SemaExpr.cpp revision a729da2c29e7df26319acf2675d51e377287a139
1//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInit.h"
16#include "Lookup.h"
17#include "AnalysisBasedWarnings.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/CXXInheritance.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/Expr.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/AST/ExprObjC.h"
25#include "clang/AST/RecursiveASTVisitor.h"
26#include "clang/AST/TypeLoc.h"
27#include "clang/Basic/PartialDiagnostic.h"
28#include "clang/Basic/SourceManager.h"
29#include "clang/Basic/TargetInfo.h"
30#include "clang/Lex/LiteralSupport.h"
31#include "clang/Lex/Preprocessor.h"
32#include "clang/Parse/DeclSpec.h"
33#include "clang/Parse/Designator.h"
34#include "clang/Parse/Scope.h"
35#include "clang/Parse/Template.h"
36using namespace clang;
37
38
39/// \brief Determine whether the use of this declaration is valid, and
40/// emit any corresponding diagnostics.
41///
42/// This routine diagnoses various problems with referencing
43/// declarations that can occur when using a declaration. For example,
44/// it might warn if a deprecated or unavailable declaration is being
45/// used, or produce an error (and return true) if a C++0x deleted
46/// function is being used.
47///
48/// If IgnoreDeprecated is set to true, this should not want about deprecated
49/// decls.
50///
51/// \returns true if there was an error (this declaration cannot be
52/// referenced), false otherwise.
53///
54bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc) {
55  // See if the decl is deprecated.
56  if (D->getAttr<DeprecatedAttr>()) {
57    EmitDeprecationWarning(D, Loc);
58  }
59
60  // See if the decl is unavailable
61  if (D->getAttr<UnavailableAttr>()) {
62    Diag(Loc, diag::warn_unavailable) << D->getDeclName();
63    Diag(D->getLocation(), diag::note_unavailable_here) << 0;
64  }
65
66  // See if this is a deleted function.
67  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
68    if (FD->isDeleted()) {
69      Diag(Loc, diag::err_deleted_function_use);
70      Diag(D->getLocation(), diag::note_unavailable_here) << true;
71      return true;
72    }
73  }
74
75  return false;
76}
77
78/// DiagnoseSentinelCalls - This routine checks on method dispatch calls
79/// (and other functions in future), which have been declared with sentinel
80/// attribute. It warns if call does not have the sentinel argument.
81///
82void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
83                                 Expr **Args, unsigned NumArgs) {
84  const SentinelAttr *attr = D->getAttr<SentinelAttr>();
85  if (!attr)
86    return;
87
88  // FIXME: In C++0x, if any of the arguments are parameter pack
89  // expansions, we can't check for the sentinel now.
90  int sentinelPos = attr->getSentinel();
91  int nullPos = attr->getNullPos();
92
93  // FIXME. ObjCMethodDecl and FunctionDecl need be derived from the same common
94  // base class. Then we won't be needing two versions of the same code.
95  unsigned int i = 0;
96  bool warnNotEnoughArgs = false;
97  int isMethod = 0;
98  if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
99    // skip over named parameters.
100    ObjCMethodDecl::param_iterator P, E = MD->param_end();
101    for (P = MD->param_begin(); (P != E && i < NumArgs); ++P) {
102      if (nullPos)
103        --nullPos;
104      else
105        ++i;
106    }
107    warnNotEnoughArgs = (P != E || i >= NumArgs);
108    isMethod = 1;
109  } else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
110    // skip over named parameters.
111    ObjCMethodDecl::param_iterator P, E = FD->param_end();
112    for (P = FD->param_begin(); (P != E && i < NumArgs); ++P) {
113      if (nullPos)
114        --nullPos;
115      else
116        ++i;
117    }
118    warnNotEnoughArgs = (P != E || i >= NumArgs);
119  } else if (VarDecl *V = dyn_cast<VarDecl>(D)) {
120    // block or function pointer call.
121    QualType Ty = V->getType();
122    if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) {
123      const FunctionType *FT = Ty->isFunctionPointerType()
124      ? Ty->getAs<PointerType>()->getPointeeType()->getAs<FunctionType>()
125      : Ty->getAs<BlockPointerType>()->getPointeeType()->getAs<FunctionType>();
126      if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT)) {
127        unsigned NumArgsInProto = Proto->getNumArgs();
128        unsigned k;
129        for (k = 0; (k != NumArgsInProto && i < NumArgs); k++) {
130          if (nullPos)
131            --nullPos;
132          else
133            ++i;
134        }
135        warnNotEnoughArgs = (k != NumArgsInProto || i >= NumArgs);
136      }
137      if (Ty->isBlockPointerType())
138        isMethod = 2;
139    } else
140      return;
141  } else
142    return;
143
144  if (warnNotEnoughArgs) {
145    Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
146    Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
147    return;
148  }
149  int sentinel = i;
150  while (sentinelPos > 0 && i < NumArgs-1) {
151    --sentinelPos;
152    ++i;
153  }
154  if (sentinelPos > 0) {
155    Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
156    Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
157    return;
158  }
159  while (i < NumArgs-1) {
160    ++i;
161    ++sentinel;
162  }
163  Expr *sentinelExpr = Args[sentinel];
164  if (!sentinelExpr) return;
165  if (sentinelExpr->isTypeDependent()) return;
166  if (sentinelExpr->isValueDependent()) return;
167  if (sentinelExpr->getType()->isPointerType() &&
168      sentinelExpr->IgnoreParenCasts()->isNullPointerConstant(Context,
169                                            Expr::NPC_ValueDependentIsNull))
170    return;
171
172  // Unfortunately, __null has type 'int'.
173  if (isa<GNUNullExpr>(sentinelExpr)) return;
174
175  Diag(Loc, diag::warn_missing_sentinel) << isMethod;
176  Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
177}
178
179SourceRange Sema::getExprRange(ExprTy *E) const {
180  Expr *Ex = (Expr *)E;
181  return Ex? Ex->getSourceRange() : SourceRange();
182}
183
184//===----------------------------------------------------------------------===//
185//  Standard Promotions and Conversions
186//===----------------------------------------------------------------------===//
187
188/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
189void Sema::DefaultFunctionArrayConversion(Expr *&E) {
190  QualType Ty = E->getType();
191  assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
192
193  if (Ty->isFunctionType())
194    ImpCastExprToType(E, Context.getPointerType(Ty),
195                      CastExpr::CK_FunctionToPointerDecay);
196  else if (Ty->isArrayType()) {
197    // In C90 mode, arrays only promote to pointers if the array expression is
198    // an lvalue.  The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
199    // type 'array of type' is converted to an expression that has type 'pointer
200    // to type'...".  In C99 this was changed to: C99 6.3.2.1p3: "an expression
201    // that has type 'array of type' ...".  The relevant change is "an lvalue"
202    // (C90) to "an expression" (C99).
203    //
204    // C++ 4.2p1:
205    // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
206    // T" can be converted to an rvalue of type "pointer to T".
207    //
208    if (getLangOptions().C99 || getLangOptions().CPlusPlus ||
209        E->isLvalue(Context) == Expr::LV_Valid)
210      ImpCastExprToType(E, Context.getArrayDecayedType(Ty),
211                        CastExpr::CK_ArrayToPointerDecay);
212  }
213}
214
215void Sema::DefaultFunctionArrayLvalueConversion(Expr *&E) {
216  DefaultFunctionArrayConversion(E);
217
218  QualType Ty = E->getType();
219  assert(!Ty.isNull() && "DefaultFunctionArrayLvalueConversion - missing type");
220  if (!Ty->isDependentType() && Ty.hasQualifiers() &&
221      (!getLangOptions().CPlusPlus || !Ty->isRecordType()) &&
222      E->isLvalue(Context) == Expr::LV_Valid) {
223    // C++ [conv.lval]p1:
224    //   [...] If T is a non-class type, the type of the rvalue is the
225    //   cv-unqualified version of T. Otherwise, the type of the
226    //   rvalue is T
227    //
228    // C99 6.3.2.1p2:
229    //   If the lvalue has qualified type, the value has the unqualified
230    //   version of the type of the lvalue; otherwise, the value has the
231    //   type of the lvalue.
232    ImpCastExprToType(E, Ty.getUnqualifiedType(), CastExpr::CK_NoOp);
233  }
234}
235
236
237/// UsualUnaryConversions - Performs various conversions that are common to most
238/// operators (C99 6.3). The conversions of array and function types are
239/// sometimes surpressed. For example, the array->pointer conversion doesn't
240/// apply if the array is an argument to the sizeof or address (&) operators.
241/// In these instances, this routine should *not* be called.
242Expr *Sema::UsualUnaryConversions(Expr *&Expr) {
243  QualType Ty = Expr->getType();
244  assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
245
246  // C99 6.3.1.1p2:
247  //
248  //   The following may be used in an expression wherever an int or
249  //   unsigned int may be used:
250  //     - an object or expression with an integer type whose integer
251  //       conversion rank is less than or equal to the rank of int
252  //       and unsigned int.
253  //     - A bit-field of type _Bool, int, signed int, or unsigned int.
254  //
255  //   If an int can represent all values of the original type, the
256  //   value is converted to an int; otherwise, it is converted to an
257  //   unsigned int. These are called the integer promotions. All
258  //   other types are unchanged by the integer promotions.
259  QualType PTy = Context.isPromotableBitField(Expr);
260  if (!PTy.isNull()) {
261    ImpCastExprToType(Expr, PTy, CastExpr::CK_IntegralCast);
262    return Expr;
263  }
264  if (Ty->isPromotableIntegerType()) {
265    QualType PT = Context.getPromotedIntegerType(Ty);
266    ImpCastExprToType(Expr, PT, CastExpr::CK_IntegralCast);
267    return Expr;
268  }
269
270  DefaultFunctionArrayLvalueConversion(Expr);
271  return Expr;
272}
273
274/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
275/// do not have a prototype. Arguments that have type float are promoted to
276/// double. All other argument types are converted by UsualUnaryConversions().
277void Sema::DefaultArgumentPromotion(Expr *&Expr) {
278  QualType Ty = Expr->getType();
279  assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
280
281  // If this is a 'float' (CVR qualified or typedef) promote to double.
282  if (Ty->isSpecificBuiltinType(BuiltinType::Float))
283    return ImpCastExprToType(Expr, Context.DoubleTy,
284                             CastExpr::CK_FloatingCast);
285
286  UsualUnaryConversions(Expr);
287}
288
289/// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
290/// will warn if the resulting type is not a POD type, and rejects ObjC
291/// interfaces passed by value.  This returns true if the argument type is
292/// completely illegal.
293bool Sema::DefaultVariadicArgumentPromotion(Expr *&Expr, VariadicCallType CT,
294                                            FunctionDecl *FDecl) {
295  DefaultArgumentPromotion(Expr);
296
297  // __builtin_va_start takes the second argument as a "varargs" argument, but
298  // it doesn't actually do anything with it.  It doesn't need to be non-pod
299  // etc.
300  if (FDecl && FDecl->getBuiltinID() == Builtin::BI__builtin_va_start)
301    return false;
302
303  if (Expr->getType()->isObjCObjectType() &&
304      DiagRuntimeBehavior(Expr->getLocStart(),
305        PDiag(diag::err_cannot_pass_objc_interface_to_vararg)
306          << Expr->getType() << CT))
307    return true;
308
309  if (!Expr->getType()->isPODType() &&
310      DiagRuntimeBehavior(Expr->getLocStart(),
311                          PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg)
312                            << Expr->getType() << CT))
313    return true;
314
315  return false;
316}
317
318
319/// UsualArithmeticConversions - Performs various conversions that are common to
320/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
321/// routine returns the first non-arithmetic type found. The client is
322/// responsible for emitting appropriate error diagnostics.
323/// FIXME: verify the conversion rules for "complex int" are consistent with
324/// GCC.
325QualType Sema::UsualArithmeticConversions(Expr *&lhsExpr, Expr *&rhsExpr,
326                                          bool isCompAssign) {
327  if (!isCompAssign)
328    UsualUnaryConversions(lhsExpr);
329
330  UsualUnaryConversions(rhsExpr);
331
332  // For conversion purposes, we ignore any qualifiers.
333  // For example, "const float" and "float" are equivalent.
334  QualType lhs =
335    Context.getCanonicalType(lhsExpr->getType()).getUnqualifiedType();
336  QualType rhs =
337    Context.getCanonicalType(rhsExpr->getType()).getUnqualifiedType();
338
339  // If both types are identical, no conversion is needed.
340  if (lhs == rhs)
341    return lhs;
342
343  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
344  // The caller can deal with this (e.g. pointer + int).
345  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
346    return lhs;
347
348  // Perform bitfield promotions.
349  QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(lhsExpr);
350  if (!LHSBitfieldPromoteTy.isNull())
351    lhs = LHSBitfieldPromoteTy;
352  QualType RHSBitfieldPromoteTy = Context.isPromotableBitField(rhsExpr);
353  if (!RHSBitfieldPromoteTy.isNull())
354    rhs = RHSBitfieldPromoteTy;
355
356  QualType destType = Context.UsualArithmeticConversionsType(lhs, rhs);
357  if (!isCompAssign)
358    ImpCastExprToType(lhsExpr, destType, CastExpr::CK_Unknown);
359  ImpCastExprToType(rhsExpr, destType, CastExpr::CK_Unknown);
360  return destType;
361}
362
363//===----------------------------------------------------------------------===//
364//  Semantic Analysis for various Expression Types
365//===----------------------------------------------------------------------===//
366
367
368/// ActOnStringLiteral - The specified tokens were lexed as pasted string
369/// fragments (e.g. "foo" "bar" L"baz").  The result string has to handle string
370/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
371/// multiple tokens.  However, the common case is that StringToks points to one
372/// string.
373///
374Action::OwningExprResult
375Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks) {
376  assert(NumStringToks && "Must have at least one string!");
377
378  StringLiteralParser Literal(StringToks, NumStringToks, PP);
379  if (Literal.hadError)
380    return ExprError();
381
382  llvm::SmallVector<SourceLocation, 4> StringTokLocs;
383  for (unsigned i = 0; i != NumStringToks; ++i)
384    StringTokLocs.push_back(StringToks[i].getLocation());
385
386  QualType StrTy = Context.CharTy;
387  if (Literal.AnyWide) StrTy = Context.getWCharType();
388  if (Literal.Pascal) StrTy = Context.UnsignedCharTy;
389
390  // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
391  if (getLangOptions().CPlusPlus || getLangOptions().ConstStrings)
392    StrTy.addConst();
393
394  // Get an array type for the string, according to C99 6.4.5.  This includes
395  // the nul terminator character as well as the string length for pascal
396  // strings.
397  StrTy = Context.getConstantArrayType(StrTy,
398                                 llvm::APInt(32, Literal.GetNumStringChars()+1),
399                                       ArrayType::Normal, 0);
400
401  // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
402  return Owned(StringLiteral::Create(Context, Literal.GetString(),
403                                     Literal.GetStringLength(),
404                                     Literal.AnyWide, StrTy,
405                                     &StringTokLocs[0],
406                                     StringTokLocs.size()));
407}
408
409/// ShouldSnapshotBlockValueReference - Return true if a reference inside of
410/// CurBlock to VD should cause it to be snapshotted (as we do for auto
411/// variables defined outside the block) or false if this is not needed (e.g.
412/// for values inside the block or for globals).
413///
414/// This also keeps the 'hasBlockDeclRefExprs' in the BlockScopeInfo records
415/// up-to-date.
416///
417static bool ShouldSnapshotBlockValueReference(Sema &S, BlockScopeInfo *CurBlock,
418                                              ValueDecl *VD) {
419  // If the value is defined inside the block, we couldn't snapshot it even if
420  // we wanted to.
421  if (CurBlock->TheDecl == VD->getDeclContext())
422    return false;
423
424  // If this is an enum constant or function, it is constant, don't snapshot.
425  if (isa<EnumConstantDecl>(VD) || isa<FunctionDecl>(VD))
426    return false;
427
428  // If this is a reference to an extern, static, or global variable, no need to
429  // snapshot it.
430  // FIXME: What about 'const' variables in C++?
431  if (const VarDecl *Var = dyn_cast<VarDecl>(VD))
432    if (!Var->hasLocalStorage())
433      return false;
434
435  // Blocks that have these can't be constant.
436  CurBlock->hasBlockDeclRefExprs = true;
437
438  // If we have nested blocks, the decl may be declared in an outer block (in
439  // which case that outer block doesn't get "hasBlockDeclRefExprs") or it may
440  // be defined outside all of the current blocks (in which case the blocks do
441  // all get the bit).  Walk the nesting chain.
442  for (unsigned I = S.FunctionScopes.size() - 1; I; --I) {
443    BlockScopeInfo *NextBlock = dyn_cast<BlockScopeInfo>(S.FunctionScopes[I]);
444
445    if (!NextBlock)
446      continue;
447
448    // If we found the defining block for the variable, don't mark the block as
449    // having a reference outside it.
450    if (NextBlock->TheDecl == VD->getDeclContext())
451      break;
452
453    // Otherwise, the DeclRef from the inner block causes the outer one to need
454    // a snapshot as well.
455    NextBlock->hasBlockDeclRefExprs = true;
456  }
457
458  return true;
459}
460
461
462
463/// BuildDeclRefExpr - Build a DeclRefExpr.
464Sema::OwningExprResult
465Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, SourceLocation Loc,
466                       const CXXScopeSpec *SS) {
467  if (Context.getCanonicalType(Ty) == Context.UndeducedAutoTy) {
468    Diag(Loc,
469         diag::err_auto_variable_cannot_appear_in_own_initializer)
470      << D->getDeclName();
471    return ExprError();
472  }
473
474  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
475    if (isa<NonTypeTemplateParmDecl>(VD)) {
476      // Non-type template parameters can be referenced anywhere they are
477      // visible.
478    } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
479      if (const FunctionDecl *FD = MD->getParent()->isLocalClass()) {
480        if (VD->hasLocalStorage() && VD->getDeclContext() != CurContext) {
481          Diag(Loc, diag::err_reference_to_local_var_in_enclosing_function)
482            << D->getIdentifier() << FD->getDeclName();
483          Diag(D->getLocation(), diag::note_local_variable_declared_here)
484            << D->getIdentifier();
485          return ExprError();
486        }
487      }
488    }
489  }
490
491  MarkDeclarationReferenced(Loc, D);
492
493  return Owned(DeclRefExpr::Create(Context,
494                              SS? (NestedNameSpecifier *)SS->getScopeRep() : 0,
495                                   SS? SS->getRange() : SourceRange(),
496                                   D, Loc, Ty));
497}
498
499/// \brief Given a field that represents a member of an anonymous
500/// struct/union, build the path from that field's context to the
501/// actual member.
502///
503/// Construct the sequence of field member references we'll have to
504/// perform to get to the field in the anonymous union/struct. The
505/// list of members is built from the field outward, so traverse it
506/// backwards to go from an object in the current context to the field
507/// we found.
508///
509/// \returns The variable from which the field access should begin,
510/// for an anonymous struct/union that is not a member of another
511/// class. Otherwise, returns NULL.
512VarDecl *Sema::BuildAnonymousStructUnionMemberPath(FieldDecl *Field,
513                                   llvm::SmallVectorImpl<FieldDecl *> &Path) {
514  assert(Field->getDeclContext()->isRecord() &&
515         cast<RecordDecl>(Field->getDeclContext())->isAnonymousStructOrUnion()
516         && "Field must be stored inside an anonymous struct or union");
517
518  Path.push_back(Field);
519  VarDecl *BaseObject = 0;
520  DeclContext *Ctx = Field->getDeclContext();
521  do {
522    RecordDecl *Record = cast<RecordDecl>(Ctx);
523    ValueDecl *AnonObject = Record->getAnonymousStructOrUnionObject();
524    if (FieldDecl *AnonField = dyn_cast<FieldDecl>(AnonObject))
525      Path.push_back(AnonField);
526    else {
527      BaseObject = cast<VarDecl>(AnonObject);
528      break;
529    }
530    Ctx = Ctx->getParent();
531  } while (Ctx->isRecord() &&
532           cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion());
533
534  return BaseObject;
535}
536
537Sema::OwningExprResult
538Sema::BuildAnonymousStructUnionMemberReference(SourceLocation Loc,
539                                               FieldDecl *Field,
540                                               Expr *BaseObjectExpr,
541                                               SourceLocation OpLoc) {
542  llvm::SmallVector<FieldDecl *, 4> AnonFields;
543  VarDecl *BaseObject = BuildAnonymousStructUnionMemberPath(Field,
544                                                            AnonFields);
545
546  // Build the expression that refers to the base object, from
547  // which we will build a sequence of member references to each
548  // of the anonymous union objects and, eventually, the field we
549  // found via name lookup.
550  bool BaseObjectIsPointer = false;
551  Qualifiers BaseQuals;
552  if (BaseObject) {
553    // BaseObject is an anonymous struct/union variable (and is,
554    // therefore, not part of another non-anonymous record).
555    if (BaseObjectExpr) BaseObjectExpr->Destroy(Context);
556    MarkDeclarationReferenced(Loc, BaseObject);
557    BaseObjectExpr = new (Context) DeclRefExpr(BaseObject,BaseObject->getType(),
558                                               SourceLocation());
559    BaseQuals
560      = Context.getCanonicalType(BaseObject->getType()).getQualifiers();
561  } else if (BaseObjectExpr) {
562    // The caller provided the base object expression. Determine
563    // whether its a pointer and whether it adds any qualifiers to the
564    // anonymous struct/union fields we're looking into.
565    QualType ObjectType = BaseObjectExpr->getType();
566    if (const PointerType *ObjectPtr = ObjectType->getAs<PointerType>()) {
567      BaseObjectIsPointer = true;
568      ObjectType = ObjectPtr->getPointeeType();
569    }
570    BaseQuals
571      = Context.getCanonicalType(ObjectType).getQualifiers();
572  } else {
573    // We've found a member of an anonymous struct/union that is
574    // inside a non-anonymous struct/union, so in a well-formed
575    // program our base object expression is "this".
576    DeclContext *DC = getFunctionLevelDeclContext();
577    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
578      if (!MD->isStatic()) {
579        QualType AnonFieldType
580          = Context.getTagDeclType(
581                     cast<RecordDecl>(AnonFields.back()->getDeclContext()));
582        QualType ThisType = Context.getTagDeclType(MD->getParent());
583        if ((Context.getCanonicalType(AnonFieldType)
584               == Context.getCanonicalType(ThisType)) ||
585            IsDerivedFrom(ThisType, AnonFieldType)) {
586          // Our base object expression is "this".
587          BaseObjectExpr = new (Context) CXXThisExpr(Loc,
588                                                     MD->getThisType(Context),
589                                                     /*isImplicit=*/true);
590          BaseObjectIsPointer = true;
591        }
592      } else {
593        return ExprError(Diag(Loc,diag::err_invalid_member_use_in_static_method)
594          << Field->getDeclName());
595      }
596      BaseQuals = Qualifiers::fromCVRMask(MD->getTypeQualifiers());
597    }
598
599    if (!BaseObjectExpr)
600      return ExprError(Diag(Loc, diag::err_invalid_non_static_member_use)
601        << Field->getDeclName());
602  }
603
604  // Build the implicit member references to the field of the
605  // anonymous struct/union.
606  Expr *Result = BaseObjectExpr;
607  Qualifiers ResultQuals = BaseQuals;
608  for (llvm::SmallVector<FieldDecl *, 4>::reverse_iterator
609         FI = AnonFields.rbegin(), FIEnd = AnonFields.rend();
610       FI != FIEnd; ++FI) {
611    QualType MemberType = (*FI)->getType();
612    Qualifiers MemberTypeQuals =
613      Context.getCanonicalType(MemberType).getQualifiers();
614
615    // CVR attributes from the base are picked up by members,
616    // except that 'mutable' members don't pick up 'const'.
617    if ((*FI)->isMutable())
618      ResultQuals.removeConst();
619
620    // GC attributes are never picked up by members.
621    ResultQuals.removeObjCGCAttr();
622
623    // TR 18037 does not allow fields to be declared with address spaces.
624    assert(!MemberTypeQuals.hasAddressSpace());
625
626    Qualifiers NewQuals = ResultQuals + MemberTypeQuals;
627    if (NewQuals != MemberTypeQuals)
628      MemberType = Context.getQualifiedType(MemberType, NewQuals);
629
630    MarkDeclarationReferenced(Loc, *FI);
631    PerformObjectMemberConversion(Result, /*FIXME:Qualifier=*/0, *FI, *FI);
632    // FIXME: Might this end up being a qualified name?
633    Result = new (Context) MemberExpr(Result, BaseObjectIsPointer, *FI,
634                                      OpLoc, MemberType);
635    BaseObjectIsPointer = false;
636    ResultQuals = NewQuals;
637  }
638
639  return Owned(Result);
640}
641
642/// Decomposes the given name into a DeclarationName, its location, and
643/// possibly a list of template arguments.
644///
645/// If this produces template arguments, it is permitted to call
646/// DecomposeTemplateName.
647///
648/// This actually loses a lot of source location information for
649/// non-standard name kinds; we should consider preserving that in
650/// some way.
651static void DecomposeUnqualifiedId(Sema &SemaRef,
652                                   const UnqualifiedId &Id,
653                                   TemplateArgumentListInfo &Buffer,
654                                   DeclarationName &Name,
655                                   SourceLocation &NameLoc,
656                             const TemplateArgumentListInfo *&TemplateArgs) {
657  if (Id.getKind() == UnqualifiedId::IK_TemplateId) {
658    Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc);
659    Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc);
660
661    ASTTemplateArgsPtr TemplateArgsPtr(SemaRef,
662                                       Id.TemplateId->getTemplateArgs(),
663                                       Id.TemplateId->NumArgs);
664    SemaRef.translateTemplateArguments(TemplateArgsPtr, Buffer);
665    TemplateArgsPtr.release();
666
667    TemplateName TName =
668      Sema::TemplateTy::make(Id.TemplateId->Template).getAsVal<TemplateName>();
669
670    Name = SemaRef.Context.getNameForTemplate(TName);
671    NameLoc = Id.TemplateId->TemplateNameLoc;
672    TemplateArgs = &Buffer;
673  } else {
674    Name = SemaRef.GetNameFromUnqualifiedId(Id);
675    NameLoc = Id.StartLocation;
676    TemplateArgs = 0;
677  }
678}
679
680/// Determines whether the given record is "fully-formed" at the given
681/// location, i.e. whether a qualified lookup into it is assured of
682/// getting consistent results already.
683static bool IsFullyFormedScope(Sema &SemaRef, CXXRecordDecl *Record) {
684  if (!Record->hasDefinition())
685    return false;
686
687  for (CXXRecordDecl::base_class_iterator I = Record->bases_begin(),
688         E = Record->bases_end(); I != E; ++I) {
689    CanQualType BaseT = SemaRef.Context.getCanonicalType((*I).getType());
690    CanQual<RecordType> BaseRT = BaseT->getAs<RecordType>();
691    if (!BaseRT) return false;
692
693    CXXRecordDecl *BaseRecord = cast<CXXRecordDecl>(BaseRT->getDecl());
694    if (!BaseRecord->hasDefinition() ||
695        !IsFullyFormedScope(SemaRef, BaseRecord))
696      return false;
697  }
698
699  return true;
700}
701
702/// Determines whether we can lookup this id-expression now or whether
703/// we have to wait until template instantiation is complete.
704static bool IsDependentIdExpression(Sema &SemaRef, const CXXScopeSpec &SS) {
705  DeclContext *DC = SemaRef.computeDeclContext(SS, false);
706
707  // If the qualifier scope isn't computable, it's definitely dependent.
708  if (!DC) return true;
709
710  // If the qualifier scope doesn't name a record, we can always look into it.
711  if (!isa<CXXRecordDecl>(DC)) return false;
712
713  // We can't look into record types unless they're fully-formed.
714  if (!IsFullyFormedScope(SemaRef, cast<CXXRecordDecl>(DC))) return true;
715
716  return false;
717}
718
719/// Determines if the given class is provably not derived from all of
720/// the prospective base classes.
721static bool IsProvablyNotDerivedFrom(Sema &SemaRef,
722                                     CXXRecordDecl *Record,
723                            const llvm::SmallPtrSet<CXXRecordDecl*, 4> &Bases) {
724  if (Bases.count(Record->getCanonicalDecl()))
725    return false;
726
727  RecordDecl *RD = Record->getDefinition();
728  if (!RD) return false;
729  Record = cast<CXXRecordDecl>(RD);
730
731  for (CXXRecordDecl::base_class_iterator I = Record->bases_begin(),
732         E = Record->bases_end(); I != E; ++I) {
733    CanQualType BaseT = SemaRef.Context.getCanonicalType((*I).getType());
734    CanQual<RecordType> BaseRT = BaseT->getAs<RecordType>();
735    if (!BaseRT) return false;
736
737    CXXRecordDecl *BaseRecord = cast<CXXRecordDecl>(BaseRT->getDecl());
738    if (!IsProvablyNotDerivedFrom(SemaRef, BaseRecord, Bases))
739      return false;
740  }
741
742  return true;
743}
744
745enum IMAKind {
746  /// The reference is definitely not an instance member access.
747  IMA_Static,
748
749  /// The reference may be an implicit instance member access.
750  IMA_Mixed,
751
752  /// The reference may be to an instance member, but it is invalid if
753  /// so, because the context is not an instance method.
754  IMA_Mixed_StaticContext,
755
756  /// The reference may be to an instance member, but it is invalid if
757  /// so, because the context is from an unrelated class.
758  IMA_Mixed_Unrelated,
759
760  /// The reference is definitely an implicit instance member access.
761  IMA_Instance,
762
763  /// The reference may be to an unresolved using declaration.
764  IMA_Unresolved,
765
766  /// The reference may be to an unresolved using declaration and the
767  /// context is not an instance method.
768  IMA_Unresolved_StaticContext,
769
770  /// The reference is to a member of an anonymous structure in a
771  /// non-class context.
772  IMA_AnonymousMember,
773
774  /// All possible referrents are instance members and the current
775  /// context is not an instance method.
776  IMA_Error_StaticContext,
777
778  /// All possible referrents are instance members of an unrelated
779  /// class.
780  IMA_Error_Unrelated
781};
782
783/// The given lookup names class member(s) and is not being used for
784/// an address-of-member expression.  Classify the type of access
785/// according to whether it's possible that this reference names an
786/// instance member.  This is best-effort; it is okay to
787/// conservatively answer "yes", in which case some errors will simply
788/// not be caught until template-instantiation.
789static IMAKind ClassifyImplicitMemberAccess(Sema &SemaRef,
790                                            const LookupResult &R) {
791  assert(!R.empty() && (*R.begin())->isCXXClassMember());
792
793  DeclContext *DC = SemaRef.getFunctionLevelDeclContext();
794  bool isStaticContext =
795    (!isa<CXXMethodDecl>(DC) ||
796     cast<CXXMethodDecl>(DC)->isStatic());
797
798  if (R.isUnresolvableResult())
799    return isStaticContext ? IMA_Unresolved_StaticContext : IMA_Unresolved;
800
801  // Collect all the declaring classes of instance members we find.
802  bool hasNonInstance = false;
803  llvm::SmallPtrSet<CXXRecordDecl*, 4> Classes;
804  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
805    NamedDecl *D = *I;
806    if (D->isCXXInstanceMember()) {
807      CXXRecordDecl *R = cast<CXXRecordDecl>(D->getDeclContext());
808
809      // If this is a member of an anonymous record, move out to the
810      // innermost non-anonymous struct or union.  If there isn't one,
811      // that's a special case.
812      while (R->isAnonymousStructOrUnion()) {
813        R = dyn_cast<CXXRecordDecl>(R->getParent());
814        if (!R) return IMA_AnonymousMember;
815      }
816      Classes.insert(R->getCanonicalDecl());
817    }
818    else
819      hasNonInstance = true;
820  }
821
822  // If we didn't find any instance members, it can't be an implicit
823  // member reference.
824  if (Classes.empty())
825    return IMA_Static;
826
827  // If the current context is not an instance method, it can't be
828  // an implicit member reference.
829  if (isStaticContext)
830    return (hasNonInstance ? IMA_Mixed_StaticContext : IMA_Error_StaticContext);
831
832  // If we can prove that the current context is unrelated to all the
833  // declaring classes, it can't be an implicit member reference (in
834  // which case it's an error if any of those members are selected).
835  if (IsProvablyNotDerivedFrom(SemaRef,
836                               cast<CXXMethodDecl>(DC)->getParent(),
837                               Classes))
838    return (hasNonInstance ? IMA_Mixed_Unrelated : IMA_Error_Unrelated);
839
840  return (hasNonInstance ? IMA_Mixed : IMA_Instance);
841}
842
843/// Diagnose a reference to a field with no object available.
844static void DiagnoseInstanceReference(Sema &SemaRef,
845                                      const CXXScopeSpec &SS,
846                                      const LookupResult &R) {
847  SourceLocation Loc = R.getNameLoc();
848  SourceRange Range(Loc);
849  if (SS.isSet()) Range.setBegin(SS.getRange().getBegin());
850
851  if (R.getAsSingle<FieldDecl>()) {
852    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(SemaRef.CurContext)) {
853      if (MD->isStatic()) {
854        // "invalid use of member 'x' in static member function"
855        SemaRef.Diag(Loc, diag::err_invalid_member_use_in_static_method)
856          << Range << R.getLookupName();
857        return;
858      }
859    }
860
861    SemaRef.Diag(Loc, diag::err_invalid_non_static_member_use)
862      << R.getLookupName() << Range;
863    return;
864  }
865
866  SemaRef.Diag(Loc, diag::err_member_call_without_object) << Range;
867}
868
869/// Diagnose an empty lookup.
870///
871/// \return false if new lookup candidates were found
872bool Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R,
873                               CorrectTypoContext CTC) {
874  DeclarationName Name = R.getLookupName();
875
876  unsigned diagnostic = diag::err_undeclared_var_use;
877  unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest;
878  if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
879      Name.getNameKind() == DeclarationName::CXXLiteralOperatorName ||
880      Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
881    diagnostic = diag::err_undeclared_use;
882    diagnostic_suggest = diag::err_undeclared_use_suggest;
883  }
884
885  // If the original lookup was an unqualified lookup, fake an
886  // unqualified lookup.  This is useful when (for example) the
887  // original lookup would not have found something because it was a
888  // dependent name.
889  for (DeclContext *DC = SS.isEmpty() ? CurContext : 0;
890       DC; DC = DC->getParent()) {
891    if (isa<CXXRecordDecl>(DC)) {
892      LookupQualifiedName(R, DC);
893
894      if (!R.empty()) {
895        // Don't give errors about ambiguities in this lookup.
896        R.suppressDiagnostics();
897
898        CXXMethodDecl *CurMethod = dyn_cast<CXXMethodDecl>(CurContext);
899        bool isInstance = CurMethod &&
900                          CurMethod->isInstance() &&
901                          DC == CurMethod->getParent();
902
903        // Give a code modification hint to insert 'this->'.
904        // TODO: fixit for inserting 'Base<T>::' in the other cases.
905        // Actually quite difficult!
906        if (isInstance) {
907          Diag(R.getNameLoc(), diagnostic) << Name
908            << FixItHint::CreateInsertion(R.getNameLoc(), "this->");
909
910          UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(
911              CallsUndergoingInstantiation.back()->getCallee());
912          CXXMethodDecl *DepMethod = cast<CXXMethodDecl>(
913              CurMethod->getInstantiatedFromMemberFunction());
914          QualType DepThisType = DepMethod->getThisType(Context);
915          CXXThisExpr *DepThis = new (Context) CXXThisExpr(R.getNameLoc(),
916                                                           DepThisType, false);
917          TemplateArgumentListInfo TList;
918          if (ULE->hasExplicitTemplateArgs())
919            ULE->copyTemplateArgumentsInto(TList);
920          CXXDependentScopeMemberExpr *DepExpr =
921              CXXDependentScopeMemberExpr::Create(
922                  Context, DepThis, DepThisType, true, SourceLocation(),
923                  ULE->getQualifier(), ULE->getQualifierRange(), NULL, Name,
924                  R.getNameLoc(), &TList);
925          CallsUndergoingInstantiation.back()->setCallee(DepExpr);
926        } else {
927          Diag(R.getNameLoc(), diagnostic) << Name;
928        }
929
930        // Do we really want to note all of these?
931        for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
932          Diag((*I)->getLocation(), diag::note_dependent_var_use);
933
934        // Tell the callee to try to recover.
935        return false;
936      }
937    }
938  }
939
940  // We didn't find anything, so try to correct for a typo.
941  DeclarationName Corrected;
942  if (S && (Corrected = CorrectTypo(R, S, &SS, 0, false, CTC))) {
943    if (!R.empty()) {
944      if (isa<ValueDecl>(*R.begin()) || isa<FunctionTemplateDecl>(*R.begin())) {
945        if (SS.isEmpty())
946          Diag(R.getNameLoc(), diagnostic_suggest) << Name << R.getLookupName()
947            << FixItHint::CreateReplacement(R.getNameLoc(),
948                                            R.getLookupName().getAsString());
949        else
950          Diag(R.getNameLoc(), diag::err_no_member_suggest)
951            << Name << computeDeclContext(SS, false) << R.getLookupName()
952            << SS.getRange()
953            << FixItHint::CreateReplacement(R.getNameLoc(),
954                                            R.getLookupName().getAsString());
955        if (NamedDecl *ND = R.getAsSingle<NamedDecl>())
956          Diag(ND->getLocation(), diag::note_previous_decl)
957            << ND->getDeclName();
958
959        // Tell the callee to try to recover.
960        return false;
961      }
962
963      if (isa<TypeDecl>(*R.begin()) || isa<ObjCInterfaceDecl>(*R.begin())) {
964        // FIXME: If we ended up with a typo for a type name or
965        // Objective-C class name, we're in trouble because the parser
966        // is in the wrong place to recover. Suggest the typo
967        // correction, but don't make it a fix-it since we're not going
968        // to recover well anyway.
969        if (SS.isEmpty())
970          Diag(R.getNameLoc(), diagnostic_suggest) << Name << R.getLookupName();
971        else
972          Diag(R.getNameLoc(), diag::err_no_member_suggest)
973            << Name << computeDeclContext(SS, false) << R.getLookupName()
974            << SS.getRange();
975
976        // Don't try to recover; it won't work.
977        return true;
978      }
979    } else {
980      // FIXME: We found a keyword. Suggest it, but don't provide a fix-it
981      // because we aren't able to recover.
982      if (SS.isEmpty())
983        Diag(R.getNameLoc(), diagnostic_suggest) << Name << Corrected;
984      else
985        Diag(R.getNameLoc(), diag::err_no_member_suggest)
986        << Name << computeDeclContext(SS, false) << Corrected
987        << SS.getRange();
988      return true;
989    }
990    R.clear();
991  }
992
993  // Emit a special diagnostic for failed member lookups.
994  // FIXME: computing the declaration context might fail here (?)
995  if (!SS.isEmpty()) {
996    Diag(R.getNameLoc(), diag::err_no_member)
997      << Name << computeDeclContext(SS, false)
998      << SS.getRange();
999    return true;
1000  }
1001
1002  // Give up, we can't recover.
1003  Diag(R.getNameLoc(), diagnostic) << Name;
1004  return true;
1005}
1006
1007Sema::OwningExprResult Sema::ActOnIdExpression(Scope *S,
1008                                               CXXScopeSpec &SS,
1009                                               UnqualifiedId &Id,
1010                                               bool HasTrailingLParen,
1011                                               bool isAddressOfOperand) {
1012  assert(!(isAddressOfOperand && HasTrailingLParen) &&
1013         "cannot be direct & operand and have a trailing lparen");
1014
1015  if (SS.isInvalid())
1016    return ExprError();
1017
1018  TemplateArgumentListInfo TemplateArgsBuffer;
1019
1020  // Decompose the UnqualifiedId into the following data.
1021  DeclarationName Name;
1022  SourceLocation NameLoc;
1023  const TemplateArgumentListInfo *TemplateArgs;
1024  DecomposeUnqualifiedId(*this, Id, TemplateArgsBuffer,
1025                         Name, NameLoc, TemplateArgs);
1026
1027  IdentifierInfo *II = Name.getAsIdentifierInfo();
1028
1029  // C++ [temp.dep.expr]p3:
1030  //   An id-expression is type-dependent if it contains:
1031  //     -- an identifier that was declared with a dependent type,
1032  //        (note: handled after lookup)
1033  //     -- a template-id that is dependent,
1034  //        (note: handled in BuildTemplateIdExpr)
1035  //     -- a conversion-function-id that specifies a dependent type,
1036  //     -- a nested-name-specifier that contains a class-name that
1037  //        names a dependent type.
1038  // Determine whether this is a member of an unknown specialization;
1039  // we need to handle these differently.
1040  if ((Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
1041       Name.getCXXNameType()->isDependentType()) ||
1042      (SS.isSet() && IsDependentIdExpression(*this, SS))) {
1043    return ActOnDependentIdExpression(SS, Name, NameLoc,
1044                                      isAddressOfOperand,
1045                                      TemplateArgs);
1046  }
1047
1048  // Perform the required lookup.
1049  LookupResult R(*this, Name, NameLoc, LookupOrdinaryName);
1050  if (TemplateArgs) {
1051    // Lookup the template name again to correctly establish the context in
1052    // which it was found. This is really unfortunate as we already did the
1053    // lookup to determine that it was a template name in the first place. If
1054    // this becomes a performance hit, we can work harder to preserve those
1055    // results until we get here but it's likely not worth it.
