SemaExpr.cpp revision c3f984fa13364520f4a2c447d1d213db77db3309
1//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInit.h"
16#include "Lookup.h"
17#include "AnalysisBasedWarnings.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/CXXInheritance.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/Expr.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/AST/ExprObjC.h"
25#include "clang/AST/RecursiveASTVisitor.h"
26#include "clang/AST/TypeLoc.h"
27#include "clang/Basic/PartialDiagnostic.h"
28#include "clang/Basic/SourceManager.h"
29#include "clang/Basic/TargetInfo.h"
30#include "clang/Lex/LiteralSupport.h"
31#include "clang/Lex/Preprocessor.h"
32#include "clang/Parse/DeclSpec.h"
33#include "clang/Parse/Designator.h"
34#include "clang/Parse/Scope.h"
35#include "clang/Parse/Template.h"
36using namespace clang;
37
38
39/// \brief Determine whether the use of this declaration is valid, and
40/// emit any corresponding diagnostics.
41///
42/// This routine diagnoses various problems with referencing
43/// declarations that can occur when using a declaration. For example,
44/// it might warn if a deprecated or unavailable declaration is being
45/// used, or produce an error (and return true) if a C++0x deleted
46/// function is being used.
47///
48/// If IgnoreDeprecated is set to true, this should not want about deprecated
49/// decls.
50///
51/// \returns true if there was an error (this declaration cannot be
52/// referenced), false otherwise.
53///
54bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc) {
55  // See if the decl is deprecated.
56  if (D->getAttr<DeprecatedAttr>()) {
57    EmitDeprecationWarning(D, Loc);
58  }
59
60  // See if the decl is unavailable
61  if (D->getAttr<UnavailableAttr>()) {
62    Diag(Loc, diag::warn_unavailable) << D->getDeclName();
63    Diag(D->getLocation(), diag::note_unavailable_here) << 0;
64  }
65
66  // See if this is a deleted function.
67  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
68    if (FD->isDeleted()) {
69      Diag(Loc, diag::err_deleted_function_use);
70      Diag(D->getLocation(), diag::note_unavailable_here) << true;
71      return true;
72    }
73  }
74
75  return false;
76}
77
78/// DiagnoseSentinelCalls - This routine checks on method dispatch calls
79/// (and other functions in future), which have been declared with sentinel
80/// attribute. It warns if call does not have the sentinel argument.
81///
82void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
83                                 Expr **Args, unsigned NumArgs) {
84  const SentinelAttr *attr = D->getAttr<SentinelAttr>();
85  if (!attr)
86    return;
87
88  // FIXME: In C++0x, if any of the arguments are parameter pack
89  // expansions, we can't check for the sentinel now.
90  int sentinelPos = attr->getSentinel();
91  int nullPos = attr->getNullPos();
92
93  // FIXME. ObjCMethodDecl and FunctionDecl need be derived from the same common
94  // base class. Then we won't be needing two versions of the same code.
95  unsigned int i = 0;
96  bool warnNotEnoughArgs = false;
97  int isMethod = 0;
98  if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
99    // skip over named parameters.
100    ObjCMethodDecl::param_iterator P, E = MD->param_end();
101    for (P = MD->param_begin(); (P != E && i < NumArgs); ++P) {
102      if (nullPos)
103        --nullPos;
104      else
105        ++i;
106    }
107    warnNotEnoughArgs = (P != E || i >= NumArgs);
108    isMethod = 1;
109  } else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
110    // skip over named parameters.
111    ObjCMethodDecl::param_iterator P, E = FD->param_end();
112    for (P = FD->param_begin(); (P != E && i < NumArgs); ++P) {
113      if (nullPos)
114        --nullPos;
115      else
116        ++i;
117    }
118    warnNotEnoughArgs = (P != E || i >= NumArgs);
119  } else if (VarDecl *V = dyn_cast<VarDecl>(D)) {
120    // block or function pointer call.
121    QualType Ty = V->getType();
122    if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) {
123      const FunctionType *FT = Ty->isFunctionPointerType()
124      ? Ty->getAs<PointerType>()->getPointeeType()->getAs<FunctionType>()
125      : Ty->getAs<BlockPointerType>()->getPointeeType()->getAs<FunctionType>();
126      if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT)) {
127        unsigned NumArgsInProto = Proto->getNumArgs();
128        unsigned k;
129        for (k = 0; (k != NumArgsInProto && i < NumArgs); k++) {
130          if (nullPos)
131            --nullPos;
132          else
133            ++i;
134        }
135        warnNotEnoughArgs = (k != NumArgsInProto || i >= NumArgs);
136      }
137      if (Ty->isBlockPointerType())
138        isMethod = 2;
139    } else
140      return;
141  } else
142    return;
143
144  if (warnNotEnoughArgs) {
145    Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
146    Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
147    return;
148  }
149  int sentinel = i;
150  while (sentinelPos > 0 && i < NumArgs-1) {
151    --sentinelPos;
152    ++i;
153  }
154  if (sentinelPos > 0) {
155    Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
156    Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
157    return;
158  }
159  while (i < NumArgs-1) {
160    ++i;
161    ++sentinel;
162  }
163  Expr *sentinelExpr = Args[sentinel];
164  if (!sentinelExpr) return;
165  if (sentinelExpr->isTypeDependent()) return;
166  if (sentinelExpr->isValueDependent()) return;
167  if (sentinelExpr->getType()->isPointerType() &&
168      sentinelExpr->IgnoreParenCasts()->isNullPointerConstant(Context,
169                                            Expr::NPC_ValueDependentIsNull))
170    return;
171
172  // Unfortunately, __null has type 'int'.
173  if (isa<GNUNullExpr>(sentinelExpr)) return;
174
175  Diag(Loc, diag::warn_missing_sentinel) << isMethod;
176  Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
177}
178
179SourceRange Sema::getExprRange(ExprTy *E) const {
180  Expr *Ex = (Expr *)E;
181  return Ex? Ex->getSourceRange() : SourceRange();
182}
183
184//===----------------------------------------------------------------------===//
185//  Standard Promotions and Conversions
186//===----------------------------------------------------------------------===//
187
188/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
189void Sema::DefaultFunctionArrayConversion(Expr *&E) {
190  QualType Ty = E->getType();
191  assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
192
193  if (Ty->isFunctionType())
194    ImpCastExprToType(E, Context.getPointerType(Ty),
195                      CastExpr::CK_FunctionToPointerDecay);
196  else if (Ty->isArrayType()) {
197    // In C90 mode, arrays only promote to pointers if the array expression is
198    // an lvalue.  The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
199    // type 'array of type' is converted to an expression that has type 'pointer
200    // to type'...".  In C99 this was changed to: C99 6.3.2.1p3: "an expression
201    // that has type 'array of type' ...".  The relevant change is "an lvalue"
202    // (C90) to "an expression" (C99).
203    //
204    // C++ 4.2p1:
205    // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
206    // T" can be converted to an rvalue of type "pointer to T".
207    //
208    if (getLangOptions().C99 || getLangOptions().CPlusPlus ||
209        E->isLvalue(Context) == Expr::LV_Valid)
210      ImpCastExprToType(E, Context.getArrayDecayedType(Ty),
211                        CastExpr::CK_ArrayToPointerDecay);
212  }
213}
214
215void Sema::DefaultFunctionArrayLvalueConversion(Expr *&E) {
216  DefaultFunctionArrayConversion(E);
217
218  QualType Ty = E->getType();
219  assert(!Ty.isNull() && "DefaultFunctionArrayLvalueConversion - missing type");
220  if (!Ty->isDependentType() && Ty.hasQualifiers() &&
221      (!getLangOptions().CPlusPlus || !Ty->isRecordType()) &&
222      E->isLvalue(Context) == Expr::LV_Valid) {
223    // C++ [conv.lval]p1:
224    //   [...] If T is a non-class type, the type of the rvalue is the
225    //   cv-unqualified version of T. Otherwise, the type of the
226    //   rvalue is T
227    //
228    // C99 6.3.2.1p2:
229    //   If the lvalue has qualified type, the value has the unqualified
230    //   version of the type of the lvalue; otherwise, the value has the
231    //   type of the lvalue.
232    ImpCastExprToType(E, Ty.getUnqualifiedType(), CastExpr::CK_NoOp);
233  }
234}
235
236
237/// UsualUnaryConversions - Performs various conversions that are common to most
238/// operators (C99 6.3). The conversions of array and function types are
239/// sometimes surpressed. For example, the array->pointer conversion doesn't
240/// apply if the array is an argument to the sizeof or address (&) operators.
241/// In these instances, this routine should *not* be called.
242Expr *Sema::UsualUnaryConversions(Expr *&Expr) {
243  QualType Ty = Expr->getType();
244  assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
245
246  // C99 6.3.1.1p2:
247  //
248  //   The following may be used in an expression wherever an int or
249  //   unsigned int may be used:
250  //     - an object or expression with an integer type whose integer
251  //       conversion rank is less than or equal to the rank of int
252  //       and unsigned int.
253  //     - A bit-field of type _Bool, int, signed int, or unsigned int.
254  //
255  //   If an int can represent all values of the original type, the
256  //   value is converted to an int; otherwise, it is converted to an
257  //   unsigned int. These are called the integer promotions. All
258  //   other types are unchanged by the integer promotions.
259  QualType PTy = Context.isPromotableBitField(Expr);
260  if (!PTy.isNull()) {
261    ImpCastExprToType(Expr, PTy, CastExpr::CK_IntegralCast);
262    return Expr;
263  }
264  if (Ty->isPromotableIntegerType()) {
265    QualType PT = Context.getPromotedIntegerType(Ty);
266    ImpCastExprToType(Expr, PT, CastExpr::CK_IntegralCast);
267    return Expr;
268  }
269
270  DefaultFunctionArrayLvalueConversion(Expr);
271  return Expr;
272}
273
274/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
275/// do not have a prototype. Arguments that have type float are promoted to
276/// double. All other argument types are converted by UsualUnaryConversions().
277void Sema::DefaultArgumentPromotion(Expr *&Expr) {
278  QualType Ty = Expr->getType();
279  assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
280
281  // If this is a 'float' (CVR qualified or typedef) promote to double.
282  if (Ty->isSpecificBuiltinType(BuiltinType::Float))
283    return ImpCastExprToType(Expr, Context.DoubleTy,
284                             CastExpr::CK_FloatingCast);
285
286  UsualUnaryConversions(Expr);
287}
288
289/// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
290/// will warn if the resulting type is not a POD type, and rejects ObjC
291/// interfaces passed by value.  This returns true if the argument type is
292/// completely illegal.
293bool Sema::DefaultVariadicArgumentPromotion(Expr *&Expr, VariadicCallType CT,
294                                            FunctionDecl *FDecl) {
295  DefaultArgumentPromotion(Expr);
296
297  // __builtin_va_start takes the second argument as a "varargs" argument, but
298  // it doesn't actually do anything with it.  It doesn't need to be non-pod
299  // etc.
300  if (FDecl && FDecl->getBuiltinID() == Builtin::BI__builtin_va_start)
301    return false;
302
303  if (Expr->getType()->isObjCObjectType() &&
304      DiagRuntimeBehavior(Expr->getLocStart(),
305        PDiag(diag::err_cannot_pass_objc_interface_to_vararg)
306          << Expr->getType() << CT))
307    return true;
308
309  if (!Expr->getType()->isPODType() &&
310      DiagRuntimeBehavior(Expr->getLocStart(),
311                          PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg)
312                            << Expr->getType() << CT))
313    return true;
314
315  return false;
316}
317
318
319/// UsualArithmeticConversions - Performs various conversions that are common to
320/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
321/// routine returns the first non-arithmetic type found. The client is
322/// responsible for emitting appropriate error diagnostics.
323/// FIXME: verify the conversion rules for "complex int" are consistent with
324/// GCC.
325QualType Sema::UsualArithmeticConversions(Expr *&lhsExpr, Expr *&rhsExpr,
326                                          bool isCompAssign) {
327  if (!isCompAssign)
328    UsualUnaryConversions(lhsExpr);
329
330  UsualUnaryConversions(rhsExpr);
331
332  // For conversion purposes, we ignore any qualifiers.
333  // For example, "const float" and "float" are equivalent.
334  QualType lhs =
335    Context.getCanonicalType(lhsExpr->getType()).getUnqualifiedType();
336  QualType rhs =
337    Context.getCanonicalType(rhsExpr->getType()).getUnqualifiedType();
338
339  // If both types are identical, no conversion is needed.
340  if (lhs == rhs)
341    return lhs;
342
343  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
344  // The caller can deal with this (e.g. pointer + int).
345  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
346    return lhs;
347
348  // Perform bitfield promotions.
349  QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(lhsExpr);
350  if (!LHSBitfieldPromoteTy.isNull())
351    lhs = LHSBitfieldPromoteTy;
352  QualType RHSBitfieldPromoteTy = Context.isPromotableBitField(rhsExpr);
353  if (!RHSBitfieldPromoteTy.isNull())
354    rhs = RHSBitfieldPromoteTy;
355
356  QualType destType = Context.UsualArithmeticConversionsType(lhs, rhs);
357  if (!isCompAssign)
358    ImpCastExprToType(lhsExpr, destType, CastExpr::CK_Unknown);
359  ImpCastExprToType(rhsExpr, destType, CastExpr::CK_Unknown);
360  return destType;
361}
362
363//===----------------------------------------------------------------------===//
364//  Semantic Analysis for various Expression Types
365//===----------------------------------------------------------------------===//
366
367
368/// ActOnStringLiteral - The specified tokens were lexed as pasted string
369/// fragments (e.g. "foo" "bar" L"baz").  The result string has to handle string
370/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
371/// multiple tokens.  However, the common case is that StringToks points to one
372/// string.
373///
374Action::OwningExprResult
375Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks) {
376  assert(NumStringToks && "Must have at least one string!");
377
378  StringLiteralParser Literal(StringToks, NumStringToks, PP);
379  if (Literal.hadError)
380    return ExprError();
381
382  llvm::SmallVector<SourceLocation, 4> StringTokLocs;
383  for (unsigned i = 0; i != NumStringToks; ++i)
384    StringTokLocs.push_back(StringToks[i].getLocation());
385
386  QualType StrTy = Context.CharTy;
387  if (Literal.AnyWide) StrTy = Context.getWCharType();
388  if (Literal.Pascal) StrTy = Context.UnsignedCharTy;
389
390  // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
391  if (getLangOptions().CPlusPlus || getLangOptions().ConstStrings )
392    StrTy.addConst();
393
394  // Get an array type for the string, according to C99 6.4.5.  This includes
395  // the nul terminator character as well as the string length for pascal
396  // strings.
397  StrTy = Context.getConstantArrayType(StrTy,
398                                 llvm::APInt(32, Literal.GetNumStringChars()+1),
399                                       ArrayType::Normal, 0);
400
401  // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
402  return Owned(StringLiteral::Create(Context, Literal.GetString(),
403                                     Literal.GetStringLength(),
404                                     Literal.AnyWide, StrTy,
405                                     &StringTokLocs[0],
406                                     StringTokLocs.size()));
407}
408
409/// ShouldSnapshotBlockValueReference - Return true if a reference inside of
410/// CurBlock to VD should cause it to be snapshotted (as we do for auto
411/// variables defined outside the block) or false if this is not needed (e.g.
412/// for values inside the block or for globals).
413///
414/// This also keeps the 'hasBlockDeclRefExprs' in the BlockScopeInfo records
415/// up-to-date.
416///
417static bool ShouldSnapshotBlockValueReference(Sema &S, BlockScopeInfo *CurBlock,
418                                              ValueDecl *VD) {
419  // If the value is defined inside the block, we couldn't snapshot it even if
420  // we wanted to.
421  if (CurBlock->TheDecl == VD->getDeclContext())
422    return false;
423
424  // If this is an enum constant or function, it is constant, don't snapshot.
425  if (isa<EnumConstantDecl>(VD) || isa<FunctionDecl>(VD))
426    return false;
427
428  // If this is a reference to an extern, static, or global variable, no need to
429  // snapshot it.
430  // FIXME: What about 'const' variables in C++?
431  if (const VarDecl *Var = dyn_cast<VarDecl>(VD))
432    if (!Var->hasLocalStorage())
433      return false;
434
435  // Blocks that have these can't be constant.
436  CurBlock->hasBlockDeclRefExprs = true;
437
438  // If we have nested blocks, the decl may be declared in an outer block (in
439  // which case that outer block doesn't get "hasBlockDeclRefExprs") or it may
440  // be defined outside all of the current blocks (in which case the blocks do
441  // all get the bit).  Walk the nesting chain.
442  for (unsigned I = S.FunctionScopes.size() - 1; I; --I) {
443    BlockScopeInfo *NextBlock = dyn_cast<BlockScopeInfo>(S.FunctionScopes[I]);
444
445    if (!NextBlock)
446      continue;
447
448    // If we found the defining block for the variable, don't mark the block as
449    // having a reference outside it.
450    if (NextBlock->TheDecl == VD->getDeclContext())
451      break;
452
453    // Otherwise, the DeclRef from the inner block causes the outer one to need
454    // a snapshot as well.
455    NextBlock->hasBlockDeclRefExprs = true;
456  }
457
458  return true;
459}
460
461
462
463/// BuildDeclRefExpr - Build a DeclRefExpr.
464Sema::OwningExprResult
465Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, SourceLocation Loc,
466                       const CXXScopeSpec *SS) {
467  if (Context.getCanonicalType(Ty) == Context.UndeducedAutoTy) {
468    Diag(Loc,
469         diag::err_auto_variable_cannot_appear_in_own_initializer)
470      << D->getDeclName();
471    return ExprError();
472  }
473
474  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
475    if (isa<NonTypeTemplateParmDecl>(VD)) {
476      // Non-type template parameters can be referenced anywhere they are
477      // visible.
478    } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
479      if (const FunctionDecl *FD = MD->getParent()->isLocalClass()) {
480        if (VD->hasLocalStorage() && VD->getDeclContext() != CurContext) {
481          Diag(Loc, diag::err_reference_to_local_var_in_enclosing_function)
482            << D->getIdentifier() << FD->getDeclName();
483          Diag(D->getLocation(), diag::note_local_variable_declared_here)
484            << D->getIdentifier();
485          return ExprError();
486        }
487      }
488    }
489  }
490
491  MarkDeclarationReferenced(Loc, D);
492
493  return Owned(DeclRefExpr::Create(Context,
494                              SS? (NestedNameSpecifier *)SS->getScopeRep() : 0,
495                                   SS? SS->getRange() : SourceRange(),
496                                   D, Loc, Ty));
497}
498
499/// getObjectForAnonymousRecordDecl - Retrieve the (unnamed) field or
500/// variable corresponding to the anonymous union or struct whose type
501/// is Record.
502static Decl *getObjectForAnonymousRecordDecl(ASTContext &Context,
503                                             RecordDecl *Record) {
504  assert(Record->isAnonymousStructOrUnion() &&
505         "Record must be an anonymous struct or union!");
506
507  // FIXME: Once Decls are directly linked together, this will be an O(1)
508  // operation rather than a slow walk through DeclContext's vector (which
509  // itself will be eliminated). DeclGroups might make this even better.
510  DeclContext *Ctx = Record->getDeclContext();
511  for (DeclContext::decl_iterator D = Ctx->decls_begin(),
512                               DEnd = Ctx->decls_end();
513       D != DEnd; ++D) {
514    if (*D == Record) {
515      // The object for the anonymous struct/union directly
516      // follows its type in the list of declarations.
517      ++D;
518      assert(D != DEnd && "Missing object for anonymous record");
519      assert(!cast<NamedDecl>(*D)->getDeclName() && "Decl should be unnamed");
520      return *D;
521    }
522  }
523
524  assert(false && "Missing object for anonymous record");
525  return 0;
526}
527
528/// \brief Given a field that represents a member of an anonymous
529/// struct/union, build the path from that field's context to the
530/// actual member.
531///
532/// Construct the sequence of field member references we'll have to
533/// perform to get to the field in the anonymous union/struct. The
534/// list of members is built from the field outward, so traverse it
535/// backwards to go from an object in the current context to the field
536/// we found.
537///
538/// \returns The variable from which the field access should begin,
539/// for an anonymous struct/union that is not a member of another
540/// class. Otherwise, returns NULL.
541VarDecl *Sema::BuildAnonymousStructUnionMemberPath(FieldDecl *Field,
542                                   llvm::SmallVectorImpl<FieldDecl *> &Path) {
543  assert(Field->getDeclContext()->isRecord() &&
544         cast<RecordDecl>(Field->getDeclContext())->isAnonymousStructOrUnion()
545         && "Field must be stored inside an anonymous struct or union");
546
547  Path.push_back(Field);
548  VarDecl *BaseObject = 0;
549  DeclContext *Ctx = Field->getDeclContext();
550  do {
551    RecordDecl *Record = cast<RecordDecl>(Ctx);
552    Decl *AnonObject = getObjectForAnonymousRecordDecl(Context, Record);
553    if (FieldDecl *AnonField = dyn_cast<FieldDecl>(AnonObject))
554      Path.push_back(AnonField);
555    else {
556      BaseObject = cast<VarDecl>(AnonObject);
557      break;
558    }
559    Ctx = Ctx->getParent();
560  } while (Ctx->isRecord() &&
561           cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion());
562
563  return BaseObject;
564}
565
566Sema::OwningExprResult
567Sema::BuildAnonymousStructUnionMemberReference(SourceLocation Loc,
568                                               FieldDecl *Field,
569                                               Expr *BaseObjectExpr,
570                                               SourceLocation OpLoc) {
571  llvm::SmallVector<FieldDecl *, 4> AnonFields;
572  VarDecl *BaseObject = BuildAnonymousStructUnionMemberPath(Field,
573                                                            AnonFields);
574
575  // Build the expression that refers to the base object, from
576  // which we will build a sequence of member references to each
577  // of the anonymous union objects and, eventually, the field we
578  // found via name lookup.
579  bool BaseObjectIsPointer = false;
580  Qualifiers BaseQuals;
581  if (BaseObject) {
582    // BaseObject is an anonymous struct/union variable (and is,
583    // therefore, not part of another non-anonymous record).
584    if (BaseObjectExpr) BaseObjectExpr->Destroy(Context);
585    MarkDeclarationReferenced(Loc, BaseObject);
586    BaseObjectExpr = new (Context) DeclRefExpr(BaseObject,BaseObject->getType(),
587                                               SourceLocation());
588    BaseQuals
589      = Context.getCanonicalType(BaseObject->getType()).getQualifiers();
590  } else if (BaseObjectExpr) {
591    // The caller provided the base object expression. Determine
592    // whether its a pointer and whether it adds any qualifiers to the
593    // anonymous struct/union fields we're looking into.
594    QualType ObjectType = BaseObjectExpr->getType();
595    if (const PointerType *ObjectPtr = ObjectType->getAs<PointerType>()) {
596      BaseObjectIsPointer = true;
597      ObjectType = ObjectPtr->getPointeeType();
598    }
599    BaseQuals
600      = Context.getCanonicalType(ObjectType).getQualifiers();
601  } else {
602    // We've found a member of an anonymous struct/union that is
603    // inside a non-anonymous struct/union, so in a well-formed
604    // program our base object expression is "this".
605    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
606      if (!MD->isStatic()) {
607        QualType AnonFieldType
608          = Context.getTagDeclType(
609                     cast<RecordDecl>(AnonFields.back()->getDeclContext()));
610        QualType ThisType = Context.getTagDeclType(MD->getParent());
611        if ((Context.getCanonicalType(AnonFieldType)
612               == Context.getCanonicalType(ThisType)) ||
613            IsDerivedFrom(ThisType, AnonFieldType)) {
614          // Our base object expression is "this".
615          BaseObjectExpr = new (Context) CXXThisExpr(Loc,
616                                                     MD->getThisType(Context),
617                                                     /*isImplicit=*/true);
618          BaseObjectIsPointer = true;
619        }
620      } else {
621        return ExprError(Diag(Loc,diag::err_invalid_member_use_in_static_method)
622          << Field->getDeclName());
623      }
624      BaseQuals = Qualifiers::fromCVRMask(MD->getTypeQualifiers());
625    }
626
627    if (!BaseObjectExpr)
628      return ExprError(Diag(Loc, diag::err_invalid_non_static_member_use)
629        << Field->getDeclName());
630  }
631
632  // Build the implicit member references to the field of the
633  // anonymous struct/union.
634  Expr *Result = BaseObjectExpr;
635  Qualifiers ResultQuals = BaseQuals;
636  for (llvm::SmallVector<FieldDecl *, 4>::reverse_iterator
637         FI = AnonFields.rbegin(), FIEnd = AnonFields.rend();
638       FI != FIEnd; ++FI) {
639    QualType MemberType = (*FI)->getType();
640    Qualifiers MemberTypeQuals =
641      Context.getCanonicalType(MemberType).getQualifiers();
642
643    // CVR attributes from the base are picked up by members,
644    // except that 'mutable' members don't pick up 'const'.
645    if ((*FI)->isMutable())
646      ResultQuals.removeConst();
647
648    // GC attributes are never picked up by members.
649    ResultQuals.removeObjCGCAttr();
650
651    // TR 18037 does not allow fields to be declared with address spaces.
652    assert(!MemberTypeQuals.hasAddressSpace());
653
654    Qualifiers NewQuals = ResultQuals + MemberTypeQuals;
655    if (NewQuals != MemberTypeQuals)
656      MemberType = Context.getQualifiedType(MemberType, NewQuals);
657
658    MarkDeclarationReferenced(Loc, *FI);
659    PerformObjectMemberConversion(Result, /*FIXME:Qualifier=*/0, *FI, *FI);
660    // FIXME: Might this end up being a qualified name?
661    Result = new (Context) MemberExpr(Result, BaseObjectIsPointer, *FI,
662                                      OpLoc, MemberType);
663    BaseObjectIsPointer = false;
664    ResultQuals = NewQuals;
665  }
666
667  return Owned(Result);
668}
669
670/// Decomposes the given name into a DeclarationName, its location, and
671/// possibly a list of template arguments.
672///
673/// If this produces template arguments, it is permitted to call
674/// DecomposeTemplateName.
675///
676/// This actually loses a lot of source location information for
677/// non-standard name kinds; we should consider preserving that in
678/// some way.
679static void DecomposeUnqualifiedId(Sema &SemaRef,
680                                   const UnqualifiedId &Id,
681                                   TemplateArgumentListInfo &Buffer,
682                                   DeclarationName &Name,
683                                   SourceLocation &NameLoc,
684                             const TemplateArgumentListInfo *&TemplateArgs) {
685  if (Id.getKind() == UnqualifiedId::IK_TemplateId) {
686    Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc);
687    Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc);
688
689    ASTTemplateArgsPtr TemplateArgsPtr(SemaRef,
690                                       Id.TemplateId->getTemplateArgs(),
691                                       Id.TemplateId->NumArgs);
692    SemaRef.translateTemplateArguments(TemplateArgsPtr, Buffer);
693    TemplateArgsPtr.release();
694
695    TemplateName TName =
696      Sema::TemplateTy::make(Id.TemplateId->Template).getAsVal<TemplateName>();
697
698    Name = SemaRef.Context.getNameForTemplate(TName);
699    NameLoc = Id.TemplateId->TemplateNameLoc;
700    TemplateArgs = &Buffer;
701  } else {
702    Name = SemaRef.GetNameFromUnqualifiedId(Id);
703    NameLoc = Id.StartLocation;
704    TemplateArgs = 0;
705  }
706}
707
708/// Decompose the given template name into a list of lookup results.
709///
710/// The unqualified ID must name a non-dependent template, which can
711/// be more easily tested by checking whether DecomposeUnqualifiedId
712/// found template arguments.
713static void DecomposeTemplateName(LookupResult &R, const UnqualifiedId &Id) {
714  assert(Id.getKind() == UnqualifiedId::IK_TemplateId);
715  TemplateName TName =
716    Sema::TemplateTy::make(Id.TemplateId->Template).getAsVal<TemplateName>();
717
718  if (TemplateDecl *TD = TName.getAsTemplateDecl())
719    R.addDecl(TD);
720  else if (OverloadedTemplateStorage *OT = TName.getAsOverloadedTemplate())
721    for (OverloadedTemplateStorage::iterator I = OT->begin(), E = OT->end();
722           I != E; ++I)
723      R.addDecl(*I);
724
725  R.resolveKind();
726}
727
728/// Determines whether the given record is "fully-formed" at the given
729/// location, i.e. whether a qualified lookup into it is assured of
730/// getting consistent results already.
731static bool IsFullyFormedScope(Sema &SemaRef, CXXRecordDecl *Record) {
732  if (!Record->hasDefinition())
733    return false;
734
735  for (CXXRecordDecl::base_class_iterator I = Record->bases_begin(),
736         E = Record->bases_end(); I != E; ++I) {
737    CanQualType BaseT = SemaRef.Context.getCanonicalType((*I).getType());
738    CanQual<RecordType> BaseRT = BaseT->getAs<RecordType>();
739    if (!BaseRT) return false;
740
741    CXXRecordDecl *BaseRecord = cast<CXXRecordDecl>(BaseRT->getDecl());
742    if (!BaseRecord->hasDefinition() ||
743        !IsFullyFormedScope(SemaRef, BaseRecord))
744      return false;
745  }
746
747  return true;
748}
749
750/// Determines whether we can lookup this id-expression now or whether
751/// we have to wait until template instantiation is complete.
752static bool IsDependentIdExpression(Sema &SemaRef, const CXXScopeSpec &SS) {
753  DeclContext *DC = SemaRef.computeDeclContext(SS, false);
754
755  // If the qualifier scope isn't computable, it's definitely dependent.
756  if (!DC) return true;
757
758  // If the qualifier scope doesn't name a record, we can always look into it.
759  if (!isa<CXXRecordDecl>(DC)) return false;
760
761  // We can't look into record types unless they're fully-formed.
762  if (!IsFullyFormedScope(SemaRef, cast<CXXRecordDecl>(DC))) return true;
763
764  return false;
765}
766
767/// Determines if the given class is provably not derived from all of
768/// the prospective base classes.
769static bool IsProvablyNotDerivedFrom(Sema &SemaRef,
770                                     CXXRecordDecl *Record,
771                            const llvm::SmallPtrSet<CXXRecordDecl*, 4> &Bases) {
772  if (Bases.count(Record->getCanonicalDecl()))
773    return false;
774
775  RecordDecl *RD = Record->getDefinition();
776  if (!RD) return false;
777  Record = cast<CXXRecordDecl>(RD);
778
779  for (CXXRecordDecl::base_class_iterator I = Record->bases_begin(),
780         E = Record->bases_end(); I != E; ++I) {
781    CanQualType BaseT = SemaRef.Context.getCanonicalType((*I).getType());
782    CanQual<RecordType> BaseRT = BaseT->getAs<RecordType>();
783    if (!BaseRT) return false;
784
785    CXXRecordDecl *BaseRecord = cast<CXXRecordDecl>(BaseRT->getDecl());
786    if (!IsProvablyNotDerivedFrom(SemaRef, BaseRecord, Bases))
787      return false;
788  }
789
790  return true;
791}
792
793enum IMAKind {
794  /// The reference is definitely not an instance member access.
795  IMA_Static,
796
797  /// The reference may be an implicit instance member access.
798  IMA_Mixed,
799
800  /// The reference may be to an instance member, but it is invalid if
801  /// so, because the context is not an instance method.
802  IMA_Mixed_StaticContext,
803
804  /// The reference may be to an instance member, but it is invalid if
805  /// so, because the context is from an unrelated class.
806  IMA_Mixed_Unrelated,
807
808  /// The reference is definitely an implicit instance member access.
809  IMA_Instance,
810
811  /// The reference may be to an unresolved using declaration.
812  IMA_Unresolved,
813
814  /// The reference may be to an unresolved using declaration and the
815  /// context is not an instance method.
816  IMA_Unresolved_StaticContext,
817
818  /// The reference is to a member of an anonymous structure in a
819  /// non-class context.
820  IMA_AnonymousMember,
821
822  /// All possible referrents are instance members and the current
823  /// context is not an instance method.
824  IMA_Error_StaticContext,
825
826  /// All possible referrents are instance members of an unrelated
827  /// class.
828  IMA_Error_Unrelated
829};
830
831/// The given lookup names class member(s) and is not being used for
832/// an address-of-member expression.  Classify the type of access
833/// according to whether it's possible that this reference names an
834/// instance member.  This is best-effort; it is okay to
835/// conservatively answer "yes", in which case some errors will simply
836/// not be caught until template-instantiation.
837static IMAKind ClassifyImplicitMemberAccess(Sema &SemaRef,
838                                            const LookupResult &R) {
839  assert(!R.empty() && (*R.begin())->isCXXClassMember());
840
841  bool isStaticContext =
842    (!isa<CXXMethodDecl>(SemaRef.CurContext) ||
843     cast<CXXMethodDecl>(SemaRef.CurContext)->isStatic());
844
845  if (R.isUnresolvableResult())
846    return isStaticContext ? IMA_Unresolved_StaticContext : IMA_Unresolved;
847
848  // Collect all the declaring classes of instance members we find.
849  bool hasNonInstance = false;
850  llvm::SmallPtrSet<CXXRecordDecl*, 4> Classes;
851  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
852    NamedDecl *D = *I;
853    if (D->isCXXInstanceMember()) {
854      CXXRecordDecl *R = cast<CXXRecordDecl>(D->getDeclContext());
855
856      // If this is a member of an anonymous record, move out to the
857      // innermost non-anonymous struct or union.  If there isn't one,
858      // that's a special case.
859      while (R->isAnonymousStructOrUnion()) {
860        R = dyn_cast<CXXRecordDecl>(R->getParent());
861        if (!R) return IMA_AnonymousMember;
862      }
863      Classes.insert(R->getCanonicalDecl());
864    }
865    else
866      hasNonInstance = true;
867  }
868
869  // If we didn't find any instance members, it can't be an implicit
870  // member reference.
871  if (Classes.empty())
872    return IMA_Static;
873
874  // If the current context is not an instance method, it can't be
875  // an implicit member reference.
876  if (isStaticContext)
877    return (hasNonInstance ? IMA_Mixed_StaticContext : IMA_Error_StaticContext);
878
879  // If we can prove that the current context is unrelated to all the
880  // declaring classes, it can't be an implicit member reference (in
881  // which case it's an error if any of those members are selected).
882  if (IsProvablyNotDerivedFrom(SemaRef,
883                        cast<CXXMethodDecl>(SemaRef.CurContext)->getParent(),
884                               Classes))
885    return (hasNonInstance ? IMA_Mixed_Unrelated : IMA_Error_Unrelated);
886
887  return (hasNonInstance ? IMA_Mixed : IMA_Instance);
888}
889
890/// Diagnose a reference to a field with no object available.
891static void DiagnoseInstanceReference(Sema &SemaRef,
892                                      const CXXScopeSpec &SS,
893                                      const LookupResult &R) {
894  SourceLocation Loc = R.getNameLoc();
895  SourceRange Range(Loc);
896  if (SS.isSet()) Range.setBegin(SS.getRange().getBegin());
897
898  if (R.getAsSingle<FieldDecl>()) {
899    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(SemaRef.CurContext)) {
900      if (MD->isStatic()) {
901        // "invalid use of member 'x' in static member function"
902        SemaRef.Diag(Loc, diag::err_invalid_member_use_in_static_method)
903          << Range << R.getLookupName();
904        return;
905      }
906    }
907
908    SemaRef.Diag(Loc, diag::err_invalid_non_static_member_use)
909      << R.getLookupName() << Range;
910    return;
911  }
912
913  SemaRef.Diag(Loc, diag::err_member_call_without_object) << Range;
914}
915
916/// Diagnose an empty lookup.
917///
918/// \return false if new lookup candidates were found
919bool Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS,
920                               LookupResult &R, CorrectTypoContext CTC) {
921  DeclarationName Name = R.getLookupName();
922
923  unsigned diagnostic = diag::err_undeclared_var_use;
924  unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest;
925  if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
926      Name.getNameKind() == DeclarationName::CXXLiteralOperatorName ||
927      Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
928    diagnostic = diag::err_undeclared_use;
929    diagnostic_suggest = diag::err_undeclared_use_suggest;
930  }
931
932  // If the original lookup was an unqualified lookup, fake an
933  // unqualified lookup.  This is useful when (for example) the
934  // original lookup would not have found something because it was a
935  // dependent name.
936  for (DeclContext *DC = SS.isEmpty()? CurContext : 0;
937       DC; DC = DC->getParent()) {
938    if (isa<CXXRecordDecl>(DC)) {
939      LookupQualifiedName(R, DC);
940
941      if (!R.empty()) {
942        // Don't give errors about ambiguities in this lookup.
943        R.suppressDiagnostics();
944
945        CXXMethodDecl *CurMethod = dyn_cast<CXXMethodDecl>(CurContext);
946        bool isInstance = CurMethod &&
947                          CurMethod->isInstance() &&
948                          DC == CurMethod->getParent();
949
950        // Give a code modification hint to insert 'this->'.
951        // TODO: fixit for inserting 'Base<T>::' in the other cases.
952        // Actually quite difficult!
953        if (isInstance)
954          Diag(R.getNameLoc(), diagnostic) << Name
955            << FixItHint::CreateInsertion(R.getNameLoc(), "this->");
956        else
957          Diag(R.getNameLoc(), diagnostic) << Name;
958
959        // Do we really want to note all of these?
960        for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
961          Diag((*I)->getLocation(), diag::note_dependent_var_use);
962
963        // Tell the callee to try to recover.
964        return false;
965      }
966    }
967  }
968
969  // We didn't find anything, so try to correct for a typo.
970  DeclarationName Corrected;
971  if (S && (Corrected = CorrectTypo(R, S, &SS, false, CTC))) {
972    if (!R.empty()) {
973      if (isa<ValueDecl>(*R.begin()) || isa<FunctionTemplateDecl>(*R.begin())) {
974        if (SS.isEmpty())
975          Diag(R.getNameLoc(), diagnostic_suggest) << Name << R.getLookupName()
976            << FixItHint::CreateReplacement(R.getNameLoc(),
977                                            R.getLookupName().getAsString());
978        else
979          Diag(R.getNameLoc(), diag::err_no_member_suggest)
980            << Name << computeDeclContext(SS, false) << R.getLookupName()
981            << SS.getRange()
982            << FixItHint::CreateReplacement(R.getNameLoc(),
983                                            R.getLookupName().getAsString());
984        if (NamedDecl *ND = R.getAsSingle<NamedDecl>())
985          Diag(ND->getLocation(), diag::note_previous_decl)
986            << ND->getDeclName();
987
988        // Tell the callee to try to recover.
989        return false;
990      }
991
992      if (isa<TypeDecl>(*R.begin()) || isa<ObjCInterfaceDecl>(*R.begin())) {
993        // FIXME: If we ended up with a typo for a type name or
994        // Objective-C class name, we're in trouble because the parser
995        // is in the wrong place to recover. Suggest the typo
996        // correction, but don't make it a fix-it since we're not going
997        // to recover well anyway.
998        if (SS.isEmpty())
999          Diag(R.getNameLoc(), diagnostic_suggest) << Name << R.getLookupName();
1000        else
1001          Diag(R.getNameLoc(), diag::err_no_member_suggest)
1002            << Name << computeDeclContext(SS, false) << R.getLookupName()
1003            << SS.getRange();
1004
1005        // Don't try to recover; it won't work.
1006        return true;
1007      }
1008    } else {
1009      // FIXME: We found a keyword. Suggest it, but don't provide a fix-it
1010      // because we aren't able to recover.
1011      if (SS.isEmpty())
1012        Diag(R.getNameLoc(), diagnostic_suggest) << Name << Corrected;
1013      else
1014        Diag(R.getNameLoc(), diag::err_no_member_suggest)
1015        << Name << computeDeclContext(SS, false) << Corrected
1016        << SS.getRange();
1017      return true;
1018    }
1019    R.clear();
1020  }
1021
1022  // Emit a special diagnostic for failed member lookups.
1023  // FIXME: computing the declaration context might fail here (?)
1024  if (!SS.isEmpty()) {
1025    Diag(R.getNameLoc(), diag::err_no_member)
1026      << Name << computeDeclContext(SS, false)
1027      << SS.getRange();
1028    return true;
1029  }
1030
1031  // Give up, we can't recover.
1032  Diag(R.getNameLoc(), diagnostic) << Name;
1033  return true;
1034}
1035
1036Sema::OwningExprResult Sema::ActOnIdExpression(Scope *S,
1037                                               CXXScopeSpec &SS,
1038                                               UnqualifiedId &Id,
1039                                               bool HasTrailingLParen,
1040                                               bool isAddressOfOperand) {
1041  assert(!(isAddressOfOperand && HasTrailingLParen) &&
1042         "cannot be direct & operand and have a trailing lparen");
1043
1044  if (SS.isInvalid())
1045    return ExprError();
1046
1047  TemplateArgumentListInfo TemplateArgsBuffer;
1048
1049  // Decompose the UnqualifiedId into the following data.
