SemaExpr.cpp revision eff2cd58a897379c7fc46e83447d4619d6f6e9ca
1//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/ExprCXX.h"
18#include "clang/AST/ExprObjC.h"
19#include "clang/Lex/Preprocessor.h"
20#include "clang/Lex/LiteralSupport.h"
21#include "clang/Basic/Diagnostic.h"
22#include "clang/Basic/SourceManager.h"
23#include "clang/Basic/TargetInfo.h"
24#include "clang/Parse/DeclSpec.h"
25#include "clang/Parse/Designator.h"
26#include "clang/Parse/Scope.h"
27using namespace clang;
28
29//===----------------------------------------------------------------------===//
30//  Standard Promotions and Conversions
31//===----------------------------------------------------------------------===//
32
33/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
34void Sema::DefaultFunctionArrayConversion(Expr *&E) {
35  QualType Ty = E->getType();
36  assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
37
38  if (Ty->isFunctionType())
39    ImpCastExprToType(E, Context.getPointerType(Ty));
40  else if (Ty->isArrayType()) {
41    // In C90 mode, arrays only promote to pointers if the array expression is
42    // an lvalue.  The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
43    // type 'array of type' is converted to an expression that has type 'pointer
44    // to type'...".  In C99 this was changed to: C99 6.3.2.1p3: "an expression
45    // that has type 'array of type' ...".  The relevant change is "an lvalue"
46    // (C90) to "an expression" (C99).
47    //
48    // C++ 4.2p1:
49    // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
50    // T" can be converted to an rvalue of type "pointer to T".
51    //
52    if (getLangOptions().C99 || getLangOptions().CPlusPlus ||
53        E->isLvalue(Context) == Expr::LV_Valid)
54      ImpCastExprToType(E, Context.getArrayDecayedType(Ty));
55  }
56}
57
58/// UsualUnaryConversions - Performs various conversions that are common to most
59/// operators (C99 6.3). The conversions of array and function types are
60/// sometimes surpressed. For example, the array->pointer conversion doesn't
61/// apply if the array is an argument to the sizeof or address (&) operators.
62/// In these instances, this routine should *not* be called.
63Expr *Sema::UsualUnaryConversions(Expr *&Expr) {
64  QualType Ty = Expr->getType();
65  assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
66
67  if (Ty->isPromotableIntegerType()) // C99 6.3.1.1p2
68    ImpCastExprToType(Expr, Context.IntTy);
69  else
70    DefaultFunctionArrayConversion(Expr);
71
72  return Expr;
73}
74
75/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
76/// do not have a prototype. Arguments that have type float are promoted to
77/// double. All other argument types are converted by UsualUnaryConversions().
78void Sema::DefaultArgumentPromotion(Expr *&Expr) {
79  QualType Ty = Expr->getType();
80  assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
81
82  // If this is a 'float' (CVR qualified or typedef) promote to double.
83  if (const BuiltinType *BT = Ty->getAsBuiltinType())
84    if (BT->getKind() == BuiltinType::Float)
85      return ImpCastExprToType(Expr, Context.DoubleTy);
86
87  UsualUnaryConversions(Expr);
88}
89
90/// UsualArithmeticConversions - Performs various conversions that are common to
91/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
92/// routine returns the first non-arithmetic type found. The client is
93/// responsible for emitting appropriate error diagnostics.
94/// FIXME: verify the conversion rules for "complex int" are consistent with
95/// GCC.
96QualType Sema::UsualArithmeticConversions(Expr *&lhsExpr, Expr *&rhsExpr,
97                                          bool isCompAssign) {
98  if (!isCompAssign) {
99    UsualUnaryConversions(lhsExpr);
100    UsualUnaryConversions(rhsExpr);
101  }
102
103  // For conversion purposes, we ignore any qualifiers.
104  // For example, "const float" and "float" are equivalent.
105  QualType lhs =
106    Context.getCanonicalType(lhsExpr->getType()).getUnqualifiedType();
107  QualType rhs =
108    Context.getCanonicalType(rhsExpr->getType()).getUnqualifiedType();
109
110  // If both types are identical, no conversion is needed.
111  if (lhs == rhs)
112    return lhs;
113
114  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
115  // The caller can deal with this (e.g. pointer + int).
116  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
117    return lhs;
118
119  QualType destType = UsualArithmeticConversionsType(lhs, rhs);
120  if (!isCompAssign) {
121    ImpCastExprToType(lhsExpr, destType);
122    ImpCastExprToType(rhsExpr, destType);
123  }
124  return destType;
125}
126
127QualType Sema::UsualArithmeticConversionsType(QualType lhs, QualType rhs) {
128  // Perform the usual unary conversions. We do this early so that
129  // integral promotions to "int" can allow us to exit early, in the
130  // lhs == rhs check. Also, for conversion purposes, we ignore any
131  // qualifiers.  For example, "const float" and "float" are
132  // equivalent.
133  if (lhs->isPromotableIntegerType()) lhs = Context.IntTy;
134  else                                lhs = lhs.getUnqualifiedType();
135  if (rhs->isPromotableIntegerType()) rhs = Context.IntTy;
136  else                                rhs = rhs.getUnqualifiedType();
137
138  // If both types are identical, no conversion is needed.
139  if (lhs == rhs)
140    return lhs;
141
142  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
143  // The caller can deal with this (e.g. pointer + int).
144  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
145    return lhs;
146
147  // At this point, we have two different arithmetic types.
148
149  // Handle complex types first (C99 6.3.1.8p1).
150  if (lhs->isComplexType() || rhs->isComplexType()) {
151    // if we have an integer operand, the result is the complex type.
152    if (rhs->isIntegerType() || rhs->isComplexIntegerType()) {
153      // convert the rhs to the lhs complex type.
154      return lhs;
155    }
156    if (lhs->isIntegerType() || lhs->isComplexIntegerType()) {
157      // convert the lhs to the rhs complex type.
158      return rhs;
159    }
160    // This handles complex/complex, complex/float, or float/complex.
161    // When both operands are complex, the shorter operand is converted to the
162    // type of the longer, and that is the type of the result. This corresponds
163    // to what is done when combining two real floating-point operands.
164    // The fun begins when size promotion occur across type domains.
165    // From H&S 6.3.4: When one operand is complex and the other is a real
166    // floating-point type, the less precise type is converted, within it's
167    // real or complex domain, to the precision of the other type. For example,
168    // when combining a "long double" with a "double _Complex", the
169    // "double _Complex" is promoted to "long double _Complex".
170    int result = Context.getFloatingTypeOrder(lhs, rhs);
171
172    if (result > 0) { // The left side is bigger, convert rhs.
173      rhs = Context.getFloatingTypeOfSizeWithinDomain(lhs, rhs);
174    } else if (result < 0) { // The right side is bigger, convert lhs.
175      lhs = Context.getFloatingTypeOfSizeWithinDomain(rhs, lhs);
176    }
177    // At this point, lhs and rhs have the same rank/size. Now, make sure the
178    // domains match. This is a requirement for our implementation, C99
179    // does not require this promotion.
180    if (lhs != rhs) { // Domains don't match, we have complex/float mix.
181      if (lhs->isRealFloatingType()) { // handle "double, _Complex double".
182        return rhs;
183      } else { // handle "_Complex double, double".
184        return lhs;
185      }
186    }
187    return lhs; // The domain/size match exactly.
188  }
189  // Now handle "real" floating types (i.e. float, double, long double).
190  if (lhs->isRealFloatingType() || rhs->isRealFloatingType()) {
191    // if we have an integer operand, the result is the real floating type.
192    if (rhs->isIntegerType()) {
193      // convert rhs to the lhs floating point type.
194      return lhs;
195    }
196    if (rhs->isComplexIntegerType()) {
197      // convert rhs to the complex floating point type.
198      return Context.getComplexType(lhs);
199    }
200    if (lhs->isIntegerType()) {
201      // convert lhs to the rhs floating point type.
202      return rhs;
203    }
204    if (lhs->isComplexIntegerType()) {
205      // convert lhs to the complex floating point type.
206      return Context.getComplexType(rhs);
207    }
208    // We have two real floating types, float/complex combos were handled above.
209    // Convert the smaller operand to the bigger result.
210    int result = Context.getFloatingTypeOrder(lhs, rhs);
211
212    if (result > 0) { // convert the rhs
213      return lhs;
214    }
215    if (result < 0) { // convert the lhs
216      return rhs;
217    }
218    assert(0 && "Sema::UsualArithmeticConversionsType(): illegal float comparison");
219  }
220  if (lhs->isComplexIntegerType() || rhs->isComplexIntegerType()) {
221    // Handle GCC complex int extension.
222    const ComplexType *lhsComplexInt = lhs->getAsComplexIntegerType();
223    const ComplexType *rhsComplexInt = rhs->getAsComplexIntegerType();
224
225    if (lhsComplexInt && rhsComplexInt) {
226      if (Context.getIntegerTypeOrder(lhsComplexInt->getElementType(),
227                                      rhsComplexInt->getElementType()) >= 0) {
228        // convert the rhs
229        return lhs;
230      }
231      return rhs;
232    } else if (lhsComplexInt && rhs->isIntegerType()) {
233      // convert the rhs to the lhs complex type.
234      return lhs;
235    } else if (rhsComplexInt && lhs->isIntegerType()) {
236      // convert the lhs to the rhs complex type.
237      return rhs;
238    }
239  }
240  // Finally, we have two differing integer types.
241  // The rules for this case are in C99 6.3.1.8
242  int compare = Context.getIntegerTypeOrder(lhs, rhs);
243  bool lhsSigned = lhs->isSignedIntegerType(),
244       rhsSigned = rhs->isSignedIntegerType();
245  QualType destType;
246  if (lhsSigned == rhsSigned) {
247    // Same signedness; use the higher-ranked type
248    destType = compare >= 0 ? lhs : rhs;
249  } else if (compare != (lhsSigned ? 1 : -1)) {
250    // The unsigned type has greater than or equal rank to the
251    // signed type, so use the unsigned type
252    destType = lhsSigned ? rhs : lhs;
253  } else if (Context.getIntWidth(lhs) != Context.getIntWidth(rhs)) {
254    // The two types are different widths; if we are here, that
255    // means the signed type is larger than the unsigned type, so
256    // use the signed type.
257    destType = lhsSigned ? lhs : rhs;
258  } else {
259    // The signed type is higher-ranked than the unsigned type,
260    // but isn't actually any bigger (like unsigned int and long
261    // on most 32-bit systems).  Use the unsigned type corresponding
262    // to the signed type.
263    destType = Context.getCorrespondingUnsignedType(lhsSigned ? lhs : rhs);
264  }
265  return destType;
266}
267
268//===----------------------------------------------------------------------===//
269//  Semantic Analysis for various Expression Types
270//===----------------------------------------------------------------------===//
271
272
273/// ActOnStringLiteral - The specified tokens were lexed as pasted string
274/// fragments (e.g. "foo" "bar" L"baz").  The result string has to handle string
275/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
276/// multiple tokens.  However, the common case is that StringToks points to one
277/// string.
278///
279Action::ExprResult
280Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks) {
281  assert(NumStringToks && "Must have at least one string!");
282
283  StringLiteralParser Literal(StringToks, NumStringToks, PP, Context.Target);
284  if (Literal.hadError)
285    return ExprResult(true);
286
287  llvm::SmallVector<SourceLocation, 4> StringTokLocs;
288  for (unsigned i = 0; i != NumStringToks; ++i)
289    StringTokLocs.push_back(StringToks[i].getLocation());
290
291  // Verify that pascal strings aren't too large.
292  if (Literal.Pascal && Literal.GetStringLength() > 256)
293    return Diag(StringToks[0].getLocation(), diag::err_pascal_string_too_long)
294      << SourceRange(StringToks[0].getLocation(),
295                     StringToks[NumStringToks-1].getLocation());
296
297  QualType StrTy = Context.CharTy;
298  if (Literal.AnyWide) StrTy = Context.getWCharType();
299  if (Literal.Pascal) StrTy = Context.UnsignedCharTy;
300
301  // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
302  if (getLangOptions().CPlusPlus)
303    StrTy.addConst();
304
305  // Get an array type for the string, according to C99 6.4.5.  This includes
306  // the nul terminator character as well as the string length for pascal
307  // strings.
308  StrTy = Context.getConstantArrayType(StrTy,
309                                   llvm::APInt(32, Literal.GetStringLength()+1),
310                                       ArrayType::Normal, 0);
311
312  // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
313  return new StringLiteral(Literal.GetString(), Literal.GetStringLength(),
314                           Literal.AnyWide, StrTy,
315                           StringToks[0].getLocation(),
316                           StringToks[NumStringToks-1].getLocation());
317}
318
319/// ShouldSnapshotBlockValueReference - Return true if a reference inside of
320/// CurBlock to VD should cause it to be snapshotted (as we do for auto
321/// variables defined outside the block) or false if this is not needed (e.g.
322/// for values inside the block or for globals).
323///
324/// FIXME: This will create BlockDeclRefExprs for global variables,
325/// function references, etc which is suboptimal :) and breaks
326/// things like "integer constant expression" tests.
327static bool ShouldSnapshotBlockValueReference(BlockSemaInfo *CurBlock,
328                                              ValueDecl *VD) {
329  // If the value is defined inside the block, we couldn't snapshot it even if
330  // we wanted to.
331  if (CurBlock->TheDecl == VD->getDeclContext())
332    return false;
333
334  // If this is an enum constant or function, it is constant, don't snapshot.
335  if (isa<EnumConstantDecl>(VD) || isa<FunctionDecl>(VD))
336    return false;
337
338  // If this is a reference to an extern, static, or global variable, no need to
339  // snapshot it.
340  // FIXME: What about 'const' variables in C++?
341  if (const VarDecl *Var = dyn_cast<VarDecl>(VD))
342    return Var->hasLocalStorage();
343
344  return true;
345}
346
347
348
349/// ActOnIdentifierExpr - The parser read an identifier in expression context,
350/// validate it per-C99 6.5.1.  HasTrailingLParen indicates whether this
351/// identifier is used in a function call context.
352/// LookupCtx is only used for a C++ qualified-id (foo::bar) to indicate the
353/// class or namespace that the identifier must be a member of.
354Sema::ExprResult Sema::ActOnIdentifierExpr(Scope *S, SourceLocation Loc,
355                                           IdentifierInfo &II,
356                                           bool HasTrailingLParen,
357                                           const CXXScopeSpec *SS) {
358  return ActOnDeclarationNameExpr(S, Loc, &II, HasTrailingLParen, SS);
359}
360
361/// BuildDeclRefExpr - Build either a DeclRefExpr or a
362/// QualifiedDeclRefExpr based on whether or not SS is a
363/// nested-name-specifier.
364DeclRefExpr *Sema::BuildDeclRefExpr(NamedDecl *D, QualType Ty, SourceLocation Loc,
365                                    bool TypeDependent, bool ValueDependent,
366                                    const CXXScopeSpec *SS) {
367  if (SS && !SS->isEmpty())
368    return new QualifiedDeclRefExpr(D, Ty, Loc, TypeDependent, ValueDependent,
369                                    SS->getRange().getBegin());
370  else
371    return new DeclRefExpr(D, Ty, Loc, TypeDependent, ValueDependent);
372}
373
374/// getObjectForAnonymousRecordDecl - Retrieve the (unnamed) field or
375/// variable corresponding to the anonymous union or struct whose type
376/// is Record.
377static ScopedDecl *getObjectForAnonymousRecordDecl(RecordDecl *Record) {
378  assert(Record->isAnonymousStructOrUnion() &&
379         "Record must be an anonymous struct or union!");
380
381  // FIXME: Once ScopedDecls are directly linked together, this will
382  // be an O(1) operation rather than a slow walk through DeclContext's
383  // vector (which itself will be eliminated). DeclGroups might make
384  // this even better.
385  DeclContext *Ctx = Record->getDeclContext();
386  for (DeclContext::decl_iterator D = Ctx->decls_begin(),
387                               DEnd = Ctx->decls_end();
388       D != DEnd; ++D) {
389    if (*D == Record) {
390      // The object for the anonymous struct/union directly
391      // follows its type in the list of declarations.
392      ++D;
393      assert(D != DEnd && "Missing object for anonymous record");
394      assert(!cast<ScopedDecl>(*D)->getDeclName() && "Decl should be unnamed");
395      return *D;
396    }
397  }
398
399  assert(false && "Missing object for anonymous record");
400  return 0;
401}
402
403Sema::ExprResult
404Sema::BuildAnonymousStructUnionMemberReference(SourceLocation Loc,
405                                               FieldDecl *Field,
406                                               Expr *BaseObjectExpr,
407                                               SourceLocation OpLoc) {
408  assert(Field->getDeclContext()->isRecord() &&
409         cast<RecordDecl>(Field->getDeclContext())->isAnonymousStructOrUnion()
410         && "Field must be stored inside an anonymous struct or union");
411
412  // Construct the sequence of field member references
413  // we'll have to perform to get to the field in the anonymous
414  // union/struct. The list of members is built from the field
415  // outward, so traverse it backwards to go from an object in
416  // the current context to the field we found.
417  llvm::SmallVector<FieldDecl *, 4> AnonFields;
418  AnonFields.push_back(Field);
419  VarDecl *BaseObject = 0;
420  DeclContext *Ctx = Field->getDeclContext();
421  do {
422    RecordDecl *Record = cast<RecordDecl>(Ctx);
423    ScopedDecl *AnonObject = getObjectForAnonymousRecordDecl(Record);
424    if (FieldDecl *AnonField = dyn_cast<FieldDecl>(AnonObject))
425      AnonFields.push_back(AnonField);
426    else {
427      BaseObject = cast<VarDecl>(AnonObject);
428      break;
429    }
430    Ctx = Ctx->getParent();
431  } while (Ctx->isRecord() &&
432           cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion());
433
434  // Build the expression that refers to the base object, from
435  // which we will build a sequence of member references to each
436  // of the anonymous union objects and, eventually, the field we
437  // found via name lookup.
438  bool BaseObjectIsPointer = false;
439  unsigned ExtraQuals = 0;
440  if (BaseObject) {
441    // BaseObject is an anonymous struct/union variable (and is,
442    // therefore, not part of another non-anonymous record).
443    delete BaseObjectExpr;
444
445    BaseObjectExpr = new DeclRefExpr(BaseObject, BaseObject->getType(),
446                                     SourceLocation());
447    ExtraQuals
448      = Context.getCanonicalType(BaseObject->getType()).getCVRQualifiers();
449  } else if (BaseObjectExpr) {
450    // The caller provided the base object expression. Determine
451    // whether its a pointer and whether it adds any qualifiers to the
452    // anonymous struct/union fields we're looking into.
453    QualType ObjectType = BaseObjectExpr->getType();
454    if (const PointerType *ObjectPtr = ObjectType->getAsPointerType()) {
455      BaseObjectIsPointer = true;
456      ObjectType = ObjectPtr->getPointeeType();
457    }
458    ExtraQuals = Context.getCanonicalType(ObjectType).getCVRQualifiers();
459  } else {
460    // We've found a member of an anonymous struct/union that is
461    // inside a non-anonymous struct/union, so in a well-formed
462    // program our base object expression is "this".
463    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
464      if (!MD->isStatic()) {
465        QualType AnonFieldType
466          = Context.getTagDeclType(
467                     cast<RecordDecl>(AnonFields.back()->getDeclContext()));
468        QualType ThisType = Context.getTagDeclType(MD->getParent());
469        if ((Context.getCanonicalType(AnonFieldType)
470               == Context.getCanonicalType(ThisType)) ||
471            IsDerivedFrom(ThisType, AnonFieldType)) {
472          // Our base object expression is "this".
473          BaseObjectExpr = new CXXThisExpr(SourceLocation(),
474                                           MD->getThisType(Context));
475          BaseObjectIsPointer = true;
476        }
477      } else {
478        return Diag(Loc, diag::err_invalid_member_use_in_static_method)
479          << Field->getDeclName();
480      }
481      ExtraQuals = MD->getTypeQualifiers();
482    }
483
484    if (!BaseObjectExpr)
485      return Diag(Loc, diag::err_invalid_non_static_member_use)
486        << Field->getDeclName();
487  }
488
489  // Build the implicit member references to the field of the
490  // anonymous struct/union.
491  Expr *Result = BaseObjectExpr;
492  for (llvm::SmallVector<FieldDecl *, 4>::reverse_iterator
493         FI = AnonFields.rbegin(), FIEnd = AnonFields.rend();
494       FI != FIEnd; ++FI) {
495    QualType MemberType = (*FI)->getType();
496    if (!(*FI)->isMutable()) {
497      unsigned combinedQualifiers
498        = MemberType.getCVRQualifiers() | ExtraQuals;
499      MemberType = MemberType.getQualifiedType(combinedQualifiers);
500    }
501    Result = new MemberExpr(Result, BaseObjectIsPointer, *FI,
502                            OpLoc, MemberType);
503    BaseObjectIsPointer = false;
504    ExtraQuals = Context.getCanonicalType(MemberType).getCVRQualifiers();
505    OpLoc = SourceLocation();
506  }
507
508  return Result;
509}
510
511/// ActOnDeclarationNameExpr - The parser has read some kind of name
512/// (e.g., a C++ id-expression (C++ [expr.prim]p1)). This routine
513/// performs lookup on that name and returns an expression that refers
514/// to that name. This routine isn't directly called from the parser,
515/// because the parser doesn't know about DeclarationName. Rather,
516/// this routine is called by ActOnIdentifierExpr,
517/// ActOnOperatorFunctionIdExpr, and ActOnConversionFunctionExpr,
518/// which form the DeclarationName from the corresponding syntactic
519/// forms.
520///
521/// HasTrailingLParen indicates whether this identifier is used in a
522/// function call context.  LookupCtx is only used for a C++
523/// qualified-id (foo::bar) to indicate the class or namespace that
524/// the identifier must be a member of.
525///
526/// If ForceResolution is true, then we will attempt to resolve the
527/// name even if it looks like a dependent name. This option is off by
528/// default.
529Sema::ExprResult Sema::ActOnDeclarationNameExpr(Scope *S, SourceLocation Loc,
530                                                DeclarationName Name,
531                                                bool HasTrailingLParen,
532                                                const CXXScopeSpec *SS,
533                                                bool ForceResolution) {
534  if (S->getTemplateParamParent() && Name.getAsIdentifierInfo() &&
535      HasTrailingLParen && !SS && !ForceResolution) {
536    // We've seen something of the form
537    //   identifier(
538    // and we are in a template, so it is likely that 's' is a
539    // dependent name. However, we won't know until we've parsed all
540    // of the call arguments. So, build a CXXDependentNameExpr node
541    // to represent this name. Then, if it turns out that none of the
542    // arguments are type-dependent, we'll force the resolution of the
543    // dependent name at that point.
544    return new CXXDependentNameExpr(Name.getAsIdentifierInfo(),
545                                    Context.DependentTy, Loc);
546  }
547
548  // Could be enum-constant, value decl, instance variable, etc.