1056    bool MemberOfUnknownSpecialization;
1057    LookupTemplateName(R, S, SS, QualType(), /*EnteringContext=*/false,
1058                       MemberOfUnknownSpecialization);
1059  } else {
1060    bool IvarLookupFollowUp = (!SS.isSet() && II && getCurMethodDecl());
1061    LookupParsedName(R, S, &SS, !IvarLookupFollowUp);
1062
1063    // If this reference is in an Objective-C method, then we need to do
1064    // some special Objective-C lookup, too.
1065    if (IvarLookupFollowUp) {
1066      OwningExprResult E(LookupInObjCMethod(R, S, II, true));
1067      if (E.isInvalid())
1068        return ExprError();
1069
1070      Expr *Ex = E.takeAs<Expr>();
1071      if (Ex) return Owned(Ex);
1072    }
1073  }
1074
1075  if (R.isAmbiguous())
1076    return ExprError();
1077
1078  // Determine whether this name might be a candidate for
1079  // argument-dependent lookup.
1080  bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen);
1081
1082  if (R.empty() && !ADL) {
1083    // Otherwise, this could be an implicitly declared function reference (legal
1084    // in C90, extension in C99, forbidden in C++).
1085    if (HasTrailingLParen && II && !getLangOptions().CPlusPlus) {
1086      NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S);
1087      if (D) R.addDecl(D);
1088    }
1089
1090    // If this name wasn't predeclared and if this is not a function
1091    // call, diagnose the problem.
1092    if (R.empty()) {
1093      if (DiagnoseEmptyLookup(S, SS, R, CTC_Unknown))
1094        return ExprError();
1095
1096      assert(!R.empty() &&
1097             "DiagnoseEmptyLookup returned false but added no results");
1098
1099      // If we found an Objective-C instance variable, let
1100      // LookupInObjCMethod build the appropriate expression to
1101      // reference the ivar.
1102      if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) {
1103        R.clear();
1104        OwningExprResult E(LookupInObjCMethod(R, S, Ivar->getIdentifier()));
1105        assert(E.isInvalid() || E.get());
1106        return move(E);
1107      }
1108    }
1109  }
1110
1111  // This is guaranteed from this point on.
1112  assert(!R.empty() || ADL);
1113
1114  if (VarDecl *Var = R.getAsSingle<VarDecl>()) {
1115    // Warn about constructs like:
1116    //   if (void *X = foo()) { ... } else { X }.
1117    // In the else block, the pointer is always false.
1118    if (Var->isDeclaredInCondition() && Var->getType()->isScalarType()) {
1119      Scope *CheckS = S;
1120      while (CheckS && CheckS->getControlParent()) {
1121        if ((CheckS->getFlags() & Scope::ElseScope) &&
1122            CheckS->getControlParent()->isDeclScope(DeclPtrTy::make(Var))) {
1123          ExprError(Diag(NameLoc, diag::warn_value_always_zero)
1124            << Var->getDeclName()
1125            << (Var->getType()->isPointerType() ? 2 :
1126                Var->getType()->isBooleanType() ? 1 : 0));
1127          break;
1128        }
1129
1130        // Move to the parent of this scope.
1131        CheckS = CheckS->getParent();
1132      }
1133    }
1134  } else if (FunctionDecl *Func = R.getAsSingle<FunctionDecl>()) {
1135    if (!getLangOptions().CPlusPlus && !Func->hasPrototype()) {
1136      // C99 DR 316 says that, if a function type comes from a
1137      // function definition (without a prototype), that type is only
1138      // used for checking compatibility. Therefore, when referencing
1139      // the function, we pretend that we don't have the full function
1140      // type.
1141      if (DiagnoseUseOfDecl(Func, NameLoc))
1142        return ExprError();
1143
1144      QualType T = Func->getType();
1145      QualType NoProtoType = T;
1146      if (const FunctionProtoType *Proto = T->getAs<FunctionProtoType>())
1147        NoProtoType = Context.getFunctionNoProtoType(Proto->getResultType(),
1148                                                     Proto->getExtInfo());
1149      return BuildDeclRefExpr(Func, NoProtoType, NameLoc, &SS);
1150    }
1151  }
1152
1153  // Check whether this might be a C++ implicit instance member access.
1154  // C++ [expr.prim.general]p6:
1155  //   Within the definition of a non-static member function, an
1156  //   identifier that names a non-static member is transformed to a
1157  //   class member access expression.
1158  // But note that &SomeClass::foo is grammatically distinct, even
1159  // though we don't parse it that way.
1160  if (!R.empty() && (*R.begin())->isCXXClassMember()) {
1161    bool isAbstractMemberPointer = (isAddressOfOperand && !SS.isEmpty());
1162    if (!isAbstractMemberPointer)
1163      return BuildPossibleImplicitMemberExpr(SS, R, TemplateArgs);
1164  }
1165
1166  if (TemplateArgs)
1167    return BuildTemplateIdExpr(SS, R, ADL, *TemplateArgs);
1168
1169  return BuildDeclarationNameExpr(SS, R, ADL);
1170}
1171
1172/// Builds an expression which might be an implicit member expression.
1173Sema::OwningExprResult
1174Sema::BuildPossibleImplicitMemberExpr(const CXXScopeSpec &SS,
1175                                      LookupResult &R,
1176                                const TemplateArgumentListInfo *TemplateArgs) {
1177  switch (ClassifyImplicitMemberAccess(*this, R)) {
1178  case IMA_Instance:
1179    return BuildImplicitMemberExpr(SS, R, TemplateArgs, true);
1180
1181  case IMA_AnonymousMember:
1182    assert(R.isSingleResult());
1183    return BuildAnonymousStructUnionMemberReference(R.getNameLoc(),
1184                                                    R.getAsSingle<FieldDecl>());
1185
1186  case IMA_Mixed:
1187  case IMA_Mixed_Unrelated:
1188  case IMA_Unresolved:
1189    return BuildImplicitMemberExpr(SS, R, TemplateArgs, false);
1190
1191  case IMA_Static:
1192  case IMA_Mixed_StaticContext:
1193  case IMA_Unresolved_StaticContext:
1194    if (TemplateArgs)
1195      return BuildTemplateIdExpr(SS, R, false, *TemplateArgs);
1196    return BuildDeclarationNameExpr(SS, R, false);
1197
1198  case IMA_Error_StaticContext:
1199  case IMA_Error_Unrelated:
1200    DiagnoseInstanceReference(*this, SS, R);
1201    return ExprError();
1202  }
1203
1204  llvm_unreachable("unexpected instance member access kind");
1205  return ExprError();
1206}
1207
1208/// BuildQualifiedDeclarationNameExpr - Build a C++ qualified
1209/// declaration name, generally during template instantiation.
1210/// There's a large number of things which don't need to be done along
1211/// this path.
1212Sema::OwningExprResult
1213Sema::BuildQualifiedDeclarationNameExpr(CXXScopeSpec &SS,
1214                                        DeclarationName Name,
1215                                        SourceLocation NameLoc) {
1216  DeclContext *DC;
1217  if (!(DC = computeDeclContext(SS, false)) || DC->isDependentContext())
1218    return BuildDependentDeclRefExpr(SS, Name, NameLoc, 0);
1219
1220  if (RequireCompleteDeclContext(SS, DC))
1221    return ExprError();
1222
1223  LookupResult R(*this, Name, NameLoc, LookupOrdinaryName);
1224  LookupQualifiedName(R, DC);
1225
1226  if (R.isAmbiguous())
1227    return ExprError();
1228
1229  if (R.empty()) {
1230    Diag(NameLoc, diag::err_no_member) << Name << DC << SS.getRange();
1231    return ExprError();
1232  }
1233
1234  return BuildDeclarationNameExpr(SS, R, /*ADL*/ false);
1235}
1236
1237/// LookupInObjCMethod - The parser has read a name in, and Sema has
1238/// detected that we're currently inside an ObjC method.  Perform some
1239/// additional lookup.
1240///
1241/// Ideally, most of this would be done by lookup, but there's
1242/// actually quite a lot of extra work involved.
1243///
1244/// Returns a null sentinel to indicate trivial success.
1245Sema::OwningExprResult
1246Sema::LookupInObjCMethod(LookupResult &Lookup, Scope *S,
1247                         IdentifierInfo *II, bool AllowBuiltinCreation) {
1248  SourceLocation Loc = Lookup.getNameLoc();
1249  ObjCMethodDecl *CurMethod = getCurMethodDecl();
1250
1251  // There are two cases to handle here.  1) scoped lookup could have failed,
1252  // in which case we should look for an ivar.  2) scoped lookup could have
1253  // found a decl, but that decl is outside the current instance method (i.e.
1254  // a global variable).  In these two cases, we do a lookup for an ivar with
1255  // this name, if the lookup sucedes, we replace it our current decl.
1256
1257  // If we're in a class method, we don't normally want to look for
1258  // ivars.  But if we don't find anything else, and there's an
1259  // ivar, that's an error.
1260  bool IsClassMethod = CurMethod->isClassMethod();
1261
1262  bool LookForIvars;
1263  if (Lookup.empty())
1264    LookForIvars = true;
1265  else if (IsClassMethod)
1266    LookForIvars = false;
1267  else
1268    LookForIvars = (Lookup.isSingleResult() &&
1269                    Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod());
1270  ObjCInterfaceDecl *IFace = 0;
1271  if (LookForIvars) {
1272    IFace = CurMethod->getClassInterface();
1273    ObjCInterfaceDecl *ClassDeclared;
1274    if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
1275      // Diagnose using an ivar in a class method.
1276      if (IsClassMethod)
1277        return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
1278                         << IV->getDeclName());
1279
1280      // If we're referencing an invalid decl, just return this as a silent
1281      // error node.  The error diagnostic was already emitted on the decl.
1282      if (IV->isInvalidDecl())
1283        return ExprError();
1284
1285      // Check if referencing a field with __attribute__((deprecated)).
1286      if (DiagnoseUseOfDecl(IV, Loc))
1287        return ExprError();
1288
1289      // Diagnose the use of an ivar outside of the declaring class.
1290      if (IV->getAccessControl() == ObjCIvarDecl::Private &&
1291          ClassDeclared != IFace)
1292        Diag(Loc, diag::error_private_ivar_access) << IV->getDeclName();
1293
1294      // FIXME: This should use a new expr for a direct reference, don't
1295      // turn this into Self->ivar, just return a BareIVarExpr or something.
1296      IdentifierInfo &II = Context.Idents.get("self");
1297      UnqualifiedId SelfName;
1298      SelfName.setIdentifier(&II, SourceLocation());
1299      CXXScopeSpec SelfScopeSpec;
1300      OwningExprResult SelfExpr = ActOnIdExpression(S, SelfScopeSpec,
1301                                                    SelfName, false, false);
1302      MarkDeclarationReferenced(Loc, IV);
1303      return Owned(new (Context)
1304                   ObjCIvarRefExpr(IV, IV->getType(), Loc,
1305                                   SelfExpr.takeAs<Expr>(), true, true));
1306    }
1307  } else if (CurMethod->isInstanceMethod()) {
1308    // We should warn if a local variable hides an ivar.
1309    ObjCInterfaceDecl *IFace = CurMethod->getClassInterface();
1310    ObjCInterfaceDecl *ClassDeclared;
1311    if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
1312      if (IV->getAccessControl() != ObjCIvarDecl::Private ||
1313          IFace == ClassDeclared)
1314        Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
1315    }
1316  }
1317
1318  if (Lookup.empty() && II && AllowBuiltinCreation) {
1319    // FIXME. Consolidate this with similar code in LookupName.
1320    if (unsigned BuiltinID = II->getBuiltinID()) {
1321      if (!(getLangOptions().CPlusPlus &&
1322            Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))) {
1323        NamedDecl *D = LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID,
1324                                           S, Lookup.isForRedeclaration(),
1325                                           Lookup.getNameLoc());
1326        if (D) Lookup.addDecl(D);
1327      }
1328    }
1329  }
1330  // Sentinel value saying that we didn't do anything special.
1331  return Owned((Expr*) 0);
1332}
1333
1334/// \brief Cast a base object to a member's actual type.
1335///
1336/// Logically this happens in three phases:
1337///
1338/// * First we cast from the base type to the naming class.
1339///   The naming class is the class into which we were looking
1340///   when we found the member;  it's the qualifier type if a
1341///   qualifier was provided, and otherwise it's the base type.
1342///
1343/// * Next we cast from the naming class to the declaring class.
1344///   If the member we found was brought into a class's scope by
1345///   a using declaration, this is that class;  otherwise it's
1346///   the class declaring the member.
1347///
1348/// * Finally we cast from the declaring class to the "true"
1349///   declaring class of the member.  This conversion does not
1350///   obey access control.
1351bool
1352Sema::PerformObjectMemberConversion(Expr *&From,
1353                                    NestedNameSpecifier *Qualifier,
1354                                    NamedDecl *FoundDecl,
1355                                    NamedDecl *Member) {
1356  CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Member->getDeclContext());
1357  if (!RD)
1358    return false;
1359
1360  QualType DestRecordType;
1361  QualType DestType;
1362  QualType FromRecordType;
1363  QualType FromType = From->getType();
1364  bool PointerConversions = false;
1365  if (isa<FieldDecl>(Member)) {
1366    DestRecordType = Context.getCanonicalType(Context.getTypeDeclType(RD));
1367
1368    if (FromType->getAs<PointerType>()) {
1369      DestType = Context.getPointerType(DestRecordType);
1370      FromRecordType = FromType->getPointeeType();
1371      PointerConversions = true;
1372    } else {
1373      DestType = DestRecordType;
1374      FromRecordType = FromType;
1375    }
1376  } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member)) {
1377    if (Method->isStatic())
1378      return false;
1379
1380    DestType = Method->getThisType(Context);
1381    DestRecordType = DestType->getPointeeType();
1382
1383    if (FromType->getAs<PointerType>()) {
1384      FromRecordType = FromType->getPointeeType();
1385      PointerConversions = true;
1386    } else {
1387      FromRecordType = FromType;
1388      DestType = DestRecordType;
1389    }
1390  } else {
1391    // No conversion necessary.
1392    return false;
1393  }
1394
1395  if (DestType->isDependentType() || FromType->isDependentType())
1396    return false;
1397
1398  // If the unqualified types are the same, no conversion is necessary.
1399  if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
1400    return false;
1401
1402  SourceRange FromRange = From->getSourceRange();
1403  SourceLocation FromLoc = FromRange.getBegin();
1404
1405  bool isLvalue
1406    = (From->isLvalue(Context) == Expr::LV_Valid) && !PointerConversions;
1407
1408  // C++ [class.member.lookup]p8:
1409  //   [...] Ambiguities can often be resolved by qualifying a name with its
1410  //   class name.
1411  //
1412  // If the member was a qualified name and the qualified referred to a
1413  // specific base subobject type, we'll cast to that intermediate type
1414  // first and then to the object in which the member is declared. That allows
1415  // one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as:
1416  //
1417  //   class Base { public: int x; };
1418  //   class Derived1 : public Base { };
1419  //   class Derived2 : public Base { };
1420  //   class VeryDerived : public Derived1, public Derived2 { void f(); };
1421  //
1422  //   void VeryDerived::f() {
1423  //     x = 17; // error: ambiguous base subobjects
1424  //     Derived1::x = 17; // okay, pick the Base subobject of Derived1
1425  //   }
1426  if (Qualifier) {
1427    QualType QType = QualType(Qualifier->getAsType(), 0);
1428    assert(!QType.isNull() && "lookup done with dependent qualifier?");
1429    assert(QType->isRecordType() && "lookup done with non-record type");
1430
1431    QualType QRecordType = QualType(QType->getAs<RecordType>(), 0);
1432
1433    // In C++98, the qualifier type doesn't actually have to be a base
1434    // type of the object type, in which case we just ignore it.
1435    // Otherwise build the appropriate casts.
1436    if (IsDerivedFrom(FromRecordType, QRecordType)) {
1437      CXXBaseSpecifierArray BasePath;
1438      if (CheckDerivedToBaseConversion(FromRecordType, QRecordType,
1439                                       FromLoc, FromRange, &BasePath))
1440        return true;
1441
1442      if (PointerConversions)
1443        QType = Context.getPointerType(QType);
1444      ImpCastExprToType(From, QType, CastExpr::CK_UncheckedDerivedToBase,
1445                        isLvalue, BasePath);
1446
1447      FromType = QType;
1448      FromRecordType = QRecordType;
1449
1450      // If the qualifier type was the same as the destination type,
1451      // we're done.
1452      if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
1453        return false;
1454    }
1455  }
1456
1457  bool IgnoreAccess = false;
1458
1459  // If we actually found the member through a using declaration, cast
1460  // down to the using declaration's type.
1461  //
1462  // Pointer equality is fine here because only one declaration of a
1463  // class ever has member declarations.
1464  if (FoundDecl->getDeclContext() != Member->getDeclContext()) {
1465    assert(isa<UsingShadowDecl>(FoundDecl));
1466    QualType URecordType = Context.getTypeDeclType(
1467                           cast<CXXRecordDecl>(FoundDecl->getDeclContext()));
1468
1469    // We only need to do this if the naming-class to declaring-class
1470    // conversion is non-trivial.
1471    if (!Context.hasSameUnqualifiedType(FromRecordType, URecordType)) {
1472      assert(IsDerivedFrom(FromRecordType, URecordType));
1473      CXXBaseSpecifierArray BasePath;
1474      if (CheckDerivedToBaseConversion(FromRecordType, URecordType,
1475                                       FromLoc, FromRange, &BasePath))
1476        return true;
1477
1478      QualType UType = URecordType;
1479      if (PointerConversions)
1480        UType = Context.getPointerType(UType);
1481      ImpCastExprToType(From, UType, CastExpr::CK_UncheckedDerivedToBase,
1482                        isLvalue, BasePath);
1483      FromType = UType;
1484      FromRecordType = URecordType;
1485    }
1486
1487    // We don't do access control for the conversion from the
1488    // declaring class to the true declaring class.
1489    IgnoreAccess = true;
1490  }
1491
1492  CXXBaseSpecifierArray BasePath;
1493  if (CheckDerivedToBaseConversion(FromRecordType, DestRecordType,
1494                                   FromLoc, FromRange, &BasePath,
1495                                   IgnoreAccess))
1496    return true;
1497
1498  ImpCastExprToType(From, DestType, CastExpr::CK_UncheckedDerivedToBase,
1499                    isLvalue, BasePath);
1500  return false;
1501}
1502
1503/// \brief Build a MemberExpr AST node.
1504static MemberExpr *BuildMemberExpr(ASTContext &C, Expr *Base, bool isArrow,
1505                                   const CXXScopeSpec &SS, ValueDecl *Member,
1506                                   DeclAccessPair FoundDecl,
1507                                   SourceLocation Loc, QualType Ty,
1508                          const TemplateArgumentListInfo *TemplateArgs = 0) {
1509  NestedNameSpecifier *Qualifier = 0;
1510  SourceRange QualifierRange;
1511  if (SS.isSet()) {
1512    Qualifier = (NestedNameSpecifier *) SS.getScopeRep();
1513    QualifierRange = SS.getRange();
1514  }
1515
1516  return MemberExpr::Create(C, Base, isArrow, Qualifier, QualifierRange,
1517                            Member, FoundDecl, Loc, TemplateArgs, Ty);
1518}
1519
1520/// Builds an implicit member access expression.  The current context
1521/// is known to be an instance method, and the given unqualified lookup
1522/// set is known to contain only instance members, at least one of which
1523/// is from an appropriate type.
1524Sema::OwningExprResult
1525Sema::BuildImplicitMemberExpr(const CXXScopeSpec &SS,
1526                              LookupResult &R,
1527                              const TemplateArgumentListInfo *TemplateArgs,
1528                              bool IsKnownInstance) {
1529  assert(!R.empty() && !R.isAmbiguous());
1530
1531  SourceLocation Loc = R.getNameLoc();
1532
1533  // We may have found a field within an anonymous union or struct
1534  // (C++ [class.union]).
1535  // FIXME: This needs to happen post-isImplicitMemberReference?
1536  // FIXME: template-ids inside anonymous structs?
1537  if (FieldDecl *FD = R.getAsSingle<FieldDecl>())
1538    if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion())
1539      return BuildAnonymousStructUnionMemberReference(Loc, FD);
1540
1541  // If this is known to be an instance access, go ahead and build a
1542  // 'this' expression now.
1543  DeclContext *DC = getFunctionLevelDeclContext();
1544  QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context);
1545  Expr *This = 0; // null signifies implicit access
1546  if (IsKnownInstance) {
1547    SourceLocation Loc = R.getNameLoc();
1548    if (SS.getRange().isValid())
1549      Loc = SS.getRange().getBegin();
1550    This = new (Context) CXXThisExpr(Loc, ThisType, /*isImplicit=*/true);
1551  }
1552
1553  return BuildMemberReferenceExpr(ExprArg(*this, This), ThisType,
1554                                  /*OpLoc*/ SourceLocation(),
1555                                  /*IsArrow*/ true,
1556                                  SS,
1557                                  /*FirstQualifierInScope*/ 0,
1558                                  R, TemplateArgs);
1559}
1560
1561bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS,
1562                                      const LookupResult &R,
1563                                      bool HasTrailingLParen) {
1564  // Only when used directly as the postfix-expression of a call.
1565  if (!HasTrailingLParen)
1566    return false;
1567
1568  // Never if a scope specifier was provided.
1569  if (SS.isSet())
1570    return false;
1571
1572  // Only in C++ or ObjC++.
1573  if (!getLangOptions().CPlusPlus)
1574    return false;
1575
1576  // Turn off ADL when we find certain kinds of declarations during
1577  // normal lookup:
1578  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
1579    NamedDecl *D = *I;
1580
1581    // C++0x [basic.lookup.argdep]p3:
1582    //     -- a declaration of a class member
1583    // Since using decls preserve this property, we check this on the
1584    // original decl.
1585    if (D->isCXXClassMember())
1586      return false;
1587
1588    // C++0x [basic.lookup.argdep]p3:
1589    //     -- a block-scope function declaration that is not a
1590    //        using-declaration
1591    // NOTE: we also trigger this for function templates (in fact, we
1592    // don't check the decl type at all, since all other decl types
1593    // turn off ADL anyway).
1594    if (isa<UsingShadowDecl>(D))
1595      D = cast<UsingShadowDecl>(D)->getTargetDecl();
1596    else if (D->getDeclContext()->isFunctionOrMethod())
1597      return false;
1598
1599    // C++0x [basic.lookup.argdep]p3:
1600    //     -- a declaration that is neither a function or a function
1601    //        template
1602    // And also for builtin functions.
1603    if (isa<FunctionDecl>(D)) {
1604      FunctionDecl *FDecl = cast<FunctionDecl>(D);
1605
1606      // But also builtin functions.
1607      if (FDecl->getBuiltinID() && FDecl->isImplicit())
1608        return false;
1609    } else if (!isa<FunctionTemplateDecl>(D))
1610      return false;
1611  }
1612
1613  return true;
1614}
1615
1616
1617/// Diagnoses obvious problems with the use of the given declaration
1618/// as an expression.  This is only actually called for lookups that
1619/// were not overloaded, and it doesn't promise that the declaration
1620/// will in fact be used.
1621static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D) {
1622  if (isa<TypedefDecl>(D)) {
1623    S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName();
1624    return true;
1625  }
1626
1627  if (isa<ObjCInterfaceDecl>(D)) {
1628    S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName();
1629    return true;
1630  }
1631
1632  if (isa<NamespaceDecl>(D)) {
1633    S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName();
1634    return true;
1635  }
1636
1637  return false;
1638}
1639
1640Sema::OwningExprResult
1641Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
1642                               LookupResult &R,
1643                               bool NeedsADL) {
1644  // If this is a single, fully-resolved result and we don't need ADL,
1645  // just build an ordinary singleton decl ref.
1646  if (!NeedsADL && R.isSingleResult() && !R.getAsSingle<FunctionTemplateDecl>())
1647    return BuildDeclarationNameExpr(SS, R.getNameLoc(), R.getFoundDecl());
1648
1649  // We only need to check the declaration if there's exactly one
1650  // result, because in the overloaded case the results can only be
1651  // functions and function templates.
1652  if (R.isSingleResult() &&
1653      CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl()))
1654    return ExprError();
1655
1656  // Otherwise, just build an unresolved lookup expression.  Suppress
1657  // any lookup-related diagnostics; we'll hash these out later, when
1658  // we've picked a target.
1659  R.suppressDiagnostics();
1660
1661  bool Dependent
1662    = UnresolvedLookupExpr::ComputeDependence(R.begin(), R.end(), 0);
1663  UnresolvedLookupExpr *ULE
1664    = UnresolvedLookupExpr::Create(Context, Dependent, R.getNamingClass(),
1665                                   (NestedNameSpecifier*) SS.getScopeRep(),
1666                                   SS.getRange(),
1667                                   R.getLookupName(), R.getNameLoc(),
1668                                   NeedsADL, R.isOverloadedResult(),
1669                                   R.begin(), R.end());
1670
1671  return Owned(ULE);
1672}
1673
1674
1675/// \brief Complete semantic analysis for a reference to the given declaration.
1676Sema::OwningExprResult
1677Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
1678                               SourceLocation Loc, NamedDecl *D) {
1679  assert(D && "Cannot refer to a NULL declaration");
1680  assert(!isa<FunctionTemplateDecl>(D) &&
1681         "Cannot refer unambiguously to a function template");
1682
1683  if (CheckDeclInExpr(*this, Loc, D))
1684    return ExprError();
1685
1686  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) {
1687    // Specifically diagnose references to class templates that are missing
1688    // a template argument list.
1689    Diag(Loc, diag::err_template_decl_ref)
1690      << Template << SS.getRange();
1691    Diag(Template->getLocation(), diag::note_template_decl_here);
1692    return ExprError();
1693  }
1694
1695  // Make sure that we're referring to a value.
1696  ValueDecl *VD = dyn_cast<ValueDecl>(D);
1697  if (!VD) {
1698    Diag(Loc, diag::err_ref_non_value)
1699      << D << SS.getRange();
1700    Diag(D->getLocation(), diag::note_declared_at);
1701    return ExprError();
1702  }
1703
1704  // Check whether this declaration can be used. Note that we suppress
1705  // this check when we're going to perform argument-dependent lookup
1706  // on this function name, because this might not be the function
1707  // that overload resolution actually selects.
1708  if (DiagnoseUseOfDecl(VD, Loc))
1709    return ExprError();
1710
1711  // Only create DeclRefExpr's for valid Decl's.
1712  if (VD->isInvalidDecl())
1713    return ExprError();
1714
1715  // If the identifier reference is inside a block, and it refers to a value
1716  // that is outside the block, create a BlockDeclRefExpr instead of a
1717  // DeclRefExpr.  This ensures the value is treated as a copy-in snapshot when
1718  // the block is formed.
1719  //
1720  // We do not do this for things like enum constants, global variables, etc,
1721  // as they do not get snapshotted.
1722  //
1723  if (getCurBlock() &&
1724      ShouldSnapshotBlockValueReference(*this, getCurBlock(), VD)) {
1725    if (VD->getType().getTypePtr()->isVariablyModifiedType()) {
1726      Diag(Loc, diag::err_ref_vm_type);
1727      Diag(D->getLocation(), diag::note_declared_at);
1728      return ExprError();
1729    }
1730
1731    if (VD->getType()->isArrayType()) {
1732      Diag(Loc, diag::err_ref_array_type);
1733      Diag(D->getLocation(), diag::note_declared_at);
1734      return ExprError();
1735    }
1736
1737    MarkDeclarationReferenced(Loc, VD);
1738    QualType ExprTy = VD->getType().getNonReferenceType();
1739    // The BlocksAttr indicates the variable is bound by-reference.
1740    if (VD->getAttr<BlocksAttr>())
1741      return Owned(new (Context) BlockDeclRefExpr(VD, ExprTy, Loc, true));
1742    // This is to record that a 'const' was actually synthesize and added.
1743    bool constAdded = !ExprTy.isConstQualified();
1744    // Variable will be bound by-copy, make it const within the closure.
1745
1746    ExprTy.addConst();
1747    BlockDeclRefExpr *BDRE = new (Context) BlockDeclRefExpr(VD,
1748                                                            ExprTy, Loc, false,
1749                                                            constAdded);
1750    QualType T = VD->getType();
1751    if (getLangOptions().CPlusPlus && !T->isDependentType() &&
1752        !T->isReferenceType()) {
1753      Expr *E = new (Context)
1754                  DeclRefExpr(const_cast<ValueDecl*>(BDRE->getDecl()), T,
1755                                         SourceLocation());
1756
1757      OwningExprResult Res = PerformCopyInitialization(
1758                      InitializedEntity::InitializeBlock(VD->getLocation(),
1759                                                         T, false),
1760                      SourceLocation(),
1761                      Owned(E));
1762      if (!Res.isInvalid()) {
1763        Res = MaybeCreateCXXExprWithTemporaries(move(Res));
1764        Expr *Init = Res.takeAs<Expr>();
1765        BDRE->setCopyConstructorExpr(Init);
1766      }
1767    }
1768    return Owned(BDRE);
1769  }
1770  // If this reference is not in a block or if the referenced variable is
1771  // within the block, create a normal DeclRefExpr.
1772
1773  return BuildDeclRefExpr(VD, VD->getType().getNonReferenceType(), Loc, &SS);
1774}
1775
1776Sema::OwningExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc,
1777                                                 tok::TokenKind Kind) {
1778  PredefinedExpr::IdentType IT;
1779
1780  switch (Kind) {
1781  default: assert(0 && "Unknown simple primary expr!");
1782  case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
1783  case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
1784  case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
1785  }
1786
1787  // Pre-defined identifiers are of type char[x], where x is the length of the
1788  // string.
1789
1790  Decl *currentDecl = getCurFunctionOrMethodDecl();
1791  if (!currentDecl) {
1792    Diag(Loc, diag::ext_predef_outside_function);
1793    currentDecl = Context.getTranslationUnitDecl();
1794  }
1795
1796  QualType ResTy;
1797  if (cast<DeclContext>(currentDecl)->isDependentContext()) {
1798    ResTy = Context.DependentTy;
1799  } else {
1800    unsigned Length = PredefinedExpr::ComputeName(IT, currentDecl).length();
1801
1802    llvm::APInt LengthI(32, Length + 1);
1803    ResTy = Context.CharTy.withConst();
1804    ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
1805  }
1806  return Owned(new (Context) PredefinedExpr(Loc, ResTy, IT));
1807}
1808
1809Sema::OwningExprResult Sema::ActOnCharacterConstant(const Token &Tok) {
1810  llvm::SmallString<16> CharBuffer;
1811  bool Invalid = false;
1812  llvm::StringRef ThisTok = PP.getSpelling(Tok, CharBuffer, &Invalid);
1813  if (Invalid)
1814    return ExprError();
1815
1816  CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(),
1817                            PP);
1818  if (Literal.hadError())
1819    return ExprError();
1820
1821  QualType Ty;
1822  if (!getLangOptions().CPlusPlus)
1823    Ty = Context.IntTy;   // 'x' and L'x' -> int in C.
1824  else if (Literal.isWide())
1825    Ty = Context.WCharTy; // L'x' -> wchar_t in C++.
1826  else if (Literal.isMultiChar())
1827    Ty = Context.IntTy;   // 'wxyz' -> int in C++.
1828  else
1829    Ty = Context.CharTy;  // 'x' -> char in C++
1830
1831  return Owned(new (Context) CharacterLiteral(Literal.getValue(),
1832                                              Literal.isWide(),
1833                                              Ty, Tok.getLocation()));
1834}
1835
1836Action::OwningExprResult Sema::ActOnNumericConstant(const Token &Tok) {
1837  // Fast path for a single digit (which is quite common).  A single digit
1838  // cannot have a trigraph, escaped newline, radix prefix, or type suffix.
1839  if (Tok.getLength() == 1) {
1840    const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
1841    unsigned IntSize = Context.Target.getIntWidth();
1842    return Owned(new (Context) IntegerLiteral(llvm::APInt(IntSize, Val-'0'),
1843                    Context.IntTy, Tok.getLocation()));
1844  }
1845
1846  llvm::SmallString<512> IntegerBuffer;
1847  // Add padding so that NumericLiteralParser can overread by one character.
1848  IntegerBuffer.resize(Tok.getLength()+1);
1849  const char *ThisTokBegin = &IntegerBuffer[0];
1850
1851  // Get the spelling of the token, which eliminates trigraphs, etc.
1852  bool Invalid = false;
1853  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin, &Invalid);
1854  if (Invalid)
1855    return ExprError();
1856
1857  NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
1858                               Tok.getLocation(), PP);
1859  if (Literal.hadError)
1860    return ExprError();
1861
1862  Expr *Res;
1863
1864  if (Literal.isFloatingLiteral()) {
1865    QualType Ty;
1866    if (Literal.isFloat)
1867      Ty = Context.FloatTy;
1868    else if (!Literal.isLong)
1869      Ty = Context.DoubleTy;
1870    else
1871      Ty = Context.LongDoubleTy;
1872
1873    const llvm::fltSemantics &Format = Context.getFloatTypeSemantics(Ty);
1874
1875    using llvm::APFloat;
1876    APFloat Val(Format);
1877
1878    APFloat::opStatus result = Literal.GetFloatValue(Val);
1879
1880    // Overflow is always an error, but underflow is only an error if
1881    // we underflowed to zero (APFloat reports denormals as underflow).
1882    if ((result & APFloat::opOverflow) ||
1883        ((result & APFloat::opUnderflow) && Val.isZero())) {
1884      unsigned diagnostic;
1885      llvm::SmallString<20> buffer;
1886      if (result & APFloat::opOverflow) {
1887        diagnostic = diag::warn_float_overflow;
1888        APFloat::getLargest(Format).toString(buffer);
1889      } else {
1890        diagnostic = diag::warn_float_underflow;
1891        APFloat::getSmallest(Format).toString(buffer);
1892      }
1893
1894      Diag(Tok.getLocation(), diagnostic)
1895        << Ty
1896        << llvm::StringRef(buffer.data(), buffer.size());
1897    }
1898
1899    bool isExact = (result == APFloat::opOK);
1900    Res = new (Context) FloatingLiteral(Val, isExact, Ty, Tok.getLocation());
1901
1902  } else if (!Literal.isIntegerLiteral()) {
1903    return ExprError();
1904  } else {
1905    QualType Ty;
1906
1907    // long long is a C99 feature.
1908    if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
1909        Literal.isLongLong)
1910      Diag(Tok.getLocation(), diag::ext_longlong);
1911
1912    // Get the value in the widest-possible width.
1913    llvm::APInt ResultVal(Context.Target.getIntMaxTWidth(), 0);
1914
1915    if (Literal.GetIntegerValue(ResultVal)) {
1916      // If this value didn't fit into uintmax_t, warn and force to ull.
1917      Diag(Tok.getLocation(), diag::warn_integer_too_large);
1918      Ty = Context.UnsignedLongLongTy;
1919      assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
1920             "long long is not intmax_t?");
1921    } else {
1922      // If this value fits into a ULL, try to figure out what else it fits into
1923      // according to the rules of C99 6.4.4.1p5.
1924
1925      // Octal, Hexadecimal, and integers with a U suffix are allowed to
1926      // be an unsigned int.
1927      bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
1928
1929      // Check from smallest to largest, picking the smallest type we can.
1930      unsigned Width = 0;
1931      if (!Literal.isLong && !Literal.isLongLong) {
1932        // Are int/unsigned possibilities?
1933        unsigned IntSize = Context.Target.getIntWidth();
1934
1935        // Does it fit in a unsigned int?
1936        if (ResultVal.isIntN(IntSize)) {
1937          // Does it fit in a signed int?
1938          if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
1939            Ty = Context.IntTy;
1940          else if (AllowUnsigned)
1941            Ty = Context.UnsignedIntTy;
1942          Width = IntSize;
1943        }
1944      }
1945
1946      // Are long/unsigned long possibilities?
1947      if (Ty.isNull() && !Literal.isLongLong) {
1948        unsigned LongSize = Context.Target.getLongWidth();
1949
1950        // Does it fit in a unsigned long?
1951        if (ResultVal.isIntN(LongSize)) {
1952          // Does it fit in a signed long?
1953          if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
1954            Ty = Context.LongTy;
1955          else if (AllowUnsigned)
1956            Ty = Context.UnsignedLongTy;
1957          Width = LongSize;
1958        }
1959      }
1960
1961      // Finally, check long long if needed.
1962      if (Ty.isNull()) {
1963        unsigned LongLongSize = Context.Target.getLongLongWidth();
1964
1965        // Does it fit in a unsigned long long?
1966        if (ResultVal.isIntN(LongLongSize)) {
1967          // Does it fit in a signed long long?
1968          if (!Literal.isUnsigned && ResultVal[LongLongSize-1] == 0)
1969            Ty = Context.LongLongTy;
1970          else if (AllowUnsigned)
1971            Ty = Context.UnsignedLongLongTy;
1972          Width = LongLongSize;
1973        }
1974      }
1975
1976      // If we still couldn't decide a type, we probably have something that
1977      // does not fit in a signed long long, but has no U suffix.
1978      if (Ty.isNull()) {
1979        Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
1980        Ty = Context.UnsignedLongLongTy;
1981        Width = Context.Target.getLongLongWidth();
1982      }
1983
1984      if (ResultVal.getBitWidth() != Width)
1985        ResultVal.trunc(Width);
1986    }
1987    Res = new (Context) IntegerLiteral(ResultVal, Ty, Tok.getLocation());
1988  }
1989
1990  // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
1991  if (Literal.isImaginary)
1992    Res = new (Context) ImaginaryLiteral(Res,
1993                                        Context.getComplexType(Res->getType()));
1994
1995  return Owned(Res);
1996}
1997
1998Action::OwningExprResult Sema::ActOnParenExpr(SourceLocation L,
1999                                              SourceLocation R, ExprArg Val) {
2000  Expr *E = Val.takeAs<Expr>();
2001  assert((E != 0) && "ActOnParenExpr() missing expr");
2002  return Owned(new (Context) ParenExpr(L, R, E));
2003}
2004
2005/// The UsualUnaryConversions() function is *not* called by this routine.
2006/// See C99 6.3.2.1p[2-4] for more details.
2007bool Sema::CheckSizeOfAlignOfOperand(QualType exprType,
2008                                     SourceLocation OpLoc,
2009                                     const SourceRange &ExprRange,
2010                                     bool isSizeof) {
2011  if (exprType->isDependentType())
2012    return false;
2013
2014  // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
2015  //   the result is the size of the referenced type."
2016  // C++ [expr.alignof]p3: "When alignof is applied to a reference type, the
2017  //   result shall be the alignment of the referenced type."
2018  if (const ReferenceType *Ref = exprType->getAs<ReferenceType>())
2019    exprType = Ref->getPointeeType();
2020
2021  // C99 6.5.3.4p1:
2022  if (exprType->isFunctionType()) {
2023    // alignof(function) is allowed as an extension.
2024    if (isSizeof)
2025      Diag(OpLoc, diag::ext_sizeof_function_type) << ExprRange;
2026    return false;
2027  }
2028
2029  // Allow sizeof(void)/alignof(void) as an extension.
2030  if (exprType->isVoidType()) {
2031    Diag(OpLoc, diag::ext_sizeof_void_type)
2032      << (isSizeof ? "sizeof" : "__alignof") << ExprRange;
2033    return false;
2034  }
2035
2036  if (RequireCompleteType(OpLoc, exprType,
2037                          PDiag(diag::err_sizeof_alignof_incomplete_type)
2038                          << int(!isSizeof) << ExprRange))
2039    return true;
2040
2041  // Reject sizeof(interface) and sizeof(interface<proto>) in 64-bit mode.
2042  if (LangOpts.ObjCNonFragileABI && exprType->isObjCObjectType()) {
2043    Diag(OpLoc, diag::err_sizeof_nonfragile_interface)
2044      << exprType << isSizeof << ExprRange;
2045    return true;
2046  }
2047
2048  if (Context.hasSameUnqualifiedType(exprType, Context.OverloadTy)) {
2049    Diag(OpLoc, diag::err_sizeof_alignof_overloaded_function_type)
2050      << !isSizeof << ExprRange;
2051    return true;
2052  }
2053
2054  return false;
2055}
2056
2057bool Sema::CheckAlignOfExpr(Expr *E, SourceLocation OpLoc,
2058                            const SourceRange &ExprRange) {
2059  E = E->IgnoreParens();
2060
2061  // alignof decl is always ok.
2062  if (isa<DeclRefExpr>(E))
2063    return false;
2064
2065  // Cannot know anything else if the expression is dependent.
2066  if (E->isTypeDependent())
2067    return false;
2068
2069  if (E->getBitField()) {
2070    Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 1 << ExprRange;
2071    return true;
2072  }
2073
2074  // Alignment of a field access is always okay, so long as it isn't a
2075  // bit-field.
2076  if (MemberExpr *ME = dyn_cast<MemberExpr>(E))
2077    if (isa<FieldDecl>(ME->getMemberDecl()))
2078      return false;
2079
2080  return CheckSizeOfAlignOfOperand(E->getType(), OpLoc, ExprRange, false);
2081}
2082
2083/// \brief Build a sizeof or alignof expression given a type operand.