1050  DeclarationName Name;
1051  SourceLocation NameLoc;
1052  const TemplateArgumentListInfo *TemplateArgs;
1053  DecomposeUnqualifiedId(*this, Id, TemplateArgsBuffer,
1054                         Name, NameLoc, TemplateArgs);
1055
1056  IdentifierInfo *II = Name.getAsIdentifierInfo();
1057
1058  // C++ [temp.dep.expr]p3:
1059  //   An id-expression is type-dependent if it contains:
1060  //     -- an identifier that was declared with a dependent type,
1061  //        (note: handled after lookup)
1062  //     -- a template-id that is dependent,
1063  //        (note: handled in BuildTemplateIdExpr)
1064  //     -- a conversion-function-id that specifies a dependent type,
1065  //     -- a nested-name-specifier that contains a class-name that
1066  //        names a dependent type.
1067  // Determine whether this is a member of an unknown specialization;
1068  // we need to handle these differently.
1069  if ((Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
1070       Name.getCXXNameType()->isDependentType()) ||
1071      (SS.isSet() && IsDependentIdExpression(*this, SS))) {
1072    return ActOnDependentIdExpression(SS, Name, NameLoc,
1073                                      isAddressOfOperand,
1074                                      TemplateArgs);
1075  }
1076
1077  // Perform the required lookup.
1078  LookupResult R(*this, Name, NameLoc, LookupOrdinaryName);
1079  if (TemplateArgs) {
1080    // Lookup the template name again to correctly establish the context in
1081    // which it was found. This is really unfortunate as we already did the
1082    // lookup to determine that it was a template name in the first place. If
1083    // this becomes a performance hit, we can work harder to preserve those
1084    // results until we get here but it's likely not worth it.
1085    LookupTemplateName(R, S, SS, QualType(), /*EnteringContext=*/false);
1086  } else {
1087    bool IvarLookupFollowUp = (!SS.isSet() && II && getCurMethodDecl());
1088    LookupParsedName(R, S, &SS, !IvarLookupFollowUp);
1089
1090    // If this reference is in an Objective-C method, then we need to do
1091    // some special Objective-C lookup, too.
1092    if (IvarLookupFollowUp) {
1093      OwningExprResult E(LookupInObjCMethod(R, S, II, true));
1094      if (E.isInvalid())
1095        return ExprError();
1096
1097      Expr *Ex = E.takeAs<Expr>();
1098      if (Ex) return Owned(Ex);
1099    }
1100  }
1101
1102  if (R.isAmbiguous())
1103    return ExprError();
1104
1105  // Determine whether this name might be a candidate for
1106  // argument-dependent lookup.
1107  bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen);
1108
1109  if (R.empty() && !ADL) {
1110    // Otherwise, this could be an implicitly declared function reference (legal
1111    // in C90, extension in C99, forbidden in C++).
1112    if (HasTrailingLParen && II && !getLangOptions().CPlusPlus) {
1113      NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S);
1114      if (D) R.addDecl(D);
1115    }
1116
1117    // If this name wasn't predeclared and if this is not a function
1118    // call, diagnose the problem.
1119    if (R.empty()) {
1120      if (DiagnoseEmptyLookup(S, SS, R, CTC_Unknown))
1121        return ExprError();
1122
1123      assert(!R.empty() &&
1124             "DiagnoseEmptyLookup returned false but added no results");
1125
1126      // If we found an Objective-C instance variable, let
1127      // LookupInObjCMethod build the appropriate expression to
1128      // reference the ivar.
1129      if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) {
1130        R.clear();
1131        OwningExprResult E(LookupInObjCMethod(R, S, Ivar->getIdentifier()));
1132        assert(E.isInvalid() || E.get());
1133        return move(E);
1134      }
1135    }
1136  }
1137
1138  // This is guaranteed from this point on.
1139  assert(!R.empty() || ADL);
1140
1141  if (VarDecl *Var = R.getAsSingle<VarDecl>()) {
1142    // Warn about constructs like:
1143    //   if (void *X = foo()) { ... } else { X }.
1144    // In the else block, the pointer is always false.
1145    if (Var->isDeclaredInCondition() && Var->getType()->isScalarType()) {
1146      Scope *CheckS = S;
1147      while (CheckS && CheckS->getControlParent()) {
1148        if ((CheckS->getFlags() & Scope::ElseScope) &&
1149            CheckS->getControlParent()->isDeclScope(DeclPtrTy::make(Var))) {
1150          ExprError(Diag(NameLoc, diag::warn_value_always_zero)
1151            << Var->getDeclName()
1152            << (Var->getType()->isPointerType() ? 2 :
1153                Var->getType()->isBooleanType() ? 1 : 0));
1154          break;
1155        }
1156
1157        // Move to the parent of this scope.
1158        CheckS = CheckS->getParent();
1159      }
1160    }
1161  } else if (FunctionDecl *Func = R.getAsSingle<FunctionDecl>()) {
1162    if (!getLangOptions().CPlusPlus && !Func->hasPrototype()) {
1163      // C99 DR 316 says that, if a function type comes from a
1164      // function definition (without a prototype), that type is only
1165      // used for checking compatibility. Therefore, when referencing
1166      // the function, we pretend that we don't have the full function
1167      // type.
1168      if (DiagnoseUseOfDecl(Func, NameLoc))
1169        return ExprError();
1170
1171      QualType T = Func->getType();
1172      QualType NoProtoType = T;
1173      if (const FunctionProtoType *Proto = T->getAs<FunctionProtoType>())
1174        NoProtoType = Context.getFunctionNoProtoType(Proto->getResultType(),
1175                                                     Proto->getExtInfo());
1176      return BuildDeclRefExpr(Func, NoProtoType, NameLoc, &SS);
1177    }
1178  }
1179
1180  // Check whether this might be a C++ implicit instance member access.
1181  // C++ [expr.prim.general]p6:
1182  //   Within the definition of a non-static member function, an
1183  //   identifier that names a non-static member is transformed to a
1184  //   class member access expression.
1185  // But note that &SomeClass::foo is grammatically distinct, even
1186  // though we don't parse it that way.
1187  if (!R.empty() && (*R.begin())->isCXXClassMember()) {
1188    bool isAbstractMemberPointer = (isAddressOfOperand && !SS.isEmpty());
1189    if (!isAbstractMemberPointer)
1190      return BuildPossibleImplicitMemberExpr(SS, R, TemplateArgs);
1191  }
1192
1193  if (TemplateArgs)
1194    return BuildTemplateIdExpr(SS, R, ADL, *TemplateArgs);
1195
1196  return BuildDeclarationNameExpr(SS, R, ADL);
1197}
1198
1199/// Builds an expression which might be an implicit member expression.
1200Sema::OwningExprResult
1201Sema::BuildPossibleImplicitMemberExpr(const CXXScopeSpec &SS,
1202                                      LookupResult &R,
1203                                const TemplateArgumentListInfo *TemplateArgs) {
1204  switch (ClassifyImplicitMemberAccess(*this, R)) {
1205  case IMA_Instance:
1206    return BuildImplicitMemberExpr(SS, R, TemplateArgs, true);
1207
1208  case IMA_AnonymousMember:
1209    assert(R.isSingleResult());
1210    return BuildAnonymousStructUnionMemberReference(R.getNameLoc(),
1211                                                    R.getAsSingle<FieldDecl>());
1212
1213  case IMA_Mixed:
1214  case IMA_Mixed_Unrelated:
1215  case IMA_Unresolved:
1216    return BuildImplicitMemberExpr(SS, R, TemplateArgs, false);
1217
1218  case IMA_Static:
1219  case IMA_Mixed_StaticContext:
1220  case IMA_Unresolved_StaticContext:
1221    if (TemplateArgs)
1222      return BuildTemplateIdExpr(SS, R, false, *TemplateArgs);
1223    return BuildDeclarationNameExpr(SS, R, false);
1224
1225  case IMA_Error_StaticContext:
1226  case IMA_Error_Unrelated:
1227    DiagnoseInstanceReference(*this, SS, R);
1228    return ExprError();
1229  }
1230
1231  llvm_unreachable("unexpected instance member access kind");
1232  return ExprError();
1233}
1234
1235/// BuildQualifiedDeclarationNameExpr - Build a C++ qualified
1236/// declaration name, generally during template instantiation.
1237/// There's a large number of things which don't need to be done along
1238/// this path.
1239Sema::OwningExprResult
1240Sema::BuildQualifiedDeclarationNameExpr(CXXScopeSpec &SS,
1241                                        DeclarationName Name,
1242                                        SourceLocation NameLoc) {
1243  DeclContext *DC;
1244  if (!(DC = computeDeclContext(SS, false)) || DC->isDependentContext())
1245    return BuildDependentDeclRefExpr(SS, Name, NameLoc, 0);
1246
1247  if (RequireCompleteDeclContext(SS, DC))
1248    return ExprError();
1249
1250  LookupResult R(*this, Name, NameLoc, LookupOrdinaryName);
1251  LookupQualifiedName(R, DC);
1252
1253  if (R.isAmbiguous())
1254    return ExprError();
1255
1256  if (R.empty()) {
1257    Diag(NameLoc, diag::err_no_member) << Name << DC << SS.getRange();
1258    return ExprError();
1259  }
1260
1261  return BuildDeclarationNameExpr(SS, R, /*ADL*/ false);
1262}
1263
1264/// LookupInObjCMethod - The parser has read a name in, and Sema has
1265/// detected that we're currently inside an ObjC method.  Perform some
1266/// additional lookup.
1267///
1268/// Ideally, most of this would be done by lookup, but there's
1269/// actually quite a lot of extra work involved.
1270///
1271/// Returns a null sentinel to indicate trivial success.
1272Sema::OwningExprResult
1273Sema::LookupInObjCMethod(LookupResult &Lookup, Scope *S,
1274                         IdentifierInfo *II, bool AllowBuiltinCreation) {
1275  SourceLocation Loc = Lookup.getNameLoc();
1276  ObjCMethodDecl *CurMethod = getCurMethodDecl();
1277
1278  // There are two cases to handle here.  1) scoped lookup could have failed,
1279  // in which case we should look for an ivar.  2) scoped lookup could have
1280  // found a decl, but that decl is outside the current instance method (i.e.
1281  // a global variable).  In these two cases, we do a lookup for an ivar with
1282  // this name, if the lookup sucedes, we replace it our current decl.
1283
1284  // If we're in a class method, we don't normally want to look for
1285  // ivars.  But if we don't find anything else, and there's an
1286  // ivar, that's an error.
1287  bool IsClassMethod = CurMethod->isClassMethod();
1288
1289  bool LookForIvars;
1290  if (Lookup.empty())
1291    LookForIvars = true;
1292  else if (IsClassMethod)
1293    LookForIvars = false;
1294  else
1295    LookForIvars = (Lookup.isSingleResult() &&
1296                    Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod());
1297  ObjCInterfaceDecl *IFace = 0;
1298  if (LookForIvars) {
1299    IFace = CurMethod->getClassInterface();
1300    ObjCInterfaceDecl *ClassDeclared;
1301    if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
1302      // Diagnose using an ivar in a class method.
1303      if (IsClassMethod)
1304        return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
1305                         << IV->getDeclName());
1306
1307      // If we're referencing an invalid decl, just return this as a silent
1308      // error node.  The error diagnostic was already emitted on the decl.
1309      if (IV->isInvalidDecl())
1310        return ExprError();
1311
1312      // Check if referencing a field with __attribute__((deprecated)).
1313      if (DiagnoseUseOfDecl(IV, Loc))
1314        return ExprError();
1315
1316      // Diagnose the use of an ivar outside of the declaring class.
1317      if (IV->getAccessControl() == ObjCIvarDecl::Private &&
1318          ClassDeclared != IFace)
1319        Diag(Loc, diag::error_private_ivar_access) << IV->getDeclName();
1320
1321      // FIXME: This should use a new expr for a direct reference, don't
1322      // turn this into Self->ivar, just return a BareIVarExpr or something.
1323      IdentifierInfo &II = Context.Idents.get("self");
1324      UnqualifiedId SelfName;
1325      SelfName.setIdentifier(&II, SourceLocation());
1326      CXXScopeSpec SelfScopeSpec;
1327      OwningExprResult SelfExpr = ActOnIdExpression(S, SelfScopeSpec,
1328                                                    SelfName, false, false);
1329      MarkDeclarationReferenced(Loc, IV);
1330      return Owned(new (Context)
1331                   ObjCIvarRefExpr(IV, IV->getType(), Loc,
1332                                   SelfExpr.takeAs<Expr>(), true, true));
1333    }
1334  } else if (CurMethod->isInstanceMethod()) {
1335    // We should warn if a local variable hides an ivar.
1336    ObjCInterfaceDecl *IFace = CurMethod->getClassInterface();
1337    ObjCInterfaceDecl *ClassDeclared;
1338    if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
1339      if (IV->getAccessControl() != ObjCIvarDecl::Private ||
1340          IFace == ClassDeclared)
1341        Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
1342    }
1343  }
1344
1345  if (Lookup.empty() && II && AllowBuiltinCreation) {
1346    // FIXME. Consolidate this with similar code in LookupName.
1347    if (unsigned BuiltinID = II->getBuiltinID()) {
1348      if (!(getLangOptions().CPlusPlus &&
1349            Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))) {
1350        NamedDecl *D = LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID,
1351                                           S, Lookup.isForRedeclaration(),
1352                                           Lookup.getNameLoc());
1353        if (D) Lookup.addDecl(D);
1354      }
1355    }
1356  }
1357  // Sentinel value saying that we didn't do anything special.
1358  return Owned((Expr*) 0);
1359}
1360
1361/// \brief Cast a base object to a member's actual type.
1362///
1363/// Logically this happens in three phases:
1364///
1365/// * First we cast from the base type to the naming class.
1366///   The naming class is the class into which we were looking
1367///   when we found the member;  it's the qualifier type if a
1368///   qualifier was provided, and otherwise it's the base type.
1369///
1370/// * Next we cast from the naming class to the declaring class.
1371///   If the member we found was brought into a class's scope by
1372///   a using declaration, this is that class;  otherwise it's
1373///   the class declaring the member.
1374///
1375/// * Finally we cast from the declaring class to the "true"
1376///   declaring class of the member.  This conversion does not
1377///   obey access control.
1378bool
1379Sema::PerformObjectMemberConversion(Expr *&From,
1380                                    NestedNameSpecifier *Qualifier,
1381                                    NamedDecl *FoundDecl,
1382                                    NamedDecl *Member) {
1383  CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Member->getDeclContext());
1384  if (!RD)
1385    return false;
1386
1387  QualType DestRecordType;
1388  QualType DestType;
1389  QualType FromRecordType;
1390  QualType FromType = From->getType();
1391  bool PointerConversions = false;
1392  if (isa<FieldDecl>(Member)) {
1393    DestRecordType = Context.getCanonicalType(Context.getTypeDeclType(RD));
1394
1395    if (FromType->getAs<PointerType>()) {
1396      DestType = Context.getPointerType(DestRecordType);
1397      FromRecordType = FromType->getPointeeType();
1398      PointerConversions = true;
1399    } else {
1400      DestType = DestRecordType;
1401      FromRecordType = FromType;
1402    }
1403  } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member)) {
1404    if (Method->isStatic())
1405      return false;
1406
1407    DestType = Method->getThisType(Context);
1408    DestRecordType = DestType->getPointeeType();
1409
1410    if (FromType->getAs<PointerType>()) {
1411      FromRecordType = FromType->getPointeeType();
1412      PointerConversions = true;
1413    } else {
1414      FromRecordType = FromType;
1415      DestType = DestRecordType;
1416    }
1417  } else {
1418    // No conversion necessary.
1419    return false;
1420  }
1421
1422  if (DestType->isDependentType() || FromType->isDependentType())
1423    return false;
1424
1425  // If the unqualified types are the same, no conversion is necessary.
1426  if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
1427    return false;
1428
1429  SourceRange FromRange = From->getSourceRange();
1430  SourceLocation FromLoc = FromRange.getBegin();
1431
1432  // C++ [class.member.lookup]p8:
1433  //   [...] Ambiguities can often be resolved by qualifying a name with its
1434  //   class name.
1435  //
1436  // If the member was a qualified name and the qualified referred to a
1437  // specific base subobject type, we'll cast to that intermediate type
1438  // first and then to the object in which the member is declared. That allows
1439  // one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as:
1440  //
1441  //   class Base { public: int x; };
1442  //   class Derived1 : public Base { };
1443  //   class Derived2 : public Base { };
1444  //   class VeryDerived : public Derived1, public Derived2 { void f(); };
1445  //
1446  //   void VeryDerived::f() {
1447  //     x = 17; // error: ambiguous base subobjects
1448  //     Derived1::x = 17; // okay, pick the Base subobject of Derived1
1449  //   }
1450  if (Qualifier) {
1451    QualType QType = QualType(Qualifier->getAsType(), 0);
1452    assert(!QType.isNull() && "lookup done with dependent qualifier?");
1453    assert(QType->isRecordType() && "lookup done with non-record type");
1454
1455    QualType QRecordType = QualType(QType->getAs<RecordType>(), 0);
1456
1457    // In C++98, the qualifier type doesn't actually have to be a base
1458    // type of the object type, in which case we just ignore it.
1459    // Otherwise build the appropriate casts.
1460    if (IsDerivedFrom(FromRecordType, QRecordType)) {
1461      CXXBaseSpecifierArray BasePath;
1462      if (CheckDerivedToBaseConversion(FromRecordType, QRecordType,
1463                                       FromLoc, FromRange, &BasePath))
1464        return true;
1465
1466      if (PointerConversions)
1467        QType = Context.getPointerType(QType);
1468      ImpCastExprToType(From, QType, CastExpr::CK_UncheckedDerivedToBase,
1469                        /*isLvalue=*/!PointerConversions, BasePath);
1470
1471      FromType = QType;
1472      FromRecordType = QRecordType;
1473
1474      // If the qualifier type was the same as the destination type,
1475      // we're done.
1476      if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
1477        return false;
1478    }
1479  }
1480
1481  bool IgnoreAccess = false;
1482
1483  // If we actually found the member through a using declaration, cast
1484  // down to the using declaration's type.
1485  //
1486  // Pointer equality is fine here because only one declaration of a
1487  // class ever has member declarations.
1488  if (FoundDecl->getDeclContext() != Member->getDeclContext()) {
1489    assert(isa<UsingShadowDecl>(FoundDecl));
1490    QualType URecordType = Context.getTypeDeclType(
1491                           cast<CXXRecordDecl>(FoundDecl->getDeclContext()));
1492
1493    // We only need to do this if the naming-class to declaring-class
1494    // conversion is non-trivial.
1495    if (!Context.hasSameUnqualifiedType(FromRecordType, URecordType)) {
1496      assert(IsDerivedFrom(FromRecordType, URecordType));
1497      CXXBaseSpecifierArray BasePath;
1498      if (CheckDerivedToBaseConversion(FromRecordType, URecordType,
1499                                       FromLoc, FromRange, &BasePath))
1500        return true;
1501
1502      QualType UType = URecordType;
1503      if (PointerConversions)
1504        UType = Context.getPointerType(UType);
1505      ImpCastExprToType(From, UType, CastExpr::CK_UncheckedDerivedToBase,
1506                        /*isLvalue=*/!PointerConversions, BasePath);
1507      FromType = UType;
1508      FromRecordType = URecordType;
1509    }
1510
1511    // We don't do access control for the conversion from the
1512    // declaring class to the true declaring class.
1513    IgnoreAccess = true;
1514  }
1515
1516  CXXBaseSpecifierArray BasePath;
1517  if (CheckDerivedToBaseConversion(FromRecordType, DestRecordType,
1518                                   FromLoc, FromRange, &BasePath,
1519                                   IgnoreAccess))
1520    return true;
1521
1522  ImpCastExprToType(From, DestType, CastExpr::CK_UncheckedDerivedToBase,
1523                    /*isLvalue=*/!PointerConversions, BasePath);
1524  return false;
1525}
1526
1527/// \brief Build a MemberExpr AST node.
1528static MemberExpr *BuildMemberExpr(ASTContext &C, Expr *Base, bool isArrow,
1529                                   const CXXScopeSpec &SS, ValueDecl *Member,
1530                                   DeclAccessPair FoundDecl,
1531                                   SourceLocation Loc, QualType Ty,
1532                          const TemplateArgumentListInfo *TemplateArgs = 0) {
1533  NestedNameSpecifier *Qualifier = 0;
1534  SourceRange QualifierRange;
1535  if (SS.isSet()) {
1536    Qualifier = (NestedNameSpecifier *) SS.getScopeRep();
1537    QualifierRange = SS.getRange();
1538  }
1539
1540  return MemberExpr::Create(C, Base, isArrow, Qualifier, QualifierRange,
1541                            Member, FoundDecl, Loc, TemplateArgs, Ty);
1542}
1543
1544/// Builds an implicit member access expression.  The current context
1545/// is known to be an instance method, and the given unqualified lookup
1546/// set is known to contain only instance members, at least one of which
1547/// is from an appropriate type.
1548Sema::OwningExprResult
1549Sema::BuildImplicitMemberExpr(const CXXScopeSpec &SS,
1550                              LookupResult &R,
1551                              const TemplateArgumentListInfo *TemplateArgs,
1552                              bool IsKnownInstance) {
1553  assert(!R.empty() && !R.isAmbiguous());
1554
1555  SourceLocation Loc = R.getNameLoc();
1556
1557  // We may have found a field within an anonymous union or struct
1558  // (C++ [class.union]).
1559  // FIXME: This needs to happen post-isImplicitMemberReference?
1560  // FIXME: template-ids inside anonymous structs?
1561  if (FieldDecl *FD = R.getAsSingle<FieldDecl>())
1562    if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion())
1563      return BuildAnonymousStructUnionMemberReference(Loc, FD);
1564
1565  // If this is known to be an instance access, go ahead and build a
1566  // 'this' expression now.
1567  QualType ThisType = cast<CXXMethodDecl>(CurContext)->getThisType(Context);
1568  Expr *This = 0; // null signifies implicit access
1569  if (IsKnownInstance) {
1570    SourceLocation Loc = R.getNameLoc();
1571    if (SS.getRange().isValid())
1572      Loc = SS.getRange().getBegin();
1573    This = new (Context) CXXThisExpr(Loc, ThisType, /*isImplicit=*/true);
1574  }
1575
1576  return BuildMemberReferenceExpr(ExprArg(*this, This), ThisType,
1577                                  /*OpLoc*/ SourceLocation(),
1578                                  /*IsArrow*/ true,
1579                                  SS,
1580                                  /*FirstQualifierInScope*/ 0,
1581                                  R, TemplateArgs);
1582}
1583
1584bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS,
1585                                      const LookupResult &R,
1586                                      bool HasTrailingLParen) {
1587  // Only when used directly as the postfix-expression of a call.
1588  if (!HasTrailingLParen)
1589    return false;
1590
1591  // Never if a scope specifier was provided.
1592  if (SS.isSet())
1593    return false;
1594
1595  // Only in C++ or ObjC++.
1596  if (!getLangOptions().CPlusPlus)
1597    return false;
1598
1599  // Turn off ADL when we find certain kinds of declarations during
1600  // normal lookup:
1601  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
1602    NamedDecl *D = *I;
1603
1604    // C++0x [basic.lookup.argdep]p3:
1605    //     -- a declaration of a class member
1606    // Since using decls preserve this property, we check this on the
1607    // original decl.
1608    if (D->isCXXClassMember())
1609      return false;
1610
1611    // C++0x [basic.lookup.argdep]p3:
1612    //     -- a block-scope function declaration that is not a
1613    //        using-declaration
1614    // NOTE: we also trigger this for function templates (in fact, we
1615    // don't check the decl type at all, since all other decl types
1616    // turn off ADL anyway).
1617    if (isa<UsingShadowDecl>(D))
1618      D = cast<UsingShadowDecl>(D)->getTargetDecl();
1619    else if (D->getDeclContext()->isFunctionOrMethod())
1620      return false;
1621
1622    // C++0x [basic.lookup.argdep]p3:
1623    //     -- a declaration that is neither a function or a function
1624    //        template
1625    // And also for builtin functions.
1626    if (isa<FunctionDecl>(D)) {
1627      FunctionDecl *FDecl = cast<FunctionDecl>(D);
1628
1629      // But also builtin functions.
1630      if (FDecl->getBuiltinID() && FDecl->isImplicit())
1631        return false;
1632    } else if (!isa<FunctionTemplateDecl>(D))
1633      return false;
1634  }
1635
1636  return true;
1637}
1638
1639
1640/// Diagnoses obvious problems with the use of the given declaration
1641/// as an expression.  This is only actually called for lookups that
1642/// were not overloaded, and it doesn't promise that the declaration
1643/// will in fact be used.
1644static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D) {
1645  if (isa<TypedefDecl>(D)) {
1646    S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName();
1647    return true;
1648  }
1649
1650  if (isa<ObjCInterfaceDecl>(D)) {
1651    S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName();
1652    return true;
1653  }
1654
1655  if (isa<NamespaceDecl>(D)) {
1656    S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName();
1657    return true;
1658  }
1659
1660  return false;
1661}
1662
1663Sema::OwningExprResult
1664Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
1665                               LookupResult &R,
1666                               bool NeedsADL) {
1667  // If this is a single, fully-resolved result and we don't need ADL,
1668  // just build an ordinary singleton decl ref.
1669  if (!NeedsADL && R.isSingleResult() && !R.getAsSingle<FunctionTemplateDecl>())
1670    return BuildDeclarationNameExpr(SS, R.getNameLoc(), R.getFoundDecl());
1671
1672  // We only need to check the declaration if there's exactly one
1673  // result, because in the overloaded case the results can only be
1674  // functions and function templates.
1675  if (R.isSingleResult() &&
1676      CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl()))
1677    return ExprError();
1678
1679  // Otherwise, just build an unresolved lookup expression.  Suppress
1680  // any lookup-related diagnostics; we'll hash these out later, when
1681  // we've picked a target.
1682  R.suppressDiagnostics();
1683
1684  bool Dependent
1685    = UnresolvedLookupExpr::ComputeDependence(R.begin(), R.end(), 0);
1686  UnresolvedLookupExpr *ULE
1687    = UnresolvedLookupExpr::Create(Context, Dependent, R.getNamingClass(),
1688                                   (NestedNameSpecifier*) SS.getScopeRep(),
1689                                   SS.getRange(),
1690                                   R.getLookupName(), R.getNameLoc(),
1691                                   NeedsADL, R.isOverloadedResult());
1692  ULE->addDecls(R.begin(), R.end());
1693
1694  return Owned(ULE);
1695}
1696
1697
1698/// \brief Complete semantic analysis for a reference to the given declaration.
1699Sema::OwningExprResult
1700Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
1701                               SourceLocation Loc, NamedDecl *D) {
1702  assert(D && "Cannot refer to a NULL declaration");
1703  assert(!isa<FunctionTemplateDecl>(D) &&
1704         "Cannot refer unambiguously to a function template");
1705
1706  if (CheckDeclInExpr(*this, Loc, D))
1707    return ExprError();
1708
1709  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) {
1710    // Specifically diagnose references to class templates that are missing
1711    // a template argument list.
1712    Diag(Loc, diag::err_template_decl_ref)
1713      << Template << SS.getRange();
1714    Diag(Template->getLocation(), diag::note_template_decl_here);
1715    return ExprError();
1716  }
1717
1718  // Make sure that we're referring to a value.
1719  ValueDecl *VD = dyn_cast<ValueDecl>(D);
1720  if (!VD) {
1721    Diag(Loc, diag::err_ref_non_value)
1722      << D << SS.getRange();
1723    Diag(D->getLocation(), diag::note_declared_at);
1724    return ExprError();
1725  }
1726
1727  // Check whether this declaration can be used. Note that we suppress
1728  // this check when we're going to perform argument-dependent lookup
1729  // on this function name, because this might not be the function
1730  // that overload resolution actually selects.
1731  if (DiagnoseUseOfDecl(VD, Loc))
1732    return ExprError();
1733
1734  // Only create DeclRefExpr's for valid Decl's.
1735  if (VD->isInvalidDecl())
1736    return ExprError();
1737
1738  // If the identifier reference is inside a block, and it refers to a value
1739  // that is outside the block, create a BlockDeclRefExpr instead of a
1740  // DeclRefExpr.  This ensures the value is treated as a copy-in snapshot when
1741  // the block is formed.
1742  //
1743  // We do not do this for things like enum constants, global variables, etc,
1744  // as they do not get snapshotted.
1745  //
1746  if (getCurBlock() &&
1747      ShouldSnapshotBlockValueReference(*this, getCurBlock(), VD)) {
1748    if (VD->getType().getTypePtr()->isVariablyModifiedType()) {
1749      Diag(Loc, diag::err_ref_vm_type);
1750      Diag(D->getLocation(), diag::note_declared_at);
1751      return ExprError();
1752    }
1753
1754    if (VD->getType()->isArrayType()) {
1755      Diag(Loc, diag::err_ref_array_type);
1756      Diag(D->getLocation(), diag::note_declared_at);
1757      return ExprError();
1758    }
1759
1760    MarkDeclarationReferenced(Loc, VD);
1761    QualType ExprTy = VD->getType().getNonReferenceType();
1762    // The BlocksAttr indicates the variable is bound by-reference.
1763    if (VD->getAttr<BlocksAttr>())
1764      return Owned(new (Context) BlockDeclRefExpr(VD, ExprTy, Loc, true));
1765    // This is to record that a 'const' was actually synthesize and added.
1766    bool constAdded = !ExprTy.isConstQualified();
1767    // Variable will be bound by-copy, make it const within the closure.
1768
1769    ExprTy.addConst();
1770    return Owned(new (Context) BlockDeclRefExpr(VD, ExprTy, Loc, false,
1771                                                constAdded));
1772  }
1773  // If this reference is not in a block or if the referenced variable is
1774  // within the block, create a normal DeclRefExpr.
1775
1776  return BuildDeclRefExpr(VD, VD->getType().getNonReferenceType(), Loc, &SS);
1777}
1778
1779Sema::OwningExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc,
1780                                                 tok::TokenKind Kind) {
1781  PredefinedExpr::IdentType IT;
1782
1783  switch (Kind) {
1784  default: assert(0 && "Unknown simple primary expr!");
1785  case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
1786  case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
1787  case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
1788  }
1789
1790  // Pre-defined identifiers are of type char[x], where x is the length of the
1791  // string.
1792
1793  Decl *currentDecl = getCurFunctionOrMethodDecl();
1794  if (!currentDecl) {
1795    Diag(Loc, diag::ext_predef_outside_function);
1796    currentDecl = Context.getTranslationUnitDecl();
1797  }
1798
1799  QualType ResTy;
1800  if (cast<DeclContext>(currentDecl)->isDependentContext()) {
1801    ResTy = Context.DependentTy;
1802  } else {
1803    unsigned Length = PredefinedExpr::ComputeName(IT, currentDecl).length();
1804
1805    llvm::APInt LengthI(32, Length + 1);
1806    ResTy = Context.CharTy.withConst();
1807    ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
1808  }
1809  return Owned(new (Context) PredefinedExpr(Loc, ResTy, IT));
1810}
1811
1812Sema::OwningExprResult Sema::ActOnCharacterConstant(const Token &Tok) {
1813  llvm::SmallString<16> CharBuffer;
1814  bool Invalid = false;
1815  llvm::StringRef ThisTok = PP.getSpelling(Tok, CharBuffer, &Invalid);
1816  if (Invalid)
1817    return ExprError();
1818
1819  CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(),
1820                            PP);
1821  if (Literal.hadError())
1822    return ExprError();
1823
1824  QualType Ty;
1825  if (!getLangOptions().CPlusPlus)
1826    Ty = Context.IntTy;   // 'x' and L'x' -> int in C.
1827  else if (Literal.isWide())
1828    Ty = Context.WCharTy; // L'x' -> wchar_t in C++.
1829  else if (Literal.isMultiChar())
1830    Ty = Context.IntTy;   // 'wxyz' -> int in C++.
1831  else
1832    Ty = Context.CharTy;  // 'x' -> char in C++
1833
1834  return Owned(new (Context) CharacterLiteral(Literal.getValue(),
1835                                              Literal.isWide(),
1836                                              Ty, Tok.getLocation()));
1837}
1838
1839Action::OwningExprResult Sema::ActOnNumericConstant(const Token &Tok) {
1840  // Fast path for a single digit (which is quite common).  A single digit
1841  // cannot have a trigraph, escaped newline, radix prefix, or type suffix.
1842  if (Tok.getLength() == 1) {
1843    const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
1844    unsigned IntSize = Context.Target.getIntWidth();
1845    return Owned(new (Context) IntegerLiteral(llvm::APInt(IntSize, Val-'0'),
1846                    Context.IntTy, Tok.getLocation()));
1847  }
1848
1849  llvm::SmallString<512> IntegerBuffer;
1850  // Add padding so that NumericLiteralParser can overread by one character.
1851  IntegerBuffer.resize(Tok.getLength()+1);
1852  const char *ThisTokBegin = &IntegerBuffer[0];
1853
1854  // Get the spelling of the token, which eliminates trigraphs, etc.
1855  bool Invalid = false;
1856  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin, &Invalid);
1857  if (Invalid)
1858    return ExprError();
1859
1860  NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
1861                               Tok.getLocation(), PP);
1862  if (Literal.hadError)
1863    return ExprError();
1864
1865  Expr *Res;
1866
1867  if (Literal.isFloatingLiteral()) {
1868    QualType Ty;
1869    if (Literal.isFloat)
1870      Ty = Context.FloatTy;
1871    else if (!Literal.isLong)
1872      Ty = Context.DoubleTy;
1873    else
1874      Ty = Context.LongDoubleTy;
1875
1876    const llvm::fltSemantics &Format = Context.getFloatTypeSemantics(Ty);
1877
1878    using llvm::APFloat;
1879    APFloat Val(Format);
1880
1881    APFloat::opStatus result = Literal.GetFloatValue(Val);
1882
1883    // Overflow is always an error, but underflow is only an error if
1884    // we underflowed to zero (APFloat reports denormals as underflow).
1885    if ((result & APFloat::opOverflow) ||
1886        ((result & APFloat::opUnderflow) && Val.isZero())) {
1887      unsigned diagnostic;
1888      llvm::SmallString<20> buffer;
1889      if (result & APFloat::opOverflow) {
1890        diagnostic = diag::warn_float_overflow;
1891        APFloat::getLargest(Format).toString(buffer);
1892      } else {
1893        diagnostic = diag::warn_float_underflow;
1894        APFloat::getSmallest(Format).toString(buffer);
1895      }
1896
1897      Diag(Tok.getLocation(), diagnostic)
1898        << Ty
1899        << llvm::StringRef(buffer.data(), buffer.size());
1900    }
1901
1902    bool isExact = (result == APFloat::opOK);
1903    Res = new (Context) FloatingLiteral(Val, isExact, Ty, Tok.getLocation());
1904
1905  } else if (!Literal.isIntegerLiteral()) {
1906    return ExprError();
1907  } else {
1908    QualType Ty;
1909
1910    // long long is a C99 feature.
1911    if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
1912        Literal.isLongLong)
1913      Diag(Tok.getLocation(), diag::ext_longlong);
1914
1915    // Get the value in the widest-possible width.
1916    llvm::APInt ResultVal(Context.Target.getIntMaxTWidth(), 0);
1917
1918    if (Literal.GetIntegerValue(ResultVal)) {
1919      // If this value didn't fit into uintmax_t, warn and force to ull.
1920      Diag(Tok.getLocation(), diag::warn_integer_too_large);
1921      Ty = Context.UnsignedLongLongTy;
1922      assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
1923             "long long is not intmax_t?");
1924    } else {
1925      // If this value fits into a ULL, try to figure out what else it fits into
1926      // according to the rules of C99 6.4.4.1p5.
1927
1928      // Octal, Hexadecimal, and integers with a U suffix are allowed to
1929      // be an unsigned int.
1930      bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
1931
1932      // Check from smallest to largest, picking the smallest type we can.
1933      unsigned Width = 0;
1934      if (!Literal.isLong && !Literal.isLongLong) {
1935        // Are int/unsigned possibilities?
1936        unsigned IntSize = Context.Target.getIntWidth();
1937
1938        // Does it fit in a unsigned int?
1939        if (ResultVal.isIntN(IntSize)) {
1940          // Does it fit in a signed int?
1941          if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
1942            Ty = Context.IntTy;
1943          else if (AllowUnsigned)
1944            Ty = Context.UnsignedIntTy;
1945          Width = IntSize;
1946        }
1947      }
1948
1949      // Are long/unsigned long possibilities?
1950      if (Ty.isNull() && !Literal.isLongLong) {
1951        unsigned LongSize = Context.Target.getLongWidth();
1952
1953        // Does it fit in a unsigned long?
1954        if (ResultVal.isIntN(LongSize)) {
1955          // Does it fit in a signed long?
1956          if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
1957            Ty = Context.LongTy;
1958          else if (AllowUnsigned)
1959            Ty = Context.UnsignedLongTy;
1960          Width = LongSize;
1961        }
1962      }
1963
1964      // Finally, check long long if needed.
1965      if (Ty.isNull()) {
1966        unsigned LongLongSize = Context.Target.getLongLongWidth();
1967
1968        // Does it fit in a unsigned long long?
1969        if (ResultVal.isIntN(LongLongSize)) {
1970          // Does it fit in a signed long long?
1971          if (!Literal.isUnsigned && ResultVal[LongLongSize-1] == 0)
1972            Ty = Context.LongLongTy;
1973          else if (AllowUnsigned)
1974            Ty = Context.UnsignedLongLongTy;
1975          Width = LongLongSize;
1976        }
1977      }
1978
1979      // If we still couldn't decide a type, we probably have something that
1980      // does not fit in a signed long long, but has no U suffix.
1981      if (Ty.isNull()) {
1982        Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
1983        Ty = Context.UnsignedLongLongTy;
1984        Width = Context.Target.getLongLongWidth();
1985      }
1986
1987      if (ResultVal.getBitWidth() != Width)
1988        ResultVal.trunc(Width);
1989    }
1990    Res = new (Context) IntegerLiteral(ResultVal, Ty, Tok.getLocation());
1991  }
1992
1993  // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
1994  if (Literal.isImaginary)
1995    Res = new (Context) ImaginaryLiteral(Res,
1996                                        Context.getComplexType(Res->getType()));
1997
1998  return Owned(Res);
1999}
2000
2001Action::OwningExprResult Sema::ActOnParenExpr(SourceLocation L,
2002                                              SourceLocation R, ExprArg Val) {
2003  Expr *E = Val.takeAs<Expr>();
2004  assert((E != 0) && "ActOnParenExpr() missing expr");
2005  return Owned(new (Context) ParenExpr(L, R, E));
2006}
2007
2008/// The UsualUnaryConversions() function is *not* called by this routine.
2009/// See C99 6.3.2.1p[2-4] for more details.
2010bool Sema::CheckSizeOfAlignOfOperand(QualType exprType,
2011                                     SourceLocation OpLoc,
2012                                     const SourceRange &ExprRange,
2013                                     bool isSizeof) {
2014  if (exprType->isDependentType())
2015    return false;
2016
2017  // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
2018  //   the result is the size of the referenced type."
2019  // C++ [expr.alignof]p3: "When alignof is applied to a reference type, the
2020  //   result shall be the alignment of the referenced type."
2021  if (const ReferenceType *Ref = exprType->getAs<ReferenceType>())
2022    exprType = Ref->getPointeeType();
2023
2024  // C99 6.5.3.4p1:
2025  if (exprType->isFunctionType()) {
2026    // alignof(function) is allowed as an extension.
2027    if (isSizeof)
2028      Diag(OpLoc, diag::ext_sizeof_function_type) << ExprRange;
2029    return false;
2030  }
2031
2032  // Allow sizeof(void)/alignof(void) as an extension.
2033  if (exprType->isVoidType()) {
2034    Diag(OpLoc, diag::ext_sizeof_void_type)
2035      << (isSizeof ? "sizeof" : "__alignof") << ExprRange;
2036    return false;
2037  }
2038
2039  if (RequireCompleteType(OpLoc, exprType,
2040                          PDiag(diag::err_sizeof_alignof_incomplete_type)
2041                          << int(!isSizeof) << ExprRange))
2042    return true;
2043
2044  // Reject sizeof(interface) and sizeof(interface<proto>) in 64-bit mode.
2045  if (LangOpts.ObjCNonFragileABI && exprType->isObjCObjectType()) {
2046    Diag(OpLoc, diag::err_sizeof_nonfragile_interface)
2047      << exprType << isSizeof << ExprRange;
2048    return true;
2049  }
2050
2051  return false;
2052}
2053
2054bool Sema::CheckAlignOfExpr(Expr *E, SourceLocation OpLoc,
2055                            const SourceRange &ExprRange) {
2056  E = E->IgnoreParens();
2057
2058  // alignof decl is always ok.