549  Decl *D = 0;
550  LookupResult Lookup;
551  if (SS && !SS->isEmpty()) {
552    DeclContext *DC = static_cast<DeclContext*>(SS->getScopeRep());
553    if (DC == 0)
554      return true;
555    Lookup = LookupDecl(Name, Decl::IDNS_Ordinary, S, DC);
556  } else
557    Lookup = LookupDecl(Name, Decl::IDNS_Ordinary, S);
558
559  if (Lookup.isAmbiguous())
560    return DiagnoseAmbiguousLookup(Lookup, Name, Loc,
561                                   SS && SS->isSet()? SS->getRange()
562                                                    : SourceRange());
563  else
564    D = Lookup.getAsDecl();
565
566  // If this reference is in an Objective-C method, then ivar lookup happens as
567  // well.
568  IdentifierInfo *II = Name.getAsIdentifierInfo();
569  if (II && getCurMethodDecl()) {
570    ScopedDecl *SD = dyn_cast_or_null<ScopedDecl>(D);
571    // There are two cases to handle here.  1) scoped lookup could have failed,
572    // in which case we should look for an ivar.  2) scoped lookup could have
573    // found a decl, but that decl is outside the current method (i.e. a global
574    // variable).  In these two cases, we do a lookup for an ivar with this
575    // name, if the lookup suceeds, we replace it our current decl.
576    if (SD == 0 || SD->isDefinedOutsideFunctionOrMethod()) {
577      ObjCInterfaceDecl *IFace = getCurMethodDecl()->getClassInterface();
578      if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II)) {
579        // FIXME: This should use a new expr for a direct reference, don't turn
580        // this into Self->ivar, just return a BareIVarExpr or something.
581        IdentifierInfo &II = Context.Idents.get("self");
582        ExprResult SelfExpr = ActOnIdentifierExpr(S, Loc, II, false);
583        ObjCIvarRefExpr *MRef=  new ObjCIvarRefExpr(IV, IV->getType(), Loc,
584                                  static_cast<Expr*>(SelfExpr.Val), true, true);
585        Context.setFieldDecl(IFace, IV, MRef);
586        return MRef;
587      }
588    }
589    // Needed to implement property "super.method" notation.
590    if (SD == 0 && II->isStr("super")) {
591      QualType T = Context.getPointerType(Context.getObjCInterfaceType(
592                     getCurMethodDecl()->getClassInterface()));
593      return new ObjCSuperExpr(Loc, T);
594    }
595  }
596  if (D == 0) {
597    // Otherwise, this could be an implicitly declared function reference (legal
598    // in C90, extension in C99).
599    if (HasTrailingLParen && II &&
600        !getLangOptions().CPlusPlus) // Not in C++.
601      D = ImplicitlyDefineFunction(Loc, *II, S);
602    else {
603      // If this name wasn't predeclared and if this is not a function call,
604      // diagnose the problem.
605      if (SS && !SS->isEmpty())
606        return Diag(Loc, diag::err_typecheck_no_member)
607          << Name << SS->getRange();
608      else if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
609               Name.getNameKind() == DeclarationName::CXXConversionFunctionName)
610        return Diag(Loc, diag::err_undeclared_use) << Name.getAsString();
611      else
612        return Diag(Loc, diag::err_undeclared_var_use) << Name;
613    }
614  }
615
616  // We may have found a field within an anonymous union or struct
617  // (C++ [class.union]).
618  if (FieldDecl *FD = dyn_cast<FieldDecl>(D))
619    if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion())
620      return BuildAnonymousStructUnionMemberReference(Loc, FD);
621
622  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
623    if (!MD->isStatic()) {
624      // C++ [class.mfct.nonstatic]p2:
625      //   [...] if name lookup (3.4.1) resolves the name in the
626      //   id-expression to a nonstatic nontype member of class X or of
627      //   a base class of X, the id-expression is transformed into a
628      //   class member access expression (5.2.5) using (*this) (9.3.2)
629      //   as the postfix-expression to the left of the '.' operator.
630      DeclContext *Ctx = 0;
631      QualType MemberType;
632      if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
633        Ctx = FD->getDeclContext();
634        MemberType = FD->getType();
635
636        if (const ReferenceType *RefType = MemberType->getAsReferenceType())
637          MemberType = RefType->getPointeeType();
638        else if (!FD->isMutable()) {
639          unsigned combinedQualifiers
640            = MemberType.getCVRQualifiers() | MD->getTypeQualifiers();
641          MemberType = MemberType.getQualifiedType(combinedQualifiers);
642        }
643      } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
644        if (!Method->isStatic()) {
645          Ctx = Method->getParent();
646          MemberType = Method->getType();
647        }
648      } else if (OverloadedFunctionDecl *Ovl
649                   = dyn_cast<OverloadedFunctionDecl>(D)) {
650        for (OverloadedFunctionDecl::function_iterator
651               Func = Ovl->function_begin(),
652               FuncEnd = Ovl->function_end();
653             Func != FuncEnd; ++Func) {
654          if (CXXMethodDecl *DMethod = dyn_cast<CXXMethodDecl>(*Func))
655            if (!DMethod->isStatic()) {
656              Ctx = Ovl->getDeclContext();
657              MemberType = Context.OverloadTy;
658              break;
659            }
660        }
661      }
662
663      if (Ctx && Ctx->isRecord()) {
664        QualType CtxType = Context.getTagDeclType(cast<CXXRecordDecl>(Ctx));
665        QualType ThisType = Context.getTagDeclType(MD->getParent());
666        if ((Context.getCanonicalType(CtxType)
667               == Context.getCanonicalType(ThisType)) ||
668            IsDerivedFrom(ThisType, CtxType)) {
669          // Build the implicit member access expression.
670          Expr *This = new CXXThisExpr(SourceLocation(),
671                                       MD->getThisType(Context));
672          return new MemberExpr(This, true, cast<NamedDecl>(D),
673                                SourceLocation(), MemberType);
674        }
675      }
676    }
677  }
678
679  if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
680    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
681      if (MD->isStatic())
682        // "invalid use of member 'x' in static member function"
683        return Diag(Loc, diag::err_invalid_member_use_in_static_method)
684          << FD->getDeclName();
685    }
686
687    // Any other ways we could have found the field in a well-formed
688    // program would have been turned into implicit member expressions
689    // above.
690    return Diag(Loc, diag::err_invalid_non_static_member_use)
691      << FD->getDeclName();
692  }
693
694  if (isa<TypedefDecl>(D))
695    return Diag(Loc, diag::err_unexpected_typedef) << Name;
696  if (isa<ObjCInterfaceDecl>(D))
697    return Diag(Loc, diag::err_unexpected_interface) << Name;
698  if (isa<NamespaceDecl>(D))
699    return Diag(Loc, diag::err_unexpected_namespace) << Name;
700
701  // Make the DeclRefExpr or BlockDeclRefExpr for the decl.
702  if (OverloadedFunctionDecl *Ovl = dyn_cast<OverloadedFunctionDecl>(D))
703    return BuildDeclRefExpr(Ovl, Context.OverloadTy, Loc, false, false, SS);
704
705  ValueDecl *VD = cast<ValueDecl>(D);
706
707  // check if referencing an identifier with __attribute__((deprecated)).
708  if (VD->getAttr<DeprecatedAttr>())
709    Diag(Loc, diag::warn_deprecated) << VD->getDeclName();
710
711  if (VarDecl *Var = dyn_cast<VarDecl>(VD)) {
712    if (Var->isDeclaredInCondition() && Var->getType()->isScalarType()) {
713      Scope *CheckS = S;
714      while (CheckS) {
715        if (CheckS->isWithinElse() &&
716            CheckS->getControlParent()->isDeclScope(Var)) {
717          if (Var->getType()->isBooleanType())
718            Diag(Loc, diag::warn_value_always_false) << Var->getDeclName();
719          else
720            Diag(Loc, diag::warn_value_always_zero) << Var->getDeclName();
721          break;
722        }
723
724        // Move up one more control parent to check again.
725        CheckS = CheckS->getControlParent();
726        if (CheckS)
727          CheckS = CheckS->getParent();
728      }
729    }
730  }
731
732  // Only create DeclRefExpr's for valid Decl's.
733  if (VD->isInvalidDecl())
734    return true;
735
736  // If the identifier reference is inside a block, and it refers to a value
737  // that is outside the block, create a BlockDeclRefExpr instead of a
738  // DeclRefExpr.  This ensures the value is treated as a copy-in snapshot when
739  // the block is formed.
740  //
741  // We do not do this for things like enum constants, global variables, etc,
742  // as they do not get snapshotted.
743  //
744  if (CurBlock && ShouldSnapshotBlockValueReference(CurBlock, VD)) {
745    // The BlocksAttr indicates the variable is bound by-reference.
746    if (VD->getAttr<BlocksAttr>())
747      return new BlockDeclRefExpr(VD, VD->getType().getNonReferenceType(),
748                                  Loc, true);
749
750    // Variable will be bound by-copy, make it const within the closure.
751    VD->getType().addConst();
752    return new BlockDeclRefExpr(VD, VD->getType().getNonReferenceType(),
753                                Loc, false);
754  }
755  // If this reference is not in a block or if the referenced variable is
756  // within the block, create a normal DeclRefExpr.
757
758  bool TypeDependent = false;
759  bool ValueDependent = false;
760  if (getLangOptions().CPlusPlus) {
761    // C++ [temp.dep.expr]p3:
762    //   An id-expression is type-dependent if it contains:
763    //     - an identifier that was declared with a dependent type,
764    if (VD->getType()->isDependentType())
765      TypeDependent = true;
766    //     - FIXME: a template-id that is dependent,
767    //     - a conversion-function-id that specifies a dependent type,
768    else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
769             Name.getCXXNameType()->isDependentType())
770      TypeDependent = true;
771    //     - a nested-name-specifier that contains a class-name that
772    //       names a dependent type.
773    else if (SS && !SS->isEmpty()) {
774      for (DeclContext *DC = static_cast<DeclContext*>(SS->getScopeRep());
775           DC; DC = DC->getParent()) {
776        // FIXME: could stop early at namespace scope.
777        if (DC->isRecord()) {
778          CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
779          if (Context.getTypeDeclType(Record)->isDependentType()) {
780            TypeDependent = true;
781            break;
782          }
783        }
784      }
785    }
786
787    // C++ [temp.dep.constexpr]p2:
788    //
789    //   An identifier is value-dependent if it is:
790    //     - a name declared with a dependent type,
791    if (TypeDependent)
792      ValueDependent = true;
793    //     - the name of a non-type template parameter,
794    else if (isa<NonTypeTemplateParmDecl>(VD))
795      ValueDependent = true;
796    //    - a constant with integral or enumeration type and is
797    //      initialized with an expression that is value-dependent
798    //      (FIXME!).
799  }
800
801  return BuildDeclRefExpr(VD, VD->getType().getNonReferenceType(), Loc,
802                          TypeDependent, ValueDependent, SS);
803}
804
805Sema::ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc,
806                                           tok::TokenKind Kind) {
807  PredefinedExpr::IdentType IT;
808
809  switch (Kind) {
810  default: assert(0 && "Unknown simple primary expr!");
811  case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
812  case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
813  case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
814  }
815
816  // Pre-defined identifiers are of type char[x], where x is the length of the
817  // string.
818  unsigned Length;
819  if (FunctionDecl *FD = getCurFunctionDecl())
820    Length = FD->getIdentifier()->getLength();
821  else if (ObjCMethodDecl *MD = getCurMethodDecl())
822    Length = MD->getSynthesizedMethodSize();
823  else {
824    Diag(Loc, diag::ext_predef_outside_function);
825    // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
826    Length = IT == PredefinedExpr::PrettyFunction ? strlen("top level") : 0;
827  }
828
829
830  llvm::APInt LengthI(32, Length + 1);
831  QualType ResTy = Context.CharTy.getQualifiedType(QualType::Const);
832  ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
833  return new PredefinedExpr(Loc, ResTy, IT);
834}
835
836Sema::ExprResult Sema::ActOnCharacterConstant(const Token &Tok) {
837  llvm::SmallString<16> CharBuffer;
838  CharBuffer.resize(Tok.getLength());
839  const char *ThisTokBegin = &CharBuffer[0];
840  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
841
842  CharLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
843                            Tok.getLocation(), PP);
844  if (Literal.hadError())
845    return ExprResult(true);
846
847  QualType type = getLangOptions().CPlusPlus ? Context.CharTy : Context.IntTy;
848
849  return new CharacterLiteral(Literal.getValue(), Literal.isWide(), type,
850                              Tok.getLocation());
851}
852
853Action::ExprResult Sema::ActOnNumericConstant(const Token &Tok) {
854  // fast path for a single digit (which is quite common). A single digit
855  // cannot have a trigraph, escaped newline, radix prefix, or type suffix.
856  if (Tok.getLength() == 1) {
857    const char Ty = PP.getPhysicalCharacterAt(Tok.getLocation());
858    unsigned IntSize =static_cast<unsigned>(Context.getTypeSize(Context.IntTy));
859    return ExprResult(new IntegerLiteral(llvm::APInt(IntSize, Ty-'0'),
860                                         Context.IntTy,
861                                         Tok.getLocation()));
862  }
863
864  llvm::SmallString<512> IntegerBuffer;
865  // Add padding so that NumericLiteralParser can overread by one character.
866  IntegerBuffer.resize(Tok.getLength()+1);
867  const char *ThisTokBegin = &IntegerBuffer[0];
868
869  // Get the spelling of the token, which eliminates trigraphs, etc.
870  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
871
872  NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
873                               Tok.getLocation(), PP);
874  if (Literal.hadError)
875    return ExprResult(true);
876
877  Expr *Res;
878
879  if (Literal.isFloatingLiteral()) {
880    QualType Ty;
881    if (Literal.isFloat)
882      Ty = Context.FloatTy;
883    else if (!Literal.isLong)
884      Ty = Context.DoubleTy;
885    else
886      Ty = Context.LongDoubleTy;
887
888    const llvm::fltSemantics &Format = Context.getFloatTypeSemantics(Ty);
889
890    // isExact will be set by GetFloatValue().
891    bool isExact = false;
892    Res = new FloatingLiteral(Literal.GetFloatValue(Format, &isExact), &isExact,
893                              Ty, Tok.getLocation());
894
895  } else if (!Literal.isIntegerLiteral()) {
896    return ExprResult(true);
897  } else {
898    QualType Ty;
899
900    // long long is a C99 feature.
901    if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
902        Literal.isLongLong)
903      Diag(Tok.getLocation(), diag::ext_longlong);
904
905    // Get the value in the widest-possible width.
906    llvm::APInt ResultVal(Context.Target.getIntMaxTWidth(), 0);
907
908    if (Literal.GetIntegerValue(ResultVal)) {
909      // If this value didn't fit into uintmax_t, warn and force to ull.
910      Diag(Tok.getLocation(), diag::warn_integer_too_large);
911      Ty = Context.UnsignedLongLongTy;
912      assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
913             "long long is not intmax_t?");
914    } else {
915      // If this value fits into a ULL, try to figure out what else it fits into
916      // according to the rules of C99 6.4.4.1p5.
917
918      // Octal, Hexadecimal, and integers with a U suffix are allowed to
919      // be an unsigned int.
920      bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
921
922      // Check from smallest to largest, picking the smallest type we can.
923      unsigned Width = 0;
924      if (!Literal.isLong && !Literal.isLongLong) {
925        // Are int/unsigned possibilities?
926        unsigned IntSize = Context.Target.getIntWidth();
927
928        // Does it fit in a unsigned int?
929        if (ResultVal.isIntN(IntSize)) {
930          // Does it fit in a signed int?
931          if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
932            Ty = Context.IntTy;
933          else if (AllowUnsigned)
934            Ty = Context.UnsignedIntTy;
935          Width = IntSize;
936        }
937      }
938
939      // Are long/unsigned long possibilities?
940      if (Ty.isNull() && !Literal.isLongLong) {
941        unsigned LongSize = Context.Target.getLongWidth();
942
943        // Does it fit in a unsigned long?
944        if (ResultVal.isIntN(LongSize)) {
945          // Does it fit in a signed long?
946          if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
947            Ty = Context.LongTy;
948          else if (AllowUnsigned)
949            Ty = Context.UnsignedLongTy;
950          Width = LongSize;
951        }
952      }
953
954      // Finally, check long long if needed.
955      if (Ty.isNull()) {
956        unsigned LongLongSize = Context.Target.getLongLongWidth();
957
958        // Does it fit in a unsigned long long?
959        if (ResultVal.isIntN(LongLongSize)) {
960          // Does it fit in a signed long long?
961          if (!Literal.isUnsigned && ResultVal[LongLongSize-1] == 0)
962            Ty = Context.LongLongTy;
963          else if (AllowUnsigned)
964            Ty = Context.UnsignedLongLongTy;
965          Width = LongLongSize;
966        }
967      }
968
969      // If we still couldn't decide a type, we probably have something that
970      // does not fit in a signed long long, but has no U suffix.
971      if (Ty.isNull()) {
972        Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
973        Ty = Context.UnsignedLongLongTy;
974        Width = Context.Target.getLongLongWidth();
975      }
976
977      if (ResultVal.getBitWidth() != Width)
978        ResultVal.trunc(Width);
979    }
980
981    Res = new IntegerLiteral(ResultVal, Ty, Tok.getLocation());
982  }
983
984  // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
985  if (Literal.isImaginary)
986    Res = new ImaginaryLiteral(Res, Context.getComplexType(Res->getType()));
987
988  return Res;
989}
990
991Action::ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R,
992                                        ExprTy *Val) {
993  Expr *E = (Expr *)Val;
994  assert((E != 0) && "ActOnParenExpr() missing expr");
995  return new ParenExpr(L, R, E);
996}
997
998/// The UsualUnaryConversions() function is *not* called by this routine.
999/// See C99 6.3.2.1p[2-4] for more details.
1000bool Sema::CheckSizeOfAlignOfOperand(QualType exprType,
1001                                     SourceLocation OpLoc,
1002                                     const SourceRange &ExprRange,
1003                                     bool isSizeof) {
1004  // C99 6.5.3.4p1:
1005  if (isa<FunctionType>(exprType) && isSizeof)
1006    // alignof(function) is allowed.
1007    Diag(OpLoc, diag::ext_sizeof_function_type) << ExprRange;
1008  else if (exprType->isVoidType())
1009    Diag(OpLoc, diag::ext_sizeof_void_type)
1010      << (isSizeof ? "sizeof" : "__alignof") << ExprRange;
1011  else if (exprType->isIncompleteType())
1012    return Diag(OpLoc, isSizeof ? diag::err_sizeof_incomplete_type :
1013                                  diag::err_alignof_incomplete_type)
1014      << exprType << ExprRange;
1015
1016  return false;
1017}
1018
1019/// ActOnSizeOfAlignOfExpr - Handle @c sizeof(type) and @c sizeof @c expr and
1020/// the same for @c alignof and @c __alignof
1021/// Note that the ArgRange is invalid if isType is false.
1022Action::ExprResult
1023Sema::ActOnSizeOfAlignOfExpr(SourceLocation OpLoc, bool isSizeof, bool isType,
1024                             void *TyOrEx, const SourceRange &ArgRange) {
1025  // If error parsing type, ignore.
1026  if (TyOrEx == 0) return true;
1027
1028  QualType ArgTy;
1029  SourceRange Range;
1030  if (isType) {
1031    ArgTy = QualType::getFromOpaquePtr(TyOrEx);
1032    Range = ArgRange;
1033  } else {
1034    // Get the end location.
1035    Expr *ArgEx = (Expr *)TyOrEx;
1036    Range = ArgEx->getSourceRange();
1037    ArgTy = ArgEx->getType();
1038  }
1039
1040  // Verify that the operand is valid.
1041  if (CheckSizeOfAlignOfOperand(ArgTy, OpLoc, Range, isSizeof))
1042    return true;
1043
1044  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
1045  return new SizeOfAlignOfExpr(isSizeof, isType, TyOrEx, Context.getSizeType(),
1046                               OpLoc, Range.getEnd());
1047}
1048
1049QualType Sema::CheckRealImagOperand(Expr *&V, SourceLocation Loc) {
1050  DefaultFunctionArrayConversion(V);
1051
1052  // These operators return the element type of a complex type.
1053  if (const ComplexType *CT = V->getType()->getAsComplexType())
1054    return CT->getElementType();
1055
1056  // Otherwise they pass through real integer and floating point types here.
1057  if (V->getType()->isArithmeticType())
1058    return V->getType();
1059
1060  // Reject anything else.
1061  Diag(Loc, diag::err_realimag_invalid_type) << V->getType();
1062  return QualType();
1063}
1064
1065
1066
1067Action::ExprResult Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
1068                                             tok::TokenKind Kind,
1069                                             ExprTy *Input) {
1070  Expr *Arg = (Expr *)Input;
1071
1072  UnaryOperator::Opcode Opc;
1073  switch (Kind) {
1074  default: assert(0 && "Unknown unary op!");
1075  case tok::plusplus:   Opc = UnaryOperator::PostInc; break;
1076  case tok::minusminus: Opc = UnaryOperator::PostDec; break;
1077  }
1078
1079  if (getLangOptions().CPlusPlus &&
1080      (Arg->getType()->isRecordType() || Arg->getType()->isEnumeralType())) {
1081    // Which overloaded operator?
1082    OverloadedOperatorKind OverOp =
1083      (Opc == UnaryOperator::PostInc)? OO_PlusPlus : OO_MinusMinus;
1084
1085    // C++ [over.inc]p1:
1086    //
1087    //     [...] If the function is a member function with one
1088    //     parameter (which shall be of type int) or a non-member
1089    //     function with two parameters (the second of which shall be
1090    //     of type int), it defines the postfix increment operator ++
1091    //     for objects of that type. When the postfix increment is
1092    //     called as a result of using the ++ operator, the int
1093    //     argument will have value zero.
1094    Expr *Args[2] = {
1095      Arg,
1096      new IntegerLiteral(llvm::APInt(Context.Target.getIntWidth(), 0,
1097                                     /*isSigned=*/true),
1098                         Context.IntTy, SourceLocation())
1099    };
1100
1101    // Build the candidate set for overloading
1102    OverloadCandidateSet CandidateSet;
1103    AddOperatorCandidates(OverOp, S, Args, 2, CandidateSet);
1104
1105    // Perform overload resolution.
1106    OverloadCandidateSet::iterator Best;
1107    switch (BestViableFunction(CandidateSet, Best)) {
1108    case OR_Success: {
1109      // We found a built-in operator or an overloaded operator.
1110      FunctionDecl *FnDecl = Best->Function;
1111
1112      if (FnDecl) {
1113        // We matched an overloaded operator. Build a call to that
1114        // operator.
1115
1116        // Convert the arguments.
1117        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
1118          if (PerformObjectArgumentInitialization(Arg, Method))
1119            return true;
1120        } else {
1121          // Convert the arguments.