2084Action::OwningExprResult
2085Sema::CreateSizeOfAlignOfExpr(TypeSourceInfo *TInfo,
2086                              SourceLocation OpLoc,
2087                              bool isSizeOf, SourceRange R) {
2088  if (!TInfo)
2089    return ExprError();
2090
2091  QualType T = TInfo->getType();
2092
2093  if (!T->isDependentType() &&
2094      CheckSizeOfAlignOfOperand(T, OpLoc, R, isSizeOf))
2095    return ExprError();
2096
2097  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
2098  return Owned(new (Context) SizeOfAlignOfExpr(isSizeOf, TInfo,
2099                                               Context.getSizeType(), OpLoc,
2100                                               R.getEnd()));
2101}
2102
2103/// \brief Build a sizeof or alignof expression given an expression
2104/// operand.
2105Action::OwningExprResult
2106Sema::CreateSizeOfAlignOfExpr(Expr *E, SourceLocation OpLoc,
2107                              bool isSizeOf, SourceRange R) {
2108  // Verify that the operand is valid.
2109  bool isInvalid = false;
2110  if (E->isTypeDependent()) {
2111    // Delay type-checking for type-dependent expressions.
2112  } else if (!isSizeOf) {
2113    isInvalid = CheckAlignOfExpr(E, OpLoc, R);
2114  } else if (E->getBitField()) {  // C99 6.5.3.4p1.
2115    Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 0;
2116    isInvalid = true;
2117  } else {
2118    isInvalid = CheckSizeOfAlignOfOperand(E->getType(), OpLoc, R, true);
2119  }
2120
2121  if (isInvalid)
2122    return ExprError();
2123
2124  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
2125  return Owned(new (Context) SizeOfAlignOfExpr(isSizeOf, E,
2126                                               Context.getSizeType(), OpLoc,
2127                                               R.getEnd()));
2128}
2129
2130/// ActOnSizeOfAlignOfExpr - Handle @c sizeof(type) and @c sizeof @c expr and
2131/// the same for @c alignof and @c __alignof
2132/// Note that the ArgRange is invalid if isType is false.
2133Action::OwningExprResult
2134Sema::ActOnSizeOfAlignOfExpr(SourceLocation OpLoc, bool isSizeof, bool isType,
2135                             void *TyOrEx, const SourceRange &ArgRange) {
2136  // If error parsing type, ignore.
2137  if (TyOrEx == 0) return ExprError();
2138
2139  if (isType) {
2140    TypeSourceInfo *TInfo;
2141    (void) GetTypeFromParser(TyOrEx, &TInfo);
2142    return CreateSizeOfAlignOfExpr(TInfo, OpLoc, isSizeof, ArgRange);
2143  }
2144
2145  Expr *ArgEx = (Expr *)TyOrEx;
2146  Action::OwningExprResult Result
2147    = CreateSizeOfAlignOfExpr(ArgEx, OpLoc, isSizeof, ArgEx->getSourceRange());
2148
2149  if (Result.isInvalid())
2150    DeleteExpr(ArgEx);
2151
2152  return move(Result);
2153}
2154
2155QualType Sema::CheckRealImagOperand(Expr *&V, SourceLocation Loc, bool isReal) {
2156  if (V->isTypeDependent())
2157    return Context.DependentTy;
2158
2159  // These operators return the element type of a complex type.
2160  if (const ComplexType *CT = V->getType()->getAs<ComplexType>())
2161    return CT->getElementType();
2162
2163  // Otherwise they pass through real integer and floating point types here.
2164  if (V->getType()->isArithmeticType())
2165    return V->getType();
2166
2167  // Reject anything else.
2168  Diag(Loc, diag::err_realimag_invalid_type) << V->getType()
2169    << (isReal ? "__real" : "__imag");
2170  return QualType();
2171}
2172
2173
2174
2175Action::OwningExprResult
2176Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
2177                          tok::TokenKind Kind, ExprArg Input) {
2178  UnaryOperator::Opcode Opc;
2179  switch (Kind) {
2180  default: assert(0 && "Unknown unary op!");
2181  case tok::plusplus:   Opc = UnaryOperator::PostInc; break;
2182  case tok::minusminus: Opc = UnaryOperator::PostDec; break;
2183  }
2184
2185  return BuildUnaryOp(S, OpLoc, Opc, move(Input));
2186}
2187
2188Action::OwningExprResult
2189Sema::ActOnArraySubscriptExpr(Scope *S, ExprArg Base, SourceLocation LLoc,
2190                              ExprArg Idx, SourceLocation RLoc) {
2191  // Since this might be a postfix expression, get rid of ParenListExprs.
2192  Base = MaybeConvertParenListExprToParenExpr(S, move(Base));
2193
2194  Expr *LHSExp = static_cast<Expr*>(Base.get()),
2195       *RHSExp = static_cast<Expr*>(Idx.get());
2196
2197  if (getLangOptions().CPlusPlus &&
2198      (LHSExp->isTypeDependent() || RHSExp->isTypeDependent())) {
2199    Base.release();
2200    Idx.release();
2201    return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
2202                                                  Context.DependentTy, RLoc));
2203  }
2204
2205  if (getLangOptions().CPlusPlus &&
2206      (LHSExp->getType()->isRecordType() ||
2207       LHSExp->getType()->isEnumeralType() ||
2208       RHSExp->getType()->isRecordType() ||
2209       RHSExp->getType()->isEnumeralType())) {
2210    return CreateOverloadedArraySubscriptExpr(LLoc, RLoc, move(Base),move(Idx));
2211  }
2212
2213  return CreateBuiltinArraySubscriptExpr(move(Base), LLoc, move(Idx), RLoc);
2214}
2215
2216
2217Action::OwningExprResult
2218Sema::CreateBuiltinArraySubscriptExpr(ExprArg Base, SourceLocation LLoc,
2219                                     ExprArg Idx, SourceLocation RLoc) {
2220  Expr *LHSExp = static_cast<Expr*>(Base.get());
2221  Expr *RHSExp = static_cast<Expr*>(Idx.get());
2222
2223  // Perform default conversions.
2224  if (!LHSExp->getType()->getAs<VectorType>())
2225      DefaultFunctionArrayLvalueConversion(LHSExp);
2226  DefaultFunctionArrayLvalueConversion(RHSExp);
2227
2228  QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
2229
2230  // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
2231  // to the expression *((e1)+(e2)). This means the array "Base" may actually be
2232  // in the subscript position. As a result, we need to derive the array base
2233  // and index from the expression types.
2234  Expr *BaseExpr, *IndexExpr;
2235  QualType ResultType;
2236  if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
2237    BaseExpr = LHSExp;
2238    IndexExpr = RHSExp;
2239    ResultType = Context.DependentTy;
2240  } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) {
2241    BaseExpr = LHSExp;
2242    IndexExpr = RHSExp;
2243    ResultType = PTy->getPointeeType();
2244  } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) {
2245     // Handle the uncommon case of "123[Ptr]".
2246    BaseExpr = RHSExp;
2247    IndexExpr = LHSExp;
2248    ResultType = PTy->getPointeeType();
2249  } else if (const ObjCObjectPointerType *PTy =
2250               LHSTy->getAs<ObjCObjectPointerType>()) {
2251    BaseExpr = LHSExp;
2252    IndexExpr = RHSExp;
2253    ResultType = PTy->getPointeeType();
2254  } else if (const ObjCObjectPointerType *PTy =
2255               RHSTy->getAs<ObjCObjectPointerType>()) {
2256     // Handle the uncommon case of "123[Ptr]".
2257    BaseExpr = RHSExp;
2258    IndexExpr = LHSExp;
2259    ResultType = PTy->getPointeeType();
2260  } else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) {
2261    BaseExpr = LHSExp;    // vectors: V[123]
2262    IndexExpr = RHSExp;
2263
2264    // FIXME: need to deal with const...
2265    ResultType = VTy->getElementType();
2266  } else if (LHSTy->isArrayType()) {
2267    // If we see an array that wasn't promoted by
2268    // DefaultFunctionArrayLvalueConversion, it must be an array that
2269    // wasn't promoted because of the C90 rule that doesn't
2270    // allow promoting non-lvalue arrays.  Warn, then
2271    // force the promotion here.
2272    Diag(LHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
2273        LHSExp->getSourceRange();
2274    ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy),
2275                      CastExpr::CK_ArrayToPointerDecay);
2276    LHSTy = LHSExp->getType();
2277
2278    BaseExpr = LHSExp;
2279    IndexExpr = RHSExp;
2280    ResultType = LHSTy->getAs<PointerType>()->getPointeeType();
2281  } else if (RHSTy->isArrayType()) {
2282    // Same as previous, except for 123[f().a] case
2283    Diag(RHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
2284        RHSExp->getSourceRange();
2285    ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy),
2286                      CastExpr::CK_ArrayToPointerDecay);
2287    RHSTy = RHSExp->getType();
2288
2289    BaseExpr = RHSExp;
2290    IndexExpr = LHSExp;
2291    ResultType = RHSTy->getAs<PointerType>()->getPointeeType();
2292  } else {
2293    return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
2294       << LHSExp->getSourceRange() << RHSExp->getSourceRange());
2295  }
2296  // C99 6.5.2.1p1
2297  if (!(IndexExpr->getType()->isIntegerType() &&
2298        IndexExpr->getType()->isScalarType()) && !IndexExpr->isTypeDependent())
2299    return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
2300                     << IndexExpr->getSourceRange());
2301
2302  if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
2303       IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
2304         && !IndexExpr->isTypeDependent())
2305    Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange();
2306
2307  // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
2308  // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
2309  // type. Note that Functions are not objects, and that (in C99 parlance)
2310  // incomplete types are not object types.
2311  if (ResultType->isFunctionType()) {
2312    Diag(BaseExpr->getLocStart(), diag::err_subscript_function_type)
2313      << ResultType << BaseExpr->getSourceRange();
2314    return ExprError();
2315  }
2316
2317  if (!ResultType->isDependentType() &&
2318      RequireCompleteType(LLoc, ResultType,
2319                          PDiag(diag::err_subscript_incomplete_type)
2320                            << BaseExpr->getSourceRange()))
2321    return ExprError();
2322
2323  // Diagnose bad cases where we step over interface counts.
2324  if (ResultType->isObjCObjectType() && LangOpts.ObjCNonFragileABI) {
2325    Diag(LLoc, diag::err_subscript_nonfragile_interface)
2326      << ResultType << BaseExpr->getSourceRange();
2327    return ExprError();
2328  }
2329
2330  Base.release();
2331  Idx.release();
2332  return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
2333                                                ResultType, RLoc));
2334}
2335
2336QualType Sema::
2337CheckExtVectorComponent(QualType baseType, SourceLocation OpLoc,
2338                        const IdentifierInfo *CompName,
2339                        SourceLocation CompLoc) {
2340  // FIXME: Share logic with ExtVectorElementExpr::containsDuplicateElements,
2341  // see FIXME there.
2342  //
2343  // FIXME: This logic can be greatly simplified by splitting it along
2344  // halving/not halving and reworking the component checking.
2345  const ExtVectorType *vecType = baseType->getAs<ExtVectorType>();
2346
2347  // The vector accessor can't exceed the number of elements.
2348  const char *compStr = CompName->getNameStart();
2349
2350  // This flag determines whether or not the component is one of the four
2351  // special names that indicate a subset of exactly half the elements are
2352  // to be selected.
2353  bool HalvingSwizzle = false;
2354
2355  // This flag determines whether or not CompName has an 's' char prefix,
2356  // indicating that it is a string of hex values to be used as vector indices.
2357  bool HexSwizzle = *compStr == 's' || *compStr == 'S';
2358
2359  // Check that we've found one of the special components, or that the component
2360  // names must come from the same set.
2361  if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
2362      !strcmp(compStr, "even") || !strcmp(compStr, "odd")) {
2363    HalvingSwizzle = true;
2364  } else if (vecType->getPointAccessorIdx(*compStr) != -1) {
2365    do
2366      compStr++;
2367    while (*compStr && vecType->getPointAccessorIdx(*compStr) != -1);
2368  } else if (HexSwizzle || vecType->getNumericAccessorIdx(*compStr) != -1) {
2369    do
2370      compStr++;
2371    while (*compStr && vecType->getNumericAccessorIdx(*compStr) != -1);
2372  }
2373
2374  if (!HalvingSwizzle && *compStr) {
2375    // We didn't get to the end of the string. This means the component names
2376    // didn't come from the same set *or* we encountered an illegal name.
2377    Diag(OpLoc, diag::err_ext_vector_component_name_illegal)
2378      << std::string(compStr,compStr+1) << SourceRange(CompLoc);
2379    return QualType();
2380  }
2381
2382  // Ensure no component accessor exceeds the width of the vector type it
2383  // operates on.
2384  if (!HalvingSwizzle) {
2385    compStr = CompName->getNameStart();
2386
2387    if (HexSwizzle)
2388      compStr++;
2389
2390    while (*compStr) {
2391      if (!vecType->isAccessorWithinNumElements(*compStr++)) {
2392        Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
2393          << baseType << SourceRange(CompLoc);
2394        return QualType();
2395      }
2396    }
2397  }
2398
2399  // The component accessor looks fine - now we need to compute the actual type.
2400  // The vector type is implied by the component accessor. For example,
2401  // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
2402  // vec4.s0 is a float, vec4.s23 is a vec3, etc.
2403  // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
2404  unsigned CompSize = HalvingSwizzle ? (vecType->getNumElements() + 1) / 2
2405                                     : CompName->getLength();
2406  if (HexSwizzle)
2407    CompSize--;
2408
2409  if (CompSize == 1)
2410    return vecType->getElementType();
2411
2412  QualType VT = Context.getExtVectorType(vecType->getElementType(), CompSize);
2413  // Now look up the TypeDefDecl from the vector type. Without this,
2414  // diagostics look bad. We want extended vector types to appear built-in.
2415  for (unsigned i = 0, E = ExtVectorDecls.size(); i != E; ++i) {
2416    if (ExtVectorDecls[i]->getUnderlyingType() == VT)
2417      return Context.getTypedefType(ExtVectorDecls[i]);
2418  }
2419  return VT; // should never get here (a typedef type should always be found).
2420}
2421
2422static Decl *FindGetterNameDeclFromProtocolList(const ObjCProtocolDecl*PDecl,
2423                                                IdentifierInfo *Member,
2424                                                const Selector &Sel,
2425                                                ASTContext &Context) {
2426
2427  if (ObjCPropertyDecl *PD = PDecl->FindPropertyDeclaration(Member))
2428    return PD;
2429  if (ObjCMethodDecl *OMD = PDecl->getInstanceMethod(Sel))
2430    return OMD;
2431
2432  for (ObjCProtocolDecl::protocol_iterator I = PDecl->protocol_begin(),
2433       E = PDecl->protocol_end(); I != E; ++I) {
2434    if (Decl *D = FindGetterNameDeclFromProtocolList(*I, Member, Sel,
2435                                                     Context))
2436      return D;
2437  }
2438  return 0;
2439}
2440
2441static Decl *FindGetterNameDecl(const ObjCObjectPointerType *QIdTy,
2442                                IdentifierInfo *Member,
2443                                const Selector &Sel,
2444                                ASTContext &Context) {
2445  // Check protocols on qualified interfaces.
2446  Decl *GDecl = 0;
2447  for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
2448       E = QIdTy->qual_end(); I != E; ++I) {
2449    if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(Member)) {
2450      GDecl = PD;
2451      break;
2452    }
2453    // Also must look for a getter name which uses property syntax.
2454    if (ObjCMethodDecl *OMD = (*I)->getInstanceMethod(Sel)) {
2455      GDecl = OMD;
2456      break;
2457    }
2458  }
2459  if (!GDecl) {
2460    for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
2461         E = QIdTy->qual_end(); I != E; ++I) {
2462      // Search in the protocol-qualifier list of current protocol.
2463      GDecl = FindGetterNameDeclFromProtocolList(*I, Member, Sel, Context);
2464      if (GDecl)
2465        return GDecl;
2466    }
2467  }
2468  return GDecl;
2469}
2470
2471Sema::OwningExprResult
2472Sema::ActOnDependentMemberExpr(ExprArg Base, QualType BaseType,
2473                               bool IsArrow, SourceLocation OpLoc,
2474                               const CXXScopeSpec &SS,
2475                               NamedDecl *FirstQualifierInScope,
2476                               DeclarationName Name, SourceLocation NameLoc,
2477                               const TemplateArgumentListInfo *TemplateArgs) {
2478  Expr *BaseExpr = Base.takeAs<Expr>();
2479
2480  // Even in dependent contexts, try to diagnose base expressions with
2481  // obviously wrong types, e.g.:
2482  //
2483  // T* t;
2484  // t.f;
2485  //
2486  // In Obj-C++, however, the above expression is valid, since it could be
2487  // accessing the 'f' property if T is an Obj-C interface. The extra check
2488  // allows this, while still reporting an error if T is a struct pointer.
2489  if (!IsArrow) {
2490    const PointerType *PT = BaseType->getAs<PointerType>();
2491    if (PT && (!getLangOptions().ObjC1 ||
2492               PT->getPointeeType()->isRecordType())) {
2493      assert(BaseExpr && "cannot happen with implicit member accesses");
2494      Diag(NameLoc, diag::err_typecheck_member_reference_struct_union)
2495        << BaseType << BaseExpr->getSourceRange();
2496      return ExprError();
2497    }
2498  }
2499
2500  assert(BaseType->isDependentType() || Name.isDependentName() ||
2501         isDependentScopeSpecifier(SS));
2502
2503  // Get the type being accessed in BaseType.  If this is an arrow, the BaseExpr
2504  // must have pointer type, and the accessed type is the pointee.
2505  return Owned(CXXDependentScopeMemberExpr::Create(Context, BaseExpr, BaseType,
2506                                                   IsArrow, OpLoc,
2507                 static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
2508                                                   SS.getRange(),
2509                                                   FirstQualifierInScope,
2510                                                   Name, NameLoc,
2511                                                   TemplateArgs));
2512}
2513
2514/// We know that the given qualified member reference points only to
2515/// declarations which do not belong to the static type of the base
2516/// expression.  Diagnose the problem.
2517static void DiagnoseQualifiedMemberReference(Sema &SemaRef,
2518                                             Expr *BaseExpr,
2519                                             QualType BaseType,
2520                                             const CXXScopeSpec &SS,
2521                                             const LookupResult &R) {
2522  // If this is an implicit member access, use a different set of
2523  // diagnostics.
2524  if (!BaseExpr)
2525    return DiagnoseInstanceReference(SemaRef, SS, R);
2526
2527  SemaRef.Diag(R.getNameLoc(), diag::err_qualified_member_of_unrelated)
2528    << SS.getRange() << R.getRepresentativeDecl() << BaseType;
2529}
2530
2531// Check whether the declarations we found through a nested-name
2532// specifier in a member expression are actually members of the base
2533// type.  The restriction here is:
2534//
2535//   C++ [expr.ref]p2:
2536//     ... In these cases, the id-expression shall name a
2537//     member of the class or of one of its base classes.
2538//
2539// So it's perfectly legitimate for the nested-name specifier to name
2540// an unrelated class, and for us to find an overload set including
2541// decls from classes which are not superclasses, as long as the decl
2542// we actually pick through overload resolution is from a superclass.
2543bool Sema::CheckQualifiedMemberReference(Expr *BaseExpr,
2544                                         QualType BaseType,
2545                                         const CXXScopeSpec &SS,
2546                                         const LookupResult &R) {
2547  const RecordType *BaseRT = BaseType->getAs<RecordType>();
2548  if (!BaseRT) {
2549    // We can't check this yet because the base type is still
2550    // dependent.
2551    assert(BaseType->isDependentType());
2552    return false;
2553  }
2554  CXXRecordDecl *BaseRecord = cast<CXXRecordDecl>(BaseRT->getDecl());
2555
2556  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
2557    // If this is an implicit member reference and we find a
2558    // non-instance member, it's not an error.
2559    if (!BaseExpr && !(*I)->isCXXInstanceMember())
2560      return false;
2561
2562    // Note that we use the DC of the decl, not the underlying decl.
2563    CXXRecordDecl *RecordD = cast<CXXRecordDecl>((*I)->getDeclContext());
2564    while (RecordD->isAnonymousStructOrUnion())
2565      RecordD = cast<CXXRecordDecl>(RecordD->getParent());
2566
2567    llvm::SmallPtrSet<CXXRecordDecl*,4> MemberRecord;
2568    MemberRecord.insert(RecordD->getCanonicalDecl());
2569
2570    if (!IsProvablyNotDerivedFrom(*this, BaseRecord, MemberRecord))
2571      return false;
2572  }
2573
2574  DiagnoseQualifiedMemberReference(*this, BaseExpr, BaseType, SS, R);
2575  return true;
2576}
2577
2578static bool
2579LookupMemberExprInRecord(Sema &SemaRef, LookupResult &R,
2580                         SourceRange BaseRange, const RecordType *RTy,
2581                         SourceLocation OpLoc, CXXScopeSpec &SS,
2582                         bool HasTemplateArgs) {
2583  RecordDecl *RDecl = RTy->getDecl();
2584  if (SemaRef.RequireCompleteType(OpLoc, QualType(RTy, 0),
2585                              SemaRef.PDiag(diag::err_typecheck_incomplete_tag)
2586                                    << BaseRange))
2587    return true;
2588
2589  if (HasTemplateArgs) {
2590    // LookupTemplateName doesn't expect these both to exist simultaneously.
2591    QualType ObjectType = SS.isSet() ? QualType() : QualType(RTy, 0);
2592
2593    bool MOUS;
2594    SemaRef.LookupTemplateName(R, 0, SS, ObjectType, false, MOUS);
2595    return false;
2596  }
2597
2598  DeclContext *DC = RDecl;
2599  if (SS.isSet()) {
2600    // If the member name was a qualified-id, look into the
2601    // nested-name-specifier.
2602    DC = SemaRef.computeDeclContext(SS, false);
2603
2604    if (SemaRef.RequireCompleteDeclContext(SS, DC)) {
2605      SemaRef.Diag(SS.getRange().getEnd(), diag::err_typecheck_incomplete_tag)
2606        << SS.getRange() << DC;
2607      return true;
2608    }
2609
2610    assert(DC && "Cannot handle non-computable dependent contexts in lookup");
2611
2612    if (!isa<TypeDecl>(DC)) {
2613      SemaRef.Diag(R.getNameLoc(), diag::err_qualified_member_nonclass)
2614        << DC << SS.getRange();
2615      return true;
2616    }
2617  }
2618
2619  // The record definition is complete, now look up the member.
2620  SemaRef.LookupQualifiedName(R, DC);
2621
2622  if (!R.empty())
2623    return false;
2624
2625  // We didn't find anything with the given name, so try to correct
2626  // for typos.
2627  DeclarationName Name = R.getLookupName();
2628  if (SemaRef.CorrectTypo(R, 0, &SS, DC, false, Sema::CTC_MemberLookup) &&
2629      !R.empty() &&
2630      (isa<ValueDecl>(*R.begin()) || isa<FunctionTemplateDecl>(*R.begin()))) {
2631    SemaRef.Diag(R.getNameLoc(), diag::err_no_member_suggest)
2632      << Name << DC << R.getLookupName() << SS.getRange()
2633      << FixItHint::CreateReplacement(R.getNameLoc(),
2634                                      R.getLookupName().getAsString());
2635    if (NamedDecl *ND = R.getAsSingle<NamedDecl>())
2636      SemaRef.Diag(ND->getLocation(), diag::note_previous_decl)
2637        << ND->getDeclName();
2638    return false;
2639  } else {
2640    R.clear();
2641    R.setLookupName(Name);
2642  }
2643
2644  return false;
2645}
2646
2647Sema::OwningExprResult
2648Sema::BuildMemberReferenceExpr(ExprArg BaseArg, QualType BaseType,
2649                               SourceLocation OpLoc, bool IsArrow,
2650                               CXXScopeSpec &SS,
2651                               NamedDecl *FirstQualifierInScope,
2652                               DeclarationName Name, SourceLocation NameLoc,
2653                               const TemplateArgumentListInfo *TemplateArgs) {
2654  Expr *Base = BaseArg.takeAs<Expr>();
2655
2656  if (BaseType->isDependentType() ||
2657      (SS.isSet() && isDependentScopeSpecifier(SS)))
2658    return ActOnDependentMemberExpr(ExprArg(*this, Base), BaseType,
2659                                    IsArrow, OpLoc,
2660                                    SS, FirstQualifierInScope,
2661                                    Name, NameLoc,
2662                                    TemplateArgs);
2663
2664  LookupResult R(*this, Name, NameLoc, LookupMemberName);
2665
2666  // Implicit member accesses.
2667  if (!Base) {
2668    QualType RecordTy = BaseType;
2669    if (IsArrow) RecordTy = RecordTy->getAs<PointerType>()->getPointeeType();
2670    if (LookupMemberExprInRecord(*this, R, SourceRange(),
2671                                 RecordTy->getAs<RecordType>(),
2672                                 OpLoc, SS, TemplateArgs != 0))
2673      return ExprError();
2674
2675  // Explicit member accesses.
2676  } else {
2677    OwningExprResult Result =
2678      LookupMemberExpr(R, Base, IsArrow, OpLoc,
2679                       SS, /*ObjCImpDecl*/ DeclPtrTy(), TemplateArgs != 0);
2680
2681    if (Result.isInvalid()) {
2682      Owned(Base);
2683      return ExprError();
2684    }
2685
2686    if (Result.get())
2687      return move(Result);
2688
2689    // LookupMemberExpr can modify Base, and thus change BaseType
2690    BaseType = Base->getType();
2691  }
2692
2693  return BuildMemberReferenceExpr(ExprArg(*this, Base), BaseType,
2694                                  OpLoc, IsArrow, SS, FirstQualifierInScope,
2695                                  R, TemplateArgs);
2696}
2697
2698Sema::OwningExprResult
2699Sema::BuildMemberReferenceExpr(ExprArg Base, QualType BaseExprType,
2700                               SourceLocation OpLoc, bool IsArrow,
2701                               const CXXScopeSpec &SS,
2702                               NamedDecl *FirstQualifierInScope,
2703                               LookupResult &R,
2704                         const TemplateArgumentListInfo *TemplateArgs,
2705                               bool SuppressQualifierCheck) {
2706  Expr *BaseExpr = Base.takeAs<Expr>();
2707  QualType BaseType = BaseExprType;
2708  if (IsArrow) {
2709    assert(BaseType->isPointerType());
2710    BaseType = BaseType->getAs<PointerType>()->getPointeeType();
2711  }
2712  R.setBaseObjectType(BaseType);
2713
2714  NestedNameSpecifier *Qualifier =
2715    static_cast<NestedNameSpecifier*>(SS.getScopeRep());
2716  DeclarationName MemberName = R.getLookupName();
2717  SourceLocation MemberLoc = R.getNameLoc();
2718
2719  if (R.isAmbiguous())
2720    return ExprError();
2721
2722  if (R.empty()) {
2723    // Rederive where we looked up.
2724    DeclContext *DC = (SS.isSet()
2725                       ? computeDeclContext(SS, false)
2726                       : BaseType->getAs<RecordType>()->getDecl());
2727
2728    Diag(R.getNameLoc(), diag::err_no_member)
2729      << MemberName << DC
2730      << (BaseExpr ? BaseExpr->getSourceRange() : SourceRange());
2731    return ExprError();
2732  }
2733
2734  // Diagnose lookups that find only declarations from a non-base
2735  // type.  This is possible for either qualified lookups (which may
2736  // have been qualified with an unrelated type) or implicit member
2737  // expressions (which were found with unqualified lookup and thus
2738  // may have come from an enclosing scope).  Note that it's okay for
2739  // lookup to find declarations from a non-base type as long as those
2740  // aren't the ones picked by overload resolution.
2741  if ((SS.isSet() || !BaseExpr ||
2742       (isa<CXXThisExpr>(BaseExpr) &&
2743        cast<CXXThisExpr>(BaseExpr)->isImplicit())) &&
2744      !SuppressQualifierCheck &&
2745      CheckQualifiedMemberReference(BaseExpr, BaseType, SS, R))
2746    return ExprError();
2747
2748  // Construct an unresolved result if we in fact got an unresolved
2749  // result.
2750  if (R.isOverloadedResult() || R.isUnresolvableResult()) {
2751    bool Dependent =
2752      BaseExprType->isDependentType() ||
2753      R.isUnresolvableResult() ||
2754      OverloadExpr::ComputeDependence(R.begin(), R.end(), TemplateArgs);
2755
2756    // Suppress any lookup-related diagnostics; we'll do these when we
2757    // pick a member.
2758    R.suppressDiagnostics();
2759
2760    UnresolvedMemberExpr *MemExpr
2761      = UnresolvedMemberExpr::Create(Context, Dependent,
2762                                     R.isUnresolvableResult(),
2763                                     BaseExpr, BaseExprType,
2764                                     IsArrow, OpLoc,
2765                                     Qualifier, SS.getRange(),
2766                                     MemberName, MemberLoc,
2767                                     TemplateArgs, R.begin(), R.end());
2768
2769    return Owned(MemExpr);
2770  }
2771
2772  assert(R.isSingleResult());
2773  DeclAccessPair FoundDecl = R.begin().getPair();
2774  NamedDecl *MemberDecl = R.getFoundDecl();
2775
2776  // FIXME: diagnose the presence of template arguments now.
2777
2778  // If the decl being referenced had an error, return an error for this
2779  // sub-expr without emitting another error, in order to avoid cascading
2780  // error cases.
2781  if (MemberDecl->isInvalidDecl())
2782    return ExprError();
2783
2784  // Handle the implicit-member-access case.
2785  if (!BaseExpr) {
2786    // If this is not an instance member, convert to a non-member access.
2787    if (!MemberDecl->isCXXInstanceMember())
2788      return BuildDeclarationNameExpr(SS, R.getNameLoc(), MemberDecl);
2789
2790    SourceLocation Loc = R.getNameLoc();
2791    if (SS.getRange().isValid())
2792      Loc = SS.getRange().getBegin();
2793    BaseExpr = new (Context) CXXThisExpr(Loc, BaseExprType,/*isImplicit=*/true);
2794  }
2795
2796  bool ShouldCheckUse = true;
2797  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MemberDecl)) {
2798    // Don't diagnose the use of a virtual member function unless it's
2799    // explicitly qualified.
2800    if (MD->isVirtual() && !SS.isSet())
2801      ShouldCheckUse = false;
2802  }
2803
2804  // Check the use of this member.
2805  if (ShouldCheckUse && DiagnoseUseOfDecl(MemberDecl, MemberLoc)) {
2806    Owned(BaseExpr);
2807    return ExprError();
2808  }
2809
2810  if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl)) {
2811    // We may have found a field within an anonymous union or struct
2812    // (C++ [class.union]).
2813    if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion() &&
2814        !BaseType->getAs<RecordType>()->getDecl()->isAnonymousStructOrUnion())
2815      return BuildAnonymousStructUnionMemberReference(MemberLoc, FD,
2816                                                      BaseExpr, OpLoc);
2817
2818    // Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref]
2819    QualType MemberType = FD->getType();
2820    if (const ReferenceType *Ref = MemberType->getAs<ReferenceType>())
2821      MemberType = Ref->getPointeeType();
2822    else {
2823      Qualifiers BaseQuals = BaseType.getQualifiers();
2824      BaseQuals.removeObjCGCAttr();
2825      if (FD->isMutable()) BaseQuals.removeConst();
2826
2827      Qualifiers MemberQuals
2828        = Context.getCanonicalType(MemberType).getQualifiers();
2829
2830      Qualifiers Combined = BaseQuals + MemberQuals;
2831      if (Combined != MemberQuals)
2832        MemberType = Context.getQualifiedType(MemberType, Combined);
2833    }
2834
2835    MarkDeclarationReferenced(MemberLoc, FD);
2836    if (PerformObjectMemberConversion(BaseExpr, Qualifier, FoundDecl, FD))
2837      return ExprError();
2838    return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS,
2839                                 FD, FoundDecl, MemberLoc, MemberType));
2840  }
2841
2842  if (VarDecl *Var = dyn_cast<VarDecl>(MemberDecl)) {
2843    MarkDeclarationReferenced(MemberLoc, Var);
2844    return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS,
2845                                 Var, FoundDecl, MemberLoc,
2846                                 Var->getType().getNonReferenceType()));
2847  }
2848
2849  if (FunctionDecl *MemberFn = dyn_cast<FunctionDecl>(MemberDecl)) {
2850    MarkDeclarationReferenced(MemberLoc, MemberDecl);
2851    return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS,
2852                                 MemberFn, FoundDecl, MemberLoc,
2853                                 MemberFn->getType()));
2854  }
2855
2856  if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(MemberDecl)) {
2857    MarkDeclarationReferenced(MemberLoc, MemberDecl);
2858    return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS,
2859                                 Enum, FoundDecl, MemberLoc, Enum->getType()));
2860  }
2861
2862  Owned(BaseExpr);
2863
2864  // We found something that we didn't expect. Complain.
2865  if (isa<TypeDecl>(MemberDecl))
2866    Diag(MemberLoc,diag::err_typecheck_member_reference_type)
2867      << MemberName << BaseType << int(IsArrow);
2868  else
2869    Diag(MemberLoc, diag::err_typecheck_member_reference_unknown)
2870      << MemberName << BaseType << int(IsArrow);
2871
2872  Diag(MemberDecl->getLocation(), diag::note_member_declared_here)
2873    << MemberName;
2874  R.suppressDiagnostics();
2875  return ExprError();
2876}
2877
2878/// Look up the given member of the given non-type-dependent
2879/// expression.  This can return in one of two ways:
2880///  * If it returns a sentinel null-but-valid result, the caller will
2881///    assume that lookup was performed and the results written into
2882///    the provided structure.  It will take over from there.
2883///  * Otherwise, the returned expression will be produced in place of
2884///    an ordinary member expression.
2885///
2886/// The ObjCImpDecl bit is a gross hack that will need to be properly
2887/// fixed for ObjC++.
2888Sema::OwningExprResult
2889Sema::LookupMemberExpr(LookupResult &R, Expr *&BaseExpr,
2890                       bool &IsArrow, SourceLocation OpLoc,
2891                       CXXScopeSpec &SS,
2892                       DeclPtrTy ObjCImpDecl, bool HasTemplateArgs) {
2893  assert(BaseExpr && "no base expression");
2894
2895  // Perform default conversions.
2896  DefaultFunctionArrayConversion(BaseExpr);
2897
2898  QualType BaseType = BaseExpr->getType();
2899  assert(!BaseType->isDependentType());
2900
2901  DeclarationName MemberName = R.getLookupName();
2902  SourceLocation MemberLoc = R.getNameLoc();
2903
2904  // If the user is trying to apply -> or . to a function pointer
2905  // type, it's probably because they forgot parentheses to call that
2906  // function. Suggest the addition of those parentheses, build the
2907  // call, and continue on.
2908  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
2909    if (const FunctionProtoType *Fun
2910          = Ptr->getPointeeType()->getAs<FunctionProtoType>()) {
2911      QualType ResultTy = Fun->getResultType();
2912      if (Fun->getNumArgs() == 0 &&
2913          ((!IsArrow && ResultTy->isRecordType()) ||
2914           (IsArrow && ResultTy->isPointerType() &&
2915            ResultTy->getAs<PointerType>()->getPointeeType()
2916                                                          ->isRecordType()))) {
2917        SourceLocation Loc = PP.getLocForEndOfToken(BaseExpr->getLocEnd());
2918        Diag(Loc, diag::err_member_reference_needs_call)
2919          << QualType(Fun, 0)
2920          << FixItHint::CreateInsertion(Loc, "()");
2921
2922        OwningExprResult NewBase
2923          = ActOnCallExpr(0, ExprArg(*this, BaseExpr), Loc,
2924                          MultiExprArg(*this, 0, 0), 0, Loc);
2925        BaseExpr = 0;
2926        if (NewBase.isInvalid())
2927          return ExprError();
2928
2929        BaseExpr = NewBase.takeAs<Expr>();
2930        DefaultFunctionArrayConversion(BaseExpr);
2931        BaseType = BaseExpr->getType();
2932      }
2933    }
2934  }
2935
2936  // If this is an Objective-C pseudo-builtin and a definition is provided then
2937  // use that.
2938  if (BaseType->isObjCIdType()) {
2939    if (IsArrow) {
2940      // Handle the following exceptional case PObj->isa.
2941      if (const ObjCObjectPointerType *OPT =
2942          BaseType->getAs<ObjCObjectPointerType>()) {
2943        if (OPT->getObjectType()->isObjCId() &&
2944            MemberName.getAsIdentifierInfo()->isStr("isa"))
2945          return Owned(new (Context) ObjCIsaExpr(BaseExpr, true, MemberLoc,
2946                                                 Context.getObjCClassType()));
2947      }
2948    }
2949    // We have an 'id' type. Rather than fall through, we check if this
2950    // is a reference to 'isa'.
2951    if (BaseType != Context.ObjCIdRedefinitionType) {
2952      BaseType = Context.ObjCIdRedefinitionType;
2953      ImpCastExprToType(BaseExpr, BaseType, CastExpr::CK_BitCast);
2954    }
2955  }
2956
2957  // If this is an Objective-C pseudo-builtin and a definition is provided then
2958  // use that.
2959  if (Context.isObjCSelType(BaseType)) {
2960    // We have an 'SEL' type. Rather than fall through, we check if this
2961    // is a reference to 'sel_id'.
2962    if (BaseType != Context.ObjCSelRedefinitionType) {
2963      BaseType = Context.ObjCSelRedefinitionType;
2964      ImpCastExprToType(BaseExpr, BaseType, CastExpr::CK_BitCast);
2965    }
2966  }
2967
2968  assert(!BaseType.isNull() && "no type for member expression");
2969
2970  // Handle properties on ObjC 'Class' types.
2971  if (!IsArrow && BaseType->isObjCClassType()) {
2972    // Also must look for a getter name which uses property syntax.
2973    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
2974    Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
2975    if (ObjCMethodDecl *MD = getCurMethodDecl()) {
2976      ObjCInterfaceDecl *IFace = MD->getClassInterface();
2977      ObjCMethodDecl *Getter;
2978      // FIXME: need to also look locally in the implementation.
2979      if ((Getter = IFace->lookupClassMethod(Sel))) {
2980        // Check the use of this method.
2981        if (DiagnoseUseOfDecl(Getter, MemberLoc))
2982          return ExprError();
2983      }
2984      // If we found a getter then this may be a valid dot-reference, we
2985      // will look for the matching setter, in case it is needed.
2986      Selector SetterSel =
2987      SelectorTable::constructSetterName(PP.getIdentifierTable(),
2988                                         PP.getSelectorTable(), Member);
2989      ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel);
2990      if (!Setter) {
2991        // If this reference is in an @implementation, also check for 'private'
2992        // methods.
2993        Setter = IFace->lookupPrivateInstanceMethod(SetterSel);
2994      }
2995      // Look through local category implementations associated with the class.
2996      if (!Setter)
2997        Setter = IFace->getCategoryClassMethod(SetterSel);
2998
2999      if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
3000        return ExprError();
3001
3002      if (Getter || Setter) {
3003        QualType PType;
3004
3005        if (Getter)
3006          PType = Getter->getResultType();
3007        else
3008          // Get the expression type from Setter's incoming parameter.
3009          PType = (*(Setter->param_end() -1))->getType();
3010        // FIXME: we must check that the setter has property type.
3011        return Owned(new (Context) ObjCImplicitSetterGetterRefExpr(Getter,
3012                                                  PType,
3013                                                  Setter, MemberLoc, BaseExpr));
3014      }
3015      return ExprError(Diag(MemberLoc, diag::err_property_not_found)
3016                       << MemberName << BaseType);
3017    }
3018  }
3019
3020  if (BaseType->isObjCClassType() &&
3021      BaseType != Context.ObjCClassRedefinitionType) {
3022    BaseType = Context.ObjCClassRedefinitionType;
3023    ImpCastExprToType(BaseExpr, BaseType, CastExpr::CK_BitCast);
3024  }
3025
3026  if (IsArrow) {
3027    if (const PointerType *PT = BaseType->getAs<PointerType>())
3028      BaseType = PT->getPointeeType();
3029    else if (BaseType->isObjCObjectPointerType())
3030      ;
3031    else if (BaseType->isRecordType()) {
3032      // Recover from arrow accesses to records, e.g.:
3033      //   struct MyRecord foo;
3034      //   foo->bar
3035      // This is actually well-formed in C++ if MyRecord has an
3036      // overloaded operator->, but that should have been dealt with
3037      // by now.
3038      Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
3039        << BaseType << int(IsArrow) << BaseExpr->getSourceRange()
3040        << FixItHint::CreateReplacement(OpLoc, ".");
3041      IsArrow = false;
3042    } else {
3043      Diag(MemberLoc, diag::err_typecheck_member_reference_arrow)
3044        << BaseType << BaseExpr->getSourceRange();
3045      return ExprError();
3046    }
3047  } else {
3048    // Recover from dot accesses to pointers, e.g.:
3049    //   type *foo;
3050    //   foo.bar
3051    // This is actually well-formed in two cases:
3052    //   - 'type' is an Objective C type
3053    //   - 'bar' is a pseudo-destructor name which happens to refer to
3054    //     the appropriate pointer type
3055    if (MemberName.getNameKind() != DeclarationName::CXXDestructorName) {
3056      const PointerType *PT = BaseType->getAs<PointerType>();
3057      if (PT && PT->getPointeeType()->isRecordType()) {
3058        Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
3059          << BaseType << int(IsArrow) << BaseExpr->getSourceRange()
3060          << FixItHint::CreateReplacement(OpLoc, "->");
3061        BaseType = PT->getPointeeType();
3062        IsArrow = true;
3063      }
3064    }
3065  }
3066
3067  // Handle field access to simple records.