2059  if (isa<DeclRefExpr>(E))
2060    return false;
2061
2062  // Cannot know anything else if the expression is dependent.
2063  if (E->isTypeDependent())
2064    return false;
2065
2066  if (E->getBitField()) {
2067    Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 1 << ExprRange;
2068    return true;
2069  }
2070
2071  // Alignment of a field access is always okay, so long as it isn't a
2072  // bit-field.
2073  if (MemberExpr *ME = dyn_cast<MemberExpr>(E))
2074    if (isa<FieldDecl>(ME->getMemberDecl()))
2075      return false;
2076
2077  return CheckSizeOfAlignOfOperand(E->getType(), OpLoc, ExprRange, false);
2078}
2079
2080/// \brief Build a sizeof or alignof expression given a type operand.
2081Action::OwningExprResult
2082Sema::CreateSizeOfAlignOfExpr(TypeSourceInfo *TInfo,
2083                              SourceLocation OpLoc,
2084                              bool isSizeOf, SourceRange R) {
2085  if (!TInfo)
2086    return ExprError();
2087
2088  QualType T = TInfo->getType();
2089
2090  if (!T->isDependentType() &&
2091      CheckSizeOfAlignOfOperand(T, OpLoc, R, isSizeOf))
2092    return ExprError();
2093
2094  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
2095  return Owned(new (Context) SizeOfAlignOfExpr(isSizeOf, TInfo,
2096                                               Context.getSizeType(), OpLoc,
2097                                               R.getEnd()));
2098}
2099
2100/// \brief Build a sizeof or alignof expression given an expression
2101/// operand.
2102Action::OwningExprResult
2103Sema::CreateSizeOfAlignOfExpr(Expr *E, SourceLocation OpLoc,
2104                              bool isSizeOf, SourceRange R) {
2105  // Verify that the operand is valid.
2106  bool isInvalid = false;
2107  if (E->isTypeDependent()) {
2108    // Delay type-checking for type-dependent expressions.
2109  } else if (!isSizeOf) {
2110    isInvalid = CheckAlignOfExpr(E, OpLoc, R);
2111  } else if (E->getBitField()) {  // C99 6.5.3.4p1.
2112    Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 0;
2113    isInvalid = true;
2114  } else {
2115    isInvalid = CheckSizeOfAlignOfOperand(E->getType(), OpLoc, R, true);
2116  }
2117
2118  if (isInvalid)
2119    return ExprError();
2120
2121  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
2122  return Owned(new (Context) SizeOfAlignOfExpr(isSizeOf, E,
2123                                               Context.getSizeType(), OpLoc,
2124                                               R.getEnd()));
2125}
2126
2127/// ActOnSizeOfAlignOfExpr - Handle @c sizeof(type) and @c sizeof @c expr and
2128/// the same for @c alignof and @c __alignof
2129/// Note that the ArgRange is invalid if isType is false.
2130Action::OwningExprResult
2131Sema::ActOnSizeOfAlignOfExpr(SourceLocation OpLoc, bool isSizeof, bool isType,
2132                             void *TyOrEx, const SourceRange &ArgRange) {
2133  // If error parsing type, ignore.
2134  if (TyOrEx == 0) return ExprError();
2135
2136  if (isType) {
2137    TypeSourceInfo *TInfo;
2138    (void) GetTypeFromParser(TyOrEx, &TInfo);
2139    return CreateSizeOfAlignOfExpr(TInfo, OpLoc, isSizeof, ArgRange);
2140  }
2141
2142  Expr *ArgEx = (Expr *)TyOrEx;
2143  Action::OwningExprResult Result
2144    = CreateSizeOfAlignOfExpr(ArgEx, OpLoc, isSizeof, ArgEx->getSourceRange());
2145
2146  if (Result.isInvalid())
2147    DeleteExpr(ArgEx);
2148
2149  return move(Result);
2150}
2151
2152QualType Sema::CheckRealImagOperand(Expr *&V, SourceLocation Loc, bool isReal) {
2153  if (V->isTypeDependent())
2154    return Context.DependentTy;
2155
2156  // These operators return the element type of a complex type.
2157  if (const ComplexType *CT = V->getType()->getAs<ComplexType>())
2158    return CT->getElementType();
2159
2160  // Otherwise they pass through real integer and floating point types here.
2161  if (V->getType()->isArithmeticType())
2162    return V->getType();
2163
2164  // Reject anything else.
2165  Diag(Loc, diag::err_realimag_invalid_type) << V->getType()
2166    << (isReal ? "__real" : "__imag");
2167  return QualType();
2168}
2169
2170
2171
2172Action::OwningExprResult
2173Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
2174                          tok::TokenKind Kind, ExprArg Input) {
2175  UnaryOperator::Opcode Opc;
2176  switch (Kind) {
2177  default: assert(0 && "Unknown unary op!");
2178  case tok::plusplus:   Opc = UnaryOperator::PostInc; break;
2179  case tok::minusminus: Opc = UnaryOperator::PostDec; break;
2180  }
2181
2182  return BuildUnaryOp(S, OpLoc, Opc, move(Input));
2183}
2184
2185Action::OwningExprResult
2186Sema::ActOnArraySubscriptExpr(Scope *S, ExprArg Base, SourceLocation LLoc,
2187                              ExprArg Idx, SourceLocation RLoc) {
2188  // Since this might be a postfix expression, get rid of ParenListExprs.
2189  Base = MaybeConvertParenListExprToParenExpr(S, move(Base));
2190
2191  Expr *LHSExp = static_cast<Expr*>(Base.get()),
2192       *RHSExp = static_cast<Expr*>(Idx.get());
2193
2194  if (getLangOptions().CPlusPlus &&
2195      (LHSExp->isTypeDependent() || RHSExp->isTypeDependent())) {
2196    Base.release();
2197    Idx.release();
2198    return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
2199                                                  Context.DependentTy, RLoc));
2200  }
2201
2202  if (getLangOptions().CPlusPlus &&
2203      (LHSExp->getType()->isRecordType() ||
2204       LHSExp->getType()->isEnumeralType() ||
2205       RHSExp->getType()->isRecordType() ||
2206       RHSExp->getType()->isEnumeralType())) {
2207    return CreateOverloadedArraySubscriptExpr(LLoc, RLoc, move(Base),move(Idx));
2208  }
2209
2210  return CreateBuiltinArraySubscriptExpr(move(Base), LLoc, move(Idx), RLoc);
2211}
2212
2213
2214Action::OwningExprResult
2215Sema::CreateBuiltinArraySubscriptExpr(ExprArg Base, SourceLocation LLoc,
2216                                     ExprArg Idx, SourceLocation RLoc) {
2217  Expr *LHSExp = static_cast<Expr*>(Base.get());
2218  Expr *RHSExp = static_cast<Expr*>(Idx.get());
2219
2220  // Perform default conversions.
2221  if (!LHSExp->getType()->getAs<VectorType>())
2222      DefaultFunctionArrayLvalueConversion(LHSExp);
2223  DefaultFunctionArrayLvalueConversion(RHSExp);
2224
2225  QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
2226
2227  // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
2228  // to the expression *((e1)+(e2)). This means the array "Base" may actually be
2229  // in the subscript position. As a result, we need to derive the array base
2230  // and index from the expression types.
2231  Expr *BaseExpr, *IndexExpr;
2232  QualType ResultType;
2233  if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
2234    BaseExpr = LHSExp;
2235    IndexExpr = RHSExp;
2236    ResultType = Context.DependentTy;
2237  } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) {
2238    BaseExpr = LHSExp;
2239    IndexExpr = RHSExp;
2240    ResultType = PTy->getPointeeType();
2241  } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) {
2242     // Handle the uncommon case of "123[Ptr]".
2243    BaseExpr = RHSExp;
2244    IndexExpr = LHSExp;
2245    ResultType = PTy->getPointeeType();
2246  } else if (const ObjCObjectPointerType *PTy =
2247               LHSTy->getAs<ObjCObjectPointerType>()) {
2248    BaseExpr = LHSExp;
2249    IndexExpr = RHSExp;
2250    ResultType = PTy->getPointeeType();
2251  } else if (const ObjCObjectPointerType *PTy =
2252               RHSTy->getAs<ObjCObjectPointerType>()) {
2253     // Handle the uncommon case of "123[Ptr]".
2254    BaseExpr = RHSExp;
2255    IndexExpr = LHSExp;
2256    ResultType = PTy->getPointeeType();
2257  } else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) {
2258    BaseExpr = LHSExp;    // vectors: V[123]
2259    IndexExpr = RHSExp;
2260
2261    // FIXME: need to deal with const...
2262    ResultType = VTy->getElementType();
2263  } else if (LHSTy->isArrayType()) {
2264    // If we see an array that wasn't promoted by
2265    // DefaultFunctionArrayLvalueConversion, it must be an array that
2266    // wasn't promoted because of the C90 rule that doesn't
2267    // allow promoting non-lvalue arrays.  Warn, then
2268    // force the promotion here.
2269    Diag(LHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
2270        LHSExp->getSourceRange();
2271    ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy),
2272                      CastExpr::CK_ArrayToPointerDecay);
2273    LHSTy = LHSExp->getType();
2274
2275    BaseExpr = LHSExp;
2276    IndexExpr = RHSExp;
2277    ResultType = LHSTy->getAs<PointerType>()->getPointeeType();
2278  } else if (RHSTy->isArrayType()) {
2279    // Same as previous, except for 123[f().a] case
2280    Diag(RHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
2281        RHSExp->getSourceRange();
2282    ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy),
2283                      CastExpr::CK_ArrayToPointerDecay);
2284    RHSTy = RHSExp->getType();
2285
2286    BaseExpr = RHSExp;
2287    IndexExpr = LHSExp;
2288    ResultType = RHSTy->getAs<PointerType>()->getPointeeType();
2289  } else {
2290    return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
2291       << LHSExp->getSourceRange() << RHSExp->getSourceRange());
2292  }
2293  // C99 6.5.2.1p1
2294  if (!(IndexExpr->getType()->isIntegerType() &&
2295        IndexExpr->getType()->isScalarType()) && !IndexExpr->isTypeDependent())
2296    return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
2297                     << IndexExpr->getSourceRange());
2298
2299  if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
2300       IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
2301         && !IndexExpr->isTypeDependent())
2302    Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange();
2303
2304  // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
2305  // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
2306  // type. Note that Functions are not objects, and that (in C99 parlance)
2307  // incomplete types are not object types.
2308  if (ResultType->isFunctionType()) {
2309    Diag(BaseExpr->getLocStart(), diag::err_subscript_function_type)
2310      << ResultType << BaseExpr->getSourceRange();
2311    return ExprError();
2312  }
2313
2314  if (!ResultType->isDependentType() &&
2315      RequireCompleteType(LLoc, ResultType,
2316                          PDiag(diag::err_subscript_incomplete_type)
2317                            << BaseExpr->getSourceRange()))
2318    return ExprError();
2319
2320  // Diagnose bad cases where we step over interface counts.
2321  if (ResultType->isObjCObjectType() && LangOpts.ObjCNonFragileABI) {
2322    Diag(LLoc, diag::err_subscript_nonfragile_interface)
2323      << ResultType << BaseExpr->getSourceRange();
2324    return ExprError();
2325  }
2326
2327  Base.release();
2328  Idx.release();
2329  return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
2330                                                ResultType, RLoc));
2331}
2332
2333QualType Sema::
2334CheckExtVectorComponent(QualType baseType, SourceLocation OpLoc,
2335                        const IdentifierInfo *CompName,
2336                        SourceLocation CompLoc) {
2337  // FIXME: Share logic with ExtVectorElementExpr::containsDuplicateElements,
2338  // see FIXME there.
2339  //
2340  // FIXME: This logic can be greatly simplified by splitting it along
2341  // halving/not halving and reworking the component checking.
2342  const ExtVectorType *vecType = baseType->getAs<ExtVectorType>();
2343
2344  // The vector accessor can't exceed the number of elements.
2345  const char *compStr = CompName->getNameStart();
2346
2347  // This flag determines whether or not the component is one of the four
2348  // special names that indicate a subset of exactly half the elements are
2349  // to be selected.
2350  bool HalvingSwizzle = false;
2351
2352  // This flag determines whether or not CompName has an 's' char prefix,
2353  // indicating that it is a string of hex values to be used as vector indices.
2354  bool HexSwizzle = *compStr == 's' || *compStr == 'S';
2355
2356  // Check that we've found one of the special components, or that the component
2357  // names must come from the same set.
2358  if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
2359      !strcmp(compStr, "even") || !strcmp(compStr, "odd")) {
2360    HalvingSwizzle = true;
2361  } else if (vecType->getPointAccessorIdx(*compStr) != -1) {
2362    do
2363      compStr++;
2364    while (*compStr && vecType->getPointAccessorIdx(*compStr) != -1);
2365  } else if (HexSwizzle || vecType->getNumericAccessorIdx(*compStr) != -1) {
2366    do
2367      compStr++;
2368    while (*compStr && vecType->getNumericAccessorIdx(*compStr) != -1);
2369  }
2370
2371  if (!HalvingSwizzle && *compStr) {
2372    // We didn't get to the end of the string. This means the component names
2373    // didn't come from the same set *or* we encountered an illegal name.
2374    Diag(OpLoc, diag::err_ext_vector_component_name_illegal)
2375      << std::string(compStr,compStr+1) << SourceRange(CompLoc);
2376    return QualType();
2377  }
2378
2379  // Ensure no component accessor exceeds the width of the vector type it
2380  // operates on.
2381  if (!HalvingSwizzle) {
2382    compStr = CompName->getNameStart();
2383
2384    if (HexSwizzle)
2385      compStr++;
2386
2387    while (*compStr) {
2388      if (!vecType->isAccessorWithinNumElements(*compStr++)) {
2389        Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
2390          << baseType << SourceRange(CompLoc);
2391        return QualType();
2392      }
2393    }
2394  }
2395
2396  // The component accessor looks fine - now we need to compute the actual type.
2397  // The vector type is implied by the component accessor. For example,
2398  // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
2399  // vec4.s0 is a float, vec4.s23 is a vec3, etc.
2400  // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
2401  unsigned CompSize = HalvingSwizzle ? (vecType->getNumElements() + 1) / 2
2402                                     : CompName->getLength();
2403  if (HexSwizzle)
2404    CompSize--;
2405
2406  if (CompSize == 1)
2407    return vecType->getElementType();
2408
2409  QualType VT = Context.getExtVectorType(vecType->getElementType(), CompSize);
2410  // Now look up the TypeDefDecl from the vector type. Without this,
2411  // diagostics look bad. We want extended vector types to appear built-in.
2412  for (unsigned i = 0, E = ExtVectorDecls.size(); i != E; ++i) {
2413    if (ExtVectorDecls[i]->getUnderlyingType() == VT)
2414      return Context.getTypedefType(ExtVectorDecls[i]);
2415  }
2416  return VT; // should never get here (a typedef type should always be found).
2417}
2418
2419static Decl *FindGetterNameDeclFromProtocolList(const ObjCProtocolDecl*PDecl,
2420                                                IdentifierInfo *Member,
2421                                                const Selector &Sel,
2422                                                ASTContext &Context) {
2423
2424  if (ObjCPropertyDecl *PD = PDecl->FindPropertyDeclaration(Member))
2425    return PD;
2426  if (ObjCMethodDecl *OMD = PDecl->getInstanceMethod(Sel))
2427    return OMD;
2428
2429  for (ObjCProtocolDecl::protocol_iterator I = PDecl->protocol_begin(),
2430       E = PDecl->protocol_end(); I != E; ++I) {
2431    if (Decl *D = FindGetterNameDeclFromProtocolList(*I, Member, Sel,
2432                                                     Context))
2433      return D;
2434  }
2435  return 0;
2436}
2437
2438static Decl *FindGetterNameDecl(const ObjCObjectPointerType *QIdTy,
2439                                IdentifierInfo *Member,
2440                                const Selector &Sel,
2441                                ASTContext &Context) {
2442  // Check protocols on qualified interfaces.
2443  Decl *GDecl = 0;
2444  for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
2445       E = QIdTy->qual_end(); I != E; ++I) {
2446    if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(Member)) {
2447      GDecl = PD;
2448      break;
2449    }
2450    // Also must look for a getter name which uses property syntax.
2451    if (ObjCMethodDecl *OMD = (*I)->getInstanceMethod(Sel)) {
2452      GDecl = OMD;
2453      break;
2454    }
2455  }
2456  if (!GDecl) {
2457    for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
2458         E = QIdTy->qual_end(); I != E; ++I) {
2459      // Search in the protocol-qualifier list of current protocol.
2460      GDecl = FindGetterNameDeclFromProtocolList(*I, Member, Sel, Context);
2461      if (GDecl)
2462        return GDecl;
2463    }
2464  }
2465  return GDecl;
2466}
2467
2468Sema::OwningExprResult
2469Sema::ActOnDependentMemberExpr(ExprArg Base, QualType BaseType,
2470                               bool IsArrow, SourceLocation OpLoc,
2471                               const CXXScopeSpec &SS,
2472                               NamedDecl *FirstQualifierInScope,
2473                               DeclarationName Name, SourceLocation NameLoc,
2474                               const TemplateArgumentListInfo *TemplateArgs) {
2475  Expr *BaseExpr = Base.takeAs<Expr>();
2476
2477  // Even in dependent contexts, try to diagnose base expressions with
2478  // obviously wrong types, e.g.:
2479  //
2480  // T* t;
2481  // t.f;
2482  //
2483  // In Obj-C++, however, the above expression is valid, since it could be
2484  // accessing the 'f' property if T is an Obj-C interface. The extra check
2485  // allows this, while still reporting an error if T is a struct pointer.
2486  if (!IsArrow) {
2487    const PointerType *PT = BaseType->getAs<PointerType>();
2488    if (PT && (!getLangOptions().ObjC1 ||
2489               PT->getPointeeType()->isRecordType())) {
2490      assert(BaseExpr && "cannot happen with implicit member accesses");
2491      Diag(NameLoc, diag::err_typecheck_member_reference_struct_union)
2492        << BaseType << BaseExpr->getSourceRange();
2493      return ExprError();
2494    }
2495  }
2496
2497  assert(BaseType->isDependentType() || Name.isDependentName() ||
2498         isDependentScopeSpecifier(SS));
2499
2500  // Get the type being accessed in BaseType.  If this is an arrow, the BaseExpr
2501  // must have pointer type, and the accessed type is the pointee.
2502  return Owned(CXXDependentScopeMemberExpr::Create(Context, BaseExpr, BaseType,
2503                                                   IsArrow, OpLoc,
2504                 static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
2505                                                   SS.getRange(),
2506                                                   FirstQualifierInScope,
2507                                                   Name, NameLoc,
2508                                                   TemplateArgs));
2509}
2510
2511/// We know that the given qualified member reference points only to
2512/// declarations which do not belong to the static type of the base
2513/// expression.  Diagnose the problem.
2514static void DiagnoseQualifiedMemberReference(Sema &SemaRef,
2515                                             Expr *BaseExpr,
2516                                             QualType BaseType,
2517                                             const CXXScopeSpec &SS,
2518                                             const LookupResult &R) {
2519  // If this is an implicit member access, use a different set of
2520  // diagnostics.
2521  if (!BaseExpr)
2522    return DiagnoseInstanceReference(SemaRef, SS, R);
2523
2524  SemaRef.Diag(R.getNameLoc(), diag::err_qualified_member_of_unrelated)
2525    << SS.getRange() << R.getRepresentativeDecl() << BaseType;
2526}
2527
2528// Check whether the declarations we found through a nested-name
2529// specifier in a member expression are actually members of the base
2530// type.  The restriction here is:
2531//
2532//   C++ [expr.ref]p2:
2533//     ... In these cases, the id-expression shall name a
2534//     member of the class or of one of its base classes.
2535//
2536// So it's perfectly legitimate for the nested-name specifier to name
2537// an unrelated class, and for us to find an overload set including
2538// decls from classes which are not superclasses, as long as the decl
2539// we actually pick through overload resolution is from a superclass.
2540bool Sema::CheckQualifiedMemberReference(Expr *BaseExpr,
2541                                         QualType BaseType,
2542                                         const CXXScopeSpec &SS,
2543                                         const LookupResult &R) {
2544  const RecordType *BaseRT = BaseType->getAs<RecordType>();
2545  if (!BaseRT) {
2546    // We can't check this yet because the base type is still
2547    // dependent.
2548    assert(BaseType->isDependentType());
2549    return false;
2550  }
2551  CXXRecordDecl *BaseRecord = cast<CXXRecordDecl>(BaseRT->getDecl());
2552
2553  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
2554    // If this is an implicit member reference and we find a
2555    // non-instance member, it's not an error.
2556    if (!BaseExpr && !(*I)->isCXXInstanceMember())
2557      return false;
2558
2559    // Note that we use the DC of the decl, not the underlying decl.
2560    CXXRecordDecl *RecordD = cast<CXXRecordDecl>((*I)->getDeclContext());
2561    while (RecordD->isAnonymousStructOrUnion())
2562      RecordD = cast<CXXRecordDecl>(RecordD->getParent());
2563
2564    llvm::SmallPtrSet<CXXRecordDecl*,4> MemberRecord;
2565    MemberRecord.insert(RecordD->getCanonicalDecl());
2566
2567    if (!IsProvablyNotDerivedFrom(*this, BaseRecord, MemberRecord))
2568      return false;
2569  }
2570
2571  DiagnoseQualifiedMemberReference(*this, BaseExpr, BaseType, SS, R);
2572  return true;
2573}
2574
2575static bool
2576LookupMemberExprInRecord(Sema &SemaRef, LookupResult &R,
2577                         SourceRange BaseRange, const RecordType *RTy,
2578                         SourceLocation OpLoc, CXXScopeSpec &SS) {
2579  RecordDecl *RDecl = RTy->getDecl();
2580  if (SemaRef.RequireCompleteType(OpLoc, QualType(RTy, 0),
2581                              SemaRef.PDiag(diag::err_typecheck_incomplete_tag)
2582                                    << BaseRange))
2583    return true;
2584
2585  DeclContext *DC = RDecl;
2586  if (SS.isSet()) {
2587    // If the member name was a qualified-id, look into the
2588    // nested-name-specifier.
2589    DC = SemaRef.computeDeclContext(SS, false);
2590
2591    if (SemaRef.RequireCompleteDeclContext(SS, DC)) {
2592      SemaRef.Diag(SS.getRange().getEnd(), diag::err_typecheck_incomplete_tag)
2593        << SS.getRange() << DC;
2594      return true;
2595    }
2596
2597    assert(DC && "Cannot handle non-computable dependent contexts in lookup");
2598
2599    if (!isa<TypeDecl>(DC)) {
2600      SemaRef.Diag(R.getNameLoc(), diag::err_qualified_member_nonclass)
2601        << DC << SS.getRange();
2602      return true;
2603    }
2604  }
2605
2606  // The record definition is complete, now look up the member.
2607  SemaRef.LookupQualifiedName(R, DC);
2608
2609  if (!R.empty())
2610    return false;
2611
2612  // We didn't find anything with the given name, so try to correct
2613  // for typos.
2614  DeclarationName Name = R.getLookupName();
2615  if (SemaRef.CorrectTypo(R, 0, &SS, DC, false, Sema::CTC_MemberLookup) &&
2616      !R.empty() &&
2617      (isa<ValueDecl>(*R.begin()) || isa<FunctionTemplateDecl>(*R.begin()))) {
2618    SemaRef.Diag(R.getNameLoc(), diag::err_no_member_suggest)
2619      << Name << DC << R.getLookupName() << SS.getRange()
2620      << FixItHint::CreateReplacement(R.getNameLoc(),
2621                                      R.getLookupName().getAsString());
2622    if (NamedDecl *ND = R.getAsSingle<NamedDecl>())
2623      SemaRef.Diag(ND->getLocation(), diag::note_previous_decl)
2624        << ND->getDeclName();
2625    return false;
2626  } else {
2627    R.clear();
2628  }
2629
2630  return false;
2631}
2632
2633Sema::OwningExprResult
2634Sema::BuildMemberReferenceExpr(ExprArg BaseArg, QualType BaseType,
2635                               SourceLocation OpLoc, bool IsArrow,
2636                               CXXScopeSpec &SS,
2637                               NamedDecl *FirstQualifierInScope,
2638                               DeclarationName Name, SourceLocation NameLoc,
2639                               const TemplateArgumentListInfo *TemplateArgs) {
2640  Expr *Base = BaseArg.takeAs<Expr>();
2641
2642  if (BaseType->isDependentType() ||
2643      (SS.isSet() && isDependentScopeSpecifier(SS)))
2644    return ActOnDependentMemberExpr(ExprArg(*this, Base), BaseType,
2645                                    IsArrow, OpLoc,
2646                                    SS, FirstQualifierInScope,
2647                                    Name, NameLoc,
2648                                    TemplateArgs);
2649
2650  LookupResult R(*this, Name, NameLoc, LookupMemberName);
2651
2652  // Implicit member accesses.
2653  if (!Base) {
2654    QualType RecordTy = BaseType;
2655    if (IsArrow) RecordTy = RecordTy->getAs<PointerType>()->getPointeeType();
2656    if (LookupMemberExprInRecord(*this, R, SourceRange(),
2657                                 RecordTy->getAs<RecordType>(),
2658                                 OpLoc, SS))
2659      return ExprError();
2660
2661  // Explicit member accesses.
2662  } else {
2663    OwningExprResult Result =
2664      LookupMemberExpr(R, Base, IsArrow, OpLoc,
2665                       SS, /*ObjCImpDecl*/ DeclPtrTy());
2666
2667    if (Result.isInvalid()) {
2668      Owned(Base);
2669      return ExprError();
2670    }
2671
2672    if (Result.get())
2673      return move(Result);
2674
2675    // LookupMemberExpr can modify Base, and thus change BaseType
2676    BaseType = Base->getType();
2677  }
2678
2679  return BuildMemberReferenceExpr(ExprArg(*this, Base), BaseType,
2680                                  OpLoc, IsArrow, SS, FirstQualifierInScope,
2681                                  R, TemplateArgs);
2682}
2683
2684Sema::OwningExprResult
2685Sema::BuildMemberReferenceExpr(ExprArg Base, QualType BaseExprType,
2686                               SourceLocation OpLoc, bool IsArrow,
2687                               const CXXScopeSpec &SS,
2688                               NamedDecl *FirstQualifierInScope,
2689                               LookupResult &R,
2690                         const TemplateArgumentListInfo *TemplateArgs,
2691                               bool SuppressQualifierCheck) {
2692  Expr *BaseExpr = Base.takeAs<Expr>();
2693  QualType BaseType = BaseExprType;
2694  if (IsArrow) {
2695    assert(BaseType->isPointerType());
2696    BaseType = BaseType->getAs<PointerType>()->getPointeeType();
2697  }
2698  R.setBaseObjectType(BaseType);
2699
2700  NestedNameSpecifier *Qualifier =
2701    static_cast<NestedNameSpecifier*>(SS.getScopeRep());
2702  DeclarationName MemberName = R.getLookupName();
2703  SourceLocation MemberLoc = R.getNameLoc();
2704
2705  if (R.isAmbiguous())
2706    return ExprError();
2707
2708  if (R.empty()) {
2709    // Rederive where we looked up.
2710    DeclContext *DC = (SS.isSet()
2711                       ? computeDeclContext(SS, false)
2712                       : BaseType->getAs<RecordType>()->getDecl());
2713
2714    Diag(R.getNameLoc(), diag::err_no_member)
2715      << MemberName << DC
2716      << (BaseExpr ? BaseExpr->getSourceRange() : SourceRange());
2717    return ExprError();
2718  }
2719
2720  // Diagnose lookups that find only declarations from a non-base
2721  // type.  This is possible for either qualified lookups (which may
2722  // have been qualified with an unrelated type) or implicit member
2723  // expressions (which were found with unqualified lookup and thus
2724  // may have come from an enclosing scope).  Note that it's okay for
2725  // lookup to find declarations from a non-base type as long as those
2726  // aren't the ones picked by overload resolution.
2727  if ((SS.isSet() || !BaseExpr ||
2728       (isa<CXXThisExpr>(BaseExpr) &&
2729        cast<CXXThisExpr>(BaseExpr)->isImplicit())) &&
2730      !SuppressQualifierCheck &&
2731      CheckQualifiedMemberReference(BaseExpr, BaseType, SS, R))
2732    return ExprError();
2733
2734  // Construct an unresolved result if we in fact got an unresolved
2735  // result.
2736  if (R.isOverloadedResult() || R.isUnresolvableResult()) {
2737    bool Dependent =
2738      BaseExprType->isDependentType() ||
2739      R.isUnresolvableResult() ||
2740      OverloadExpr::ComputeDependence(R.begin(), R.end(), TemplateArgs);
2741
2742    // Suppress any lookup-related diagnostics; we'll do these when we
2743    // pick a member.
2744    R.suppressDiagnostics();
2745
2746    UnresolvedMemberExpr *MemExpr
2747      = UnresolvedMemberExpr::Create(Context, Dependent,
2748                                     R.isUnresolvableResult(),
2749                                     BaseExpr, BaseExprType,
2750                                     IsArrow, OpLoc,
2751                                     Qualifier, SS.getRange(),
2752                                     MemberName, MemberLoc,
2753                                     TemplateArgs);
2754    MemExpr->addDecls(R.begin(), R.end());
2755
2756    return Owned(MemExpr);
2757  }
2758
2759  assert(R.isSingleResult());
2760  DeclAccessPair FoundDecl = R.begin().getPair();
2761  NamedDecl *MemberDecl = R.getFoundDecl();
2762
2763  // FIXME: diagnose the presence of template arguments now.
2764
2765  // If the decl being referenced had an error, return an error for this
2766  // sub-expr without emitting another error, in order to avoid cascading
2767  // error cases.
2768  if (MemberDecl->isInvalidDecl())
2769    return ExprError();
2770
2771  // Handle the implicit-member-access case.
2772  if (!BaseExpr) {
2773    // If this is not an instance member, convert to a non-member access.
2774    if (!MemberDecl->isCXXInstanceMember())
2775      return BuildDeclarationNameExpr(SS, R.getNameLoc(), MemberDecl);
2776
2777    SourceLocation Loc = R.getNameLoc();
2778    if (SS.getRange().isValid())
2779      Loc = SS.getRange().getBegin();
2780    BaseExpr = new (Context) CXXThisExpr(Loc, BaseExprType,/*isImplicit=*/true);
2781  }
2782
2783  bool ShouldCheckUse = true;
2784  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MemberDecl)) {
2785    // Don't diagnose the use of a virtual member function unless it's
2786    // explicitly qualified.
2787    if (MD->isVirtual() && !SS.isSet())
2788      ShouldCheckUse = false;
2789  }
2790
2791  // Check the use of this member.
2792  if (ShouldCheckUse && DiagnoseUseOfDecl(MemberDecl, MemberLoc)) {
2793    Owned(BaseExpr);
2794    return ExprError();
2795  }
2796
2797  if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl)) {
2798    // We may have found a field within an anonymous union or struct
2799    // (C++ [class.union]).
2800    if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion() &&
2801        !BaseType->getAs<RecordType>()->getDecl()->isAnonymousStructOrUnion())
2802      return BuildAnonymousStructUnionMemberReference(MemberLoc, FD,
2803                                                      BaseExpr, OpLoc);
2804
2805    // Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref]
2806    QualType MemberType = FD->getType();
2807    if (const ReferenceType *Ref = MemberType->getAs<ReferenceType>())
2808      MemberType = Ref->getPointeeType();
2809    else {
2810      Qualifiers BaseQuals = BaseType.getQualifiers();
2811      BaseQuals.removeObjCGCAttr();
2812      if (FD->isMutable()) BaseQuals.removeConst();
2813
2814      Qualifiers MemberQuals
2815        = Context.getCanonicalType(MemberType).getQualifiers();
2816
2817      Qualifiers Combined = BaseQuals + MemberQuals;
2818      if (Combined != MemberQuals)
2819        MemberType = Context.getQualifiedType(MemberType, Combined);
2820    }
2821
2822    MarkDeclarationReferenced(MemberLoc, FD);
2823    if (PerformObjectMemberConversion(BaseExpr, Qualifier, FoundDecl, FD))
2824      return ExprError();
2825    return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS,
2826                                 FD, FoundDecl, MemberLoc, MemberType));
2827  }
2828
2829  if (VarDecl *Var = dyn_cast<VarDecl>(MemberDecl)) {
2830    MarkDeclarationReferenced(MemberLoc, Var);
2831    return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS,
2832                                 Var, FoundDecl, MemberLoc,
2833                                 Var->getType().getNonReferenceType()));
2834  }
2835
2836  if (FunctionDecl *MemberFn = dyn_cast<FunctionDecl>(MemberDecl)) {
2837    MarkDeclarationReferenced(MemberLoc, MemberDecl);
2838    return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS,
2839                                 MemberFn, FoundDecl, MemberLoc,
2840                                 MemberFn->getType()));
2841  }
2842
2843  if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(MemberDecl)) {
2844    MarkDeclarationReferenced(MemberLoc, MemberDecl);
2845    return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS,
2846                                 Enum, FoundDecl, MemberLoc, Enum->getType()));
2847  }
2848
2849  Owned(BaseExpr);
2850
2851  // We found something that we didn't expect. Complain.
2852  if (isa<TypeDecl>(MemberDecl))
2853    Diag(MemberLoc,diag::err_typecheck_member_reference_type)
2854      << MemberName << BaseType << int(IsArrow);
2855  else
2856    Diag(MemberLoc, diag::err_typecheck_member_reference_unknown)
2857      << MemberName << BaseType << int(IsArrow);
2858
2859  Diag(MemberDecl->getLocation(), diag::note_member_declared_here)
2860    << MemberName;
2861  R.suppressDiagnostics();
2862  return ExprError();
2863}
2864
2865/// Look up the given member of the given non-type-dependent
2866/// expression.  This can return in one of two ways:
2867///  * If it returns a sentinel null-but-valid result, the caller will
2868///    assume that lookup was performed and the results written into
2869///    the provided structure.  It will take over from there.
2870///  * Otherwise, the returned expression will be produced in place of
2871///    an ordinary member expression.
2872///
2873/// The ObjCImpDecl bit is a gross hack that will need to be properly
2874/// fixed for ObjC++.
2875Sema::OwningExprResult
2876Sema::LookupMemberExpr(LookupResult &R, Expr *&BaseExpr,
2877                       bool &IsArrow, SourceLocation OpLoc,
2878                       CXXScopeSpec &SS,
2879                       DeclPtrTy ObjCImpDecl) {
2880  assert(BaseExpr && "no base expression");
2881
2882  // Perform default conversions.
2883  DefaultFunctionArrayConversion(BaseExpr);
2884
2885  QualType BaseType = BaseExpr->getType();
2886  assert(!BaseType->isDependentType());
2887
2888  DeclarationName MemberName = R.getLookupName();
2889  SourceLocation MemberLoc = R.getNameLoc();
2890
2891  // If the user is trying to apply -> or . to a function pointer
2892  // type, it's probably because they forgot parentheses to call that
2893  // function. Suggest the addition of those parentheses, build the
2894  // call, and continue on.
2895  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
2896    if (const FunctionProtoType *Fun
2897          = Ptr->getPointeeType()->getAs<FunctionProtoType>()) {
2898      QualType ResultTy = Fun->getResultType();
2899      if (Fun->getNumArgs() == 0 &&
2900          ((!IsArrow && ResultTy->isRecordType()) ||
2901           (IsArrow && ResultTy->isPointerType() &&
2902            ResultTy->getAs<PointerType>()->getPointeeType()
2903                                                          ->isRecordType()))) {
2904        SourceLocation Loc = PP.getLocForEndOfToken(BaseExpr->getLocEnd());
2905        Diag(Loc, diag::err_member_reference_needs_call)
2906          << QualType(Fun, 0)
2907          << FixItHint::CreateInsertion(Loc, "()");
2908
2909        OwningExprResult NewBase
2910          = ActOnCallExpr(0, ExprArg(*this, BaseExpr), Loc,
2911                          MultiExprArg(*this, 0, 0), 0, Loc);
2912        if (NewBase.isInvalid())
2913          return ExprError();
2914
2915        BaseExpr = NewBase.takeAs<Expr>();
2916        DefaultFunctionArrayConversion(BaseExpr);
2917        BaseType = BaseExpr->getType();
2918      }
2919    }
2920  }
2921
2922  // If this is an Objective-C pseudo-builtin and a definition is provided then
2923  // use that.
2924  if (BaseType->isObjCIdType()) {
2925    if (IsArrow) {
2926      // Handle the following exceptional case PObj->isa.
2927      if (const ObjCObjectPointerType *OPT =
2928          BaseType->getAs<ObjCObjectPointerType>()) {
2929        if (OPT->getObjectType()->isObjCId() &&
2930            MemberName.getAsIdentifierInfo()->isStr("isa"))
2931          return Owned(new (Context) ObjCIsaExpr(BaseExpr, true, MemberLoc,
2932                                                 Context.getObjCClassType()));
2933      }
2934    }
2935    // We have an 'id' type. Rather than fall through, we check if this
2936    // is a reference to 'isa'.
2937    if (BaseType != Context.ObjCIdRedefinitionType) {
2938      BaseType = Context.ObjCIdRedefinitionType;
2939      ImpCastExprToType(BaseExpr, BaseType, CastExpr::CK_BitCast);
2940    }
2941  }
2942
2943  // If this is an Objective-C pseudo-builtin and a definition is provided then
2944  // use that.
2945  if (Context.isObjCSelType(BaseType)) {
2946    // We have an 'SEL' type. Rather than fall through, we check if this
2947    // is a reference to 'sel_id'.
2948    if (BaseType != Context.ObjCSelRedefinitionType) {
2949      BaseType = Context.ObjCSelRedefinitionType;
2950      ImpCastExprToType(BaseExpr, BaseType, CastExpr::CK_BitCast);
2951    }
2952  }
2953
2954  assert(!BaseType.isNull() && "no type for member expression");
2955
2956  // Handle properties on ObjC 'Class' types.
2957  if (!IsArrow && BaseType->isObjCClassType()) {
2958    // Also must look for a getter name which uses property syntax.
2959    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
2960    Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
2961    if (ObjCMethodDecl *MD = getCurMethodDecl()) {
2962      ObjCInterfaceDecl *IFace = MD->getClassInterface();
2963      ObjCMethodDecl *Getter;
2964      // FIXME: need to also look locally in the implementation.
2965      if ((Getter = IFace->lookupClassMethod(Sel))) {
2966        // Check the use of this method.
2967        if (DiagnoseUseOfDecl(Getter, MemberLoc))
2968          return ExprError();
2969      }
2970      // If we found a getter then this may be a valid dot-reference, we
2971      // will look for the matching setter, in case it is needed.
2972      Selector SetterSel =
2973      SelectorTable::constructSetterName(PP.getIdentifierTable(),
2974                                         PP.getSelectorTable(), Member);
2975      ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel);
2976      if (!Setter) {
2977        // If this reference is in an @implementation, also check for 'private'
2978        // methods.
2979        Setter = IFace->lookupPrivateInstanceMethod(SetterSel);
2980      }
2981      // Look through local category implementations associated with the class.
2982      if (!Setter)
2983        Setter = IFace->getCategoryClassMethod(SetterSel);
2984
2985      if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
2986        return ExprError();
2987
2988      if (Getter || Setter) {
2989        QualType PType;
2990
2991        if (Getter)
2992          PType = Getter->getResultType();
2993        else
2994          // Get the expression type from Setter's incoming parameter.
2995          PType = (*(Setter->param_end() -1))->getType();
2996        // FIXME: we must check that the setter has property type.
2997        return Owned(new (Context) ObjCImplicitSetterGetterRefExpr(Getter,
2998                                                  PType,
2999                                                  Setter, MemberLoc, BaseExpr));
3000      }
3001      return ExprError(Diag(MemberLoc, diag::err_property_not_found)
3002                       << MemberName << BaseType);
3003    }
3004  }
3005
3006  if (BaseType->isObjCClassType() &&
3007      BaseType != Context.ObjCClassRedefinitionType) {
3008    BaseType = Context.ObjCClassRedefinitionType;
3009    ImpCastExprToType(BaseExpr, BaseType, CastExpr::CK_BitCast);
3010  }
3011
3012  if (IsArrow) {
3013    if (const PointerType *PT = BaseType->getAs<PointerType>())
3014      BaseType = PT->getPointeeType();
3015    else if (BaseType->isObjCObjectPointerType())
3016      ;
3017    else if (BaseType->isRecordType()) {
3018      // Recover from arrow accesses to records, e.g.:
3019      //   struct MyRecord foo;
3020      //   foo->bar
3021      // This is actually well-formed in C++ if MyRecord has an
3022      // overloaded operator->, but that should have been dealt with
3023      // by now.