1122          if (PerformCopyInitialization(Arg,
1123                                        FnDecl->getParamDecl(0)->getType(),
1124                                        "passing"))
1125            return true;
1126        }
1127
1128        // Determine the result type
1129        QualType ResultTy
1130          = FnDecl->getType()->getAsFunctionType()->getResultType();
1131        ResultTy = ResultTy.getNonReferenceType();
1132
1133        // Build the actual expression node.
1134        Expr *FnExpr = new DeclRefExpr(FnDecl, FnDecl->getType(),
1135                                       SourceLocation());
1136        UsualUnaryConversions(FnExpr);
1137
1138        return new CXXOperatorCallExpr(FnExpr, Args, 2, ResultTy, OpLoc);
1139      } else {
1140        // We matched a built-in operator. Convert the arguments, then
1141        // break out so that we will build the appropriate built-in
1142        // operator node.
1143        if (PerformCopyInitialization(Arg, Best->BuiltinTypes.ParamTypes[0],
1144                                      "passing"))
1145          return true;
1146
1147        break;
1148      }
1149    }
1150
1151    case OR_No_Viable_Function:
1152      // No viable function; fall through to handling this as a
1153      // built-in operator, which will produce an error message for us.
1154      break;
1155
1156    case OR_Ambiguous:
1157      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
1158          << UnaryOperator::getOpcodeStr(Opc)
1159          << Arg->getSourceRange();
1160      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1161      return true;
1162    }
1163
1164    // Either we found no viable overloaded operator or we matched a
1165    // built-in operator. In either case, fall through to trying to
1166    // build a built-in operation.
1167  }
1168
1169  QualType result = CheckIncrementDecrementOperand(Arg, OpLoc,
1170                                                 Opc == UnaryOperator::PostInc);
1171  if (result.isNull())
1172    return true;
1173  return new UnaryOperator(Arg, Opc, result, OpLoc);
1174}
1175
1176Action::ExprResult Sema::
1177ActOnArraySubscriptExpr(Scope *S, ExprTy *Base, SourceLocation LLoc,
1178                        ExprTy *Idx, SourceLocation RLoc) {
1179  Expr *LHSExp = static_cast<Expr*>(Base), *RHSExp = static_cast<Expr*>(Idx);
1180
1181  if (getLangOptions().CPlusPlus &&
1182      (LHSExp->getType()->isRecordType() ||
1183       LHSExp->getType()->isEnumeralType() ||
1184       RHSExp->getType()->isRecordType() ||
1185       RHSExp->getType()->isEnumeralType())) {
1186    // Add the appropriate overloaded operators (C++ [over.match.oper])
1187    // to the candidate set.
1188    OverloadCandidateSet CandidateSet;
1189    Expr *Args[2] = { LHSExp, RHSExp };
1190    AddOperatorCandidates(OO_Subscript, S, Args, 2, CandidateSet);
1191
1192    // Perform overload resolution.
1193    OverloadCandidateSet::iterator Best;
1194    switch (BestViableFunction(CandidateSet, Best)) {
1195    case OR_Success: {
1196      // We found a built-in operator or an overloaded operator.
1197      FunctionDecl *FnDecl = Best->Function;
1198
1199      if (FnDecl) {
1200        // We matched an overloaded operator. Build a call to that
1201        // operator.
1202
1203        // Convert the arguments.
1204        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
1205          if (PerformObjectArgumentInitialization(LHSExp, Method) ||
1206              PerformCopyInitialization(RHSExp,
1207                                        FnDecl->getParamDecl(0)->getType(),
1208                                        "passing"))
1209            return true;
1210        } else {
1211          // Convert the arguments.
1212          if (PerformCopyInitialization(LHSExp,
1213                                        FnDecl->getParamDecl(0)->getType(),
1214                                        "passing") ||
1215              PerformCopyInitialization(RHSExp,
1216                                        FnDecl->getParamDecl(1)->getType(),
1217                                        "passing"))
1218            return true;
1219        }
1220
1221        // Determine the result type
1222        QualType ResultTy
1223          = FnDecl->getType()->getAsFunctionType()->getResultType();
1224        ResultTy = ResultTy.getNonReferenceType();
1225
1226        // Build the actual expression node.
1227        Expr *FnExpr = new DeclRefExpr(FnDecl, FnDecl->getType(),
1228                                       SourceLocation());
1229        UsualUnaryConversions(FnExpr);
1230
1231        return new CXXOperatorCallExpr(FnExpr, Args, 2, ResultTy, LLoc);
1232      } else {
1233        // We matched a built-in operator. Convert the arguments, then
1234        // break out so that we will build the appropriate built-in
1235        // operator node.
1236        if (PerformCopyInitialization(LHSExp, Best->BuiltinTypes.ParamTypes[0],
1237                                      "passing") ||
1238            PerformCopyInitialization(RHSExp, Best->BuiltinTypes.ParamTypes[1],
1239                                      "passing"))
1240          return true;
1241
1242        break;
1243      }
1244    }
1245
1246    case OR_No_Viable_Function:
1247      // No viable function; fall through to handling this as a
1248      // built-in operator, which will produce an error message for us.
1249      break;
1250
1251    case OR_Ambiguous:
1252      Diag(LLoc,  diag::err_ovl_ambiguous_oper)
1253          << "[]"
1254          << LHSExp->getSourceRange() << RHSExp->getSourceRange();
1255      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1256      return true;
1257    }
1258
1259    // Either we found no viable overloaded operator or we matched a
1260    // built-in operator. In either case, fall through to trying to
1261    // build a built-in operation.
1262  }
1263
1264  // Perform default conversions.
1265  DefaultFunctionArrayConversion(LHSExp);
1266  DefaultFunctionArrayConversion(RHSExp);
1267
1268  QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
1269
1270  // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
1271  // to the expression *((e1)+(e2)). This means the array "Base" may actually be
1272  // in the subscript position. As a result, we need to derive the array base
1273  // and index from the expression types.
1274  Expr *BaseExpr, *IndexExpr;
1275  QualType ResultType;
1276  if (const PointerType *PTy = LHSTy->getAsPointerType()) {
1277    BaseExpr = LHSExp;
1278    IndexExpr = RHSExp;
1279    // FIXME: need to deal with const...
1280    ResultType = PTy->getPointeeType();
1281  } else if (const PointerType *PTy = RHSTy->getAsPointerType()) {
1282     // Handle the uncommon case of "123[Ptr]".
1283    BaseExpr = RHSExp;
1284    IndexExpr = LHSExp;
1285    // FIXME: need to deal with const...
1286    ResultType = PTy->getPointeeType();
1287  } else if (const VectorType *VTy = LHSTy->getAsVectorType()) {
1288    BaseExpr = LHSExp;    // vectors: V[123]
1289    IndexExpr = RHSExp;
1290
1291    // Component access limited to variables (reject vec4.rg[1]).
1292    if (!isa<DeclRefExpr>(BaseExpr) && !isa<ArraySubscriptExpr>(BaseExpr) &&
1293        !isa<ExtVectorElementExpr>(BaseExpr))
1294      return Diag(LLoc, diag::err_ext_vector_component_access)
1295        << SourceRange(LLoc, RLoc);
1296    // FIXME: need to deal with const...
1297    ResultType = VTy->getElementType();
1298  } else {
1299    return Diag(LHSExp->getLocStart(), diag::err_typecheck_subscript_value)
1300      << RHSExp->getSourceRange();
1301  }
1302  // C99 6.5.2.1p1
1303  if (!IndexExpr->getType()->isIntegerType())
1304    return Diag(IndexExpr->getLocStart(), diag::err_typecheck_subscript)
1305      << IndexExpr->getSourceRange();
1306
1307  // C99 6.5.2.1p1: "shall have type "pointer to *object* type".  In practice,
1308  // the following check catches trying to index a pointer to a function (e.g.
1309  // void (*)(int)) and pointers to incomplete types.  Functions are not
1310  // objects in C99.
1311  if (!ResultType->isObjectType())
1312    return Diag(BaseExpr->getLocStart(),
1313                diag::err_typecheck_subscript_not_object)
1314      << BaseExpr->getType() << BaseExpr->getSourceRange();
1315
1316  return new ArraySubscriptExpr(LHSExp, RHSExp, ResultType, RLoc);
1317}
1318
1319QualType Sema::
1320CheckExtVectorComponent(QualType baseType, SourceLocation OpLoc,
1321                        IdentifierInfo &CompName, SourceLocation CompLoc) {
1322  const ExtVectorType *vecType = baseType->getAsExtVectorType();
1323
1324  // This flag determines whether or not the component is to be treated as a
1325  // special name, or a regular GLSL-style component access.
1326  bool SpecialComponent = false;
1327
1328  // The vector accessor can't exceed the number of elements.
1329  const char *compStr = CompName.getName();
1330  if (strlen(compStr) > vecType->getNumElements()) {
1331    Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
1332      << baseType << SourceRange(CompLoc);
1333    return QualType();
1334  }
1335
1336  // Check that we've found one of the special components, or that the component
1337  // names must come from the same set.
1338  if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
1339      !strcmp(compStr, "e") || !strcmp(compStr, "o")) {
1340    SpecialComponent = true;
1341  } else if (vecType->getPointAccessorIdx(*compStr) != -1) {
1342    do
1343      compStr++;
1344    while (*compStr && vecType->getPointAccessorIdx(*compStr) != -1);
1345  } else if (vecType->getColorAccessorIdx(*compStr) != -1) {
1346    do
1347      compStr++;
1348    while (*compStr && vecType->getColorAccessorIdx(*compStr) != -1);
1349  } else if (vecType->getTextureAccessorIdx(*compStr) != -1) {
1350    do
1351      compStr++;
1352    while (*compStr && vecType->getTextureAccessorIdx(*compStr) != -1);
1353  }
1354
1355  if (!SpecialComponent && *compStr) {
1356    // We didn't get to the end of the string. This means the component names
1357    // didn't come from the same set *or* we encountered an illegal name.
1358    Diag(OpLoc, diag::err_ext_vector_component_name_illegal)
1359      << std::string(compStr,compStr+1) << SourceRange(CompLoc);
1360    return QualType();
1361  }
1362  // Each component accessor can't exceed the vector type.
1363  compStr = CompName.getName();
1364  while (*compStr) {
1365    if (vecType->isAccessorWithinNumElements(*compStr))
1366      compStr++;
1367    else
1368      break;
1369  }
1370  if (!SpecialComponent && *compStr) {
1371    // We didn't get to the end of the string. This means a component accessor
1372    // exceeds the number of elements in the vector.
1373    Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
1374      << baseType << SourceRange(CompLoc);
1375    return QualType();
1376  }
1377
1378  // If we have a special component name, verify that the current vector length
1379  // is an even number, since all special component names return exactly half
1380  // the elements.
1381  if (SpecialComponent && (vecType->getNumElements() & 1U)) {
1382    Diag(OpLoc, diag::err_ext_vector_component_requires_even)
1383      << baseType << SourceRange(CompLoc);
1384    return QualType();
1385  }
1386
1387  // The component accessor looks fine - now we need to compute the actual type.
1388  // The vector type is implied by the component accessor. For example,
1389  // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
1390  // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
1391  unsigned CompSize = SpecialComponent ? vecType->getNumElements() / 2
1392                                       : CompName.getLength();
1393  if (CompSize == 1)
1394    return vecType->getElementType();
1395
1396  QualType VT = Context.getExtVectorType(vecType->getElementType(), CompSize);
1397  // Now look up the TypeDefDecl from the vector type. Without this,
1398  // diagostics look bad. We want extended vector types to appear built-in.
1399  for (unsigned i = 0, E = ExtVectorDecls.size(); i != E; ++i) {
1400    if (ExtVectorDecls[i]->getUnderlyingType() == VT)
1401      return Context.getTypedefType(ExtVectorDecls[i]);
1402  }
1403  return VT; // should never get here (a typedef type should always be found).
1404}
1405
1406/// constructSetterName - Return the setter name for the given
1407/// identifier, i.e. "set" + Name where the initial character of Name
1408/// has been capitalized.
1409// FIXME: Merge with same routine in Parser. But where should this
1410// live?
1411static IdentifierInfo *constructSetterName(IdentifierTable &Idents,
1412                                           const IdentifierInfo *Name) {
1413  llvm::SmallString<100> SelectorName;
1414  SelectorName = "set";
1415  SelectorName.append(Name->getName(), Name->getName()+Name->getLength());
1416  SelectorName[3] = toupper(SelectorName[3]);
1417  return &Idents.get(&SelectorName[0], &SelectorName[SelectorName.size()]);
1418}
1419
1420Action::ExprResult Sema::
1421ActOnMemberReferenceExpr(Scope *S, ExprTy *Base, SourceLocation OpLoc,
1422                         tok::TokenKind OpKind, SourceLocation MemberLoc,
1423                         IdentifierInfo &Member) {
1424  Expr *BaseExpr = static_cast<Expr *>(Base);
1425  assert(BaseExpr && "no record expression");
1426
1427  // Perform default conversions.
1428  DefaultFunctionArrayConversion(BaseExpr);
1429
1430  QualType BaseType = BaseExpr->getType();
1431  assert(!BaseType.isNull() && "no type for member expression");
1432
1433  // Get the type being accessed in BaseType.  If this is an arrow, the BaseExpr
1434  // must have pointer type, and the accessed type is the pointee.
1435  if (OpKind == tok::arrow) {
1436    if (const PointerType *PT = BaseType->getAsPointerType())
1437      BaseType = PT->getPointeeType();
1438    else if (getLangOptions().CPlusPlus && BaseType->isRecordType())
1439      return BuildOverloadedArrowExpr(S, BaseExpr, OpLoc, MemberLoc, Member);
1440    else
1441      return Diag(MemberLoc, diag::err_typecheck_member_reference_arrow)
1442        << BaseType << BaseExpr->getSourceRange();
1443  }
1444
1445  // Handle field access to simple records.  This also handles access to fields
1446  // of the ObjC 'id' struct.
1447  if (const RecordType *RTy = BaseType->getAsRecordType()) {
1448    RecordDecl *RDecl = RTy->getDecl();
1449    if (RTy->isIncompleteType())
1450      return Diag(OpLoc, diag::err_typecheck_incomplete_tag)
1451               << RDecl->getDeclName() << BaseExpr->getSourceRange();
1452    // The record definition is complete, now make sure the member is valid.
1453    // FIXME: Qualified name lookup for C++ is a bit more complicated
1454    // than this.
1455    LookupResult Result
1456      = LookupQualifiedName(RDecl, DeclarationName(&Member),
1457                            LookupCriteria(LookupCriteria::Member,
1458                                           /*RedeclarationOnly=*/false,
1459                                           getLangOptions().CPlusPlus));
1460
1461    Decl *MemberDecl = 0;
1462    if (!Result)
1463      return Diag(MemberLoc, diag::err_typecheck_no_member)
1464               << &Member << BaseExpr->getSourceRange();
1465    else if (Result.isAmbiguous())
1466      return DiagnoseAmbiguousLookup(Result, DeclarationName(&Member),
1467                                     MemberLoc, BaseExpr->getSourceRange());
1468    else
1469      MemberDecl = Result;
1470
1471    if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl)) {
1472      // We may have found a field within an anonymous union or struct
1473      // (C++ [class.union]).
1474      if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion())
1475        return BuildAnonymousStructUnionMemberReference(MemberLoc, FD,
1476                                                        BaseExpr, OpLoc);
1477
1478      // Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref]
1479      // FIXME: Handle address space modifiers
1480      QualType MemberType = FD->getType();
1481      if (const ReferenceType *Ref = MemberType->getAsReferenceType())
1482        MemberType = Ref->getPointeeType();
1483      else {
1484        unsigned combinedQualifiers =
1485          MemberType.getCVRQualifiers() | BaseType.getCVRQualifiers();
1486        if (FD->isMutable())
1487          combinedQualifiers &= ~QualType::Const;
1488        MemberType = MemberType.getQualifiedType(combinedQualifiers);
1489      }
1490
1491      return new MemberExpr(BaseExpr, OpKind == tok::arrow, FD,
1492                            MemberLoc, MemberType);
1493    } else if (CXXClassVarDecl *Var = dyn_cast<CXXClassVarDecl>(MemberDecl))
1494      return new MemberExpr(BaseExpr, OpKind == tok::arrow, Var, MemberLoc,
1495                            Var->getType().getNonReferenceType());
1496    else if (FunctionDecl *MemberFn = dyn_cast<FunctionDecl>(MemberDecl))
1497      return new MemberExpr(BaseExpr, OpKind == tok::arrow, MemberFn, MemberLoc,
1498                            MemberFn->getType());
1499    else if (OverloadedFunctionDecl *Ovl
1500             = dyn_cast<OverloadedFunctionDecl>(MemberDecl))
1501      return new MemberExpr(BaseExpr, OpKind == tok::arrow, Ovl, MemberLoc,
1502                            Context.OverloadTy);
1503    else if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(MemberDecl))
1504      return new MemberExpr(BaseExpr, OpKind == tok::arrow, Enum, MemberLoc,
1505                            Enum->getType());
1506    else if (isa<TypeDecl>(MemberDecl))
1507      return Diag(MemberLoc, diag::err_typecheck_member_reference_type)
1508        << DeclarationName(&Member) << int(OpKind == tok::arrow);
1509
1510    // We found a declaration kind that we didn't expect. This is a
1511    // generic error message that tells the user that she can't refer
1512    // to this member with '.' or '->'.
1513    return Diag(MemberLoc, diag::err_typecheck_member_reference_unknown)
1514      << DeclarationName(&Member) << int(OpKind == tok::arrow);
1515  }
1516
1517  // Handle access to Objective-C instance variables, such as "Obj->ivar" and
1518  // (*Obj).ivar.
1519  if (const ObjCInterfaceType *IFTy = BaseType->getAsObjCInterfaceType()) {
1520    if (ObjCIvarDecl *IV = IFTy->getDecl()->lookupInstanceVariable(&Member)) {
1521      ObjCIvarRefExpr *MRef= new ObjCIvarRefExpr(IV, IV->getType(), MemberLoc,
1522                                                 BaseExpr,
1523                                                 OpKind == tok::arrow);
1524      Context.setFieldDecl(IFTy->getDecl(), IV, MRef);
1525      return MRef;
1526    }
1527    return Diag(MemberLoc, diag::err_typecheck_member_reference_ivar)
1528             << IFTy->getDecl()->getDeclName() << &Member
1529             << BaseExpr->getSourceRange();
1530  }
1531
1532  // Handle Objective-C property access, which is "Obj.property" where Obj is a
1533  // pointer to a (potentially qualified) interface type.
1534  const PointerType *PTy;
1535  const ObjCInterfaceType *IFTy;
1536  if (OpKind == tok::period && (PTy = BaseType->getAsPointerType()) &&
1537      (IFTy = PTy->getPointeeType()->getAsObjCInterfaceType())) {
1538    ObjCInterfaceDecl *IFace = IFTy->getDecl();
1539
1540    // Search for a declared property first.
1541    if (ObjCPropertyDecl *PD = IFace->FindPropertyDeclaration(&Member))
1542      return new ObjCPropertyRefExpr(PD, PD->getType(), MemberLoc, BaseExpr);
1543
1544    // Check protocols on qualified interfaces.
1545    for (ObjCInterfaceType::qual_iterator I = IFTy->qual_begin(),
1546         E = IFTy->qual_end(); I != E; ++I)
1547      if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(&Member))
1548        return new ObjCPropertyRefExpr(PD, PD->getType(), MemberLoc, BaseExpr);
1549
1550    // If that failed, look for an "implicit" property by seeing if the nullary
1551    // selector is implemented.
1552
1553    // FIXME: The logic for looking up nullary and unary selectors should be
1554    // shared with the code in ActOnInstanceMessage.
1555
1556    Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
1557    ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Sel);
1558
1559    // If this reference is in an @implementation, check for 'private' methods.
1560    if (!Getter)
1561      if (ObjCMethodDecl *CurMeth = getCurMethodDecl())
1562        if (ObjCInterfaceDecl *ClassDecl = CurMeth->getClassInterface())
1563          if (ObjCImplementationDecl *ImpDecl =
1564              ObjCImplementations[ClassDecl->getIdentifier()])
1565            Getter = ImpDecl->getInstanceMethod(Sel);
1566
1567    // Look through local category implementations associated with the class.
1568    if (!Getter) {
1569      for (unsigned i = 0; i < ObjCCategoryImpls.size() && !Getter; i++) {
1570        if (ObjCCategoryImpls[i]->getClassInterface() == IFace)
1571          Getter = ObjCCategoryImpls[i]->getInstanceMethod(Sel);
1572      }
1573    }
1574    if (Getter) {
1575      // If we found a getter then this may be a valid dot-reference, we
1576      // will look for the matching setter, in case it is needed.
1577      IdentifierInfo *SetterName = constructSetterName(PP.getIdentifierTable(),
1578                                                       &Member);
1579      Selector SetterSel = PP.getSelectorTable().getUnarySelector(SetterName);
1580      ObjCMethodDecl *Setter = IFace->lookupInstanceMethod(SetterSel);
1581      if (!Setter) {
1582        // If this reference is in an @implementation, also check for 'private'
1583        // methods.
1584        if (ObjCMethodDecl *CurMeth = getCurMethodDecl())
1585          if (ObjCInterfaceDecl *ClassDecl = CurMeth->getClassInterface())
1586            if (ObjCImplementationDecl *ImpDecl =
1587                  ObjCImplementations[ClassDecl->getIdentifier()])
1588              Setter = ImpDecl->getInstanceMethod(SetterSel);
1589      }
1590      // Look through local category implementations associated with the class.
1591      if (!Setter) {
1592        for (unsigned i = 0; i < ObjCCategoryImpls.size() && !Setter; i++) {
1593          if (ObjCCategoryImpls[i]->getClassInterface() == IFace)
1594            Setter = ObjCCategoryImpls[i]->getInstanceMethod(SetterSel);
1595        }
1596      }
1597
1598      // FIXME: we must check that the setter has property type.
1599      return new ObjCKVCRefExpr(Getter, Getter->getResultType(), Setter,
1600                                MemberLoc, BaseExpr);
1601    }
1602
1603    return Diag(MemberLoc, diag::err_property_not_found) <<
1604      &Member << BaseType;
1605  }
1606  // Handle properties on qualified "id" protocols.
1607  const ObjCQualifiedIdType *QIdTy;
1608  if (OpKind == tok::period && (QIdTy = BaseType->getAsObjCQualifiedIdType())) {
1609    // Check protocols on qualified interfaces.
1610    for (ObjCQualifiedIdType::qual_iterator I = QIdTy->qual_begin(),
1611         E = QIdTy->qual_end(); I != E; ++I) {
1612      if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(&Member))
1613        return new ObjCPropertyRefExpr(PD, PD->getType(), MemberLoc, BaseExpr);
1614      // Also must look for a getter name which uses property syntax.
1615      Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
1616      if (ObjCMethodDecl *OMD = (*I)->getInstanceMethod(Sel)) {
1617        return new ObjCMessageExpr(BaseExpr, Sel, OMD->getResultType(), OMD,
1618                                   OpLoc, MemberLoc, NULL, 0);
1619      }
1620    }
1621
1622    return Diag(MemberLoc, diag::err_property_not_found) <<
1623      &Member << BaseType;
1624  }
1625  // Handle 'field access' to vectors, such as 'V.xx'.