3068  if (const RecordType *RTy = BaseType->getAs<RecordType>()) {
3069    if (LookupMemberExprInRecord(*this, R, BaseExpr->getSourceRange(),
3070                                 RTy, OpLoc, SS, HasTemplateArgs))
3071      return ExprError();
3072    return Owned((Expr*) 0);
3073  }
3074
3075  // Handle access to Objective-C instance variables, such as "Obj->ivar" and
3076  // (*Obj).ivar.
3077  if ((IsArrow && BaseType->isObjCObjectPointerType()) ||
3078      (!IsArrow && BaseType->isObjCObjectType())) {
3079    const ObjCObjectPointerType *OPT = BaseType->getAs<ObjCObjectPointerType>();
3080    ObjCInterfaceDecl *IDecl =
3081      OPT ? OPT->getInterfaceDecl()
3082          : BaseType->getAs<ObjCObjectType>()->getInterface();
3083    if (IDecl) {
3084      IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
3085
3086      ObjCInterfaceDecl *ClassDeclared;
3087      ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
3088
3089      if (!IV) {
3090        // Attempt to correct for typos in ivar names.
3091        LookupResult Res(*this, R.getLookupName(), R.getNameLoc(),
3092                         LookupMemberName);
3093        if (CorrectTypo(Res, 0, 0, IDecl, false, CTC_MemberLookup) &&
3094            (IV = Res.getAsSingle<ObjCIvarDecl>())) {
3095          Diag(R.getNameLoc(),
3096               diag::err_typecheck_member_reference_ivar_suggest)
3097            << IDecl->getDeclName() << MemberName << IV->getDeclName()
3098            << FixItHint::CreateReplacement(R.getNameLoc(),
3099                                            IV->getNameAsString());
3100          Diag(IV->getLocation(), diag::note_previous_decl)
3101            << IV->getDeclName();
3102        } else {
3103          Res.clear();
3104          Res.setLookupName(Member);
3105        }
3106      }
3107
3108      if (IV) {
3109        // If the decl being referenced had an error, return an error for this
3110        // sub-expr without emitting another error, in order to avoid cascading
3111        // error cases.
3112        if (IV->isInvalidDecl())
3113          return ExprError();
3114
3115        // Check whether we can reference this field.
3116        if (DiagnoseUseOfDecl(IV, MemberLoc))
3117          return ExprError();
3118        if (IV->getAccessControl() != ObjCIvarDecl::Public &&
3119            IV->getAccessControl() != ObjCIvarDecl::Package) {
3120          ObjCInterfaceDecl *ClassOfMethodDecl = 0;
3121          if (ObjCMethodDecl *MD = getCurMethodDecl())
3122            ClassOfMethodDecl =  MD->getClassInterface();
3123          else if (ObjCImpDecl && getCurFunctionDecl()) {
3124            // Case of a c-function declared inside an objc implementation.
3125            // FIXME: For a c-style function nested inside an objc implementation
3126            // class, there is no implementation context available, so we pass
3127            // down the context as argument to this routine. Ideally, this context
3128            // need be passed down in the AST node and somehow calculated from the
3129            // AST for a function decl.
3130            Decl *ImplDecl = ObjCImpDecl.getAs<Decl>();
3131            if (ObjCImplementationDecl *IMPD =
3132                dyn_cast<ObjCImplementationDecl>(ImplDecl))
3133              ClassOfMethodDecl = IMPD->getClassInterface();
3134            else if (ObjCCategoryImplDecl* CatImplClass =
3135                        dyn_cast<ObjCCategoryImplDecl>(ImplDecl))
3136              ClassOfMethodDecl = CatImplClass->getClassInterface();
3137          }
3138
3139          if (IV->getAccessControl() == ObjCIvarDecl::Private) {
3140            if (ClassDeclared != IDecl ||
3141                ClassOfMethodDecl != ClassDeclared)
3142              Diag(MemberLoc, diag::error_private_ivar_access)
3143                << IV->getDeclName();
3144          } else if (!IDecl->isSuperClassOf(ClassOfMethodDecl))
3145            // @protected
3146            Diag(MemberLoc, diag::error_protected_ivar_access)
3147              << IV->getDeclName();
3148        }
3149
3150        return Owned(new (Context) ObjCIvarRefExpr(IV, IV->getType(),
3151                                                   MemberLoc, BaseExpr,
3152                                                   IsArrow));
3153      }
3154      return ExprError(Diag(MemberLoc, diag::err_typecheck_member_reference_ivar)
3155                         << IDecl->getDeclName() << MemberName
3156                         << BaseExpr->getSourceRange());
3157    }
3158  }
3159  // Handle properties on 'id' and qualified "id".
3160  if (!IsArrow && (BaseType->isObjCIdType() ||
3161                   BaseType->isObjCQualifiedIdType())) {
3162    const ObjCObjectPointerType *QIdTy = BaseType->getAs<ObjCObjectPointerType>();
3163    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
3164
3165    // Check protocols on qualified interfaces.
3166    Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
3167    if (Decl *PMDecl = FindGetterNameDecl(QIdTy, Member, Sel, Context)) {
3168      if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(PMDecl)) {
3169        // Check the use of this declaration
3170        if (DiagnoseUseOfDecl(PD, MemberLoc))
3171          return ExprError();
3172
3173        return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
3174                                                       MemberLoc, BaseExpr));
3175      }
3176      if (ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(PMDecl)) {
3177        // Check the use of this method.
3178        if (DiagnoseUseOfDecl(OMD, MemberLoc))
3179          return ExprError();
3180
3181        return Owned(ObjCMessageExpr::Create(Context,
3182                                     OMD->getResultType().getNonReferenceType(),
3183                                             OpLoc, BaseExpr, Sel,
3184                                             OMD, NULL, 0, MemberLoc));
3185      }
3186    }
3187
3188    return ExprError(Diag(MemberLoc, diag::err_property_not_found)
3189                       << MemberName << BaseType);
3190  }
3191
3192  // Handle Objective-C property access, which is "Obj.property" where Obj is a
3193  // pointer to a (potentially qualified) interface type.
3194  if (!IsArrow)
3195    if (const ObjCObjectPointerType *OPT =
3196          BaseType->getAsObjCInterfacePointerType())
3197      return HandleExprPropertyRefExpr(OPT, BaseExpr, MemberName, MemberLoc);
3198
3199  // Handle the following exceptional case (*Obj).isa.
3200  if (!IsArrow &&
3201      BaseType->isObjCObjectType() &&
3202      BaseType->getAs<ObjCObjectType>()->isObjCId() &&
3203      MemberName.getAsIdentifierInfo()->isStr("isa"))
3204    return Owned(new (Context) ObjCIsaExpr(BaseExpr, false, MemberLoc,
3205                                           Context.getObjCClassType()));
3206
3207  // Handle 'field access' to vectors, such as 'V.xx'.
3208  if (BaseType->isExtVectorType()) {
3209    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
3210    QualType ret = CheckExtVectorComponent(BaseType, OpLoc, Member, MemberLoc);
3211    if (ret.isNull())
3212      return ExprError();
3213    return Owned(new (Context) ExtVectorElementExpr(ret, BaseExpr, *Member,
3214                                                    MemberLoc));
3215  }
3216
3217  Diag(MemberLoc, diag::err_typecheck_member_reference_struct_union)
3218    << BaseType << BaseExpr->getSourceRange();
3219
3220  return ExprError();
3221}
3222
3223/// The main callback when the parser finds something like
3224///   expression . [nested-name-specifier] identifier
3225///   expression -> [nested-name-specifier] identifier
3226/// where 'identifier' encompasses a fairly broad spectrum of
3227/// possibilities, including destructor and operator references.
3228///
3229/// \param OpKind either tok::arrow or tok::period
3230/// \param HasTrailingLParen whether the next token is '(', which
3231///   is used to diagnose mis-uses of special members that can
3232///   only be called
3233/// \param ObjCImpDecl the current ObjC @implementation decl;
3234///   this is an ugly hack around the fact that ObjC @implementations
3235///   aren't properly put in the context chain
3236Sema::OwningExprResult Sema::ActOnMemberAccessExpr(Scope *S, ExprArg BaseArg,
3237                                                   SourceLocation OpLoc,
3238                                                   tok::TokenKind OpKind,
3239                                                   CXXScopeSpec &SS,
3240                                                   UnqualifiedId &Id,
3241                                                   DeclPtrTy ObjCImpDecl,
3242                                                   bool HasTrailingLParen) {
3243  if (SS.isSet() && SS.isInvalid())
3244    return ExprError();
3245
3246  TemplateArgumentListInfo TemplateArgsBuffer;
3247
3248  // Decompose the name into its component parts.
3249  DeclarationName Name;
3250  SourceLocation NameLoc;
3251  const TemplateArgumentListInfo *TemplateArgs;
3252  DecomposeUnqualifiedId(*this, Id, TemplateArgsBuffer,
3253                         Name, NameLoc, TemplateArgs);
3254
3255  bool IsArrow = (OpKind == tok::arrow);
3256
3257  NamedDecl *FirstQualifierInScope
3258    = (!SS.isSet() ? 0 : FindFirstQualifierInScope(S,
3259                       static_cast<NestedNameSpecifier*>(SS.getScopeRep())));
3260
3261  // This is a postfix expression, so get rid of ParenListExprs.
3262  BaseArg = MaybeConvertParenListExprToParenExpr(S, move(BaseArg));
3263
3264  Expr *Base = BaseArg.takeAs<Expr>();
3265  OwningExprResult Result(*this);
3266  if (Base->getType()->isDependentType() || Name.isDependentName() ||
3267      isDependentScopeSpecifier(SS)) {
3268    Result = ActOnDependentMemberExpr(ExprArg(*this, Base), Base->getType(),
3269                                      IsArrow, OpLoc,
3270                                      SS, FirstQualifierInScope,
3271                                      Name, NameLoc,
3272                                      TemplateArgs);
3273  } else {
3274    LookupResult R(*this, Name, NameLoc, LookupMemberName);
3275    Result = LookupMemberExpr(R, Base, IsArrow, OpLoc,
3276                              SS, ObjCImpDecl, TemplateArgs != 0);
3277
3278    if (Result.isInvalid()) {
3279      Owned(Base);
3280      return ExprError();
3281    }
3282
3283    if (Result.get()) {
3284      // The only way a reference to a destructor can be used is to
3285      // immediately call it, which falls into this case.  If the
3286      // next token is not a '(', produce a diagnostic and build the
3287      // call now.
3288      if (!HasTrailingLParen &&
3289          Id.getKind() == UnqualifiedId::IK_DestructorName)
3290        return DiagnoseDtorReference(NameLoc, move(Result));
3291
3292      return move(Result);
3293    }
3294
3295    Result = BuildMemberReferenceExpr(ExprArg(*this, Base), Base->getType(),
3296                                      OpLoc, IsArrow, SS, FirstQualifierInScope,
3297                                      R, TemplateArgs);
3298  }
3299
3300  return move(Result);
3301}
3302
3303Sema::OwningExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc,
3304                                                    FunctionDecl *FD,
3305                                                    ParmVarDecl *Param) {
3306  if (Param->hasUnparsedDefaultArg()) {
3307    Diag (CallLoc,
3308          diag::err_use_of_default_argument_to_function_declared_later) <<
3309      FD << cast<CXXRecordDecl>(FD->getDeclContext())->getDeclName();
3310    Diag(UnparsedDefaultArgLocs[Param],
3311          diag::note_default_argument_declared_here);
3312  } else {
3313    if (Param->hasUninstantiatedDefaultArg()) {
3314      Expr *UninstExpr = Param->getUninstantiatedDefaultArg();
3315
3316      // Instantiate the expression.
3317      MultiLevelTemplateArgumentList ArgList
3318        = getTemplateInstantiationArgs(FD, 0, /*RelativeToPrimary=*/true);
3319
3320      std::pair<const TemplateArgument *, unsigned> Innermost
3321        = ArgList.getInnermost();
3322      InstantiatingTemplate Inst(*this, CallLoc, Param, Innermost.first,
3323                                 Innermost.second);
3324
3325      OwningExprResult Result = SubstExpr(UninstExpr, ArgList);
3326      if (Result.isInvalid())
3327        return ExprError();
3328
3329      // Check the expression as an initializer for the parameter.
3330      InitializedEntity Entity
3331        = InitializedEntity::InitializeParameter(Param);
3332      InitializationKind Kind
3333        = InitializationKind::CreateCopy(Param->getLocation(),
3334               /*FIXME:EqualLoc*/UninstExpr->getSourceRange().getBegin());
3335      Expr *ResultE = Result.takeAs<Expr>();
3336
3337      InitializationSequence InitSeq(*this, Entity, Kind, &ResultE, 1);
3338      Result = InitSeq.Perform(*this, Entity, Kind,
3339                               MultiExprArg(*this, (void**)&ResultE, 1));
3340      if (Result.isInvalid())
3341        return ExprError();
3342
3343      // Build the default argument expression.
3344      return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param,
3345                                             Result.takeAs<Expr>()));
3346    }
3347
3348    // If the default expression creates temporaries, we need to
3349    // push them to the current stack of expression temporaries so they'll
3350    // be properly destroyed.
3351    // FIXME: We should really be rebuilding the default argument with new
3352    // bound temporaries; see the comment in PR5810.
3353    for (unsigned i = 0, e = Param->getNumDefaultArgTemporaries(); i != e; ++i)
3354      ExprTemporaries.push_back(Param->getDefaultArgTemporary(i));
3355  }
3356
3357  // We already type-checked the argument, so we know it works.
3358  return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param));
3359}
3360
3361/// ConvertArgumentsForCall - Converts the arguments specified in
3362/// Args/NumArgs to the parameter types of the function FDecl with
3363/// function prototype Proto. Call is the call expression itself, and
3364/// Fn is the function expression. For a C++ member function, this
3365/// routine does not attempt to convert the object argument. Returns
3366/// true if the call is ill-formed.
3367bool
3368Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
3369                              FunctionDecl *FDecl,
3370                              const FunctionProtoType *Proto,
3371                              Expr **Args, unsigned NumArgs,
3372                              SourceLocation RParenLoc) {
3373  // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
3374  // assignment, to the types of the corresponding parameter, ...
3375  unsigned NumArgsInProto = Proto->getNumArgs();
3376  bool Invalid = false;
3377
3378  // If too few arguments are available (and we don't have default
3379  // arguments for the remaining parameters), don't make the call.
3380  if (NumArgs < NumArgsInProto) {
3381    if (!FDecl || NumArgs < FDecl->getMinRequiredArguments())
3382      return Diag(RParenLoc, diag::err_typecheck_call_too_few_args)
3383        << Fn->getType()->isBlockPointerType()
3384        << NumArgsInProto << NumArgs << Fn->getSourceRange();
3385    Call->setNumArgs(Context, NumArgsInProto);
3386  }
3387
3388  // If too many are passed and not variadic, error on the extras and drop
3389  // them.
3390  if (NumArgs > NumArgsInProto) {
3391    if (!Proto->isVariadic()) {
3392      Diag(Args[NumArgsInProto]->getLocStart(),
3393           diag::err_typecheck_call_too_many_args)
3394        << Fn->getType()->isBlockPointerType()
3395        << NumArgsInProto << NumArgs << Fn->getSourceRange()
3396        << SourceRange(Args[NumArgsInProto]->getLocStart(),
3397                       Args[NumArgs-1]->getLocEnd());
3398      // This deletes the extra arguments.
3399      Call->setNumArgs(Context, NumArgsInProto);
3400      return true;
3401    }
3402  }
3403  llvm::SmallVector<Expr *, 8> AllArgs;
3404  VariadicCallType CallType =
3405    Proto->isVariadic() ? VariadicFunction : VariadicDoesNotApply;
3406  if (Fn->getType()->isBlockPointerType())
3407    CallType = VariadicBlock; // Block
3408  else if (isa<MemberExpr>(Fn))
3409    CallType = VariadicMethod;
3410  Invalid = GatherArgumentsForCall(Call->getSourceRange().getBegin(), FDecl,
3411                                   Proto, 0, Args, NumArgs, AllArgs, CallType);
3412  if (Invalid)
3413    return true;
3414  unsigned TotalNumArgs = AllArgs.size();
3415  for (unsigned i = 0; i < TotalNumArgs; ++i)
3416    Call->setArg(i, AllArgs[i]);
3417
3418  return false;
3419}
3420
3421bool Sema::GatherArgumentsForCall(SourceLocation CallLoc,
3422                                  FunctionDecl *FDecl,
3423                                  const FunctionProtoType *Proto,
3424                                  unsigned FirstProtoArg,
3425                                  Expr **Args, unsigned NumArgs,
3426                                  llvm::SmallVector<Expr *, 8> &AllArgs,
3427                                  VariadicCallType CallType) {
3428  unsigned NumArgsInProto = Proto->getNumArgs();
3429  unsigned NumArgsToCheck = NumArgs;
3430  bool Invalid = false;
3431  if (NumArgs != NumArgsInProto)
3432    // Use default arguments for missing arguments
3433    NumArgsToCheck = NumArgsInProto;
3434  unsigned ArgIx = 0;
3435  // Continue to check argument types (even if we have too few/many args).
3436  for (unsigned i = FirstProtoArg; i != NumArgsToCheck; i++) {
3437    QualType ProtoArgType = Proto->getArgType(i);
3438
3439    Expr *Arg;
3440    if (ArgIx < NumArgs) {
3441      Arg = Args[ArgIx++];
3442
3443      if (RequireCompleteType(Arg->getSourceRange().getBegin(),
3444                              ProtoArgType,
3445                              PDiag(diag::err_call_incomplete_argument)
3446                              << Arg->getSourceRange()))
3447        return true;
3448
3449      // Pass the argument
3450      ParmVarDecl *Param = 0;
3451      if (FDecl && i < FDecl->getNumParams())
3452        Param = FDecl->getParamDecl(i);
3453
3454
3455      InitializedEntity Entity =
3456        Param? InitializedEntity::InitializeParameter(Param)
3457             : InitializedEntity::InitializeParameter(ProtoArgType);
3458      OwningExprResult ArgE = PerformCopyInitialization(Entity,
3459                                                        SourceLocation(),
3460                                                        Owned(Arg));
3461      if (ArgE.isInvalid())
3462        return true;
3463
3464      Arg = ArgE.takeAs<Expr>();
3465    } else {
3466      ParmVarDecl *Param = FDecl->getParamDecl(i);
3467
3468      OwningExprResult ArgExpr =
3469        BuildCXXDefaultArgExpr(CallLoc, FDecl, Param);
3470      if (ArgExpr.isInvalid())
3471        return true;
3472
3473      Arg = ArgExpr.takeAs<Expr>();
3474    }
3475    AllArgs.push_back(Arg);
3476  }
3477
3478  // If this is a variadic call, handle args passed through "...".
3479  if (CallType != VariadicDoesNotApply) {
3480    // Promote the arguments (C99 6.5.2.2p7).
3481    for (unsigned i = ArgIx; i != NumArgs; ++i) {
3482      Expr *Arg = Args[i];
3483      Invalid |= DefaultVariadicArgumentPromotion(Arg, CallType, FDecl);
3484      AllArgs.push_back(Arg);
3485    }
3486  }
3487  return Invalid;
3488}
3489
3490/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
3491/// This provides the location of the left/right parens and a list of comma
3492/// locations.
3493Action::OwningExprResult
3494Sema::ActOnCallExpr(Scope *S, ExprArg fn, SourceLocation LParenLoc,
3495                    MultiExprArg args,
3496                    SourceLocation *CommaLocs, SourceLocation RParenLoc) {
3497  unsigned NumArgs = args.size();
3498
3499  // Since this might be a postfix expression, get rid of ParenListExprs.
3500  fn = MaybeConvertParenListExprToParenExpr(S, move(fn));
3501
3502  Expr *Fn = fn.takeAs<Expr>();
3503  Expr **Args = reinterpret_cast<Expr**>(args.release());
3504  assert(Fn && "no function call expression");
3505
3506  if (getLangOptions().CPlusPlus) {
3507    // If this is a pseudo-destructor expression, build the call immediately.
3508    if (isa<CXXPseudoDestructorExpr>(Fn)) {
3509      if (NumArgs > 0) {
3510        // Pseudo-destructor calls should not have any arguments.
3511        Diag(Fn->getLocStart(), diag::err_pseudo_dtor_call_with_args)
3512          << FixItHint::CreateRemoval(
3513                                    SourceRange(Args[0]->getLocStart(),
3514                                                Args[NumArgs-1]->getLocEnd()));
3515
3516        for (unsigned I = 0; I != NumArgs; ++I)
3517          Args[I]->Destroy(Context);
3518
3519        NumArgs = 0;
3520      }
3521
3522      return Owned(new (Context) CallExpr(Context, Fn, 0, 0, Context.VoidTy,
3523                                          RParenLoc));
3524    }
3525
3526    // Determine whether this is a dependent call inside a C++ template,
3527    // in which case we won't do any semantic analysis now.
3528    // FIXME: Will need to cache the results of name lookup (including ADL) in
3529    // Fn.
3530    bool Dependent = false;
3531    if (Fn->isTypeDependent())
3532      Dependent = true;
3533    else if (Expr::hasAnyTypeDependentArguments(Args, NumArgs))
3534      Dependent = true;
3535
3536    if (Dependent)
3537      return Owned(new (Context) CallExpr(Context, Fn, Args, NumArgs,
3538                                          Context.DependentTy, RParenLoc));
3539
3540    // Determine whether this is a call to an object (C++ [over.call.object]).
3541    if (Fn->getType()->isRecordType())
3542      return Owned(BuildCallToObjectOfClassType(S, Fn, LParenLoc, Args, NumArgs,
3543                                                CommaLocs, RParenLoc));
3544
3545    Expr *NakedFn = Fn->IgnoreParens();
3546
3547    // Determine whether this is a call to an unresolved member function.
3548    if (UnresolvedMemberExpr *MemE = dyn_cast<UnresolvedMemberExpr>(NakedFn)) {
3549      // If lookup was unresolved but not dependent (i.e. didn't find
3550      // an unresolved using declaration), it has to be an overloaded
3551      // function set, which means it must contain either multiple
3552      // declarations (all methods or method templates) or a single
3553      // method template.
3554      assert((MemE->getNumDecls() > 1) ||
3555             isa<FunctionTemplateDecl>(
3556                                 (*MemE->decls_begin())->getUnderlyingDecl()));
3557      (void)MemE;
3558
3559      return BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
3560                                       CommaLocs, RParenLoc);
3561    }
3562
3563    // Determine whether this is a call to a member function.
3564    if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(NakedFn)) {
3565      NamedDecl *MemDecl = MemExpr->getMemberDecl();
3566      if (isa<CXXMethodDecl>(MemDecl))
3567        return BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
3568                                         CommaLocs, RParenLoc);
3569    }
3570
3571    // Determine whether this is a call to a pointer-to-member function.
3572    if (BinaryOperator *BO = dyn_cast<BinaryOperator>(NakedFn)) {
3573      if (BO->getOpcode() == BinaryOperator::PtrMemD ||
3574          BO->getOpcode() == BinaryOperator::PtrMemI) {
3575        if (const FunctionProtoType *FPT
3576                                = BO->getType()->getAs<FunctionProtoType>()) {
3577          QualType ResultTy = FPT->getResultType().getNonReferenceType();
3578
3579          ExprOwningPtr<CXXMemberCallExpr>
3580            TheCall(this, new (Context) CXXMemberCallExpr(Context, BO, Args,
3581                                                          NumArgs, ResultTy,
3582                                                          RParenLoc));
3583
3584          if (CheckCallReturnType(FPT->getResultType(),
3585                                  BO->getRHS()->getSourceRange().getBegin(),
3586                                  TheCall.get(), 0))
3587            return ExprError();
3588
3589          if (ConvertArgumentsForCall(&*TheCall, BO, 0, FPT, Args, NumArgs,
3590                                      RParenLoc))
3591            return ExprError();
3592
3593          return Owned(MaybeBindToTemporary(TheCall.release()).release());
3594        }
3595        return ExprError(Diag(Fn->getLocStart(),
3596                              diag::err_typecheck_call_not_function)
3597                              << Fn->getType() << Fn->getSourceRange());
3598      }
3599    }
3600  }
3601
3602  // If we're directly calling a function, get the appropriate declaration.
3603  // Also, in C++, keep track of whether we should perform argument-dependent
3604  // lookup and whether there were any explicitly-specified template arguments.
3605
3606  Expr *NakedFn = Fn->IgnoreParens();
3607  if (isa<UnresolvedLookupExpr>(NakedFn)) {
3608    UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(NakedFn);
3609    return BuildOverloadedCallExpr(S, Fn, ULE, LParenLoc, Args, NumArgs,
3610                                   CommaLocs, RParenLoc);
3611  }
3612
3613  NamedDecl *NDecl = 0;
3614  if (isa<DeclRefExpr>(NakedFn))
3615    NDecl = cast<DeclRefExpr>(NakedFn)->getDecl();
3616
3617  return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, Args, NumArgs, RParenLoc);
3618}
3619
3620/// BuildResolvedCallExpr - Build a call to a resolved expression,
3621/// i.e. an expression not of \p OverloadTy.  The expression should
3622/// unary-convert to an expression of function-pointer or
3623/// block-pointer type.
3624///
3625/// \param NDecl the declaration being called, if available
3626Sema::OwningExprResult
3627Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl,
3628                            SourceLocation LParenLoc,
3629                            Expr **Args, unsigned NumArgs,
3630                            SourceLocation RParenLoc) {
3631  FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(NDecl);
3632
3633  // Promote the function operand.
3634  UsualUnaryConversions(Fn);
3635
3636  // Make the call expr early, before semantic checks.  This guarantees cleanup
3637  // of arguments and function on error.
3638  ExprOwningPtr<CallExpr> TheCall(this, new (Context) CallExpr(Context, Fn,
3639                                                               Args, NumArgs,
3640                                                               Context.BoolTy,
3641                                                               RParenLoc));
3642
3643  const FunctionType *FuncT;
3644  if (!Fn->getType()->isBlockPointerType()) {
3645    // C99 6.5.2.2p1 - "The expression that denotes the called function shall
3646    // have type pointer to function".
3647    const PointerType *PT = Fn->getType()->getAs<PointerType>();
3648    if (PT == 0)
3649      return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
3650        << Fn->getType() << Fn->getSourceRange());
3651    FuncT = PT->getPointeeType()->getAs<FunctionType>();
3652  } else { // This is a block call.
3653    FuncT = Fn->getType()->getAs<BlockPointerType>()->getPointeeType()->
3654                getAs<FunctionType>();
3655  }
3656  if (FuncT == 0)
3657    return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
3658      << Fn->getType() << Fn->getSourceRange());
3659
3660  // Check for a valid return type
3661  if (CheckCallReturnType(FuncT->getResultType(),
3662                          Fn->getSourceRange().getBegin(), TheCall.get(),
3663                          FDecl))
3664    return ExprError();
3665
3666  // We know the result type of the call, set it.
3667  TheCall->setType(FuncT->getResultType().getNonReferenceType());
3668
3669  if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FuncT)) {
3670    if (ConvertArgumentsForCall(&*TheCall, Fn, FDecl, Proto, Args, NumArgs,
3671                                RParenLoc))
3672      return ExprError();
3673  } else {
3674    assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
3675
3676    if (FDecl) {
3677      // Check if we have too few/too many template arguments, based
3678      // on our knowledge of the function definition.
3679      const FunctionDecl *Def = 0;
3680      if (FDecl->hasBody(Def) && NumArgs != Def->param_size()) {
3681        const FunctionProtoType *Proto =
3682            Def->getType()->getAs<FunctionProtoType>();
3683        if (!Proto || !(Proto->isVariadic() && NumArgs >= Def->param_size())) {
3684          Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
3685            << (NumArgs > Def->param_size()) << FDecl << Fn->getSourceRange();
3686        }
3687      }
3688    }
3689
3690    // Promote the arguments (C99 6.5.2.2p6).
3691    for (unsigned i = 0; i != NumArgs; i++) {
3692      Expr *Arg = Args[i];
3693      DefaultArgumentPromotion(Arg);
3694      if (RequireCompleteType(Arg->getSourceRange().getBegin(),
3695                              Arg->getType(),
3696                              PDiag(diag::err_call_incomplete_argument)
3697                                << Arg->getSourceRange()))
3698        return ExprError();
3699      TheCall->setArg(i, Arg);
3700    }
3701  }
3702
3703  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
3704    if (!Method->isStatic())
3705      return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
3706        << Fn->getSourceRange());
3707
3708  // Check for sentinels
3709  if (NDecl)
3710    DiagnoseSentinelCalls(NDecl, LParenLoc, Args, NumArgs);
3711
3712  // Do special checking on direct calls to functions.
3713  if (FDecl) {
3714    if (CheckFunctionCall(FDecl, TheCall.get()))
3715      return ExprError();
3716
3717    if (unsigned BuiltinID = FDecl->getBuiltinID())
3718      return CheckBuiltinFunctionCall(BuiltinID, TheCall.take());
3719  } else if (NDecl) {
3720    if (CheckBlockCall(NDecl, TheCall.get()))
3721      return ExprError();
3722  }
3723
3724  return MaybeBindToTemporary(TheCall.take());
3725}
3726
3727Action::OwningExprResult
3728Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, TypeTy *Ty,
3729                           SourceLocation RParenLoc, ExprArg InitExpr) {
3730  assert((Ty != 0) && "ActOnCompoundLiteral(): missing type");
3731  // FIXME: put back this assert when initializers are worked out.
3732  //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
3733
3734  TypeSourceInfo *TInfo;
3735  QualType literalType = GetTypeFromParser(Ty, &TInfo);
3736  if (!TInfo)
3737    TInfo = Context.getTrivialTypeSourceInfo(literalType);
3738
3739  return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, move(InitExpr));
3740}
3741
3742Action::OwningExprResult
3743Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo,
3744                               SourceLocation RParenLoc, ExprArg InitExpr) {
3745  QualType literalType = TInfo->getType();
3746  Expr *literalExpr = static_cast<Expr*>(InitExpr.get());
3747
3748  if (literalType->isArrayType()) {
3749    if (literalType->isVariableArrayType())
3750      return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init)
3751        << SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd()));
3752  } else if (!literalType->isDependentType() &&
3753             RequireCompleteType(LParenLoc, literalType,
3754                      PDiag(diag::err_typecheck_decl_incomplete_type)
3755                        << SourceRange(LParenLoc,
3756                                       literalExpr->getSourceRange().getEnd())))
3757    return ExprError();
3758
3759  InitializedEntity Entity
3760    = InitializedEntity::InitializeTemporary(literalType);
3761  InitializationKind Kind
3762    = InitializationKind::CreateCast(SourceRange(LParenLoc, RParenLoc),
3763                                     /*IsCStyleCast=*/true);
3764  InitializationSequence InitSeq(*this, Entity, Kind, &literalExpr, 1);
3765  OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
3766                                   MultiExprArg(*this, (void**)&literalExpr, 1),
3767                                            &literalType);
3768  if (Result.isInvalid())
3769    return ExprError();
3770  InitExpr.release();
3771  literalExpr = static_cast<Expr*>(Result.get());
3772
3773  bool isFileScope = getCurFunctionOrMethodDecl() == 0;
3774  if (isFileScope) { // 6.5.2.5p3
3775    if (CheckForConstantInitializer(literalExpr, literalType))
3776      return ExprError();
3777  }
3778
3779  Result.release();
3780
3781  return Owned(new (Context) CompoundLiteralExpr(LParenLoc, TInfo, literalType,
3782                                                 literalExpr, isFileScope));
3783}
3784
3785Action::OwningExprResult
3786Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg initlist,
3787                    SourceLocation RBraceLoc) {
3788  unsigned NumInit = initlist.size();
3789  Expr **InitList = reinterpret_cast<Expr**>(initlist.release());
3790
3791  // Semantic analysis for initializers is done by ActOnDeclarator() and
3792  // CheckInitializer() - it requires knowledge of the object being intialized.
3793
3794  InitListExpr *E = new (Context) InitListExpr(Context, LBraceLoc, InitList,
3795                                               NumInit, RBraceLoc);
3796  E->setType(Context.VoidTy); // FIXME: just a place holder for now.
3797  return Owned(E);
3798}
3799
3800static CastExpr::CastKind getScalarCastKind(ASTContext &Context,
3801                                            QualType SrcTy, QualType DestTy) {
3802  if (Context.hasSameUnqualifiedType(SrcTy, DestTy))
3803    return CastExpr::CK_NoOp;
3804
3805  if (SrcTy->hasPointerRepresentation()) {
3806    if (DestTy->hasPointerRepresentation())
3807      return DestTy->isObjCObjectPointerType() ?
3808                CastExpr::CK_AnyPointerToObjCPointerCast :
3809                CastExpr::CK_BitCast;
3810    if (DestTy->isIntegerType())
3811      return CastExpr::CK_PointerToIntegral;
3812  }
3813
3814  if (SrcTy->isIntegerType()) {
3815    if (DestTy->isIntegerType())
3816      return CastExpr::CK_IntegralCast;
3817    if (DestTy->hasPointerRepresentation())
3818      return CastExpr::CK_IntegralToPointer;
3819    if (DestTy->isRealFloatingType())
3820      return CastExpr::CK_IntegralToFloating;
3821  }
3822
3823  if (SrcTy->isRealFloatingType()) {
3824    if (DestTy->isRealFloatingType())
3825      return CastExpr::CK_FloatingCast;
3826    if (DestTy->isIntegerType())
3827      return CastExpr::CK_FloatingToIntegral;
3828  }
3829
3830  // FIXME: Assert here.
3831  // assert(false && "Unhandled cast combination!");
3832  return CastExpr::CK_Unknown;
3833}
3834
3835/// CheckCastTypes - Check type constraints for casting between types.
3836bool Sema::CheckCastTypes(SourceRange TyR, QualType castType, Expr *&castExpr,
3837                          CastExpr::CastKind& Kind,
3838                          CXXBaseSpecifierArray &BasePath,
3839                          bool FunctionalStyle) {
3840  if (getLangOptions().CPlusPlus)
3841    return CXXCheckCStyleCast(TyR, castType, castExpr, Kind, BasePath,
3842                              FunctionalStyle);
3843
3844  DefaultFunctionArrayLvalueConversion(castExpr);
3845
3846  // C99 6.5.4p2: the cast type needs to be void or scalar and the expression
3847  // type needs to be scalar.
3848  if (castType->isVoidType()) {
3849    // Cast to void allows any expr type.
3850    Kind = CastExpr::CK_ToVoid;
3851    return false;
3852  }
3853
3854  if (!castType->isScalarType() && !castType->isVectorType()) {
3855    if (Context.hasSameUnqualifiedType(castType, castExpr->getType()) &&
3856        (castType->isStructureType() || castType->isUnionType())) {
3857      // GCC struct/union extension: allow cast to self.
3858      // FIXME: Check that the cast destination type is complete.
3859      Diag(TyR.getBegin(), diag::ext_typecheck_cast_nonscalar)
3860        << castType << castExpr->getSourceRange();
3861      Kind = CastExpr::CK_NoOp;
3862      return false;
3863    }
3864
3865    if (castType->isUnionType()) {
3866      // GCC cast to union extension
3867      RecordDecl *RD = castType->getAs<RecordType>()->getDecl();
3868      RecordDecl::field_iterator Field, FieldEnd;
3869      for (Field = RD->field_begin(), FieldEnd = RD->field_end();
3870           Field != FieldEnd; ++Field) {
3871        if (Context.hasSameUnqualifiedType(Field->getType(),
3872                                           castExpr->getType())) {
3873          Diag(TyR.getBegin(), diag::ext_typecheck_cast_to_union)
3874            << castExpr->getSourceRange();
3875          break;
3876        }
3877      }
3878      if (Field == FieldEnd)
3879        return Diag(TyR.getBegin(), diag::err_typecheck_cast_to_union_no_type)
3880          << castExpr->getType() << castExpr->getSourceRange();
3881      Kind = CastExpr::CK_ToUnion;
3882      return false;
3883    }
3884
3885    // Reject any other conversions to non-scalar types.
3886    return Diag(TyR.getBegin(), diag::err_typecheck_cond_expect_scalar)
3887      << castType << castExpr->getSourceRange();
3888  }
3889
3890  if (!castExpr->getType()->isScalarType() &&
3891      !castExpr->getType()->isVectorType()) {
3892    return Diag(castExpr->getLocStart(),
3893                diag::err_typecheck_expect_scalar_operand)
3894      << castExpr->getType() << castExpr->getSourceRange();
3895  }
3896
3897  if (castType->isExtVectorType())
3898    return CheckExtVectorCast(TyR, castType, castExpr, Kind);
3899
3900  if (castType->isVectorType())
3901    return CheckVectorCast(TyR, castType, castExpr->getType(), Kind);
3902  if (castExpr->getType()->isVectorType())
3903    return CheckVectorCast(TyR, castExpr->getType(), castType, Kind);
3904
3905  if (isa<ObjCSelectorExpr>(castExpr))
3906    return Diag(castExpr->getLocStart(), diag::err_cast_selector_expr);
3907
3908  if (!castType->isArithmeticType()) {
3909    QualType castExprType = castExpr->getType();
3910    if (!castExprType->isIntegralType(Context) &&
3911        castExprType->isArithmeticType())
3912      return Diag(castExpr->getLocStart(),
3913                  diag::err_cast_pointer_from_non_pointer_int)
3914        << castExprType << castExpr->getSourceRange();
3915  } else if (!castExpr->getType()->isArithmeticType()) {
3916    if (!castType->isIntegralType(Context) && castType->isArithmeticType())
3917      return Diag(castExpr->getLocStart(),
3918                  diag::err_cast_pointer_to_non_pointer_int)
3919        << castType << castExpr->getSourceRange();
3920  }
3921
3922  Kind = getScalarCastKind(Context, castExpr->getType(), castType);
3923  return false;
3924}
3925
3926bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
3927                           CastExpr::CastKind &Kind) {
3928  assert(VectorTy->isVectorType() && "Not a vector type!");
3929
3930  if (Ty->isVectorType() || Ty->isIntegerType()) {
3931    if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty))
3932      return Diag(R.getBegin(),
3933                  Ty->isVectorType() ?
3934                  diag::err_invalid_conversion_between_vectors :
3935                  diag::err_invalid_conversion_between_vector_and_integer)
3936        << VectorTy << Ty << R;
3937  } else
3938    return Diag(R.getBegin(),
3939                diag::err_invalid_conversion_between_vector_and_scalar)
3940      << VectorTy << Ty << R;
3941
3942  Kind = CastExpr::CK_BitCast;
3943  return false;
3944}
3945
3946bool Sema::CheckExtVectorCast(SourceRange R, QualType DestTy, Expr *&CastExpr,
3947                              CastExpr::CastKind &Kind) {
3948  assert(DestTy->isExtVectorType() && "Not an extended vector type!");
3949
3950  QualType SrcTy = CastExpr->getType();
3951
3952  // If SrcTy is a VectorType, the total size must match to explicitly cast to
3953  // an ExtVectorType.
3954  if (SrcTy->isVectorType()) {
3955    if (Context.getTypeSize(DestTy) != Context.getTypeSize(SrcTy))
3956      return Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
3957        << DestTy << SrcTy << R;
3958    Kind = CastExpr::CK_BitCast;
3959    return false;
3960  }
3961
3962  // All non-pointer scalars can be cast to ExtVector type.  The appropriate
3963  // conversion will take place first from scalar to elt type, and then
3964  // splat from elt type to vector.
3965  if (SrcTy->isPointerType())
3966    return Diag(R.getBegin(),
3967                diag::err_invalid_conversion_between_vector_and_scalar)
3968      << DestTy << SrcTy << R;
3969
3970  QualType DestElemTy = DestTy->getAs<ExtVectorType>()->getElementType();
3971  ImpCastExprToType(CastExpr, DestElemTy,
3972                    getScalarCastKind(Context, SrcTy, DestElemTy));
3973
3974  Kind = CastExpr::CK_VectorSplat;
3975  return false;
3976}
3977
3978Action::OwningExprResult
3979Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc, TypeTy *Ty,
3980                    SourceLocation RParenLoc, ExprArg Op) {
3981  assert((Ty != 0) && (Op.get() != 0) &&
3982         "ActOnCastExpr(): missing type or expr");
3983
3984  TypeSourceInfo *castTInfo;
3985  QualType castType = GetTypeFromParser(Ty, &castTInfo);
3986  if (!castTInfo)
3987    castTInfo = Context.getTrivialTypeSourceInfo(castType);
3988
3989  // If the Expr being casted is a ParenListExpr, handle it specially.
