidPointer:
3094    DiagKind = diag::ext_typecheck_convert_pointer_void_block;
3095    break;
3096  case Incompatible:
3097    DiagKind = diag::err_typecheck_convert_incompatible;
3098    isInvalid = true;
3099    break;
3100  }
3101
3102  Diag(Loc, DiagKind, DstType.getAsString(), SrcType.getAsString(), Flavor,
3103       SrcExpr->getSourceRange());
3104  return isInvalid;
3105}
3106