1626  if (BaseType->isExtVectorType() && OpKind == tok::period) {
1627    // Component access limited to variables (reject vec4.rg.g).
1628    if (!isa<DeclRefExpr>(BaseExpr) && !isa<ArraySubscriptExpr>(BaseExpr) &&
1629        !isa<ExtVectorElementExpr>(BaseExpr))
1630      return Diag(MemberLoc, diag::err_ext_vector_component_access)
1631               << BaseExpr->getSourceRange();
1632    QualType ret = CheckExtVectorComponent(BaseType, OpLoc, Member, MemberLoc);
1633    if (ret.isNull())
1634      return true;
1635    return new ExtVectorElementExpr(ret, BaseExpr, Member, MemberLoc);
1636  }
1637
1638  return Diag(MemberLoc, diag::err_typecheck_member_reference_struct_union)
1639          << BaseType << BaseExpr->getSourceRange();
1640}
1641
1642/// ConvertArgumentsForCall - Converts the arguments specified in
1643/// Args/NumArgs to the parameter types of the function FDecl with
1644/// function prototype Proto. Call is the call expression itself, and
1645/// Fn is the function expression. For a C++ member function, this
1646/// routine does not attempt to convert the object argument. Returns
1647/// true if the call is ill-formed.
1648bool
1649Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
1650                              FunctionDecl *FDecl,
1651                              const FunctionTypeProto *Proto,
1652                              Expr **Args, unsigned NumArgs,
1653                              SourceLocation RParenLoc) {
1654  // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
1655  // assignment, to the types of the corresponding parameter, ...
1656  unsigned NumArgsInProto = Proto->getNumArgs();
1657  unsigned NumArgsToCheck = NumArgs;
1658
1659  // If too few arguments are available (and we don't have default
1660  // arguments for the remaining parameters), don't make the call.
1661  if (NumArgs < NumArgsInProto) {
1662    if (!FDecl || NumArgs < FDecl->getMinRequiredArguments())
1663      return Diag(RParenLoc, diag::err_typecheck_call_too_few_args)
1664        << Fn->getType()->isBlockPointerType() << Fn->getSourceRange();
1665    // Use default arguments for missing arguments
1666    NumArgsToCheck = NumArgsInProto;
1667    Call->setNumArgs(NumArgsInProto);
1668  }
1669
1670  // If too many are passed and not variadic, error on the extras and drop
1671  // them.
1672  if (NumArgs > NumArgsInProto) {
1673    if (!Proto->isVariadic()) {
1674      Diag(Args[NumArgsInProto]->getLocStart(),
1675           diag::err_typecheck_call_too_many_args)
1676        << Fn->getType()->isBlockPointerType() << Fn->getSourceRange()
1677        << SourceRange(Args[NumArgsInProto]->getLocStart(),
1678                       Args[NumArgs-1]->getLocEnd());
1679      // This deletes the extra arguments.
1680      Call->setNumArgs(NumArgsInProto);
1681    }
1682    NumArgsToCheck = NumArgsInProto;
1683  }
1684
1685  // Continue to check argument types (even if we have too few/many args).
1686  for (unsigned i = 0; i != NumArgsToCheck; i++) {
1687    QualType ProtoArgType = Proto->getArgType(i);
1688
1689    Expr *Arg;
1690    if (i < NumArgs) {
1691      Arg = Args[i];
1692
1693      // Pass the argument.
1694      if (PerformCopyInitialization(Arg, ProtoArgType, "passing"))
1695        return true;
1696    } else
1697      // We already type-checked the argument, so we know it works.
1698      Arg = new CXXDefaultArgExpr(FDecl->getParamDecl(i));
1699    QualType ArgType = Arg->getType();
1700
1701    Call->setArg(i, Arg);
1702  }
1703
1704  // If this is a variadic call, handle args passed through "...".
1705  if (Proto->isVariadic()) {
1706    // Promote the arguments (C99 6.5.2.2p7).
1707    for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
1708      Expr *Arg = Args[i];
1709      if (!Arg->getType()->isPODType()) {
1710        int CallType = 0;
1711        if (Fn->getType()->isBlockPointerType())
1712          CallType = 1; // Block
1713        else if (isa<MemberExpr>(Fn))
1714          CallType = 2;
1715
1716        Diag(Arg->getLocStart(),
1717             diag::warn_cannot_pass_non_pod_arg_to_vararg) <<
1718        Arg->getType() << CallType;
1719      }
1720      DefaultArgumentPromotion(Arg);
1721      Call->setArg(i, Arg);
1722    }
1723  }
1724
1725  return false;
1726}
1727
1728/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
1729/// This provides the location of the left/right parens and a list of comma
1730/// locations.
1731Action::ExprResult
1732Sema::ActOnCallExpr(Scope *S, ExprTy *fn, SourceLocation LParenLoc,
1733                    ExprTy **args, unsigned NumArgs,
1734                    SourceLocation *CommaLocs, SourceLocation RParenLoc) {
1735  Expr *Fn = static_cast<Expr *>(fn);
1736  Expr **Args = reinterpret_cast<Expr**>(args);
1737  assert(Fn && "no function call expression");
1738  FunctionDecl *FDecl = NULL;
1739  OverloadedFunctionDecl *Ovl = NULL;
1740
1741  // Determine whether this is a dependent call inside a C++ template,
1742  // in which case we won't do any semantic analysis now.
1743  bool Dependent = false;
1744  if (Fn->isTypeDependent()) {
1745    if (CXXDependentNameExpr *FnName = dyn_cast<CXXDependentNameExpr>(Fn)) {
1746      if (Expr::hasAnyTypeDependentArguments(Args, NumArgs))
1747        Dependent = true;
1748      else {
1749        // Resolve the CXXDependentNameExpr to an actual identifier;
1750        // it wasn't really a dependent name after all.
1751        ExprResult Resolved
1752          = ActOnDeclarationNameExpr(S, FnName->getLocation(), FnName->getName(),
1753                                     /*HasTrailingLParen=*/true,
1754                                     /*SS=*/0,
1755                                     /*ForceResolution=*/true);
1756        if (Resolved.isInvalid)
1757          return true;
1758        else {
1759          delete Fn;
1760          Fn = (Expr *)Resolved.Val;
1761        }
1762      }
1763    } else
1764      Dependent = true;
1765  } else
1766    Dependent = Expr::hasAnyTypeDependentArguments(Args, NumArgs);
1767
1768  // FIXME: Will need to cache the results of name lookup (including
1769  // ADL) in Fn.
1770  if (Dependent)
1771    return new CallExpr(Fn, Args, NumArgs, Context.DependentTy, RParenLoc);
1772
1773  // Determine whether this is a call to an object (C++ [over.call.object]).
1774  if (getLangOptions().CPlusPlus && Fn->getType()->isRecordType())
1775    return BuildCallToObjectOfClassType(S, Fn, LParenLoc, Args, NumArgs,
1776                                        CommaLocs, RParenLoc);
1777
1778  // Determine whether this is a call to a member function.
1779  if (getLangOptions().CPlusPlus) {
1780    if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(Fn->IgnoreParens()))
1781      if (isa<OverloadedFunctionDecl>(MemExpr->getMemberDecl()) ||
1782          isa<CXXMethodDecl>(MemExpr->getMemberDecl()))
1783        return BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
1784                                         CommaLocs, RParenLoc);
1785  }
1786
1787  // If we're directly calling a function or a set of overloaded
1788  // functions, get the appropriate declaration.
1789  DeclRefExpr *DRExpr = NULL;
1790  if (ImplicitCastExpr *IcExpr = dyn_cast<ImplicitCastExpr>(Fn))
1791    DRExpr = dyn_cast<DeclRefExpr>(IcExpr->getSubExpr());
1792  else
1793    DRExpr = dyn_cast<DeclRefExpr>(Fn);
1794
1795  if (DRExpr) {
1796    FDecl = dyn_cast<FunctionDecl>(DRExpr->getDecl());
1797    Ovl = dyn_cast<OverloadedFunctionDecl>(DRExpr->getDecl());
1798  }
1799
1800  if (Ovl) {
1801    FDecl = ResolveOverloadedCallFn(Fn, Ovl, LParenLoc, Args, NumArgs, CommaLocs,
1802                                    RParenLoc);
1803    if (!FDecl)
1804      return true;
1805
1806    // Update Fn to refer to the actual function selected.
1807    Expr *NewFn = 0;
1808    if (QualifiedDeclRefExpr *QDRExpr = dyn_cast<QualifiedDeclRefExpr>(DRExpr))
1809      NewFn = new QualifiedDeclRefExpr(FDecl, FDecl->getType(),
1810                                       QDRExpr->getLocation(), false, false,
1811                                       QDRExpr->getSourceRange().getBegin());
1812    else
1813      NewFn = new DeclRefExpr(FDecl, FDecl->getType(),
1814                              Fn->getSourceRange().getBegin());
1815    Fn->Destroy(Context);
1816    Fn = NewFn;
1817  }
1818
1819  // Promote the function operand.
1820  UsualUnaryConversions(Fn);
1821
1822  // Make the call expr early, before semantic checks.  This guarantees cleanup
1823  // of arguments and function on error.
1824  llvm::OwningPtr<CallExpr> TheCall(new CallExpr(Fn, Args, NumArgs,
1825                                                 Context.BoolTy, RParenLoc));
1826
1827  const FunctionType *FuncT;
1828  if (!Fn->getType()->isBlockPointerType()) {
1829    // C99 6.5.2.2p1 - "The expression that denotes the called function shall
1830    // have type pointer to function".
1831    const PointerType *PT = Fn->getType()->getAsPointerType();
1832    if (PT == 0)
1833      return Diag(LParenLoc, diag::err_typecheck_call_not_function)
1834        << Fn->getType() << Fn->getSourceRange();
1835    FuncT = PT->getPointeeType()->getAsFunctionType();
1836  } else { // This is a block call.
1837    FuncT = Fn->getType()->getAsBlockPointerType()->getPointeeType()->
1838                getAsFunctionType();
1839  }
1840  if (FuncT == 0)
1841    return Diag(LParenLoc, diag::err_typecheck_call_not_function)
1842      << Fn->getType() << Fn->getSourceRange();
1843
1844  // We know the result type of the call, set it.
1845  TheCall->setType(FuncT->getResultType().getNonReferenceType());
1846
1847  if (const FunctionTypeProto *Proto = dyn_cast<FunctionTypeProto>(FuncT)) {
1848    if (ConvertArgumentsForCall(&*TheCall, Fn, FDecl, Proto, Args, NumArgs,
1849                                RParenLoc))
1850      return true;
1851  } else {
1852    assert(isa<FunctionTypeNoProto>(FuncT) && "Unknown FunctionType!");
1853
1854    // Promote the arguments (C99 6.5.2.2p6).
1855    for (unsigned i = 0; i != NumArgs; i++) {
1856      Expr *Arg = Args[i];
1857      DefaultArgumentPromotion(Arg);
1858      TheCall->setArg(i, Arg);
1859    }
1860  }
1861
1862  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
1863    if (!Method->isStatic())
1864      return Diag(LParenLoc, diag::err_member_call_without_object)
1865        << Fn->getSourceRange();
1866
1867  // Do special checking on direct calls to functions.
1868  if (FDecl)
1869    return CheckFunctionCall(FDecl, TheCall.take());
1870
1871  return TheCall.take();
1872}
1873
1874Action::ExprResult Sema::
1875ActOnCompoundLiteral(SourceLocation LParenLoc, TypeTy *Ty,
1876                     SourceLocation RParenLoc, ExprTy *InitExpr) {
1877  assert((Ty != 0) && "ActOnCompoundLiteral(): missing type");
1878  QualType literalType = QualType::getFromOpaquePtr(Ty);
1879  // FIXME: put back this assert when initializers are worked out.
1880  //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
1881  Expr *literalExpr = static_cast<Expr*>(InitExpr);
1882
1883  if (literalType->isArrayType()) {
1884    if (literalType->isVariableArrayType())
1885      return Diag(LParenLoc, diag::err_variable_object_no_init)
1886        << SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd());
1887  } else if (literalType->isIncompleteType()) {
1888    return Diag(LParenLoc, diag::err_typecheck_decl_incomplete_type)
1889      << literalType
1890      << SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd());
1891  }
1892
1893  if (CheckInitializerTypes(literalExpr, literalType, LParenLoc,
1894                            DeclarationName(), /*FIXME:DirectInit=*/false))
1895    return true;
1896
1897  bool isFileScope = getCurFunctionOrMethodDecl() == 0;
1898  if (isFileScope) { // 6.5.2.5p3
1899    if (CheckForConstantInitializer(literalExpr, literalType))
1900      return true;
1901  }
1902  return new CompoundLiteralExpr(LParenLoc, literalType, literalExpr,
1903                                 isFileScope);
1904}
1905
1906Action::ExprResult Sema::
1907ActOnInitList(SourceLocation LBraceLoc, ExprTy **initlist, unsigned NumInit,
1908              InitListDesignations &Designators,
1909              SourceLocation RBraceLoc) {
1910  Expr **InitList = reinterpret_cast<Expr**>(initlist);
1911
1912  // Semantic analysis for initializers is done by ActOnDeclarator() and
1913  // CheckInitializer() - it requires knowledge of the object being intialized.
1914
1915  InitListExpr *E = new InitListExpr(LBraceLoc, InitList, NumInit, RBraceLoc,
1916                                     Designators.hasAnyDesignators());
1917  E->setType(Context.VoidTy); // FIXME: just a place holder for now.
1918  return E;
1919}
1920
1921/// CheckCastTypes - Check type constraints for casting between types.
1922bool Sema::CheckCastTypes(SourceRange TyR, QualType castType, Expr *&castExpr) {
1923  UsualUnaryConversions(castExpr);
1924
1925  // C99 6.5.4p2: the cast type needs to be void or scalar and the expression
1926  // type needs to be scalar.
1927  if (castType->isVoidType()) {
1928    // Cast to void allows any expr type.
1929  } else if (castType->isDependentType() || castExpr->isTypeDependent()) {
1930    // We can't check any more until template instantiation time.
1931  } else if (!castType->isScalarType() && !castType->isVectorType()) {
1932    if (Context.getCanonicalType(castType).getUnqualifiedType() ==
1933        Context.getCanonicalType(castExpr->getType().getUnqualifiedType()) &&
1934        (castType->isStructureType() || castType->isUnionType())) {
1935      // GCC struct/union extension: allow cast to self.
1936      Diag(TyR.getBegin(), diag::ext_typecheck_cast_nonscalar)
1937        << castType << castExpr->getSourceRange();
1938    } else if (castType->isUnionType()) {
1939      // GCC cast to union extension
1940      RecordDecl *RD = castType->getAsRecordType()->getDecl();
1941      RecordDecl::field_iterator Field, FieldEnd;
1942      for (Field = RD->field_begin(), FieldEnd = RD->field_end();
1943           Field != FieldEnd; ++Field) {
1944        if (Context.getCanonicalType(Field->getType()).getUnqualifiedType() ==
1945            Context.getCanonicalType(castExpr->getType()).getUnqualifiedType()) {
1946          Diag(TyR.getBegin(), diag::ext_typecheck_cast_to_union)
1947            << castExpr->getSourceRange();
1948          break;
1949        }
1950      }
1951      if (Field == FieldEnd)
1952        return Diag(TyR.getBegin(), diag::err_typecheck_cast_to_union_no_type)
1953          << castExpr->getType() << castExpr->getSourceRange();
1954    } else {
1955      // Reject any other conversions to non-scalar types.
1956      return Diag(TyR.getBegin(), diag::err_typecheck_cond_expect_scalar)
1957        << castType << castExpr->getSourceRange();
1958    }
1959  } else if (!castExpr->getType()->isScalarType() &&
1960             !castExpr->getType()->isVectorType()) {
1961    return Diag(castExpr->getLocStart(),
1962                diag::err_typecheck_expect_scalar_operand)
1963      << castExpr->getType() << castExpr->getSourceRange();
1964  } else if (castExpr->getType()->isVectorType()) {
1965    if (CheckVectorCast(TyR, castExpr->getType(), castType))
1966      return true;
1967  } else if (castType->isVectorType()) {
1968    if (CheckVectorCast(TyR, castType, castExpr->getType()))
1969      return true;
1970  }
1971  return false;
1972}
1973
1974bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty) {
1975  assert(VectorTy->isVectorType() && "Not a vector type!");
1976
1977  if (Ty->isVectorType() || Ty->isIntegerType()) {
1978    if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty))
1979      return Diag(R.getBegin(),
1980                  Ty->isVectorType() ?
1981                  diag::err_invalid_conversion_between_vectors :
1982                  diag::err_invalid_conversion_between_vector_and_integer)
1983        << VectorTy << Ty << R;
1984  } else
1985    return Diag(R.getBegin(),
1986                diag::err_invalid_conversion_between_vector_and_scalar)
1987      << VectorTy << Ty << R;
1988
1989  return false;
1990}
1991
1992Action::ExprResult Sema::
1993ActOnCastExpr(SourceLocation LParenLoc, TypeTy *Ty,
1994              SourceLocation RParenLoc, ExprTy *Op) {
1995  assert((Ty != 0) && (Op != 0) && "ActOnCastExpr(): missing type or expr");
1996
1997  Expr *castExpr = static_cast<Expr*>(Op);
1998  QualType castType = QualType::getFromOpaquePtr(Ty);
1999
2000  if (CheckCastTypes(SourceRange(LParenLoc, RParenLoc), castType, castExpr))
2001    return true;
2002  return new CStyleCastExpr(castType, castExpr, castType, LParenLoc, RParenLoc);
2003}
2004
2005/// Note that lex is not null here, even if this is the gnu "x ?: y" extension.
2006/// In that case, lex = cond.
2007inline QualType Sema::CheckConditionalOperands( // C99 6.5.15
2008  Expr *&cond, Expr *&lex, Expr *&rex, SourceLocation questionLoc) {
2009  UsualUnaryConversions(cond);
2010  UsualUnaryConversions(lex);
2011  UsualUnaryConversions(rex);
2012  QualType condT = cond->getType();
2013  QualType lexT = lex->getType();
2014  QualType rexT = rex->getType();
2015
2016  // first, check the condition.
2017  if (!cond->isTypeDependent()) {
2018    if (!condT->isScalarType()) { // C99 6.5.15p2
2019      Diag(cond->getLocStart(), diag::err_typecheck_cond_expect_scalar) << condT;
2020      return QualType();
2021    }
2022  }
2023
2024  // Now check the two expressions.
2025  if ((lex && lex->isTypeDependent()) || (rex && rex->isTypeDependent()))
2026    return Context.DependentTy;
2027
2028  // If both operands have arithmetic type, do the usual arithmetic conversions
2029  // to find a common type: C99 6.5.15p3,5.
2030  if (lexT->isArithmeticType() && rexT->isArithmeticType()) {
2031    UsualArithmeticConversions(lex, rex);
2032    return lex->getType();
2033  }
2034
2035  // If both operands are the same structure or union type, the result is that
2036  // type.
2037  if (const RecordType *LHSRT = lexT->getAsRecordType()) {    // C99 6.5.15p3
2038    if (const RecordType *RHSRT = rexT->getAsRecordType())
2039      if (LHSRT->getDecl() == RHSRT->getDecl())
2040        // "If both the operands have structure or union type, the result has
2041        // that type."  This implies that CV qualifiers are dropped.
2042        return lexT.getUnqualifiedType();
2043  }
2044
2045  // C99 6.5.15p5: "If both operands have void type, the result has void type."
2046  // The following || allows only one side to be void (a GCC-ism).
2047  if (lexT->isVoidType() || rexT->isVoidType()) {
2048    if (!lexT->isVoidType())
2049      Diag(rex->getLocStart(), diag::ext_typecheck_cond_one_void)
2050        << rex->getSourceRange();
2051    if (!rexT->isVoidType())
2052      Diag(lex->getLocStart(), diag::ext_typecheck_cond_one_void)
2053        << lex->getSourceRange();
2054    ImpCastExprToType(lex, Context.VoidTy);
2055    ImpCastExprToType(rex, Context.VoidTy);
2056    return Context.VoidTy;
2057  }
2058  // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
2059  // the type of the other operand."
2060  if ((lexT->isPointerType() || lexT->isBlockPointerType() ||
2061       Context.isObjCObjectPointerType(lexT)) &&
2062      rex->isNullPointerConstant(Context)) {
2063    ImpCastExprToType(rex, lexT); // promote the null to a pointer.
2064    return lexT;
2065  }
2066  if ((rexT->isPointerType() || rexT->isBlockPointerType() ||
2067       Context.isObjCObjectPointerType(rexT)) &&
2068      lex->isNullPointerConstant(Context)) {
2069    ImpCastExprToType(lex, rexT); // promote the null to a pointer.
2070    return rexT;
2071  }
2072  // Handle the case where both operands are pointers before we handle null
2073  // pointer constants in case both operands are null pointer constants.
2074  if (const PointerType *LHSPT = lexT->getAsPointerType()) { // C99 6.5.15p3,6
2075    if (const PointerType *RHSPT = rexT->getAsPointerType()) {
2076      // get the "pointed to" types
2077      QualType lhptee = LHSPT->getPointeeType();
2078      QualType rhptee = RHSPT->getPointeeType();
2079
2080      // ignore qualifiers on void (C99 6.5.15p3, clause 6)
2081      if (lhptee->isVoidType() &&
2082          rhptee->isIncompleteOrObjectType()) {
2083        // Figure out necessary qualifiers (C99 6.5.15p6)
2084        QualType destPointee=lhptee.getQualifiedType(rhptee.getCVRQualifiers());
2085        QualType destType = Context.getPointerType(destPointee);
2086        ImpCastExprToType(lex, destType); // add qualifiers if necessary
2087        ImpCastExprToType(rex, destType); // promote to void*
2088        return destType;
2089      }
2090      if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
2091        QualType destPointee=rhptee.getQualifiedType(lhptee.getCVRQualifiers());
2092        QualType destType = Context.getPointerType(destPointee);
2093        ImpCastExprToType(lex, destType); // add qualifiers if necessary
2094        ImpCastExprToType(rex, destType); // promote to void*
2095        return destType;
2096      }
2097
2098      QualType compositeType = lexT;
2099
2100      // If either type is an Objective-C object type then check
2101      // compatibility according to Objective-C.
2102      if (Context.isObjCObjectPointerType(lexT) ||
2103          Context.isObjCObjectPointerType(rexT)) {
2104        // If both operands are interfaces and either operand can be
2105        // assigned to the other, use that type as the composite
2106        // type. This allows
2107        //   xxx ? (A*) a : (B*) b
2108        // where B is a subclass of A.
2109        //
2110        // Additionally, as for assignment, if either type is 'id'
2111        // allow silent coercion. Finally, if the types are
2112        // incompatible then make sure to use 'id' as the composite
2113        // type so the result is acceptable for sending messages to.