3990  Expr *castExpr = (Expr *)Op.get();
3991  if (isa<ParenListExpr>(castExpr))
3992    return ActOnCastOfParenListExpr(S, LParenLoc, RParenLoc, move(Op),
3993                                    castTInfo);
3994
3995  return BuildCStyleCastExpr(LParenLoc, castTInfo, RParenLoc, move(Op));
3996}
3997
3998Action::OwningExprResult
3999Sema::BuildCStyleCastExpr(SourceLocation LParenLoc, TypeSourceInfo *Ty,
4000                          SourceLocation RParenLoc, ExprArg Op) {
4001  Expr *castExpr = static_cast<Expr*>(Op.get());
4002
4003  CastExpr::CastKind Kind = CastExpr::CK_Unknown;
4004  CXXBaseSpecifierArray BasePath;
4005  if (CheckCastTypes(SourceRange(LParenLoc, RParenLoc), Ty->getType(), castExpr,
4006                     Kind, BasePath))
4007    return ExprError();
4008
4009  Op.release();
4010  return Owned(new (Context) CStyleCastExpr(Ty->getType().getNonReferenceType(),
4011                                            Kind, castExpr, BasePath, Ty,
4012                                            LParenLoc, RParenLoc));
4013}
4014
4015/// This is not an AltiVec-style cast, so turn the ParenListExpr into a sequence
4016/// of comma binary operators.
4017Action::OwningExprResult
4018Sema::MaybeConvertParenListExprToParenExpr(Scope *S, ExprArg EA) {
4019  Expr *expr = EA.takeAs<Expr>();
4020  ParenListExpr *E = dyn_cast<ParenListExpr>(expr);
4021  if (!E)
4022    return Owned(expr);
4023
4024  OwningExprResult Result(*this, E->getExpr(0));
4025
4026  for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i)
4027    Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, move(Result),
4028                        Owned(E->getExpr(i)));
4029
4030  return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), move(Result));
4031}
4032
4033Action::OwningExprResult
4034Sema::ActOnCastOfParenListExpr(Scope *S, SourceLocation LParenLoc,
4035                               SourceLocation RParenLoc, ExprArg Op,
4036                               TypeSourceInfo *TInfo) {
4037  ParenListExpr *PE = (ParenListExpr *)Op.get();
4038  QualType Ty = TInfo->getType();
4039  bool isAltiVecLiteral = false;
4040
4041  // Check for an altivec literal,
4042  // i.e. all the elements are integer constants.
4043  if (getLangOptions().AltiVec && Ty->isVectorType()) {
4044    if (PE->getNumExprs() == 0) {
4045      Diag(PE->getExprLoc(), diag::err_altivec_empty_initializer);
4046      return ExprError();
4047    }
4048    if (PE->getNumExprs() == 1) {
4049      if (!PE->getExpr(0)->getType()->isVectorType())
4050        isAltiVecLiteral = true;
4051    }
4052    else
4053      isAltiVecLiteral = true;
4054  }
4055
4056  // If this is an altivec initializer, '(' type ')' '(' init, ..., init ')'
4057  // then handle it as such.
4058  if (isAltiVecLiteral) {
4059    llvm::SmallVector<Expr *, 8> initExprs;
4060    for (unsigned i = 0, e = PE->getNumExprs(); i != e; ++i)
4061      initExprs.push_back(PE->getExpr(i));
4062
4063    // FIXME: This means that pretty-printing the final AST will produce curly
4064    // braces instead of the original commas.
4065    Op.release();
4066    InitListExpr *E = new (Context) InitListExpr(Context, LParenLoc,
4067                                                 &initExprs[0],
4068                                                 initExprs.size(), RParenLoc);
4069    E->setType(Ty);
4070    return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, Owned(E));
4071  } else {
4072    // This is not an AltiVec-style cast, so turn the ParenListExpr into a
4073    // sequence of BinOp comma operators.
4074    Op = MaybeConvertParenListExprToParenExpr(S, move(Op));
4075    return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, move(Op));
4076  }
4077}
4078
4079Action::OwningExprResult Sema::ActOnParenOrParenListExpr(SourceLocation L,
4080                                                  SourceLocation R,
4081                                                  MultiExprArg Val,
4082                                                  TypeTy *TypeOfCast) {
4083  unsigned nexprs = Val.size();
4084  Expr **exprs = reinterpret_cast<Expr**>(Val.release());
4085  assert((exprs != 0) && "ActOnParenOrParenListExpr() missing expr list");
4086  Expr *expr;
4087  if (nexprs == 1 && TypeOfCast && !TypeIsVectorType(TypeOfCast))
4088    expr = new (Context) ParenExpr(L, R, exprs[0]);
4089  else
4090    expr = new (Context) ParenListExpr(Context, L, exprs, nexprs, R);
4091  return Owned(expr);
4092}
4093
4094/// Note that lhs is not null here, even if this is the gnu "x ?: y" extension.
4095/// In that case, lhs = cond.
4096/// C99 6.5.15
4097QualType Sema::CheckConditionalOperands(Expr *&Cond, Expr *&LHS, Expr *&RHS,
4098                                        SourceLocation QuestionLoc) {
4099  // C++ is sufficiently different to merit its own checker.
4100  if (getLangOptions().CPlusPlus)
4101    return CXXCheckConditionalOperands(Cond, LHS, RHS, QuestionLoc);
4102
4103  UsualUnaryConversions(Cond);
4104  UsualUnaryConversions(LHS);
4105  UsualUnaryConversions(RHS);
4106  QualType CondTy = Cond->getType();
4107  QualType LHSTy = LHS->getType();
4108  QualType RHSTy = RHS->getType();
4109
4110  // first, check the condition.
4111  if (!CondTy->isScalarType()) { // C99 6.5.15p2
4112    Diag(Cond->getLocStart(), diag::err_typecheck_cond_expect_scalar)
4113      << CondTy;
4114    return QualType();
4115  }
4116
4117  // Now check the two expressions.
4118  if (LHSTy->isVectorType() || RHSTy->isVectorType())
4119    return CheckVectorOperands(QuestionLoc, LHS, RHS);
4120
4121  // If both operands have arithmetic type, do the usual arithmetic conversions
4122  // to find a common type: C99 6.5.15p3,5.
4123  if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
4124    UsualArithmeticConversions(LHS, RHS);
4125    return LHS->getType();
4126  }
4127
4128  // If both operands are the same structure or union type, the result is that
4129  // type.
4130  if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) {    // C99 6.5.15p3
4131    if (const RecordType *RHSRT = RHSTy->getAs<RecordType>())
4132      if (LHSRT->getDecl() == RHSRT->getDecl())
4133        // "If both the operands have structure or union type, the result has
4134        // that type."  This implies that CV qualifiers are dropped.
4135        return LHSTy.getUnqualifiedType();
4136    // FIXME: Type of conditional expression must be complete in C mode.
4137  }
4138
4139  // C99 6.5.15p5: "If both operands have void type, the result has void type."
4140  // The following || allows only one side to be void (a GCC-ism).
4141  if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
4142    if (!LHSTy->isVoidType())
4143      Diag(RHS->getLocStart(), diag::ext_typecheck_cond_one_void)
4144        << RHS->getSourceRange();
4145    if (!RHSTy->isVoidType())
4146      Diag(LHS->getLocStart(), diag::ext_typecheck_cond_one_void)
4147        << LHS->getSourceRange();
4148    ImpCastExprToType(LHS, Context.VoidTy, CastExpr::CK_ToVoid);
4149    ImpCastExprToType(RHS, Context.VoidTy, CastExpr::CK_ToVoid);
4150    return Context.VoidTy;
4151  }
4152  // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
4153  // the type of the other operand."
4154  if ((LHSTy->isAnyPointerType() || LHSTy->isBlockPointerType()) &&
4155      RHS->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
4156    // promote the null to a pointer.
4157    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_Unknown);
4158    return LHSTy;
4159  }
4160  if ((RHSTy->isAnyPointerType() || RHSTy->isBlockPointerType()) &&
4161      LHS->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
4162    ImpCastExprToType(LHS, RHSTy, CastExpr::CK_Unknown);
4163    return RHSTy;
4164  }
4165
4166  // All objective-c pointer type analysis is done here.
4167  QualType compositeType = FindCompositeObjCPointerType(LHS, RHS,
4168                                                        QuestionLoc);
4169  if (!compositeType.isNull())
4170    return compositeType;
4171
4172
4173  // Handle block pointer types.
4174  if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType()) {
4175    if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
4176      if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
4177        QualType destType = Context.getPointerType(Context.VoidTy);
4178        ImpCastExprToType(LHS, destType, CastExpr::CK_BitCast);
4179        ImpCastExprToType(RHS, destType, CastExpr::CK_BitCast);
4180        return destType;
4181      }
4182      Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
4183      << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
4184      return QualType();
4185    }
4186    // We have 2 block pointer types.
4187    if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
4188      // Two identical block pointer types are always compatible.
4189      return LHSTy;
4190    }
4191    // The block pointer types aren't identical, continue checking.
4192    QualType lhptee = LHSTy->getAs<BlockPointerType>()->getPointeeType();
4193    QualType rhptee = RHSTy->getAs<BlockPointerType>()->getPointeeType();
4194
4195    if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
4196                                    rhptee.getUnqualifiedType())) {
4197      Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers)
4198      << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
4199      // In this situation, we assume void* type. No especially good
4200      // reason, but this is what gcc does, and we do have to pick
4201      // to get a consistent AST.
4202      QualType incompatTy = Context.getPointerType(Context.VoidTy);
4203      ImpCastExprToType(LHS, incompatTy, CastExpr::CK_BitCast);
4204      ImpCastExprToType(RHS, incompatTy, CastExpr::CK_BitCast);
4205      return incompatTy;
4206    }
4207    // The block pointer types are compatible.
4208    ImpCastExprToType(LHS, LHSTy, CastExpr::CK_BitCast);
4209    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast);
4210    return LHSTy;
4211  }
4212
4213  // Check constraints for C object pointers types (C99 6.5.15p3,6).
4214  if (LHSTy->isPointerType() && RHSTy->isPointerType()) {
4215    // get the "pointed to" types
4216    QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
4217    QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
4218
4219    // ignore qualifiers on void (C99 6.5.15p3, clause 6)
4220    if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
4221      // Figure out necessary qualifiers (C99 6.5.15p6)
4222      QualType destPointee
4223        = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
4224      QualType destType = Context.getPointerType(destPointee);
4225      // Add qualifiers if necessary.
4226      ImpCastExprToType(LHS, destType, CastExpr::CK_NoOp);
4227      // Promote to void*.
4228      ImpCastExprToType(RHS, destType, CastExpr::CK_BitCast);
4229      return destType;
4230    }
4231    if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
4232      QualType destPointee
4233        = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
4234      QualType destType = Context.getPointerType(destPointee);
4235      // Add qualifiers if necessary.
4236      ImpCastExprToType(RHS, destType, CastExpr::CK_NoOp);
4237      // Promote to void*.
4238      ImpCastExprToType(LHS, destType, CastExpr::CK_BitCast);
4239      return destType;
4240    }
4241
4242    if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
4243      // Two identical pointer types are always compatible.
4244      return LHSTy;
4245    }
4246    if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
4247                                    rhptee.getUnqualifiedType())) {
4248      Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers)
4249        << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
4250      // In this situation, we assume void* type. No especially good
4251      // reason, but this is what gcc does, and we do have to pick
4252      // to get a consistent AST.
4253      QualType incompatTy = Context.getPointerType(Context.VoidTy);
4254      ImpCastExprToType(LHS, incompatTy, CastExpr::CK_BitCast);
4255      ImpCastExprToType(RHS, incompatTy, CastExpr::CK_BitCast);
4256      return incompatTy;
4257    }
4258    // The pointer types are compatible.
4259    // C99 6.5.15p6: If both operands are pointers to compatible types *or* to
4260    // differently qualified versions of compatible types, the result type is
4261    // a pointer to an appropriately qualified version of the *composite*
4262    // type.
4263    // FIXME: Need to calculate the composite type.
4264    // FIXME: Need to add qualifiers
4265    ImpCastExprToType(LHS, LHSTy, CastExpr::CK_BitCast);
4266    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast);
4267    return LHSTy;
4268  }
4269
4270  // GCC compatibility: soften pointer/integer mismatch.
4271  if (RHSTy->isPointerType() && LHSTy->isIntegerType()) {
4272    Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch)
4273      << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
4274    ImpCastExprToType(LHS, RHSTy, CastExpr::CK_IntegralToPointer);
4275    return RHSTy;
4276  }
4277  if (LHSTy->isPointerType() && RHSTy->isIntegerType()) {
4278    Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch)
4279      << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
4280    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_IntegralToPointer);
4281    return LHSTy;
4282  }
4283
4284  // Otherwise, the operands are not compatible.
4285  Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
4286    << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
4287  return QualType();
4288}
4289
4290/// FindCompositeObjCPointerType - Helper method to find composite type of
4291/// two objective-c pointer types of the two input expressions.
4292QualType Sema::FindCompositeObjCPointerType(Expr *&LHS, Expr *&RHS,
4293                                        SourceLocation QuestionLoc) {
4294  QualType LHSTy = LHS->getType();
4295  QualType RHSTy = RHS->getType();
4296
4297  // Handle things like Class and struct objc_class*.  Here we case the result
4298  // to the pseudo-builtin, because that will be implicitly cast back to the
4299  // redefinition type if an attempt is made to access its fields.
4300  if (LHSTy->isObjCClassType() &&
4301      (RHSTy.getDesugaredType() == Context.ObjCClassRedefinitionType)) {
4302    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast);
4303    return LHSTy;
4304  }
4305  if (RHSTy->isObjCClassType() &&
4306      (LHSTy.getDesugaredType() == Context.ObjCClassRedefinitionType)) {
4307    ImpCastExprToType(LHS, RHSTy, CastExpr::CK_BitCast);
4308    return RHSTy;
4309  }
4310  // And the same for struct objc_object* / id
4311  if (LHSTy->isObjCIdType() &&
4312      (RHSTy.getDesugaredType() == Context.ObjCIdRedefinitionType)) {
4313    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast);
4314    return LHSTy;
4315  }
4316  if (RHSTy->isObjCIdType() &&
4317      (LHSTy.getDesugaredType() == Context.ObjCIdRedefinitionType)) {
4318    ImpCastExprToType(LHS, RHSTy, CastExpr::CK_BitCast);
4319    return RHSTy;
4320  }
4321  // And the same for struct objc_selector* / SEL
4322  if (Context.isObjCSelType(LHSTy) &&
4323      (RHSTy.getDesugaredType() == Context.ObjCSelRedefinitionType)) {
4324    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast);
4325    return LHSTy;
4326  }
4327  if (Context.isObjCSelType(RHSTy) &&
4328      (LHSTy.getDesugaredType() == Context.ObjCSelRedefinitionType)) {
4329    ImpCastExprToType(LHS, RHSTy, CastExpr::CK_BitCast);
4330    return RHSTy;
4331  }
4332  // Check constraints for Objective-C object pointers types.
4333  if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) {
4334
4335    if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
4336      // Two identical object pointer types are always compatible.
4337      return LHSTy;
4338    }
4339    const ObjCObjectPointerType *LHSOPT = LHSTy->getAs<ObjCObjectPointerType>();
4340    const ObjCObjectPointerType *RHSOPT = RHSTy->getAs<ObjCObjectPointerType>();
4341    QualType compositeType = LHSTy;
4342
4343    // If both operands are interfaces and either operand can be
4344    // assigned to the other, use that type as the composite
4345    // type. This allows
4346    //   xxx ? (A*) a : (B*) b
4347    // where B is a subclass of A.
4348    //
4349    // Additionally, as for assignment, if either type is 'id'
4350    // allow silent coercion. Finally, if the types are
4351    // incompatible then make sure to use 'id' as the composite
4352    // type so the result is acceptable for sending messages to.
4353
4354    // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
4355    // It could return the composite type.
4356    if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) {
4357      compositeType = RHSOPT->isObjCBuiltinType() ? RHSTy : LHSTy;
4358    } else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) {
4359      compositeType = LHSOPT->isObjCBuiltinType() ? LHSTy : RHSTy;
4360    } else if ((LHSTy->isObjCQualifiedIdType() ||
4361                RHSTy->isObjCQualifiedIdType()) &&
4362               Context.ObjCQualifiedIdTypesAreCompatible(LHSTy, RHSTy, true)) {
4363      // Need to handle "id<xx>" explicitly.
4364      // GCC allows qualified id and any Objective-C type to devolve to
4365      // id. Currently localizing to here until clear this should be
4366      // part of ObjCQualifiedIdTypesAreCompatible.
4367      compositeType = Context.getObjCIdType();
4368    } else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) {
4369      compositeType = Context.getObjCIdType();
4370    } else if (!(compositeType =
4371                 Context.areCommonBaseCompatible(LHSOPT, RHSOPT)).isNull())
4372      ;
4373    else {
4374      Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands)
4375      << LHSTy << RHSTy
4376      << LHS->getSourceRange() << RHS->getSourceRange();
4377      QualType incompatTy = Context.getObjCIdType();
4378      ImpCastExprToType(LHS, incompatTy, CastExpr::CK_BitCast);
4379      ImpCastExprToType(RHS, incompatTy, CastExpr::CK_BitCast);
4380      return incompatTy;
4381    }
4382    // The object pointer types are compatible.
4383    ImpCastExprToType(LHS, compositeType, CastExpr::CK_BitCast);
4384    ImpCastExprToType(RHS, compositeType, CastExpr::CK_BitCast);
4385    return compositeType;
4386  }
4387  // Check Objective-C object pointer types and 'void *'
4388  if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) {
4389    QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
4390    QualType rhptee = RHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
4391    QualType destPointee
4392    = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
4393    QualType destType = Context.getPointerType(destPointee);
4394    // Add qualifiers if necessary.
4395    ImpCastExprToType(LHS, destType, CastExpr::CK_NoOp);
4396    // Promote to void*.
4397    ImpCastExprToType(RHS, destType, CastExpr::CK_BitCast);
4398    return destType;
4399  }
4400  if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) {
4401    QualType lhptee = LHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
4402    QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
4403    QualType destPointee
4404    = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
4405    QualType destType = Context.getPointerType(destPointee);
4406    // Add qualifiers if necessary.
4407    ImpCastExprToType(RHS, destType, CastExpr::CK_NoOp);
4408    // Promote to void*.
4409    ImpCastExprToType(LHS, destType, CastExpr::CK_BitCast);
4410    return destType;
4411  }
4412  return QualType();
4413}
4414
4415/// ActOnConditionalOp - Parse a ?: operation.  Note that 'LHS' may be null
4416/// in the case of a the GNU conditional expr extension.
4417Action::OwningExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
4418                                                  SourceLocation ColonLoc,
4419                                                  ExprArg Cond, ExprArg LHS,
4420                                                  ExprArg RHS) {
4421  Expr *CondExpr = (Expr *) Cond.get();
4422  Expr *LHSExpr = (Expr *) LHS.get(), *RHSExpr = (Expr *) RHS.get();
4423
4424  // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
4425  // was the condition.
4426  bool isLHSNull = LHSExpr == 0;
4427  if (isLHSNull)
4428    LHSExpr = CondExpr;
4429
4430  QualType result = CheckConditionalOperands(CondExpr, LHSExpr,
4431                                             RHSExpr, QuestionLoc);
4432  if (result.isNull())
4433    return ExprError();
4434
4435  Cond.release();
4436  LHS.release();
4437  RHS.release();
4438  return Owned(new (Context) ConditionalOperator(CondExpr, QuestionLoc,
4439                                                 isLHSNull ? 0 : LHSExpr,
4440                                                 ColonLoc, RHSExpr, result));
4441}
4442
4443// CheckPointerTypesForAssignment - This is a very tricky routine (despite
4444// being closely modeled after the C99 spec:-). The odd characteristic of this
4445// routine is it effectively iqnores the qualifiers on the top level pointee.
4446// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
4447// FIXME: add a couple examples in this comment.
4448Sema::AssignConvertType
4449Sema::CheckPointerTypesForAssignment(QualType lhsType, QualType rhsType) {
4450  QualType lhptee, rhptee;
4451
4452  if ((lhsType->isObjCClassType() &&
4453       (rhsType.getDesugaredType() == Context.ObjCClassRedefinitionType)) ||
4454     (rhsType->isObjCClassType() &&
4455       (lhsType.getDesugaredType() == Context.ObjCClassRedefinitionType))) {
4456      return Compatible;
4457  }
4458
4459  // get the "pointed to" type (ignoring qualifiers at the top level)
4460  lhptee = lhsType->getAs<PointerType>()->getPointeeType();
4461  rhptee = rhsType->getAs<PointerType>()->getPointeeType();
4462
4463  // make sure we operate on the canonical type
4464  lhptee = Context.getCanonicalType(lhptee);
4465  rhptee = Context.getCanonicalType(rhptee);
4466
4467  AssignConvertType ConvTy = Compatible;
4468
4469  // C99 6.5.16.1p1: This following citation is common to constraints
4470  // 3 & 4 (below). ...and the type *pointed to* by the left has all the
4471  // qualifiers of the type *pointed to* by the right;
4472  // FIXME: Handle ExtQualType
4473  if (!lhptee.isAtLeastAsQualifiedAs(rhptee))
4474    ConvTy = CompatiblePointerDiscardsQualifiers;
4475
4476  // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
4477  // incomplete type and the other is a pointer to a qualified or unqualified
4478  // version of void...
4479  if (lhptee->isVoidType()) {
4480    if (rhptee->isIncompleteOrObjectType())
4481      return ConvTy;
4482
4483    // As an extension, we allow cast to/from void* to function pointer.
4484    assert(rhptee->isFunctionType());
4485    return FunctionVoidPointer;
4486  }
4487
4488  if (rhptee->isVoidType()) {
4489    if (lhptee->isIncompleteOrObjectType())
4490      return ConvTy;
4491
4492    // As an extension, we allow cast to/from void* to function pointer.
4493    assert(lhptee->isFunctionType());
4494    return FunctionVoidPointer;
4495  }
4496  // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
4497  // unqualified versions of compatible types, ...
4498  lhptee = lhptee.getUnqualifiedType();
4499  rhptee = rhptee.getUnqualifiedType();
4500  if (!Context.typesAreCompatible(lhptee, rhptee)) {
4501    // Check if the pointee types are compatible ignoring the sign.
4502    // We explicitly check for char so that we catch "char" vs
4503    // "unsigned char" on systems where "char" is unsigned.
4504    if (lhptee->isCharType())
4505      lhptee = Context.UnsignedCharTy;
4506    else if (lhptee->isSignedIntegerType())
4507      lhptee = Context.getCorrespondingUnsignedType(lhptee);
4508
4509    if (rhptee->isCharType())
4510      rhptee = Context.UnsignedCharTy;
4511    else if (rhptee->isSignedIntegerType())
4512      rhptee = Context.getCorrespondingUnsignedType(rhptee);
4513
4514    if (lhptee == rhptee) {
4515      // Types are compatible ignoring the sign. Qualifier incompatibility
4516      // takes priority over sign incompatibility because the sign
4517      // warning can be disabled.
4518      if (ConvTy != Compatible)
4519        return ConvTy;
4520      return IncompatiblePointerSign;
4521    }
4522
4523    // If we are a multi-level pointer, it's possible that our issue is simply
4524    // one of qualification - e.g. char ** -> const char ** is not allowed. If
4525    // the eventual target type is the same and the pointers have the same
4526    // level of indirection, this must be the issue.
4527    if (lhptee->isPointerType() && rhptee->isPointerType()) {
4528      do {
4529        lhptee = lhptee->getAs<PointerType>()->getPointeeType();
4530        rhptee = rhptee->getAs<PointerType>()->getPointeeType();
4531
4532        lhptee = Context.getCanonicalType(lhptee);
4533        rhptee = Context.getCanonicalType(rhptee);
4534      } while (lhptee->isPointerType() && rhptee->isPointerType());
4535
4536      if (Context.hasSameUnqualifiedType(lhptee, rhptee))
4537        return IncompatibleNestedPointerQualifiers;
4538    }
4539
4540    // General pointer incompatibility takes priority over qualifiers.
4541    return IncompatiblePointer;
4542  }
4543  return ConvTy;
4544}
4545
4546/// CheckBlockPointerTypesForAssignment - This routine determines whether two
4547/// block pointer types are compatible or whether a block and normal pointer
4548/// are compatible. It is more restrict than comparing two function pointer
4549// types.
4550Sema::AssignConvertType
4551Sema::CheckBlockPointerTypesForAssignment(QualType lhsType,
4552                                          QualType rhsType) {
4553  QualType lhptee, rhptee;
4554
4555  // get the "pointed to" type (ignoring qualifiers at the top level)
4556  lhptee = lhsType->getAs<BlockPointerType>()->getPointeeType();
4557  rhptee = rhsType->getAs<BlockPointerType>()->getPointeeType();
4558
4559  // make sure we operate on the canonical type
4560  lhptee = Context.getCanonicalType(lhptee);
4561  rhptee = Context.getCanonicalType(rhptee);
4562
4563  AssignConvertType ConvTy = Compatible;
4564
4565  // For blocks we enforce that qualifiers are identical.
4566  if (lhptee.getLocalCVRQualifiers() != rhptee.getLocalCVRQualifiers())
4567    ConvTy = CompatiblePointerDiscardsQualifiers;
4568
4569  if (!getLangOptions().CPlusPlus) {
4570    if (!Context.typesAreBlockPointerCompatible(lhsType, rhsType))
4571      return IncompatibleBlockPointer;
4572  }
4573  else if (!Context.typesAreCompatible(lhptee, rhptee))
4574    return IncompatibleBlockPointer;
4575  return ConvTy;
4576}
4577
4578/// CheckObjCPointerTypesForAssignment - Compares two objective-c pointer types
4579/// for assignment compatibility.
4580Sema::AssignConvertType
4581Sema::CheckObjCPointerTypesForAssignment(QualType lhsType, QualType rhsType) {
4582  if (lhsType->isObjCBuiltinType()) {
4583    // Class is not compatible with ObjC object pointers.
4584    if (lhsType->isObjCClassType() && !rhsType->isObjCBuiltinType() &&
4585        !rhsType->isObjCQualifiedClassType())
4586      return IncompatiblePointer;
4587    return Compatible;
4588  }
4589  if (rhsType->isObjCBuiltinType()) {
4590    // Class is not compatible with ObjC object pointers.
4591    if (rhsType->isObjCClassType() && !lhsType->isObjCBuiltinType() &&
4592        !lhsType->isObjCQualifiedClassType())
4593      return IncompatiblePointer;
4594    return Compatible;
4595  }
4596  QualType lhptee =
4597  lhsType->getAs<ObjCObjectPointerType>()->getPointeeType();
4598  QualType rhptee =
4599  rhsType->getAs<ObjCObjectPointerType>()->getPointeeType();
4600  // make sure we operate on the canonical type
4601  lhptee = Context.getCanonicalType(lhptee);
4602  rhptee = Context.getCanonicalType(rhptee);
4603  if (!lhptee.isAtLeastAsQualifiedAs(rhptee))
4604    return CompatiblePointerDiscardsQualifiers;
4605
4606  if (Context.typesAreCompatible(lhsType, rhsType))
4607    return Compatible;
4608  if (lhsType->isObjCQualifiedIdType() || rhsType->isObjCQualifiedIdType())
4609    return IncompatibleObjCQualifiedId;
4610  return IncompatiblePointer;
4611}
4612
4613/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
4614/// has code to accommodate several GCC extensions when type checking
4615/// pointers. Here are some objectionable examples that GCC considers warnings:
4616///
4617///  int a, *pint;
4618///  short *pshort;
4619///  struct foo *pfoo;
4620///
4621///  pint = pshort; // warning: assignment from incompatible pointer type
4622///  a = pint; // warning: assignment makes integer from pointer without a cast
4623///  pint = a; // warning: assignment makes pointer from integer without a cast
4624///  pint = pfoo; // warning: assignment from incompatible pointer type
4625///
4626/// As a result, the code for dealing with pointers is more complex than the
4627/// C99 spec dictates.
4628///
4629Sema::AssignConvertType
4630Sema::CheckAssignmentConstraints(QualType lhsType, QualType rhsType) {
4631  // Get canonical types.  We're not formatting these types, just comparing
4632  // them.
4633  lhsType = Context.getCanonicalType(lhsType).getUnqualifiedType();
4634  rhsType = Context.getCanonicalType(rhsType).getUnqualifiedType();
4635
4636  if (lhsType == rhsType)
4637    return Compatible; // Common case: fast path an exact match.
4638
4639  if ((lhsType->isObjCClassType() &&
4640       (rhsType.getDesugaredType() == Context.ObjCClassRedefinitionType)) ||
4641     (rhsType->isObjCClassType() &&
4642       (lhsType.getDesugaredType() == Context.ObjCClassRedefinitionType))) {
4643      return Compatible;
4644  }
4645
4646  // If the left-hand side is a reference type, then we are in a
4647  // (rare!) case where we've allowed the use of references in C,
4648  // e.g., as a parameter type in a built-in function. In this case,
4649  // just make sure that the type referenced is compatible with the
4650  // right-hand side type. The caller is responsible for adjusting
4651  // lhsType so that the resulting expression does not have reference
4652  // type.
4653  if (const ReferenceType *lhsTypeRef = lhsType->getAs<ReferenceType>()) {
4654    if (Context.typesAreCompatible(lhsTypeRef->getPointeeType(), rhsType))
4655      return Compatible;
4656    return Incompatible;
4657  }
4658  // Allow scalar to ExtVector assignments, and assignments of an ExtVector type
4659  // to the same ExtVector type.
4660  if (lhsType->isExtVectorType()) {
4661    if (rhsType->isExtVectorType())
4662      return lhsType == rhsType ? Compatible : Incompatible;
4663    if (rhsType->isArithmeticType())
4664      return Compatible;
4665  }
4666
4667  if (lhsType->isVectorType() || rhsType->isVectorType()) {
4668    // If we are allowing lax vector conversions, and LHS and RHS are both
4669    // vectors, the total size only needs to be the same. This is a bitcast;
4670    // no bits are changed but the result type is different.
4671    if (getLangOptions().LaxVectorConversions &&
4672        lhsType->isVectorType() && rhsType->isVectorType()) {
4673      if (Context.getTypeSize(lhsType) == Context.getTypeSize(rhsType))
4674        return IncompatibleVectors;
4675    }
4676    return Incompatible;
4677  }
4678
4679  if (lhsType->isArithmeticType() && rhsType->isArithmeticType() &&
4680      !(getLangOptions().CPlusPlus && lhsType->isEnumeralType()))
4681    return Compatible;
4682
4683  if (isa<PointerType>(lhsType)) {
4684    if (rhsType->isIntegerType())
4685      return IntToPointer;
4686
4687    if (isa<PointerType>(rhsType))
4688      return CheckPointerTypesForAssignment(lhsType, rhsType);
4689
4690    // In general, C pointers are not compatible with ObjC object pointers.
4691    if (isa<ObjCObjectPointerType>(rhsType)) {
4692      if (lhsType->isVoidPointerType()) // an exception to the rule.
4693        return Compatible;
4694      return IncompatiblePointer;
4695    }
4696    if (rhsType->getAs<BlockPointerType>()) {
4697      if (lhsType->getAs<PointerType>()->getPointeeType()->isVoidType())
4698        return Compatible;
4699
4700      // Treat block pointers as objects.
4701      if (getLangOptions().ObjC1 && lhsType->isObjCIdType())
4702        return Compatible;
4703    }
4704    return Incompatible;
4705  }
4706
4707  if (isa<BlockPointerType>(lhsType)) {
4708    if (rhsType->isIntegerType())
4709      return IntToBlockPointer;
4710
4711    // Treat block pointers as objects.
4712    if (getLangOptions().ObjC1 && rhsType->isObjCIdType())
4713      return Compatible;
4714
4715    if (rhsType->isBlockPointerType())
4716      return CheckBlockPointerTypesForAssignment(lhsType, rhsType);
4717
4718    if (const PointerType *RHSPT = rhsType->getAs<PointerType>()) {
4719      if (RHSPT->getPointeeType()->isVoidType())
4720        return Compatible;
4721    }
4722    return Incompatible;
4723  }
4724
4725  if (isa<ObjCObjectPointerType>(lhsType)) {
4726    if (rhsType->isIntegerType())
4727      return IntToPointer;
4728
4729    // In general, C pointers are not compatible with ObjC object pointers.
4730    if (isa<PointerType>(rhsType)) {
4731      if (rhsType->isVoidPointerType()) // an exception to the rule.
4732        return Compatible;
4733      return IncompatiblePointer;
4734    }
4735    if (rhsType->isObjCObjectPointerType()) {
4736      return CheckObjCPointerTypesForAssignment(lhsType, rhsType);
4737    }
4738    if (const PointerType *RHSPT = rhsType->getAs<PointerType>()) {
4739      if (RHSPT->getPointeeType()->isVoidType())
4740        return Compatible;
4741    }
4742    // Treat block pointers as objects.
4743    if (rhsType->isBlockPointerType())
4744      return Compatible;
4745    return Incompatible;
4746  }
4747  if (isa<PointerType>(rhsType)) {
4748    // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
4749    if (lhsType == Context.BoolTy)
4750      return Compatible;
4751
4752    if (lhsType->isIntegerType())
4753      return PointerToInt;
4754
4755    if (isa<PointerType>(lhsType))
4756      return CheckPointerTypesForAssignment(lhsType, rhsType);
4757
4758    if (isa<BlockPointerType>(lhsType) &&
4759        rhsType->getAs<PointerType>()->getPointeeType()->isVoidType())
4760      return Compatible;
4761    return Incompatible;
4762  }
4763  if (isa<ObjCObjectPointerType>(rhsType)) {
4764    // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
4765    if (lhsType == Context.BoolTy)
4766      return Compatible;
4767
4768    if (lhsType->isIntegerType())
4769      return PointerToInt;
4770
4771    // In general, C pointers are not compatible with ObjC object pointers.
4772    if (isa<PointerType>(lhsType)) {
4773      if (lhsType->isVoidPointerType()) // an exception to the rule.
4774        return Compatible;
4775      return IncompatiblePointer;
4776    }
4777    if (isa<BlockPointerType>(lhsType) &&
4778        rhsType->getAs<PointerType>()->getPointeeType()->isVoidType())
4779      return Compatible;
4780    return Incompatible;
4781  }
4782
4783  if (isa<TagType>(lhsType) && isa<TagType>(rhsType)) {
4784    if (Context.typesAreCompatible(lhsType, rhsType))
4785      return Compatible;
4786  }
4787  return Incompatible;
4788}
4789
4790/// \brief Constructs a transparent union from an expression that is
4791/// used to initialize the transparent union.
4792static void ConstructTransparentUnion(ASTContext &C, Expr *&E,
4793                                      QualType UnionType, FieldDecl *Field) {
4794  // Build an initializer list that designates the appropriate member
4795  // of the transparent union.
4796  InitListExpr *Initializer = new (C) InitListExpr(C, SourceLocation(),
4797                                                   &E, 1,
4798                                                   SourceLocation());
4799  Initializer->setType(UnionType);
4800  Initializer->setInitializedFieldInUnion(Field);
4801
4802  // Build a compound literal constructing a value of the transparent
4803  // union type from this initializer list.
4804  TypeSourceInfo *unionTInfo = C.getTrivialTypeSourceInfo(UnionType);
4805  E = new (C) CompoundLiteralExpr(SourceLocation(), unionTInfo, UnionType,
4806                                  Initializer, false);
4807}
4808
4809Sema::AssignConvertType
4810Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType, Expr *&rExpr) {
4811  QualType FromType = rExpr->getType();
4812
4813  // If the ArgType is a Union type, we want to handle a potential
4814  // transparent_union GCC extension.
4815  const RecordType *UT = ArgType->getAsUnionType();
4816  if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
4817    return Incompatible;
4818
4819  // The field to initialize within the transparent union.
4820  RecordDecl *UD = UT->getDecl();
4821  FieldDecl *InitField = 0;
4822  // It's compatible if the expression matches any of the fields.
4823  for (RecordDecl::field_iterator it = UD->field_begin(),
4824         itend = UD->field_end();
4825       it != itend; ++it) {
4826    if (it->getType()->isPointerType()) {
4827      // If the transparent union contains a pointer type, we allow:
4828      // 1) void pointer
4829      // 2) null pointer constant
4830      if (FromType->isPointerType())
4831        if (FromType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
4832          ImpCastExprToType(rExpr, it->getType(), CastExpr::CK_BitCast);
4833          InitField = *it;
4834          break;
4835        }
4836
4837      if (rExpr->isNullPointerConstant(Context,
4838                                       Expr::NPC_ValueDependentIsNull)) {
4839        ImpCastExprToType(rExpr, it->getType(), CastExpr::CK_IntegralToPointer);
4840        InitField = *it;
4841        break;
4842      }
4843    }
4844
4845    if (CheckAssignmentConstraints(it->getType(), rExpr->getType())
4846          == Compatible) {
4847      InitField = *it;
4848      break;
4849    }
4850  }
4851
4852  if (!InitField)
4853    return Incompatible;
4854
4855  ConstructTransparentUnion(Context, rExpr, ArgType, InitField);
4856  return Compatible;
4857}
4858
4859Sema::AssignConvertType
4860Sema::CheckSingleAssignmentConstraints(QualType lhsType, Expr *&rExpr) {
4861  if (getLangOptions().CPlusPlus) {
4862    if (!lhsType->isRecordType()) {
4863      // C++ 5.17p3: If the left operand is not of class type, the
4864      // expression is implicitly converted (C++ 4) to the
4865      // cv-unqualified type of the left operand.
4866      if (PerformImplicitConversion(rExpr, lhsType.getUnqualifiedType(),
4867                                    AA_Assigning))
4868        return Incompatible;
4869      return Compatible;
4870    }
4871
4872    // FIXME: Currently, we fall through and treat C++ classes like C
4873    // structures.
4874  }
4875
4876  // C99 6.5.16.1p1: the left operand is a pointer and the right is
4877  // a null pointer constant.
4878  if ((lhsType->isPointerType() ||
4879       lhsType->isObjCObjectPointerType() ||
4880       lhsType->isBlockPointerType())
4881      && rExpr->isNullPointerConstant(Context,
4882                                      Expr::NPC_ValueDependentIsNull)) {
4883    ImpCastExprToType(rExpr, lhsType, CastExpr::CK_Unknown);
4884    return Compatible;
4885  }
4886
4887  // This check seems unnatural, however it is necessary to ensure the proper
4888  // conversion of functions/arrays. If the conversion were done for all
4889  // DeclExpr's (created by ActOnIdExpression), it would mess up the unary
4890  // expressions that surpress this implicit conversion (&, sizeof).
4891  //
4892  // Suppress this for references: C++ 8.5.3p5.
4893  if (!lhsType->isReferenceType())
4894    DefaultFunctionArrayLvalueConversion(rExpr);
4895
4896  Sema::AssignConvertType result =
4897    CheckAssignmentConstraints(lhsType, rExpr->getType());
4898
4899  // C99 6.5.16.1p2: The value of the right operand is converted to the
4900  // type of the assignment expression.
4901  // CheckAssignmentConstraints allows the left-hand side to be a reference,
4902  // so that we can use references in built-in functions even in C.
4903  // The getNonReferenceType() call makes sure that the resulting expression
4904  // does not have reference type.
4905  if (result != Incompatible && rExpr->getType() != lhsType)
4906    ImpCastExprToType(rExpr, lhsType.getNonReferenceType(),
4907                      CastExpr::CK_Unknown);
4908  return result;
4909}
4910
4911QualType Sema::InvalidOperands(SourceLocation Loc, Expr *&lex, Expr *&rex) {
4912  Diag(Loc, diag::err_typecheck_invalid_operands)
4913    << lex->getType() << rex->getType()
4914    << lex->getSourceRange() << rex->getSourceRange();
4915  return QualType();
4916}
4917
4918QualType Sema::CheckVectorOperands(SourceLocation Loc, Expr *&lex, Expr *&rex) {
4919  // For conversion purposes, we ignore any qualifiers.
4920  // For example, "const float" and "float" are equivalent.
4921  QualType lhsType =
4922    Context.getCanonicalType(lex->getType()).getUnqualifiedType();
4923  QualType rhsType =
4924    Context.getCanonicalType(rex->getType()).getUnqualifiedType();
4925
4926  // If the vector types are identical, return.
4927  if (lhsType == rhsType)
4928    return lhsType;
4929
4930  // Handle the case of a vector & extvector type of the same size and element
4931  // type.  It would be nice if we only had one vector type someday.
4932  if (getLangOptions().LaxVectorConversions) {
4933    // FIXME: Should we warn here?
4934    if (const VectorType *LV = lhsType->getAs<VectorType>()) {
4935      if (const VectorType *RV = rhsType->getAs<VectorType>())
4936        if (LV->getElementType() == RV->getElementType() &&
4937            LV->getNumElements() == RV->getNumElements()) {
4938          if (lhsType->isExtVectorType()) {
4939            ImpCastExprToType(rex, lhsType, CastExpr::CK_BitCast);
4940            return lhsType;
4941          }
4942
4943          ImpCastExprToType(lex, rhsType, CastExpr::CK_BitCast);
4944          return rhsType;
4945        }
4946    }
4947  }
4948
4949  // Canonicalize the ExtVector to the LHS, remember if we swapped so we can
4950  // swap back (so that we don't reverse the inputs to a subtract, for instance.
4951  bool swapped = false;
4952  if (rhsType->isExtVectorType()) {
4953    swapped = true;
4954    std::swap(rex, lex);
4955    std::swap(rhsType, lhsType);
4956  }
4957
4958  // Handle the case of an ext vector and scalar.