3024      Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
3025        << BaseType << int(IsArrow) << BaseExpr->getSourceRange()
3026        << FixItHint::CreateReplacement(OpLoc, ".");
3027      IsArrow = false;
3028    } else {
3029      Diag(MemberLoc, diag::err_typecheck_member_reference_arrow)
3030        << BaseType << BaseExpr->getSourceRange();
3031      return ExprError();
3032    }
3033  } else {
3034    // Recover from dot accesses to pointers, e.g.:
3035    //   type *foo;
3036    //   foo.bar
3037    // This is actually well-formed in two cases:
3038    //   - 'type' is an Objective C type
3039    //   - 'bar' is a pseudo-destructor name which happens to refer to
3040    //     the appropriate pointer type
3041    if (MemberName.getNameKind() != DeclarationName::CXXDestructorName) {
3042      const PointerType *PT = BaseType->getAs<PointerType>();
3043      if (PT && PT->getPointeeType()->isRecordType()) {
3044        Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
3045          << BaseType << int(IsArrow) << BaseExpr->getSourceRange()
3046          << FixItHint::CreateReplacement(OpLoc, "->");
3047        BaseType = PT->getPointeeType();
3048        IsArrow = true;
3049      }
3050    }
3051  }
3052
3053  // Handle field access to simple records.
3054  if (const RecordType *RTy = BaseType->getAs<RecordType>()) {
3055    if (LookupMemberExprInRecord(*this, R, BaseExpr->getSourceRange(),
3056                                 RTy, OpLoc, SS))
3057      return ExprError();
3058    return Owned((Expr*) 0);
3059  }
3060
3061  // Handle access to Objective-C instance variables, such as "Obj->ivar" and
3062  // (*Obj).ivar.
3063  if ((IsArrow && BaseType->isObjCObjectPointerType()) ||
3064      (!IsArrow && BaseType->isObjCObjectType())) {
3065    const ObjCObjectPointerType *OPT = BaseType->getAs<ObjCObjectPointerType>();
3066    ObjCInterfaceDecl *IDecl =
3067      OPT ? OPT->getInterfaceDecl()
3068          : BaseType->getAs<ObjCObjectType>()->getInterface();
3069    if (IDecl) {
3070      IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
3071
3072      ObjCInterfaceDecl *ClassDeclared;
3073      ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
3074
3075      if (!IV) {
3076        // Attempt to correct for typos in ivar names.
3077        LookupResult Res(*this, R.getLookupName(), R.getNameLoc(),
3078                         LookupMemberName);
3079        if (CorrectTypo(Res, 0, 0, IDecl, false, CTC_MemberLookup) &&
3080            (IV = Res.getAsSingle<ObjCIvarDecl>())) {
3081          Diag(R.getNameLoc(),
3082               diag::err_typecheck_member_reference_ivar_suggest)
3083            << IDecl->getDeclName() << MemberName << IV->getDeclName()
3084            << FixItHint::CreateReplacement(R.getNameLoc(),
3085                                            IV->getNameAsString());
3086          Diag(IV->getLocation(), diag::note_previous_decl)
3087            << IV->getDeclName();
3088        }
3089      }
3090
3091      if (IV) {
3092        // If the decl being referenced had an error, return an error for this
3093        // sub-expr without emitting another error, in order to avoid cascading
3094        // error cases.
3095        if (IV->isInvalidDecl())
3096          return ExprError();
3097
3098        // Check whether we can reference this field.
3099        if (DiagnoseUseOfDecl(IV, MemberLoc))
3100          return ExprError();
3101        if (IV->getAccessControl() != ObjCIvarDecl::Public &&
3102            IV->getAccessControl() != ObjCIvarDecl::Package) {
3103          ObjCInterfaceDecl *ClassOfMethodDecl = 0;
3104          if (ObjCMethodDecl *MD = getCurMethodDecl())
3105            ClassOfMethodDecl =  MD->getClassInterface();
3106          else if (ObjCImpDecl && getCurFunctionDecl()) {
3107            // Case of a c-function declared inside an objc implementation.
3108            // FIXME: For a c-style function nested inside an objc implementation
3109            // class, there is no implementation context available, so we pass
3110            // down the context as argument to this routine. Ideally, this context
3111            // need be passed down in the AST node and somehow calculated from the
3112            // AST for a function decl.
3113            Decl *ImplDecl = ObjCImpDecl.getAs<Decl>();
3114            if (ObjCImplementationDecl *IMPD =
3115                dyn_cast<ObjCImplementationDecl>(ImplDecl))
3116              ClassOfMethodDecl = IMPD->getClassInterface();
3117            else if (ObjCCategoryImplDecl* CatImplClass =
3118                        dyn_cast<ObjCCategoryImplDecl>(ImplDecl))
3119              ClassOfMethodDecl = CatImplClass->getClassInterface();
3120          }
3121
3122          if (IV->getAccessControl() == ObjCIvarDecl::Private) {
3123            if (ClassDeclared != IDecl ||
3124                ClassOfMethodDecl != ClassDeclared)
3125              Diag(MemberLoc, diag::error_private_ivar_access)
3126                << IV->getDeclName();
3127          } else if (!IDecl->isSuperClassOf(ClassOfMethodDecl))
3128            // @protected
3129            Diag(MemberLoc, diag::error_protected_ivar_access)
3130              << IV->getDeclName();
3131        }
3132
3133        return Owned(new (Context) ObjCIvarRefExpr(IV, IV->getType(),
3134                                                   MemberLoc, BaseExpr,
3135                                                   IsArrow));
3136      }
3137      return ExprError(Diag(MemberLoc, diag::err_typecheck_member_reference_ivar)
3138                         << IDecl->getDeclName() << MemberName
3139                         << BaseExpr->getSourceRange());
3140    }
3141  }
3142  // Handle properties on 'id' and qualified "id".
3143  if (!IsArrow && (BaseType->isObjCIdType() ||
3144                   BaseType->isObjCQualifiedIdType())) {
3145    const ObjCObjectPointerType *QIdTy = BaseType->getAs<ObjCObjectPointerType>();
3146    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
3147
3148    // Check protocols on qualified interfaces.
3149    Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
3150    if (Decl *PMDecl = FindGetterNameDecl(QIdTy, Member, Sel, Context)) {
3151      if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(PMDecl)) {
3152        // Check the use of this declaration
3153        if (DiagnoseUseOfDecl(PD, MemberLoc))
3154          return ExprError();
3155
3156        return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
3157                                                       MemberLoc, BaseExpr));
3158      }
3159      if (ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(PMDecl)) {
3160        // Check the use of this method.
3161        if (DiagnoseUseOfDecl(OMD, MemberLoc))
3162          return ExprError();
3163
3164        return Owned(ObjCMessageExpr::Create(Context,
3165                                     OMD->getResultType().getNonReferenceType(),
3166                                             OpLoc, BaseExpr, Sel,
3167                                             OMD, NULL, 0, MemberLoc));
3168      }
3169    }
3170
3171    return ExprError(Diag(MemberLoc, diag::err_property_not_found)
3172                       << MemberName << BaseType);
3173  }
3174
3175  // Handle Objective-C property access, which is "Obj.property" where Obj is a
3176  // pointer to a (potentially qualified) interface type.
3177  if (!IsArrow)
3178    if (const ObjCObjectPointerType *OPT =
3179          BaseType->getAsObjCInterfacePointerType())
3180      return HandleExprPropertyRefExpr(OPT, BaseExpr, MemberName, MemberLoc);
3181
3182  // Handle the following exceptional case (*Obj).isa.
3183  if (!IsArrow &&
3184      BaseType->isObjCObjectType() &&
3185      BaseType->getAs<ObjCObjectType>()->isObjCId() &&
3186      MemberName.getAsIdentifierInfo()->isStr("isa"))
3187    return Owned(new (Context) ObjCIsaExpr(BaseExpr, false, MemberLoc,
3188                                           Context.getObjCClassType()));
3189
3190  // Handle 'field access' to vectors, such as 'V.xx'.
3191  if (BaseType->isExtVectorType()) {
3192    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
3193    QualType ret = CheckExtVectorComponent(BaseType, OpLoc, Member, MemberLoc);
3194    if (ret.isNull())
3195      return ExprError();
3196    return Owned(new (Context) ExtVectorElementExpr(ret, BaseExpr, *Member,
3197                                                    MemberLoc));
3198  }
3199
3200  Diag(MemberLoc, diag::err_typecheck_member_reference_struct_union)
3201    << BaseType << BaseExpr->getSourceRange();
3202
3203  return ExprError();
3204}
3205
3206/// The main callback when the parser finds something like
3207///   expression . [nested-name-specifier] identifier
3208///   expression -> [nested-name-specifier] identifier
3209/// where 'identifier' encompasses a fairly broad spectrum of
3210/// possibilities, including destructor and operator references.
3211///
3212/// \param OpKind either tok::arrow or tok::period
3213/// \param HasTrailingLParen whether the next token is '(', which
3214///   is used to diagnose mis-uses of special members that can
3215///   only be called
3216/// \param ObjCImpDecl the current ObjC @implementation decl;
3217///   this is an ugly hack around the fact that ObjC @implementations
3218///   aren't properly put in the context chain
3219Sema::OwningExprResult Sema::ActOnMemberAccessExpr(Scope *S, ExprArg BaseArg,
3220                                                   SourceLocation OpLoc,
3221                                                   tok::TokenKind OpKind,
3222                                                   CXXScopeSpec &SS,
3223                                                   UnqualifiedId &Id,
3224                                                   DeclPtrTy ObjCImpDecl,
3225                                                   bool HasTrailingLParen) {
3226  if (SS.isSet() && SS.isInvalid())
3227    return ExprError();
3228
3229  TemplateArgumentListInfo TemplateArgsBuffer;
3230
3231  // Decompose the name into its component parts.
3232  DeclarationName Name;
3233  SourceLocation NameLoc;
3234  const TemplateArgumentListInfo *TemplateArgs;
3235  DecomposeUnqualifiedId(*this, Id, TemplateArgsBuffer,
3236                         Name, NameLoc, TemplateArgs);
3237
3238  bool IsArrow = (OpKind == tok::arrow);
3239
3240  NamedDecl *FirstQualifierInScope
3241    = (!SS.isSet() ? 0 : FindFirstQualifierInScope(S,
3242                       static_cast<NestedNameSpecifier*>(SS.getScopeRep())));
3243
3244  // This is a postfix expression, so get rid of ParenListExprs.
3245  BaseArg = MaybeConvertParenListExprToParenExpr(S, move(BaseArg));
3246
3247  Expr *Base = BaseArg.takeAs<Expr>();
3248  OwningExprResult Result(*this);
3249  if (Base->getType()->isDependentType() || Name.isDependentName() ||
3250      isDependentScopeSpecifier(SS)) {
3251    Result = ActOnDependentMemberExpr(ExprArg(*this, Base), Base->getType(),
3252                                      IsArrow, OpLoc,
3253                                      SS, FirstQualifierInScope,
3254                                      Name, NameLoc,
3255                                      TemplateArgs);
3256  } else {
3257    LookupResult R(*this, Name, NameLoc, LookupMemberName);
3258    if (TemplateArgs) {
3259      // Re-use the lookup done for the template name.
3260      DecomposeTemplateName(R, Id);
3261
3262      // Re-derive the naming class.
3263      if (SS.isSet()) {
3264        NestedNameSpecifier *Qualifier
3265        = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
3266        if (const Type *Ty = Qualifier->getAsType())
3267          if (CXXRecordDecl *NamingClass = Ty->getAsCXXRecordDecl())
3268            R.setNamingClass(NamingClass);
3269      } else {
3270        QualType BaseType = Base->getType();
3271        if (const PointerType *Ptr = BaseType->getAs<PointerType>())
3272          BaseType = Ptr->getPointeeType();
3273        if (CXXRecordDecl *NamingClass = BaseType->getAsCXXRecordDecl())
3274          R.setNamingClass(NamingClass);
3275      }
3276    } else {
3277      Result = LookupMemberExpr(R, Base, IsArrow, OpLoc,
3278                                SS, ObjCImpDecl);
3279
3280      if (Result.isInvalid()) {
3281        Owned(Base);
3282        return ExprError();
3283      }
3284
3285      if (Result.get()) {
3286        // The only way a reference to a destructor can be used is to
3287        // immediately call it, which falls into this case.  If the
3288        // next token is not a '(', produce a diagnostic and build the
3289        // call now.
3290        if (!HasTrailingLParen &&
3291            Id.getKind() == UnqualifiedId::IK_DestructorName)
3292          return DiagnoseDtorReference(NameLoc, move(Result));
3293
3294        return move(Result);
3295      }
3296    }
3297
3298    Result = BuildMemberReferenceExpr(ExprArg(*this, Base), Base->getType(),
3299                                      OpLoc, IsArrow, SS, FirstQualifierInScope,
3300                                      R, TemplateArgs);
3301  }
3302
3303  return move(Result);
3304}
3305
3306Sema::OwningExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc,
3307                                                    FunctionDecl *FD,
3308                                                    ParmVarDecl *Param) {
3309  if (Param->hasUnparsedDefaultArg()) {
3310    Diag (CallLoc,
3311          diag::err_use_of_default_argument_to_function_declared_later) <<
3312      FD << cast<CXXRecordDecl>(FD->getDeclContext())->getDeclName();
3313    Diag(UnparsedDefaultArgLocs[Param],
3314          diag::note_default_argument_declared_here);
3315  } else {
3316    if (Param->hasUninstantiatedDefaultArg()) {
3317      Expr *UninstExpr = Param->getUninstantiatedDefaultArg();
3318
3319      // Instantiate the expression.
3320      MultiLevelTemplateArgumentList ArgList
3321        = getTemplateInstantiationArgs(FD, 0, /*RelativeToPrimary=*/true);
3322
3323      InstantiatingTemplate Inst(*this, CallLoc, Param,
3324                                 ArgList.getInnermost().getFlatArgumentList(),
3325                                 ArgList.getInnermost().flat_size());
3326
3327      OwningExprResult Result = SubstExpr(UninstExpr, ArgList);
3328      if (Result.isInvalid())
3329        return ExprError();
3330
3331      // Check the expression as an initializer for the parameter.
3332      InitializedEntity Entity
3333        = InitializedEntity::InitializeParameter(Param);
3334      InitializationKind Kind
3335        = InitializationKind::CreateCopy(Param->getLocation(),
3336               /*FIXME:EqualLoc*/UninstExpr->getSourceRange().getBegin());
3337      Expr *ResultE = Result.takeAs<Expr>();
3338
3339      InitializationSequence InitSeq(*this, Entity, Kind, &ResultE, 1);
3340      Result = InitSeq.Perform(*this, Entity, Kind,
3341                               MultiExprArg(*this, (void**)&ResultE, 1));
3342      if (Result.isInvalid())
3343        return ExprError();
3344
3345      // Build the default argument expression.
3346      return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param,
3347                                             Result.takeAs<Expr>()));
3348    }
3349
3350    // If the default expression creates temporaries, we need to
3351    // push them to the current stack of expression temporaries so they'll
3352    // be properly destroyed.
3353    // FIXME: We should really be rebuilding the default argument with new
3354    // bound temporaries; see the comment in PR5810.
3355    for (unsigned i = 0, e = Param->getNumDefaultArgTemporaries(); i != e; ++i)
3356      ExprTemporaries.push_back(Param->getDefaultArgTemporary(i));
3357  }
3358
3359  // We already type-checked the argument, so we know it works.
3360  return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param));
3361}
3362
3363/// ConvertArgumentsForCall - Converts the arguments specified in
3364/// Args/NumArgs to the parameter types of the function FDecl with
3365/// function prototype Proto. Call is the call expression itself, and
3366/// Fn is the function expression. For a C++ member function, this
3367/// routine does not attempt to convert the object argument. Returns
3368/// true if the call is ill-formed.
3369bool
3370Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
3371                              FunctionDecl *FDecl,
3372                              const FunctionProtoType *Proto,
3373                              Expr **Args, unsigned NumArgs,
3374                              SourceLocation RParenLoc) {
3375  // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
3376  // assignment, to the types of the corresponding parameter, ...
3377  unsigned NumArgsInProto = Proto->getNumArgs();
3378  bool Invalid = false;
3379
3380  // If too few arguments are available (and we don't have default
3381  // arguments for the remaining parameters), don't make the call.
3382  if (NumArgs < NumArgsInProto) {
3383    if (!FDecl || NumArgs < FDecl->getMinRequiredArguments())
3384      return Diag(RParenLoc, diag::err_typecheck_call_too_few_args)
3385        << Fn->getType()->isBlockPointerType()
3386        << NumArgsInProto << NumArgs << Fn->getSourceRange();
3387    Call->setNumArgs(Context, NumArgsInProto);
3388  }
3389
3390  // If too many are passed and not variadic, error on the extras and drop
3391  // them.
3392  if (NumArgs > NumArgsInProto) {
3393    if (!Proto->isVariadic()) {
3394      Diag(Args[NumArgsInProto]->getLocStart(),
3395           diag::err_typecheck_call_too_many_args)
3396        << Fn->getType()->isBlockPointerType()
3397        << NumArgsInProto << NumArgs << Fn->getSourceRange()
3398        << SourceRange(Args[NumArgsInProto]->getLocStart(),
3399                       Args[NumArgs-1]->getLocEnd());
3400      // This deletes the extra arguments.
3401      Call->setNumArgs(Context, NumArgsInProto);
3402      return true;
3403    }
3404  }
3405  llvm::SmallVector<Expr *, 8> AllArgs;
3406  VariadicCallType CallType =
3407    Proto->isVariadic() ? VariadicFunction : VariadicDoesNotApply;
3408  if (Fn->getType()->isBlockPointerType())
3409    CallType = VariadicBlock; // Block
3410  else if (isa<MemberExpr>(Fn))
3411    CallType = VariadicMethod;
3412  Invalid = GatherArgumentsForCall(Call->getSourceRange().getBegin(), FDecl,
3413                                   Proto, 0, Args, NumArgs, AllArgs, CallType);
3414  if (Invalid)
3415    return true;
3416  unsigned TotalNumArgs = AllArgs.size();
3417  for (unsigned i = 0; i < TotalNumArgs; ++i)
3418    Call->setArg(i, AllArgs[i]);
3419
3420  return false;
3421}
3422
3423bool Sema::GatherArgumentsForCall(SourceLocation CallLoc,
3424                                  FunctionDecl *FDecl,
3425                                  const FunctionProtoType *Proto,
3426                                  unsigned FirstProtoArg,
3427                                  Expr **Args, unsigned NumArgs,
3428                                  llvm::SmallVector<Expr *, 8> &AllArgs,
3429                                  VariadicCallType CallType) {
3430  unsigned NumArgsInProto = Proto->getNumArgs();
3431  unsigned NumArgsToCheck = NumArgs;
3432  bool Invalid = false;
3433  if (NumArgs != NumArgsInProto)
3434    // Use default arguments for missing arguments
3435    NumArgsToCheck = NumArgsInProto;
3436  unsigned ArgIx = 0;
3437  // Continue to check argument types (even if we have too few/many args).
3438  for (unsigned i = FirstProtoArg; i != NumArgsToCheck; i++) {
3439    QualType ProtoArgType = Proto->getArgType(i);
3440
3441    Expr *Arg;
3442    if (ArgIx < NumArgs) {
3443      Arg = Args[ArgIx++];
3444
3445      if (RequireCompleteType(Arg->getSourceRange().getBegin(),
3446                              ProtoArgType,
3447                              PDiag(diag::err_call_incomplete_argument)
3448                              << Arg->getSourceRange()))
3449        return true;
3450
3451      // Pass the argument
3452      ParmVarDecl *Param = 0;
3453      if (FDecl && i < FDecl->getNumParams())
3454        Param = FDecl->getParamDecl(i);
3455
3456
3457      InitializedEntity Entity =
3458        Param? InitializedEntity::InitializeParameter(Param)
3459             : InitializedEntity::InitializeParameter(ProtoArgType);
3460      OwningExprResult ArgE = PerformCopyInitialization(Entity,
3461                                                        SourceLocation(),
3462                                                        Owned(Arg));
3463      if (ArgE.isInvalid())
3464        return true;
3465
3466      Arg = ArgE.takeAs<Expr>();
3467    } else {
3468      ParmVarDecl *Param = FDecl->getParamDecl(i);
3469
3470      OwningExprResult ArgExpr =
3471        BuildCXXDefaultArgExpr(CallLoc, FDecl, Param);
3472      if (ArgExpr.isInvalid())
3473        return true;
3474
3475      Arg = ArgExpr.takeAs<Expr>();
3476    }
3477    AllArgs.push_back(Arg);
3478  }
3479
3480  // If this is a variadic call, handle args passed through "...".
3481  if (CallType != VariadicDoesNotApply) {
3482    // Promote the arguments (C99 6.5.2.2p7).
3483    for (unsigned i = ArgIx; i != NumArgs; ++i) {
3484      Expr *Arg = Args[i];
3485      Invalid |= DefaultVariadicArgumentPromotion(Arg, CallType, FDecl);
3486      AllArgs.push_back(Arg);
3487    }
3488  }
3489  return Invalid;
3490}
3491
3492/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
3493/// This provides the location of the left/right parens and a list of comma
3494/// locations.
3495Action::OwningExprResult
3496Sema::ActOnCallExpr(Scope *S, ExprArg fn, SourceLocation LParenLoc,
3497                    MultiExprArg args,
3498                    SourceLocation *CommaLocs, SourceLocation RParenLoc) {
3499  unsigned NumArgs = args.size();
3500
3501  // Since this might be a postfix expression, get rid of ParenListExprs.
3502  fn = MaybeConvertParenListExprToParenExpr(S, move(fn));
3503
3504  Expr *Fn = fn.takeAs<Expr>();
3505  Expr **Args = reinterpret_cast<Expr**>(args.release());
3506  assert(Fn && "no function call expression");
3507
3508  if (getLangOptions().CPlusPlus) {
3509    // If this is a pseudo-destructor expression, build the call immediately.
3510    if (isa<CXXPseudoDestructorExpr>(Fn)) {
3511      if (NumArgs > 0) {
3512        // Pseudo-destructor calls should not have any arguments.
3513        Diag(Fn->getLocStart(), diag::err_pseudo_dtor_call_with_args)
3514          << FixItHint::CreateRemoval(
3515                                    SourceRange(Args[0]->getLocStart(),
3516                                                Args[NumArgs-1]->getLocEnd()));
3517
3518        for (unsigned I = 0; I != NumArgs; ++I)
3519          Args[I]->Destroy(Context);
3520
3521        NumArgs = 0;
3522      }
3523
3524      return Owned(new (Context) CallExpr(Context, Fn, 0, 0, Context.VoidTy,
3525                                          RParenLoc));
3526    }
3527
3528    // Determine whether this is a dependent call inside a C++ template,
3529    // in which case we won't do any semantic analysis now.
3530    // FIXME: Will need to cache the results of name lookup (including ADL) in
3531    // Fn.
3532    bool Dependent = false;
3533    if (Fn->isTypeDependent())
3534      Dependent = true;
3535    else if (Expr::hasAnyTypeDependentArguments(Args, NumArgs))
3536      Dependent = true;
3537
3538    if (Dependent)
3539      return Owned(new (Context) CallExpr(Context, Fn, Args, NumArgs,
3540                                          Context.DependentTy, RParenLoc));
3541
3542    // Determine whether this is a call to an object (C++ [over.call.object]).
3543    if (Fn->getType()->isRecordType())
3544      return Owned(BuildCallToObjectOfClassType(S, Fn, LParenLoc, Args, NumArgs,
3545                                                CommaLocs, RParenLoc));
3546
3547    Expr *NakedFn = Fn->IgnoreParens();
3548
3549    // Determine whether this is a call to an unresolved member function.
3550    if (UnresolvedMemberExpr *MemE = dyn_cast<UnresolvedMemberExpr>(NakedFn)) {
3551      // If lookup was unresolved but not dependent (i.e. didn't find
3552      // an unresolved using declaration), it has to be an overloaded
3553      // function set, which means it must contain either multiple
3554      // declarations (all methods or method templates) or a single
3555      // method template.
3556      assert((MemE->getNumDecls() > 1) ||
3557             isa<FunctionTemplateDecl>(
3558                                 (*MemE->decls_begin())->getUnderlyingDecl()));
3559      (void)MemE;
3560
3561      return BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
3562                                       CommaLocs, RParenLoc);
3563    }
3564
3565    // Determine whether this is a call to a member function.
3566    if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(NakedFn)) {
3567      NamedDecl *MemDecl = MemExpr->getMemberDecl();
3568      if (isa<CXXMethodDecl>(MemDecl))
3569        return BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
3570                                         CommaLocs, RParenLoc);
3571    }
3572
3573    // Determine whether this is a call to a pointer-to-member function.
3574    if (BinaryOperator *BO = dyn_cast<BinaryOperator>(NakedFn)) {
3575      if (BO->getOpcode() == BinaryOperator::PtrMemD ||
3576          BO->getOpcode() == BinaryOperator::PtrMemI) {
3577        if (const FunctionProtoType *FPT
3578                                = BO->getType()->getAs<FunctionProtoType>()) {
3579          QualType ResultTy = FPT->getResultType().getNonReferenceType();
3580
3581          ExprOwningPtr<CXXMemberCallExpr>
3582            TheCall(this, new (Context) CXXMemberCallExpr(Context, BO, Args,
3583                                                          NumArgs, ResultTy,
3584                                                          RParenLoc));
3585
3586          if (CheckCallReturnType(FPT->getResultType(),
3587                                  BO->getRHS()->getSourceRange().getBegin(),
3588                                  TheCall.get(), 0))
3589            return ExprError();
3590
3591          if (ConvertArgumentsForCall(&*TheCall, BO, 0, FPT, Args, NumArgs,
3592                                      RParenLoc))
3593            return ExprError();
3594
3595          return Owned(MaybeBindToTemporary(TheCall.release()).release());
3596        }
3597        return ExprError(Diag(Fn->getLocStart(),
3598                              diag::err_typecheck_call_not_function)
3599                              << Fn->getType() << Fn->getSourceRange());
3600      }
3601    }
3602  }
3603
3604  // If we're directly calling a function, get the appropriate declaration.
3605  // Also, in C++, keep track of whether we should perform argument-dependent
3606  // lookup and whether there were any explicitly-specified template arguments.
3607
3608  Expr *NakedFn = Fn->IgnoreParens();
3609  if (isa<UnresolvedLookupExpr>(NakedFn)) {
3610    UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(NakedFn);
3611    return BuildOverloadedCallExpr(S, Fn, ULE, LParenLoc, Args, NumArgs,
3612                                   CommaLocs, RParenLoc);
3613  }
3614
3615  NamedDecl *NDecl = 0;
3616  if (isa<DeclRefExpr>(NakedFn))
3617    NDecl = cast<DeclRefExpr>(NakedFn)->getDecl();
3618
3619  return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, Args, NumArgs, RParenLoc);
3620}
3621
3622/// BuildResolvedCallExpr - Build a call to a resolved expression,
3623/// i.e. an expression not of \p OverloadTy.  The expression should
3624/// unary-convert to an expression of function-pointer or
3625/// block-pointer type.
3626///
3627/// \param NDecl the declaration being called, if available
3628Sema::OwningExprResult
3629Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl,
3630                            SourceLocation LParenLoc,
3631                            Expr **Args, unsigned NumArgs,
3632                            SourceLocation RParenLoc) {
3633  FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(NDecl);
3634
3635  // Promote the function operand.
3636  UsualUnaryConversions(Fn);
3637
3638  // Make the call expr early, before semantic checks.  This guarantees cleanup
3639  // of arguments and function on error.
3640  ExprOwningPtr<CallExpr> TheCall(this, new (Context) CallExpr(Context, Fn,
3641                                                               Args, NumArgs,
3642                                                               Context.BoolTy,
3643                                                               RParenLoc));
3644
3645  const FunctionType *FuncT;
3646  if (!Fn->getType()->isBlockPointerType()) {
3647    // C99 6.5.2.2p1 - "The expression that denotes the called function shall
3648    // have type pointer to function".
3649    const PointerType *PT = Fn->getType()->getAs<PointerType>();
3650    if (PT == 0)
3651      return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
3652        << Fn->getType() << Fn->getSourceRange());
3653    FuncT = PT->getPointeeType()->getAs<FunctionType>();
3654  } else { // This is a block call.
3655    FuncT = Fn->getType()->getAs<BlockPointerType>()->getPointeeType()->
3656                getAs<FunctionType>();
3657  }
3658  if (FuncT == 0)
3659    return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
3660      << Fn->getType() << Fn->getSourceRange());
3661
3662  // Check for a valid return type
3663  if (CheckCallReturnType(FuncT->getResultType(),
3664                          Fn->getSourceRange().getBegin(), TheCall.get(),
3665                          FDecl))
3666    return ExprError();
3667
3668  // We know the result type of the call, set it.
3669  TheCall->setType(FuncT->getResultType().getNonReferenceType());
3670
3671  if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FuncT)) {
3672    if (ConvertArgumentsForCall(&*TheCall, Fn, FDecl, Proto, Args, NumArgs,
3673                                RParenLoc))
3674      return ExprError();
3675  } else {
3676    assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
3677
3678    if (FDecl) {
3679      // Check if we have too few/too many template arguments, based
3680      // on our knowledge of the function definition.
3681      const FunctionDecl *Def = 0;
3682      if (FDecl->getBody(Def) && NumArgs != Def->param_size()) {
3683        const FunctionProtoType *Proto =
3684            Def->getType()->getAs<FunctionProtoType>();
3685        if (!Proto || !(Proto->isVariadic() && NumArgs >= Def->param_size())) {
3686          Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
3687            << (NumArgs > Def->param_size()) << FDecl << Fn->getSourceRange();
3688        }
3689      }
3690    }
3691
3692    // Promote the arguments (C99 6.5.2.2p6).
3693    for (unsigned i = 0; i != NumArgs; i++) {
3694      Expr *Arg = Args[i];
3695      DefaultArgumentPromotion(Arg);
3696      if (RequireCompleteType(Arg->getSourceRange().getBegin(),
3697                              Arg->getType(),
3698                              PDiag(diag::err_call_incomplete_argument)
3699                                << Arg->getSourceRange()))
3700        return ExprError();
3701      TheCall->setArg(i, Arg);
3702    }
3703  }
3704
3705  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
3706    if (!Method->isStatic())
3707      return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
3708        << Fn->getSourceRange());
3709
3710  // Check for sentinels
3711  if (NDecl)
3712    DiagnoseSentinelCalls(NDecl, LParenLoc, Args, NumArgs);
3713
3714  // Do special checking on direct calls to functions.
3715  if (FDecl) {
3716    if (CheckFunctionCall(FDecl, TheCall.get()))
3717      return ExprError();
3718
3719    if (unsigned BuiltinID = FDecl->getBuiltinID())
3720      return CheckBuiltinFunctionCall(BuiltinID, TheCall.take());
3721  } else if (NDecl) {
3722    if (CheckBlockCall(NDecl, TheCall.get()))
3723      return ExprError();
3724  }
3725
3726  return MaybeBindToTemporary(TheCall.take());
3727}
3728
3729Action::OwningExprResult
3730Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, TypeTy *Ty,
3731                           SourceLocation RParenLoc, ExprArg InitExpr) {
3732  assert((Ty != 0) && "ActOnCompoundLiteral(): missing type");
3733  // FIXME: put back this assert when initializers are worked out.
3734  //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
3735
3736  TypeSourceInfo *TInfo;
3737  QualType literalType = GetTypeFromParser(Ty, &TInfo);
3738  if (!TInfo)
3739    TInfo = Context.getTrivialTypeSourceInfo(literalType);
3740
3741  return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, move(InitExpr));
3742}
3743
3744Action::OwningExprResult
3745Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo,
3746                               SourceLocation RParenLoc, ExprArg InitExpr) {
3747  QualType literalType = TInfo->getType();
3748  Expr *literalExpr = static_cast<Expr*>(InitExpr.get());
3749
3750  if (literalType->isArrayType()) {
3751    if (literalType->isVariableArrayType())
3752      return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init)
3753        << SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd()));
3754  } else if (!literalType->isDependentType() &&
3755             RequireCompleteType(LParenLoc, literalType,
3756                      PDiag(diag::err_typecheck_decl_incomplete_type)
3757                        << SourceRange(LParenLoc,
3758                                       literalExpr->getSourceRange().getEnd())))
3759    return ExprError();
3760
3761  InitializedEntity Entity
3762    = InitializedEntity::InitializeTemporary(literalType);
3763  InitializationKind Kind
3764    = InitializationKind::CreateCast(SourceRange(LParenLoc, RParenLoc),
3765                                     /*IsCStyleCast=*/true);
3766  InitializationSequence InitSeq(*this, Entity, Kind, &literalExpr, 1);
3767  OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
3768                                   MultiExprArg(*this, (void**)&literalExpr, 1),
3769                                            &literalType);
3770  if (Result.isInvalid())
3771    return ExprError();
3772  InitExpr.release();
3773  literalExpr = static_cast<Expr*>(Result.get());
3774
3775  bool isFileScope = getCurFunctionOrMethodDecl() == 0;
3776  if (isFileScope) { // 6.5.2.5p3
3777    if (CheckForConstantInitializer(literalExpr, literalType))
3778      return ExprError();
3779  }
3780
3781  Result.release();
3782
3783  return Owned(new (Context) CompoundLiteralExpr(LParenLoc, TInfo, literalType,
3784                                                 literalExpr, isFileScope));
3785}
3786
3787Action::OwningExprResult
3788Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg initlist,
3789                    SourceLocation RBraceLoc) {
3790  unsigned NumInit = initlist.size();
3791  Expr **InitList = reinterpret_cast<Expr**>(initlist.release());
3792
3793  // Semantic analysis for initializers is done by ActOnDeclarator() and
3794  // CheckInitializer() - it requires knowledge of the object being intialized.
3795
3796  InitListExpr *E = new (Context) InitListExpr(Context, LBraceLoc, InitList,
3797                                               NumInit, RBraceLoc);
3798  E->setType(Context.VoidTy); // FIXME: just a place holder for now.
3799  return Owned(E);
3800}
3801
3802static CastExpr::CastKind getScalarCastKind(ASTContext &Context,
3803                                            QualType SrcTy, QualType DestTy) {
3804  if (Context.hasSameUnqualifiedType(SrcTy, DestTy))
3805    return CastExpr::CK_NoOp;
3806
3807  if (SrcTy->hasPointerRepresentation()) {
3808    if (DestTy->hasPointerRepresentation())
3809      return DestTy->isObjCObjectPointerType() ?
3810                CastExpr::CK_AnyPointerToObjCPointerCast :
3811                CastExpr::CK_BitCast;
3812    if (DestTy->isIntegerType())
3813      return CastExpr::CK_PointerToIntegral;
3814  }
3815
3816  if (SrcTy->isIntegerType()) {
3817    if (DestTy->isIntegerType())
3818      return CastExpr::CK_IntegralCast;
3819    if (DestTy->hasPointerRepresentation())
3820      return CastExpr::CK_IntegralToPointer;
3821    if (DestTy->isRealFloatingType())
3822      return CastExpr::CK_IntegralToFloating;
3823  }
3824
3825  if (SrcTy->isRealFloatingType()) {
3826    if (DestTy->isRealFloatingType())
3827      return CastExpr::CK_FloatingCast;
3828    if (DestTy->isIntegerType())
3829      return CastExpr::CK_FloatingToIntegral;
3830  }
3831
3832  // FIXME: Assert here.
3833  // assert(false && "Unhandled cast combination!");
3834  return CastExpr::CK_Unknown;
3835}
3836
3837/// CheckCastTypes - Check type constraints for casting between types.
3838bool Sema::CheckCastTypes(SourceRange TyR, QualType castType, Expr *&castExpr,
3839                          CastExpr::CastKind& Kind,
3840                          CXXBaseSpecifierArray &BasePath,
3841                          bool FunctionalStyle) {
3842  if (getLangOptions().CPlusPlus)
3843    return CXXCheckCStyleCast(TyR, castType, castExpr, Kind, BasePath,
3844                              FunctionalStyle);
3845
3846  DefaultFunctionArrayLvalueConversion(castExpr);
3847
3848  // C99 6.5.4p2: the cast type needs to be void or scalar and the expression
3849  // type needs to be scalar.
3850  if (castType->isVoidType()) {
3851    // Cast to void allows any expr type.
3852    Kind = CastExpr::CK_ToVoid;
3853    return false;
3854  }
3855
3856  if (!castType->isScalarType() && !castType->isVectorType()) {
3857    if (Context.hasSameUnqualifiedType(castType, castExpr->getType()) &&
3858        (castType->isStructureType() || castType->isUnionType())) {
3859      // GCC struct/union extension: allow cast to self.
3860      // FIXME: Check that the cast destination type is complete.
3861      Diag(TyR.getBegin(), diag::ext_typecheck_cast_nonscalar)
3862        << castType << castExpr->getSourceRange();
3863      Kind = CastExpr::CK_NoOp;
3864      return false;
3865    }
3866
3867    if (castType->isUnionType()) {
3868      // GCC cast to union extension
3869      RecordDecl *RD = castType->getAs<RecordType>()->getDecl();
3870      RecordDecl::field_iterator Field, FieldEnd;
3871      for (Field = RD->field_begin(), FieldEnd = RD->field_end();
3872           Field != FieldEnd; ++Field) {
3873        if (Context.hasSameUnqualifiedType(Field->getType(),
3874                                           castExpr->getType())) {
3875          Diag(TyR.getBegin(), diag::ext_typecheck_cast_to_union)
3876            << castExpr->getSourceRange();
3877          break;
3878        }
3879      }
3880      if (Field == FieldEnd)
3881        return Diag(TyR.getBegin(), diag::err_typecheck_cast_to_union_no_type)
3882          << castExpr->getType() << castExpr->getSourceRange();
3883      Kind = CastExpr::CK_ToUnion;
3884      return false;
3885    }
3886
3887    // Reject any other conversions to non-scalar types.
3888    return Diag(TyR.getBegin(), diag::err_typecheck_cond_expect_scalar)
3889      << castType << castExpr->getSourceRange();
3890  }
3891
3892  if (!castExpr->getType()->isScalarType() &&
3893      !castExpr->getType()->isVectorType()) {
3894    return Diag(castExpr->getLocStart(),
3895                diag::err_typecheck_expect_scalar_operand)
3896      << castExpr->getType() << castExpr->getSourceRange();
3897  }
3898
3899  if (castType->isExtVectorType())
3900    return CheckExtVectorCast(TyR, castType, castExpr, Kind);
3901
3902  if (castType->isVectorType())
3903    return CheckVectorCast(TyR, castType, castExpr->getType(), Kind);
3904  if (castExpr->getType()->isVectorType())
3905    return CheckVectorCast(TyR, castExpr->getType(), castType, Kind);
3906
3907  if (isa<ObjCSelectorExpr>(castExpr))
3908    return Diag(castExpr->getLocStart(), diag::err_cast_selector_expr);
3909
3910  if (!castType->isArithmeticType()) {
3911    QualType castExprType = castExpr->getType();
3912    if (!castExprType->isIntegralType() && castExprType->isArithmeticType())
3913      return Diag(castExpr->getLocStart(),
3914                  diag::err_cast_pointer_from_non_pointer_int)
3915        << castExprType << castExpr->getSourceRange();
3916  } else if (!castExpr->getType()->isArithmeticType()) {
3917    if (!castType->isIntegralType() && castType->isArithmeticType())
3918      return Diag(castExpr->getLocStart(),
3919                  diag::err_cast_pointer_to_non_pointer_int)
3920        << castType << castExpr->getSourceRange();
3921  }
3922
3923  Kind = getScalarCastKind(Context, castExpr->getType(), castType);
3924  return false;
3925}
3926
3927bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
3928                           CastExpr::CastKind &Kind) {
3929  assert(VectorTy->isVectorType() && "Not a vector type!");
3930
3931  if (Ty->isVectorType() || Ty->isIntegerType()) {
3932    if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty))
3933      return Diag(R.getBegin(),
3934                  Ty->isVectorType() ?
3935                  diag::err_invalid_conversion_between_vectors :
3936                  diag::err_invalid_conversion_between_vector_and_integer)
3937        << VectorTy << Ty << R;
3938  } else
3939    return Diag(R.getBegin(),
3940                diag::err_invalid_conversion_between_vector_and_scalar)
3941      << VectorTy << Ty << R;
3942
3943  Kind = CastExpr::CK_BitCast;
3944  return false;
3945}
3946
3947bool Sema::CheckExtVectorCast(SourceRange R, QualType DestTy, Expr *&CastExpr,
3948                              CastExpr::CastKind &Kind) {
3949  assert(DestTy->isExtVectorType() && "Not an extended vector type!");
3950
3951  QualType SrcTy = CastExpr->getType();
3952
3953  // If SrcTy is a VectorType, the total size must match to explicitly cast to
3954  // an ExtVectorType.