2114
2115        // FIXME: This code should not be localized to here. Also this
2116        // should use a compatible check instead of abusing the
2117        // canAssignObjCInterfaces code.
2118        const ObjCInterfaceType* LHSIface = lhptee->getAsObjCInterfaceType();
2119        const ObjCInterfaceType* RHSIface = rhptee->getAsObjCInterfaceType();
2120        if (LHSIface && RHSIface &&
2121            Context.canAssignObjCInterfaces(LHSIface, RHSIface)) {
2122          compositeType = lexT;
2123        } else if (LHSIface && RHSIface &&
2124                   Context.canAssignObjCInterfaces(RHSIface, LHSIface)) {
2125          compositeType = rexT;
2126        } else if (Context.isObjCIdType(lhptee) ||
2127                   Context.isObjCIdType(rhptee)) {
2128          // FIXME: This code looks wrong, because isObjCIdType checks
2129          // the struct but getObjCIdType returns the pointer to
2130          // struct. This is horrible and should be fixed.
2131          compositeType = Context.getObjCIdType();
2132        } else {
2133          QualType incompatTy = Context.getObjCIdType();
2134          ImpCastExprToType(lex, incompatTy);
2135          ImpCastExprToType(rex, incompatTy);
2136          return incompatTy;
2137        }
2138      } else if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
2139                                             rhptee.getUnqualifiedType())) {
2140        Diag(questionLoc, diag::warn_typecheck_cond_incompatible_pointers)
2141          << lexT << rexT << lex->getSourceRange() << rex->getSourceRange();
2142        // In this situation, we assume void* type. No especially good
2143        // reason, but this is what gcc does, and we do have to pick
2144        // to get a consistent AST.
2145        QualType incompatTy = Context.getPointerType(Context.VoidTy);
2146        ImpCastExprToType(lex, incompatTy);
2147        ImpCastExprToType(rex, incompatTy);
2148        return incompatTy;
2149      }
2150      // The pointer types are compatible.
2151      // C99 6.5.15p6: If both operands are pointers to compatible types *or* to
2152      // differently qualified versions of compatible types, the result type is
2153      // a pointer to an appropriately qualified version of the *composite*
2154      // type.
2155      // FIXME: Need to calculate the composite type.
2156      // FIXME: Need to add qualifiers
2157      ImpCastExprToType(lex, compositeType);
2158      ImpCastExprToType(rex, compositeType);
2159      return compositeType;
2160    }
2161  }
2162  // Need to handle "id<xx>" explicitly. Unlike "id", whose canonical type
2163  // evaluates to "struct objc_object *" (and is handled above when comparing
2164  // id with statically typed objects).
2165  if (lexT->isObjCQualifiedIdType() || rexT->isObjCQualifiedIdType()) {
2166    // GCC allows qualified id and any Objective-C type to devolve to
2167    // id. Currently localizing to here until clear this should be
2168    // part of ObjCQualifiedIdTypesAreCompatible.
2169    if (ObjCQualifiedIdTypesAreCompatible(lexT, rexT, true) ||
2170        (lexT->isObjCQualifiedIdType() &&
2171         Context.isObjCObjectPointerType(rexT)) ||
2172        (rexT->isObjCQualifiedIdType() &&
2173         Context.isObjCObjectPointerType(lexT))) {
2174      // FIXME: This is not the correct composite type. This only
2175      // happens to work because id can more or less be used anywhere,
2176      // however this may change the type of method sends.
2177      // FIXME: gcc adds some type-checking of the arguments and emits
2178      // (confusing) incompatible comparison warnings in some
2179      // cases. Investigate.
2180      QualType compositeType = Context.getObjCIdType();
2181      ImpCastExprToType(lex, compositeType);
2182      ImpCastExprToType(rex, compositeType);
2183      return compositeType;
2184    }
2185  }
2186
2187  // Selection between block pointer types is ok as long as they are the same.
2188  if (lexT->isBlockPointerType() && rexT->isBlockPointerType() &&
2189      Context.getCanonicalType(lexT) == Context.getCanonicalType(rexT))
2190    return lexT;
2191
2192  // Otherwise, the operands are not compatible.
2193  Diag(questionLoc, diag::err_typecheck_cond_incompatible_operands)
2194    << lexT << rexT << lex->getSourceRange() << rex->getSourceRange();
2195  return QualType();
2196}
2197
2198/// ActOnConditionalOp - Parse a ?: operation.  Note that 'LHS' may be null
2199/// in the case of a the GNU conditional expr extension.
2200Action::ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
2201                                            SourceLocation ColonLoc,
2202                                            ExprTy *Cond, ExprTy *LHS,
2203                                            ExprTy *RHS) {
2204  Expr *CondExpr = (Expr *) Cond;
2205  Expr *LHSExpr = (Expr *) LHS, *RHSExpr = (Expr *) RHS;
2206
2207  // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
2208  // was the condition.
2209  bool isLHSNull = LHSExpr == 0;
2210  if (isLHSNull)
2211    LHSExpr = CondExpr;
2212
2213  QualType result = CheckConditionalOperands(CondExpr, LHSExpr,
2214                                             RHSExpr, QuestionLoc);
2215  if (result.isNull())
2216    return true;
2217  return new ConditionalOperator(CondExpr, isLHSNull ? 0 : LHSExpr,
2218                                 RHSExpr, result);
2219}
2220
2221
2222// CheckPointerTypesForAssignment - This is a very tricky routine (despite
2223// being closely modeled after the C99 spec:-). The odd characteristic of this
2224// routine is it effectively iqnores the qualifiers on the top level pointee.
2225// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
2226// FIXME: add a couple examples in this comment.
2227Sema::AssignConvertType
2228Sema::CheckPointerTypesForAssignment(QualType lhsType, QualType rhsType) {
2229  QualType lhptee, rhptee;
2230
2231  // get the "pointed to" type (ignoring qualifiers at the top level)
2232  lhptee = lhsType->getAsPointerType()->getPointeeType();
2233  rhptee = rhsType->getAsPointerType()->getPointeeType();
2234
2235  // make sure we operate on the canonical type
2236  lhptee = Context.getCanonicalType(lhptee);
2237  rhptee = Context.getCanonicalType(rhptee);
2238
2239  AssignConvertType ConvTy = Compatible;
2240
2241  // C99 6.5.16.1p1: This following citation is common to constraints
2242  // 3 & 4 (below). ...and the type *pointed to* by the left has all the
2243  // qualifiers of the type *pointed to* by the right;
2244  // FIXME: Handle ASQualType
2245  if (!lhptee.isAtLeastAsQualifiedAs(rhptee))
2246    ConvTy = CompatiblePointerDiscardsQualifiers;
2247
2248  // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
2249  // incomplete type and the other is a pointer to a qualified or unqualified
2250  // version of void...
2251  if (lhptee->isVoidType()) {
2252    if (rhptee->isIncompleteOrObjectType())
2253      return ConvTy;
2254
2255    // As an extension, we allow cast to/from void* to function pointer.
2256    assert(rhptee->isFunctionType());
2257    return FunctionVoidPointer;
2258  }
2259
2260  if (rhptee->isVoidType()) {
2261    if (lhptee->isIncompleteOrObjectType())
2262      return ConvTy;
2263
2264    // As an extension, we allow cast to/from void* to function pointer.
2265    assert(lhptee->isFunctionType());
2266    return FunctionVoidPointer;
2267  }
2268
2269  // Check for ObjC interfaces
2270  const ObjCInterfaceType* LHSIface = lhptee->getAsObjCInterfaceType();
2271  const ObjCInterfaceType* RHSIface = rhptee->getAsObjCInterfaceType();
2272  if (LHSIface && RHSIface &&
2273      Context.canAssignObjCInterfaces(LHSIface, RHSIface))
2274    return ConvTy;
2275
2276  // ID acts sort of like void* for ObjC interfaces
2277  if (LHSIface && Context.isObjCIdType(rhptee))
2278    return ConvTy;
2279  if (RHSIface && Context.isObjCIdType(lhptee))
2280    return ConvTy;
2281
2282  // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
2283  // unqualified versions of compatible types, ...
2284  if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
2285                                  rhptee.getUnqualifiedType()))
2286    return IncompatiblePointer; // this "trumps" PointerAssignDiscardsQualifiers
2287  return ConvTy;
2288}
2289
2290/// CheckBlockPointerTypesForAssignment - This routine determines whether two
2291/// block pointer types are compatible or whether a block and normal pointer
2292/// are compatible. It is more restrict than comparing two function pointer
2293// types.
2294Sema::AssignConvertType
2295Sema::CheckBlockPointerTypesForAssignment(QualType lhsType,
2296                                          QualType rhsType) {
2297  QualType lhptee, rhptee;
2298
2299  // get the "pointed to" type (ignoring qualifiers at the top level)
2300  lhptee = lhsType->getAsBlockPointerType()->getPointeeType();
2301  rhptee = rhsType->getAsBlockPointerType()->getPointeeType();
2302
2303  // make sure we operate on the canonical type
2304  lhptee = Context.getCanonicalType(lhptee);
2305  rhptee = Context.getCanonicalType(rhptee);
2306
2307  AssignConvertType ConvTy = Compatible;
2308
2309  // For blocks we enforce that qualifiers are identical.
2310  if (lhptee.getCVRQualifiers() != rhptee.getCVRQualifiers())
2311    ConvTy = CompatiblePointerDiscardsQualifiers;
2312
2313  if (!Context.typesAreBlockCompatible(lhptee, rhptee))
2314    return IncompatibleBlockPointer;
2315  return ConvTy;
2316}
2317
2318/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
2319/// has code to accommodate several GCC extensions when type checking
2320/// pointers. Here are some objectionable examples that GCC considers warnings:
2321///
2322///  int a, *pint;
2323///  short *pshort;
2324///  struct foo *pfoo;
2325///
2326///  pint = pshort; // warning: assignment from incompatible pointer type
2327///  a = pint; // warning: assignment makes integer from pointer without a cast
2328///  pint = a; // warning: assignment makes pointer from integer without a cast
2329///  pint = pfoo; // warning: assignment from incompatible pointer type
2330///
2331/// As a result, the code for dealing with pointers is more complex than the
2332/// C99 spec dictates.
2333///
2334Sema::AssignConvertType
2335Sema::CheckAssignmentConstraints(QualType lhsType, QualType rhsType) {
2336  // Get canonical types.  We're not formatting these types, just comparing
2337  // them.
2338  lhsType = Context.getCanonicalType(lhsType).getUnqualifiedType();
2339  rhsType = Context.getCanonicalType(rhsType).getUnqualifiedType();
2340
2341  if (lhsType == rhsType)
2342    return Compatible; // Common case: fast path an exact match.
2343
2344  // If the left-hand side is a reference type, then we are in a
2345  // (rare!) case where we've allowed the use of references in C,
2346  // e.g., as a parameter type in a built-in function. In this case,
2347  // just make sure that the type referenced is compatible with the
2348  // right-hand side type. The caller is responsible for adjusting
2349  // lhsType so that the resulting expression does not have reference
2350  // type.
2351  if (const ReferenceType *lhsTypeRef = lhsType->getAsReferenceType()) {
2352    if (Context.typesAreCompatible(lhsTypeRef->getPointeeType(), rhsType))
2353      return Compatible;
2354    return Incompatible;
2355  }
2356
2357  if (lhsType->isObjCQualifiedIdType() || rhsType->isObjCQualifiedIdType()) {
2358    if (ObjCQualifiedIdTypesAreCompatible(lhsType, rhsType, false))
2359      return Compatible;
2360    // Relax integer conversions like we do for pointers below.
2361    if (rhsType->isIntegerType())
2362      return IntToPointer;
2363    if (lhsType->isIntegerType())
2364      return PointerToInt;
2365    return IncompatibleObjCQualifiedId;
2366  }
2367
2368  if (lhsType->isVectorType() || rhsType->isVectorType()) {
2369    // For ExtVector, allow vector splats; float -> <n x float>
2370    if (const ExtVectorType *LV = lhsType->getAsExtVectorType())
2371      if (LV->getElementType() == rhsType)
2372        return Compatible;
2373
2374    // If we are allowing lax vector conversions, and LHS and RHS are both
2375    // vectors, the total size only needs to be the same. This is a bitcast;
2376    // no bits are changed but the result type is different.
2377    if (getLangOptions().LaxVectorConversions &&
2378        lhsType->isVectorType() && rhsType->isVectorType()) {
2379      if (Context.getTypeSize(lhsType) == Context.getTypeSize(rhsType))
2380        return Compatible;
2381    }
2382    return Incompatible;
2383  }
2384
2385  if (lhsType->isArithmeticType() && rhsType->isArithmeticType())
2386    return Compatible;
2387
2388  if (isa<PointerType>(lhsType)) {
2389    if (rhsType->isIntegerType())
2390      return IntToPointer;
2391
2392    if (isa<PointerType>(rhsType))
2393      return CheckPointerTypesForAssignment(lhsType, rhsType);
2394
2395    if (rhsType->getAsBlockPointerType()) {
2396      if (lhsType->getAsPointerType()->getPointeeType()->isVoidType())
2397        return Compatible;
2398
2399      // Treat block pointers as objects.
2400      if (getLangOptions().ObjC1 &&
2401          lhsType == Context.getCanonicalType(Context.getObjCIdType()))
2402        return Compatible;
2403    }
2404    return Incompatible;
2405  }
2406
2407  if (isa<BlockPointerType>(lhsType)) {
2408    if (rhsType->isIntegerType())
2409      return IntToPointer;
2410
2411    // Treat block pointers as objects.
2412    if (getLangOptions().ObjC1 &&
2413        rhsType == Context.getCanonicalType(Context.getObjCIdType()))
2414      return Compatible;
2415
2416    if (rhsType->isBlockPointerType())
2417      return CheckBlockPointerTypesForAssignment(lhsType, rhsType);
2418
2419    if (const PointerType *RHSPT = rhsType->getAsPointerType()) {
2420      if (RHSPT->getPointeeType()->isVoidType())
2421        return Compatible;
2422    }
2423    return Incompatible;
2424  }
2425
2426  if (isa<PointerType>(rhsType)) {
2427    // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
2428    if (lhsType == Context.BoolTy)
2429      return Compatible;
2430
2431    if (lhsType->isIntegerType())
2432      return PointerToInt;
2433
2434    if (isa<PointerType>(lhsType))
2435      return CheckPointerTypesForAssignment(lhsType, rhsType);
2436
2437    if (isa<BlockPointerType>(lhsType) &&
2438        rhsType->getAsPointerType()->getPointeeType()->isVoidType())
2439      return Compatible;
2440    return Incompatible;
2441  }
2442
2443  if (isa<TagType>(lhsType) && isa<TagType>(rhsType)) {
2444    if (Context.typesAreCompatible(lhsType, rhsType))
2445      return Compatible;
2446  }
2447  return Incompatible;
2448}
2449
2450Sema::AssignConvertType
2451Sema::CheckSingleAssignmentConstraints(QualType lhsType, Expr *&rExpr) {
2452  if (getLangOptions().CPlusPlus) {
2453    if (!lhsType->isRecordType()) {
2454      // C++ 5.17p3: If the left operand is not of class type, the
2455      // expression is implicitly converted (C++ 4) to the
2456      // cv-unqualified type of the left operand.
2457      if (PerformImplicitConversion(rExpr, lhsType.getUnqualifiedType(),
2458                                    "assigning"))
2459        return Incompatible;
2460      else
2461        return Compatible;
2462    }
2463
2464    // FIXME: Currently, we fall through and treat C++ classes like C
2465    // structures.
2466  }
2467
2468  // C99 6.5.16.1p1: the left operand is a pointer and the right is
2469  // a null pointer constant.
2470  if ((lhsType->isPointerType() || lhsType->isObjCQualifiedIdType() ||
2471       lhsType->isBlockPointerType())
2472      && rExpr->isNullPointerConstant(Context)) {
2473    ImpCastExprToType(rExpr, lhsType);
2474    return Compatible;
2475  }
2476
2477  // We don't allow conversion of non-null-pointer constants to integers.
2478  if (lhsType->isBlockPointerType() && rExpr->getType()->isIntegerType())
2479    return IntToBlockPointer;
2480
2481  // This check seems unnatural, however it is necessary to ensure the proper
2482  // conversion of functions/arrays. If the conversion were done for all
2483  // DeclExpr's (created by ActOnIdentifierExpr), it would mess up the unary
2484  // expressions that surpress this implicit conversion (&, sizeof).
2485  //
2486  // Suppress this for references: C++ 8.5.3p5.
2487  if (!lhsType->isReferenceType())
2488    DefaultFunctionArrayConversion(rExpr);
2489
2490  Sema::AssignConvertType result =
2491    CheckAssignmentConstraints(lhsType, rExpr->getType());
2492
2493  // C99 6.5.16.1p2: The value of the right operand is converted to the
2494  // type of the assignment expression.
2495  // CheckAssignmentConstraints allows the left-hand side to be a reference,
2496  // so that we can use references in built-in functions even in C.
2497  // The getNonReferenceType() call makes sure that the resulting expression
2498  // does not have reference type.
2499  if (rExpr->getType() != lhsType)
2500    ImpCastExprToType(rExpr, lhsType.getNonReferenceType());
2501  return result;
2502}
2503
2504Sema::AssignConvertType
2505Sema::CheckCompoundAssignmentConstraints(QualType lhsType, QualType rhsType) {
2506  return CheckAssignmentConstraints(lhsType, rhsType);
2507}
2508
2509QualType Sema::InvalidOperands(SourceLocation Loc, Expr *&lex, Expr *&rex) {
2510  Diag(Loc, diag::err_typecheck_invalid_operands)
2511    << lex->getType() << rex->getType()
2512    << lex->getSourceRange() << rex->getSourceRange();
2513  return QualType();
2514}
2515
2516inline QualType Sema::CheckVectorOperands(SourceLocation Loc, Expr *&lex,
2517                                                              Expr *&rex) {
2518  // For conversion purposes, we ignore any qualifiers.
2519  // For example, "const float" and "float" are equivalent.
2520  QualType lhsType =
2521    Context.getCanonicalType(lex->getType()).getUnqualifiedType();
2522  QualType rhsType =
2523    Context.getCanonicalType(rex->getType()).getUnqualifiedType();
2524
2525  // If the vector types are identical, return.
2526  if (lhsType == rhsType)
2527    return lhsType;
2528
2529  // Handle the case of a vector & extvector type of the same size and element
2530  // type.  It would be nice if we only had one vector type someday.
2531  if (getLangOptions().LaxVectorConversions)
2532    if (const VectorType *LV = lhsType->getAsVectorType())
2533      if (const VectorType *RV = rhsType->getAsVectorType())
2534        if (LV->getElementType() == RV->getElementType() &&
2535            LV->getNumElements() == RV->getNumElements())
2536          return lhsType->isExtVectorType() ? lhsType : rhsType;
2537
2538  // If the lhs is an extended vector and the rhs is a scalar of the same type
2539  // or a literal, promote the rhs to the vector type.
2540  if (const ExtVectorType *V = lhsType->getAsExtVectorType()) {
2541    QualType eltType = V->getElementType();
2542
2543    if ((eltType->getAsBuiltinType() == rhsType->getAsBuiltinType()) ||
2544        (eltType->isIntegerType() && isa<IntegerLiteral>(rex)) ||
2545        (eltType->isFloatingType() && isa<FloatingLiteral>(rex))) {
2546      ImpCastExprToType(rex, lhsType);
2547      return lhsType;
2548    }
2549  }
2550
2551  // If the rhs is an extended vector and the lhs is a scalar of the same type,
2552  // promote the lhs to the vector type.
2553  if (const ExtVectorType *V = rhsType->getAsExtVectorType()) {
2554    QualType eltType = V->getElementType();
2555
2556    if ((eltType->getAsBuiltinType() == lhsType->getAsBuiltinType()) ||
2557        (eltType->isIntegerType() && isa<IntegerLiteral>(lex)) ||
2558        (eltType->isFloatingType() && isa<FloatingLiteral>(lex))) {
2559      ImpCastExprToType(lex, rhsType);
2560      return rhsType;
2561    }
2562  }
2563
2564  // You cannot convert between vector values of different size.
2565  Diag(Loc, diag::err_typecheck_vector_not_convertable)
2566    << lex->getType() << rex->getType()
2567    << lex->getSourceRange() << rex->getSourceRange();
2568  return QualType();
2569}
2570
2571inline QualType Sema::CheckMultiplyDivideOperands(
2572  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
2573{
2574  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
2575    return CheckVectorOperands(Loc, lex, rex);
2576
2577  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
2578
2579  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
2580    return compType;
2581  return InvalidOperands(Loc, lex, rex);
2582}
2583
2584inline QualType Sema::CheckRemainderOperands(
2585  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
2586{
2587  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
2588    if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
2589      return CheckVectorOperands(Loc, lex, rex);
2590    return InvalidOperands(Loc, lex, rex);
2591  }
2592
2593  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
2594
2595  if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
2596    return compType;
2597  return InvalidOperands(Loc, lex, rex);
2598}
2599
2600inline QualType Sema::CheckAdditionOperands( // C99 6.5.6
2601  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
2602{
2603  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
2604    return CheckVectorOperands(Loc, lex, rex);
2605
2606  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
2607
2608  // handle the common case first (both operands are arithmetic).
2609  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
2610    return compType;
2611
2612  // Put any potential pointer into PExp
2613  Expr* PExp = lex, *IExp = rex;
2614  if (IExp->getType()->isPointerType())
2615    std::swap(PExp, IExp);
2616
2617  if (const PointerType* PTy = PExp->getType()->getAsPointerType()) {
2618    if (IExp->getType()->isIntegerType()) {
2619      // Check for arithmetic on pointers to incomplete types
2620      if (!PTy->getPointeeType()->isObjectType()) {
2621        if (PTy->getPointeeType()->isVoidType()) {
2622          Diag(Loc, diag::ext_gnu_void_ptr)
2623            << lex->getSourceRange() << rex->getSourceRange();
2624        } else {
2625          Diag(Loc, diag::err_typecheck_arithmetic_incomplete_type)
2626            << lex->getType() << lex->getSourceRange();
2627          return QualType();
2628        }
2629      }
2630      return PExp->getType();
2631    }
2632  }
2633
2634  return InvalidOperands(Loc, lex, rex);
2635}
2636
2637// C99 6.5.6
2638QualType Sema::CheckSubtractionOperands(Expr *&lex, Expr *&rex,
2639                                        SourceLocation Loc, bool isCompAssign) {
2640  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
2641    return CheckVectorOperands(Loc, lex, rex);
2642
2643  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
2644
2645  // Enforce type constraints: C99 6.5.6p3.
2646
2647  // Handle the common case first (both operands are arithmetic).
2648  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
2649    return compType;
2650
2651  // Either ptr - int   or   ptr - ptr.
2652  if (const PointerType *LHSPTy = lex->getType()->getAsPointerType()) {
2653    QualType lpointee = LHSPTy->getPointeeType();
2654
2655    // The LHS must be an object type, not incomplete, function, etc.