4959  if (const ExtVectorType *LV = lhsType->getAs<ExtVectorType>()) {
4960    QualType EltTy = LV->getElementType();
4961    if (EltTy->isIntegralType(Context) && rhsType->isIntegralType(Context)) {
4962      if (Context.getIntegerTypeOrder(EltTy, rhsType) >= 0) {
4963        ImpCastExprToType(rex, lhsType, CastExpr::CK_IntegralCast);
4964        if (swapped) std::swap(rex, lex);
4965        return lhsType;
4966      }
4967    }
4968    if (EltTy->isRealFloatingType() && rhsType->isScalarType() &&
4969        rhsType->isRealFloatingType()) {
4970      if (Context.getFloatingTypeOrder(EltTy, rhsType) >= 0) {
4971        ImpCastExprToType(rex, lhsType, CastExpr::CK_FloatingCast);
4972        if (swapped) std::swap(rex, lex);
4973        return lhsType;
4974      }
4975    }
4976  }
4977
4978  // Vectors of different size or scalar and non-ext-vector are errors.
4979  Diag(Loc, diag::err_typecheck_vector_not_convertable)
4980    << lex->getType() << rex->getType()
4981    << lex->getSourceRange() << rex->getSourceRange();
4982  return QualType();
4983}
4984
4985QualType Sema::CheckMultiplyDivideOperands(
4986  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign, bool isDiv) {
4987  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
4988    return CheckVectorOperands(Loc, lex, rex);
4989
4990  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
4991
4992  if (!lex->getType()->isArithmeticType() ||
4993      !rex->getType()->isArithmeticType())
4994    return InvalidOperands(Loc, lex, rex);
4995
4996  // Check for division by zero.
4997  if (isDiv &&
4998      rex->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull))
4999    DiagRuntimeBehavior(Loc, PDiag(diag::warn_division_by_zero)
5000                                     << rex->getSourceRange());
5001
5002  return compType;
5003}
5004
5005QualType Sema::CheckRemainderOperands(
5006  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign) {
5007  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
5008    if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
5009      return CheckVectorOperands(Loc, lex, rex);
5010    return InvalidOperands(Loc, lex, rex);
5011  }
5012
5013  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
5014
5015  if (!lex->getType()->isIntegerType() || !rex->getType()->isIntegerType())
5016    return InvalidOperands(Loc, lex, rex);
5017
5018  // Check for remainder by zero.
5019  if (rex->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull))
5020    DiagRuntimeBehavior(Loc, PDiag(diag::warn_remainder_by_zero)
5021                                 << rex->getSourceRange());
5022
5023  return compType;
5024}
5025
5026QualType Sema::CheckAdditionOperands( // C99 6.5.6
5027  Expr *&lex, Expr *&rex, SourceLocation Loc, QualType* CompLHSTy) {
5028  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
5029    QualType compType = CheckVectorOperands(Loc, lex, rex);
5030    if (CompLHSTy) *CompLHSTy = compType;
5031    return compType;
5032  }
5033
5034  QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy);
5035
5036  // handle the common case first (both operands are arithmetic).
5037  if (lex->getType()->isArithmeticType() &&
5038      rex->getType()->isArithmeticType()) {
5039    if (CompLHSTy) *CompLHSTy = compType;
5040    return compType;
5041  }
5042
5043  // Put any potential pointer into PExp
5044  Expr* PExp = lex, *IExp = rex;
5045  if (IExp->getType()->isAnyPointerType())
5046    std::swap(PExp, IExp);
5047
5048  if (PExp->getType()->isAnyPointerType()) {
5049
5050    if (IExp->getType()->isIntegerType()) {
5051      QualType PointeeTy = PExp->getType()->getPointeeType();
5052
5053      // Check for arithmetic on pointers to incomplete types.
5054      if (PointeeTy->isVoidType()) {
5055        if (getLangOptions().CPlusPlus) {
5056          Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
5057            << lex->getSourceRange() << rex->getSourceRange();
5058          return QualType();
5059        }
5060
5061        // GNU extension: arithmetic on pointer to void
5062        Diag(Loc, diag::ext_gnu_void_ptr)
5063          << lex->getSourceRange() << rex->getSourceRange();
5064      } else if (PointeeTy->isFunctionType()) {
5065        if (getLangOptions().CPlusPlus) {
5066          Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
5067            << lex->getType() << lex->getSourceRange();
5068          return QualType();
5069        }
5070
5071        // GNU extension: arithmetic on pointer to function
5072        Diag(Loc, diag::ext_gnu_ptr_func_arith)
5073          << lex->getType() << lex->getSourceRange();
5074      } else {
5075        // Check if we require a complete type.
5076        if (((PExp->getType()->isPointerType() &&
5077              !PExp->getType()->isDependentType()) ||
5078              PExp->getType()->isObjCObjectPointerType()) &&
5079             RequireCompleteType(Loc, PointeeTy,
5080                           PDiag(diag::err_typecheck_arithmetic_incomplete_type)
5081                             << PExp->getSourceRange()
5082                             << PExp->getType()))
5083          return QualType();
5084      }
5085      // Diagnose bad cases where we step over interface counts.
5086      if (PointeeTy->isObjCObjectType() && LangOpts.ObjCNonFragileABI) {
5087        Diag(Loc, diag::err_arithmetic_nonfragile_interface)
5088          << PointeeTy << PExp->getSourceRange();
5089        return QualType();
5090      }
5091
5092      if (CompLHSTy) {
5093        QualType LHSTy = Context.isPromotableBitField(lex);
5094        if (LHSTy.isNull()) {
5095          LHSTy = lex->getType();
5096          if (LHSTy->isPromotableIntegerType())
5097            LHSTy = Context.getPromotedIntegerType(LHSTy);
5098        }
5099        *CompLHSTy = LHSTy;
5100      }
5101      return PExp->getType();
5102    }
5103  }
5104
5105  return InvalidOperands(Loc, lex, rex);
5106}
5107
5108// C99 6.5.6
5109QualType Sema::CheckSubtractionOperands(Expr *&lex, Expr *&rex,
5110                                        SourceLocation Loc, QualType* CompLHSTy) {
5111  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
5112    QualType compType = CheckVectorOperands(Loc, lex, rex);
5113    if (CompLHSTy) *CompLHSTy = compType;
5114    return compType;
5115  }
5116
5117  QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy);
5118
5119  // Enforce type constraints: C99 6.5.6p3.
5120
5121  // Handle the common case first (both operands are arithmetic).
5122  if (lex->getType()->isArithmeticType()
5123      && rex->getType()->isArithmeticType()) {
5124    if (CompLHSTy) *CompLHSTy = compType;
5125    return compType;
5126  }
5127
5128  // Either ptr - int   or   ptr - ptr.
5129  if (lex->getType()->isAnyPointerType()) {
5130    QualType lpointee = lex->getType()->getPointeeType();
5131
5132    // The LHS must be an completely-defined object type.
5133
5134    bool ComplainAboutVoid = false;
5135    Expr *ComplainAboutFunc = 0;
5136    if (lpointee->isVoidType()) {
5137      if (getLangOptions().CPlusPlus) {
5138        Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
5139          << lex->getSourceRange() << rex->getSourceRange();
5140        return QualType();
5141      }
5142
5143      // GNU C extension: arithmetic on pointer to void
5144      ComplainAboutVoid = true;
5145    } else if (lpointee->isFunctionType()) {
5146      if (getLangOptions().CPlusPlus) {
5147        Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
5148          << lex->getType() << lex->getSourceRange();
5149        return QualType();
5150      }
5151
5152      // GNU C extension: arithmetic on pointer to function
5153      ComplainAboutFunc = lex;
5154    } else if (!lpointee->isDependentType() &&
5155               RequireCompleteType(Loc, lpointee,
5156                                   PDiag(diag::err_typecheck_sub_ptr_object)
5157                                     << lex->getSourceRange()
5158                                     << lex->getType()))
5159      return QualType();
5160
5161    // Diagnose bad cases where we step over interface counts.
5162    if (lpointee->isObjCObjectType() && LangOpts.ObjCNonFragileABI) {
5163      Diag(Loc, diag::err_arithmetic_nonfragile_interface)
5164        << lpointee << lex->getSourceRange();
5165      return QualType();
5166    }
5167
5168    // The result type of a pointer-int computation is the pointer type.
5169    if (rex->getType()->isIntegerType()) {
5170      if (ComplainAboutVoid)
5171        Diag(Loc, diag::ext_gnu_void_ptr)
5172          << lex->getSourceRange() << rex->getSourceRange();
5173      if (ComplainAboutFunc)
5174        Diag(Loc, diag::ext_gnu_ptr_func_arith)
5175          << ComplainAboutFunc->getType()
5176          << ComplainAboutFunc->getSourceRange();
5177
5178      if (CompLHSTy) *CompLHSTy = lex->getType();
5179      return lex->getType();
5180    }
5181
5182    // Handle pointer-pointer subtractions.
5183    if (const PointerType *RHSPTy = rex->getType()->getAs<PointerType>()) {
5184      QualType rpointee = RHSPTy->getPointeeType();
5185
5186      // RHS must be a completely-type object type.
5187      // Handle the GNU void* extension.
5188      if (rpointee->isVoidType()) {
5189        if (getLangOptions().CPlusPlus) {
5190          Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
5191            << lex->getSourceRange() << rex->getSourceRange();
5192          return QualType();
5193        }
5194
5195        ComplainAboutVoid = true;
5196      } else if (rpointee->isFunctionType()) {
5197        if (getLangOptions().CPlusPlus) {
5198          Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
5199            << rex->getType() << rex->getSourceRange();
5200          return QualType();
5201        }
5202
5203        // GNU extension: arithmetic on pointer to function
5204        if (!ComplainAboutFunc)
5205          ComplainAboutFunc = rex;
5206      } else if (!rpointee->isDependentType() &&
5207                 RequireCompleteType(Loc, rpointee,
5208                                     PDiag(diag::err_typecheck_sub_ptr_object)
5209                                       << rex->getSourceRange()
5210                                       << rex->getType()))
5211        return QualType();
5212
5213      if (getLangOptions().CPlusPlus) {
5214        // Pointee types must be the same: C++ [expr.add]
5215        if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
5216          Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
5217            << lex->getType() << rex->getType()
5218            << lex->getSourceRange() << rex->getSourceRange();
5219          return QualType();
5220        }
5221      } else {
5222        // Pointee types must be compatible C99 6.5.6p3
5223        if (!Context.typesAreCompatible(
5224                Context.getCanonicalType(lpointee).getUnqualifiedType(),
5225                Context.getCanonicalType(rpointee).getUnqualifiedType())) {
5226          Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
5227            << lex->getType() << rex->getType()
5228            << lex->getSourceRange() << rex->getSourceRange();
5229          return QualType();
5230        }
5231      }
5232
5233      if (ComplainAboutVoid)
5234        Diag(Loc, diag::ext_gnu_void_ptr)
5235          << lex->getSourceRange() << rex->getSourceRange();
5236      if (ComplainAboutFunc)
5237        Diag(Loc, diag::ext_gnu_ptr_func_arith)
5238          << ComplainAboutFunc->getType()
5239          << ComplainAboutFunc->getSourceRange();
5240
5241      if (CompLHSTy) *CompLHSTy = lex->getType();
5242      return Context.getPointerDiffType();
5243    }
5244  }
5245
5246  return InvalidOperands(Loc, lex, rex);
5247}
5248
5249// C99 6.5.7
5250QualType Sema::CheckShiftOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
5251                                  bool isCompAssign) {
5252  // C99 6.5.7p2: Each of the operands shall have integer type.
5253  if (!lex->getType()->isIntegerType() || !rex->getType()->isIntegerType())
5254    return InvalidOperands(Loc, lex, rex);
5255
5256  // Vector shifts promote their scalar inputs to vector type.
5257  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
5258    return CheckVectorOperands(Loc, lex, rex);
5259
5260  // Shifts don't perform usual arithmetic conversions, they just do integer
5261  // promotions on each operand. C99 6.5.7p3
5262  QualType LHSTy = Context.isPromotableBitField(lex);
5263  if (LHSTy.isNull()) {
5264    LHSTy = lex->getType();
5265    if (LHSTy->isPromotableIntegerType())
5266      LHSTy = Context.getPromotedIntegerType(LHSTy);
5267  }
5268  if (!isCompAssign)
5269    ImpCastExprToType(lex, LHSTy, CastExpr::CK_IntegralCast);
5270
5271  UsualUnaryConversions(rex);
5272
5273  // Sanity-check shift operands
5274  llvm::APSInt Right;
5275  // Check right/shifter operand
5276  if (!rex->isValueDependent() &&
5277      rex->isIntegerConstantExpr(Right, Context)) {
5278    if (Right.isNegative())
5279      Diag(Loc, diag::warn_shift_negative) << rex->getSourceRange();
5280    else {
5281      llvm::APInt LeftBits(Right.getBitWidth(),
5282                          Context.getTypeSize(lex->getType()));
5283      if (Right.uge(LeftBits))
5284        Diag(Loc, diag::warn_shift_gt_typewidth) << rex->getSourceRange();
5285    }
5286  }
5287
5288  // "The type of the result is that of the promoted left operand."
5289  return LHSTy;
5290}
5291
5292// C99 6.5.8, C++ [expr.rel]
5293QualType Sema::CheckCompareOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
5294                                    unsigned OpaqueOpc, bool isRelational) {
5295  BinaryOperator::Opcode Opc = (BinaryOperator::Opcode)OpaqueOpc;
5296
5297  // Handle vector comparisons separately.
5298  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
5299    return CheckVectorCompareOperands(lex, rex, Loc, isRelational);
5300
5301  QualType lType = lex->getType();
5302  QualType rType = rex->getType();
5303
5304  if (!lType->hasFloatingRepresentation() &&
5305      !(lType->isBlockPointerType() && isRelational)) {
5306    // For non-floating point types, check for self-comparisons of the form
5307    // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
5308    // often indicate logic errors in the program.
5309    // NOTE: Don't warn about comparisons of enum constants. These can arise
5310    //  from macro expansions, and are usually quite deliberate.
5311    Expr *LHSStripped = lex->IgnoreParens();
5312    Expr *RHSStripped = rex->IgnoreParens();
5313    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LHSStripped))
5314      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RHSStripped)) {
5315        if (DRL->getDecl() == DRR->getDecl() &&
5316            !isa<EnumConstantDecl>(DRL->getDecl())) {
5317          DiagRuntimeBehavior(Loc, PDiag(diag::warn_comparison_always)
5318                              << 0 // self-
5319                              << (Opc == BinaryOperator::EQ
5320                                  || Opc == BinaryOperator::LE
5321                                  || Opc == BinaryOperator::GE));
5322        } else if (lType->isArrayType() && rType->isArrayType() &&
5323                   !DRL->getDecl()->getType()->isReferenceType() &&
5324                   !DRR->getDecl()->getType()->isReferenceType()) {
5325            // what is it always going to eval to?
5326            char always_evals_to;
5327            switch(Opc) {
5328            case BinaryOperator::EQ: // e.g. array1 == array2
5329              always_evals_to = 0; // false
5330              break;
5331            case BinaryOperator::NE: // e.g. array1 != array2
5332              always_evals_to = 1; // true
5333              break;
5334            default:
5335              // best we can say is 'a constant'
5336              always_evals_to = 2; // e.g. array1 <= array2
5337              break;
5338            }
5339            DiagRuntimeBehavior(Loc, PDiag(diag::warn_comparison_always)
5340                                << 1 // array
5341                                << always_evals_to);
5342        }
5343      }
5344
5345    if (isa<CastExpr>(LHSStripped))
5346      LHSStripped = LHSStripped->IgnoreParenCasts();
5347    if (isa<CastExpr>(RHSStripped))
5348      RHSStripped = RHSStripped->IgnoreParenCasts();
5349
5350    // Warn about comparisons against a string constant (unless the other
5351    // operand is null), the user probably wants strcmp.
5352    Expr *literalString = 0;
5353    Expr *literalStringStripped = 0;
5354    if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
5355        !RHSStripped->isNullPointerConstant(Context,
5356                                            Expr::NPC_ValueDependentIsNull)) {
5357      literalString = lex;
5358      literalStringStripped = LHSStripped;
5359    } else if ((isa<StringLiteral>(RHSStripped) ||
5360                isa<ObjCEncodeExpr>(RHSStripped)) &&
5361               !LHSStripped->isNullPointerConstant(Context,
5362                                            Expr::NPC_ValueDependentIsNull)) {
5363      literalString = rex;
5364      literalStringStripped = RHSStripped;
5365    }
5366
5367    if (literalString) {
5368      std::string resultComparison;
5369      switch (Opc) {
5370      case BinaryOperator::LT: resultComparison = ") < 0"; break;
5371      case BinaryOperator::GT: resultComparison = ") > 0"; break;
5372      case BinaryOperator::LE: resultComparison = ") <= 0"; break;
5373      case BinaryOperator::GE: resultComparison = ") >= 0"; break;
5374      case BinaryOperator::EQ: resultComparison = ") == 0"; break;
5375      case BinaryOperator::NE: resultComparison = ") != 0"; break;
5376      default: assert(false && "Invalid comparison operator");
5377      }
5378
5379      DiagRuntimeBehavior(Loc,
5380        PDiag(diag::warn_stringcompare)
5381          << isa<ObjCEncodeExpr>(literalStringStripped)
5382          << literalString->getSourceRange());
5383    }
5384  }
5385
5386  // C99 6.5.8p3 / C99 6.5.9p4
5387  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
5388    UsualArithmeticConversions(lex, rex);
5389  else {
5390    UsualUnaryConversions(lex);
5391    UsualUnaryConversions(rex);
5392  }
5393
5394  lType = lex->getType();
5395  rType = rex->getType();
5396
5397  // The result of comparisons is 'bool' in C++, 'int' in C.
5398  QualType ResultTy = getLangOptions().CPlusPlus ? Context.BoolTy:Context.IntTy;
5399
5400  if (isRelational) {
5401    if (lType->isRealType() && rType->isRealType())
5402      return ResultTy;
5403  } else {
5404    // Check for comparisons of floating point operands using != and ==.
5405    if (lType->hasFloatingRepresentation())
5406      CheckFloatComparison(Loc,lex,rex);
5407
5408    if (lType->isArithmeticType() && rType->isArithmeticType())
5409      return ResultTy;
5410  }
5411
5412  bool LHSIsNull = lex->isNullPointerConstant(Context,
5413                                              Expr::NPC_ValueDependentIsNull);
5414  bool RHSIsNull = rex->isNullPointerConstant(Context,
5415                                              Expr::NPC_ValueDependentIsNull);
5416
5417  // All of the following pointer-related warnings are GCC extensions, except
5418  // when handling null pointer constants.
5419  if (lType->isPointerType() && rType->isPointerType()) { // C99 6.5.8p2
5420    QualType LCanPointeeTy =
5421      Context.getCanonicalType(lType->getAs<PointerType>()->getPointeeType());
5422    QualType RCanPointeeTy =
5423      Context.getCanonicalType(rType->getAs<PointerType>()->getPointeeType());
5424
5425    if (getLangOptions().CPlusPlus) {
5426      if (LCanPointeeTy == RCanPointeeTy)
5427        return ResultTy;
5428      if (!isRelational &&
5429          (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
5430        // Valid unless comparison between non-null pointer and function pointer
5431        // This is a gcc extension compatibility comparison.
5432        // In a SFINAE context, we treat this as a hard error to maintain
5433        // conformance with the C++ standard.
5434        if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
5435            && !LHSIsNull && !RHSIsNull) {
5436          Diag(Loc,
5437               isSFINAEContext()?
5438                   diag::err_typecheck_comparison_of_fptr_to_void
5439                 : diag::ext_typecheck_comparison_of_fptr_to_void)
5440            << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5441
5442          if (isSFINAEContext())
5443            return QualType();
5444
5445          ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
5446          return ResultTy;
5447        }
5448      }
5449      // C++ [expr.rel]p2:
5450      //   [...] Pointer conversions (4.10) and qualification
5451      //   conversions (4.4) are performed on pointer operands (or on
5452      //   a pointer operand and a null pointer constant) to bring
5453      //   them to their composite pointer type. [...]
5454      //
5455      // C++ [expr.eq]p1 uses the same notion for (in)equality
5456      // comparisons of pointers.
5457      bool NonStandardCompositeType = false;
5458      QualType T = FindCompositePointerType(Loc, lex, rex,
5459                              isSFINAEContext()? 0 : &NonStandardCompositeType);
5460      if (T.isNull()) {
5461        Diag(Loc, diag::err_typecheck_comparison_of_distinct_pointers)
5462          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5463        return QualType();
5464      } else if (NonStandardCompositeType) {
5465        Diag(Loc,
5466             diag::ext_typecheck_comparison_of_distinct_pointers_nonstandard)
5467          << lType << rType << T
5468          << lex->getSourceRange() << rex->getSourceRange();
5469      }
5470
5471      ImpCastExprToType(lex, T, CastExpr::CK_BitCast);
5472      ImpCastExprToType(rex, T, CastExpr::CK_BitCast);
5473      return ResultTy;
5474    }
5475    // C99 6.5.9p2 and C99 6.5.8p2
5476    if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
5477                                   RCanPointeeTy.getUnqualifiedType())) {
5478      // Valid unless a relational comparison of function pointers
5479      if (isRelational && LCanPointeeTy->isFunctionType()) {
5480        Diag(Loc, diag::ext_typecheck_ordered_comparison_of_function_pointers)
5481          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5482      }
5483    } else if (!isRelational &&
5484               (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
5485      // Valid unless comparison between non-null pointer and function pointer
5486      if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
5487          && !LHSIsNull && !RHSIsNull) {
5488        Diag(Loc, diag::ext_typecheck_comparison_of_fptr_to_void)
5489          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5490      }
5491    } else {
5492      // Invalid
5493      Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
5494        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5495    }
5496    if (LCanPointeeTy != RCanPointeeTy)
5497      ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
5498    return ResultTy;
5499  }
5500
5501  if (getLangOptions().CPlusPlus) {
5502    // Comparison of pointers with null pointer constants and equality
5503    // comparisons of member pointers to null pointer constants.
5504    if (RHSIsNull &&
5505        (lType->isPointerType() ||
5506         (!isRelational && lType->isMemberPointerType()))) {
5507      ImpCastExprToType(rex, lType, CastExpr::CK_NullToMemberPointer);
5508      return ResultTy;
5509    }
5510    if (LHSIsNull &&
5511        (rType->isPointerType() ||
5512         (!isRelational && rType->isMemberPointerType()))) {
5513      ImpCastExprToType(lex, rType, CastExpr::CK_NullToMemberPointer);
5514      return ResultTy;
5515    }
5516
5517    // Comparison of member pointers.
5518    if (!isRelational &&
5519        lType->isMemberPointerType() && rType->isMemberPointerType()) {
5520      // C++ [expr.eq]p2:
5521      //   In addition, pointers to members can be compared, or a pointer to
5522      //   member and a null pointer constant. Pointer to member conversions
5523      //   (4.11) and qualification conversions (4.4) are performed to bring
5524      //   them to a common type. If one operand is a null pointer constant,
5525      //   the common type is the type of the other operand. Otherwise, the
5526      //   common type is a pointer to member type similar (4.4) to the type
5527      //   of one of the operands, with a cv-qualification signature (4.4)
5528      //   that is the union of the cv-qualification signatures of the operand
5529      //   types.
5530      bool NonStandardCompositeType = false;
5531      QualType T = FindCompositePointerType(Loc, lex, rex,
5532                              isSFINAEContext()? 0 : &NonStandardCompositeType);
5533      if (T.isNull()) {
5534        Diag(Loc, diag::err_typecheck_comparison_of_distinct_pointers)
5535          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5536        return QualType();
5537      } else if (NonStandardCompositeType) {
5538        Diag(Loc,
5539             diag::ext_typecheck_comparison_of_distinct_pointers_nonstandard)
5540          << lType << rType << T
5541          << lex->getSourceRange() << rex->getSourceRange();
5542      }
5543
5544      ImpCastExprToType(lex, T, CastExpr::CK_BitCast);
5545      ImpCastExprToType(rex, T, CastExpr::CK_BitCast);
5546      return ResultTy;
5547    }
5548
5549    // Comparison of nullptr_t with itself.
5550    if (lType->isNullPtrType() && rType->isNullPtrType())
5551      return ResultTy;
5552  }
5553
5554  // Handle block pointer types.
5555  if (!isRelational && lType->isBlockPointerType() && rType->isBlockPointerType()) {
5556    QualType lpointee = lType->getAs<BlockPointerType>()->getPointeeType();
5557    QualType rpointee = rType->getAs<BlockPointerType>()->getPointeeType();
5558
5559    if (!LHSIsNull && !RHSIsNull &&
5560        !Context.typesAreCompatible(lpointee, rpointee)) {
5561      Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
5562        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5563    }
5564    ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
5565    return ResultTy;
5566  }
5567  // Allow block pointers to be compared with null pointer constants.
5568  if (!isRelational
5569      && ((lType->isBlockPointerType() && rType->isPointerType())
5570          || (lType->isPointerType() && rType->isBlockPointerType()))) {
5571    if (!LHSIsNull && !RHSIsNull) {
5572      if (!((rType->isPointerType() && rType->getAs<PointerType>()
5573             ->getPointeeType()->isVoidType())
5574            || (lType->isPointerType() && lType->getAs<PointerType>()
5575                ->getPointeeType()->isVoidType())))
5576        Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
5577          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5578    }
5579    ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
5580    return ResultTy;
5581  }
5582
5583  if ((lType->isObjCObjectPointerType() || rType->isObjCObjectPointerType())) {
5584    if (lType->isPointerType() || rType->isPointerType()) {
5585      const PointerType *LPT = lType->getAs<PointerType>();
5586      const PointerType *RPT = rType->getAs<PointerType>();
5587      bool LPtrToVoid = LPT ?
5588        Context.getCanonicalType(LPT->getPointeeType())->isVoidType() : false;
5589      bool RPtrToVoid = RPT ?
5590        Context.getCanonicalType(RPT->getPointeeType())->isVoidType() : false;
5591
5592      if (!LPtrToVoid && !RPtrToVoid &&
5593          !Context.typesAreCompatible(lType, rType)) {
5594        Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
5595          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5596      }
5597      ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
5598      return ResultTy;
5599    }
5600    if (lType->isObjCObjectPointerType() && rType->isObjCObjectPointerType()) {
5601      if (!Context.areComparableObjCPointerTypes(lType, rType))
5602        Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
5603          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5604      ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
5605      return ResultTy;
5606    }
5607  }
5608  if ((lType->isAnyPointerType() && rType->isIntegerType()) ||
5609      (lType->isIntegerType() && rType->isAnyPointerType())) {
5610    unsigned DiagID = 0;
5611    bool isError = false;
5612    if ((LHSIsNull && lType->isIntegerType()) ||
5613        (RHSIsNull && rType->isIntegerType())) {
5614      if (isRelational && !getLangOptions().CPlusPlus)
5615        DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
5616    } else if (isRelational && !getLangOptions().CPlusPlus)
5617      DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
5618    else if (getLangOptions().CPlusPlus) {
5619      DiagID = diag::err_typecheck_comparison_of_pointer_integer;
5620      isError = true;
5621    } else
5622      DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
5623
5624    if (DiagID) {
5625      Diag(Loc, DiagID)
5626        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5627      if (isError)
5628        return QualType();
5629    }
5630
5631    if (lType->isIntegerType())
5632      ImpCastExprToType(lex, rType, CastExpr::CK_IntegralToPointer);
5633    else
5634      ImpCastExprToType(rex, lType, CastExpr::CK_IntegralToPointer);
5635    return ResultTy;
5636  }
5637
5638  // Handle block pointers.
5639  if (!isRelational && RHSIsNull
5640      && lType->isBlockPointerType() && rType->isIntegerType()) {
5641    ImpCastExprToType(rex, lType, CastExpr::CK_IntegralToPointer);
5642    return ResultTy;
5643  }
5644  if (!isRelational && LHSIsNull
5645      && lType->isIntegerType() && rType->isBlockPointerType()) {
5646    ImpCastExprToType(lex, rType, CastExpr::CK_IntegralToPointer);
5647    return ResultTy;
5648  }
5649  return InvalidOperands(Loc, lex, rex);
5650}
5651
5652/// CheckVectorCompareOperands - vector comparisons are a clang extension that
5653/// operates on extended vector types.  Instead of producing an IntTy result,
5654/// like a scalar comparison, a vector comparison produces a vector of integer
5655/// types.
5656QualType Sema::CheckVectorCompareOperands(Expr *&lex, Expr *&rex,
5657                                          SourceLocation Loc,
5658                                          bool isRelational) {
5659  // Check to make sure we're operating on vectors of the same type and width,
5660  // Allowing one side to be a scalar of element type.
5661  QualType vType = CheckVectorOperands(Loc, lex, rex);
5662  if (vType.isNull())
5663    return vType;
5664
5665  QualType lType = lex->getType();
5666  QualType rType = rex->getType();
5667
5668  // For non-floating point types, check for self-comparisons of the form
5669  // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
5670  // often indicate logic errors in the program.
5671  if (!lType->hasFloatingRepresentation()) {
5672    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens()))
5673      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens()))
5674        if (DRL->getDecl() == DRR->getDecl())
5675          DiagRuntimeBehavior(Loc,
5676                              PDiag(diag::warn_comparison_always)
5677                                << 0 // self-
5678                                << 2 // "a constant"
5679                              );
5680  }
5681
5682  // Check for comparisons of floating point operands using != and ==.
5683  if (!isRelational && lType->hasFloatingRepresentation()) {
5684    assert (rType->hasFloatingRepresentation());
5685    CheckFloatComparison(Loc,lex,rex);
5686  }
5687
5688  // Return the type for the comparison, which is the same as vector type for
5689  // integer vectors, or an integer type of identical size and number of
5690  // elements for floating point vectors.
5691  if (lType->isIntegerType())
5692    return lType;
5693
5694  const VectorType *VTy = lType->getAs<VectorType>();
5695  unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
5696  if (TypeSize == Context.getTypeSize(Context.IntTy))
5697    return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
5698  if (TypeSize == Context.getTypeSize(Context.LongTy))
5699    return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
5700
5701  assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
5702         "Unhandled vector element size in vector compare");
5703  return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
5704}
5705
5706inline QualType Sema::CheckBitwiseOperands(
5707  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign) {
5708  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
5709    return CheckVectorOperands(Loc, lex, rex);
5710
5711  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
5712
5713  if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
5714    return compType;
5715  return InvalidOperands(Loc, lex, rex);
5716}
5717
5718inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
5719  Expr *&lex, Expr *&rex, SourceLocation Loc) {
5720  if (!Context.getLangOptions().CPlusPlus) {
5721    UsualUnaryConversions(lex);
5722    UsualUnaryConversions(rex);
5723
5724    if (!lex->getType()->isScalarType() || !rex->getType()->isScalarType())
5725      return InvalidOperands(Loc, lex, rex);
5726
5727    return Context.IntTy;
5728  }
5729
5730  // The following is safe because we only use this method for
5731  // non-overloadable operands.
5732
5733  // C++ [expr.log.and]p1
5734  // C++ [expr.log.or]p1
5735  // The operands are both contextually converted to type bool.
5736  if (PerformContextuallyConvertToBool(lex) ||
5737      PerformContextuallyConvertToBool(rex))
5738    return InvalidOperands(Loc, lex, rex);
5739
5740  // C++ [expr.log.and]p2
5741  // C++ [expr.log.or]p2
5742  // The result is a bool.
5743  return Context.BoolTy;
5744}
5745
5746/// IsReadonlyProperty - Verify that otherwise a valid l-value expression
5747/// is a read-only property; return true if so. A readonly property expression
5748/// depends on various declarations and thus must be treated specially.
5749///
5750static bool IsReadonlyProperty(Expr *E, Sema &S) {
5751  if (E->getStmtClass() == Expr::ObjCPropertyRefExprClass) {
5752    const ObjCPropertyRefExpr* PropExpr = cast<ObjCPropertyRefExpr>(E);
5753    if (ObjCPropertyDecl *PDecl = PropExpr->getProperty()) {
5754      QualType BaseType = PropExpr->getBase()->getType();
5755      if (const ObjCObjectPointerType *OPT =
5756            BaseType->getAsObjCInterfacePointerType())
5757        if (ObjCInterfaceDecl *IFace = OPT->getInterfaceDecl())
5758          if (S.isPropertyReadonly(PDecl, IFace))
5759            return true;
5760    }
5761  }
5762  return false;
5763}
5764
5765/// CheckForModifiableLvalue - Verify that E is a modifiable lvalue.  If not,
5766/// emit an error and return true.  If so, return false.
5767static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
5768  SourceLocation OrigLoc = Loc;
5769  Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
5770                                                              &Loc);
5771  if (IsLV == Expr::MLV_Valid && IsReadonlyProperty(E, S))
5772    IsLV = Expr::MLV_ReadonlyProperty;
5773  if (IsLV == Expr::MLV_Valid)
5774    return false;
5775
5776  unsigned Diag = 0;
5777  bool NeedType = false;
5778  switch (IsLV) { // C99 6.5.16p2
5779  case Expr::MLV_ConstQualified: Diag = diag::err_typecheck_assign_const; break;
5780  case Expr::MLV_ArrayType:
5781    Diag = diag::err_typecheck_array_not_modifiable_lvalue;
5782    NeedType = true;
5783    break;
5784  case Expr::MLV_NotObjectType:
5785    Diag = diag::err_typecheck_non_object_not_modifiable_lvalue;
5786    NeedType = true;
5787    break;
5788  case Expr::MLV_LValueCast:
5789    Diag = diag::err_typecheck_lvalue_casts_not_supported;
5790    break;
5791  case Expr::MLV_Valid:
5792    llvm_unreachable("did not take early return for MLV_Valid");
5793  case Expr::MLV_InvalidExpression:
5794  case Expr::MLV_MemberFunction:
5795  case Expr::MLV_ClassTemporary:
5796    Diag = diag::err_typecheck_expression_not_modifiable_lvalue;
5797    break;
5798  case Expr::MLV_IncompleteType:
5799  case Expr::MLV_IncompleteVoidType:
5800    return S.RequireCompleteType(Loc, E->getType(),
5801              S.PDiag(diag::err_typecheck_incomplete_type_not_modifiable_lvalue)
5802                  << E->getSourceRange());
5803  case Expr::MLV_DuplicateVectorComponents:
5804    Diag = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
5805    break;
5806  case Expr::MLV_NotBlockQualified:
5807    Diag = diag::err_block_decl_ref_not_modifiable_lvalue;
5808    break;
5809  case Expr::MLV_ReadonlyProperty:
5810    Diag = diag::error_readonly_property_assignment;
5811    break;
5812  case Expr::MLV_NoSetterProperty:
5813    Diag = diag::error_nosetter_property_assignment;
5814    break;
5815  case Expr::MLV_SubObjCPropertySetting:
5816    Diag = diag::error_no_subobject_property_setting;
5817    break;
5818  }
5819
5820  SourceRange Assign;
5821  if (Loc != OrigLoc)
5822    Assign = SourceRange(OrigLoc, OrigLoc);
5823  if (NeedType)
5824    S.Diag(Loc, Diag) << E->getType() << E->getSourceRange() << Assign;
5825  else
5826    S.Diag(Loc, Diag) << E->getSourceRange() << Assign;
5827  return true;
5828}
5829
5830
5831
5832// C99 6.5.16.1
5833QualType Sema::CheckAssignmentOperands(Expr *LHS, Expr *&RHS,
5834                                       SourceLocation Loc,
5835                                       QualType CompoundType) {
5836  // Verify that LHS is a modifiable lvalue, and emit error if not.
5837  if (CheckForModifiableLvalue(LHS, Loc, *this))
5838    return QualType();
5839
5840  QualType LHSType = LHS->getType();
5841  QualType RHSType = CompoundType.isNull() ? RHS->getType() : CompoundType;
5842  AssignConvertType ConvTy;
5843  if (CompoundType.isNull()) {
5844    QualType LHSTy(LHSType);
5845    // Simple assignment "x = y".
5846    if (const ObjCImplicitSetterGetterRefExpr *OISGE =
5847        dyn_cast<ObjCImplicitSetterGetterRefExpr>(LHS)) {
5848      // If using property-dot syntax notation for assignment, and there is a
5849      // setter, RHS expression is being passed to the setter argument. So,
5850      // type conversion (and comparison) is RHS to setter's argument type.
5851      if (const ObjCMethodDecl *SetterMD = OISGE->getSetterMethod()) {
5852        ObjCMethodDecl::param_iterator P = SetterMD->param_begin();
5853        LHSTy = (*P)->getType();
5854      }
5855    }
5856
5857    ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
5858    // Special case of NSObject attributes on c-style pointer types.
5859    if (ConvTy == IncompatiblePointer &&
5860        ((Context.isObjCNSObjectType(LHSType) &&
5861          RHSType->isObjCObjectPointerType()) ||
5862         (Context.isObjCNSObjectType(RHSType) &&
5863          LHSType->isObjCObjectPointerType())))
5864      ConvTy = Compatible;
5865
5866    // If the RHS is a unary plus or minus, check to see if they = and + are
5867    // right next to each other.  If so, the user may have typo'd "x =+ 4"
5868    // instead of "x += 4".
5869    Expr *RHSCheck = RHS;
5870    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
5871      RHSCheck = ICE->getSubExpr();
5872    if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
5873      if ((UO->getOpcode() == UnaryOperator::Plus ||
5874           UO->getOpcode() == UnaryOperator::Minus) &&
5875          Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
5876          // Only if the two operators are exactly adjacent.
5877          Loc.getFileLocWithOffset(1) == UO->getOperatorLoc() &&
5878          // And there is a space or other character before the subexpr of the
5879          // unary +/-.  We don't want to warn on "x=-1".
5880          Loc.getFileLocWithOffset(2) != UO->getSubExpr()->getLocStart() &&
5881          UO->getSubExpr()->getLocStart().isFileID()) {
5882        Diag(Loc, diag::warn_not_compound_assign)
5883          << (UO->getOpcode() == UnaryOperator::Plus ? "+" : "-")
5884          << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
5885      }
5886    }
5887  } else {
5888    // Compound assignment "x += y"
5889    ConvTy = CheckAssignmentConstraints(LHSType, RHSType);
5890  }
5891
5892  if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
5893                               RHS, AA_Assigning))
5894    return QualType();
5895
5896
5897  // Check to see if the destination operand is a dereferenced null pointer.  If
5898  // so, and if not volatile-qualified, this is undefined behavior that the
5899  // optimizer will delete, so warn about it.  People sometimes try to use this
5900  // to get a deterministic trap and are surprised by clang's behavior.  This
5901  // only handles the pattern "*null = whatever", which is a very syntactic
5902  // check.
5903  if (UnaryOperator *UO = dyn_cast<UnaryOperator>(LHS->IgnoreParenCasts()))
5904    if (UO->getOpcode() == UnaryOperator::Deref &&
5905        UO->getSubExpr()->IgnoreParenCasts()->
5906          isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull) &&
5907        !UO->getType().isVolatileQualified()) {
5908    Diag(UO->getOperatorLoc(), diag::warn_indirection_through_null)
5909        << UO->getSubExpr()->getSourceRange();
5910    Diag(UO->getOperatorLoc(), diag::note_indirection_through_null);
5911  }
5912
5913  // C99 6.5.16p3: The type of an assignment expression is the type of the
5914  // left operand unless the left operand has qualified type, in which case
5915  // it is the unqualified version of the type of the left operand.
5916  // C99 6.5.16.1p2: In simple assignment, the value of the right operand
5917  // is converted to the type of the assignment expression (above).
5918  // C++ 5.17p1: the type of the assignment expression is that of its left
5919  // operand.
5920  return LHSType.getUnqualifiedType();
5921}
5922
5923// C99 6.5.17
5924QualType Sema::CheckCommaOperands(Expr *LHS, Expr *&RHS, SourceLocation Loc) {
5925  DiagnoseUnusedExprResult(LHS);
5926
5927  // Comma performs lvalue conversion (C99 6.3.2.1), but not unary conversions.
5928  // C++ does not perform this conversion (C++ [expr.comma]p1).
5929  if (!getLangOptions().CPlusPlus)
5930    DefaultFunctionArrayLvalueConversion(RHS);
5931
5932  // FIXME: Check that RHS type is complete in C mode (it's legal for it to be
5933  // incomplete in C++).
5934
5935  return RHS->getType();
5936}
5937
5938/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
5939/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
5940QualType Sema::CheckIncrementDecrementOperand(Expr *Op, SourceLocation OpLoc,
5941                                              bool isInc, bool isPrefix) {
5942  if (Op->isTypeDependent())
5943    return Context.DependentTy;
5944
5945  QualType ResType = Op->getType();
5946  assert(!ResType.isNull() && "no type for increment/decrement expression");
5947
5948  if (getLangOptions().CPlusPlus && ResType->isBooleanType()) {
5949    // Decrement of bool is not allowed.
5950    if (!isInc) {
5951      Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
5952      return QualType();
5953    }
5954    // Increment of bool sets it to true, but is deprecated.
5955    Diag(OpLoc, diag::warn_increment_bool) << Op->getSourceRange();
5956  } else if (ResType->isRealType()) {
5957    // OK!