3955  if (SrcTy->isVectorType()) {
3956    if (Context.getTypeSize(DestTy) != Context.getTypeSize(SrcTy))
3957      return Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
3958        << DestTy << SrcTy << R;
3959    Kind = CastExpr::CK_BitCast;
3960    return false;
3961  }
3962
3963  // All non-pointer scalars can be cast to ExtVector type.  The appropriate
3964  // conversion will take place first from scalar to elt type, and then
3965  // splat from elt type to vector.
3966  if (SrcTy->isPointerType())
3967    return Diag(R.getBegin(),
3968                diag::err_invalid_conversion_between_vector_and_scalar)
3969      << DestTy << SrcTy << R;
3970
3971  QualType DestElemTy = DestTy->getAs<ExtVectorType>()->getElementType();
3972  ImpCastExprToType(CastExpr, DestElemTy,
3973                    getScalarCastKind(Context, SrcTy, DestElemTy));
3974
3975  Kind = CastExpr::CK_VectorSplat;
3976  return false;
3977}
3978
3979Action::OwningExprResult
3980Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc, TypeTy *Ty,
3981                    SourceLocation RParenLoc, ExprArg Op) {
3982  assert((Ty != 0) && (Op.get() != 0) &&
3983         "ActOnCastExpr(): missing type or expr");
3984
3985  TypeSourceInfo *castTInfo;
3986  QualType castType = GetTypeFromParser(Ty, &castTInfo);
3987  if (!castTInfo)
3988    castTInfo = Context.getTrivialTypeSourceInfo(castType);
3989
3990  // If the Expr being casted is a ParenListExpr, handle it specially.
3991  Expr *castExpr = (Expr *)Op.get();
3992  if (isa<ParenListExpr>(castExpr))
3993    return ActOnCastOfParenListExpr(S, LParenLoc, RParenLoc, move(Op),
3994                                    castTInfo);
3995
3996  return BuildCStyleCastExpr(LParenLoc, castTInfo, RParenLoc, move(Op));
3997}
3998
3999Action::OwningExprResult
4000Sema::BuildCStyleCastExpr(SourceLocation LParenLoc, TypeSourceInfo *Ty,
4001                          SourceLocation RParenLoc, ExprArg Op) {
4002  Expr *castExpr = static_cast<Expr*>(Op.get());
4003
4004  CastExpr::CastKind Kind = CastExpr::CK_Unknown;
4005  CXXBaseSpecifierArray BasePath;
4006  if (CheckCastTypes(SourceRange(LParenLoc, RParenLoc), Ty->getType(), castExpr,
4007                     Kind, BasePath))
4008    return ExprError();
4009
4010  Op.release();
4011  return Owned(new (Context) CStyleCastExpr(Ty->getType().getNonReferenceType(),
4012                                            Kind, castExpr, BasePath, Ty,
4013                                            LParenLoc, RParenLoc));
4014}
4015
4016/// This is not an AltiVec-style cast, so turn the ParenListExpr into a sequence
4017/// of comma binary operators.
4018Action::OwningExprResult
4019Sema::MaybeConvertParenListExprToParenExpr(Scope *S, ExprArg EA) {
4020  Expr *expr = EA.takeAs<Expr>();
4021  ParenListExpr *E = dyn_cast<ParenListExpr>(expr);
4022  if (!E)
4023    return Owned(expr);
4024
4025  OwningExprResult Result(*this, E->getExpr(0));
4026
4027  for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i)
4028    Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, move(Result),
4029                        Owned(E->getExpr(i)));
4030
4031  return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), move(Result));
4032}
4033
4034Action::OwningExprResult
4035Sema::ActOnCastOfParenListExpr(Scope *S, SourceLocation LParenLoc,
4036                               SourceLocation RParenLoc, ExprArg Op,
4037                               TypeSourceInfo *TInfo) {
4038  ParenListExpr *PE = (ParenListExpr *)Op.get();
4039  QualType Ty = TInfo->getType();
4040
4041  // If this is an altivec initializer, '(' type ')' '(' init, ..., init ')'
4042  // then handle it as such.
4043  if (getLangOptions().AltiVec && Ty->isVectorType()) {
4044    if (PE->getNumExprs() == 0) {
4045      Diag(PE->getExprLoc(), diag::err_altivec_empty_initializer);
4046      return ExprError();
4047    }
4048
4049    llvm::SmallVector<Expr *, 8> initExprs;
4050    for (unsigned i = 0, e = PE->getNumExprs(); i != e; ++i)
4051      initExprs.push_back(PE->getExpr(i));
4052
4053    // FIXME: This means that pretty-printing the final AST will produce curly
4054    // braces instead of the original commas.
4055    Op.release();
4056    InitListExpr *E = new (Context) InitListExpr(Context, LParenLoc,
4057                                                 &initExprs[0],
4058                                                 initExprs.size(), RParenLoc);
4059    E->setType(Ty);
4060    return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, Owned(E));
4061  } else {
4062    // This is not an AltiVec-style cast, so turn the ParenListExpr into a
4063    // sequence of BinOp comma operators.
4064    Op = MaybeConvertParenListExprToParenExpr(S, move(Op));
4065    return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, move(Op));
4066  }
4067}
4068
4069Action::OwningExprResult Sema::ActOnParenOrParenListExpr(SourceLocation L,
4070                                                  SourceLocation R,
4071                                                  MultiExprArg Val,
4072                                                  TypeTy *TypeOfCast) {
4073  unsigned nexprs = Val.size();
4074  Expr **exprs = reinterpret_cast<Expr**>(Val.release());
4075  assert((exprs != 0) && "ActOnParenOrParenListExpr() missing expr list");
4076  Expr *expr;
4077  if (nexprs == 1 && TypeOfCast && !TypeIsVectorType(TypeOfCast))
4078    expr = new (Context) ParenExpr(L, R, exprs[0]);
4079  else
4080    expr = new (Context) ParenListExpr(Context, L, exprs, nexprs, R);
4081  return Owned(expr);
4082}
4083
4084/// Note that lhs is not null here, even if this is the gnu "x ?: y" extension.
4085/// In that case, lhs = cond.
4086/// C99 6.5.15
4087QualType Sema::CheckConditionalOperands(Expr *&Cond, Expr *&LHS, Expr *&RHS,
4088                                        SourceLocation QuestionLoc) {
4089  // C++ is sufficiently different to merit its own checker.
4090  if (getLangOptions().CPlusPlus)
4091    return CXXCheckConditionalOperands(Cond, LHS, RHS, QuestionLoc);
4092
4093  UsualUnaryConversions(Cond);
4094  UsualUnaryConversions(LHS);
4095  UsualUnaryConversions(RHS);
4096  QualType CondTy = Cond->getType();
4097  QualType LHSTy = LHS->getType();
4098  QualType RHSTy = RHS->getType();
4099
4100  // first, check the condition.
4101  if (!CondTy->isScalarType()) { // C99 6.5.15p2
4102    Diag(Cond->getLocStart(), diag::err_typecheck_cond_expect_scalar)
4103      << CondTy;
4104    return QualType();
4105  }
4106
4107  // Now check the two expressions.
4108  if (LHSTy->isVectorType() || RHSTy->isVectorType())
4109    return CheckVectorOperands(QuestionLoc, LHS, RHS);
4110
4111  // If both operands have arithmetic type, do the usual arithmetic conversions
4112  // to find a common type: C99 6.5.15p3,5.
4113  if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
4114    UsualArithmeticConversions(LHS, RHS);
4115    return LHS->getType();
4116  }
4117
4118  // If both operands are the same structure or union type, the result is that
4119  // type.
4120  if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) {    // C99 6.5.15p3
4121    if (const RecordType *RHSRT = RHSTy->getAs<RecordType>())
4122      if (LHSRT->getDecl() == RHSRT->getDecl())
4123        // "If both the operands have structure or union type, the result has
4124        // that type."  This implies that CV qualifiers are dropped.
4125        return LHSTy.getUnqualifiedType();
4126    // FIXME: Type of conditional expression must be complete in C mode.
4127  }
4128
4129  // C99 6.5.15p5: "If both operands have void type, the result has void type."
4130  // The following || allows only one side to be void (a GCC-ism).
4131  if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
4132    if (!LHSTy->isVoidType())
4133      Diag(RHS->getLocStart(), diag::ext_typecheck_cond_one_void)
4134        << RHS->getSourceRange();
4135    if (!RHSTy->isVoidType())
4136      Diag(LHS->getLocStart(), diag::ext_typecheck_cond_one_void)
4137        << LHS->getSourceRange();
4138    ImpCastExprToType(LHS, Context.VoidTy, CastExpr::CK_ToVoid);
4139    ImpCastExprToType(RHS, Context.VoidTy, CastExpr::CK_ToVoid);
4140    return Context.VoidTy;
4141  }
4142  // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
4143  // the type of the other operand."
4144  if ((LHSTy->isAnyPointerType() || LHSTy->isBlockPointerType()) &&
4145      RHS->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
4146    // promote the null to a pointer.
4147    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_Unknown);
4148    return LHSTy;
4149  }
4150  if ((RHSTy->isAnyPointerType() || RHSTy->isBlockPointerType()) &&
4151      LHS->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
4152    ImpCastExprToType(LHS, RHSTy, CastExpr::CK_Unknown);
4153    return RHSTy;
4154  }
4155
4156  // All objective-c pointer type analysis is done here.
4157  QualType compositeType = FindCompositeObjCPointerType(LHS, RHS,
4158                                                        QuestionLoc);
4159  if (!compositeType.isNull())
4160    return compositeType;
4161
4162
4163  // Handle block pointer types.
4164  if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType()) {
4165    if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
4166      if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
4167        QualType destType = Context.getPointerType(Context.VoidTy);
4168        ImpCastExprToType(LHS, destType, CastExpr::CK_BitCast);
4169        ImpCastExprToType(RHS, destType, CastExpr::CK_BitCast);
4170        return destType;
4171      }
4172      Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
4173      << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
4174      return QualType();
4175    }
4176    // We have 2 block pointer types.
4177    if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
4178      // Two identical block pointer types are always compatible.
4179      return LHSTy;
4180    }
4181    // The block pointer types aren't identical, continue checking.
4182    QualType lhptee = LHSTy->getAs<BlockPointerType>()->getPointeeType();
4183    QualType rhptee = RHSTy->getAs<BlockPointerType>()->getPointeeType();
4184
4185    if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
4186                                    rhptee.getUnqualifiedType())) {
4187      Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers)
4188      << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
4189      // In this situation, we assume void* type. No especially good
4190      // reason, but this is what gcc does, and we do have to pick
4191      // to get a consistent AST.
4192      QualType incompatTy = Context.getPointerType(Context.VoidTy);
4193      ImpCastExprToType(LHS, incompatTy, CastExpr::CK_BitCast);
4194      ImpCastExprToType(RHS, incompatTy, CastExpr::CK_BitCast);
4195      return incompatTy;
4196    }
4197    // The block pointer types are compatible.
4198    ImpCastExprToType(LHS, LHSTy, CastExpr::CK_BitCast);
4199    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast);
4200    return LHSTy;
4201  }
4202
4203  // Check constraints for C object pointers types (C99 6.5.15p3,6).
4204  if (LHSTy->isPointerType() && RHSTy->isPointerType()) {
4205    // get the "pointed to" types
4206    QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
4207    QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
4208
4209    // ignore qualifiers on void (C99 6.5.15p3, clause 6)
4210    if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
4211      // Figure out necessary qualifiers (C99 6.5.15p6)
4212      QualType destPointee
4213        = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
4214      QualType destType = Context.getPointerType(destPointee);
4215      // Add qualifiers if necessary.
4216      ImpCastExprToType(LHS, destType, CastExpr::CK_NoOp);
4217      // Promote to void*.
4218      ImpCastExprToType(RHS, destType, CastExpr::CK_BitCast);
4219      return destType;
4220    }
4221    if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
4222      QualType destPointee
4223        = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
4224      QualType destType = Context.getPointerType(destPointee);
4225      // Add qualifiers if necessary.
4226      ImpCastExprToType(RHS, destType, CastExpr::CK_NoOp);
4227      // Promote to void*.
4228      ImpCastExprToType(LHS, destType, CastExpr::CK_BitCast);
4229      return destType;
4230    }
4231
4232    if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
4233      // Two identical pointer types are always compatible.
4234      return LHSTy;
4235    }
4236    if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
4237                                    rhptee.getUnqualifiedType())) {
4238      Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers)
4239        << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
4240      // In this situation, we assume void* type. No especially good
4241      // reason, but this is what gcc does, and we do have to pick
4242      // to get a consistent AST.
4243      QualType incompatTy = Context.getPointerType(Context.VoidTy);
4244      ImpCastExprToType(LHS, incompatTy, CastExpr::CK_BitCast);
4245      ImpCastExprToType(RHS, incompatTy, CastExpr::CK_BitCast);
4246      return incompatTy;
4247    }
4248    // The pointer types are compatible.
4249    // C99 6.5.15p6: If both operands are pointers to compatible types *or* to
4250    // differently qualified versions of compatible types, the result type is
4251    // a pointer to an appropriately qualified version of the *composite*
4252    // type.
4253    // FIXME: Need to calculate the composite type.
4254    // FIXME: Need to add qualifiers
4255    ImpCastExprToType(LHS, LHSTy, CastExpr::CK_BitCast);
4256    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast);
4257    return LHSTy;
4258  }
4259
4260  // GCC compatibility: soften pointer/integer mismatch.
4261  if (RHSTy->isPointerType() && LHSTy->isIntegerType()) {
4262    Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch)
4263      << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
4264    ImpCastExprToType(LHS, RHSTy, CastExpr::CK_IntegralToPointer);
4265    return RHSTy;
4266  }
4267  if (LHSTy->isPointerType() && RHSTy->isIntegerType()) {
4268    Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch)
4269      << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
4270    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_IntegralToPointer);
4271    return LHSTy;
4272  }
4273
4274  // Otherwise, the operands are not compatible.
4275  Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
4276    << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
4277  return QualType();
4278}
4279
4280/// FindCompositeObjCPointerType - Helper method to find composite type of
4281/// two objective-c pointer types of the two input expressions.
4282QualType Sema::FindCompositeObjCPointerType(Expr *&LHS, Expr *&RHS,
4283                                        SourceLocation QuestionLoc) {
4284  QualType LHSTy = LHS->getType();
4285  QualType RHSTy = RHS->getType();
4286
4287  // Handle things like Class and struct objc_class*.  Here we case the result
4288  // to the pseudo-builtin, because that will be implicitly cast back to the
4289  // redefinition type if an attempt is made to access its fields.
4290  if (LHSTy->isObjCClassType() &&
4291      (RHSTy.getDesugaredType() == Context.ObjCClassRedefinitionType)) {
4292    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast);
4293    return LHSTy;
4294  }
4295  if (RHSTy->isObjCClassType() &&
4296      (LHSTy.getDesugaredType() == Context.ObjCClassRedefinitionType)) {
4297    ImpCastExprToType(LHS, RHSTy, CastExpr::CK_BitCast);
4298    return RHSTy;
4299  }
4300  // And the same for struct objc_object* / id
4301  if (LHSTy->isObjCIdType() &&
4302      (RHSTy.getDesugaredType() == Context.ObjCIdRedefinitionType)) {
4303    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast);
4304    return LHSTy;
4305  }
4306  if (RHSTy->isObjCIdType() &&
4307      (LHSTy.getDesugaredType() == Context.ObjCIdRedefinitionType)) {
4308    ImpCastExprToType(LHS, RHSTy, CastExpr::CK_BitCast);
4309    return RHSTy;
4310  }
4311  // And the same for struct objc_selector* / SEL
4312  if (Context.isObjCSelType(LHSTy) &&
4313      (RHSTy.getDesugaredType() == Context.ObjCSelRedefinitionType)) {
4314    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast);
4315    return LHSTy;
4316  }
4317  if (Context.isObjCSelType(RHSTy) &&
4318      (LHSTy.getDesugaredType() == Context.ObjCSelRedefinitionType)) {
4319    ImpCastExprToType(LHS, RHSTy, CastExpr::CK_BitCast);
4320    return RHSTy;
4321  }
4322  // Check constraints for Objective-C object pointers types.
4323  if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) {
4324
4325    if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
4326      // Two identical object pointer types are always compatible.
4327      return LHSTy;
4328    }
4329    const ObjCObjectPointerType *LHSOPT = LHSTy->getAs<ObjCObjectPointerType>();
4330    const ObjCObjectPointerType *RHSOPT = RHSTy->getAs<ObjCObjectPointerType>();
4331    QualType compositeType = LHSTy;
4332
4333    // If both operands are interfaces and either operand can be
4334    // assigned to the other, use that type as the composite
4335    // type. This allows
4336    //   xxx ? (A*) a : (B*) b
4337    // where B is a subclass of A.
4338    //
4339    // Additionally, as for assignment, if either type is 'id'
4340    // allow silent coercion. Finally, if the types are
4341    // incompatible then make sure to use 'id' as the composite
4342    // type so the result is acceptable for sending messages to.
4343
4344    // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
4345    // It could return the composite type.
4346    if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) {
4347      compositeType = RHSOPT->isObjCBuiltinType() ? RHSTy : LHSTy;
4348    } else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) {
4349      compositeType = LHSOPT->isObjCBuiltinType() ? LHSTy : RHSTy;
4350    } else if ((LHSTy->isObjCQualifiedIdType() ||
4351                RHSTy->isObjCQualifiedIdType()) &&
4352               Context.ObjCQualifiedIdTypesAreCompatible(LHSTy, RHSTy, true)) {
4353      // Need to handle "id<xx>" explicitly.
4354      // GCC allows qualified id and any Objective-C type to devolve to
4355      // id. Currently localizing to here until clear this should be
4356      // part of ObjCQualifiedIdTypesAreCompatible.
4357      compositeType = Context.getObjCIdType();
4358    } else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) {
4359      compositeType = Context.getObjCIdType();
4360    } else if (!(compositeType =
4361                 Context.areCommonBaseCompatible(LHSOPT, RHSOPT)).isNull())
4362      ;
4363    else {
4364      Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands)
4365      << LHSTy << RHSTy
4366      << LHS->getSourceRange() << RHS->getSourceRange();
4367      QualType incompatTy = Context.getObjCIdType();
4368      ImpCastExprToType(LHS, incompatTy, CastExpr::CK_BitCast);
4369      ImpCastExprToType(RHS, incompatTy, CastExpr::CK_BitCast);
4370      return incompatTy;
4371    }
4372    // The object pointer types are compatible.
4373    ImpCastExprToType(LHS, compositeType, CastExpr::CK_BitCast);
4374    ImpCastExprToType(RHS, compositeType, CastExpr::CK_BitCast);
4375    return compositeType;
4376  }
4377  // Check Objective-C object pointer types and 'void *'
4378  if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) {
4379    QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
4380    QualType rhptee = RHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
4381    QualType destPointee
4382    = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
4383    QualType destType = Context.getPointerType(destPointee);
4384    // Add qualifiers if necessary.
4385    ImpCastExprToType(LHS, destType, CastExpr::CK_NoOp);
4386    // Promote to void*.
4387    ImpCastExprToType(RHS, destType, CastExpr::CK_BitCast);
4388    return destType;
4389  }
4390  if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) {
4391    QualType lhptee = LHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
4392    QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
4393    QualType destPointee
4394    = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
4395    QualType destType = Context.getPointerType(destPointee);
4396    // Add qualifiers if necessary.
4397    ImpCastExprToType(RHS, destType, CastExpr::CK_NoOp);
4398    // Promote to void*.
4399    ImpCastExprToType(LHS, destType, CastExpr::CK_BitCast);
4400    return destType;
4401  }
4402  return QualType();
4403}
4404
4405/// ActOnConditionalOp - Parse a ?: operation.  Note that 'LHS' may be null
4406/// in the case of a the GNU conditional expr extension.
4407Action::OwningExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
4408                                                  SourceLocation ColonLoc,
4409                                                  ExprArg Cond, ExprArg LHS,
4410                                                  ExprArg RHS) {
4411  Expr *CondExpr = (Expr *) Cond.get();
4412  Expr *LHSExpr = (Expr *) LHS.get(), *RHSExpr = (Expr *) RHS.get();
4413
4414  // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
4415  // was the condition.
4416  bool isLHSNull = LHSExpr == 0;
4417  if (isLHSNull)
4418    LHSExpr = CondExpr;
4419
4420  QualType result = CheckConditionalOperands(CondExpr, LHSExpr,
4421                                             RHSExpr, QuestionLoc);
4422  if (result.isNull())
4423    return ExprError();
4424
4425  Cond.release();
4426  LHS.release();
4427  RHS.release();
4428  return Owned(new (Context) ConditionalOperator(CondExpr, QuestionLoc,
4429                                                 isLHSNull ? 0 : LHSExpr,
4430                                                 ColonLoc, RHSExpr, result));
4431}
4432
4433// CheckPointerTypesForAssignment - This is a very tricky routine (despite
4434// being closely modeled after the C99 spec:-). The odd characteristic of this
4435// routine is it effectively iqnores the qualifiers on the top level pointee.
4436// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
4437// FIXME: add a couple examples in this comment.
4438Sema::AssignConvertType
4439Sema::CheckPointerTypesForAssignment(QualType lhsType, QualType rhsType) {
4440  QualType lhptee, rhptee;
4441
4442  if ((lhsType->isObjCClassType() &&
4443       (rhsType.getDesugaredType() == Context.ObjCClassRedefinitionType)) ||
4444     (rhsType->isObjCClassType() &&
4445       (lhsType.getDesugaredType() == Context.ObjCClassRedefinitionType))) {
4446      return Compatible;
4447  }
4448
4449  // get the "pointed to" type (ignoring qualifiers at the top level)
4450  lhptee = lhsType->getAs<PointerType>()->getPointeeType();
4451  rhptee = rhsType->getAs<PointerType>()->getPointeeType();
4452
4453  // make sure we operate on the canonical type
4454  lhptee = Context.getCanonicalType(lhptee);
4455  rhptee = Context.getCanonicalType(rhptee);
4456
4457  AssignConvertType ConvTy = Compatible;
4458
4459  // C99 6.5.16.1p1: This following citation is common to constraints
4460  // 3 & 4 (below). ...and the type *pointed to* by the left has all the
4461  // qualifiers of the type *pointed to* by the right;
4462  // FIXME: Handle ExtQualType
4463  if (!lhptee.isAtLeastAsQualifiedAs(rhptee))
4464    ConvTy = CompatiblePointerDiscardsQualifiers;
4465
4466  // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
4467  // incomplete type and the other is a pointer to a qualified or unqualified
4468  // version of void...
4469  if (lhptee->isVoidType()) {
4470    if (rhptee->isIncompleteOrObjectType())
4471      return ConvTy;
4472
4473    // As an extension, we allow cast to/from void* to function pointer.
4474    assert(rhptee->isFunctionType());
4475    return FunctionVoidPointer;
4476  }
4477
4478  if (rhptee->isVoidType()) {
4479    if (lhptee->isIncompleteOrObjectType())
4480      return ConvTy;
4481
4482    // As an extension, we allow cast to/from void* to function pointer.
4483    assert(lhptee->isFunctionType());
4484    return FunctionVoidPointer;
4485  }
4486  // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
4487  // unqualified versions of compatible types, ...
4488  lhptee = lhptee.getUnqualifiedType();
4489  rhptee = rhptee.getUnqualifiedType();
4490  if (!Context.typesAreCompatible(lhptee, rhptee)) {
4491    // Check if the pointee types are compatible ignoring the sign.
4492    // We explicitly check for char so that we catch "char" vs
4493    // "unsigned char" on systems where "char" is unsigned.
4494    if (lhptee->isCharType())
4495      lhptee = Context.UnsignedCharTy;
4496    else if (lhptee->isSignedIntegerType())
4497      lhptee = Context.getCorrespondingUnsignedType(lhptee);
4498
4499    if (rhptee->isCharType())
4500      rhptee = Context.UnsignedCharTy;
4501    else if (rhptee->isSignedIntegerType())
4502      rhptee = Context.getCorrespondingUnsignedType(rhptee);
4503
4504    if (lhptee == rhptee) {
4505      // Types are compatible ignoring the sign. Qualifier incompatibility
4506      // takes priority over sign incompatibility because the sign
4507      // warning can be disabled.
4508      if (ConvTy != Compatible)
4509        return ConvTy;
4510      return IncompatiblePointerSign;
4511    }
4512
4513    // If we are a multi-level pointer, it's possible that our issue is simply
4514    // one of qualification - e.g. char ** -> const char ** is not allowed. If
4515    // the eventual target type is the same and the pointers have the same
4516    // level of indirection, this must be the issue.
4517    if (lhptee->isPointerType() && rhptee->isPointerType()) {
4518      do {
4519        lhptee = lhptee->getAs<PointerType>()->getPointeeType();
4520        rhptee = rhptee->getAs<PointerType>()->getPointeeType();
4521
4522        lhptee = Context.getCanonicalType(lhptee);
4523        rhptee = Context.getCanonicalType(rhptee);
4524      } while (lhptee->isPointerType() && rhptee->isPointerType());
4525
4526      if (Context.hasSameUnqualifiedType(lhptee, rhptee))
4527        return IncompatibleNestedPointerQualifiers;
4528    }
4529
4530    // General pointer incompatibility takes priority over qualifiers.
4531    return IncompatiblePointer;
4532  }
4533  return ConvTy;
4534}
4535
4536/// CheckBlockPointerTypesForAssignment - This routine determines whether two
4537/// block pointer types are compatible or whether a block and normal pointer
4538/// are compatible. It is more restrict than comparing two function pointer
4539// types.
4540Sema::AssignConvertType
4541Sema::CheckBlockPointerTypesForAssignment(QualType lhsType,
4542                                          QualType rhsType) {
4543  QualType lhptee, rhptee;
4544
4545  // get the "pointed to" type (ignoring qualifiers at the top level)
4546  lhptee = lhsType->getAs<BlockPointerType>()->getPointeeType();
4547  rhptee = rhsType->getAs<BlockPointerType>()->getPointeeType();
4548
4549  // make sure we operate on the canonical type
4550  lhptee = Context.getCanonicalType(lhptee);
4551  rhptee = Context.getCanonicalType(rhptee);
4552
4553  AssignConvertType ConvTy = Compatible;
4554
4555  // For blocks we enforce that qualifiers are identical.
4556  if (lhptee.getLocalCVRQualifiers() != rhptee.getLocalCVRQualifiers())
4557    ConvTy = CompatiblePointerDiscardsQualifiers;
4558
4559  if (!getLangOptions().CPlusPlus) {
4560    if (!Context.typesAreBlockPointerCompatible(lhsType, rhsType))
4561      return IncompatibleBlockPointer;
4562  }
4563  else if (!Context.typesAreCompatible(lhptee, rhptee))
4564    return IncompatibleBlockPointer;
4565  return ConvTy;
4566}
4567
4568/// CheckObjCPointerTypesForAssignment - Compares two objective-c pointer types
4569/// for assignment compatibility.
4570Sema::AssignConvertType
4571Sema::CheckObjCPointerTypesForAssignment(QualType lhsType, QualType rhsType) {
4572  if (lhsType->isObjCBuiltinType()) {
4573    // Class is not compatible with ObjC object pointers.
4574    if (lhsType->isObjCClassType() && !rhsType->isObjCBuiltinType() &&
4575        !rhsType->isObjCQualifiedClassType())
4576      return IncompatiblePointer;
4577    return Compatible;
4578  }
4579  if (rhsType->isObjCBuiltinType()) {
4580    // Class is not compatible with ObjC object pointers.
4581    if (rhsType->isObjCClassType() && !lhsType->isObjCBuiltinType() &&
4582        !lhsType->isObjCQualifiedClassType())
4583      return IncompatiblePointer;
4584    return Compatible;
4585  }
4586  QualType lhptee =
4587  lhsType->getAs<ObjCObjectPointerType>()->getPointeeType();
4588  QualType rhptee =
4589  rhsType->getAs<ObjCObjectPointerType>()->getPointeeType();
4590  // make sure we operate on the canonical type
4591  lhptee = Context.getCanonicalType(lhptee);
4592  rhptee = Context.getCanonicalType(rhptee);
4593  if (!lhptee.isAtLeastAsQualifiedAs(rhptee))
4594    return CompatiblePointerDiscardsQualifiers;
4595
4596  if (Context.typesAreCompatible(lhsType, rhsType))
4597    return Compatible;
4598  if (lhsType->isObjCQualifiedIdType() || rhsType->isObjCQualifiedIdType())
4599    return IncompatibleObjCQualifiedId;
4600  return IncompatiblePointer;
4601}
4602
4603/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
4604/// has code to accommodate several GCC extensions when type checking
4605/// pointers. Here are some objectionable examples that GCC considers warnings:
4606///
4607///  int a, *pint;
4608///  short *pshort;
4609///  struct foo *pfoo;
4610///
4611///  pint = pshort; // warning: assignment from incompatible pointer type
4612///  a = pint; // warning: assignment makes integer from pointer without a cast
4613///  pint = a; // warning: assignment makes pointer from integer without a cast
4614///  pint = pfoo; // warning: assignment from incompatible pointer type
4615///
4616/// As a result, the code for dealing with pointers is more complex than the
4617/// C99 spec dictates.
4618///
4619Sema::AssignConvertType
4620Sema::CheckAssignmentConstraints(QualType lhsType, QualType rhsType) {
4621  // Get canonical types.  We're not formatting these types, just comparing
4622  // them.
4623  lhsType = Context.getCanonicalType(lhsType).getUnqualifiedType();
4624  rhsType = Context.getCanonicalType(rhsType).getUnqualifiedType();
4625
4626  if (lhsType == rhsType)
4627    return Compatible; // Common case: fast path an exact match.
4628
4629  if ((lhsType->isObjCClassType() &&
4630       (rhsType.getDesugaredType() == Context.ObjCClassRedefinitionType)) ||
4631     (rhsType->isObjCClassType() &&
4632       (lhsType.getDesugaredType() == Context.ObjCClassRedefinitionType))) {
4633      return Compatible;
4634  }
4635
4636  // If the left-hand side is a reference type, then we are in a
4637  // (rare!) case where we've allowed the use of references in C,
4638  // e.g., as a parameter type in a built-in function. In this case,
4639  // just make sure that the type referenced is compatible with the
4640  // right-hand side type. The caller is responsible for adjusting
4641  // lhsType so that the resulting expression does not have reference
4642  // type.
4643  if (const ReferenceType *lhsTypeRef = lhsType->getAs<ReferenceType>()) {
4644    if (Context.typesAreCompatible(lhsTypeRef->getPointeeType(), rhsType))
4645      return Compatible;
4646    return Incompatible;
4647  }
4648  // Allow scalar to ExtVector assignments, and assignments of an ExtVector type
4649  // to the same ExtVector type.
4650  if (lhsType->isExtVectorType()) {
4651    if (rhsType->isExtVectorType())
4652      return lhsType == rhsType ? Compatible : Incompatible;
4653    if (!rhsType->isVectorType() && rhsType->isArithmeticType())
4654      return Compatible;
4655  }
4656
4657  if (lhsType->isVectorType() || rhsType->isVectorType()) {
4658    // If we are allowing lax vector conversions, and LHS and RHS are both
4659    // vectors, the total size only needs to be the same. This is a bitcast;
4660    // no bits are changed but the result type is different.
4661    if (getLangOptions().LaxVectorConversions &&
4662        lhsType->isVectorType() && rhsType->isVectorType()) {
4663      if (Context.getTypeSize(lhsType) == Context.getTypeSize(rhsType))
4664        return IncompatibleVectors;
4665    }
4666    return Incompatible;
4667  }
4668
4669  if (lhsType->isArithmeticType() && rhsType->isArithmeticType())
4670    return Compatible;
4671
4672  if (isa<PointerType>(lhsType)) {
4673    if (rhsType->isIntegerType())
4674      return IntToPointer;
4675
4676    if (isa<PointerType>(rhsType))
4677      return CheckPointerTypesForAssignment(lhsType, rhsType);
4678
4679    // In general, C pointers are not compatible with ObjC object pointers.
4680    if (isa<ObjCObjectPointerType>(rhsType)) {
4681      if (lhsType->isVoidPointerType()) // an exception to the rule.
4682        return Compatible;
4683      return IncompatiblePointer;
4684    }
4685    if (rhsType->getAs<BlockPointerType>()) {
4686      if (lhsType->getAs<PointerType>()->getPointeeType()->isVoidType())
4687        return Compatible;
4688
4689      // Treat block pointers as objects.
4690      if (getLangOptions().ObjC1 && lhsType->isObjCIdType())
4691        return Compatible;
4692    }
4693    return Incompatible;
4694  }
4695
4696  if (isa<BlockPointerType>(lhsType)) {
4697    if (rhsType->isIntegerType())
4698      return IntToBlockPointer;
4699
4700    // Treat block pointers as objects.
4701    if (getLangOptions().ObjC1 && rhsType->isObjCIdType())
4702      return Compatible;
4703
4704    if (rhsType->isBlockPointerType())
4705      return CheckBlockPointerTypesForAssignment(lhsType, rhsType);
4706
4707    if (const PointerType *RHSPT = rhsType->getAs<PointerType>()) {
4708      if (RHSPT->getPointeeType()->isVoidType())
4709        return Compatible;
4710    }
4711    return Incompatible;
4712  }
4713
4714  if (isa<ObjCObjectPointerType>(lhsType)) {
4715    if (rhsType->isIntegerType())
4716      return IntToPointer;
4717
4718    // In general, C pointers are not compatible with ObjC object pointers.
4719    if (isa<PointerType>(rhsType)) {
4720      if (rhsType->isVoidPointerType()) // an exception to the rule.
4721        return Compatible;
4722      return IncompatiblePointer;
4723    }
4724    if (rhsType->isObjCObjectPointerType()) {
4725      return CheckObjCPointerTypesForAssignment(lhsType, rhsType);
4726    }
4727    if (const PointerType *RHSPT = rhsType->getAs<PointerType>()) {
4728      if (RHSPT->getPointeeType()->isVoidType())
4729        return Compatible;
4730    }
4731    // Treat block pointers as objects.
4732    if (rhsType->isBlockPointerType())
4733      return Compatible;
4734    return Incompatible;
4735  }
4736  if (isa<PointerType>(rhsType)) {
4737    // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
4738    if (lhsType == Context.BoolTy)
4739      return Compatible;
4740
4741    if (lhsType->isIntegerType())
4742      return PointerToInt;
4743
4744    if (isa<PointerType>(lhsType))
4745      return CheckPointerTypesForAssignment(lhsType, rhsType);
4746
4747    if (isa<BlockPointerType>(lhsType) &&
4748        rhsType->getAs<PointerType>()->getPointeeType()->isVoidType())
4749      return Compatible;
4750    return Incompatible;
4751  }
4752  if (isa<ObjCObjectPointerType>(rhsType)) {
4753    // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
4754    if (lhsType == Context.BoolTy)
4755      return Compatible;
4756
4757    if (lhsType->isIntegerType())
4758      return PointerToInt;
4759
4760    // In general, C pointers are not compatible with ObjC object pointers.
4761    if (isa<PointerType>(lhsType)) {
4762      if (lhsType->isVoidPointerType()) // an exception to the rule.
4763        return Compatible;
4764      return IncompatiblePointer;
4765    }
4766    if (isa<BlockPointerType>(lhsType) &&
4767        rhsType->getAs<PointerType>()->getPointeeType()->isVoidType())
4768      return Compatible;
4769    return Incompatible;
4770  }
4771
4772  if (isa<TagType>(lhsType) && isa<TagType>(rhsType)) {
4773    if (Context.typesAreCompatible(lhsType, rhsType))
4774      return Compatible;
4775  }
4776  return Incompatible;
4777}
4778
4779/// \brief Constructs a transparent union from an expression that is
4780/// used to initialize the transparent union.
4781static void ConstructTransparentUnion(ASTContext &C, Expr *&E,
4782                                      QualType UnionType, FieldDecl *Field) {
4783  // Build an initializer list that designates the appropriate member
4784  // of the transparent union.
4785  InitListExpr *Initializer = new (C) InitListExpr(C, SourceLocation(),
4786                                                   &E, 1,
4787                                                   SourceLocation());
4788  Initializer->setType(UnionType);
4789  Initializer->setInitializedFieldInUnion(Field);
4790
4791  // Build a compound literal constructing a value of the transparent
4792  // union type from this initializer list.
4793  TypeSourceInfo *unionTInfo = C.getTrivialTypeSourceInfo(UnionType);
4794  E = new (C) CompoundLiteralExpr(SourceLocation(), unionTInfo, UnionType,
4795                                  Initializer, false);
4796}
4797
4798Sema::AssignConvertType
4799Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType, Expr *&rExpr) {
4800  QualType FromType = rExpr->getType();
4801
4802  // If the ArgType is a Union type, we want to handle a potential
4803  // transparent_union GCC extension.
4804  const RecordType *UT = ArgType->getAsUnionType();
4805  if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
4806    return Incompatible;
4807
4808  // The field to initialize within the transparent union.
4809  RecordDecl *UD = UT->getDecl();
4810  FieldDecl *InitField = 0;
4811  // It's compatible if the expression matches any of the fields.
4812  for (RecordDecl::field_iterator it = UD->field_begin(),
4813         itend = UD->field_end();
4814       it != itend; ++it) {
4815    if (it->getType()->isPointerType()) {
4816      // If the transparent union contains a pointer type, we allow:
4817      // 1) void pointer
4818      // 2) null pointer constant
4819      if (FromType->isPointerType())
4820        if (FromType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
4821          ImpCastExprToType(rExpr, it->getType(), CastExpr::CK_BitCast);
4822          InitField = *it;
4823          break;
4824        }
4825
4826      if (rExpr->isNullPointerConstant(Context,
4827                                       Expr::NPC_ValueDependentIsNull)) {
4828        ImpCastExprToType(rExpr, it->getType(), CastExpr::CK_IntegralToPointer);
4829        InitField = *it;
4830        break;
4831      }
4832    }
4833
4834    if (CheckAssignmentConstraints(it->getType(), rExpr->getType())
4835          == Compatible) {
4836      InitField = *it;
4837      break;
4838    }
4839  }
4840
4841  if (!InitField)
4842    return Incompatible;
4843
4844  ConstructTransparentUnion(Context, rExpr, ArgType, InitField);
4845  return Compatible;
4846}
4847
4848Sema::AssignConvertType
4849Sema::CheckSingleAssignmentConstraints(QualType lhsType, Expr *&rExpr) {
4850  if (getLangOptions().CPlusPlus) {
4851    if (!lhsType->isRecordType()) {
4852      // C++ 5.17p3: If the left operand is not of class type, the
4853      // expression is implicitly converted (C++ 4) to the
4854      // cv-unqualified type of the left operand.
4855      if (PerformImplicitConversion(rExpr, lhsType.getUnqualifiedType(),
4856                                    AA_Assigning))
4857        return Incompatible;
4858      return Compatible;
4859    }
4860
4861    // FIXME: Currently, we fall through and treat C++ classes like C
4862    // structures.
4863  }
4864
4865  // C99 6.5.16.1p1: the left operand is a pointer and the right is
4866  // a null pointer constant.
4867  if ((lhsType->isPointerType() ||
4868       lhsType->isObjCObjectPointerType() ||
4869       lhsType->isBlockPointerType())
4870      && rExpr->isNullPointerConstant(Context,
4871                                      Expr::NPC_ValueDependentIsNull)) {
4872    ImpCastExprToType(rExpr, lhsType, CastExpr::CK_Unknown);
4873    return Compatible;
4874  }
4875
4876  // This check seems unnatural, however it is necessary to ensure the proper
4877  // conversion of functions/arrays. If the conversion were done for all
4878  // DeclExpr's (created by ActOnIdExpression), it would mess up the unary
4879  // expressions that surpress this implicit conversion (&, sizeof).
4880  //
4881  // Suppress this for references: C++ 8.5.3p5.
4882  if (!lhsType->isReferenceType())
4883    DefaultFunctionArrayLvalueConversion(rExpr);
4884
4885  Sema::AssignConvertType result =
4886    CheckAssignmentConstraints(lhsType, rExpr->getType());
4887
4888  // C99 6.5.16.1p2: The value of the right operand is converted to the
4889  // type of the assignment expression.
4890  // CheckAssignmentConstraints allows the left-hand side to be a reference,
4891  // so that we can use references in built-in functions even in C.
4892  // The getNonReferenceType() call makes sure that the resulting expression
4893  // does not have reference type.