2656    if (!lpointee->isObjectType()) {
2657      // Handle the GNU void* extension.
2658      if (lpointee->isVoidType()) {
2659        Diag(Loc, diag::ext_gnu_void_ptr)
2660          << lex->getSourceRange() << rex->getSourceRange();
2661      } else {
2662        Diag(Loc, diag::err_typecheck_sub_ptr_object)
2663          << lex->getType() << lex->getSourceRange();
2664        return QualType();
2665      }
2666    }
2667
2668    // The result type of a pointer-int computation is the pointer type.
2669    if (rex->getType()->isIntegerType())
2670      return lex->getType();
2671
2672    // Handle pointer-pointer subtractions.
2673    if (const PointerType *RHSPTy = rex->getType()->getAsPointerType()) {
2674      QualType rpointee = RHSPTy->getPointeeType();
2675
2676      // RHS must be an object type, unless void (GNU).
2677      if (!rpointee->isObjectType()) {
2678        // Handle the GNU void* extension.
2679        if (rpointee->isVoidType()) {
2680          if (!lpointee->isVoidType())
2681            Diag(Loc, diag::ext_gnu_void_ptr)
2682              << lex->getSourceRange() << rex->getSourceRange();
2683        } else {
2684          Diag(Loc, diag::err_typecheck_sub_ptr_object)
2685            << rex->getType() << rex->getSourceRange();
2686          return QualType();
2687        }
2688      }
2689
2690      // Pointee types must be compatible.
2691      if (!Context.typesAreCompatible(
2692              Context.getCanonicalType(lpointee).getUnqualifiedType(),
2693              Context.getCanonicalType(rpointee).getUnqualifiedType())) {
2694        Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
2695          << lex->getType() << rex->getType()
2696          << lex->getSourceRange() << rex->getSourceRange();
2697        return QualType();
2698      }
2699
2700      return Context.getPointerDiffType();
2701    }
2702  }
2703
2704  return InvalidOperands(Loc, lex, rex);
2705}
2706
2707// C99 6.5.7
2708QualType Sema::CheckShiftOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
2709                                  bool isCompAssign) {
2710  // C99 6.5.7p2: Each of the operands shall have integer type.
2711  if (!lex->getType()->isIntegerType() || !rex->getType()->isIntegerType())
2712    return InvalidOperands(Loc, lex, rex);
2713
2714  // Shifts don't perform usual arithmetic conversions, they just do integer
2715  // promotions on each operand. C99 6.5.7p3
2716  if (!isCompAssign)
2717    UsualUnaryConversions(lex);
2718  UsualUnaryConversions(rex);
2719
2720  // "The type of the result is that of the promoted left operand."
2721  return lex->getType();
2722}
2723
2724static bool areComparableObjCInterfaces(QualType LHS, QualType RHS,
2725                                        ASTContext& Context) {
2726  const ObjCInterfaceType* LHSIface = LHS->getAsObjCInterfaceType();
2727  const ObjCInterfaceType* RHSIface = RHS->getAsObjCInterfaceType();
2728  // ID acts sort of like void* for ObjC interfaces
2729  if (LHSIface && Context.isObjCIdType(RHS))
2730    return true;
2731  if (RHSIface && Context.isObjCIdType(LHS))
2732    return true;
2733  if (!LHSIface || !RHSIface)
2734    return false;
2735  return Context.canAssignObjCInterfaces(LHSIface, RHSIface) ||
2736         Context.canAssignObjCInterfaces(RHSIface, LHSIface);
2737}
2738
2739// C99 6.5.8
2740QualType Sema::CheckCompareOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
2741                                    bool isRelational) {
2742  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
2743    return CheckVectorCompareOperands(lex, rex, Loc, isRelational);
2744
2745  // C99 6.5.8p3 / C99 6.5.9p4
2746  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
2747    UsualArithmeticConversions(lex, rex);
2748  else {
2749    UsualUnaryConversions(lex);
2750    UsualUnaryConversions(rex);
2751  }
2752  QualType lType = lex->getType();
2753  QualType rType = rex->getType();
2754
2755  // For non-floating point types, check for self-comparisons of the form
2756  // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
2757  // often indicate logic errors in the program.
2758  if (!lType->isFloatingType()) {
2759    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens()))
2760      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens()))
2761        if (DRL->getDecl() == DRR->getDecl())
2762          Diag(Loc, diag::warn_selfcomparison);
2763  }
2764
2765  // The result of comparisons is 'bool' in C++, 'int' in C.
2766  QualType ResultTy = getLangOptions().CPlusPlus? Context.BoolTy : Context.IntTy;
2767
2768  if (isRelational) {
2769    if (lType->isRealType() && rType->isRealType())
2770      return ResultTy;
2771  } else {
2772    // Check for comparisons of floating point operands using != and ==.
2773    if (lType->isFloatingType()) {
2774      assert (rType->isFloatingType());
2775      CheckFloatComparison(Loc,lex,rex);
2776    }
2777
2778    if (lType->isArithmeticType() && rType->isArithmeticType())
2779      return ResultTy;
2780  }
2781
2782  bool LHSIsNull = lex->isNullPointerConstant(Context);
2783  bool RHSIsNull = rex->isNullPointerConstant(Context);
2784
2785  // All of the following pointer related warnings are GCC extensions, except
2786  // when handling null pointer constants. One day, we can consider making them
2787  // errors (when -pedantic-errors is enabled).
2788  if (lType->isPointerType() && rType->isPointerType()) { // C99 6.5.8p2
2789    QualType LCanPointeeTy =
2790      Context.getCanonicalType(lType->getAsPointerType()->getPointeeType());
2791    QualType RCanPointeeTy =
2792      Context.getCanonicalType(rType->getAsPointerType()->getPointeeType());
2793
2794    if (!LHSIsNull && !RHSIsNull &&                       // C99 6.5.9p2
2795        !LCanPointeeTy->isVoidType() && !RCanPointeeTy->isVoidType() &&
2796        !Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
2797                                    RCanPointeeTy.getUnqualifiedType()) &&
2798        !areComparableObjCInterfaces(LCanPointeeTy, RCanPointeeTy, Context)) {
2799      Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
2800        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
2801    }
2802    ImpCastExprToType(rex, lType); // promote the pointer to pointer
2803    return ResultTy;
2804  }
2805  // Handle block pointer types.
2806  if (lType->isBlockPointerType() && rType->isBlockPointerType()) {
2807    QualType lpointee = lType->getAsBlockPointerType()->getPointeeType();
2808    QualType rpointee = rType->getAsBlockPointerType()->getPointeeType();
2809
2810    if (!LHSIsNull && !RHSIsNull &&
2811        !Context.typesAreBlockCompatible(lpointee, rpointee)) {
2812      Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
2813        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
2814    }
2815    ImpCastExprToType(rex, lType); // promote the pointer to pointer
2816    return ResultTy;
2817  }
2818  // Allow block pointers to be compared with null pointer constants.
2819  if ((lType->isBlockPointerType() && rType->isPointerType()) ||
2820      (lType->isPointerType() && rType->isBlockPointerType())) {
2821    if (!LHSIsNull && !RHSIsNull) {
2822      Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
2823        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
2824    }
2825    ImpCastExprToType(rex, lType); // promote the pointer to pointer
2826    return ResultTy;
2827  }
2828
2829  if ((lType->isObjCQualifiedIdType() || rType->isObjCQualifiedIdType())) {
2830    if (lType->isPointerType() || rType->isPointerType()) {
2831      const PointerType *LPT = lType->getAsPointerType();
2832      const PointerType *RPT = rType->getAsPointerType();
2833      bool LPtrToVoid = LPT ?
2834        Context.getCanonicalType(LPT->getPointeeType())->isVoidType() : false;
2835      bool RPtrToVoid = RPT ?
2836        Context.getCanonicalType(RPT->getPointeeType())->isVoidType() : false;
2837
2838      if (!LPtrToVoid && !RPtrToVoid &&
2839          !Context.typesAreCompatible(lType, rType)) {
2840        Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
2841          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
2842        ImpCastExprToType(rex, lType);
2843        return ResultTy;
2844      }
2845      ImpCastExprToType(rex, lType);
2846      return ResultTy;
2847    }
2848    if (ObjCQualifiedIdTypesAreCompatible(lType, rType, true)) {
2849      ImpCastExprToType(rex, lType);
2850      return ResultTy;
2851    } else {
2852      if ((lType->isObjCQualifiedIdType() && rType->isObjCQualifiedIdType())) {
2853        Diag(Loc, diag::warn_incompatible_qualified_id_operands)
2854          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
2855        ImpCastExprToType(rex, lType);
2856        return ResultTy;
2857      }
2858    }
2859  }
2860  if ((lType->isPointerType() || lType->isObjCQualifiedIdType()) &&
2861       rType->isIntegerType()) {
2862    if (!RHSIsNull)
2863      Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer)
2864        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
2865    ImpCastExprToType(rex, lType); // promote the integer to pointer
2866    return ResultTy;
2867  }
2868  if (lType->isIntegerType() &&
2869      (rType->isPointerType() || rType->isObjCQualifiedIdType())) {
2870    if (!LHSIsNull)
2871      Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer)
2872        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
2873    ImpCastExprToType(lex, rType); // promote the integer to pointer
2874    return ResultTy;
2875  }
2876  // Handle block pointers.
2877  if (lType->isBlockPointerType() && rType->isIntegerType()) {
2878    if (!RHSIsNull)
2879      Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer)
2880        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
2881    ImpCastExprToType(rex, lType); // promote the integer to pointer
2882    return ResultTy;
2883  }
2884  if (lType->isIntegerType() && rType->isBlockPointerType()) {
2885    if (!LHSIsNull)
2886      Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer)
2887        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
2888    ImpCastExprToType(lex, rType); // promote the integer to pointer
2889    return ResultTy;
2890  }
2891  return InvalidOperands(Loc, lex, rex);
2892}
2893
2894/// CheckVectorCompareOperands - vector comparisons are a clang extension that
2895/// operates on extended vector types.  Instead of producing an IntTy result,
2896/// like a scalar comparison, a vector comparison produces a vector of integer
2897/// types.
2898QualType Sema::CheckVectorCompareOperands(Expr *&lex, Expr *&rex,
2899                                          SourceLocation Loc,
2900                                          bool isRelational) {
2901  // Check to make sure we're operating on vectors of the same type and width,
2902  // Allowing one side to be a scalar of element type.
2903  QualType vType = CheckVectorOperands(Loc, lex, rex);
2904  if (vType.isNull())
2905    return vType;
2906
2907  QualType lType = lex->getType();
2908  QualType rType = rex->getType();
2909
2910  // For non-floating point types, check for self-comparisons of the form
2911  // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
2912  // often indicate logic errors in the program.
2913  if (!lType->isFloatingType()) {
2914    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens()))
2915      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens()))
2916        if (DRL->getDecl() == DRR->getDecl())
2917          Diag(Loc, diag::warn_selfcomparison);
2918  }
2919
2920  // Check for comparisons of floating point operands using != and ==.
2921  if (!isRelational && lType->isFloatingType()) {
2922    assert (rType->isFloatingType());
2923    CheckFloatComparison(Loc,lex,rex);
2924  }
2925
2926  // Return the type for the comparison, which is the same as vector type for
2927  // integer vectors, or an integer type of identical size and number of
2928  // elements for floating point vectors.
2929  if (lType->isIntegerType())
2930    return lType;
2931
2932  const VectorType *VTy = lType->getAsVectorType();
2933
2934  // FIXME: need to deal with non-32b int / non-64b long long
2935  unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
2936  if (TypeSize == 32) {
2937    return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
2938  }
2939  assert(TypeSize == 64 && "Unhandled vector element size in vector compare");
2940  return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
2941}
2942
2943inline QualType Sema::CheckBitwiseOperands(
2944  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
2945{
2946  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
2947    return CheckVectorOperands(Loc, lex, rex);
2948
2949  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
2950
2951  if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
2952    return compType;
2953  return InvalidOperands(Loc, lex, rex);
2954}
2955
2956inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
2957  Expr *&lex, Expr *&rex, SourceLocation Loc)
2958{
2959  UsualUnaryConversions(lex);
2960  UsualUnaryConversions(rex);
2961
2962  if (lex->getType()->isScalarType() && rex->getType()->isScalarType())
2963    return Context.IntTy;
2964  return InvalidOperands(Loc, lex, rex);
2965}
2966
2967/// IsReadonlyProperty - Verify that otherwise a valid l-value expression
2968/// is a read-only property; return true if so. A readonly property expression
2969/// depends on various declarations and thus must be treated specially.
2970///
2971static bool IsReadonlyProperty(Expr *E, Sema &S)
2972{
2973  if (E->getStmtClass() == Expr::ObjCPropertyRefExprClass) {
2974    const ObjCPropertyRefExpr* PropExpr = cast<ObjCPropertyRefExpr>(E);
2975    if (ObjCPropertyDecl *PDecl = PropExpr->getProperty()) {
2976      QualType BaseType = PropExpr->getBase()->getType();
2977      if (const PointerType *PTy = BaseType->getAsPointerType())
2978        if (const ObjCInterfaceType *IFTy =
2979            PTy->getPointeeType()->getAsObjCInterfaceType())
2980          if (ObjCInterfaceDecl *IFace = IFTy->getDecl())
2981            if (S.isPropertyReadonly(PDecl, IFace))
2982              return true;
2983    }
2984  }
2985  return false;
2986}
2987
2988/// CheckForModifiableLvalue - Verify that E is a modifiable lvalue.  If not,
2989/// emit an error and return true.  If so, return false.
2990static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
2991  Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context);
2992  if (IsLV == Expr::MLV_Valid && IsReadonlyProperty(E, S))
2993    IsLV = Expr::MLV_ReadonlyProperty;
2994  if (IsLV == Expr::MLV_Valid)
2995    return false;
2996
2997  unsigned Diag = 0;
2998  bool NeedType = false;
2999  switch (IsLV) { // C99 6.5.16p2
3000  default: assert(0 && "Unknown result from isModifiableLvalue!");
3001  case Expr::MLV_ConstQualified: Diag = diag::err_typecheck_assign_const; break;
3002  case Expr::MLV_ArrayType:
3003    Diag = diag::err_typecheck_array_not_modifiable_lvalue;
3004    NeedType = true;
3005    break;
3006  case Expr::MLV_NotObjectType:
3007    Diag = diag::err_typecheck_non_object_not_modifiable_lvalue;
3008    NeedType = true;
3009    break;
3010  case Expr::MLV_LValueCast:
3011    Diag = diag::err_typecheck_lvalue_casts_not_supported;
3012    break;
3013  case Expr::MLV_InvalidExpression:
3014    Diag = diag::err_typecheck_expression_not_modifiable_lvalue;
3015    break;
3016  case Expr::MLV_IncompleteType:
3017  case Expr::MLV_IncompleteVoidType:
3018    Diag = diag::err_typecheck_incomplete_type_not_modifiable_lvalue;
3019    NeedType = true;
3020    break;
3021  case Expr::MLV_DuplicateVectorComponents:
3022    Diag = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
3023    break;
3024  case Expr::MLV_NotBlockQualified:
3025    Diag = diag::err_block_decl_ref_not_modifiable_lvalue;
3026    break;
3027  case Expr::MLV_ReadonlyProperty:
3028    Diag = diag::error_readonly_property_assignment;
3029    break;
3030  case Expr::MLV_NoSetterProperty:
3031    Diag = diag::error_nosetter_property_assignment;
3032    break;
3033  }
3034
3035  if (NeedType)
3036    S.Diag(Loc, Diag) << E->getType() << E->getSourceRange();
3037  else
3038    S.Diag(Loc, Diag) << E->getSourceRange();
3039  return true;
3040}
3041
3042
3043
3044// C99 6.5.16.1
3045QualType Sema::CheckAssignmentOperands(Expr *LHS, Expr *&RHS,
3046                                       SourceLocation Loc,
3047                                       QualType CompoundType) {
3048  // Verify that LHS is a modifiable lvalue, and emit error if not.
3049  if (CheckForModifiableLvalue(LHS, Loc, *this))
3050    return QualType();
3051
3052  QualType LHSType = LHS->getType();
3053  QualType RHSType = CompoundType.isNull() ? RHS->getType() : CompoundType;
3054
3055  AssignConvertType ConvTy;
3056  if (CompoundType.isNull()) {
3057    // Simple assignment "x = y".
3058    ConvTy = CheckSingleAssignmentConstraints(LHSType, RHS);
3059    // Special case of NSObject attributes on c-style pointer types.
3060    if (ConvTy == IncompatiblePointer &&
3061        ((Context.isObjCNSObjectType(LHSType) &&
3062          Context.isObjCObjectPointerType(RHSType)) ||
3063         (Context.isObjCNSObjectType(RHSType) &&
3064          Context.isObjCObjectPointerType(LHSType))))
3065      ConvTy = Compatible;
3066
3067    // If the RHS is a unary plus or minus, check to see if they = and + are
3068    // right next to each other.  If so, the user may have typo'd "x =+ 4"
3069    // instead of "x += 4".
3070    Expr *RHSCheck = RHS;
3071    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
3072      RHSCheck = ICE->getSubExpr();
3073    if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
3074      if ((UO->getOpcode() == UnaryOperator::Plus ||
3075           UO->getOpcode() == UnaryOperator::Minus) &&
3076          Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
3077          // Only if the two operators are exactly adjacent.
3078          Loc.getFileLocWithOffset(1) == UO->getOperatorLoc())
3079        Diag(Loc, diag::warn_not_compound_assign)
3080          << (UO->getOpcode() == UnaryOperator::Plus ? "+" : "-")
3081          << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
3082    }
3083  } else {
3084    // Compound assignment "x += y"
3085    ConvTy = CheckCompoundAssignmentConstraints(LHSType, RHSType);
3086  }
3087
3088  if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
3089                               RHS, "assigning"))
3090    return QualType();
3091
3092  // C99 6.5.16p3: The type of an assignment expression is the type of the
3093  // left operand unless the left operand has qualified type, in which case
3094  // it is the unqualified version of the type of the left operand.
3095  // C99 6.5.16.1p2: In simple assignment, the value of the right operand
3096  // is converted to the type of the assignment expression (above).
3097  // C++ 5.17p1: the type of the assignment expression is that of its left
3098  // oprdu.
3099  return LHSType.getUnqualifiedType();
3100}
3101
3102// C99 6.5.17
3103QualType Sema::CheckCommaOperands(Expr *LHS, Expr *&RHS, SourceLocation Loc) {
3104  // FIXME: what is required for LHS?
3105
3106  // Comma performs lvalue conversion (C99 6.3.2.1), but not unary conversions.
3107  DefaultFunctionArrayConversion(RHS);
3108  return RHS->getType();
3109}
3110
3111/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
3112/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
3113QualType Sema::CheckIncrementDecrementOperand(Expr *Op, SourceLocation OpLoc,
3114                                              bool isInc) {
3115  QualType ResType = Op->getType();
3116  assert(!ResType.isNull() && "no type for increment/decrement expression");
3117
3118  if (getLangOptions().CPlusPlus && ResType->isBooleanType()) {
3119    // Decrement of bool is not allowed.
3120    if (!isInc) {
3121      Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
3122      return QualType();
3123    }
3124    // Increment of bool sets it to true, but is deprecated.
3125    Diag(OpLoc, diag::warn_increment_bool) << Op->getSourceRange();
3126  } else if (ResType->isRealType()) {
3127    // OK!
3128  } else if (const PointerType *PT = ResType->getAsPointerType()) {
3129    // C99 6.5.2.4p2, 6.5.6p2
3130    if (PT->getPointeeType()->isObjectType()) {
3131      // Pointer to object is ok!
3132    } else if (PT->getPointeeType()->isVoidType()) {
3133      // Pointer to void is extension.
3134      Diag(OpLoc, diag::ext_gnu_void_ptr) << Op->getSourceRange();
3135    } else {
3136      Diag(OpLoc, diag::err_typecheck_arithmetic_incomplete_type)
3137        << ResType << Op->getSourceRange();
3138      return QualType();
3139    }
3140  } else if (ResType->isComplexType()) {
3141    // C99 does not support ++/-- on complex types, we allow as an extension.
3142    Diag(OpLoc, diag::ext_integer_increment_complex)
3143      << ResType << Op->getSourceRange();
3144  } else {
3145    Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
3146      << ResType << Op->getSourceRange();
3147    return QualType();
3148  }
3149  // At this point, we know we have a real, complex or pointer type.
3150  // Now make sure the operand is a modifiable lvalue.
3151  if (CheckForModifiableLvalue(Op, OpLoc, *this))
3152    return QualType();
3153  return ResType;
3154}
3155
3156/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
3157/// This routine allows us to typecheck complex/recursive expressions
3158/// where the declaration is needed for type checking. We only need to
3159/// handle cases when the expression references a function designator
3160/// or is an lvalue. Here are some examples:
3161///  - &(x) => x
3162///  - &*****f => f for f a function designator.
3163///  - &s.xx => s
3164///  - &s.zz[1].yy -> s, if zz is an array
3165///  - *(x + 1) -> x, if x is an array
3166///  - &"123"[2] -> 0
3167///  - & __real__ x -> x
3168static NamedDecl *getPrimaryDecl(Expr *E) {
3169  switch (E->getStmtClass()) {
3170  case Stmt::DeclRefExprClass:
3171  case Stmt::QualifiedDeclRefExprClass:
3172    return cast<DeclRefExpr>(E)->getDecl();
3173  case Stmt::MemberExprClass:
3174    // Fields cannot be declared with a 'register' storage class.
3175    // &X->f is always ok, even if X is declared register.
3176    if (cast<MemberExpr>(E)->isArrow())
3177      return 0;
3178    return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
3179  case Stmt::ArraySubscriptExprClass: {
3180    // &X[4] and &4[X] refers to X if X is not a pointer.
3181
3182    NamedDecl *D = getPrimaryDecl(cast<ArraySubscriptExpr>(E)->getBase());
3183    ValueDecl *VD = dyn_cast_or_null<ValueDecl>(D);
3184    if (!VD || VD->getType()->isPointerType())
3185      return 0;
3186    else
3187      return VD;
3188  }
3189  case Stmt::UnaryOperatorClass: {
3190    UnaryOperator *UO = cast<UnaryOperator>(E);
3191
3192    switch(UO->getOpcode()) {
3193    case UnaryOperator::Deref: {
3194      // *(X + 1) refers to X if X is not a pointer.
3195      if (NamedDecl *D = getPrimaryDecl(UO->getSubExpr())) {
3196        ValueDecl *VD = dyn_cast<ValueDecl>(D);
3197        if (!VD || VD->getType()->isPointerType())
3198          return 0;
3199        return VD;
3200      }
3201      return 0;
3202    }
3203    case UnaryOperator::Real:
3204    case UnaryOperator::Imag:
3205    case UnaryOperator::Extension:
3206      return getPrimaryDecl(UO->getSubExpr());
3207    default:
3208      return 0;
3209    }
3210  }
3211  case Stmt::BinaryOperatorClass: {
3212    BinaryOperator *BO = cast<BinaryOperator>(E);
3213
3214    // Handle cases involving pointer arithmetic. The result of an
3215    // Assign or AddAssign is not an lvalue so they can be ignored.