5958  } else if (ResType->isAnyPointerType()) {
5959    QualType PointeeTy = ResType->getPointeeType();
5960
5961    // C99 6.5.2.4p2, 6.5.6p2
5962    if (PointeeTy->isVoidType()) {
5963      if (getLangOptions().CPlusPlus) {
5964        Diag(OpLoc, diag::err_typecheck_pointer_arith_void_type)
5965          << Op->getSourceRange();
5966        return QualType();
5967      }
5968
5969      // Pointer to void is a GNU extension in C.
5970      Diag(OpLoc, diag::ext_gnu_void_ptr) << Op->getSourceRange();
5971    } else if (PointeeTy->isFunctionType()) {
5972      if (getLangOptions().CPlusPlus) {
5973        Diag(OpLoc, diag::err_typecheck_pointer_arith_function_type)
5974          << Op->getType() << Op->getSourceRange();
5975        return QualType();
5976      }
5977
5978      Diag(OpLoc, diag::ext_gnu_ptr_func_arith)
5979        << ResType << Op->getSourceRange();
5980    } else if (RequireCompleteType(OpLoc, PointeeTy,
5981                           PDiag(diag::err_typecheck_arithmetic_incomplete_type)
5982                             << Op->getSourceRange()
5983                             << ResType))
5984      return QualType();
5985    // Diagnose bad cases where we step over interface counts.
5986    else if (PointeeTy->isObjCObjectType() && LangOpts.ObjCNonFragileABI) {
5987      Diag(OpLoc, diag::err_arithmetic_nonfragile_interface)
5988        << PointeeTy << Op->getSourceRange();
5989      return QualType();
5990    }
5991  } else if (ResType->isAnyComplexType()) {
5992    // C99 does not support ++/-- on complex types, we allow as an extension.
5993    Diag(OpLoc, diag::ext_integer_increment_complex)
5994      << ResType << Op->getSourceRange();
5995  } else {
5996    Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
5997      << ResType << int(isInc) << Op->getSourceRange();
5998    return QualType();
5999  }
6000  // At this point, we know we have a real, complex or pointer type.
6001  // Now make sure the operand is a modifiable lvalue.
6002  if (CheckForModifiableLvalue(Op, OpLoc, *this))
6003    return QualType();
6004  // In C++, a prefix increment is the same type as the operand. Otherwise
6005  // (in C or with postfix), the increment is the unqualified type of the
6006  // operand.
6007  return isPrefix && getLangOptions().CPlusPlus
6008    ? ResType : ResType.getUnqualifiedType();
6009}
6010
6011/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
6012/// This routine allows us to typecheck complex/recursive expressions
6013/// where the declaration is needed for type checking. We only need to
6014/// handle cases when the expression references a function designator
6015/// or is an lvalue. Here are some examples:
6016///  - &(x) => x
6017///  - &*****f => f for f a function designator.
6018///  - &s.xx => s
6019///  - &s.zz[1].yy -> s, if zz is an array
6020///  - *(x + 1) -> x, if x is an array
6021///  - &"123"[2] -> 0
6022///  - & __real__ x -> x
6023static NamedDecl *getPrimaryDecl(Expr *E) {
6024  switch (E->getStmtClass()) {
6025  case Stmt::DeclRefExprClass:
6026    return cast<DeclRefExpr>(E)->getDecl();
6027  case Stmt::MemberExprClass:
6028    // If this is an arrow operator, the address is an offset from
6029    // the base's value, so the object the base refers to is
6030    // irrelevant.
6031    if (cast<MemberExpr>(E)->isArrow())
6032      return 0;
6033    // Otherwise, the expression refers to a part of the base
6034    return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
6035  case Stmt::ArraySubscriptExprClass: {
6036    // FIXME: This code shouldn't be necessary!  We should catch the implicit
6037    // promotion of register arrays earlier.
6038    Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
6039    if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
6040      if (ICE->getSubExpr()->getType()->isArrayType())
6041        return getPrimaryDecl(ICE->getSubExpr());
6042    }
6043    return 0;
6044  }
6045  case Stmt::UnaryOperatorClass: {
6046    UnaryOperator *UO = cast<UnaryOperator>(E);
6047
6048    switch(UO->getOpcode()) {
6049    case UnaryOperator::Real:
6050    case UnaryOperator::Imag:
6051    case UnaryOperator::Extension:
6052      return getPrimaryDecl(UO->getSubExpr());
6053    default:
6054      return 0;
6055    }
6056  }
6057  case Stmt::ParenExprClass:
6058    return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
6059  case Stmt::ImplicitCastExprClass:
6060    // If the result of an implicit cast is an l-value, we care about
6061    // the sub-expression; otherwise, the result here doesn't matter.
6062    return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
6063  default:
6064    return 0;
6065  }
6066}
6067
6068/// CheckAddressOfOperand - The operand of & must be either a function
6069/// designator or an lvalue designating an object. If it is an lvalue, the
6070/// object cannot be declared with storage class register or be a bit field.
6071/// Note: The usual conversions are *not* applied to the operand of the &
6072/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
6073/// In C++, the operand might be an overloaded function name, in which case
6074/// we allow the '&' but retain the overloaded-function type.
6075QualType Sema::CheckAddressOfOperand(Expr *op, SourceLocation OpLoc) {
6076  // Make sure to ignore parentheses in subsequent checks
6077  op = op->IgnoreParens();
6078
6079  if (op->isTypeDependent())
6080    return Context.DependentTy;
6081
6082  if (getLangOptions().C99) {
6083    // Implement C99-only parts of addressof rules.
6084    if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
6085      if (uOp->getOpcode() == UnaryOperator::Deref)
6086        // Per C99 6.5.3.2, the address of a deref always returns a valid result
6087        // (assuming the deref expression is valid).
6088        return uOp->getSubExpr()->getType();
6089    }
6090    // Technically, there should be a check for array subscript
6091    // expressions here, but the result of one is always an lvalue anyway.
6092  }
6093  NamedDecl *dcl = getPrimaryDecl(op);
6094  Expr::isLvalueResult lval = op->isLvalue(Context);
6095
6096  MemberExpr *ME = dyn_cast<MemberExpr>(op);
6097  if (lval == Expr::LV_MemberFunction && ME &&
6098      isa<CXXMethodDecl>(ME->getMemberDecl())) {
6099    ValueDecl *dcl = cast<MemberExpr>(op)->getMemberDecl();
6100    // &f where f is a member of the current object, or &o.f, or &p->f
6101    // All these are not allowed, and we need to catch them before the dcl
6102    // branch of the if, below.
6103    Diag(OpLoc, diag::err_unqualified_pointer_member_function)
6104        << dcl;
6105    // FIXME: Improve this diagnostic and provide a fixit.
6106
6107    // Now recover by acting as if the function had been accessed qualified.
6108    return Context.getMemberPointerType(op->getType(),
6109                Context.getTypeDeclType(cast<RecordDecl>(dcl->getDeclContext()))
6110                       .getTypePtr());
6111  }
6112
6113  if (lval == Expr::LV_ClassTemporary) {
6114    Diag(OpLoc, isSFINAEContext()? diag::err_typecheck_addrof_class_temporary
6115                                 : diag::ext_typecheck_addrof_class_temporary)
6116      << op->getType() << op->getSourceRange();
6117    if (isSFINAEContext())
6118      return QualType();
6119  } else if (isa<ObjCSelectorExpr>(op))
6120    return Context.getPointerType(op->getType());
6121  else if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
6122    // C99 6.5.3.2p1
6123    // The operand must be either an l-value or a function designator
6124    if (!op->getType()->isFunctionType()) {
6125      // FIXME: emit more specific diag...
6126      Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
6127        << op->getSourceRange();
6128      return QualType();
6129    }
6130  } else if (op->getBitField()) { // C99 6.5.3.2p1
6131    // The operand cannot be a bit-field
6132    Diag(OpLoc, diag::err_typecheck_address_of)
6133      << "bit-field" << op->getSourceRange();
6134        return QualType();
6135  } else if (op->refersToVectorElement()) {
6136    // The operand cannot be an element of a vector
6137    Diag(OpLoc, diag::err_typecheck_address_of)
6138      << "vector element" << op->getSourceRange();
6139    return QualType();
6140  } else if (isa<ObjCPropertyRefExpr>(op)) {
6141    // cannot take address of a property expression.
6142    Diag(OpLoc, diag::err_typecheck_address_of)
6143      << "property expression" << op->getSourceRange();
6144    return QualType();
6145  } else if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(op)) {
6146    // FIXME: Can LHS ever be null here?
6147    if (!CheckAddressOfOperand(CO->getTrueExpr(), OpLoc).isNull())
6148      return CheckAddressOfOperand(CO->getFalseExpr(), OpLoc);
6149  } else if (isa<UnresolvedLookupExpr>(op)) {
6150    return Context.OverloadTy;
6151  } else if (dcl) { // C99 6.5.3.2p1
6152    // We have an lvalue with a decl. Make sure the decl is not declared
6153    // with the register storage-class specifier.
6154    if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
6155      if (vd->getStorageClass() == VarDecl::Register) {
6156        Diag(OpLoc, diag::err_typecheck_address_of)
6157          << "register variable" << op->getSourceRange();
6158        return QualType();
6159      }
6160    } else if (isa<FunctionTemplateDecl>(dcl)) {
6161      return Context.OverloadTy;
6162    } else if (FieldDecl *FD = dyn_cast<FieldDecl>(dcl)) {
6163      // Okay: we can take the address of a field.
6164      // Could be a pointer to member, though, if there is an explicit
6165      // scope qualifier for the class.
6166      if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier()) {
6167        DeclContext *Ctx = dcl->getDeclContext();
6168        if (Ctx && Ctx->isRecord()) {
6169          if (FD->getType()->isReferenceType()) {
6170            Diag(OpLoc,
6171                 diag::err_cannot_form_pointer_to_member_of_reference_type)
6172              << FD->getDeclName() << FD->getType();
6173            return QualType();
6174          }
6175
6176          return Context.getMemberPointerType(op->getType(),
6177                Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
6178        }
6179      }
6180    } else if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(dcl)) {
6181      // Okay: we can take the address of a function.
6182      // As above.
6183      if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier() &&
6184          MD->isInstance())
6185        return Context.getMemberPointerType(op->getType(),
6186              Context.getTypeDeclType(MD->getParent()).getTypePtr());
6187    } else if (!isa<FunctionDecl>(dcl))
6188      assert(0 && "Unknown/unexpected decl type");
6189  }
6190
6191  if (lval == Expr::LV_IncompleteVoidType) {
6192    // Taking the address of a void variable is technically illegal, but we
6193    // allow it in cases which are otherwise valid.
6194    // Example: "extern void x; void* y = &x;".
6195    Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
6196  }
6197
6198  // If the operand has type "type", the result has type "pointer to type".
6199  return Context.getPointerType(op->getType());
6200}
6201
6202/// CheckIndirectionOperand - Type check unary indirection (prefix '*').
6203QualType Sema::CheckIndirectionOperand(Expr *Op, SourceLocation OpLoc) {
6204  if (Op->isTypeDependent())
6205    return Context.DependentTy;
6206
6207  UsualUnaryConversions(Op);
6208  QualType OpTy = Op->getType();
6209  QualType Result;
6210
6211  // Note that per both C89 and C99, indirection is always legal, even if OpTy
6212  // is an incomplete type or void.  It would be possible to warn about
6213  // dereferencing a void pointer, but it's completely well-defined, and such a
6214  // warning is unlikely to catch any mistakes.
6215  if (const PointerType *PT = OpTy->getAs<PointerType>())
6216    Result = PT->getPointeeType();
6217  else if (const ObjCObjectPointerType *OPT =
6218             OpTy->getAs<ObjCObjectPointerType>())
6219    Result = OPT->getPointeeType();
6220
6221  if (Result.isNull()) {
6222    Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
6223      << OpTy << Op->getSourceRange();
6224    return QualType();
6225  }
6226
6227  return Result;
6228}
6229
6230static inline BinaryOperator::Opcode ConvertTokenKindToBinaryOpcode(
6231  tok::TokenKind Kind) {
6232  BinaryOperator::Opcode Opc;
6233  switch (Kind) {
6234  default: assert(0 && "Unknown binop!");
6235  case tok::periodstar:           Opc = BinaryOperator::PtrMemD; break;
6236  case tok::arrowstar:            Opc = BinaryOperator::PtrMemI; break;
6237  case tok::star:                 Opc = BinaryOperator::Mul; break;
6238  case tok::slash:                Opc = BinaryOperator::Div; break;
6239  case tok::percent:              Opc = BinaryOperator::Rem; break;
6240  case tok::plus:                 Opc = BinaryOperator::Add; break;
6241  case tok::minus:                Opc = BinaryOperator::Sub; break;
6242  case tok::lessless:             Opc = BinaryOperator::Shl; break;
6243  case tok::greatergreater:       Opc = BinaryOperator::Shr; break;
6244  case tok::lessequal:            Opc = BinaryOperator::LE; break;
6245  case tok::less:                 Opc = BinaryOperator::LT; break;
6246  case tok::greaterequal:         Opc = BinaryOperator::GE; break;
6247  case tok::greater:              Opc = BinaryOperator::GT; break;
6248  case tok::exclaimequal:         Opc = BinaryOperator::NE; break;
6249  case tok::equalequal:           Opc = BinaryOperator::EQ; break;
6250  case tok::amp:                  Opc = BinaryOperator::And; break;
6251  case tok::caret:                Opc = BinaryOperator::Xor; break;
6252  case tok::pipe:                 Opc = BinaryOperator::Or; break;
6253  case tok::ampamp:               Opc = BinaryOperator::LAnd; break;
6254  case tok::pipepipe:             Opc = BinaryOperator::LOr; break;
6255  case tok::equal:                Opc = BinaryOperator::Assign; break;
6256  case tok::starequal:            Opc = BinaryOperator::MulAssign; break;
6257  case tok::slashequal:           Opc = BinaryOperator::DivAssign; break;
6258  case tok::percentequal:         Opc = BinaryOperator::RemAssign; break;
6259  case tok::plusequal:            Opc = BinaryOperator::AddAssign; break;
6260  case tok::minusequal:           Opc = BinaryOperator::SubAssign; break;
6261  case tok::lesslessequal:        Opc = BinaryOperator::ShlAssign; break;
6262  case tok::greatergreaterequal:  Opc = BinaryOperator::ShrAssign; break;
6263  case tok::ampequal:             Opc = BinaryOperator::AndAssign; break;
6264  case tok::caretequal:           Opc = BinaryOperator::XorAssign; break;
6265  case tok::pipeequal:            Opc = BinaryOperator::OrAssign; break;
6266  case tok::comma:                Opc = BinaryOperator::Comma; break;
6267  }
6268  return Opc;
6269}
6270
6271static inline UnaryOperator::Opcode ConvertTokenKindToUnaryOpcode(
6272  tok::TokenKind Kind) {
6273  UnaryOperator::Opcode Opc;
6274  switch (Kind) {
6275  default: assert(0 && "Unknown unary op!");
6276  case tok::plusplus:     Opc = UnaryOperator::PreInc; break;
6277  case tok::minusminus:   Opc = UnaryOperator::PreDec; break;
6278  case tok::amp:          Opc = UnaryOperator::AddrOf; break;
6279  case tok::star:         Opc = UnaryOperator::Deref; break;
6280  case tok::plus:         Opc = UnaryOperator::Plus; break;
6281  case tok::minus:        Opc = UnaryOperator::Minus; break;
6282  case tok::tilde:        Opc = UnaryOperator::Not; break;
6283  case tok::exclaim:      Opc = UnaryOperator::LNot; break;
6284  case tok::kw___real:    Opc = UnaryOperator::Real; break;
6285  case tok::kw___imag:    Opc = UnaryOperator::Imag; break;
6286  case tok::kw___extension__: Opc = UnaryOperator::Extension; break;
6287  }
6288  return Opc;
6289}
6290
6291/// CreateBuiltinBinOp - Creates a new built-in binary operation with
6292/// operator @p Opc at location @c TokLoc. This routine only supports
6293/// built-in operations; ActOnBinOp handles overloaded operators.
6294Action::OwningExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
6295                                                  unsigned Op,
6296                                                  Expr *lhs, Expr *rhs) {
6297  QualType ResultTy;     // Result type of the binary operator.
6298  BinaryOperator::Opcode Opc = (BinaryOperator::Opcode)Op;
6299  // The following two variables are used for compound assignment operators
6300  QualType CompLHSTy;    // Type of LHS after promotions for computation
6301  QualType CompResultTy; // Type of computation result
6302
6303  switch (Opc) {
6304  case BinaryOperator::Assign:
6305    ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, QualType());
6306    break;
6307  case BinaryOperator::PtrMemD:
6308  case BinaryOperator::PtrMemI:
6309    ResultTy = CheckPointerToMemberOperands(lhs, rhs, OpLoc,
6310                                            Opc == BinaryOperator::PtrMemI);
6311    break;
6312  case BinaryOperator::Mul:
6313  case BinaryOperator::Div:
6314    ResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, false,
6315                                           Opc == BinaryOperator::Div);
6316    break;
6317  case BinaryOperator::Rem:
6318    ResultTy = CheckRemainderOperands(lhs, rhs, OpLoc);
6319    break;
6320  case BinaryOperator::Add:
6321    ResultTy = CheckAdditionOperands(lhs, rhs, OpLoc);
6322    break;
6323  case BinaryOperator::Sub:
6324    ResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc);
6325    break;
6326  case BinaryOperator::Shl:
6327  case BinaryOperator::Shr:
6328    ResultTy = CheckShiftOperands(lhs, rhs, OpLoc);
6329    break;
6330  case BinaryOperator::LE:
6331  case BinaryOperator::LT:
6332  case BinaryOperator::GE:
6333  case BinaryOperator::GT:
6334    ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, true);
6335    break;
6336  case BinaryOperator::EQ:
6337  case BinaryOperator::NE:
6338    ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, false);
6339    break;
6340  case BinaryOperator::And:
6341  case BinaryOperator::Xor:
6342  case BinaryOperator::Or:
6343    ResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc);
6344    break;
6345  case BinaryOperator::LAnd:
6346  case BinaryOperator::LOr:
6347    ResultTy = CheckLogicalOperands(lhs, rhs, OpLoc);
6348    break;
6349  case BinaryOperator::MulAssign:
6350  case BinaryOperator::DivAssign:
6351    CompResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, true,
6352                                              Opc == BinaryOperator::DivAssign);
6353    CompLHSTy = CompResultTy;
6354    if (!CompResultTy.isNull())
6355      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
6356    break;
6357  case BinaryOperator::RemAssign:
6358    CompResultTy = CheckRemainderOperands(lhs, rhs, OpLoc, true);
6359    CompLHSTy = CompResultTy;
6360    if (!CompResultTy.isNull())
6361      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
6362    break;
6363  case BinaryOperator::AddAssign:
6364    CompResultTy = CheckAdditionOperands(lhs, rhs, OpLoc, &CompLHSTy);
6365    if (!CompResultTy.isNull())
6366      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
6367    break;
6368  case BinaryOperator::SubAssign:
6369    CompResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc, &CompLHSTy);
6370    if (!CompResultTy.isNull())
6371      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
6372    break;
6373  case BinaryOperator::ShlAssign:
6374  case BinaryOperator::ShrAssign:
6375    CompResultTy = CheckShiftOperands(lhs, rhs, OpLoc, true);
6376    CompLHSTy = CompResultTy;
6377    if (!CompResultTy.isNull())
6378      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
6379    break;
6380  case BinaryOperator::AndAssign:
6381  case BinaryOperator::XorAssign:
6382  case BinaryOperator::OrAssign:
6383    CompResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc, true);
6384    CompLHSTy = CompResultTy;
6385    if (!CompResultTy.isNull())
6386      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
6387    break;
6388  case BinaryOperator::Comma:
6389    ResultTy = CheckCommaOperands(lhs, rhs, OpLoc);
6390    break;
6391  }
6392  if (ResultTy.isNull())
6393    return ExprError();
6394  if (CompResultTy.isNull())
6395    return Owned(new (Context) BinaryOperator(lhs, rhs, Opc, ResultTy, OpLoc));
6396  else
6397    return Owned(new (Context) CompoundAssignOperator(lhs, rhs, Opc, ResultTy,
6398                                                      CompLHSTy, CompResultTy,
6399                                                      OpLoc));
6400}
6401
6402/// SuggestParentheses - Emit a diagnostic together with a fixit hint that wraps
6403/// ParenRange in parentheses.
6404static void SuggestParentheses(Sema &Self, SourceLocation Loc,
6405                               const PartialDiagnostic &PD,
6406                               const PartialDiagnostic &FirstNote,
6407                               SourceRange FirstParenRange,
6408                               const PartialDiagnostic &SecondNote,
6409                               SourceRange SecondParenRange) {
6410  Self.Diag(Loc, PD);
6411
6412  if (!FirstNote.getDiagID())
6413    return;
6414
6415  SourceLocation EndLoc = Self.PP.getLocForEndOfToken(FirstParenRange.getEnd());
6416  if (!FirstParenRange.getEnd().isFileID() || EndLoc.isInvalid()) {
6417    // We can't display the parentheses, so just return.
6418    return;
6419  }
6420
6421  Self.Diag(Loc, FirstNote)
6422    << FixItHint::CreateInsertion(FirstParenRange.getBegin(), "(")
6423    << FixItHint::CreateInsertion(EndLoc, ")");
6424
6425  if (!SecondNote.getDiagID())
6426    return;
6427
6428  EndLoc = Self.PP.getLocForEndOfToken(SecondParenRange.getEnd());
6429  if (!SecondParenRange.getEnd().isFileID() || EndLoc.isInvalid()) {
6430    // We can't display the parentheses, so just dig the
6431    // warning/error and return.
6432    Self.Diag(Loc, SecondNote);
6433    return;
6434  }
6435
6436  Self.Diag(Loc, SecondNote)
6437    << FixItHint::CreateInsertion(SecondParenRange.getBegin(), "(")
6438    << FixItHint::CreateInsertion(EndLoc, ")");
6439}
6440
6441/// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison
6442/// operators are mixed in a way that suggests that the programmer forgot that
6443/// comparison operators have higher precedence. The most typical example of
6444/// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1".
6445static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperator::Opcode Opc,
6446                                      SourceLocation OpLoc,Expr *lhs,Expr *rhs){
6447  typedef BinaryOperator BinOp;
6448  BinOp::Opcode lhsopc = static_cast<BinOp::Opcode>(-1),
6449                rhsopc = static_cast<BinOp::Opcode>(-1);
6450  if (BinOp *BO = dyn_cast<BinOp>(lhs))
6451    lhsopc = BO->getOpcode();
6452  if (BinOp *BO = dyn_cast<BinOp>(rhs))
6453    rhsopc = BO->getOpcode();
6454
6455  // Subs are not binary operators.
6456  if (lhsopc == -1 && rhsopc == -1)
6457    return;
6458
6459  // Bitwise operations are sometimes used as eager logical ops.
6460  // Don't diagnose this.
6461  if ((BinOp::isComparisonOp(lhsopc) || BinOp::isBitwiseOp(lhsopc)) &&
6462      (BinOp::isComparisonOp(rhsopc) || BinOp::isBitwiseOp(rhsopc)))
6463    return;
6464
6465  if (BinOp::isComparisonOp(lhsopc))
6466    SuggestParentheses(Self, OpLoc,
6467      Self.PDiag(diag::warn_precedence_bitwise_rel)
6468          << SourceRange(lhs->getLocStart(), OpLoc)
6469          << BinOp::getOpcodeStr(Opc) << BinOp::getOpcodeStr(lhsopc),
6470      Self.PDiag(diag::note_precedence_bitwise_first)
6471          << BinOp::getOpcodeStr(Opc),
6472      SourceRange(cast<BinOp>(lhs)->getRHS()->getLocStart(), rhs->getLocEnd()),
6473      Self.PDiag(diag::note_precedence_bitwise_silence)
6474          << BinOp::getOpcodeStr(lhsopc),
6475                       lhs->getSourceRange());
6476  else if (BinOp::isComparisonOp(rhsopc))
6477    SuggestParentheses(Self, OpLoc,
6478      Self.PDiag(diag::warn_precedence_bitwise_rel)
6479          << SourceRange(OpLoc, rhs->getLocEnd())
6480          << BinOp::getOpcodeStr(Opc) << BinOp::getOpcodeStr(rhsopc),
6481      Self.PDiag(diag::note_precedence_bitwise_first)
6482        << BinOp::getOpcodeStr(Opc),
6483      SourceRange(lhs->getLocEnd(), cast<BinOp>(rhs)->getLHS()->getLocStart()),
6484      Self.PDiag(diag::note_precedence_bitwise_silence)
6485        << BinOp::getOpcodeStr(rhsopc),
6486                       rhs->getSourceRange());
6487}
6488
6489/// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky
6490/// precedence. This currently diagnoses only "arg1 'bitwise' arg2 'eq' arg3".
6491/// But it could also warn about arg1 && arg2 || arg3, as GCC 4.3+ does.
6492static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperator::Opcode Opc,
6493                                    SourceLocation OpLoc, Expr *lhs, Expr *rhs){
6494  if (BinaryOperator::isBitwiseOp(Opc))
6495    DiagnoseBitwisePrecedence(Self, Opc, OpLoc, lhs, rhs);
6496}
6497
6498// Binary Operators.  'Tok' is the token for the operator.
6499Action::OwningExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
6500                                          tok::TokenKind Kind,
6501                                          ExprArg LHS, ExprArg RHS) {
6502  BinaryOperator::Opcode Opc = ConvertTokenKindToBinaryOpcode(Kind);
6503  Expr *lhs = LHS.takeAs<Expr>(), *rhs = RHS.takeAs<Expr>();
6504
6505  assert((lhs != 0) && "ActOnBinOp(): missing left expression");
6506  assert((rhs != 0) && "ActOnBinOp(): missing right expression");
6507
6508  // Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0"
6509  DiagnoseBinOpPrecedence(*this, Opc, TokLoc, lhs, rhs);
6510
6511  return BuildBinOp(S, TokLoc, Opc, lhs, rhs);
6512}
6513
6514Action::OwningExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc,
6515                                          BinaryOperator::Opcode Opc,
6516                                          Expr *lhs, Expr *rhs) {
6517  if (getLangOptions().CPlusPlus &&
6518      (lhs->getType()->isOverloadableType() ||
6519       rhs->getType()->isOverloadableType())) {
6520    // Find all of the overloaded operators visible from this
6521    // point. We perform both an operator-name lookup from the local
6522    // scope and an argument-dependent lookup based on the types of
6523    // the arguments.
6524    UnresolvedSet<16> Functions;
6525    OverloadedOperatorKind OverOp = BinaryOperator::getOverloadedOperator(Opc);
6526    if (S && OverOp != OO_None)
6527      LookupOverloadedOperatorName(OverOp, S, lhs->getType(), rhs->getType(),
6528                                   Functions);
6529
6530    // Build the (potentially-overloaded, potentially-dependent)
6531    // binary operation.
6532    return CreateOverloadedBinOp(OpLoc, Opc, Functions, lhs, rhs);
6533  }
6534
6535  // Build a built-in binary operation.
6536  return CreateBuiltinBinOp(OpLoc, Opc, lhs, rhs);
6537}
6538
6539Action::OwningExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
6540                                                    unsigned OpcIn,
6541                                                    ExprArg InputArg) {
6542  UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
6543
6544  // FIXME: Input is modified below, but InputArg is not updated appropriately.
6545  Expr *Input = (Expr *)InputArg.get();
6546  QualType resultType;
6547  switch (Opc) {
6548  case UnaryOperator::OffsetOf:
6549    assert(false && "Invalid unary operator");
6550    break;
6551
6552  case UnaryOperator::PreInc:
6553  case UnaryOperator::PreDec:
6554  case UnaryOperator::PostInc:
6555  case UnaryOperator::PostDec:
6556    resultType = CheckIncrementDecrementOperand(Input, OpLoc,
6557                                                Opc == UnaryOperator::PreInc ||
6558                                                Opc == UnaryOperator::PostInc,
6559                                                Opc == UnaryOperator::PreInc ||
6560                                                Opc == UnaryOperator::PreDec);
6561    break;
6562  case UnaryOperator::AddrOf:
6563    resultType = CheckAddressOfOperand(Input, OpLoc);
6564    break;
6565  case UnaryOperator::Deref:
6566    DefaultFunctionArrayLvalueConversion(Input);
6567    resultType = CheckIndirectionOperand(Input, OpLoc);
6568    break;
6569  case UnaryOperator::Plus:
6570  case UnaryOperator::Minus:
6571    UsualUnaryConversions(Input);
6572    resultType = Input->getType();
6573    if (resultType->isDependentType())
6574      break;
6575    if (resultType->isArithmeticType() || // C99 6.5.3.3p1
6576        resultType->isVectorType())
6577      break;
6578    else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6-7
6579             resultType->isEnumeralType())
6580      break;
6581    else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6
6582             Opc == UnaryOperator::Plus &&
6583             resultType->isPointerType())
6584      break;
6585
6586    return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
6587      << resultType << Input->getSourceRange());
6588  case UnaryOperator::Not: // bitwise complement
6589    UsualUnaryConversions(Input);
6590    resultType = Input->getType();
6591    if (resultType->isDependentType())
6592      break;
6593    // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
6594    if (resultType->isComplexType() || resultType->isComplexIntegerType())
6595      // C99 does not support '~' for complex conjugation.
6596      Diag(OpLoc, diag::ext_integer_complement_complex)
6597        << resultType << Input->getSourceRange();
6598    else if (!resultType->isIntegerType())
6599      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
6600        << resultType << Input->getSourceRange());
6601    break;
6602  case UnaryOperator::LNot: // logical negation
6603    // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
6604    DefaultFunctionArrayLvalueConversion(Input);
6605    resultType = Input->getType();
6606    if (resultType->isDependentType())
6607      break;
6608    if (!resultType->isScalarType()) // C99 6.5.3.3p1
6609      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
6610        << resultType << Input->getSourceRange());
6611    // LNot always has type int. C99 6.5.3.3p5.
6612    // In C++, it's bool. C++ 5.3.1p8
6613    resultType = getLangOptions().CPlusPlus ? Context.BoolTy : Context.IntTy;
6614    break;
6615  case UnaryOperator::Real:
6616  case UnaryOperator::Imag:
6617    resultType = CheckRealImagOperand(Input, OpLoc, Opc == UnaryOperator::Real);
6618    break;
6619  case UnaryOperator::Extension:
6620    resultType = Input->getType();
6621    break;
6622  }
6623  if (resultType.isNull())
6624    return ExprError();
6625
6626  InputArg.release();
6627  return Owned(new (Context) UnaryOperator(Input, Opc, resultType, OpLoc));
6628}
6629
6630Action::OwningExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc,
6631                                            UnaryOperator::Opcode Opc,
6632                                            ExprArg input) {
6633  Expr *Input = (Expr*)input.get();
6634  if (getLangOptions().CPlusPlus && Input->getType()->isOverloadableType() &&
6635      Opc != UnaryOperator::Extension) {
6636    // Find all of the overloaded operators visible from this
6637    // point. We perform both an operator-name lookup from the local
6638    // scope and an argument-dependent lookup based on the types of
6639    // the arguments.
6640    UnresolvedSet<16> Functions;
6641    OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
6642    if (S && OverOp != OO_None)
6643      LookupOverloadedOperatorName(OverOp, S, Input->getType(), QualType(),
6644                                   Functions);
6645
6646    return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, move(input));
6647  }
6648
6649  return CreateBuiltinUnaryOp(OpLoc, Opc, move(input));
6650}
6651
6652// Unary Operators.  'Tok' is the token for the operator.
6653Action::OwningExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
6654                                            tok::TokenKind Op, ExprArg input) {
6655  return BuildUnaryOp(S, OpLoc, ConvertTokenKindToUnaryOpcode(Op), move(input));
6656}
6657
6658/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
6659Sema::OwningExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc,
6660                                            SourceLocation LabLoc,
6661                                            IdentifierInfo *LabelII) {
6662  // Look up the record for this label identifier.
6663  LabelStmt *&LabelDecl = getLabelMap()[LabelII];
6664
6665  // If we haven't seen this label yet, create a forward reference. It
6666  // will be validated and/or cleaned up in ActOnFinishFunctionBody.
6667  if (LabelDecl == 0)
6668    LabelDecl = new (Context) LabelStmt(LabLoc, LabelII, 0);
6669
6670  // Create the AST node.  The address of a label always has type 'void*'.
6671  return Owned(new (Context) AddrLabelExpr(OpLoc, LabLoc, LabelDecl,
6672                                       Context.getPointerType(Context.VoidTy)));
6673}
6674
6675Sema::OwningExprResult
6676Sema::ActOnStmtExpr(SourceLocation LPLoc, StmtArg substmt,
6677                    SourceLocation RPLoc) { // "({..})"
6678  Stmt *SubStmt = static_cast<Stmt*>(substmt.get());
6679  assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
6680  CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
6681
6682  bool isFileScope
6683    = (getCurFunctionOrMethodDecl() == 0) && (getCurBlock() == 0);
6684  if (isFileScope)
6685    return ExprError(Diag(LPLoc, diag::err_stmtexpr_file_scope));
6686
6687  // FIXME: there are a variety of strange constraints to enforce here, for
6688  // example, it is not possible to goto into a stmt expression apparently.
6689  // More semantic analysis is needed.
6690
6691  // If there are sub stmts in the compound stmt, take the type of the last one
6692  // as the type of the stmtexpr.
6693  QualType Ty = Context.VoidTy;
6694
6695  if (!Compound->body_empty()) {
6696    Stmt *LastStmt = Compound->body_back();
6697    // If LastStmt is a label, skip down through into the body.
6698    while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt))
6699      LastStmt = Label->getSubStmt();
6700
6701    if (Expr *LastExpr = dyn_cast<Expr>(LastStmt))
6702      Ty = LastExpr->getType();
6703  }
6704
6705  // FIXME: Check that expression type is complete/non-abstract; statement
6706  // expressions are not lvalues.
6707
6708  substmt.release();
6709  return Owned(new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc));
6710}
6711
6712Sema::OwningExprResult Sema::BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,
6713                                                  TypeSourceInfo *TInfo,
6714                                                  OffsetOfComponent *CompPtr,
6715                                                  unsigned NumComponents,
6716                                                  SourceLocation RParenLoc) {
6717  QualType ArgTy = TInfo->getType();
6718  bool Dependent = ArgTy->isDependentType();
6719  SourceRange TypeRange = TInfo->getTypeLoc().getLocalSourceRange();
6720
6721  // We must have at least one component that refers to the type, and the first
6722  // one is known to be a field designator.  Verify that the ArgTy represents
6723  // a struct/union/class.
6724  if (!Dependent && !ArgTy->isRecordType())
6725    return ExprError(Diag(BuiltinLoc, diag::err_offsetof_record_type)
6726                       << ArgTy << TypeRange);
6727
6728  // Type must be complete per C99 7.17p3 because a declaring a variable
6729  // with an incomplete type would be ill-formed.
6730  if (!Dependent
6731      && RequireCompleteType(BuiltinLoc, ArgTy,
6732                             PDiag(diag::err_offsetof_incomplete_type)
6733                               << TypeRange))
6734    return ExprError();
6735
6736  // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
6737  // GCC extension, diagnose them.
6738  // FIXME: This diagnostic isn't actually visible because the location is in
6739  // a system header!
6740  if (NumComponents != 1)
6741    Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator)
6742      << SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd);
6743
6744  bool DidWarnAboutNonPOD = false;
6745  QualType CurrentType = ArgTy;
6746  typedef OffsetOfExpr::OffsetOfNode OffsetOfNode;
6747  llvm::SmallVector<OffsetOfNode, 4> Comps;
6748  llvm::SmallVector<Expr*, 4> Exprs;
6749  for (unsigned i = 0; i != NumComponents; ++i) {
6750    const OffsetOfComponent &OC = CompPtr[i];
6751    if (OC.isBrackets) {
6752      // Offset of an array sub-field.  TODO: Should we allow vector elements?
6753      if (!CurrentType->isDependentType()) {
6754        const ArrayType *AT = Context.getAsArrayType(CurrentType);
6755        if(!AT)
6756          return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
6757                           << CurrentType);
6758        CurrentType = AT->getElementType();
6759      } else
6760        CurrentType = Context.DependentTy;
6761
6762      // The expression must be an integral expression.
6763      // FIXME: An integral constant expression?
6764      Expr *Idx = static_cast<Expr*>(OC.U.E);
6765      if (!Idx->isTypeDependent() && !Idx->isValueDependent() &&
6766          !Idx->getType()->isIntegerType())
6767        return ExprError(Diag(Idx->getLocStart(),
6768                              diag::err_typecheck_subscript_not_integer)
6769                         << Idx->getSourceRange());
6770
6771      // Record this array index.
6772      Comps.push_back(OffsetOfNode(OC.LocStart, Exprs.size(), OC.LocEnd));
6773      Exprs.push_back(Idx);
6774      continue;
6775    }
6776
6777    // Offset of a field.
6778    if (CurrentType->isDependentType()) {
6779      // We have the offset of a field, but we can't look into the dependent
6780      // type. Just record the identifier of the field.
6781      Comps.push_back(OffsetOfNode(OC.LocStart, OC.U.IdentInfo, OC.LocEnd));
6782      CurrentType = Context.DependentTy;
6783      continue;
6784    }
6785
6786    // We need to have a complete type to look into.
6787    if (RequireCompleteType(OC.LocStart, CurrentType,
6788                            diag::err_offsetof_incomplete_type))
6789      return ExprError();
6790
6791    // Look for the designated field.
6792    const RecordType *RC = CurrentType->getAs<RecordType>();
6793    if (!RC)
6794      return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
6795                       << CurrentType);
6796    RecordDecl *RD = RC->getDecl();
6797
6798    // C++ [lib.support.types]p5:
6799    //   The macro offsetof accepts a restricted set of type arguments in this
6800    //   International Standard. type shall be a POD structure or a POD union
6801    //   (clause 9).
6802    if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
6803      if (!CRD->isPOD() && !DidWarnAboutNonPOD &&
6804          DiagRuntimeBehavior(BuiltinLoc,
6805                              PDiag(diag::warn_offsetof_non_pod_type)
6806                              << SourceRange(CompPtr[0].LocStart, OC.LocEnd)
6807                              << CurrentType))
6808        DidWarnAboutNonPOD = true;
6809    }
6810
6811    // Look for the field.
6812    LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName);
6813    LookupQualifiedName(R, RD);
6814    FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>();
6815    if (!MemberDecl)
6816      return ExprError(Diag(BuiltinLoc, diag::err_no_member)
6817                       << OC.U.IdentInfo << RD << SourceRange(OC.LocStart,
6818                                                              OC.LocEnd));
6819
6820    // C99 7.17p3:
6821    //   (If the specified member is a bit-field, the behavior is undefined.)
6822    //
6823    // We diagnose this as an error.
6824    if (MemberDecl->getBitWidth()) {
6825      Diag(OC.LocEnd, diag::err_offsetof_bitfield)
6826        << MemberDecl->getDeclName()
6827        << SourceRange(BuiltinLoc, RParenLoc);
6828      Diag(MemberDecl->getLocation(), diag::note_bitfield_decl);
6829      return ExprError();
6830    }
6831
6832    // If the member was found in a base class, introduce OffsetOfNodes for
6833    // the base class indirections.
6834    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
6835                       /*DetectVirtual=*/false);
6836    if (IsDerivedFrom(CurrentType,
6837                      Context.getTypeDeclType(MemberDecl->getParent()),
6838                      Paths)) {
6839      CXXBasePath &Path = Paths.front();
6840      for (CXXBasePath::iterator B = Path.begin(), BEnd = Path.end();
6841           B != BEnd; ++B)
6842        Comps.push_back(OffsetOfNode(B->Base));
6843    }
6844
6845    if (cast<RecordDecl>(MemberDecl->getDeclContext())->
6846                                                isAnonymousStructOrUnion()) {
6847      llvm::SmallVector<FieldDecl*, 4> Path;
6848      BuildAnonymousStructUnionMemberPath(MemberDecl, Path);
6849      unsigned n = Path.size();
6850      for (int j = n - 1; j > -1; --j)
6851        Comps.push_back(OffsetOfNode(OC.LocStart, Path[j], OC.LocEnd));
6852    } else {
6853      Comps.push_back(OffsetOfNode(OC.LocStart, MemberDecl, OC.LocEnd));
6854    }
6855    CurrentType = MemberDecl->getType().getNonReferenceType();
6856  }
6857
6858  return Owned(OffsetOfExpr::Create(Context, Context.getSizeType(), BuiltinLoc,
6859                                    TInfo, Comps.data(), Comps.size(),
6860                                    Exprs.data(), Exprs.size(), RParenLoc));
6861}
6862
6863Sema::OwningExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
6864                                                  SourceLocation BuiltinLoc,
6865                                                  SourceLocation TypeLoc,
6866                                                  TypeTy *argty,
6867                                                  OffsetOfComponent *CompPtr,
6868                                                  unsigned NumComponents,
6869                                                  SourceLocation RPLoc) {
6870
6871  TypeSourceInfo *ArgTInfo;
6872  QualType ArgTy = GetTypeFromParser(argty, &ArgTInfo);
6873  if (ArgTy.isNull())
6874    return ExprError();
6875
6876  if (getLangOptions().CPlusPlus) {
6877    if (!ArgTInfo)
6878      ArgTInfo = Context.getTrivialTypeSourceInfo(ArgTy, TypeLoc);
6879
6880    return BuildBuiltinOffsetOf(BuiltinLoc, ArgTInfo, CompPtr, NumComponents,
6881                                RPLoc);
6882  }
6883
6884  // FIXME: The code below is marked for death, once we have proper CodeGen
6885  // support for non-constant OffsetOf expressions.