4894  if (result != Incompatible && rExpr->getType() != lhsType)
4895    ImpCastExprToType(rExpr, lhsType.getNonReferenceType(),
4896                      CastExpr::CK_Unknown);
4897  return result;
4898}
4899
4900QualType Sema::InvalidOperands(SourceLocation Loc, Expr *&lex, Expr *&rex) {
4901  Diag(Loc, diag::err_typecheck_invalid_operands)
4902    << lex->getType() << rex->getType()
4903    << lex->getSourceRange() << rex->getSourceRange();
4904  return QualType();
4905}
4906
4907QualType Sema::CheckVectorOperands(SourceLocation Loc, Expr *&lex, Expr *&rex) {
4908  // For conversion purposes, we ignore any qualifiers.
4909  // For example, "const float" and "float" are equivalent.
4910  QualType lhsType =
4911    Context.getCanonicalType(lex->getType()).getUnqualifiedType();
4912  QualType rhsType =
4913    Context.getCanonicalType(rex->getType()).getUnqualifiedType();
4914
4915  // If the vector types are identical, return.
4916  if (lhsType == rhsType)
4917    return lhsType;
4918
4919  // Handle the case of a vector & extvector type of the same size and element
4920  // type.  It would be nice if we only had one vector type someday.
4921  if (getLangOptions().LaxVectorConversions) {
4922    // FIXME: Should we warn here?
4923    if (const VectorType *LV = lhsType->getAs<VectorType>()) {
4924      if (const VectorType *RV = rhsType->getAs<VectorType>())
4925        if (LV->getElementType() == RV->getElementType() &&
4926            LV->getNumElements() == RV->getNumElements()) {
4927          if (lhsType->isExtVectorType()) {
4928            ImpCastExprToType(rex, lhsType, CastExpr::CK_BitCast);
4929            return lhsType;
4930          }
4931
4932          ImpCastExprToType(lex, rhsType, CastExpr::CK_BitCast);
4933          return rhsType;
4934        }
4935    }
4936  }
4937
4938  // Canonicalize the ExtVector to the LHS, remember if we swapped so we can
4939  // swap back (so that we don't reverse the inputs to a subtract, for instance.
4940  bool swapped = false;
4941  if (rhsType->isExtVectorType()) {
4942    swapped = true;
4943    std::swap(rex, lex);
4944    std::swap(rhsType, lhsType);
4945  }
4946
4947  // Handle the case of an ext vector and scalar.
4948  if (const ExtVectorType *LV = lhsType->getAs<ExtVectorType>()) {
4949    QualType EltTy = LV->getElementType();
4950    if (EltTy->isIntegralType() && rhsType->isIntegralType()) {
4951      if (Context.getIntegerTypeOrder(EltTy, rhsType) >= 0) {
4952        ImpCastExprToType(rex, lhsType, CastExpr::CK_IntegralCast);
4953        if (swapped) std::swap(rex, lex);
4954        return lhsType;
4955      }
4956    }
4957    if (EltTy->isRealFloatingType() && rhsType->isScalarType() &&
4958        rhsType->isRealFloatingType()) {
4959      if (Context.getFloatingTypeOrder(EltTy, rhsType) >= 0) {
4960        ImpCastExprToType(rex, lhsType, CastExpr::CK_FloatingCast);
4961        if (swapped) std::swap(rex, lex);
4962        return lhsType;
4963      }
4964    }
4965  }
4966
4967  // Vectors of different size or scalar and non-ext-vector are errors.
4968  Diag(Loc, diag::err_typecheck_vector_not_convertable)
4969    << lex->getType() << rex->getType()
4970    << lex->getSourceRange() << rex->getSourceRange();
4971  return QualType();
4972}
4973
4974QualType Sema::CheckMultiplyDivideOperands(
4975  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign, bool isDiv) {
4976  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
4977    return CheckVectorOperands(Loc, lex, rex);
4978
4979  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
4980
4981  if (!lex->getType()->isArithmeticType() ||
4982      !rex->getType()->isArithmeticType())
4983    return InvalidOperands(Loc, lex, rex);
4984
4985  // Check for division by zero.
4986  if (isDiv &&
4987      rex->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull))
4988    DiagRuntimeBehavior(Loc, PDiag(diag::warn_division_by_zero)
4989                                     << rex->getSourceRange());
4990
4991  return compType;
4992}
4993
4994QualType Sema::CheckRemainderOperands(
4995  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign) {
4996  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
4997    if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
4998      return CheckVectorOperands(Loc, lex, rex);
4999    return InvalidOperands(Loc, lex, rex);
5000  }
5001
5002  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
5003
5004  if (!lex->getType()->isIntegerType() || !rex->getType()->isIntegerType())
5005    return InvalidOperands(Loc, lex, rex);
5006
5007  // Check for remainder by zero.
5008  if (rex->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull))
5009    DiagRuntimeBehavior(Loc, PDiag(diag::warn_remainder_by_zero)
5010                                 << rex->getSourceRange());
5011
5012  return compType;
5013}
5014
5015QualType Sema::CheckAdditionOperands( // C99 6.5.6
5016  Expr *&lex, Expr *&rex, SourceLocation Loc, QualType* CompLHSTy) {
5017  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
5018    QualType compType = CheckVectorOperands(Loc, lex, rex);
5019    if (CompLHSTy) *CompLHSTy = compType;
5020    return compType;
5021  }
5022
5023  QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy);
5024
5025  // handle the common case first (both operands are arithmetic).
5026  if (lex->getType()->isArithmeticType() &&
5027      rex->getType()->isArithmeticType()) {
5028    if (CompLHSTy) *CompLHSTy = compType;
5029    return compType;
5030  }
5031
5032  // Put any potential pointer into PExp
5033  Expr* PExp = lex, *IExp = rex;
5034  if (IExp->getType()->isAnyPointerType())
5035    std::swap(PExp, IExp);
5036
5037  if (PExp->getType()->isAnyPointerType()) {
5038
5039    if (IExp->getType()->isIntegerType()) {
5040      QualType PointeeTy = PExp->getType()->getPointeeType();
5041
5042      // Check for arithmetic on pointers to incomplete types.
5043      if (PointeeTy->isVoidType()) {
5044        if (getLangOptions().CPlusPlus) {
5045          Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
5046            << lex->getSourceRange() << rex->getSourceRange();
5047          return QualType();
5048        }
5049
5050        // GNU extension: arithmetic on pointer to void
5051        Diag(Loc, diag::ext_gnu_void_ptr)
5052          << lex->getSourceRange() << rex->getSourceRange();
5053      } else if (PointeeTy->isFunctionType()) {
5054        if (getLangOptions().CPlusPlus) {
5055          Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
5056            << lex->getType() << lex->getSourceRange();
5057          return QualType();
5058        }
5059
5060        // GNU extension: arithmetic on pointer to function
5061        Diag(Loc, diag::ext_gnu_ptr_func_arith)
5062          << lex->getType() << lex->getSourceRange();
5063      } else {
5064        // Check if we require a complete type.
5065        if (((PExp->getType()->isPointerType() &&
5066              !PExp->getType()->isDependentType()) ||
5067              PExp->getType()->isObjCObjectPointerType()) &&
5068             RequireCompleteType(Loc, PointeeTy,
5069                           PDiag(diag::err_typecheck_arithmetic_incomplete_type)
5070                             << PExp->getSourceRange()
5071                             << PExp->getType()))
5072          return QualType();
5073      }
5074      // Diagnose bad cases where we step over interface counts.
5075      if (PointeeTy->isObjCObjectType() && LangOpts.ObjCNonFragileABI) {
5076        Diag(Loc, diag::err_arithmetic_nonfragile_interface)
5077          << PointeeTy << PExp->getSourceRange();
5078        return QualType();
5079      }
5080
5081      if (CompLHSTy) {
5082        QualType LHSTy = Context.isPromotableBitField(lex);
5083        if (LHSTy.isNull()) {
5084          LHSTy = lex->getType();
5085          if (LHSTy->isPromotableIntegerType())
5086            LHSTy = Context.getPromotedIntegerType(LHSTy);
5087        }
5088        *CompLHSTy = LHSTy;
5089      }
5090      return PExp->getType();
5091    }
5092  }
5093
5094  return InvalidOperands(Loc, lex, rex);
5095}
5096
5097// C99 6.5.6
5098QualType Sema::CheckSubtractionOperands(Expr *&lex, Expr *&rex,
5099                                        SourceLocation Loc, QualType* CompLHSTy) {
5100  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
5101    QualType compType = CheckVectorOperands(Loc, lex, rex);
5102    if (CompLHSTy) *CompLHSTy = compType;
5103    return compType;
5104  }
5105
5106  QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy);
5107
5108  // Enforce type constraints: C99 6.5.6p3.
5109
5110  // Handle the common case first (both operands are arithmetic).
5111  if (lex->getType()->isArithmeticType()
5112      && rex->getType()->isArithmeticType()) {
5113    if (CompLHSTy) *CompLHSTy = compType;
5114    return compType;
5115  }
5116
5117  // Either ptr - int   or   ptr - ptr.
5118  if (lex->getType()->isAnyPointerType()) {
5119    QualType lpointee = lex->getType()->getPointeeType();
5120
5121    // The LHS must be an completely-defined object type.
5122
5123    bool ComplainAboutVoid = false;
5124    Expr *ComplainAboutFunc = 0;
5125    if (lpointee->isVoidType()) {
5126      if (getLangOptions().CPlusPlus) {
5127        Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
5128          << lex->getSourceRange() << rex->getSourceRange();
5129        return QualType();
5130      }
5131
5132      // GNU C extension: arithmetic on pointer to void
5133      ComplainAboutVoid = true;
5134    } else if (lpointee->isFunctionType()) {
5135      if (getLangOptions().CPlusPlus) {
5136        Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
5137          << lex->getType() << lex->getSourceRange();
5138        return QualType();
5139      }
5140
5141      // GNU C extension: arithmetic on pointer to function
5142      ComplainAboutFunc = lex;
5143    } else if (!lpointee->isDependentType() &&
5144               RequireCompleteType(Loc, lpointee,
5145                                   PDiag(diag::err_typecheck_sub_ptr_object)
5146                                     << lex->getSourceRange()
5147                                     << lex->getType()))
5148      return QualType();
5149
5150    // Diagnose bad cases where we step over interface counts.
5151    if (lpointee->isObjCObjectType() && LangOpts.ObjCNonFragileABI) {
5152      Diag(Loc, diag::err_arithmetic_nonfragile_interface)
5153        << lpointee << lex->getSourceRange();
5154      return QualType();
5155    }
5156
5157    // The result type of a pointer-int computation is the pointer type.
5158    if (rex->getType()->isIntegerType()) {
5159      if (ComplainAboutVoid)
5160        Diag(Loc, diag::ext_gnu_void_ptr)
5161          << lex->getSourceRange() << rex->getSourceRange();
5162      if (ComplainAboutFunc)
5163        Diag(Loc, diag::ext_gnu_ptr_func_arith)
5164          << ComplainAboutFunc->getType()
5165          << ComplainAboutFunc->getSourceRange();
5166
5167      if (CompLHSTy) *CompLHSTy = lex->getType();
5168      return lex->getType();
5169    }
5170
5171    // Handle pointer-pointer subtractions.
5172    if (const PointerType *RHSPTy = rex->getType()->getAs<PointerType>()) {
5173      QualType rpointee = RHSPTy->getPointeeType();
5174
5175      // RHS must be a completely-type object type.
5176      // Handle the GNU void* extension.
5177      if (rpointee->isVoidType()) {
5178        if (getLangOptions().CPlusPlus) {
5179          Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
5180            << lex->getSourceRange() << rex->getSourceRange();
5181          return QualType();
5182        }
5183
5184        ComplainAboutVoid = true;
5185      } else if (rpointee->isFunctionType()) {
5186        if (getLangOptions().CPlusPlus) {
5187          Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
5188            << rex->getType() << rex->getSourceRange();
5189          return QualType();
5190        }
5191
5192        // GNU extension: arithmetic on pointer to function
5193        if (!ComplainAboutFunc)
5194          ComplainAboutFunc = rex;
5195      } else if (!rpointee->isDependentType() &&
5196                 RequireCompleteType(Loc, rpointee,
5197                                     PDiag(diag::err_typecheck_sub_ptr_object)
5198                                       << rex->getSourceRange()
5199                                       << rex->getType()))
5200        return QualType();
5201
5202      if (getLangOptions().CPlusPlus) {
5203        // Pointee types must be the same: C++ [expr.add]
5204        if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
5205          Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
5206            << lex->getType() << rex->getType()
5207            << lex->getSourceRange() << rex->getSourceRange();
5208          return QualType();
5209        }
5210      } else {
5211        // Pointee types must be compatible C99 6.5.6p3
5212        if (!Context.typesAreCompatible(
5213                Context.getCanonicalType(lpointee).getUnqualifiedType(),
5214                Context.getCanonicalType(rpointee).getUnqualifiedType())) {
5215          Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
5216            << lex->getType() << rex->getType()
5217            << lex->getSourceRange() << rex->getSourceRange();
5218          return QualType();
5219        }
5220      }
5221
5222      if (ComplainAboutVoid)
5223        Diag(Loc, diag::ext_gnu_void_ptr)
5224          << lex->getSourceRange() << rex->getSourceRange();
5225      if (ComplainAboutFunc)
5226        Diag(Loc, diag::ext_gnu_ptr_func_arith)
5227          << ComplainAboutFunc->getType()
5228          << ComplainAboutFunc->getSourceRange();
5229
5230      if (CompLHSTy) *CompLHSTy = lex->getType();
5231      return Context.getPointerDiffType();
5232    }
5233  }
5234
5235  return InvalidOperands(Loc, lex, rex);
5236}
5237
5238// C99 6.5.7
5239QualType Sema::CheckShiftOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
5240                                  bool isCompAssign) {
5241  // C99 6.5.7p2: Each of the operands shall have integer type.
5242  if (!lex->getType()->isIntegerType() || !rex->getType()->isIntegerType())
5243    return InvalidOperands(Loc, lex, rex);
5244
5245  // Vector shifts promote their scalar inputs to vector type.
5246  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
5247    return CheckVectorOperands(Loc, lex, rex);
5248
5249  // Shifts don't perform usual arithmetic conversions, they just do integer
5250  // promotions on each operand. C99 6.5.7p3
5251  QualType LHSTy = Context.isPromotableBitField(lex);
5252  if (LHSTy.isNull()) {
5253    LHSTy = lex->getType();
5254    if (LHSTy->isPromotableIntegerType())
5255      LHSTy = Context.getPromotedIntegerType(LHSTy);
5256  }
5257  if (!isCompAssign)
5258    ImpCastExprToType(lex, LHSTy, CastExpr::CK_IntegralCast);
5259
5260  UsualUnaryConversions(rex);
5261
5262  // Sanity-check shift operands
5263  llvm::APSInt Right;
5264  // Check right/shifter operand
5265  if (!rex->isValueDependent() &&
5266      rex->isIntegerConstantExpr(Right, Context)) {
5267    if (Right.isNegative())
5268      Diag(Loc, diag::warn_shift_negative) << rex->getSourceRange();
5269    else {
5270      llvm::APInt LeftBits(Right.getBitWidth(),
5271                          Context.getTypeSize(lex->getType()));
5272      if (Right.uge(LeftBits))
5273        Diag(Loc, diag::warn_shift_gt_typewidth) << rex->getSourceRange();
5274    }
5275  }
5276
5277  // "The type of the result is that of the promoted left operand."
5278  return LHSTy;
5279}
5280
5281// C99 6.5.8, C++ [expr.rel]
5282QualType Sema::CheckCompareOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
5283                                    unsigned OpaqueOpc, bool isRelational) {
5284  BinaryOperator::Opcode Opc = (BinaryOperator::Opcode)OpaqueOpc;
5285
5286  // Handle vector comparisons separately.
5287  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
5288    return CheckVectorCompareOperands(lex, rex, Loc, isRelational);
5289
5290  // C99 6.5.8p3 / C99 6.5.9p4
5291  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
5292    UsualArithmeticConversions(lex, rex);
5293  else {
5294    UsualUnaryConversions(lex);
5295    UsualUnaryConversions(rex);
5296  }
5297  QualType lType = lex->getType();
5298  QualType rType = rex->getType();
5299
5300  if (!lType->isFloatingType()
5301      && !(lType->isBlockPointerType() && isRelational)) {
5302    // For non-floating point types, check for self-comparisons of the form
5303    // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
5304    // often indicate logic errors in the program.
5305    // NOTE: Don't warn about comparisons of enum constants. These can arise
5306    //  from macro expansions, and are usually quite deliberate.
5307    Expr *LHSStripped = lex->IgnoreParens();
5308    Expr *RHSStripped = rex->IgnoreParens();
5309    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LHSStripped))
5310      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RHSStripped))
5311        if (DRL->getDecl() == DRR->getDecl() &&
5312            !isa<EnumConstantDecl>(DRL->getDecl()))
5313          DiagRuntimeBehavior(Loc, PDiag(diag::warn_selfcomparison));
5314
5315    if (isa<CastExpr>(LHSStripped))
5316      LHSStripped = LHSStripped->IgnoreParenCasts();
5317    if (isa<CastExpr>(RHSStripped))
5318      RHSStripped = RHSStripped->IgnoreParenCasts();
5319
5320    // Warn about comparisons against a string constant (unless the other
5321    // operand is null), the user probably wants strcmp.
5322    Expr *literalString = 0;
5323    Expr *literalStringStripped = 0;
5324    if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
5325        !RHSStripped->isNullPointerConstant(Context,
5326                                            Expr::NPC_ValueDependentIsNull)) {
5327      literalString = lex;
5328      literalStringStripped = LHSStripped;
5329    } else if ((isa<StringLiteral>(RHSStripped) ||
5330                isa<ObjCEncodeExpr>(RHSStripped)) &&
5331               !LHSStripped->isNullPointerConstant(Context,
5332                                            Expr::NPC_ValueDependentIsNull)) {
5333      literalString = rex;
5334      literalStringStripped = RHSStripped;
5335    }
5336
5337    if (literalString) {
5338      std::string resultComparison;
5339      switch (Opc) {
5340      case BinaryOperator::LT: resultComparison = ") < 0"; break;
5341      case BinaryOperator::GT: resultComparison = ") > 0"; break;
5342      case BinaryOperator::LE: resultComparison = ") <= 0"; break;
5343      case BinaryOperator::GE: resultComparison = ") >= 0"; break;
5344      case BinaryOperator::EQ: resultComparison = ") == 0"; break;
5345      case BinaryOperator::NE: resultComparison = ") != 0"; break;
5346      default: assert(false && "Invalid comparison operator");
5347      }
5348
5349      DiagRuntimeBehavior(Loc,
5350        PDiag(diag::warn_stringcompare)
5351          << isa<ObjCEncodeExpr>(literalStringStripped)
5352          << literalString->getSourceRange());
5353    }
5354  }
5355
5356  // The result of comparisons is 'bool' in C++, 'int' in C.
5357  QualType ResultTy = getLangOptions().CPlusPlus ? Context.BoolTy:Context.IntTy;
5358
5359  if (isRelational) {
5360    if (lType->isRealType() && rType->isRealType())
5361      return ResultTy;
5362  } else {
5363    // Check for comparisons of floating point operands using != and ==.
5364    if (lType->isFloatingType() && rType->isFloatingType())
5365      CheckFloatComparison(Loc,lex,rex);
5366
5367    if (lType->isArithmeticType() && rType->isArithmeticType())
5368      return ResultTy;
5369  }
5370
5371  bool LHSIsNull = lex->isNullPointerConstant(Context,
5372                                              Expr::NPC_ValueDependentIsNull);
5373  bool RHSIsNull = rex->isNullPointerConstant(Context,
5374                                              Expr::NPC_ValueDependentIsNull);
5375
5376  // All of the following pointer related warnings are GCC extensions, except
5377  // when handling null pointer constants. One day, we can consider making them
5378  // errors (when -pedantic-errors is enabled).
5379  if (lType->isPointerType() && rType->isPointerType()) { // C99 6.5.8p2
5380    QualType LCanPointeeTy =
5381      Context.getCanonicalType(lType->getAs<PointerType>()->getPointeeType());
5382    QualType RCanPointeeTy =
5383      Context.getCanonicalType(rType->getAs<PointerType>()->getPointeeType());
5384
5385    if (getLangOptions().CPlusPlus) {
5386      if (LCanPointeeTy == RCanPointeeTy)
5387        return ResultTy;
5388      if (!isRelational &&
5389          (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
5390        // Valid unless comparison between non-null pointer and function pointer
5391        // This is a gcc extension compatibility comparison.
5392        if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
5393            && !LHSIsNull && !RHSIsNull) {
5394          Diag(Loc, diag::ext_typecheck_comparison_of_fptr_to_void)
5395            << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5396          ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
5397          return ResultTy;
5398        }
5399      }
5400      // C++ [expr.rel]p2:
5401      //   [...] Pointer conversions (4.10) and qualification
5402      //   conversions (4.4) are performed on pointer operands (or on
5403      //   a pointer operand and a null pointer constant) to bring
5404      //   them to their composite pointer type. [...]
5405      //
5406      // C++ [expr.eq]p1 uses the same notion for (in)equality
5407      // comparisons of pointers.
5408      bool NonStandardCompositeType = false;
5409      QualType T = FindCompositePointerType(Loc, lex, rex,
5410                              isSFINAEContext()? 0 : &NonStandardCompositeType);
5411      if (T.isNull()) {
5412        Diag(Loc, diag::err_typecheck_comparison_of_distinct_pointers)
5413          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5414        return QualType();
5415      } else if (NonStandardCompositeType) {
5416        Diag(Loc,
5417             diag::ext_typecheck_comparison_of_distinct_pointers_nonstandard)
5418          << lType << rType << T
5419          << lex->getSourceRange() << rex->getSourceRange();
5420      }
5421
5422      ImpCastExprToType(lex, T, CastExpr::CK_BitCast);
5423      ImpCastExprToType(rex, T, CastExpr::CK_BitCast);
5424      return ResultTy;
5425    }
5426    // C99 6.5.9p2 and C99 6.5.8p2
5427    if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
5428                                   RCanPointeeTy.getUnqualifiedType())) {
5429      // Valid unless a relational comparison of function pointers
5430      if (isRelational && LCanPointeeTy->isFunctionType()) {
5431        Diag(Loc, diag::ext_typecheck_ordered_comparison_of_function_pointers)
5432          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5433      }
5434    } else if (!isRelational &&
5435               (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
5436      // Valid unless comparison between non-null pointer and function pointer
5437      if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
5438          && !LHSIsNull && !RHSIsNull) {
5439        Diag(Loc, diag::ext_typecheck_comparison_of_fptr_to_void)
5440          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5441      }
5442    } else {
5443      // Invalid
5444      Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
5445        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5446    }
5447    if (LCanPointeeTy != RCanPointeeTy)
5448      ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
5449    return ResultTy;
5450  }
5451
5452  if (getLangOptions().CPlusPlus) {
5453    // Comparison of pointers with null pointer constants and equality
5454    // comparisons of member pointers to null pointer constants.
5455    if (RHSIsNull &&
5456        (lType->isPointerType() ||
5457         (!isRelational && lType->isMemberPointerType()))) {
5458      ImpCastExprToType(rex, lType, CastExpr::CK_NullToMemberPointer);
5459      return ResultTy;
5460    }
5461    if (LHSIsNull &&
5462        (rType->isPointerType() ||
5463         (!isRelational && rType->isMemberPointerType()))) {
5464      ImpCastExprToType(lex, rType, CastExpr::CK_NullToMemberPointer);
5465      return ResultTy;
5466    }
5467
5468    // Comparison of member pointers.
5469    if (!isRelational &&
5470        lType->isMemberPointerType() && rType->isMemberPointerType()) {
5471      // C++ [expr.eq]p2:
5472      //   In addition, pointers to members can be compared, or a pointer to
5473      //   member and a null pointer constant. Pointer to member conversions
5474      //   (4.11) and qualification conversions (4.4) are performed to bring
5475      //   them to a common type. If one operand is a null pointer constant,
5476      //   the common type is the type of the other operand. Otherwise, the
5477      //   common type is a pointer to member type similar (4.4) to the type
5478      //   of one of the operands, with a cv-qualification signature (4.4)
5479      //   that is the union of the cv-qualification signatures of the operand
5480      //   types.
5481      bool NonStandardCompositeType = false;
5482      QualType T = FindCompositePointerType(Loc, lex, rex,
5483                              isSFINAEContext()? 0 : &NonStandardCompositeType);
5484      if (T.isNull()) {
5485        Diag(Loc, diag::err_typecheck_comparison_of_distinct_pointers)
5486          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5487        return QualType();
5488      } else if (NonStandardCompositeType) {
5489        Diag(Loc,
5490             diag::ext_typecheck_comparison_of_distinct_pointers_nonstandard)
5491          << lType << rType << T
5492          << lex->getSourceRange() << rex->getSourceRange();
5493      }
5494
5495      ImpCastExprToType(lex, T, CastExpr::CK_BitCast);
5496      ImpCastExprToType(rex, T, CastExpr::CK_BitCast);
5497      return ResultTy;
5498    }
5499
5500    // Comparison of nullptr_t with itself.
5501    if (lType->isNullPtrType() && rType->isNullPtrType())
5502      return ResultTy;
5503  }
5504
5505  // Handle block pointer types.
5506  if (!isRelational && lType->isBlockPointerType() && rType->isBlockPointerType()) {
5507    QualType lpointee = lType->getAs<BlockPointerType>()->getPointeeType();
5508    QualType rpointee = rType->getAs<BlockPointerType>()->getPointeeType();
5509
5510    if (!LHSIsNull && !RHSIsNull &&
5511        !Context.typesAreCompatible(lpointee, rpointee)) {
5512      Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
5513        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5514    }
5515    ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
5516    return ResultTy;
5517  }
5518  // Allow block pointers to be compared with null pointer constants.
5519  if (!isRelational
5520      && ((lType->isBlockPointerType() && rType->isPointerType())
5521          || (lType->isPointerType() && rType->isBlockPointerType()))) {
5522    if (!LHSIsNull && !RHSIsNull) {
5523      if (!((rType->isPointerType() && rType->getAs<PointerType>()
5524             ->getPointeeType()->isVoidType())
5525            || (lType->isPointerType() && lType->getAs<PointerType>()
5526                ->getPointeeType()->isVoidType())))
5527        Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
5528          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5529    }
5530    ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
5531    return ResultTy;
5532  }
5533
5534  if ((lType->isObjCObjectPointerType() || rType->isObjCObjectPointerType())) {
5535    if (lType->isPointerType() || rType->isPointerType()) {
5536      const PointerType *LPT = lType->getAs<PointerType>();
5537      const PointerType *RPT = rType->getAs<PointerType>();
5538      bool LPtrToVoid = LPT ?
5539        Context.getCanonicalType(LPT->getPointeeType())->isVoidType() : false;
5540      bool RPtrToVoid = RPT ?
5541        Context.getCanonicalType(RPT->getPointeeType())->isVoidType() : false;
5542
5543      if (!LPtrToVoid && !RPtrToVoid &&
5544          !Context.typesAreCompatible(lType, rType)) {
5545        Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
5546          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5547      }
5548      ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
5549      return ResultTy;
5550    }
5551    if (lType->isObjCObjectPointerType() && rType->isObjCObjectPointerType()) {
5552      if (!Context.areComparableObjCPointerTypes(lType, rType))
5553        Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
5554          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5555      ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
5556      return ResultTy;
5557    }
5558  }
5559  if (lType->isAnyPointerType() && rType->isIntegerType()) {
5560    unsigned DiagID = 0;
5561    if (RHSIsNull) {
5562      if (isRelational)
5563        DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
5564    } else if (isRelational)
5565      DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
5566    else
5567      DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
5568
5569    if (DiagID) {
5570      Diag(Loc, DiagID)
5571        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5572    }
5573    ImpCastExprToType(rex, lType, CastExpr::CK_IntegralToPointer);
5574    return ResultTy;
5575  }
5576  if (lType->isIntegerType() && rType->isAnyPointerType()) {
5577    unsigned DiagID = 0;
5578    if (LHSIsNull) {
5579      if (isRelational)
5580        DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
5581    } else if (isRelational)
5582      DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
5583    else
5584      DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
5585
5586    if (DiagID) {
5587      Diag(Loc, DiagID)
5588        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5589    }
5590    ImpCastExprToType(lex, rType, CastExpr::CK_IntegralToPointer);
5591    return ResultTy;
5592  }
5593  // Handle block pointers.
5594  if (!isRelational && RHSIsNull
5595      && lType->isBlockPointerType() && rType->isIntegerType()) {
5596    ImpCastExprToType(rex, lType, CastExpr::CK_IntegralToPointer);
5597    return ResultTy;
5598  }
5599  if (!isRelational && LHSIsNull
5600      && lType->isIntegerType() && rType->isBlockPointerType()) {
5601    ImpCastExprToType(lex, rType, CastExpr::CK_IntegralToPointer);
5602    return ResultTy;
5603  }
5604  return InvalidOperands(Loc, lex, rex);
5605}
5606
5607/// CheckVectorCompareOperands - vector comparisons are a clang extension that
5608/// operates on extended vector types.  Instead of producing an IntTy result,
5609/// like a scalar comparison, a vector comparison produces a vector of integer
5610/// types.
5611QualType Sema::CheckVectorCompareOperands(Expr *&lex, Expr *&rex,
5612                                          SourceLocation Loc,
5613                                          bool isRelational) {
5614  // Check to make sure we're operating on vectors of the same type and width,
5615  // Allowing one side to be a scalar of element type.
5616  QualType vType = CheckVectorOperands(Loc, lex, rex);
5617  if (vType.isNull())
5618    return vType;
5619
5620  QualType lType = lex->getType();
5621  QualType rType = rex->getType();
5622
5623  // For non-floating point types, check for self-comparisons of the form
5624  // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
5625  // often indicate logic errors in the program.
5626  if (!lType->isFloatingType()) {
5627    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens()))
5628      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens()))
5629        if (DRL->getDecl() == DRR->getDecl())
5630          DiagRuntimeBehavior(Loc, PDiag(diag::warn_selfcomparison));
5631  }
5632
5633  // Check for comparisons of floating point operands using != and ==.
5634  if (!isRelational && lType->isFloatingType()) {
5635    assert (rType->isFloatingType());
5636    CheckFloatComparison(Loc,lex,rex);
5637  }
5638
5639  // Return the type for the comparison, which is the same as vector type for
5640  // integer vectors, or an integer type of identical size and number of
5641  // elements for floating point vectors.
5642  if (lType->isIntegerType())
5643    return lType;
5644
5645  const VectorType *VTy = lType->getAs<VectorType>();
5646  unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
5647  if (TypeSize == Context.getTypeSize(Context.IntTy))
5648    return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
5649  if (TypeSize == Context.getTypeSize(Context.LongTy))
5650    return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
5651
5652  assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
5653         "Unhandled vector element size in vector compare");
5654  return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
5655}
5656
5657inline QualType Sema::CheckBitwiseOperands(
5658  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign) {
5659  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
5660    return CheckVectorOperands(Loc, lex, rex);
5661
5662  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
5663
5664  if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
5665    return compType;
5666  return InvalidOperands(Loc, lex, rex);
5667}
5668
5669inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
5670  Expr *&lex, Expr *&rex, SourceLocation Loc) {
5671  if (!Context.getLangOptions().CPlusPlus) {
5672    UsualUnaryConversions(lex);
5673    UsualUnaryConversions(rex);
5674
5675    if (!lex->getType()->isScalarType() || !rex->getType()->isScalarType())
5676      return InvalidOperands(Loc, lex, rex);
5677
5678    return Context.IntTy;
5679  }
5680
5681  // C++ [expr.log.and]p1
5682  // C++ [expr.log.or]p1
5683  // The operands are both implicitly converted to type bool (clause 4).
5684  StandardConversionSequence LHS;
5685  if (!IsStandardConversion(lex, Context.BoolTy,
5686                            /*InOverloadResolution=*/false, LHS))
5687    return InvalidOperands(Loc, lex, rex);
5688
5689  if (PerformImplicitConversion(lex, Context.BoolTy, LHS,
5690                                AA_Passing, /*IgnoreBaseAccess=*/false))
5691    return InvalidOperands(Loc, lex, rex);
5692
5693  StandardConversionSequence RHS;
5694  if (!IsStandardConversion(rex, Context.BoolTy,
5695                            /*InOverloadResolution=*/false, RHS))
5696    return InvalidOperands(Loc, lex, rex);
5697
5698  if (PerformImplicitConversion(rex, Context.BoolTy, RHS,
5699                                AA_Passing, /*IgnoreBaseAccess=*/false))
5700    return InvalidOperands(Loc, lex, rex);
5701
5702  // C++ [expr.log.and]p2
5703  // C++ [expr.log.or]p2
5704  // The result is a bool.
5705  return Context.BoolTy;
5706}
5707
5708/// IsReadonlyProperty - Verify that otherwise a valid l-value expression
5709/// is a read-only property; return true if so. A readonly property expression
5710/// depends on various declarations and thus must be treated specially.
5711///
5712static bool IsReadonlyProperty(Expr *E, Sema &S) {
5713  if (E->getStmtClass() == Expr::ObjCPropertyRefExprClass) {
5714    const ObjCPropertyRefExpr* PropExpr = cast<ObjCPropertyRefExpr>(E);
5715    if (ObjCPropertyDecl *PDecl = PropExpr->getProperty()) {
5716      QualType BaseType = PropExpr->getBase()->getType();
5717      if (const ObjCObjectPointerType *OPT =
5718            BaseType->getAsObjCInterfacePointerType())
5719        if (ObjCInterfaceDecl *IFace = OPT->getInterfaceDecl())
5720          if (S.isPropertyReadonly(PDecl, IFace))
5721            return true;
5722    }
5723  }
5724  return false;
5725}
5726
5727/// CheckForModifiableLvalue - Verify that E is a modifiable lvalue.  If not,
5728/// emit an error and return true.  If so, return false.
5729static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
5730  SourceLocation OrigLoc = Loc;
5731  Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
5732                                                              &Loc);
5733  if (IsLV == Expr::MLV_Valid && IsReadonlyProperty(E, S))
5734    IsLV = Expr::MLV_ReadonlyProperty;
5735  if (IsLV == Expr::MLV_Valid)
5736    return false;
5737
5738  unsigned Diag = 0;
5739  bool NeedType = false;
5740  switch (IsLV) { // C99 6.5.16p2
5741  case Expr::MLV_ConstQualified: Diag = diag::err_typecheck_assign_const; break;
5742  case Expr::MLV_ArrayType:
5743    Diag = diag::err_typecheck_array_not_modifiable_lvalue;
5744    NeedType = true;
5745    break;
5746  case Expr::MLV_NotObjectType:
5747    Diag = diag::err_typecheck_non_object_not_modifiable_lvalue;
5748    NeedType = true;
5749    break;
5750  case Expr::MLV_LValueCast:
5751    Diag = diag::err_typecheck_lvalue_casts_not_supported;
5752    break;
5753  case Expr::MLV_Valid:
5754    llvm_unreachable("did not take early return for MLV_Valid");
5755  case Expr::MLV_InvalidExpression:
5756  case Expr::MLV_MemberFunction:
5757  case Expr::MLV_ClassTemporary:
5758    Diag = diag::err_typecheck_expression_not_modifiable_lvalue;
5759    break;
5760  case Expr::MLV_IncompleteType:
5761  case Expr::MLV_IncompleteVoidType:
5762    return S.RequireCompleteType(Loc, E->getType(),
5763              S.PDiag(diag::err_typecheck_incomplete_type_not_modifiable_lvalue)
5764                  << E->getSourceRange());
5765  case Expr::MLV_DuplicateVectorComponents:
5766    Diag = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
5767    break;
5768  case Expr::MLV_NotBlockQualified:
5769    Diag = diag::err_block_decl_ref_not_modifiable_lvalue;
5770    break;
5771  case Expr::MLV_ReadonlyProperty:
5772    Diag = diag::error_readonly_property_assignment;
5773    break;
5774  case Expr::MLV_NoSetterProperty:
5775    Diag = diag::error_nosetter_property_assignment;
5776    break;
5777  case Expr::MLV_SubObjCPropertySetting:
5778    Diag = diag::error_no_subobject_property_setting;
5779    break;
5780  }
5781
5782  SourceRange Assign;
5783  if (Loc != OrigLoc)
5784    Assign = SourceRange(OrigLoc, OrigLoc);
5785  if (NeedType)
5786    S.Diag(Loc, Diag) << E->getType() << E->getSourceRange() << Assign;
5787  else
5788    S.Diag(Loc, Diag) << E->getSourceRange() << Assign;
5789  return true;
5790}
5791
5792
5793
5794// C99 6.5.16.1
5795QualType Sema::CheckAssignmentOperands(Expr *LHS, Expr *&RHS,
5796                                       SourceLocation Loc,
5797                                       QualType CompoundType) {
5798  // Verify that LHS is a modifiable lvalue, and emit error if not.
5799  if (CheckForModifiableLvalue(LHS, Loc, *this))
5800    return QualType();
5801
5802  QualType LHSType = LHS->getType();
5803  QualType RHSType = CompoundType.isNull() ? RHS->getType() : CompoundType;
5804
5805  AssignConvertType ConvTy;
5806  if (CompoundType.isNull()) {
5807    // Simple assignment "x = y".
5808    ConvTy = CheckSingleAssignmentConstraints(LHSType, RHS);
5809    // Special case of NSObject attributes on c-style pointer types.
5810    if (ConvTy == IncompatiblePointer &&
5811        ((Context.isObjCNSObjectType(LHSType) &&
5812          RHSType->isObjCObjectPointerType()) ||
5813         (Context.isObjCNSObjectType(RHSType) &&
5814          LHSType->isObjCObjectPointerType())))
5815      ConvTy = Compatible;
5816
5817    // If the RHS is a unary plus or minus, check to see if they = and + are
5818    // right next to each other.  If so, the user may have typo'd "x =+ 4"
5819    // instead of "x += 4".
5820    Expr *RHSCheck = RHS;
5821    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
5822      RHSCheck = ICE->getSubExpr();
5823    if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
5824      if ((UO->getOpcode() == UnaryOperator::Plus ||
5825           UO->getOpcode() == UnaryOperator::Minus) &&
5826          Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
5827          // Only if the two operators are exactly adjacent.
5828          Loc.getFileLocWithOffset(1) == UO->getOperatorLoc() &&
5829          // And there is a space or other character before the subexpr of the
5830          // unary +/-.  We don't want to warn on "x=-1".
5831          Loc.getFileLocWithOffset(2) != UO->getSubExpr()->getLocStart() &&
5832          UO->getSubExpr()->getLocStart().isFileID()) {
5833        Diag(Loc, diag::warn_not_compound_assign)
5834          << (UO->getOpcode() == UnaryOperator::Plus ? "+" : "-")
5835          << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
5836      }
5837    }
5838  } else {
5839    // Compound assignment "x += y"
5840    ConvTy = CheckAssignmentConstraints(LHSType, RHSType);
5841  }
5842
5843  if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
5844                               RHS, AA_Assigning))
5845    return QualType();
5846
5847  // C99 6.5.16p3: The type of an assignment expression is the type of the
5848  // left operand unless the left operand has qualified type, in which case
5849  // it is the unqualified version of the type of the left operand.
5850  // C99 6.5.16.1p2: In simple assignment, the value of the right operand
5851  // is converted to the type of the assignment expression (above).
5852  // C++ 5.17p1: the type of the assignment expression is that of its left
5853  // operand.
5854  return LHSType.getUnqualifiedType();
5855}
5856
5857// C99 6.5.17
5858QualType Sema::CheckCommaOperands(Expr *LHS, Expr *&RHS, SourceLocation Loc) {
5859  // Comma performs lvalue conversion (C99 6.3.2.1), but not unary conversions.
5860  // C++ does not perform this conversion (C++ [expr.comma]p1).
5861  if (!getLangOptions().CPlusPlus)
5862    DefaultFunctionArrayLvalueConversion(RHS);
5863
5864  // FIXME: Check that RHS type is complete in C mode (it's legal for it to be
5865  // incomplete in C++).
5866
5867  return RHS->getType();
5868}
5869
5870/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
5871/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
5872QualType Sema::CheckIncrementDecrementOperand(Expr *Op, SourceLocation OpLoc,
5873                                              bool isInc, bool isPrefix) {
5874  if (Op->isTypeDependent())
5875    return Context.DependentTy;
5876
5877  QualType ResType = Op->getType();
5878  assert(!ResType.isNull() && "no type for increment/decrement expression");
5879
5880  if (getLangOptions().CPlusPlus && ResType->isBooleanType()) {
5881    // Decrement of bool is not allowed.
5882    if (!isInc) {
5883      Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
5884      return QualType();
5885    }
5886    // Increment of bool sets it to true, but is deprecated.