3216
3217    // (x + n) or (n + x) => x
3218    if (BO->getOpcode() == BinaryOperator::Add) {
3219      if (BO->getLHS()->getType()->isPointerType()) {
3220        return getPrimaryDecl(BO->getLHS());
3221      } else if (BO->getRHS()->getType()->isPointerType()) {
3222        return getPrimaryDecl(BO->getRHS());
3223      }
3224    }
3225
3226    return 0;
3227  }
3228  case Stmt::ParenExprClass:
3229    return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
3230  case Stmt::ImplicitCastExprClass:
3231    // &X[4] when X is an array, has an implicit cast from array to pointer.
3232    return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
3233  default:
3234    return 0;
3235  }
3236}
3237
3238/// CheckAddressOfOperand - The operand of & must be either a function
3239/// designator or an lvalue designating an object. If it is an lvalue, the
3240/// object cannot be declared with storage class register or be a bit field.
3241/// Note: The usual conversions are *not* applied to the operand of the &
3242/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
3243/// In C++, the operand might be an overloaded function name, in which case
3244/// we allow the '&' but retain the overloaded-function type.
3245QualType Sema::CheckAddressOfOperand(Expr *op, SourceLocation OpLoc) {
3246  if (op->isTypeDependent())
3247    return Context.DependentTy;
3248
3249  if (getLangOptions().C99) {
3250    // Implement C99-only parts of addressof rules.
3251    if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
3252      if (uOp->getOpcode() == UnaryOperator::Deref)
3253        // Per C99 6.5.3.2, the address of a deref always returns a valid result
3254        // (assuming the deref expression is valid).
3255        return uOp->getSubExpr()->getType();
3256    }
3257    // Technically, there should be a check for array subscript
3258    // expressions here, but the result of one is always an lvalue anyway.
3259  }
3260  NamedDecl *dcl = getPrimaryDecl(op);
3261  Expr::isLvalueResult lval = op->isLvalue(Context);
3262
3263  if (lval != Expr::LV_Valid) { // C99 6.5.3.2p1
3264    if (!dcl || !isa<FunctionDecl>(dcl)) {// allow function designators
3265      // FIXME: emit more specific diag...
3266      Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
3267        << op->getSourceRange();
3268      return QualType();
3269    }
3270  } else if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(op)) { // C99 6.5.3.2p1
3271    if (FieldDecl *Field = dyn_cast<FieldDecl>(MemExpr->getMemberDecl())) {
3272      if (Field->isBitField()) {
3273        Diag(OpLoc, diag::err_typecheck_address_of)
3274          << "bit-field" << op->getSourceRange();
3275        return QualType();
3276      }
3277    }
3278  // Check for Apple extension for accessing vector components.
3279  } else if (isa<ArraySubscriptExpr>(op) &&
3280           cast<ArraySubscriptExpr>(op)->getBase()->getType()->isVectorType()) {
3281    Diag(OpLoc, diag::err_typecheck_address_of)
3282      << "vector" << op->getSourceRange();
3283    return QualType();
3284  } else if (dcl) { // C99 6.5.3.2p1
3285    // We have an lvalue with a decl. Make sure the decl is not declared
3286    // with the register storage-class specifier.
3287    if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
3288      if (vd->getStorageClass() == VarDecl::Register) {
3289        Diag(OpLoc, diag::err_typecheck_address_of)
3290          << "register variable" << op->getSourceRange();
3291        return QualType();
3292      }
3293    } else if (isa<OverloadedFunctionDecl>(dcl)) {
3294      return Context.OverloadTy;
3295    } else if (isa<FieldDecl>(dcl)) {
3296      // Okay: we can take the address of a field.
3297    } else if (isa<FunctionDecl>(dcl)) {
3298      // Okay: we can take the address of a function.
3299    }
3300    else
3301      assert(0 && "Unknown/unexpected decl type");
3302  }
3303
3304  // If the operand has type "type", the result has type "pointer to type".
3305  return Context.getPointerType(op->getType());
3306}
3307
3308QualType Sema::CheckIndirectionOperand(Expr *Op, SourceLocation OpLoc) {
3309  UsualUnaryConversions(Op);
3310  QualType Ty = Op->getType();
3311
3312  // Note that per both C89 and C99, this is always legal, even if ptype is an
3313  // incomplete type or void.  It would be possible to warn about dereferencing
3314  // a void pointer, but it's completely well-defined, and such a warning is
3315  // unlikely to catch any mistakes.
3316  if (const PointerType *PT = Ty->getAsPointerType())
3317    return PT->getPointeeType();
3318
3319  Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
3320    << Ty << Op->getSourceRange();
3321  return QualType();
3322}
3323
3324static inline BinaryOperator::Opcode ConvertTokenKindToBinaryOpcode(
3325  tok::TokenKind Kind) {
3326  BinaryOperator::Opcode Opc;
3327  switch (Kind) {
3328  default: assert(0 && "Unknown binop!");
3329  case tok::star:                 Opc = BinaryOperator::Mul; break;
3330  case tok::slash:                Opc = BinaryOperator::Div; break;
3331  case tok::percent:              Opc = BinaryOperator::Rem; break;
3332  case tok::plus:                 Opc = BinaryOperator::Add; break;
3333  case tok::minus:                Opc = BinaryOperator::Sub; break;
3334  case tok::lessless:             Opc = BinaryOperator::Shl; break;
3335  case tok::greatergreater:       Opc = BinaryOperator::Shr; break;
3336  case tok::lessequal:            Opc = BinaryOperator::LE; break;
3337  case tok::less:                 Opc = BinaryOperator::LT; break;
3338  case tok::greaterequal:         Opc = BinaryOperator::GE; break;
3339  case tok::greater:              Opc = BinaryOperator::GT; break;
3340  case tok::exclaimequal:         Opc = BinaryOperator::NE; break;
3341  case tok::equalequal:           Opc = BinaryOperator::EQ; break;
3342  case tok::amp:                  Opc = BinaryOperator::And; break;
3343  case tok::caret:                Opc = BinaryOperator::Xor; break;
3344  case tok::pipe:                 Opc = BinaryOperator::Or; break;
3345  case tok::ampamp:               Opc = BinaryOperator::LAnd; break;
3346  case tok::pipepipe:             Opc = BinaryOperator::LOr; break;
3347  case tok::equal:                Opc = BinaryOperator::Assign; break;
3348  case tok::starequal:            Opc = BinaryOperator::MulAssign; break;
3349  case tok::slashequal:           Opc = BinaryOperator::DivAssign; break;
3350  case tok::percentequal:         Opc = BinaryOperator::RemAssign; break;
3351  case tok::plusequal:            Opc = BinaryOperator::AddAssign; break;
3352  case tok::minusequal:           Opc = BinaryOperator::SubAssign; break;
3353  case tok::lesslessequal:        Opc = BinaryOperator::ShlAssign; break;
3354  case tok::greatergreaterequal:  Opc = BinaryOperator::ShrAssign; break;
3355  case tok::ampequal:             Opc = BinaryOperator::AndAssign; break;
3356  case tok::caretequal:           Opc = BinaryOperator::XorAssign; break;
3357  case tok::pipeequal:            Opc = BinaryOperator::OrAssign; break;
3358  case tok::comma:                Opc = BinaryOperator::Comma; break;
3359  }
3360  return Opc;
3361}
3362
3363static inline UnaryOperator::Opcode ConvertTokenKindToUnaryOpcode(
3364  tok::TokenKind Kind) {
3365  UnaryOperator::Opcode Opc;
3366  switch (Kind) {
3367  default: assert(0 && "Unknown unary op!");
3368  case tok::plusplus:     Opc = UnaryOperator::PreInc; break;
3369  case tok::minusminus:   Opc = UnaryOperator::PreDec; break;
3370  case tok::amp:          Opc = UnaryOperator::AddrOf; break;
3371  case tok::star:         Opc = UnaryOperator::Deref; break;
3372  case tok::plus:         Opc = UnaryOperator::Plus; break;
3373  case tok::minus:        Opc = UnaryOperator::Minus; break;
3374  case tok::tilde:        Opc = UnaryOperator::Not; break;
3375  case tok::exclaim:      Opc = UnaryOperator::LNot; break;
3376  case tok::kw___real:    Opc = UnaryOperator::Real; break;
3377  case tok::kw___imag:    Opc = UnaryOperator::Imag; break;
3378  case tok::kw___extension__: Opc = UnaryOperator::Extension; break;
3379  }
3380  return Opc;
3381}
3382
3383/// CreateBuiltinBinOp - Creates a new built-in binary operation with
3384/// operator @p Opc at location @c TokLoc. This routine only supports
3385/// built-in operations; ActOnBinOp handles overloaded operators.
3386Action::ExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
3387                                            unsigned Op,
3388                                            Expr *lhs, Expr *rhs) {
3389  QualType ResultTy;  // Result type of the binary operator.
3390  QualType CompTy;    // Computation type for compound assignments (e.g. '+=')
3391  BinaryOperator::Opcode Opc = (BinaryOperator::Opcode)Op;
3392
3393  switch (Opc) {
3394  default:
3395    assert(0 && "Unknown binary expr!");
3396  case BinaryOperator::Assign:
3397    ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, QualType());
3398    break;
3399  case BinaryOperator::Mul:
3400  case BinaryOperator::Div:
3401    ResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc);
3402    break;
3403  case BinaryOperator::Rem:
3404    ResultTy = CheckRemainderOperands(lhs, rhs, OpLoc);
3405    break;
3406  case BinaryOperator::Add:
3407    ResultTy = CheckAdditionOperands(lhs, rhs, OpLoc);
3408    break;
3409  case BinaryOperator::Sub:
3410    ResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc);
3411    break;
3412  case BinaryOperator::Shl:
3413  case BinaryOperator::Shr:
3414    ResultTy = CheckShiftOperands(lhs, rhs, OpLoc);
3415    break;
3416  case BinaryOperator::LE:
3417  case BinaryOperator::LT:
3418  case BinaryOperator::GE:
3419  case BinaryOperator::GT:
3420    ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, true);
3421    break;
3422  case BinaryOperator::EQ:
3423  case BinaryOperator::NE:
3424    ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, false);
3425    break;
3426  case BinaryOperator::And:
3427  case BinaryOperator::Xor:
3428  case BinaryOperator::Or:
3429    ResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc);
3430    break;
3431  case BinaryOperator::LAnd:
3432  case BinaryOperator::LOr:
3433    ResultTy = CheckLogicalOperands(lhs, rhs, OpLoc);
3434    break;
3435  case BinaryOperator::MulAssign:
3436  case BinaryOperator::DivAssign:
3437    CompTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, true);
3438    if (!CompTy.isNull())
3439      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy);
3440    break;
3441  case BinaryOperator::RemAssign:
3442    CompTy = CheckRemainderOperands(lhs, rhs, OpLoc, true);
3443    if (!CompTy.isNull())
3444      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy);
3445    break;
3446  case BinaryOperator::AddAssign:
3447    CompTy = CheckAdditionOperands(lhs, rhs, OpLoc, true);
3448    if (!CompTy.isNull())
3449      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy);
3450    break;
3451  case BinaryOperator::SubAssign:
3452    CompTy = CheckSubtractionOperands(lhs, rhs, OpLoc, true);
3453    if (!CompTy.isNull())
3454      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy);
3455    break;
3456  case BinaryOperator::ShlAssign:
3457  case BinaryOperator::ShrAssign:
3458    CompTy = CheckShiftOperands(lhs, rhs, OpLoc, true);
3459    if (!CompTy.isNull())
3460      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy);
3461    break;
3462  case BinaryOperator::AndAssign:
3463  case BinaryOperator::XorAssign:
3464  case BinaryOperator::OrAssign:
3465    CompTy = CheckBitwiseOperands(lhs, rhs, OpLoc, true);
3466    if (!CompTy.isNull())
3467      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy);
3468    break;
3469  case BinaryOperator::Comma:
3470    ResultTy = CheckCommaOperands(lhs, rhs, OpLoc);
3471    break;
3472  }
3473  if (ResultTy.isNull())
3474    return true;
3475  if (CompTy.isNull())
3476    return new BinaryOperator(lhs, rhs, Opc, ResultTy, OpLoc);
3477  else
3478    return new CompoundAssignOperator(lhs, rhs, Opc, ResultTy, CompTy, OpLoc);
3479}
3480
3481// Binary Operators.  'Tok' is the token for the operator.
3482Action::ExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
3483                                    tok::TokenKind Kind,
3484                                    ExprTy *LHS, ExprTy *RHS) {
3485  BinaryOperator::Opcode Opc = ConvertTokenKindToBinaryOpcode(Kind);
3486  Expr *lhs = (Expr *)LHS, *rhs = (Expr*)RHS;
3487
3488  assert((lhs != 0) && "ActOnBinOp(): missing left expression");
3489  assert((rhs != 0) && "ActOnBinOp(): missing right expression");
3490
3491  // If either expression is type-dependent, just build the AST.
3492  // FIXME: We'll need to perform some caching of the result of name
3493  // lookup for operator+.
3494  if (lhs->isTypeDependent() || rhs->isTypeDependent()) {
3495    if (Opc > BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign)
3496      return new CompoundAssignOperator(lhs, rhs, Opc, Context.DependentTy,
3497                                        Context.DependentTy, TokLoc);
3498    else
3499      return new BinaryOperator(lhs, rhs, Opc, Context.DependentTy, TokLoc);
3500  }
3501
3502  if (getLangOptions().CPlusPlus &&
3503      (lhs->getType()->isRecordType() || lhs->getType()->isEnumeralType() ||
3504       rhs->getType()->isRecordType() || rhs->getType()->isEnumeralType())) {
3505    // If this is one of the assignment operators, we only perform
3506    // overload resolution if the left-hand side is a class or
3507    // enumeration type (C++ [expr.ass]p3).
3508    if (Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign &&
3509        !(lhs->getType()->isRecordType() || lhs->getType()->isEnumeralType())) {
3510      return CreateBuiltinBinOp(TokLoc, Opc, lhs, rhs);
3511    }
3512
3513    // Determine which overloaded operator we're dealing with.
3514    static const OverloadedOperatorKind OverOps[] = {
3515      OO_Star, OO_Slash, OO_Percent,
3516      OO_Plus, OO_Minus,
3517      OO_LessLess, OO_GreaterGreater,
3518      OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
3519      OO_EqualEqual, OO_ExclaimEqual,
3520      OO_Amp,
3521      OO_Caret,
3522      OO_Pipe,
3523      OO_AmpAmp,
3524      OO_PipePipe,
3525      OO_Equal, OO_StarEqual,
3526      OO_SlashEqual, OO_PercentEqual,
3527      OO_PlusEqual, OO_MinusEqual,
3528      OO_LessLessEqual, OO_GreaterGreaterEqual,
3529      OO_AmpEqual, OO_CaretEqual,
3530      OO_PipeEqual,
3531      OO_Comma
3532    };
3533    OverloadedOperatorKind OverOp = OverOps[Opc];
3534
3535    // Add the appropriate overloaded operators (C++ [over.match.oper])
3536    // to the candidate set.
3537    OverloadCandidateSet CandidateSet;
3538    Expr *Args[2] = { lhs, rhs };
3539    AddOperatorCandidates(OverOp, S, Args, 2, CandidateSet);
3540
3541    // Perform overload resolution.
3542    OverloadCandidateSet::iterator Best;
3543    switch (BestViableFunction(CandidateSet, Best)) {
3544    case OR_Success: {
3545      // We found a built-in operator or an overloaded operator.
3546      FunctionDecl *FnDecl = Best->Function;
3547
3548      if (FnDecl) {
3549        // We matched an overloaded operator. Build a call to that
3550        // operator.
3551
3552        // Convert the arguments.
3553        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
3554          if (PerformObjectArgumentInitialization(lhs, Method) ||
3555              PerformCopyInitialization(rhs, FnDecl->getParamDecl(0)->getType(),
3556                                        "passing"))
3557            return true;
3558        } else {
3559          // Convert the arguments.
3560          if (PerformCopyInitialization(lhs, FnDecl->getParamDecl(0)->getType(),
3561                                        "passing") ||
3562              PerformCopyInitialization(rhs, FnDecl->getParamDecl(1)->getType(),
3563                                        "passing"))
3564            return true;
3565        }
3566
3567        // Determine the result type
3568        QualType ResultTy
3569          = FnDecl->getType()->getAsFunctionType()->getResultType();
3570        ResultTy = ResultTy.getNonReferenceType();
3571
3572        // Build the actual expression node.
3573        Expr *FnExpr = new DeclRefExpr(FnDecl, FnDecl->getType(),
3574                                       SourceLocation());
3575        UsualUnaryConversions(FnExpr);
3576
3577        return new CXXOperatorCallExpr(FnExpr, Args, 2, ResultTy, TokLoc);
3578      } else {
3579        // We matched a built-in operator. Convert the arguments, then
3580        // break out so that we will build the appropriate built-in
3581        // operator node.
3582        if (PerformImplicitConversion(lhs, Best->BuiltinTypes.ParamTypes[0],
3583                                      Best->Conversions[0], "passing") ||
3584            PerformImplicitConversion(rhs, Best->BuiltinTypes.ParamTypes[1],
3585                                      Best->Conversions[1], "passing"))
3586          return true;
3587
3588        break;
3589      }
3590    }
3591
3592    case OR_No_Viable_Function:
3593      // No viable function; fall through to handling this as a
3594      // built-in operator, which will produce an error message for us.
3595      break;
3596
3597    case OR_Ambiguous:
3598      Diag(TokLoc,  diag::err_ovl_ambiguous_oper)
3599          << BinaryOperator::getOpcodeStr(Opc)
3600          << lhs->getSourceRange() << rhs->getSourceRange();
3601      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3602      return true;
3603    }
3604
3605    // Either we found no viable overloaded operator or we matched a
3606    // built-in operator. In either case, fall through to trying to
3607    // build a built-in operation.
3608  }
3609
3610  // Build a built-in binary operation.
3611  return CreateBuiltinBinOp(TokLoc, Opc, lhs, rhs);
3612}
3613
3614// Unary Operators.  'Tok' is the token for the operator.
3615Action::ExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
3616                                      tok::TokenKind Op, ExprTy *input) {
3617  Expr *Input = (Expr*)input;
3618  UnaryOperator::Opcode Opc = ConvertTokenKindToUnaryOpcode(Op);
3619
3620  if (getLangOptions().CPlusPlus &&
3621      (Input->getType()->isRecordType()
3622       || Input->getType()->isEnumeralType())) {
3623    // Determine which overloaded operator we're dealing with.
3624    static const OverloadedOperatorKind OverOps[] = {
3625      OO_None, OO_None,
3626      OO_PlusPlus, OO_MinusMinus,
3627      OO_Amp, OO_Star,
3628      OO_Plus, OO_Minus,
3629      OO_Tilde, OO_Exclaim,
3630      OO_None, OO_None,
3631      OO_None,
3632      OO_None
3633    };
3634    OverloadedOperatorKind OverOp = OverOps[Opc];
3635
3636    // Add the appropriate overloaded operators (C++ [over.match.oper])
3637    // to the candidate set.
3638    OverloadCandidateSet CandidateSet;
3639    if (OverOp != OO_None)
3640      AddOperatorCandidates(OverOp, S, &Input, 1, CandidateSet);
3641
3642    // Perform overload resolution.
3643    OverloadCandidateSet::iterator Best;
3644    switch (BestViableFunction(CandidateSet, Best)) {
3645    case OR_Success: {
3646      // We found a built-in operator or an overloaded operator.
3647      FunctionDecl *FnDecl = Best->Function;
3648
3649      if (FnDecl) {
3650        // We matched an overloaded operator. Build a call to that
3651        // operator.
3652
3653        // Convert the arguments.
3654        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
3655          if (PerformObjectArgumentInitialization(Input, Method))
3656            return true;
3657        } else {
3658          // Convert the arguments.
3659          if (PerformCopyInitialization(Input,
3660                                        FnDecl->getParamDecl(0)->getType(),
3661                                        "passing"))
3662            return true;
3663        }
3664
3665        // Determine the result type
3666        QualType ResultTy
3667          = FnDecl->getType()->getAsFunctionType()->getResultType();
3668        ResultTy = ResultTy.getNonReferenceType();
3669
3670        // Build the actual expression node.
3671        Expr *FnExpr = new DeclRefExpr(FnDecl, FnDecl->getType(),
3672                                       SourceLocation());
3673        UsualUnaryConversions(FnExpr);
3674
3675        return new CXXOperatorCallExpr(FnExpr, &Input, 1, ResultTy, OpLoc);
3676      } else {
3677        // We matched a built-in operator. Convert the arguments, then
3678        // break out so that we will build the appropriate built-in
3679        // operator node.
3680        if (PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0],
3681                                      Best->Conversions[0], "passing"))
3682          return true;
3683
3684        break;
3685      }
3686    }
3687
3688    case OR_No_Viable_Function:
3689      // No viable function; fall through to handling this as a
3690      // built-in operator, which will produce an error message for us.
3691      break;
3692
3693    case OR_Ambiguous:
3694      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
3695          << UnaryOperator::getOpcodeStr(Opc)
3696          << Input->getSourceRange();
3697      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3698      return true;
3699    }
3700
3701    // Either we found no viable overloaded operator or we matched a
3702    // built-in operator. In either case, fall through to trying to
3703    // build a built-in operation.
3704  }
3705
3706  QualType resultType;
3707  switch (Opc) {
3708  default:
3709    assert(0 && "Unimplemented unary expr!");
3710  case UnaryOperator::PreInc:
3711  case UnaryOperator::PreDec:
3712    resultType = CheckIncrementDecrementOperand(Input, OpLoc,
3713                                                Opc == UnaryOperator::PreInc);
3714    break;
3715  case UnaryOperator::AddrOf:
3716    resultType = CheckAddressOfOperand(Input, OpLoc);
3717    break;
3718  case UnaryOperator::Deref:
3719    DefaultFunctionArrayConversion(Input);
3720    resultType = CheckIndirectionOperand(Input, OpLoc);
3721    break;
3722  case UnaryOperator::Plus:
3723  case UnaryOperator::Minus:
3724    UsualUnaryConversions(Input);
3725    resultType = Input->getType();
3726    if (resultType->isArithmeticType()) // C99 6.5.3.3p1
3727      break;
3728    else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6-7
3729             resultType->isEnumeralType())
3730      break;
3731    else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6
3732             Opc == UnaryOperator::Plus &&
3733             resultType->isPointerType())
3734      break;
3735
3736    return Diag(OpLoc, diag::err_typecheck_unary_expr)
3737      << resultType << Input->getSourceRange();
3738  case UnaryOperator::Not: // bitwise complement
3739    UsualUnaryConversions(Input);
3740    resultType = Input->getType();
3741    // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
3742    if (resultType->isComplexType() || resultType->isComplexIntegerType())
3743      // C99 does not support '~' for complex conjugation.