6886
6887  bool Dependent = ArgTy->isDependentType();
6888
6889  // We must have at least one component that refers to the type, and the first
6890  // one is known to be a field designator.  Verify that the ArgTy represents
6891  // a struct/union/class.
6892  if (!Dependent && !ArgTy->isRecordType())
6893    return ExprError(Diag(TypeLoc, diag::err_offsetof_record_type) << ArgTy);
6894
6895  // FIXME: Type must be complete per C99 7.17p3 because a declaring a variable
6896  // with an incomplete type would be illegal.
6897
6898  // Otherwise, create a null pointer as the base, and iteratively process
6899  // the offsetof designators.
6900  QualType ArgTyPtr = Context.getPointerType(ArgTy);
6901  Expr* Res = new (Context) ImplicitValueInitExpr(ArgTyPtr);
6902  Res = new (Context) UnaryOperator(Res, UnaryOperator::Deref,
6903                                    ArgTy, SourceLocation());
6904
6905  // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
6906  // GCC extension, diagnose them.
6907  // FIXME: This diagnostic isn't actually visible because the location is in
6908  // a system header!
6909  if (NumComponents != 1)
6910    Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator)
6911    << SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd);
6912
6913  if (!Dependent) {
6914    bool DidWarnAboutNonPOD = false;
6915
6916    if (RequireCompleteType(TypeLoc, Res->getType(),
6917                            diag::err_offsetof_incomplete_type))
6918      return ExprError();
6919
6920    // FIXME: Dependent case loses a lot of information here. And probably
6921    // leaks like a sieve.
6922    for (unsigned i = 0; i != NumComponents; ++i) {
6923      const OffsetOfComponent &OC = CompPtr[i];
6924      if (OC.isBrackets) {
6925        // Offset of an array sub-field.  TODO: Should we allow vector elements?
6926        const ArrayType *AT = Context.getAsArrayType(Res->getType());
6927        if (!AT) {
6928          Res->Destroy(Context);
6929          return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
6930                           << Res->getType());
6931        }
6932
6933        // FIXME: C++: Verify that operator[] isn't overloaded.
6934
6935        // Promote the array so it looks more like a normal array subscript
6936        // expression.
6937        DefaultFunctionArrayLvalueConversion(Res);
6938
6939        // C99 6.5.2.1p1
6940        Expr *Idx = static_cast<Expr*>(OC.U.E);
6941        // FIXME: Leaks Res
6942        if (!Idx->isTypeDependent() && !Idx->getType()->isIntegerType())
6943          return ExprError(Diag(Idx->getLocStart(),
6944                                diag::err_typecheck_subscript_not_integer)
6945                           << Idx->getSourceRange());
6946
6947        Res = new (Context) ArraySubscriptExpr(Res, Idx, AT->getElementType(),
6948                                               OC.LocEnd);
6949        continue;
6950      }
6951
6952      const RecordType *RC = Res->getType()->getAs<RecordType>();
6953      if (!RC) {
6954        Res->Destroy(Context);
6955        return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
6956                         << Res->getType());
6957      }
6958
6959      // Get the decl corresponding to this.
6960      RecordDecl *RD = RC->getDecl();
6961      if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
6962        if (!CRD->isPOD() && !DidWarnAboutNonPOD &&
6963            DiagRuntimeBehavior(BuiltinLoc,
6964                                PDiag(diag::warn_offsetof_non_pod_type)
6965                                << SourceRange(CompPtr[0].LocStart, OC.LocEnd)
6966                                << Res->getType()))
6967          DidWarnAboutNonPOD = true;
6968      }
6969
6970      LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName);
6971      LookupQualifiedName(R, RD);
6972
6973      FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>();
6974      // FIXME: Leaks Res
6975      if (!MemberDecl)
6976        return ExprError(Diag(BuiltinLoc, diag::err_no_member)
6977                         << OC.U.IdentInfo << RD << SourceRange(OC.LocStart, OC.LocEnd));
6978
6979      // C99 7.17p3:
6980      //   (If the specified member is a bit-field, the behavior is undefined.)
6981      //
6982      // We diagnose this as an error.
6983      if (MemberDecl->getBitWidth()) {
6984        Diag(OC.LocEnd, diag::err_offsetof_bitfield)
6985          << MemberDecl->getDeclName()
6986          << SourceRange(BuiltinLoc, RPLoc);
6987        Diag(MemberDecl->getLocation(), diag::note_bitfield_decl);
6988        return ExprError();
6989      }
6990
6991      // FIXME: C++: Verify that MemberDecl isn't a static field.
6992      // FIXME: Verify that MemberDecl isn't a bitfield.
6993      if (cast<RecordDecl>(MemberDecl->getDeclContext())->isAnonymousStructOrUnion()) {
6994        Res = BuildAnonymousStructUnionMemberReference(
6995                                                       OC.LocEnd, MemberDecl, Res, OC.LocEnd).takeAs<Expr>();
6996      } else {
6997        PerformObjectMemberConversion(Res, /*Qualifier=*/0,
6998                                      *R.begin(), MemberDecl);
6999        // MemberDecl->getType() doesn't get the right qualifiers, but it
7000        // doesn't matter here.
7001        Res = new (Context) MemberExpr(Res, false, MemberDecl, OC.LocEnd,
7002                                       MemberDecl->getType().getNonReferenceType());
7003      }
7004    }
7005  }
7006
7007  return Owned(new (Context) UnaryOperator(Res, UnaryOperator::OffsetOf,
7008                                           Context.getSizeType(), BuiltinLoc));
7009}
7010
7011
7012Sema::OwningExprResult Sema::ActOnTypesCompatibleExpr(SourceLocation BuiltinLoc,
7013                                                      TypeTy *arg1,TypeTy *arg2,
7014                                                      SourceLocation RPLoc) {
7015  // FIXME: Preserve type source info.
7016  QualType argT1 = GetTypeFromParser(arg1);
7017  QualType argT2 = GetTypeFromParser(arg2);
7018
7019  assert((!argT1.isNull() && !argT2.isNull()) && "Missing type argument(s)");
7020
7021  if (getLangOptions().CPlusPlus) {
7022    Diag(BuiltinLoc, diag::err_types_compatible_p_in_cplusplus)
7023      << SourceRange(BuiltinLoc, RPLoc);
7024    return ExprError();
7025  }
7026
7027  return Owned(new (Context) TypesCompatibleExpr(Context.IntTy, BuiltinLoc,
7028                                                 argT1, argT2, RPLoc));
7029}
7030
7031Sema::OwningExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
7032                                             ExprArg cond,
7033                                             ExprArg expr1, ExprArg expr2,
7034                                             SourceLocation RPLoc) {
7035  Expr *CondExpr = static_cast<Expr*>(cond.get());
7036  Expr *LHSExpr = static_cast<Expr*>(expr1.get());
7037  Expr *RHSExpr = static_cast<Expr*>(expr2.get());
7038
7039  assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
7040
7041  QualType resType;
7042  bool ValueDependent = false;
7043  if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
7044    resType = Context.DependentTy;
7045    ValueDependent = true;
7046  } else {
7047    // The conditional expression is required to be a constant expression.
7048    llvm::APSInt condEval(32);
7049    SourceLocation ExpLoc;
7050    if (!CondExpr->isIntegerConstantExpr(condEval, Context, &ExpLoc))
7051      return ExprError(Diag(ExpLoc,
7052                       diag::err_typecheck_choose_expr_requires_constant)
7053        << CondExpr->getSourceRange());
7054
7055    // If the condition is > zero, then the AST type is the same as the LSHExpr.
7056    resType = condEval.getZExtValue() ? LHSExpr->getType() : RHSExpr->getType();
7057    ValueDependent = condEval.getZExtValue() ? LHSExpr->isValueDependent()
7058                                             : RHSExpr->isValueDependent();
7059  }
7060
7061  cond.release(); expr1.release(); expr2.release();
7062  return Owned(new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
7063                                        resType, RPLoc,
7064                                        resType->isDependentType(),
7065                                        ValueDependent));
7066}
7067
7068//===----------------------------------------------------------------------===//
7069// Clang Extensions.
7070//===----------------------------------------------------------------------===//
7071
7072/// ActOnBlockStart - This callback is invoked when a block literal is started.
7073void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *BlockScope) {
7074  BlockDecl *Block = BlockDecl::Create(Context, CurContext, CaretLoc);
7075  PushBlockScope(BlockScope, Block);
7076  CurContext->addDecl(Block);
7077  if (BlockScope)
7078    PushDeclContext(BlockScope, Block);
7079  else
7080    CurContext = Block;
7081}
7082
7083void Sema::ActOnBlockArguments(Declarator &ParamInfo, Scope *CurScope) {
7084  assert(ParamInfo.getIdentifier()==0 && "block-id should have no identifier!");
7085  BlockScopeInfo *CurBlock = getCurBlock();
7086
7087  TypeSourceInfo *Sig = GetTypeForDeclarator(ParamInfo, CurScope);
7088  CurBlock->TheDecl->setSignatureAsWritten(Sig);
7089  QualType T = Sig->getType();
7090
7091  bool isVariadic;
7092  QualType RetTy;
7093  if (const FunctionType *Fn = T->getAs<FunctionType>()) {
7094    CurBlock->FunctionType = T;
7095    RetTy = Fn->getResultType();
7096    isVariadic =
7097      !isa<FunctionProtoType>(Fn) || cast<FunctionProtoType>(Fn)->isVariadic();
7098  } else {
7099    RetTy = T;
7100    isVariadic = false;
7101  }
7102
7103  CurBlock->TheDecl->setIsVariadic(isVariadic);
7104
7105  // Don't allow returning an array by value.
7106  if (RetTy->isArrayType()) {
7107    Diag(ParamInfo.getSourceRange().getBegin(), diag::err_block_returns_array);
7108    return;
7109  }
7110
7111  // Don't allow returning a objc interface by value.
7112  if (RetTy->isObjCObjectType()) {
7113    Diag(ParamInfo.getSourceRange().getBegin(),
7114         diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy;
7115    return;
7116  }
7117
7118  // Context.DependentTy is used as a placeholder for a missing block
7119  // return type.  TODO:  what should we do with declarators like:
7120  //   ^ * { ... }
7121  // If the answer is "apply template argument deduction"....
7122  if (RetTy != Context.DependentTy)
7123    CurBlock->ReturnType = RetTy;
7124
7125  // Push block parameters from the declarator if we had them.
7126  llvm::SmallVector<ParmVarDecl*, 8> Params;
7127  if (isa<FunctionProtoType>(T)) {
7128    FunctionProtoTypeLoc TL = cast<FunctionProtoTypeLoc>(Sig->getTypeLoc());
7129    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
7130      ParmVarDecl *Param = TL.getArg(I);
7131      if (Param->getIdentifier() == 0 &&
7132          !Param->isImplicit() &&
7133          !Param->isInvalidDecl() &&
7134          !getLangOptions().CPlusPlus)
7135        Diag(Param->getLocation(), diag::err_parameter_name_omitted);
7136      Params.push_back(Param);
7137    }
7138
7139  // Fake up parameter variables if we have a typedef, like
7140  //   ^ fntype { ... }
7141  } else if (const FunctionProtoType *Fn = T->getAs<FunctionProtoType>()) {
7142    for (FunctionProtoType::arg_type_iterator
7143           I = Fn->arg_type_begin(), E = Fn->arg_type_end(); I != E; ++I) {
7144      ParmVarDecl *Param =
7145        BuildParmVarDeclForTypedef(CurBlock->TheDecl,
7146                                   ParamInfo.getSourceRange().getBegin(),
7147                                   *I);
7148      Params.push_back(Param);
7149    }
7150  }
7151
7152  // Set the parameters on the block decl.
7153  if (!Params.empty())
7154    CurBlock->TheDecl->setParams(Params.data(), Params.size());
7155
7156  // Finally we can process decl attributes.
7157  ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
7158
7159  if (!isVariadic && CurBlock->TheDecl->getAttr<SentinelAttr>()) {
7160    Diag(ParamInfo.getAttributes()->getLoc(),
7161         diag::warn_attribute_sentinel_not_variadic) << 1;
7162    // FIXME: remove the attribute.
7163  }
7164
7165  // Put the parameter variables in scope.  We can bail out immediately
7166  // if we don't have any.
7167  if (Params.empty())
7168    return;
7169
7170  bool ShouldCheckShadow =
7171    Diags.getDiagnosticLevel(diag::warn_decl_shadow) != Diagnostic::Ignored;
7172
7173  for (BlockDecl::param_iterator AI = CurBlock->TheDecl->param_begin(),
7174         E = CurBlock->TheDecl->param_end(); AI != E; ++AI) {
7175    (*AI)->setOwningFunction(CurBlock->TheDecl);
7176
7177    // If this has an identifier, add it to the scope stack.
7178    if ((*AI)->getIdentifier()) {
7179      if (ShouldCheckShadow)
7180        CheckShadow(CurBlock->TheScope, *AI);
7181
7182      PushOnScopeChains(*AI, CurBlock->TheScope);
7183    }
7184  }
7185}
7186
7187/// ActOnBlockError - If there is an error parsing a block, this callback
7188/// is invoked to pop the information about the block from the action impl.
7189void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
7190  // Pop off CurBlock, handle nested blocks.
7191  PopDeclContext();
7192  PopFunctionOrBlockScope();
7193  // FIXME: Delete the ParmVarDecl objects as well???
7194}
7195
7196/// ActOnBlockStmtExpr - This is called when the body of a block statement
7197/// literal was successfully completed.  ^(int x){...}
7198Sema::OwningExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
7199                                                StmtArg body, Scope *CurScope) {
7200  // If blocks are disabled, emit an error.
7201  if (!LangOpts.Blocks)
7202    Diag(CaretLoc, diag::err_blocks_disable);
7203
7204  BlockScopeInfo *BSI = cast<BlockScopeInfo>(FunctionScopes.back());
7205
7206  PopDeclContext();
7207
7208  QualType RetTy = Context.VoidTy;
7209  if (!BSI->ReturnType.isNull())
7210    RetTy = BSI->ReturnType;
7211
7212  bool NoReturn = BSI->TheDecl->getAttr<NoReturnAttr>();
7213  QualType BlockTy;
7214
7215  // If the user wrote a function type in some form, try to use that.
7216  if (!BSI->FunctionType.isNull()) {
7217    const FunctionType *FTy = BSI->FunctionType->getAs<FunctionType>();
7218
7219    FunctionType::ExtInfo Ext = FTy->getExtInfo();
7220    if (NoReturn && !Ext.getNoReturn()) Ext = Ext.withNoReturn(true);
7221
7222    // Turn protoless block types into nullary block types.
7223    if (isa<FunctionNoProtoType>(FTy)) {
7224      BlockTy = Context.getFunctionType(RetTy, 0, 0, false, 0,
7225                                        false, false, 0, 0, Ext);
7226
7227    // Otherwise, if we don't need to change anything about the function type,
7228    // preserve its sugar structure.
7229    } else if (FTy->getResultType() == RetTy &&
7230               (!NoReturn || FTy->getNoReturnAttr())) {
7231      BlockTy = BSI->FunctionType;
7232
7233    // Otherwise, make the minimal modifications to the function type.
7234    } else {
7235      const FunctionProtoType *FPT = cast<FunctionProtoType>(FTy);
7236      BlockTy = Context.getFunctionType(RetTy,
7237                                        FPT->arg_type_begin(),
7238                                        FPT->getNumArgs(),
7239                                        FPT->isVariadic(),
7240                                        /*quals*/ 0,
7241                                        FPT->hasExceptionSpec(),
7242                                        FPT->hasAnyExceptionSpec(),
7243                                        FPT->getNumExceptions(),
7244                                        FPT->exception_begin(),
7245                                        Ext);
7246    }
7247
7248  // If we don't have a function type, just build one from nothing.
7249  } else {
7250    BlockTy = Context.getFunctionType(RetTy, 0, 0, false, 0,
7251                                      false, false, 0, 0,
7252                             FunctionType::ExtInfo(NoReturn, 0, CC_Default));
7253  }
7254
7255  // FIXME: Check that return/parameter types are complete/non-abstract
7256  DiagnoseUnusedParameters(BSI->TheDecl->param_begin(),
7257                           BSI->TheDecl->param_end());
7258  BlockTy = Context.getBlockPointerType(BlockTy);
7259
7260  // If needed, diagnose invalid gotos and switches in the block.
7261  if (FunctionNeedsScopeChecking() && !hasAnyErrorsInThisFunction())
7262    DiagnoseInvalidJumps(static_cast<CompoundStmt*>(body.get()));
7263
7264  BSI->TheDecl->setBody(body.takeAs<CompoundStmt>());
7265
7266  bool Good = true;
7267  // Check goto/label use.
7268  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
7269         I = BSI->LabelMap.begin(), E = BSI->LabelMap.end(); I != E; ++I) {
7270    LabelStmt *L = I->second;
7271
7272    // Verify that we have no forward references left.  If so, there was a goto
7273    // or address of a label taken, but no definition of it.
7274    if (L->getSubStmt() != 0)
7275      continue;
7276
7277    // Emit error.
7278    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
7279    Good = false;
7280  }
7281  if (!Good) {
7282    PopFunctionOrBlockScope();
7283    return ExprError();
7284  }
7285
7286  // Issue any analysis-based warnings.
7287  const sema::AnalysisBasedWarnings::Policy &WP =
7288    AnalysisWarnings.getDefaultPolicy();
7289  AnalysisWarnings.IssueWarnings(WP, BSI->TheDecl, BlockTy);
7290
7291  Expr *Result = new (Context) BlockExpr(BSI->TheDecl, BlockTy,
7292                                         BSI->hasBlockDeclRefExprs);
7293  PopFunctionOrBlockScope();
7294  return Owned(Result);
7295}
7296
7297Sema::OwningExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
7298                                        ExprArg expr, TypeTy *type,
7299                                        SourceLocation RPLoc) {
7300  QualType T = GetTypeFromParser(type);
7301  Expr *E = static_cast<Expr*>(expr.get());
7302  Expr *OrigExpr = E;
7303
7304  InitBuiltinVaListType();
7305
7306  // Get the va_list type
7307  QualType VaListType = Context.getBuiltinVaListType();
7308  if (VaListType->isArrayType()) {
7309    // Deal with implicit array decay; for example, on x86-64,
7310    // va_list is an array, but it's supposed to decay to
7311    // a pointer for va_arg.
7312    VaListType = Context.getArrayDecayedType(VaListType);
7313    // Make sure the input expression also decays appropriately.
7314    UsualUnaryConversions(E);
7315  } else {
7316    // Otherwise, the va_list argument must be an l-value because
7317    // it is modified by va_arg.
7318    if (!E->isTypeDependent() &&
7319        CheckForModifiableLvalue(E, BuiltinLoc, *this))
7320      return ExprError();
7321  }
7322
7323  if (!E->isTypeDependent() &&
7324      !Context.hasSameType(VaListType, E->getType())) {
7325    return ExprError(Diag(E->getLocStart(),
7326                         diag::err_first_argument_to_va_arg_not_of_type_va_list)
7327      << OrigExpr->getType() << E->getSourceRange());
7328  }
7329
7330  // FIXME: Check that type is complete/non-abstract
7331  // FIXME: Warn if a non-POD type is passed in.
7332
7333  expr.release();
7334  return Owned(new (Context) VAArgExpr(BuiltinLoc, E, T.getNonReferenceType(),
7335                                       RPLoc));
7336}
7337
7338Sema::OwningExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
7339  // The type of __null will be int or long, depending on the size of
7340  // pointers on the target.
7341  QualType Ty;
7342  if (Context.Target.getPointerWidth(0) == Context.Target.getIntWidth())
7343    Ty = Context.IntTy;
7344  else
7345    Ty = Context.LongTy;
7346
7347  return Owned(new (Context) GNUNullExpr(Ty, TokenLoc));
7348}
7349
7350static void MakeObjCStringLiteralFixItHint(Sema& SemaRef, QualType DstType,
7351                                           Expr *SrcExpr, FixItHint &Hint) {
7352  if (!SemaRef.getLangOptions().ObjC1)
7353    return;
7354
7355  const ObjCObjectPointerType *PT = DstType->getAs<ObjCObjectPointerType>();
7356  if (!PT)
7357    return;
7358
7359  // Check if the destination is of type 'id'.
7360  if (!PT->isObjCIdType()) {
7361    // Check if the destination is the 'NSString' interface.
7362    const ObjCInterfaceDecl *ID = PT->getInterfaceDecl();
7363    if (!ID || !ID->getIdentifier()->isStr("NSString"))
7364      return;
7365  }
7366
7367  // Strip off any parens and casts.
7368  StringLiteral *SL = dyn_cast<StringLiteral>(SrcExpr->IgnoreParenCasts());
7369  if (!SL || SL->isWide())
7370    return;
7371
7372  Hint = FixItHint::CreateInsertion(SL->getLocStart(), "@");
7373}
7374
7375bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
7376                                    SourceLocation Loc,
7377                                    QualType DstType, QualType SrcType,
7378                                    Expr *SrcExpr, AssignmentAction Action,
7379                                    bool *Complained) {
7380  if (Complained)
7381    *Complained = false;
7382
7383  // Decode the result (notice that AST's are still created for extensions).
7384  bool isInvalid = false;
7385  unsigned DiagKind;
7386  FixItHint Hint;
7387
7388  switch (ConvTy) {
7389  default: assert(0 && "Unknown conversion type");
7390  case Compatible: return false;
7391  case PointerToInt:
7392    DiagKind = diag::ext_typecheck_convert_pointer_int;
7393    break;
7394  case IntToPointer:
7395    DiagKind = diag::ext_typecheck_convert_int_pointer;
7396    break;
7397  case IncompatiblePointer:
7398    MakeObjCStringLiteralFixItHint(*this, DstType, SrcExpr, Hint);
7399    DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
7400    break;
7401  case IncompatiblePointerSign:
7402    DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
7403    break;
7404  case FunctionVoidPointer:
7405    DiagKind = diag::ext_typecheck_convert_pointer_void_func;
7406    break;
7407  case CompatiblePointerDiscardsQualifiers:
7408    // If the qualifiers lost were because we were applying the
7409    // (deprecated) C++ conversion from a string literal to a char*
7410    // (or wchar_t*), then there was no error (C++ 4.2p2).  FIXME:
7411    // Ideally, this check would be performed in
7412    // CheckPointerTypesForAssignment. However, that would require a
7413    // bit of refactoring (so that the second argument is an
7414    // expression, rather than a type), which should be done as part
7415    // of a larger effort to fix CheckPointerTypesForAssignment for
7416    // C++ semantics.
7417    if (getLangOptions().CPlusPlus &&
7418        IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
7419      return false;
7420    DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
7421    break;
7422  case IncompatibleNestedPointerQualifiers:
7423    DiagKind = diag::ext_nested_pointer_qualifier_mismatch;
7424    break;
7425  case IntToBlockPointer:
7426    DiagKind = diag::err_int_to_block_pointer;
7427    break;
7428  case IncompatibleBlockPointer:
7429    DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
7430    break;
7431  case IncompatibleObjCQualifiedId:
7432    // FIXME: Diagnose the problem in ObjCQualifiedIdTypesAreCompatible, since
7433    // it can give a more specific diagnostic.
7434    DiagKind = diag::warn_incompatible_qualified_id;
7435    break;
7436  case IncompatibleVectors:
7437    DiagKind = diag::warn_incompatible_vectors;
7438    break;
7439  case Incompatible:
7440    DiagKind = diag::err_typecheck_convert_incompatible;
7441    isInvalid = true;
7442    break;
7443  }
7444
7445  QualType FirstType, SecondType;
7446  switch (Action) {
7447  case AA_Assigning:
7448  case AA_Initializing:
7449    // The destination type comes first.
7450    FirstType = DstType;
7451    SecondType = SrcType;
7452    break;
7453
7454  case AA_Returning:
7455  case AA_Passing:
7456  case AA_Converting:
7457  case AA_Sending:
7458  case AA_Casting:
7459    // The source type comes first.
7460    FirstType = SrcType;
7461    SecondType = DstType;
7462    break;
7463  }
7464
7465  Diag(Loc, DiagKind) << FirstType << SecondType << Action
7466    << SrcExpr->getSourceRange() << Hint;
7467  if (Complained)
7468    *Complained = true;
7469  return isInvalid;
7470}
7471
7472bool Sema::VerifyIntegerConstantExpression(const Expr *E, llvm::APSInt *Result){
7473  llvm::APSInt ICEResult;
7474  if (E->isIntegerConstantExpr(ICEResult, Context)) {
7475    if (Result)
7476      *Result = ICEResult;
7477    return false;
7478  }
7479
7480  Expr::EvalResult EvalResult;
7481
7482  if (!E->Evaluate(EvalResult, Context) || !EvalResult.Val.isInt() ||
7483      EvalResult.HasSideEffects) {
7484    Diag(E->getExprLoc(), diag::err_expr_not_ice) << E->getSourceRange();
7485
7486    if (EvalResult.Diag) {
7487      // We only show the note if it's not the usual "invalid subexpression"
7488      // or if it's actually in a subexpression.
7489      if (EvalResult.Diag != diag::note_invalid_subexpr_in_ice ||
7490          E->IgnoreParens() != EvalResult.DiagExpr->IgnoreParens())
7491        Diag(EvalResult.DiagLoc, EvalResult.Diag);
7492    }
7493
7494    return true;
7495  }
7496
7497  Diag(E->getExprLoc(), diag::ext_expr_not_ice) <<
7498    E->getSourceRange();
7499
7500  if (EvalResult.Diag &&
7501      Diags.getDiagnosticLevel(diag::ext_expr_not_ice) != Diagnostic::Ignored)
7502    Diag(EvalResult.DiagLoc, EvalResult.Diag);
7503
7504  if (Result)
7505    *Result = EvalResult.Val.getInt();
7506  return false;
7507}
7508
7509void
7510Sema::PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext) {
7511  ExprEvalContexts.push_back(
7512        ExpressionEvaluationContextRecord(NewContext, ExprTemporaries.size()));
7513}
7514
7515void
7516Sema::PopExpressionEvaluationContext() {
7517  // Pop the current expression evaluation context off the stack.
7518  ExpressionEvaluationContextRecord Rec = ExprEvalContexts.back();
7519  ExprEvalContexts.pop_back();
7520
7521  if (Rec.Context == PotentiallyPotentiallyEvaluated) {
7522    if (Rec.PotentiallyReferenced) {
7523      // Mark any remaining declarations in the current position of the stack
7524      // as "referenced". If they were not meant to be referenced, semantic
7525      // analysis would have eliminated them (e.g., in ActOnCXXTypeId).
7526      for (PotentiallyReferencedDecls::iterator
7527             I = Rec.PotentiallyReferenced->begin(),
7528             IEnd = Rec.PotentiallyReferenced->end();
7529           I != IEnd; ++I)
7530        MarkDeclarationReferenced(I->first, I->second);
7531    }
7532
7533    if (Rec.PotentiallyDiagnosed) {
7534      // Emit any pending diagnostics.
7535      for (PotentiallyEmittedDiagnostics::iterator
7536                I = Rec.PotentiallyDiagnosed->begin(),
7537             IEnd = Rec.PotentiallyDiagnosed->end();
7538           I != IEnd; ++I)
7539        Diag(I->first, I->second);
7540    }
7541  }
7542
7543  // When are coming out of an unevaluated context, clear out any
7544  // temporaries that we may have created as part of the evaluation of
7545  // the expression in that context: they aren't relevant because they
7546  // will never be constructed.
7547  if (Rec.Context == Unevaluated &&
7548      ExprTemporaries.size() > Rec.NumTemporaries)
7549    ExprTemporaries.erase(ExprTemporaries.begin() + Rec.NumTemporaries,
7550                          ExprTemporaries.end());
7551
7552  // Destroy the popped expression evaluation record.
7553  Rec.Destroy();
7554}
7555
7556/// \brief Note that the given declaration was referenced in the source code.
7557///
7558/// This routine should be invoke whenever a given declaration is referenced
7559/// in the source code, and where that reference occurred. If this declaration
7560/// reference means that the the declaration is used (C++ [basic.def.odr]p2,
7561/// C99 6.9p3), then the declaration will be marked as used.
7562///
7563/// \param Loc the location where the declaration was referenced.
7564///
7565/// \param D the declaration that has been referenced by the source code.
7566void Sema::MarkDeclarationReferenced(SourceLocation Loc, Decl *D) {
7567  assert(D && "No declaration?");
7568
7569  if (D->isUsed(false))
7570    return;
7571
7572  // Mark a parameter or variable declaration "used", regardless of whether we're in a
7573  // template or not. The reason for this is that unevaluated expressions
7574  // (e.g. (void)sizeof()) constitute a use for warning purposes (-Wunused-variables and
7575  // -Wunused-parameters)
7576  if (isa<ParmVarDecl>(D) ||
7577      (isa<VarDecl>(D) && D->getDeclContext()->isFunctionOrMethod())) {
7578    D->setUsed(true);
7579    return;
7580  }
7581
7582  if (!isa<VarDecl>(D) && !isa<FunctionDecl>(D))
7583    return;
7584
7585  // Do not mark anything as "used" within a dependent context; wait for
7586  // an instantiation.
7587  if (CurContext->isDependentContext())
7588    return;
7589
7590  switch (ExprEvalContexts.back().Context) {
7591    case Unevaluated:
7592      // We are in an expression that is not potentially evaluated; do nothing.
7593      return;
7594
7595    case PotentiallyEvaluated:
7596      // We are in a potentially-evaluated expression, so this declaration is
7597      // "used"; handle this below.
7598      break;
7599
7600    case PotentiallyPotentiallyEvaluated:
7601      // We are in an expression that may be potentially evaluated; queue this
7602      // declaration reference until we know whether the expression is
7603      // potentially evaluated.
7604      ExprEvalContexts.back().addReferencedDecl(Loc, D);
7605      return;
7606  }
7607
7608  // Note that this declaration has been used.
7609  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
7610    unsigned TypeQuals;
7611    if (Constructor->isImplicit() && Constructor->isDefaultConstructor()) {
7612        if (!Constructor->isUsed(false))
7613          DefineImplicitDefaultConstructor(Loc, Constructor);
7614    } else if (Constructor->isImplicit() &&
7615               Constructor->isCopyConstructor(TypeQuals)) {
7616      if (!Constructor->isUsed(false))
7617        DefineImplicitCopyConstructor(Loc, Constructor, TypeQuals);
7618    }
7619
7620    MarkVTableUsed(Loc, Constructor->getParent());
7621  } else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(D)) {
7622    if (Destructor->isImplicit() && !Destructor->isUsed(false))
7623      DefineImplicitDestructor(Loc, Destructor);
7624    if (Destructor->isVirtual())
7625      MarkVTableUsed(Loc, Destructor->getParent());
7626  } else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(D)) {
7627    if (MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() &&
7628        MethodDecl->getOverloadedOperator() == OO_Equal) {
7629      if (!MethodDecl->isUsed(false))
7630        DefineImplicitCopyAssignment(Loc, MethodDecl);
7631    } else if (MethodDecl->isVirtual())
7632      MarkVTableUsed(Loc, MethodDecl->getParent());
7633  }
7634  if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
7635    // Implicit instantiation of function templates and member functions of
7636    // class templates.
7637    if (Function->isImplicitlyInstantiable()) {
7638      bool AlreadyInstantiated = false;
7639      if (FunctionTemplateSpecializationInfo *SpecInfo
7640                                = Function->getTemplateSpecializationInfo()) {
7641        if (SpecInfo->getPointOfInstantiation().isInvalid())
7642          SpecInfo->setPointOfInstantiation(Loc);
7643        else if (SpecInfo->getTemplateSpecializationKind()
7644                   == TSK_ImplicitInstantiation)
7645          AlreadyInstantiated = true;
7646      } else if (MemberSpecializationInfo *MSInfo
7647                                  = Function->getMemberSpecializationInfo()) {
7648        if (MSInfo->getPointOfInstantiation().isInvalid())
7649          MSInfo->setPointOfInstantiation(Loc);
7650        else if (MSInfo->getTemplateSpecializationKind()
7651                   == TSK_ImplicitInstantiation)
7652          AlreadyInstantiated = true;
7653      }
7654
7655      if (!AlreadyInstantiated) {
7656        if (isa<CXXRecordDecl>(Function->getDeclContext()) &&
7657            cast<CXXRecordDecl>(Function->getDeclContext())->isLocalClass())
7658          PendingLocalImplicitInstantiations.push_back(std::make_pair(Function,
7659                                                                      Loc));
7660        else
7661          PendingImplicitInstantiations.push_back(std::make_pair(Function,
7662                                                                 Loc));
7663      }
7664    }
7665
7666    // FIXME: keep track of references to static functions
7667    Function->setUsed(true);
7668
7669    return;
7670  }
7671
7672  if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
7673    // Implicit instantiation of static data members of class templates.
7674    if (Var->isStaticDataMember() &&
7675        Var->getInstantiatedFromStaticDataMember()) {
7676      MemberSpecializationInfo *MSInfo = Var->getMemberSpecializationInfo();
7677      assert(MSInfo && "Missing member specialization information?");
7678      if (MSInfo->getPointOfInstantiation().isInvalid() &&
7679          MSInfo->getTemplateSpecializationKind()== TSK_ImplicitInstantiation) {
7680        MSInfo->setPointOfInstantiation(Loc);
7681        PendingImplicitInstantiations.push_back(std::make_pair(Var, Loc));
7682      }
7683    }
7684
7685    // FIXME: keep track of references to static data?
7686
7687    D->setUsed(true);
7688    return;
7689  }
7690}
7691
7692namespace {
7693  // Mark all of the declarations referenced
7694  // FIXME: Not fully implemented yet! We need to have a better understanding
7695  // of when we're entering
7696  class MarkReferencedDecls : public RecursiveASTVisitor<MarkReferencedDecls> {
7697    Sema &S;
7698    SourceLocation Loc;
7699
7700  public:
7701    typedef RecursiveASTVisitor<MarkReferencedDecls> Inherited;
7702
7703    MarkReferencedDecls(Sema &S, SourceLocation Loc) : S(S), Loc(Loc) { }
7704
7705    bool TraverseTemplateArgument(const TemplateArgument &Arg);
7706    bool TraverseRecordType(RecordType *T);
7707  };
7708}
7709
7710bool MarkReferencedDecls::TraverseTemplateArgument(
7711  const TemplateArgument &Arg) {
7712  if (Arg.getKind() == TemplateArgument::Declaration) {
7713    S.MarkDeclarationReferenced(Loc, Arg.getAsDecl());
7714  }
7715
7716  return Inherited::TraverseTemplateArgument(Arg);
7717}
7718
7719bool MarkReferencedDecls::TraverseRecordType(RecordType *T) {
7720  if (ClassTemplateSpecializationDecl *Spec
7721                  = dyn_cast<ClassTemplateSpecializationDecl>(T->getDecl())) {
7722    const TemplateArgumentList &Args = Spec->getTemplateArgs();
7723    return TraverseTemplateArguments(Args.getFlatArgumentList(),
7724                                     Args.flat_size());
7725  }
7726
7727  return true;
7728}
7729
7730void Sema::MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T) {
7731  MarkReferencedDecls Marker(*this, Loc);
7732  Marker.TraverseType(Context.getCanonicalType(T));
7733}
7734
7735/// \brief Emit a diagnostic that describes an effect on the run-time behavior
7736/// of the program being compiled.
7737///
7738/// This routine emits the given diagnostic when the code currently being
7739/// type-checked is "potentially evaluated", meaning that there is a
7740/// possibility that the code will actually be executable. Code in sizeof()
7741/// expressions, code used only during overload resolution, etc., are not
7742/// potentially evaluated. This routine will suppress such diagnostics or,
7743/// in the absolutely nutty case of potentially potentially evaluated
7744/// expressions (C++ typeid), queue the diagnostic to potentially emit it
7745/// later.
7746///
7747/// This routine should be used for all diagnostics that describe the run-time
7748/// behavior of a program, such as passing a non-POD value through an ellipsis.
7749/// Failure to do so will likely result in spurious diagnostics or failures
7750/// during overload resolution or within sizeof/alignof/typeof/typeid.
7751bool Sema::DiagRuntimeBehavior(SourceLocation Loc,
7752                               const PartialDiagnostic &PD) {
7753  switch (ExprEvalContexts.back().Context ) {
7754  case Unevaluated:
7755    // The argument will never be evaluated, so don't complain.
7756    break;
7757
7758  case PotentiallyEvaluated:
7759    Diag(Loc, PD);
7760    return true;
7761
7762  case PotentiallyPotentiallyEvaluated:
7763    ExprEvalContexts.back().addDiagnostic(Loc, PD);
7764    break;
7765  }
7766
7767  return false;
7768}
7769
7770bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
7771                               CallExpr *CE, FunctionDecl *FD) {
7772  if (ReturnType->isVoidType() || !ReturnType->isIncompleteType())
7773    return false;
7774
7775  PartialDiagnostic Note =
7776    FD ? PDiag(diag::note_function_with_incomplete_return_type_declared_here)
7777    << FD->getDeclName() : PDiag();
7778  SourceLocation NoteLoc = FD ? FD->getLocation() : SourceLocation();
7779
7780  if (RequireCompleteType(Loc, ReturnType,
7781                          FD ?
7782                          PDiag(diag::err_call_function_incomplete_return)
7783                            << CE->getSourceRange() << FD->getDeclName() :
7784                          PDiag(diag::err_call_incomplete_return)
7785                            << CE->getSourceRange(),
7786                          std::make_pair(NoteLoc, Note)))
7787    return true;
7788
7789  return false;
7790}
7791
7792// Diagnose the common s/=/==/ typo.  Note that adding parentheses
7793// will prevent this condition from triggering, which is what we want.
7794void Sema::DiagnoseAssignmentAsCondition(Expr *E) {
7795  SourceLocation Loc;
7796
7797  unsigned diagnostic = diag::warn_condition_is_assignment;
7798
7799  if (isa<BinaryOperator>(E)) {
7800    BinaryOperator *Op = cast<BinaryOperator>(E);
7801    if (Op->getOpcode() != BinaryOperator::Assign)
7802      return;
7803
7804    // Greylist some idioms by putting them into a warning subcategory.
7805    if (ObjCMessageExpr *ME
7806          = dyn_cast<ObjCMessageExpr>(Op->getRHS()->IgnoreParenCasts())) {
7807      Selector Sel = ME->getSelector();
7808
7809      // self = [<foo> init...]
7810      if (isSelfExpr(Op->getLHS())
7811          && Sel.getIdentifierInfoForSlot(0)->getName().startswith("init"))
7812        diagnostic = diag::warn_condition_is_idiomatic_assignment;
7813
7814      // <foo> = [<bar> nextObject]
7815      else if (Sel.isUnarySelector() &&
7816               Sel.getIdentifierInfoForSlot(0)->getName() == "nextObject")
7817        diagnostic = diag::warn_condition_is_idiomatic_assignment;
7818    }
7819
7820    Loc = Op->getOperatorLoc();
7821  } else if (isa<CXXOperatorCallExpr>(E)) {
7822    CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(E);
7823    if (Op->getOperator() != OO_Equal)
7824      return;
7825
7826    Loc = Op->getOperatorLoc();
7827  } else {
7828    // Not an assignment.
7829    return;
7830  }
7831
7832  SourceLocation Open = E->getSourceRange().getBegin();
7833  SourceLocation Close = PP.getLocForEndOfToken(E->getSourceRange().getEnd());
7834
7835  Diag(Loc, diagnostic) << E->getSourceRange();
7836  Diag(Loc, diag::note_condition_assign_to_comparison)
7837    << FixItHint::CreateReplacement(Loc, "==");
7838  Diag(Loc, diag::note_condition_assign_silence)
7839    << FixItHint::CreateInsertion(Open, "(")
7840    << FixItHint::CreateInsertion(Close, ")");
7841}
7842
7843bool Sema::CheckBooleanCondition(Expr *&E, SourceLocation Loc) {
7844  DiagnoseAssignmentAsCondition(E);
7845
7846  if (!E->isTypeDependent()) {
7847    DefaultFunctionArrayLvalueConversion(E);
7848
7849    QualType T = E->getType();
7850
7851    if (getLangOptions().CPlusPlus) {
7852      if (CheckCXXBooleanCondition(E)) // C++ 6.4p4
7853        return true;
7854    } else if (!T->isScalarType()) { // C99 6.8.4.1p1
7855      Diag(Loc, diag::err_typecheck_statement_requires_scalar)
7856        << T << E->getSourceRange();
7857      return true;
7858    }
7859  }
7860
7861  return false;
7862}
7863
7864Sema::OwningExprResult Sema::ActOnBooleanCondition(Scope *S, SourceLocation Loc,
7865                                                   ExprArg SubExpr) {
7866  Expr *Sub = SubExpr.takeAs<Expr>();
7867  if (!Sub)
7868    return ExprError();
7869
7870  if (CheckBooleanCondition(Sub, Loc)) {
7871    Sub->Destroy(Context);
7872    return ExprError();
7873  }
7874
7875  return Owned(Sub);
7876}
7877