5887    Diag(OpLoc, diag::warn_increment_bool) << Op->getSourceRange();
5888  } else if (ResType->isRealType()) {
5889    // OK!
5890  } else if (ResType->isAnyPointerType()) {
5891    QualType PointeeTy = ResType->getPointeeType();
5892
5893    // C99 6.5.2.4p2, 6.5.6p2
5894    if (PointeeTy->isVoidType()) {
5895      if (getLangOptions().CPlusPlus) {
5896        Diag(OpLoc, diag::err_typecheck_pointer_arith_void_type)
5897          << Op->getSourceRange();
5898        return QualType();
5899      }
5900
5901      // Pointer to void is a GNU extension in C.
5902      Diag(OpLoc, diag::ext_gnu_void_ptr) << Op->getSourceRange();
5903    } else if (PointeeTy->isFunctionType()) {
5904      if (getLangOptions().CPlusPlus) {
5905        Diag(OpLoc, diag::err_typecheck_pointer_arith_function_type)
5906          << Op->getType() << Op->getSourceRange();
5907        return QualType();
5908      }
5909
5910      Diag(OpLoc, diag::ext_gnu_ptr_func_arith)
5911        << ResType << Op->getSourceRange();
5912    } else if (RequireCompleteType(OpLoc, PointeeTy,
5913                           PDiag(diag::err_typecheck_arithmetic_incomplete_type)
5914                             << Op->getSourceRange()
5915                             << ResType))
5916      return QualType();
5917    // Diagnose bad cases where we step over interface counts.
5918    else if (PointeeTy->isObjCObjectType() && LangOpts.ObjCNonFragileABI) {
5919      Diag(OpLoc, diag::err_arithmetic_nonfragile_interface)
5920        << PointeeTy << Op->getSourceRange();
5921      return QualType();
5922    }
5923  } else if (ResType->isAnyComplexType()) {
5924    // C99 does not support ++/-- on complex types, we allow as an extension.
5925    Diag(OpLoc, diag::ext_integer_increment_complex)
5926      << ResType << Op->getSourceRange();
5927  } else {
5928    Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
5929      << ResType << int(isInc) << Op->getSourceRange();
5930    return QualType();
5931  }
5932  // At this point, we know we have a real, complex or pointer type.
5933  // Now make sure the operand is a modifiable lvalue.
5934  if (CheckForModifiableLvalue(Op, OpLoc, *this))
5935    return QualType();
5936  // In C++, a prefix increment is the same type as the operand. Otherwise
5937  // (in C or with postfix), the increment is the unqualified type of the
5938  // operand.
5939  return isPrefix && getLangOptions().CPlusPlus
5940    ? ResType : ResType.getUnqualifiedType();
5941}
5942
5943/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
5944/// This routine allows us to typecheck complex/recursive expressions
5945/// where the declaration is needed for type checking. We only need to
5946/// handle cases when the expression references a function designator
5947/// or is an lvalue. Here are some examples:
5948///  - &(x) => x
5949///  - &*****f => f for f a function designator.
5950///  - &s.xx => s
5951///  - &s.zz[1].yy -> s, if zz is an array
5952///  - *(x + 1) -> x, if x is an array
5953///  - &"123"[2] -> 0
5954///  - & __real__ x -> x
5955static NamedDecl *getPrimaryDecl(Expr *E) {
5956  switch (E->getStmtClass()) {
5957  case Stmt::DeclRefExprClass:
5958    return cast<DeclRefExpr>(E)->getDecl();
5959  case Stmt::MemberExprClass:
5960    // If this is an arrow operator, the address is an offset from
5961    // the base's value, so the object the base refers to is
5962    // irrelevant.
5963    if (cast<MemberExpr>(E)->isArrow())
5964      return 0;
5965    // Otherwise, the expression refers to a part of the base
5966    return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
5967  case Stmt::ArraySubscriptExprClass: {
5968    // FIXME: This code shouldn't be necessary!  We should catch the implicit
5969    // promotion of register arrays earlier.
5970    Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
5971    if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
5972      if (ICE->getSubExpr()->getType()->isArrayType())
5973        return getPrimaryDecl(ICE->getSubExpr());
5974    }
5975    return 0;
5976  }
5977  case Stmt::UnaryOperatorClass: {
5978    UnaryOperator *UO = cast<UnaryOperator>(E);
5979
5980    switch(UO->getOpcode()) {
5981    case UnaryOperator::Real:
5982    case UnaryOperator::Imag:
5983    case UnaryOperator::Extension:
5984      return getPrimaryDecl(UO->getSubExpr());
5985    default:
5986      return 0;
5987    }
5988  }
5989  case Stmt::ParenExprClass:
5990    return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
5991  case Stmt::ImplicitCastExprClass:
5992    // If the result of an implicit cast is an l-value, we care about
5993    // the sub-expression; otherwise, the result here doesn't matter.
5994    return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
5995  default:
5996    return 0;
5997  }
5998}
5999
6000/// CheckAddressOfOperand - The operand of & must be either a function
6001/// designator or an lvalue designating an object. If it is an lvalue, the
6002/// object cannot be declared with storage class register or be a bit field.
6003/// Note: The usual conversions are *not* applied to the operand of the &
6004/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
6005/// In C++, the operand might be an overloaded function name, in which case
6006/// we allow the '&' but retain the overloaded-function type.
6007QualType Sema::CheckAddressOfOperand(Expr *op, SourceLocation OpLoc) {
6008  // Make sure to ignore parentheses in subsequent checks
6009  op = op->IgnoreParens();
6010
6011  if (op->isTypeDependent())
6012    return Context.DependentTy;
6013
6014  if (getLangOptions().C99) {
6015    // Implement C99-only parts of addressof rules.
6016    if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
6017      if (uOp->getOpcode() == UnaryOperator::Deref)
6018        // Per C99 6.5.3.2, the address of a deref always returns a valid result
6019        // (assuming the deref expression is valid).
6020        return uOp->getSubExpr()->getType();
6021    }
6022    // Technically, there should be a check for array subscript
6023    // expressions here, but the result of one is always an lvalue anyway.
6024  }
6025  NamedDecl *dcl = getPrimaryDecl(op);
6026  Expr::isLvalueResult lval = op->isLvalue(Context);
6027
6028  MemberExpr *ME = dyn_cast<MemberExpr>(op);
6029  if (lval == Expr::LV_MemberFunction && ME &&
6030      isa<CXXMethodDecl>(ME->getMemberDecl())) {
6031    ValueDecl *dcl = cast<MemberExpr>(op)->getMemberDecl();
6032    // &f where f is a member of the current object, or &o.f, or &p->f
6033    // All these are not allowed, and we need to catch them before the dcl
6034    // branch of the if, below.
6035    Diag(OpLoc, diag::err_unqualified_pointer_member_function)
6036        << dcl;
6037    // FIXME: Improve this diagnostic and provide a fixit.
6038
6039    // Now recover by acting as if the function had been accessed qualified.
6040    return Context.getMemberPointerType(op->getType(),
6041                Context.getTypeDeclType(cast<RecordDecl>(dcl->getDeclContext()))
6042                       .getTypePtr());
6043  } else if (lval == Expr::LV_ClassTemporary) {
6044    Diag(OpLoc, isSFINAEContext()? diag::err_typecheck_addrof_class_temporary
6045                                 : diag::ext_typecheck_addrof_class_temporary)
6046      << op->getType() << op->getSourceRange();
6047    if (isSFINAEContext())
6048      return QualType();
6049  } else if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
6050    // C99 6.5.3.2p1
6051    // The operand must be either an l-value or a function designator
6052    if (!op->getType()->isFunctionType()) {
6053      // FIXME: emit more specific diag...
6054      Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
6055        << op->getSourceRange();
6056      return QualType();
6057    }
6058  } else if (op->getBitField()) { // C99 6.5.3.2p1
6059    // The operand cannot be a bit-field
6060    Diag(OpLoc, diag::err_typecheck_address_of)
6061      << "bit-field" << op->getSourceRange();
6062        return QualType();
6063  } else if (op->refersToVectorElement()) {
6064    // The operand cannot be an element of a vector
6065    Diag(OpLoc, diag::err_typecheck_address_of)
6066      << "vector element" << op->getSourceRange();
6067    return QualType();
6068  } else if (isa<ObjCPropertyRefExpr>(op)) {
6069    // cannot take address of a property expression.
6070    Diag(OpLoc, diag::err_typecheck_address_of)
6071      << "property expression" << op->getSourceRange();
6072    return QualType();
6073  } else if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(op)) {
6074    // FIXME: Can LHS ever be null here?
6075    if (!CheckAddressOfOperand(CO->getTrueExpr(), OpLoc).isNull())
6076      return CheckAddressOfOperand(CO->getFalseExpr(), OpLoc);
6077  } else if (isa<UnresolvedLookupExpr>(op)) {
6078    return Context.OverloadTy;
6079  } else if (dcl) { // C99 6.5.3.2p1
6080    // We have an lvalue with a decl. Make sure the decl is not declared
6081    // with the register storage-class specifier.
6082    if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
6083      if (vd->getStorageClass() == VarDecl::Register) {
6084        Diag(OpLoc, diag::err_typecheck_address_of)
6085          << "register variable" << op->getSourceRange();
6086        return QualType();
6087      }
6088    } else if (isa<FunctionTemplateDecl>(dcl)) {
6089      return Context.OverloadTy;
6090    } else if (FieldDecl *FD = dyn_cast<FieldDecl>(dcl)) {
6091      // Okay: we can take the address of a field.
6092      // Could be a pointer to member, though, if there is an explicit
6093      // scope qualifier for the class.
6094      if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier()) {
6095        DeclContext *Ctx = dcl->getDeclContext();
6096        if (Ctx && Ctx->isRecord()) {
6097          if (FD->getType()->isReferenceType()) {
6098            Diag(OpLoc,
6099                 diag::err_cannot_form_pointer_to_member_of_reference_type)
6100              << FD->getDeclName() << FD->getType();
6101            return QualType();
6102          }
6103
6104          return Context.getMemberPointerType(op->getType(),
6105                Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
6106        }
6107      }
6108    } else if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(dcl)) {
6109      // Okay: we can take the address of a function.
6110      // As above.
6111      if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier() &&
6112          MD->isInstance())
6113        return Context.getMemberPointerType(op->getType(),
6114              Context.getTypeDeclType(MD->getParent()).getTypePtr());
6115    } else if (!isa<FunctionDecl>(dcl))
6116      assert(0 && "Unknown/unexpected decl type");
6117  }
6118
6119  if (lval == Expr::LV_IncompleteVoidType) {
6120    // Taking the address of a void variable is technically illegal, but we
6121    // allow it in cases which are otherwise valid.
6122    // Example: "extern void x; void* y = &x;".
6123    Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
6124  }
6125
6126  // If the operand has type "type", the result has type "pointer to type".
6127  return Context.getPointerType(op->getType());
6128}
6129
6130QualType Sema::CheckIndirectionOperand(Expr *Op, SourceLocation OpLoc) {
6131  if (Op->isTypeDependent())
6132    return Context.DependentTy;
6133
6134  UsualUnaryConversions(Op);
6135  QualType Ty = Op->getType();
6136
6137  // Note that per both C89 and C99, this is always legal, even if ptype is an
6138  // incomplete type or void.  It would be possible to warn about dereferencing
6139  // a void pointer, but it's completely well-defined, and such a warning is
6140  // unlikely to catch any mistakes.
6141  if (const PointerType *PT = Ty->getAs<PointerType>())
6142    return PT->getPointeeType();
6143
6144  if (const ObjCObjectPointerType *OPT = Ty->getAs<ObjCObjectPointerType>())
6145    return OPT->getPointeeType();
6146
6147  Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
6148    << Ty << Op->getSourceRange();
6149  return QualType();
6150}
6151
6152static inline BinaryOperator::Opcode ConvertTokenKindToBinaryOpcode(
6153  tok::TokenKind Kind) {
6154  BinaryOperator::Opcode Opc;
6155  switch (Kind) {
6156  default: assert(0 && "Unknown binop!");
6157  case tok::periodstar:           Opc = BinaryOperator::PtrMemD; break;
6158  case tok::arrowstar:            Opc = BinaryOperator::PtrMemI; break;
6159  case tok::star:                 Opc = BinaryOperator::Mul; break;
6160  case tok::slash:                Opc = BinaryOperator::Div; break;
6161  case tok::percent:              Opc = BinaryOperator::Rem; break;
6162  case tok::plus:                 Opc = BinaryOperator::Add; break;
6163  case tok::minus:                Opc = BinaryOperator::Sub; break;
6164  case tok::lessless:             Opc = BinaryOperator::Shl; break;
6165  case tok::greatergreater:       Opc = BinaryOperator::Shr; break;
6166  case tok::lessequal:            Opc = BinaryOperator::LE; break;
6167  case tok::less:                 Opc = BinaryOperator::LT; break;
6168  case tok::greaterequal:         Opc = BinaryOperator::GE; break;
6169  case tok::greater:              Opc = BinaryOperator::GT; break;
6170  case tok::exclaimequal:         Opc = BinaryOperator::NE; break;
6171  case tok::equalequal:           Opc = BinaryOperator::EQ; break;
6172  case tok::amp:                  Opc = BinaryOperator::And; break;
6173  case tok::caret:                Opc = BinaryOperator::Xor; break;
6174  case tok::pipe:                 Opc = BinaryOperator::Or; break;
6175  case tok::ampamp:               Opc = BinaryOperator::LAnd; break;
6176  case tok::pipepipe:             Opc = BinaryOperator::LOr; break;
6177  case tok::equal:                Opc = BinaryOperator::Assign; break;
6178  case tok::starequal:            Opc = BinaryOperator::MulAssign; break;
6179  case tok::slashequal:           Opc = BinaryOperator::DivAssign; break;
6180  case tok::percentequal:         Opc = BinaryOperator::RemAssign; break;
6181  case tok::plusequal:            Opc = BinaryOperator::AddAssign; break;
6182  case tok::minusequal:           Opc = BinaryOperator::SubAssign; break;
6183  case tok::lesslessequal:        Opc = BinaryOperator::ShlAssign; break;
6184  case tok::greatergreaterequal:  Opc = BinaryOperator::ShrAssign; break;
6185  case tok::ampequal:             Opc = BinaryOperator::AndAssign; break;
6186  case tok::caretequal:           Opc = BinaryOperator::XorAssign; break;
6187  case tok::pipeequal:            Opc = BinaryOperator::OrAssign; break;
6188  case tok::comma:                Opc = BinaryOperator::Comma; break;
6189  }
6190  return Opc;
6191}
6192
6193static inline UnaryOperator::Opcode ConvertTokenKindToUnaryOpcode(
6194  tok::TokenKind Kind) {
6195  UnaryOperator::Opcode Opc;
6196  switch (Kind) {
6197  default: assert(0 && "Unknown unary op!");
6198  case tok::plusplus:     Opc = UnaryOperator::PreInc; break;
6199  case tok::minusminus:   Opc = UnaryOperator::PreDec; break;
6200  case tok::amp:          Opc = UnaryOperator::AddrOf; break;
6201  case tok::star:         Opc = UnaryOperator::Deref; break;
6202  case tok::plus:         Opc = UnaryOperator::Plus; break;
6203  case tok::minus:        Opc = UnaryOperator::Minus; break;
6204  case tok::tilde:        Opc = UnaryOperator::Not; break;
6205  case tok::exclaim:      Opc = UnaryOperator::LNot; break;
6206  case tok::kw___real:    Opc = UnaryOperator::Real; break;
6207  case tok::kw___imag:    Opc = UnaryOperator::Imag; break;
6208  case tok::kw___extension__: Opc = UnaryOperator::Extension; break;
6209  }
6210  return Opc;
6211}
6212
6213/// CreateBuiltinBinOp - Creates a new built-in binary operation with
6214/// operator @p Opc at location @c TokLoc. This routine only supports
6215/// built-in operations; ActOnBinOp handles overloaded operators.
6216Action::OwningExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
6217                                                  unsigned Op,
6218                                                  Expr *lhs, Expr *rhs) {
6219  QualType ResultTy;     // Result type of the binary operator.
6220  BinaryOperator::Opcode Opc = (BinaryOperator::Opcode)Op;
6221  // The following two variables are used for compound assignment operators
6222  QualType CompLHSTy;    // Type of LHS after promotions for computation
6223  QualType CompResultTy; // Type of computation result
6224
6225  switch (Opc) {
6226  case BinaryOperator::Assign:
6227    ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, QualType());
6228    break;
6229  case BinaryOperator::PtrMemD:
6230  case BinaryOperator::PtrMemI:
6231    ResultTy = CheckPointerToMemberOperands(lhs, rhs, OpLoc,
6232                                            Opc == BinaryOperator::PtrMemI);
6233    break;
6234  case BinaryOperator::Mul:
6235  case BinaryOperator::Div:
6236    ResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, false,
6237                                           Opc == BinaryOperator::Div);
6238    break;
6239  case BinaryOperator::Rem:
6240    ResultTy = CheckRemainderOperands(lhs, rhs, OpLoc);
6241    break;
6242  case BinaryOperator::Add:
6243    ResultTy = CheckAdditionOperands(lhs, rhs, OpLoc);
6244    break;
6245  case BinaryOperator::Sub:
6246    ResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc);
6247    break;
6248  case BinaryOperator::Shl:
6249  case BinaryOperator::Shr:
6250    ResultTy = CheckShiftOperands(lhs, rhs, OpLoc);
6251    break;
6252  case BinaryOperator::LE:
6253  case BinaryOperator::LT:
6254  case BinaryOperator::GE:
6255  case BinaryOperator::GT:
6256    ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, true);
6257    break;
6258  case BinaryOperator::EQ:
6259  case BinaryOperator::NE:
6260    ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, false);
6261    break;
6262  case BinaryOperator::And:
6263  case BinaryOperator::Xor:
6264  case BinaryOperator::Or:
6265    ResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc);
6266    break;
6267  case BinaryOperator::LAnd:
6268  case BinaryOperator::LOr:
6269    ResultTy = CheckLogicalOperands(lhs, rhs, OpLoc);
6270    break;
6271  case BinaryOperator::MulAssign:
6272  case BinaryOperator::DivAssign:
6273    CompResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, true,
6274                                              Opc == BinaryOperator::DivAssign);
6275    CompLHSTy = CompResultTy;
6276    if (!CompResultTy.isNull())
6277      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
6278    break;
6279  case BinaryOperator::RemAssign:
6280    CompResultTy = CheckRemainderOperands(lhs, rhs, OpLoc, true);
6281    CompLHSTy = CompResultTy;
6282    if (!CompResultTy.isNull())
6283      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
6284    break;
6285  case BinaryOperator::AddAssign:
6286    CompResultTy = CheckAdditionOperands(lhs, rhs, OpLoc, &CompLHSTy);
6287    if (!CompResultTy.isNull())
6288      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
6289    break;
6290  case BinaryOperator::SubAssign:
6291    CompResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc, &CompLHSTy);
6292    if (!CompResultTy.isNull())
6293      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
6294    break;
6295  case BinaryOperator::ShlAssign:
6296  case BinaryOperator::ShrAssign:
6297    CompResultTy = CheckShiftOperands(lhs, rhs, OpLoc, true);
6298    CompLHSTy = CompResultTy;
6299    if (!CompResultTy.isNull())
6300      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
6301    break;
6302  case BinaryOperator::AndAssign:
6303  case BinaryOperator::XorAssign:
6304  case BinaryOperator::OrAssign:
6305    CompResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc, true);
6306    CompLHSTy = CompResultTy;
6307    if (!CompResultTy.isNull())
6308      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
6309    break;
6310  case BinaryOperator::Comma:
6311    ResultTy = CheckCommaOperands(lhs, rhs, OpLoc);
6312    break;
6313  }
6314  if (ResultTy.isNull())
6315    return ExprError();
6316  if (CompResultTy.isNull())
6317    return Owned(new (Context) BinaryOperator(lhs, rhs, Opc, ResultTy, OpLoc));
6318  else
6319    return Owned(new (Context) CompoundAssignOperator(lhs, rhs, Opc, ResultTy,
6320                                                      CompLHSTy, CompResultTy,
6321                                                      OpLoc));
6322}
6323
6324/// SuggestParentheses - Emit a diagnostic together with a fixit hint that wraps
6325/// ParenRange in parentheses.
6326static void SuggestParentheses(Sema &Self, SourceLocation Loc,
6327                               const PartialDiagnostic &PD,
6328                               const PartialDiagnostic &FirstNote,
6329                               SourceRange FirstParenRange,
6330                               const PartialDiagnostic &SecondNote,
6331                               SourceRange SecondParenRange) {
6332  Self.Diag(Loc, PD);
6333
6334  if (!FirstNote.getDiagID())
6335    return;
6336
6337  SourceLocation EndLoc = Self.PP.getLocForEndOfToken(FirstParenRange.getEnd());
6338  if (!FirstParenRange.getEnd().isFileID() || EndLoc.isInvalid()) {
6339    // We can't display the parentheses, so just return.
6340    return;
6341  }
6342
6343  Self.Diag(Loc, FirstNote)
6344    << FixItHint::CreateInsertion(FirstParenRange.getBegin(), "(")
6345    << FixItHint::CreateInsertion(EndLoc, ")");
6346
6347  if (!SecondNote.getDiagID())
6348    return;
6349
6350  EndLoc = Self.PP.getLocForEndOfToken(SecondParenRange.getEnd());
6351  if (!SecondParenRange.getEnd().isFileID() || EndLoc.isInvalid()) {
6352    // We can't display the parentheses, so just dig the
6353    // warning/error and return.
6354    Self.Diag(Loc, SecondNote);
6355    return;
6356  }
6357
6358  Self.Diag(Loc, SecondNote)
6359    << FixItHint::CreateInsertion(SecondParenRange.getBegin(), "(")
6360    << FixItHint::CreateInsertion(EndLoc, ")");
6361}
6362
6363/// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison
6364/// operators are mixed in a way that suggests that the programmer forgot that
6365/// comparison operators have higher precedence. The most typical example of
6366/// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1".
6367static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperator::Opcode Opc,
6368                                      SourceLocation OpLoc,Expr *lhs,Expr *rhs){
6369  typedef BinaryOperator BinOp;
6370  BinOp::Opcode lhsopc = static_cast<BinOp::Opcode>(-1),
6371                rhsopc = static_cast<BinOp::Opcode>(-1);
6372  if (BinOp *BO = dyn_cast<BinOp>(lhs))
6373    lhsopc = BO->getOpcode();
6374  if (BinOp *BO = dyn_cast<BinOp>(rhs))
6375    rhsopc = BO->getOpcode();
6376
6377  // Subs are not binary operators.
6378  if (lhsopc == -1 && rhsopc == -1)
6379    return;
6380
6381  // Bitwise operations are sometimes used as eager logical ops.
6382  // Don't diagnose this.
6383  if ((BinOp::isComparisonOp(lhsopc) || BinOp::isBitwiseOp(lhsopc)) &&
6384      (BinOp::isComparisonOp(rhsopc) || BinOp::isBitwiseOp(rhsopc)))
6385    return;
6386
6387  if (BinOp::isComparisonOp(lhsopc))
6388    SuggestParentheses(Self, OpLoc,
6389      Self.PDiag(diag::warn_precedence_bitwise_rel)
6390          << SourceRange(lhs->getLocStart(), OpLoc)
6391          << BinOp::getOpcodeStr(Opc) << BinOp::getOpcodeStr(lhsopc),
6392      Self.PDiag(diag::note_precedence_bitwise_first)
6393          << BinOp::getOpcodeStr(Opc),
6394      SourceRange(cast<BinOp>(lhs)->getRHS()->getLocStart(), rhs->getLocEnd()),
6395      Self.PDiag(diag::note_precedence_bitwise_silence)
6396          << BinOp::getOpcodeStr(lhsopc),
6397                       lhs->getSourceRange());
6398  else if (BinOp::isComparisonOp(rhsopc))
6399    SuggestParentheses(Self, OpLoc,
6400      Self.PDiag(diag::warn_precedence_bitwise_rel)
6401          << SourceRange(OpLoc, rhs->getLocEnd())
6402          << BinOp::getOpcodeStr(Opc) << BinOp::getOpcodeStr(rhsopc),
6403      Self.PDiag(diag::note_precedence_bitwise_first)
6404        << BinOp::getOpcodeStr(Opc),
6405      SourceRange(lhs->getLocEnd(), cast<BinOp>(rhs)->getLHS()->getLocStart()),
6406      Self.PDiag(diag::note_precedence_bitwise_silence)
6407        << BinOp::getOpcodeStr(rhsopc),
6408                       rhs->getSourceRange());
6409}
6410
6411/// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky
6412/// precedence. This currently diagnoses only "arg1 'bitwise' arg2 'eq' arg3".
6413/// But it could also warn about arg1 && arg2 || arg3, as GCC 4.3+ does.
6414static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperator::Opcode Opc,
6415                                    SourceLocation OpLoc, Expr *lhs, Expr *rhs){
6416  if (BinaryOperator::isBitwiseOp(Opc))
6417    DiagnoseBitwisePrecedence(Self, Opc, OpLoc, lhs, rhs);
6418}
6419
6420// Binary Operators.  'Tok' is the token for the operator.
6421Action::OwningExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
6422                                          tok::TokenKind Kind,
6423                                          ExprArg LHS, ExprArg RHS) {
6424  BinaryOperator::Opcode Opc = ConvertTokenKindToBinaryOpcode(Kind);
6425  Expr *lhs = LHS.takeAs<Expr>(), *rhs = RHS.takeAs<Expr>();
6426
6427  assert((lhs != 0) && "ActOnBinOp(): missing left expression");
6428  assert((rhs != 0) && "ActOnBinOp(): missing right expression");
6429
6430  // Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0"
6431  DiagnoseBinOpPrecedence(*this, Opc, TokLoc, lhs, rhs);
6432
6433  return BuildBinOp(S, TokLoc, Opc, lhs, rhs);
6434}
6435
6436Action::OwningExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc,
6437                                          BinaryOperator::Opcode Opc,
6438                                          Expr *lhs, Expr *rhs) {
6439  if (getLangOptions().CPlusPlus &&
6440      (lhs->getType()->isOverloadableType() ||
6441       rhs->getType()->isOverloadableType())) {
6442    // Find all of the overloaded operators visible from this
6443    // point. We perform both an operator-name lookup from the local
6444    // scope and an argument-dependent lookup based on the types of
6445    // the arguments.
6446    UnresolvedSet<16> Functions;
6447    OverloadedOperatorKind OverOp = BinaryOperator::getOverloadedOperator(Opc);
6448    if (S && OverOp != OO_None)
6449      LookupOverloadedOperatorName(OverOp, S, lhs->getType(), rhs->getType(),
6450                                   Functions);
6451
6452    // Build the (potentially-overloaded, potentially-dependent)
6453    // binary operation.
6454    return CreateOverloadedBinOp(OpLoc, Opc, Functions, lhs, rhs);
6455  }
6456
6457  // Build a built-in binary operation.
6458  return CreateBuiltinBinOp(OpLoc, Opc, lhs, rhs);
6459}
6460
6461Action::OwningExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
6462                                                    unsigned OpcIn,
6463                                                    ExprArg InputArg) {
6464  UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
6465
6466  // FIXME: Input is modified below, but InputArg is not updated appropriately.
6467  Expr *Input = (Expr *)InputArg.get();
6468  QualType resultType;
6469  switch (Opc) {
6470  case UnaryOperator::OffsetOf:
6471    assert(false && "Invalid unary operator");
6472    break;
6473
6474  case UnaryOperator::PreInc:
6475  case UnaryOperator::PreDec:
6476  case UnaryOperator::PostInc:
6477  case UnaryOperator::PostDec:
6478    resultType = CheckIncrementDecrementOperand(Input, OpLoc,
6479                                                Opc == UnaryOperator::PreInc ||
6480                                                Opc == UnaryOperator::PostInc,
6481                                                Opc == UnaryOperator::PreInc ||
6482                                                Opc == UnaryOperator::PreDec);
6483    break;
6484  case UnaryOperator::AddrOf:
6485    resultType = CheckAddressOfOperand(Input, OpLoc);
6486    break;
6487  case UnaryOperator::Deref:
6488    DefaultFunctionArrayLvalueConversion(Input);
6489    resultType = CheckIndirectionOperand(Input, OpLoc);
6490    break;
6491  case UnaryOperator::Plus:
6492  case UnaryOperator::Minus:
6493    UsualUnaryConversions(Input);
6494    resultType = Input->getType();
6495    if (resultType->isDependentType())
6496      break;
6497    if (resultType->isArithmeticType()) // C99 6.5.3.3p1
6498      break;
6499    else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6-7
6500             resultType->isEnumeralType())
6501      break;
6502    else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6
6503             Opc == UnaryOperator::Plus &&
6504             resultType->isPointerType())
6505      break;
6506
6507    return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
6508      << resultType << Input->getSourceRange());
6509  case UnaryOperator::Not: // bitwise complement
6510    UsualUnaryConversions(Input);
6511    resultType = Input->getType();
6512    if (resultType->isDependentType())
6513      break;
6514    // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
6515    if (resultType->isComplexType() || resultType->isComplexIntegerType())
6516      // C99 does not support '~' for complex conjugation.
6517      Diag(OpLoc, diag::ext_integer_complement_complex)
6518        << resultType << Input->getSourceRange();
6519    else if (!resultType->isIntegerType())
6520      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
6521        << resultType << Input->getSourceRange());
6522    break;
6523  case UnaryOperator::LNot: // logical negation
6524    // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
6525    DefaultFunctionArrayLvalueConversion(Input);
6526    resultType = Input->getType();
6527    if (resultType->isDependentType())
6528      break;
6529    if (!resultType->isScalarType()) // C99 6.5.3.3p1
6530      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
6531        << resultType << Input->getSourceRange());
6532    // LNot always has type int. C99 6.5.3.3p5.
6533    // In C++, it's bool. C++ 5.3.1p8
6534    resultType = getLangOptions().CPlusPlus ? Context.BoolTy : Context.IntTy;
6535    break;
6536  case UnaryOperator::Real:
6537  case UnaryOperator::Imag:
6538    resultType = CheckRealImagOperand(Input, OpLoc, Opc == UnaryOperator::Real);
6539    break;
6540  case UnaryOperator::Extension:
6541    resultType = Input->getType();
6542    break;
6543  }
6544  if (resultType.isNull())
6545    return ExprError();
6546
6547  InputArg.release();
6548  return Owned(new (Context) UnaryOperator(Input, Opc, resultType, OpLoc));
6549}
6550
6551Action::OwningExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc,
6552                                            UnaryOperator::Opcode Opc,
6553                                            ExprArg input) {
6554  Expr *Input = (Expr*)input.get();
6555  if (getLangOptions().CPlusPlus && Input->getType()->isOverloadableType() &&
6556      Opc != UnaryOperator::Extension) {
6557    // Find all of the overloaded operators visible from this
6558    // point. We perform both an operator-name lookup from the local
6559    // scope and an argument-dependent lookup based on the types of
6560    // the arguments.
6561    UnresolvedSet<16> Functions;
6562    OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
6563    if (S && OverOp != OO_None)
6564      LookupOverloadedOperatorName(OverOp, S, Input->getType(), QualType(),
6565                                   Functions);
6566
6567    return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, move(input));
6568  }
6569
6570  return CreateBuiltinUnaryOp(OpLoc, Opc, move(input));
6571}
6572
6573// Unary Operators.  'Tok' is the token for the operator.
6574Action::OwningExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
6575                                            tok::TokenKind Op, ExprArg input) {
6576  return BuildUnaryOp(S, OpLoc, ConvertTokenKindToUnaryOpcode(Op), move(input));
6577}
6578
6579/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
6580Sema::OwningExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc,
6581                                            SourceLocation LabLoc,
6582                                            IdentifierInfo *LabelII) {
6583  // Look up the record for this label identifier.
6584  LabelStmt *&LabelDecl = getLabelMap()[LabelII];
6585
6586  // If we haven't seen this label yet, create a forward reference. It
6587  // will be validated and/or cleaned up in ActOnFinishFunctionBody.
6588  if (LabelDecl == 0)
6589    LabelDecl = new (Context) LabelStmt(LabLoc, LabelII, 0);
6590
6591  // Create the AST node.  The address of a label always has type 'void*'.
6592  return Owned(new (Context) AddrLabelExpr(OpLoc, LabLoc, LabelDecl,
6593                                       Context.getPointerType(Context.VoidTy)));
6594}
6595
6596Sema::OwningExprResult
6597Sema::ActOnStmtExpr(SourceLocation LPLoc, StmtArg substmt,
6598                    SourceLocation RPLoc) { // "({..})"
6599  Stmt *SubStmt = static_cast<Stmt*>(substmt.get());
6600  assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
6601  CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
6602
6603  bool isFileScope
6604    = (getCurFunctionOrMethodDecl() == 0) && (getCurBlock() == 0);
6605  if (isFileScope)
6606    return ExprError(Diag(LPLoc, diag::err_stmtexpr_file_scope));
6607
6608  // FIXME: there are a variety of strange constraints to enforce here, for
6609  // example, it is not possible to goto into a stmt expression apparently.
6610  // More semantic analysis is needed.
6611
6612  // If there are sub stmts in the compound stmt, take the type of the last one
6613  // as the type of the stmtexpr.
6614  QualType Ty = Context.VoidTy;
6615
6616  if (!Compound->body_empty()) {
6617    Stmt *LastStmt = Compound->body_back();
6618    // If LastStmt is a label, skip down through into the body.
6619    while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt))
6620      LastStmt = Label->getSubStmt();
6621
6622    if (Expr *LastExpr = dyn_cast<Expr>(LastStmt))
6623      Ty = LastExpr->getType();
6624  }
6625
6626  // FIXME: Check that expression type is complete/non-abstract; statement
6627  // expressions are not lvalues.
6628
6629  substmt.release();
6630  return Owned(new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc));
6631}
6632
6633Sema::OwningExprResult Sema::BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,
6634                                                  TypeSourceInfo *TInfo,
6635                                                  OffsetOfComponent *CompPtr,
6636                                                  unsigned NumComponents,
6637                                                  SourceLocation RParenLoc) {
6638  QualType ArgTy = TInfo->getType();
6639  bool Dependent = ArgTy->isDependentType();
6640  SourceRange TypeRange = TInfo->getTypeLoc().getSourceRange();
6641
6642  // We must have at least one component that refers to the type, and the first
6643  // one is known to be a field designator.  Verify that the ArgTy represents
6644  // a struct/union/class.
6645  if (!Dependent && !ArgTy->isRecordType())
6646    return ExprError(Diag(BuiltinLoc, diag::err_offsetof_record_type)
6647                       << ArgTy << TypeRange);
6648
6649  // Type must be complete per C99 7.17p3 because a declaring a variable
6650  // with an incomplete type would be ill-formed.
6651  if (!Dependent
6652      && RequireCompleteType(BuiltinLoc, ArgTy,
6653                             PDiag(diag::err_offsetof_incomplete_type)
6654                               << TypeRange))
6655    return ExprError();
6656
6657  // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
6658  // GCC extension, diagnose them.
6659  // FIXME: This diagnostic isn't actually visible because the location is in
6660  // a system header!
6661  if (NumComponents != 1)
6662    Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator)
6663      << SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd);
6664
6665  bool DidWarnAboutNonPOD = false;
6666  QualType CurrentType = ArgTy;
6667  typedef OffsetOfExpr::OffsetOfNode OffsetOfNode;
6668  llvm::SmallVector<OffsetOfNode, 4> Comps;
6669  llvm::SmallVector<Expr*, 4> Exprs;
6670  for (unsigned i = 0; i != NumComponents; ++i) {
6671    const OffsetOfComponent &OC = CompPtr[i];
6672    if (OC.isBrackets) {
6673      // Offset of an array sub-field.  TODO: Should we allow vector elements?
6674      if (!CurrentType->isDependentType()) {
6675        const ArrayType *AT = Context.getAsArrayType(CurrentType);
6676        if(!AT)
6677          return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
6678                           << CurrentType);
6679        CurrentType = AT->getElementType();
6680      } else
6681        CurrentType = Context.DependentTy;
6682
6683      // The expression must be an integral expression.
6684      // FIXME: An integral constant expression?
6685      Expr *Idx = static_cast<Expr*>(OC.U.E);
6686      if (!Idx->isTypeDependent() && !Idx->isValueDependent() &&
6687          !Idx->getType()->isIntegerType())
6688        return ExprError(Diag(Idx->getLocStart(),
6689                              diag::err_typecheck_subscript_not_integer)
6690                         << Idx->getSourceRange());
6691
6692      // Record this array index.
6693      Comps.push_back(OffsetOfNode(OC.LocStart, Exprs.size(), OC.LocEnd));
6694      Exprs.push_back(Idx);
6695      continue;
6696    }
6697
6698    // Offset of a field.
6699    if (CurrentType->isDependentType()) {
6700      // We have the offset of a field, but we can't look into the dependent
6701      // type. Just record the identifier of the field.
6702      Comps.push_back(OffsetOfNode(OC.LocStart, OC.U.IdentInfo, OC.LocEnd));
6703      CurrentType = Context.DependentTy;
6704      continue;
6705    }
6706
6707    // We need to have a complete type to look into.
6708    if (RequireCompleteType(OC.LocStart, CurrentType,
6709                            diag::err_offsetof_incomplete_type))
6710      return ExprError();
6711
6712    // Look for the designated field.
6713    const RecordType *RC = CurrentType->getAs<RecordType>();
6714    if (!RC)
6715      return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
6716                       << CurrentType);
6717    RecordDecl *RD = RC->getDecl();
6718
6719    // C++ [lib.support.types]p5:
6720    //   The macro offsetof accepts a restricted set of type arguments in this
6721    //   International Standard. type shall be a POD structure or a POD union
6722    //   (clause 9).
6723    if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
6724      if (!CRD->isPOD() && !DidWarnAboutNonPOD &&
6725          DiagRuntimeBehavior(BuiltinLoc,
6726                              PDiag(diag::warn_offsetof_non_pod_type)
6727                              << SourceRange(CompPtr[0].LocStart, OC.LocEnd)
6728                              << CurrentType))
6729        DidWarnAboutNonPOD = true;
6730    }
6731
6732    // Look for the field.
6733    LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName);
6734    LookupQualifiedName(R, RD);
6735    FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>();
6736    if (!MemberDecl)
6737      return ExprError(Diag(BuiltinLoc, diag::err_no_member)
6738                       << OC.U.IdentInfo << RD << SourceRange(OC.LocStart,
6739                                                              OC.LocEnd));
6740
6741    // C99 7.17p3:
6742    //   (If the specified member is a bit-field, the behavior is undefined.)
6743    //
6744    // We diagnose this as an error.
6745    if (MemberDecl->getBitWidth()) {
6746      Diag(OC.LocEnd, diag::err_offsetof_bitfield)
6747        << MemberDecl->getDeclName()
6748        << SourceRange(BuiltinLoc, RParenLoc);
6749      Diag(MemberDecl->getLocation(), diag::note_bitfield_decl);
6750      return ExprError();
6751    }
6752
6753    // If the member was found in a base class, introduce OffsetOfNodes for
6754    // the base class indirections.
6755    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
6756                       /*DetectVirtual=*/false);
6757    if (IsDerivedFrom(CurrentType,
6758                      Context.getTypeDeclType(MemberDecl->getParent()),
6759                      Paths)) {
6760      CXXBasePath &Path = Paths.front();
6761      for (CXXBasePath::iterator B = Path.begin(), BEnd = Path.end();
6762           B != BEnd; ++B)
6763        Comps.push_back(OffsetOfNode(B->Base));
6764    }
6765
6766    if (cast<RecordDecl>(MemberDecl->getDeclContext())->
6767                                                isAnonymousStructOrUnion()) {
6768      llvm::SmallVector<FieldDecl*, 4> Path;
6769      BuildAnonymousStructUnionMemberPath(MemberDecl, Path);
6770      unsigned n = Path.size();
6771      for (int j = n - 1; j > -1; --j)
6772        Comps.push_back(OffsetOfNode(OC.LocStart, Path[j], OC.LocEnd));
6773    } else {
6774      Comps.push_back(OffsetOfNode(OC.LocStart, MemberDecl, OC.LocEnd));
6775    }
6776    CurrentType = MemberDecl->getType().getNonReferenceType();
6777  }
6778
6779  return Owned(OffsetOfExpr::Create(Context, Context.getSizeType(), BuiltinLoc,
6780                                    TInfo, Comps.data(), Comps.size(),
6781                                    Exprs.data(), Exprs.size(), RParenLoc));
6782}
6783
6784Sema::OwningExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
6785                                                  SourceLocation BuiltinLoc,
6786                                                  SourceLocation TypeLoc,
6787                                                  TypeTy *argty,
6788                                                  OffsetOfComponent *CompPtr,
6789                                                  unsigned NumComponents,
6790                                                  SourceLocation RPLoc) {
6791
6792  TypeSourceInfo *ArgTInfo;
6793  QualType ArgTy = GetTypeFromParser(argty, &ArgTInfo);
6794  if (ArgTy.isNull())
6795    return ExprError();
6796
6797  if (getLangOptions().CPlusPlus) {
6798    if (!ArgTInfo)
6799      ArgTInfo = Context.getTrivialTypeSourceInfo(ArgTy, TypeLoc);
6800
6801    return BuildBuiltinOffsetOf(BuiltinLoc, ArgTInfo, CompPtr, NumComponents,
6802                                RPLoc);
6803  }
6804
6805  // FIXME: The code below is marked for death, once we have proper CodeGen
6806  // support for non-constant OffsetOf expressions.