3744      Diag(OpLoc, diag::ext_integer_complement_complex)
3745        << resultType << Input->getSourceRange();
3746    else if (!resultType->isIntegerType())
3747      return Diag(OpLoc, diag::err_typecheck_unary_expr)
3748        << resultType << Input->getSourceRange();
3749    break;
3750  case UnaryOperator::LNot: // logical negation
3751    // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
3752    DefaultFunctionArrayConversion(Input);
3753    resultType = Input->getType();
3754    if (!resultType->isScalarType()) // C99 6.5.3.3p1
3755      return Diag(OpLoc, diag::err_typecheck_unary_expr)
3756        << resultType << Input->getSourceRange();
3757    // LNot always has type int. C99 6.5.3.3p5.
3758    resultType = Context.IntTy;
3759    break;
3760  case UnaryOperator::Real:
3761  case UnaryOperator::Imag:
3762    resultType = CheckRealImagOperand(Input, OpLoc);
3763    break;
3764  case UnaryOperator::Extension:
3765    resultType = Input->getType();
3766    break;
3767  }
3768  if (resultType.isNull())
3769    return true;
3770  return new UnaryOperator(Input, Opc, resultType, OpLoc);
3771}
3772
3773/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
3774Sema::ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc,
3775                                      SourceLocation LabLoc,
3776                                      IdentifierInfo *LabelII) {
3777  // Look up the record for this label identifier.
3778  LabelStmt *&LabelDecl = LabelMap[LabelII];
3779
3780  // If we haven't seen this label yet, create a forward reference. It
3781  // will be validated and/or cleaned up in ActOnFinishFunctionBody.
3782  if (LabelDecl == 0)
3783    LabelDecl = new LabelStmt(LabLoc, LabelII, 0);
3784
3785  // Create the AST node.  The address of a label always has type 'void*'.
3786  return new AddrLabelExpr(OpLoc, LabLoc, LabelDecl,
3787                           Context.getPointerType(Context.VoidTy));
3788}
3789
3790Sema::ExprResult Sema::ActOnStmtExpr(SourceLocation LPLoc, StmtTy *substmt,
3791                                     SourceLocation RPLoc) { // "({..})"
3792  Stmt *SubStmt = static_cast<Stmt*>(substmt);
3793  assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
3794  CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
3795
3796  // FIXME: there are a variety of strange constraints to enforce here, for
3797  // example, it is not possible to goto into a stmt expression apparently.
3798  // More semantic analysis is needed.
3799
3800  // FIXME: the last statement in the compount stmt has its value used.  We
3801  // should not warn about it being unused.
3802
3803  // If there are sub stmts in the compound stmt, take the type of the last one
3804  // as the type of the stmtexpr.
3805  QualType Ty = Context.VoidTy;
3806
3807  if (!Compound->body_empty()) {
3808    Stmt *LastStmt = Compound->body_back();
3809    // If LastStmt is a label, skip down through into the body.
3810    while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt))
3811      LastStmt = Label->getSubStmt();
3812
3813    if (Expr *LastExpr = dyn_cast<Expr>(LastStmt))
3814      Ty = LastExpr->getType();
3815  }
3816
3817  return new StmtExpr(Compound, Ty, LPLoc, RPLoc);
3818}
3819
3820Sema::ExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
3821                                            SourceLocation BuiltinLoc,
3822                                            SourceLocation TypeLoc,
3823                                            TypeTy *argty,
3824                                            OffsetOfComponent *CompPtr,
3825                                            unsigned NumComponents,
3826                                            SourceLocation RPLoc) {
3827  QualType ArgTy = QualType::getFromOpaquePtr(argty);
3828  assert(!ArgTy.isNull() && "Missing type argument!");
3829
3830  // We must have at least one component that refers to the type, and the first
3831  // one is known to be a field designator.  Verify that the ArgTy represents
3832  // a struct/union/class.
3833  if (!ArgTy->isRecordType())
3834    return Diag(TypeLoc, diag::err_offsetof_record_type) << ArgTy;
3835
3836  // Otherwise, create a compound literal expression as the base, and
3837  // iteratively process the offsetof designators.
3838  Expr *Res = new CompoundLiteralExpr(SourceLocation(), ArgTy, 0, false);
3839
3840  // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
3841  // GCC extension, diagnose them.
3842  if (NumComponents != 1)
3843    Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator)
3844      << SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd);
3845
3846  for (unsigned i = 0; i != NumComponents; ++i) {
3847    const OffsetOfComponent &OC = CompPtr[i];
3848    if (OC.isBrackets) {
3849      // Offset of an array sub-field.  TODO: Should we allow vector elements?
3850      const ArrayType *AT = Context.getAsArrayType(Res->getType());
3851      if (!AT) {
3852        delete Res;
3853        return Diag(OC.LocEnd, diag::err_offsetof_array_type) << Res->getType();
3854      }
3855
3856      // FIXME: C++: Verify that operator[] isn't overloaded.
3857
3858      // C99 6.5.2.1p1
3859      Expr *Idx = static_cast<Expr*>(OC.U.E);
3860      if (!Idx->getType()->isIntegerType())
3861        return Diag(Idx->getLocStart(), diag::err_typecheck_subscript)
3862          << Idx->getSourceRange();
3863
3864      Res = new ArraySubscriptExpr(Res, Idx, AT->getElementType(), OC.LocEnd);
3865      continue;
3866    }
3867
3868    const RecordType *RC = Res->getType()->getAsRecordType();
3869    if (!RC) {
3870      delete Res;
3871      return Diag(OC.LocEnd, diag::err_offsetof_record_type) << Res->getType();
3872    }
3873
3874    // Get the decl corresponding to this.
3875    RecordDecl *RD = RC->getDecl();
3876    FieldDecl *MemberDecl
3877      = dyn_cast_or_null<FieldDecl>(LookupDecl(OC.U.IdentInfo,
3878                                               Decl::IDNS_Ordinary,
3879                                               S, RD, false, false).getAsDecl());
3880    if (!MemberDecl)
3881      return Diag(BuiltinLoc, diag::err_typecheck_no_member)
3882       << OC.U.IdentInfo << SourceRange(OC.LocStart, OC.LocEnd);
3883
3884    // FIXME: C++: Verify that MemberDecl isn't a static field.
3885    // FIXME: Verify that MemberDecl isn't a bitfield.
3886    // MemberDecl->getType() doesn't get the right qualifiers, but it doesn't
3887    // matter here.
3888    Res = new MemberExpr(Res, false, MemberDecl, OC.LocEnd,
3889                         MemberDecl->getType().getNonReferenceType());
3890  }
3891
3892  return new UnaryOperator(Res, UnaryOperator::OffsetOf, Context.getSizeType(),
3893                           BuiltinLoc);
3894}
3895
3896
3897Sema::ExprResult Sema::ActOnTypesCompatibleExpr(SourceLocation BuiltinLoc,
3898                                                TypeTy *arg1, TypeTy *arg2,
3899                                                SourceLocation RPLoc) {
3900  QualType argT1 = QualType::getFromOpaquePtr(arg1);
3901  QualType argT2 = QualType::getFromOpaquePtr(arg2);
3902
3903  assert((!argT1.isNull() && !argT2.isNull()) && "Missing type argument(s)");
3904
3905  return new TypesCompatibleExpr(Context.IntTy, BuiltinLoc, argT1, argT2,RPLoc);
3906}
3907
3908Sema::ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc, ExprTy *cond,
3909                                       ExprTy *expr1, ExprTy *expr2,
3910                                       SourceLocation RPLoc) {
3911  Expr *CondExpr = static_cast<Expr*>(cond);
3912  Expr *LHSExpr = static_cast<Expr*>(expr1);
3913  Expr *RHSExpr = static_cast<Expr*>(expr2);
3914
3915  assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
3916
3917  // The conditional expression is required to be a constant expression.
3918  llvm::APSInt condEval(32);
3919  SourceLocation ExpLoc;
3920  if (!CondExpr->isIntegerConstantExpr(condEval, Context, &ExpLoc))
3921    return Diag(ExpLoc, diag::err_typecheck_choose_expr_requires_constant)
3922      << CondExpr->getSourceRange();
3923
3924  // If the condition is > zero, then the AST type is the same as the LSHExpr.
3925  QualType resType = condEval.getZExtValue() ? LHSExpr->getType() :
3926                                               RHSExpr->getType();
3927  return new ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr, resType, RPLoc);
3928}
3929
3930//===----------------------------------------------------------------------===//
3931// Clang Extensions.
3932//===----------------------------------------------------------------------===//
3933
3934/// ActOnBlockStart - This callback is invoked when a block literal is started.
3935void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *BlockScope) {
3936  // Analyze block parameters.
3937  BlockSemaInfo *BSI = new BlockSemaInfo();
3938
3939  // Add BSI to CurBlock.
3940  BSI->PrevBlockInfo = CurBlock;
3941  CurBlock = BSI;
3942
3943  BSI->ReturnType = 0;
3944  BSI->TheScope = BlockScope;
3945
3946  BSI->TheDecl = BlockDecl::Create(Context, CurContext, CaretLoc);
3947  PushDeclContext(BlockScope, BSI->TheDecl);
3948}
3949
3950void Sema::ActOnBlockArguments(Declarator &ParamInfo) {
3951  // Analyze arguments to block.
3952  assert(ParamInfo.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3953         "Not a function declarator!");
3954  DeclaratorChunk::FunctionTypeInfo &FTI = ParamInfo.getTypeObject(0).Fun;
3955
3956  CurBlock->hasPrototype = FTI.hasPrototype;
3957  CurBlock->isVariadic = true;
3958
3959  // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs function that takes
3960  // no arguments, not a function that takes a single void argument.
3961  if (FTI.hasPrototype &&
3962      FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
3963      (!((ParmVarDecl *)FTI.ArgInfo[0].Param)->getType().getCVRQualifiers() &&
3964        ((ParmVarDecl *)FTI.ArgInfo[0].Param)->getType()->isVoidType())) {
3965    // empty arg list, don't push any params.
3966    CurBlock->isVariadic = false;
3967  } else if (FTI.hasPrototype) {
3968    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
3969      CurBlock->Params.push_back((ParmVarDecl *)FTI.ArgInfo[i].Param);
3970    CurBlock->isVariadic = FTI.isVariadic;
3971  }
3972  CurBlock->TheDecl->setArgs(&CurBlock->Params[0], CurBlock->Params.size());
3973
3974  for (BlockDecl::param_iterator AI = CurBlock->TheDecl->param_begin(),
3975       E = CurBlock->TheDecl->param_end(); AI != E; ++AI)
3976    // If this has an identifier, add it to the scope stack.
3977    if ((*AI)->getIdentifier())
3978      PushOnScopeChains(*AI, CurBlock->TheScope);
3979}
3980
3981/// ActOnBlockError - If there is an error parsing a block, this callback
3982/// is invoked to pop the information about the block from the action impl.
3983void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
3984  // Ensure that CurBlock is deleted.
3985  llvm::OwningPtr<BlockSemaInfo> CC(CurBlock);
3986
3987  // Pop off CurBlock, handle nested blocks.
3988  CurBlock = CurBlock->PrevBlockInfo;
3989
3990  // FIXME: Delete the ParmVarDecl objects as well???
3991
3992}
3993
3994/// ActOnBlockStmtExpr - This is called when the body of a block statement
3995/// literal was successfully completed.  ^(int x){...}
3996Sema::ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc, StmtTy *body,
3997                                          Scope *CurScope) {
3998  // Ensure that CurBlock is deleted.
3999  llvm::OwningPtr<BlockSemaInfo> BSI(CurBlock);
4000  llvm::OwningPtr<CompoundStmt> Body(static_cast<CompoundStmt*>(body));
4001
4002  PopDeclContext();
4003
4004  // Pop off CurBlock, handle nested blocks.
4005  CurBlock = CurBlock->PrevBlockInfo;
4006
4007  QualType RetTy = Context.VoidTy;
4008  if (BSI->ReturnType)
4009    RetTy = QualType(BSI->ReturnType, 0);
4010
4011  llvm::SmallVector<QualType, 8> ArgTypes;
4012  for (unsigned i = 0, e = BSI->Params.size(); i != e; ++i)
4013    ArgTypes.push_back(BSI->Params[i]->getType());
4014
4015  QualType BlockTy;
4016  if (!BSI->hasPrototype)
4017    BlockTy = Context.getFunctionTypeNoProto(RetTy);
4018  else
4019    BlockTy = Context.getFunctionType(RetTy, &ArgTypes[0], ArgTypes.size(),
4020                                      BSI->isVariadic, 0);
4021
4022  BlockTy = Context.getBlockPointerType(BlockTy);
4023
4024  BSI->TheDecl->setBody(Body.take());
4025  return new BlockExpr(BSI->TheDecl, BlockTy);
4026}
4027
4028/// ExprsMatchFnType - return true if the Exprs in array Args have
4029/// QualTypes that match the QualTypes of the arguments of the FnType.
4030/// The number of arguments has already been validated to match the number of
4031/// arguments in FnType.
4032static bool ExprsMatchFnType(Expr **Args, const FunctionTypeProto *FnType,
4033                             ASTContext &Context) {
4034  unsigned NumParams = FnType->getNumArgs();
4035  for (unsigned i = 0; i != NumParams; ++i) {
4036    QualType ExprTy = Context.getCanonicalType(Args[i]->getType());
4037    QualType ParmTy = Context.getCanonicalType(FnType->getArgType(i));
4038
4039    if (ExprTy.getUnqualifiedType() != ParmTy.getUnqualifiedType())
4040      return false;
4041  }
4042  return true;
4043}
4044
4045Sema::ExprResult Sema::ActOnOverloadExpr(ExprTy **args, unsigned NumArgs,
4046                                         SourceLocation *CommaLocs,
4047                                         SourceLocation BuiltinLoc,
4048                                         SourceLocation RParenLoc) {
4049  // __builtin_overload requires at least 2 arguments
4050  if (NumArgs < 2)
4051    return Diag(RParenLoc, diag::err_typecheck_call_too_few_args)
4052      << SourceRange(BuiltinLoc, RParenLoc);
4053
4054  // The first argument is required to be a constant expression.  It tells us
4055  // the number of arguments to pass to each of the functions to be overloaded.
4056  Expr **Args = reinterpret_cast<Expr**>(args);
4057  Expr *NParamsExpr = Args[0];
4058  llvm::APSInt constEval(32);
4059  SourceLocation ExpLoc;
4060  if (!NParamsExpr->isIntegerConstantExpr(constEval, Context, &ExpLoc))
4061    return Diag(ExpLoc, diag::err_overload_expr_requires_non_zero_constant)
4062      << NParamsExpr->getSourceRange();
4063
4064  // Verify that the number of parameters is > 0
4065  unsigned NumParams = constEval.getZExtValue();
4066  if (NumParams == 0)
4067    return Diag(ExpLoc, diag::err_overload_expr_requires_non_zero_constant)
4068      << NParamsExpr->getSourceRange();
4069  // Verify that we have at least 1 + NumParams arguments to the builtin.
4070  if ((NumParams + 1) > NumArgs)
4071    return Diag(RParenLoc, diag::err_typecheck_call_too_few_args)
4072      << SourceRange(BuiltinLoc, RParenLoc);
4073
4074  // Figure out the return type, by matching the args to one of the functions
4075  // listed after the parameters.
4076  OverloadExpr *OE = 0;
4077  for (unsigned i = NumParams + 1; i < NumArgs; ++i) {
4078    // UsualUnaryConversions will convert the function DeclRefExpr into a
4079    // pointer to function.
4080    Expr *Fn = UsualUnaryConversions(Args[i]);
4081    const FunctionTypeProto *FnType = 0;
4082    if (const PointerType *PT = Fn->getType()->getAsPointerType())
4083      FnType = PT->getPointeeType()->getAsFunctionTypeProto();
4084
4085    // The Expr type must be FunctionTypeProto, since FunctionTypeProto has no
4086    // parameters, and the number of parameters must match the value passed to
4087    // the builtin.
4088    if (!FnType || (FnType->getNumArgs() != NumParams))
4089      return Diag(Fn->getExprLoc(), diag::err_overload_incorrect_fntype)
4090        << Fn->getSourceRange();
4091
4092    // Scan the parameter list for the FunctionType, checking the QualType of
4093    // each parameter against the QualTypes of the arguments to the builtin.
4094    // If they match, return a new OverloadExpr.
4095    if (ExprsMatchFnType(Args+1, FnType, Context)) {
4096      if (OE)
4097        return Diag(Fn->getExprLoc(), diag::err_overload_multiple_match)
4098          << OE->getFn()->getSourceRange();
4099      // Remember our match, and continue processing the remaining arguments
4100      // to catch any errors.
4101      OE = new OverloadExpr(Args, NumArgs, i,
4102                            FnType->getResultType().getNonReferenceType(),
4103                            BuiltinLoc, RParenLoc);
4104    }
4105  }
4106  // Return the newly created OverloadExpr node, if we succeded in matching
4107  // exactly one of the candidate functions.
4108  if (OE)
4109    return OE;
4110
4111  // If we didn't find a matching function Expr in the __builtin_overload list
4112  // the return an error.
4113  std::string typeNames;
4114  for (unsigned i = 0; i != NumParams; ++i) {
4115    if (i != 0) typeNames += ", ";
4116    typeNames += Args[i+1]->getType().getAsString();
4117  }
4118
4119  return Diag(BuiltinLoc, diag::err_overload_no_match)
4120    << typeNames << SourceRange(BuiltinLoc, RParenLoc);
4121}
4122
4123Sema::ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
4124                                  ExprTy *expr, TypeTy *type,
4125                                  SourceLocation RPLoc) {
4126  Expr *E = static_cast<Expr*>(expr);
4127  QualType T = QualType::getFromOpaquePtr(type);
4128
4129  InitBuiltinVaListType();
4130
4131  // Get the va_list type
4132  QualType VaListType = Context.getBuiltinVaListType();
4133  // Deal with implicit array decay; for example, on x86-64,
4134  // va_list is an array, but it's supposed to decay to
4135  // a pointer for va_arg.
4136  if (VaListType->isArrayType())
4137    VaListType = Context.getArrayDecayedType(VaListType);
4138  // Make sure the input expression also decays appropriately.
4139  UsualUnaryConversions(E);
4140
4141  if (CheckAssignmentConstraints(VaListType, E->getType()) != Compatible)
4142    return Diag(E->getLocStart(),
4143                diag::err_first_argument_to_va_arg_not_of_type_va_list)
4144      << E->getType() << E->getSourceRange();
4145
4146  // FIXME: Warn if a non-POD type is passed in.
4147
4148  return new VAArgExpr(BuiltinLoc, E, T.getNonReferenceType(), RPLoc);
4149}
4150
4151Sema::ExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
4152  // The type of __null will be int or long, depending on the size of
4153  // pointers on the target.
4154  QualType Ty;
4155  if (Context.Target.getPointerWidth(0) == Context.Target.getIntWidth())
4156    Ty = Context.IntTy;
4157  else
4158    Ty = Context.LongTy;
4159
4160  return new GNUNullExpr(Ty, TokenLoc);
4161}
4162
4163bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
4164                                    SourceLocation Loc,
4165                                    QualType DstType, QualType SrcType,
4166                                    Expr *SrcExpr, const char *Flavor) {
4167  // Decode the result (notice that AST's are still created for extensions).
4168  bool isInvalid = false;
4169  unsigned DiagKind;
4170  switch (ConvTy) {
4171  default: assert(0 && "Unknown conversion type");
4172  case Compatible: return false;
4173  case PointerToInt:
4174    DiagKind = diag::ext_typecheck_convert_pointer_int;
4175    break;
4176  case IntToPointer:
4177    DiagKind = diag::ext_typecheck_convert_int_pointer;
4178    break;
4179  case IncompatiblePointer:
4180    DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
4181    break;
4182  case FunctionVoidPointer:
4183    DiagKind = diag::ext_typecheck_convert_pointer_void_func;
4184    break;
4185  case CompatiblePointerDiscardsQualifiers:
4186    // If the qualifiers lost were because we were applying the
4187    // (deprecated) C++ conversion from a string literal to a char*
4188    // (or wchar_t*), then there was no error (C++ 4.2p2).  FIXME:
4189    // Ideally, this check would be performed in
4190    // CheckPointerTypesForAssignment. However, that would require a
4191    // bit of refactoring (so that the second argument is an
4192    // expression, rather than a type), which should be done as part
4193    // of a larger effort to fix CheckPointerTypesForAssignment for
4194    // C++ semantics.
4195    if (getLangOptions().CPlusPlus &&
4196        IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
4197      return false;
4198    DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
4199    break;
4200  case IntToBlockPointer:
4201    DiagKind = diag::err_int_to_block_pointer;
4202    break;
4203  case IncompatibleBlockPointer:
4204    DiagKind = diag::ext_typecheck_convert_incompatible_block_pointer;
4205    break;
4206  case IncompatibleObjCQualifiedId:
4207    // FIXME: Diagnose the problem in ObjCQualifiedIdTypesAreCompatible, since
4208    // it can give a more specific diagnostic.
4209    DiagKind = diag::warn_incompatible_qualified_id;
4210    break;
4211  case Incompatible:
4212    DiagKind = diag::err_typecheck_convert_incompatible;
4213    isInvalid = true;
4214    break;
4215  }
4216
4217  Diag(Loc, DiagKind) << DstType << SrcType << Flavor
4218    << SrcExpr->getSourceRange();
4219  return isInvalid;
4220}
4221
4222bool Sema::VerifyIntegerConstantExpression(const Expr* E, llvm::APSInt *Result)
4223{
4224  Expr::EvalResult EvalResult;
4225
4226  if (!E->Evaluate(EvalResult, Context) || !EvalResult.Val.isInt() ||
4227      EvalResult.HasSideEffects) {
4228    Diag(E->getExprLoc(), diag::err_expr_not_ice) << E->getSourceRange();
4229
4230    if (EvalResult.Diag) {
4231      // We only show the note if it's not the usual "invalid subexpression"
4232      // or if it's actually in a subexpression.
4233      if (EvalResult.Diag != diag::note_invalid_subexpr_in_ice ||
4234          E->IgnoreParens() != EvalResult.DiagExpr->IgnoreParens())
4235        Diag(EvalResult.DiagLoc, EvalResult.Diag);
4236    }
4237
4238    return true;
4239  }
4240
4241  if (EvalResult.Diag) {
4242    Diag(E->getExprLoc(), diag::ext_expr_not_ice) <<
4243      E->getSourceRange();
4244
4245    // Print the reason it's not a constant.
4246    if (Diags.getDiagnosticLevel(diag::ext_expr_not_ice) != Diagnostic::Ignored)
4247      Diag(EvalResult.DiagLoc, EvalResult.Diag);
4248  }
4249
4250  if (Result)
4251    *Result = EvalResult.Val.getInt();
4252  return false;
4253}
4254