6807
6808  bool Dependent = ArgTy->isDependentType();
6809
6810  // We must have at least one component that refers to the type, and the first
6811  // one is known to be a field designator.  Verify that the ArgTy represents
6812  // a struct/union/class.
6813  if (!Dependent && !ArgTy->isRecordType())
6814    return ExprError(Diag(TypeLoc, diag::err_offsetof_record_type) << ArgTy);
6815
6816  // FIXME: Type must be complete per C99 7.17p3 because a declaring a variable
6817  // with an incomplete type would be illegal.
6818
6819  // Otherwise, create a null pointer as the base, and iteratively process
6820  // the offsetof designators.
6821  QualType ArgTyPtr = Context.getPointerType(ArgTy);
6822  Expr* Res = new (Context) ImplicitValueInitExpr(ArgTyPtr);
6823  Res = new (Context) UnaryOperator(Res, UnaryOperator::Deref,
6824                                    ArgTy, SourceLocation());
6825
6826  // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
6827  // GCC extension, diagnose them.
6828  // FIXME: This diagnostic isn't actually visible because the location is in
6829  // a system header!
6830  if (NumComponents != 1)
6831    Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator)
6832    << SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd);
6833
6834  if (!Dependent) {
6835    bool DidWarnAboutNonPOD = false;
6836
6837    if (RequireCompleteType(TypeLoc, Res->getType(),
6838                            diag::err_offsetof_incomplete_type))
6839      return ExprError();
6840
6841    // FIXME: Dependent case loses a lot of information here. And probably
6842    // leaks like a sieve.
6843    for (unsigned i = 0; i != NumComponents; ++i) {
6844      const OffsetOfComponent &OC = CompPtr[i];
6845      if (OC.isBrackets) {
6846        // Offset of an array sub-field.  TODO: Should we allow vector elements?
6847        const ArrayType *AT = Context.getAsArrayType(Res->getType());
6848        if (!AT) {
6849          Res->Destroy(Context);
6850          return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
6851                           << Res->getType());
6852        }
6853
6854        // FIXME: C++: Verify that operator[] isn't overloaded.
6855
6856        // Promote the array so it looks more like a normal array subscript
6857        // expression.
6858        DefaultFunctionArrayLvalueConversion(Res);
6859
6860        // C99 6.5.2.1p1
6861        Expr *Idx = static_cast<Expr*>(OC.U.E);
6862        // FIXME: Leaks Res
6863        if (!Idx->isTypeDependent() && !Idx->getType()->isIntegerType())
6864          return ExprError(Diag(Idx->getLocStart(),
6865                                diag::err_typecheck_subscript_not_integer)
6866                           << Idx->getSourceRange());
6867
6868        Res = new (Context) ArraySubscriptExpr(Res, Idx, AT->getElementType(),
6869                                               OC.LocEnd);
6870        continue;
6871      }
6872
6873      const RecordType *RC = Res->getType()->getAs<RecordType>();
6874      if (!RC) {
6875        Res->Destroy(Context);
6876        return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
6877                         << Res->getType());
6878      }
6879
6880      // Get the decl corresponding to this.
6881      RecordDecl *RD = RC->getDecl();
6882      if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
6883        if (!CRD->isPOD() && !DidWarnAboutNonPOD &&
6884            DiagRuntimeBehavior(BuiltinLoc,
6885                                PDiag(diag::warn_offsetof_non_pod_type)
6886                                << SourceRange(CompPtr[0].LocStart, OC.LocEnd)
6887                                << Res->getType()))
6888          DidWarnAboutNonPOD = true;
6889      }
6890
6891      LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName);
6892      LookupQualifiedName(R, RD);
6893
6894      FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>();
6895      // FIXME: Leaks Res
6896      if (!MemberDecl)
6897        return ExprError(Diag(BuiltinLoc, diag::err_no_member)
6898                         << OC.U.IdentInfo << RD << SourceRange(OC.LocStart, OC.LocEnd));
6899
6900      // C99 7.17p3:
6901      //   (If the specified member is a bit-field, the behavior is undefined.)
6902      //
6903      // We diagnose this as an error.
6904      if (MemberDecl->getBitWidth()) {
6905        Diag(OC.LocEnd, diag::err_offsetof_bitfield)
6906          << MemberDecl->getDeclName()
6907          << SourceRange(BuiltinLoc, RPLoc);
6908        Diag(MemberDecl->getLocation(), diag::note_bitfield_decl);
6909        return ExprError();
6910      }
6911
6912      // FIXME: C++: Verify that MemberDecl isn't a static field.
6913      // FIXME: Verify that MemberDecl isn't a bitfield.
6914      if (cast<RecordDecl>(MemberDecl->getDeclContext())->isAnonymousStructOrUnion()) {
6915        Res = BuildAnonymousStructUnionMemberReference(
6916                                                       OC.LocEnd, MemberDecl, Res, OC.LocEnd).takeAs<Expr>();
6917      } else {
6918        PerformObjectMemberConversion(Res, /*Qualifier=*/0,
6919                                      *R.begin(), MemberDecl);
6920        // MemberDecl->getType() doesn't get the right qualifiers, but it
6921        // doesn't matter here.
6922        Res = new (Context) MemberExpr(Res, false, MemberDecl, OC.LocEnd,
6923                                       MemberDecl->getType().getNonReferenceType());
6924      }
6925    }
6926  }
6927
6928  return Owned(new (Context) UnaryOperator(Res, UnaryOperator::OffsetOf,
6929                                           Context.getSizeType(), BuiltinLoc));
6930}
6931
6932
6933Sema::OwningExprResult Sema::ActOnTypesCompatibleExpr(SourceLocation BuiltinLoc,
6934                                                      TypeTy *arg1,TypeTy *arg2,
6935                                                      SourceLocation RPLoc) {
6936  // FIXME: Preserve type source info.
6937  QualType argT1 = GetTypeFromParser(arg1);
6938  QualType argT2 = GetTypeFromParser(arg2);
6939
6940  assert((!argT1.isNull() && !argT2.isNull()) && "Missing type argument(s)");
6941
6942  if (getLangOptions().CPlusPlus) {
6943    Diag(BuiltinLoc, diag::err_types_compatible_p_in_cplusplus)
6944      << SourceRange(BuiltinLoc, RPLoc);
6945    return ExprError();
6946  }
6947
6948  return Owned(new (Context) TypesCompatibleExpr(Context.IntTy, BuiltinLoc,
6949                                                 argT1, argT2, RPLoc));
6950}
6951
6952Sema::OwningExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
6953                                             ExprArg cond,
6954                                             ExprArg expr1, ExprArg expr2,
6955                                             SourceLocation RPLoc) {
6956  Expr *CondExpr = static_cast<Expr*>(cond.get());
6957  Expr *LHSExpr = static_cast<Expr*>(expr1.get());
6958  Expr *RHSExpr = static_cast<Expr*>(expr2.get());
6959
6960  assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
6961
6962  QualType resType;
6963  bool ValueDependent = false;
6964  if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
6965    resType = Context.DependentTy;
6966    ValueDependent = true;
6967  } else {
6968    // The conditional expression is required to be a constant expression.
6969    llvm::APSInt condEval(32);
6970    SourceLocation ExpLoc;
6971    if (!CondExpr->isIntegerConstantExpr(condEval, Context, &ExpLoc))
6972      return ExprError(Diag(ExpLoc,
6973                       diag::err_typecheck_choose_expr_requires_constant)
6974        << CondExpr->getSourceRange());
6975
6976    // If the condition is > zero, then the AST type is the same as the LSHExpr.
6977    resType = condEval.getZExtValue() ? LHSExpr->getType() : RHSExpr->getType();
6978    ValueDependent = condEval.getZExtValue() ? LHSExpr->isValueDependent()
6979                                             : RHSExpr->isValueDependent();
6980  }
6981
6982  cond.release(); expr1.release(); expr2.release();
6983  return Owned(new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
6984                                        resType, RPLoc,
6985                                        resType->isDependentType(),
6986                                        ValueDependent));
6987}
6988
6989//===----------------------------------------------------------------------===//
6990// Clang Extensions.
6991//===----------------------------------------------------------------------===//
6992
6993/// ActOnBlockStart - This callback is invoked when a block literal is started.
6994void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *BlockScope) {
6995  BlockDecl *Block = BlockDecl::Create(Context, CurContext, CaretLoc);
6996  PushBlockScope(BlockScope, Block);
6997  CurContext->addDecl(Block);
6998  PushDeclContext(BlockScope, Block);
6999}
7000
7001void Sema::ActOnBlockArguments(Declarator &ParamInfo, Scope *CurScope) {
7002  assert(ParamInfo.getIdentifier()==0 && "block-id should have no identifier!");
7003  BlockScopeInfo *CurBlock = getCurBlock();
7004
7005  if (ParamInfo.getNumTypeObjects() == 0
7006      || ParamInfo.getTypeObject(0).Kind != DeclaratorChunk::Function) {
7007    ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
7008    QualType T = GetTypeForDeclarator(ParamInfo, CurScope);
7009
7010    if (T->isArrayType()) {
7011      Diag(ParamInfo.getSourceRange().getBegin(),
7012           diag::err_block_returns_array);
7013      return;
7014    }
7015
7016    // The parameter list is optional, if there was none, assume ().
7017    if (!T->isFunctionType())
7018      T = Context.getFunctionType(T, 0, 0, false, 0, false, false, 0, 0,
7019                                  FunctionType::ExtInfo());
7020
7021    CurBlock->hasPrototype = true;
7022    CurBlock->isVariadic = false;
7023    // Check for a valid sentinel attribute on this block.
7024    if (CurBlock->TheDecl->getAttr<SentinelAttr>()) {
7025      Diag(ParamInfo.getAttributes()->getLoc(),
7026           diag::warn_attribute_sentinel_not_variadic) << 1;
7027      // FIXME: remove the attribute.
7028    }
7029    QualType RetTy = T.getTypePtr()->getAs<FunctionType>()->getResultType();
7030
7031    // Do not allow returning a objc interface by-value.
7032    if (RetTy->isObjCObjectType()) {
7033      Diag(ParamInfo.getSourceRange().getBegin(),
7034           diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy;
7035      return;
7036    }
7037
7038    CurBlock->ReturnType = RetTy;
7039    return;
7040  }
7041
7042  // Analyze arguments to block.
7043  assert(ParamInfo.getTypeObject(0).Kind == DeclaratorChunk::Function &&
7044         "Not a function declarator!");
7045  DeclaratorChunk::FunctionTypeInfo &FTI = ParamInfo.getTypeObject(0).Fun;
7046
7047  CurBlock->hasPrototype = FTI.hasPrototype;
7048  CurBlock->isVariadic = true;
7049
7050  // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs function that takes
7051  // no arguments, not a function that takes a single void argument.
7052  if (FTI.hasPrototype &&
7053      FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
7054     (!FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType().getCVRQualifiers()&&
7055        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType())) {
7056    // empty arg list, don't push any params.
7057    CurBlock->isVariadic = false;
7058  } else if (FTI.hasPrototype) {
7059    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
7060      ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
7061      if (Param->getIdentifier() == 0 &&
7062          !Param->isImplicit() &&
7063          !Param->isInvalidDecl() &&
7064          !getLangOptions().CPlusPlus)
7065        Diag(Param->getLocation(), diag::err_parameter_name_omitted);
7066      CurBlock->Params.push_back(Param);
7067    }
7068    CurBlock->isVariadic = FTI.isVariadic;
7069  }
7070  CurBlock->TheDecl->setParams(CurBlock->Params.data(),
7071                               CurBlock->Params.size());
7072  CurBlock->TheDecl->setIsVariadic(CurBlock->isVariadic);
7073  ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
7074
7075  bool ShouldCheckShadow =
7076    Diags.getDiagnosticLevel(diag::warn_decl_shadow) != Diagnostic::Ignored;
7077
7078  for (BlockDecl::param_iterator AI = CurBlock->TheDecl->param_begin(),
7079         E = CurBlock->TheDecl->param_end(); AI != E; ++AI) {
7080    (*AI)->setOwningFunction(CurBlock->TheDecl);
7081
7082    // If this has an identifier, add it to the scope stack.
7083    if ((*AI)->getIdentifier()) {
7084      if (ShouldCheckShadow)
7085        CheckShadow(CurBlock->TheScope, *AI);
7086
7087      PushOnScopeChains(*AI, CurBlock->TheScope);
7088    }
7089  }
7090
7091  // Check for a valid sentinel attribute on this block.
7092  if (!CurBlock->isVariadic &&
7093      CurBlock->TheDecl->getAttr<SentinelAttr>()) {
7094    Diag(ParamInfo.getAttributes()->getLoc(),
7095         diag::warn_attribute_sentinel_not_variadic) << 1;
7096    // FIXME: remove the attribute.
7097  }
7098
7099  // Analyze the return type.
7100  QualType T = GetTypeForDeclarator(ParamInfo, CurScope);
7101  QualType RetTy = T->getAs<FunctionType>()->getResultType();
7102
7103  // Do not allow returning a objc interface by-value.
7104  if (RetTy->isObjCObjectType()) {
7105    Diag(ParamInfo.getSourceRange().getBegin(),
7106         diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy;
7107  } else if (!RetTy->isDependentType())
7108    CurBlock->ReturnType = RetTy;
7109}
7110
7111/// ActOnBlockError - If there is an error parsing a block, this callback
7112/// is invoked to pop the information about the block from the action impl.
7113void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
7114  // Pop off CurBlock, handle nested blocks.
7115  PopDeclContext();
7116  PopFunctionOrBlockScope();
7117  // FIXME: Delete the ParmVarDecl objects as well???
7118}
7119
7120/// ActOnBlockStmtExpr - This is called when the body of a block statement
7121/// literal was successfully completed.  ^(int x){...}
7122Sema::OwningExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
7123                                                StmtArg body, Scope *CurScope) {
7124  // If blocks are disabled, emit an error.
7125  if (!LangOpts.Blocks)
7126    Diag(CaretLoc, diag::err_blocks_disable);
7127
7128  BlockScopeInfo *BSI = cast<BlockScopeInfo>(FunctionScopes.back());
7129
7130  PopDeclContext();
7131
7132  QualType RetTy = Context.VoidTy;
7133  if (!BSI->ReturnType.isNull())
7134    RetTy = BSI->ReturnType;
7135
7136  llvm::SmallVector<QualType, 8> ArgTypes;
7137  for (unsigned i = 0, e = BSI->Params.size(); i != e; ++i)
7138    ArgTypes.push_back(BSI->Params[i]->getType());
7139
7140  bool NoReturn = BSI->TheDecl->getAttr<NoReturnAttr>();
7141  QualType BlockTy;
7142  if (!BSI->hasPrototype)
7143    BlockTy = Context.getFunctionType(RetTy, 0, 0, false, 0, false, false, 0, 0,
7144                                FunctionType::ExtInfo(NoReturn, 0, CC_Default));
7145  else
7146    BlockTy = Context.getFunctionType(RetTy, ArgTypes.data(), ArgTypes.size(),
7147                                      BSI->isVariadic, 0, false, false, 0, 0,
7148                                FunctionType::ExtInfo(NoReturn, 0, CC_Default));
7149
7150  // FIXME: Check that return/parameter types are complete/non-abstract
7151  DiagnoseUnusedParameters(BSI->Params.begin(), BSI->Params.end());
7152  BlockTy = Context.getBlockPointerType(BlockTy);
7153
7154  // If needed, diagnose invalid gotos and switches in the block.
7155  if (FunctionNeedsScopeChecking() && !hasAnyErrorsInThisFunction())
7156    DiagnoseInvalidJumps(static_cast<CompoundStmt*>(body.get()));
7157
7158  BSI->TheDecl->setBody(body.takeAs<CompoundStmt>());
7159
7160  bool Good = true;
7161  // Check goto/label use.
7162  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
7163         I = BSI->LabelMap.begin(), E = BSI->LabelMap.end(); I != E; ++I) {
7164    LabelStmt *L = I->second;
7165
7166    // Verify that we have no forward references left.  If so, there was a goto
7167    // or address of a label taken, but no definition of it.
7168    if (L->getSubStmt() != 0)
7169      continue;
7170
7171    // Emit error.
7172    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
7173    Good = false;
7174  }
7175  if (!Good) {
7176    PopFunctionOrBlockScope();
7177    return ExprError();
7178  }
7179
7180  // Issue any analysis-based warnings.
7181  const sema::AnalysisBasedWarnings::Policy &WP =
7182    AnalysisWarnings.getDefaultPolicy();
7183  AnalysisWarnings.IssueWarnings(WP, BSI->TheDecl, BlockTy);
7184
7185  Expr *Result = new (Context) BlockExpr(BSI->TheDecl, BlockTy,
7186                                         BSI->hasBlockDeclRefExprs);
7187  PopFunctionOrBlockScope();
7188  return Owned(Result);
7189}
7190
7191Sema::OwningExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
7192                                        ExprArg expr, TypeTy *type,
7193                                        SourceLocation RPLoc) {
7194  QualType T = GetTypeFromParser(type);
7195  Expr *E = static_cast<Expr*>(expr.get());
7196  Expr *OrigExpr = E;
7197
7198  InitBuiltinVaListType();
7199
7200  // Get the va_list type
7201  QualType VaListType = Context.getBuiltinVaListType();
7202  if (VaListType->isArrayType()) {
7203    // Deal with implicit array decay; for example, on x86-64,
7204    // va_list is an array, but it's supposed to decay to
7205    // a pointer for va_arg.
7206    VaListType = Context.getArrayDecayedType(VaListType);
7207    // Make sure the input expression also decays appropriately.
7208    UsualUnaryConversions(E);
7209  } else {
7210    // Otherwise, the va_list argument must be an l-value because
7211    // it is modified by va_arg.
7212    if (!E->isTypeDependent() &&
7213        CheckForModifiableLvalue(E, BuiltinLoc, *this))
7214      return ExprError();
7215  }
7216
7217  if (!E->isTypeDependent() &&
7218      !Context.hasSameType(VaListType, E->getType())) {
7219    return ExprError(Diag(E->getLocStart(),
7220                         diag::err_first_argument_to_va_arg_not_of_type_va_list)
7221      << OrigExpr->getType() << E->getSourceRange());
7222  }
7223
7224  // FIXME: Check that type is complete/non-abstract
7225  // FIXME: Warn if a non-POD type is passed in.
7226
7227  expr.release();
7228  return Owned(new (Context) VAArgExpr(BuiltinLoc, E, T.getNonReferenceType(),
7229                                       RPLoc));
7230}
7231
7232Sema::OwningExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
7233  // The type of __null will be int or long, depending on the size of
7234  // pointers on the target.
7235  QualType Ty;
7236  if (Context.Target.getPointerWidth(0) == Context.Target.getIntWidth())
7237    Ty = Context.IntTy;
7238  else
7239    Ty = Context.LongTy;
7240
7241  return Owned(new (Context) GNUNullExpr(Ty, TokenLoc));
7242}
7243
7244static void MakeObjCStringLiteralFixItHint(Sema& SemaRef, QualType DstType,
7245                                           Expr *SrcExpr, FixItHint &Hint) {
7246  if (!SemaRef.getLangOptions().ObjC1)
7247    return;
7248
7249  const ObjCObjectPointerType *PT = DstType->getAs<ObjCObjectPointerType>();
7250  if (!PT)
7251    return;
7252
7253  // Check if the destination is of type 'id'.
7254  if (!PT->isObjCIdType()) {
7255    // Check if the destination is the 'NSString' interface.
7256    const ObjCInterfaceDecl *ID = PT->getInterfaceDecl();
7257    if (!ID || !ID->getIdentifier()->isStr("NSString"))
7258      return;
7259  }
7260
7261  // Strip off any parens and casts.
7262  StringLiteral *SL = dyn_cast<StringLiteral>(SrcExpr->IgnoreParenCasts());
7263  if (!SL || SL->isWide())
7264    return;
7265
7266  Hint = FixItHint::CreateInsertion(SL->getLocStart(), "@");
7267}
7268
7269bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
7270                                    SourceLocation Loc,
7271                                    QualType DstType, QualType SrcType,
7272                                    Expr *SrcExpr, AssignmentAction Action,
7273                                    bool *Complained) {
7274  if (Complained)
7275    *Complained = false;
7276
7277  // Decode the result (notice that AST's are still created for extensions).
7278  bool isInvalid = false;
7279  unsigned DiagKind;
7280  FixItHint Hint;
7281
7282  switch (ConvTy) {
7283  default: assert(0 && "Unknown conversion type");
7284  case Compatible: return false;
7285  case PointerToInt:
7286    DiagKind = diag::ext_typecheck_convert_pointer_int;
7287    break;
7288  case IntToPointer:
7289    DiagKind = diag::ext_typecheck_convert_int_pointer;
7290    break;
7291  case IncompatiblePointer:
7292    MakeObjCStringLiteralFixItHint(*this, DstType, SrcExpr, Hint);
7293    DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
7294    break;
7295  case IncompatiblePointerSign:
7296    DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
7297    break;
7298  case FunctionVoidPointer:
7299    DiagKind = diag::ext_typecheck_convert_pointer_void_func;
7300    break;
7301  case CompatiblePointerDiscardsQualifiers:
7302    // If the qualifiers lost were because we were applying the
7303    // (deprecated) C++ conversion from a string literal to a char*
7304    // (or wchar_t*), then there was no error (C++ 4.2p2).  FIXME:
7305    // Ideally, this check would be performed in
7306    // CheckPointerTypesForAssignment. However, that would require a
7307    // bit of refactoring (so that the second argument is an
7308    // expression, rather than a type), which should be done as part
7309    // of a larger effort to fix CheckPointerTypesForAssignment for
7310    // C++ semantics.
7311    if (getLangOptions().CPlusPlus &&
7312        IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
7313      return false;
7314    DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
7315    break;
7316  case IncompatibleNestedPointerQualifiers:
7317    DiagKind = diag::ext_nested_pointer_qualifier_mismatch;
7318    break;
7319  case IntToBlockPointer:
7320    DiagKind = diag::err_int_to_block_pointer;
7321    break;
7322  case IncompatibleBlockPointer:
7323    DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
7324    break;
7325  case IncompatibleObjCQualifiedId:
7326    // FIXME: Diagnose the problem in ObjCQualifiedIdTypesAreCompatible, since
7327    // it can give a more specific diagnostic.
7328    DiagKind = diag::warn_incompatible_qualified_id;
7329    break;
7330  case IncompatibleVectors:
7331    DiagKind = diag::warn_incompatible_vectors;
7332    break;
7333  case Incompatible:
7334    DiagKind = diag::err_typecheck_convert_incompatible;
7335    isInvalid = true;
7336    break;
7337  }
7338
7339  QualType FirstType, SecondType;
7340  switch (Action) {
7341  case AA_Assigning:
7342  case AA_Initializing:
7343    // The destination type comes first.
7344    FirstType = DstType;
7345    SecondType = SrcType;
7346    break;
7347
7348  case AA_Returning:
7349  case AA_Passing:
7350  case AA_Converting:
7351  case AA_Sending:
7352  case AA_Casting:
7353    // The source type comes first.
7354    FirstType = SrcType;
7355    SecondType = DstType;
7356    break;
7357  }
7358
7359  Diag(Loc, DiagKind) << FirstType << SecondType << Action
7360    << SrcExpr->getSourceRange() << Hint;
7361  if (Complained)
7362    *Complained = true;
7363  return isInvalid;
7364}
7365
7366bool Sema::VerifyIntegerConstantExpression(const Expr *E, llvm::APSInt *Result){
7367  llvm::APSInt ICEResult;
7368  if (E->isIntegerConstantExpr(ICEResult, Context)) {
7369    if (Result)
7370      *Result = ICEResult;
7371    return false;
7372  }
7373
7374  Expr::EvalResult EvalResult;
7375
7376  if (!E->Evaluate(EvalResult, Context) || !EvalResult.Val.isInt() ||
7377      EvalResult.HasSideEffects) {
7378    Diag(E->getExprLoc(), diag::err_expr_not_ice) << E->getSourceRange();
7379
7380    if (EvalResult.Diag) {
7381      // We only show the note if it's not the usual "invalid subexpression"
7382      // or if it's actually in a subexpression.
7383      if (EvalResult.Diag != diag::note_invalid_subexpr_in_ice ||
7384          E->IgnoreParens() != EvalResult.DiagExpr->IgnoreParens())
7385        Diag(EvalResult.DiagLoc, EvalResult.Diag);
7386    }
7387
7388    return true;
7389  }
7390
7391  Diag(E->getExprLoc(), diag::ext_expr_not_ice) <<
7392    E->getSourceRange();
7393
7394  if (EvalResult.Diag &&
7395      Diags.getDiagnosticLevel(diag::ext_expr_not_ice) != Diagnostic::Ignored)
7396    Diag(EvalResult.DiagLoc, EvalResult.Diag);
7397
7398  if (Result)
7399    *Result = EvalResult.Val.getInt();
7400  return false;
7401}
7402
7403void
7404Sema::PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext) {
7405  ExprEvalContexts.push_back(
7406        ExpressionEvaluationContextRecord(NewContext, ExprTemporaries.size()));
7407}
7408
7409void
7410Sema::PopExpressionEvaluationContext() {
7411  // Pop the current expression evaluation context off the stack.
7412  ExpressionEvaluationContextRecord Rec = ExprEvalContexts.back();
7413  ExprEvalContexts.pop_back();
7414
7415  if (Rec.Context == PotentiallyPotentiallyEvaluated) {
7416    if (Rec.PotentiallyReferenced) {
7417      // Mark any remaining declarations in the current position of the stack
7418      // as "referenced". If they were not meant to be referenced, semantic
7419      // analysis would have eliminated them (e.g., in ActOnCXXTypeId).
7420      for (PotentiallyReferencedDecls::iterator
7421             I = Rec.PotentiallyReferenced->begin(),
7422             IEnd = Rec.PotentiallyReferenced->end();
7423           I != IEnd; ++I)
7424        MarkDeclarationReferenced(I->first, I->second);
7425    }
7426
7427    if (Rec.PotentiallyDiagnosed) {
7428      // Emit any pending diagnostics.
7429      for (PotentiallyEmittedDiagnostics::iterator
7430                I = Rec.PotentiallyDiagnosed->begin(),
7431             IEnd = Rec.PotentiallyDiagnosed->end();
7432           I != IEnd; ++I)
7433        Diag(I->first, I->second);
7434    }
7435  }
7436
7437  // When are coming out of an unevaluated context, clear out any
7438  // temporaries that we may have created as part of the evaluation of
7439  // the expression in that context: they aren't relevant because they
7440  // will never be constructed.
7441  if (Rec.Context == Unevaluated &&
7442      ExprTemporaries.size() > Rec.NumTemporaries)
7443    ExprTemporaries.erase(ExprTemporaries.begin() + Rec.NumTemporaries,
7444                          ExprTemporaries.end());
7445
7446  // Destroy the popped expression evaluation record.
7447  Rec.Destroy();
7448}
7449
7450/// \brief Note that the given declaration was referenced in the source code.
7451///
7452/// This routine should be invoke whenever a given declaration is referenced
7453/// in the source code, and where that reference occurred. If this declaration
7454/// reference means that the the declaration is used (C++ [basic.def.odr]p2,
7455/// C99 6.9p3), then the declaration will be marked as used.
7456///
7457/// \param Loc the location where the declaration was referenced.
7458///
7459/// \param D the declaration that has been referenced by the source code.
7460void Sema::MarkDeclarationReferenced(SourceLocation Loc, Decl *D) {
7461  assert(D && "No declaration?");
7462
7463  if (D->isUsed())
7464    return;
7465
7466  // Mark a parameter or variable declaration "used", regardless of whether we're in a
7467  // template or not. The reason for this is that unevaluated expressions
7468  // (e.g. (void)sizeof()) constitute a use for warning purposes (-Wunused-variables and
7469  // -Wunused-parameters)
7470  if (isa<ParmVarDecl>(D) ||
7471      (isa<VarDecl>(D) && D->getDeclContext()->isFunctionOrMethod())) {
7472    D->setUsed(true);
7473    return;
7474  }
7475
7476  if (!isa<VarDecl>(D) && !isa<FunctionDecl>(D))
7477    return;
7478
7479  // Do not mark anything as "used" within a dependent context; wait for
7480  // an instantiation.
7481  if (CurContext->isDependentContext())
7482    return;
7483
7484  switch (ExprEvalContexts.back().Context) {
7485    case Unevaluated:
7486      // We are in an expression that is not potentially evaluated; do nothing.
7487      return;
7488
7489    case PotentiallyEvaluated:
7490      // We are in a potentially-evaluated expression, so this declaration is
7491      // "used"; handle this below.
7492      break;
7493
7494    case PotentiallyPotentiallyEvaluated:
7495      // We are in an expression that may be potentially evaluated; queue this
7496      // declaration reference until we know whether the expression is
7497      // potentially evaluated.
7498      ExprEvalContexts.back().addReferencedDecl(Loc, D);
7499      return;
7500  }
7501
7502  // Note that this declaration has been used.
7503  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
7504    unsigned TypeQuals;
7505    if (Constructor->isImplicit() && Constructor->isDefaultConstructor()) {
7506        if (!Constructor->isUsed())
7507          DefineImplicitDefaultConstructor(Loc, Constructor);
7508    } else if (Constructor->isImplicit() &&
7509               Constructor->isCopyConstructor(TypeQuals)) {
7510      if (!Constructor->isUsed())
7511        DefineImplicitCopyConstructor(Loc, Constructor, TypeQuals);
7512    }
7513
7514    MarkVTableUsed(Loc, Constructor->getParent());
7515  } else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(D)) {
7516    if (Destructor->isImplicit() && !Destructor->isUsed())
7517      DefineImplicitDestructor(Loc, Destructor);
7518    if (Destructor->isVirtual())
7519      MarkVTableUsed(Loc, Destructor->getParent());
7520  } else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(D)) {
7521    if (MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() &&
7522        MethodDecl->getOverloadedOperator() == OO_Equal) {
7523      if (!MethodDecl->isUsed())
7524        DefineImplicitCopyAssignment(Loc, MethodDecl);
7525    } else if (MethodDecl->isVirtual())
7526      MarkVTableUsed(Loc, MethodDecl->getParent());
7527  }
7528  if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
7529    // Implicit instantiation of function templates and member functions of
7530    // class templates.
7531    if (Function->isImplicitlyInstantiable()) {
7532      bool AlreadyInstantiated = false;
7533      if (FunctionTemplateSpecializationInfo *SpecInfo
7534                                = Function->getTemplateSpecializationInfo()) {
7535        if (SpecInfo->getPointOfInstantiation().isInvalid())
7536          SpecInfo->setPointOfInstantiation(Loc);
7537        else if (SpecInfo->getTemplateSpecializationKind()
7538                   == TSK_ImplicitInstantiation)
7539          AlreadyInstantiated = true;
7540      } else if (MemberSpecializationInfo *MSInfo
7541                                  = Function->getMemberSpecializationInfo()) {
7542        if (MSInfo->getPointOfInstantiation().isInvalid())
7543          MSInfo->setPointOfInstantiation(Loc);
7544        else if (MSInfo->getTemplateSpecializationKind()
7545                   == TSK_ImplicitInstantiation)
7546          AlreadyInstantiated = true;
7547      }
7548
7549      if (!AlreadyInstantiated) {
7550        if (isa<CXXRecordDecl>(Function->getDeclContext()) &&
7551            cast<CXXRecordDecl>(Function->getDeclContext())->isLocalClass())
7552          PendingLocalImplicitInstantiations.push_back(std::make_pair(Function,
7553                                                                      Loc));
7554        else
7555          PendingImplicitInstantiations.push_back(std::make_pair(Function,
7556                                                                 Loc));
7557      }
7558    }
7559
7560    // FIXME: keep track of references to static functions
7561    Function->setUsed(true);
7562
7563    return;
7564  }
7565
7566  if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
7567    // Implicit instantiation of static data members of class templates.
7568    if (Var->isStaticDataMember() &&
7569        Var->getInstantiatedFromStaticDataMember()) {
7570      MemberSpecializationInfo *MSInfo = Var->getMemberSpecializationInfo();
7571      assert(MSInfo && "Missing member specialization information?");
7572      if (MSInfo->getPointOfInstantiation().isInvalid() &&
7573          MSInfo->getTemplateSpecializationKind()== TSK_ImplicitInstantiation) {
7574        MSInfo->setPointOfInstantiation(Loc);
7575        PendingImplicitInstantiations.push_back(std::make_pair(Var, Loc));
7576      }
7577    }
7578
7579    // FIXME: keep track of references to static data?
7580
7581    D->setUsed(true);
7582    return;
7583  }
7584}
7585
7586namespace {
7587  // Mark all of the declarations referenced
7588  // FIXME: Not fully implemented yet! We need to have a better understanding
7589  // of when we're entering
7590  class MarkReferencedDecls : public RecursiveASTVisitor<MarkReferencedDecls> {
7591    Sema &S;
7592    SourceLocation Loc;
7593
7594  public:
7595    typedef RecursiveASTVisitor<MarkReferencedDecls> Inherited;
7596
7597    MarkReferencedDecls(Sema &S, SourceLocation Loc) : S(S), Loc(Loc) { }
7598
7599    bool VisitTemplateArgument(const TemplateArgument &Arg);
7600    bool VisitRecordType(RecordType *T);
7601  };
7602}
7603
7604bool MarkReferencedDecls::VisitTemplateArgument(const TemplateArgument &Arg) {
7605  if (Arg.getKind() == TemplateArgument::Declaration) {
7606    S.MarkDeclarationReferenced(Loc, Arg.getAsDecl());
7607  }
7608
7609  return Inherited::VisitTemplateArgument(Arg);
7610}
7611
7612bool MarkReferencedDecls::VisitRecordType(RecordType *T) {
7613  if (ClassTemplateSpecializationDecl *Spec
7614                  = dyn_cast<ClassTemplateSpecializationDecl>(T->getDecl())) {
7615    const TemplateArgumentList &Args = Spec->getTemplateArgs();
7616    return VisitTemplateArguments(Args.getFlatArgumentList(),
7617                                  Args.flat_size());
7618  }
7619
7620  return false;
7621}
7622
7623void Sema::MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T) {
7624  MarkReferencedDecls Marker(*this, Loc);
7625  Marker.Visit(Context.getCanonicalType(T));
7626}
7627
7628/// \brief Emit a diagnostic that describes an effect on the run-time behavior
7629/// of the program being compiled.
7630///
7631/// This routine emits the given diagnostic when the code currently being
7632/// type-checked is "potentially evaluated", meaning that there is a
7633/// possibility that the code will actually be executable. Code in sizeof()
7634/// expressions, code used only during overload resolution, etc., are not
7635/// potentially evaluated. This routine will suppress such diagnostics or,
7636/// in the absolutely nutty case of potentially potentially evaluated
7637/// expressions (C++ typeid), queue the diagnostic to potentially emit it
7638/// later.
7639///
7640/// This routine should be used for all diagnostics that describe the run-time
7641/// behavior of a program, such as passing a non-POD value through an ellipsis.
7642/// Failure to do so will likely result in spurious diagnostics or failures
7643/// during overload resolution or within sizeof/alignof/typeof/typeid.
7644bool Sema::DiagRuntimeBehavior(SourceLocation Loc,
7645                               const PartialDiagnostic &PD) {
7646  switch (ExprEvalContexts.back().Context ) {
7647  case Unevaluated:
7648    // The argument will never be evaluated, so don't complain.
7649    break;
7650
7651  case PotentiallyEvaluated:
7652    Diag(Loc, PD);
7653    return true;
7654
7655  case PotentiallyPotentiallyEvaluated:
7656    ExprEvalContexts.back().addDiagnostic(Loc, PD);
7657    break;
7658  }
7659
7660  return false;
7661}
7662
7663bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
7664                               CallExpr *CE, FunctionDecl *FD) {
7665  if (ReturnType->isVoidType() || !ReturnType->isIncompleteType())
7666    return false;
7667
7668  PartialDiagnostic Note =
7669    FD ? PDiag(diag::note_function_with_incomplete_return_type_declared_here)
7670    << FD->getDeclName() : PDiag();
7671  SourceLocation NoteLoc = FD ? FD->getLocation() : SourceLocation();
7672
7673  if (RequireCompleteType(Loc, ReturnType,
7674                          FD ?
7675                          PDiag(diag::err_call_function_incomplete_return)
7676                            << CE->getSourceRange() << FD->getDeclName() :
7677                          PDiag(diag::err_call_incomplete_return)
7678                            << CE->getSourceRange(),
7679                          std::make_pair(NoteLoc, Note)))
7680    return true;
7681
7682  return false;
7683}
7684
7685// Diagnose the common s/=/==/ typo.  Note that adding parentheses
7686// will prevent this condition from triggering, which is what we want.
7687void Sema::DiagnoseAssignmentAsCondition(Expr *E) {
7688  SourceLocation Loc;
7689
7690  unsigned diagnostic = diag::warn_condition_is_assignment;
7691
7692  if (isa<BinaryOperator>(E)) {
7693    BinaryOperator *Op = cast<BinaryOperator>(E);
7694    if (Op->getOpcode() != BinaryOperator::Assign)
7695      return;
7696
7697    // Greylist some idioms by putting them into a warning subcategory.
7698    if (ObjCMessageExpr *ME
7699          = dyn_cast<ObjCMessageExpr>(Op->getRHS()->IgnoreParenCasts())) {
7700      Selector Sel = ME->getSelector();
7701
7702      // self = [<foo> init...]
7703      if (isSelfExpr(Op->getLHS())
7704          && Sel.getIdentifierInfoForSlot(0)->getName().startswith("init"))
7705        diagnostic = diag::warn_condition_is_idiomatic_assignment;
7706
7707      // <foo> = [<bar> nextObject]
7708      else if (Sel.isUnarySelector() &&
7709               Sel.getIdentifierInfoForSlot(0)->getName() == "nextObject")
7710        diagnostic = diag::warn_condition_is_idiomatic_assignment;
7711    }
7712
7713    Loc = Op->getOperatorLoc();
7714  } else if (isa<CXXOperatorCallExpr>(E)) {
7715    CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(E);
7716    if (Op->getOperator() != OO_Equal)
7717      return;
7718
7719    Loc = Op->getOperatorLoc();
7720  } else {
7721    // Not an assignment.
7722    return;
7723  }
7724
7725  SourceLocation Open = E->getSourceRange().getBegin();
7726  SourceLocation Close = PP.getLocForEndOfToken(E->getSourceRange().getEnd());
7727
7728  Diag(Loc, diagnostic) << E->getSourceRange();
7729  Diag(Loc, diag::note_condition_assign_to_comparison)
7730    << FixItHint::CreateReplacement(Loc, "==");
7731  Diag(Loc, diag::note_condition_assign_silence)
7732    << FixItHint::CreateInsertion(Open, "(")
7733    << FixItHint::CreateInsertion(Close, ")");
7734}
7735
7736bool Sema::CheckBooleanCondition(Expr *&E, SourceLocation Loc) {
7737  DiagnoseAssignmentAsCondition(E);
7738
7739  if (!E->isTypeDependent()) {
7740    DefaultFunctionArrayLvalueConversion(E);
7741
7742    QualType T = E->getType();
7743
7744    if (getLangOptions().CPlusPlus) {
7745      if (CheckCXXBooleanCondition(E)) // C++ 6.4p4
7746        return true;
7747    } else if (!T->isScalarType()) { // C99 6.8.4.1p1
7748      Diag(Loc, diag::err_typecheck_statement_requires_scalar)
7749        << T << E->getSourceRange();
7750      return true;
7751    }
7752  }
7753
7754  return false;
7755}
7756
7757Sema::OwningExprResult Sema::ActOnBooleanCondition(Scope *S, SourceLocation Loc,
7758                                                   ExprArg SubExpr) {
7759  Expr *Sub = SubExpr.takeAs<Expr>();
7760  if (!Sub)
7761    return ExprError();
7762
7763  if (CheckBooleanCondition(Sub, Loc)) {
7764    Sub->Destroy(Context);
7765    return ExprError();
7766  }
7767
7768  return Owned(Sub);
7769}
7770