SemaExpr.cpp revision fbf6870f5931f7a4b6632b3594cde28b48cffb9d
1//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/DeclTemplate.h"
18#include "clang/AST/ExprCXX.h"
19#include "clang/AST/ExprObjC.h"
20#include "clang/Basic/PartialDiagnostic.h"
21#include "clang/Basic/SourceManager.h"
22#include "clang/Basic/TargetInfo.h"
23#include "clang/Lex/LiteralSupport.h"
24#include "clang/Lex/Preprocessor.h"
25#include "clang/Parse/DeclSpec.h"
26#include "clang/Parse/Designator.h"
27#include "clang/Parse/Scope.h"
28using namespace clang;
29
30
31/// \brief Determine whether the use of this declaration is valid, and
32/// emit any corresponding diagnostics.
33///
34/// This routine diagnoses various problems with referencing
35/// declarations that can occur when using a declaration. For example,
36/// it might warn if a deprecated or unavailable declaration is being
37/// used, or produce an error (and return true) if a C++0x deleted
38/// function is being used.
39///
40/// If IgnoreDeprecated is set to true, this should not want about deprecated
41/// decls.
42///
43/// \returns true if there was an error (this declaration cannot be
44/// referenced), false otherwise.
45///
46bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc,
47                             bool IgnoreDeprecated) {
48  // See if the decl is deprecated.
49  if (D->getAttr<DeprecatedAttr>()) {
50    // Implementing deprecated stuff requires referencing deprecated
51    // stuff. Don't warn if we are implementing a deprecated construct.
52    bool isSilenced = IgnoreDeprecated;
53
54    if (NamedDecl *ND = getCurFunctionOrMethodDecl()) {
55      // If this reference happens *in* a deprecated function or method, don't
56      // warn.
57      isSilenced |= ND->getAttr<DeprecatedAttr>() != 0;
58
59      // If this is an Objective-C method implementation, check to see if the
60      // method was deprecated on the declaration, not the definition.
61      if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(ND)) {
62        // The semantic decl context of a ObjCMethodDecl is the
63        // ObjCImplementationDecl.
64        if (ObjCImplementationDecl *Impl
65              = dyn_cast<ObjCImplementationDecl>(MD->getParent())) {
66
67          MD = Impl->getClassInterface()->getMethod(MD->getSelector(),
68                                                    MD->isInstanceMethod());
69          isSilenced |= MD && MD->getAttr<DeprecatedAttr>();
70        }
71      }
72    }
73
74    if (!isSilenced)
75      Diag(Loc, diag::warn_deprecated) << D->getDeclName();
76  }
77
78  // See if the decl is unavailable
79  if (D->getAttr<UnavailableAttr>()) {
80    Diag(Loc, diag::warn_unavailable) << D->getDeclName();
81    Diag(D->getLocation(), diag::note_unavailable_here) << 0;
82  }
83
84  // See if this is a deleted function.
85  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
86    if (FD->isDeleted()) {
87      Diag(Loc, diag::err_deleted_function_use);
88      Diag(D->getLocation(), diag::note_unavailable_here) << true;
89      return true;
90    }
91  }
92
93  return false;
94}
95
96/// DiagnoseSentinelCalls - This routine checks on method dispatch calls
97/// (and other functions in future), which have been declared with sentinel
98/// attribute. It warns if call does not have the sentinel argument.
99///
100void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
101                                 Expr **Args, unsigned NumArgs) {
102  const SentinelAttr *attr = D->getAttr<SentinelAttr>();
103  if (!attr)
104    return;
105  int sentinelPos = attr->getSentinel();
106  int nullPos = attr->getNullPos();
107
108  // FIXME. ObjCMethodDecl and FunctionDecl need be derived from the same common
109  // base class. Then we won't be needing two versions of the same code.
110  unsigned int i = 0;
111  bool warnNotEnoughArgs = false;
112  int isMethod = 0;
113  if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
114    // skip over named parameters.
115    ObjCMethodDecl::param_iterator P, E = MD->param_end();
116    for (P = MD->param_begin(); (P != E && i < NumArgs); ++P) {
117      if (nullPos)
118        --nullPos;
119      else
120        ++i;
121    }
122    warnNotEnoughArgs = (P != E || i >= NumArgs);
123    isMethod = 1;
124  } else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
125    // skip over named parameters.
126    ObjCMethodDecl::param_iterator P, E = FD->param_end();
127    for (P = FD->param_begin(); (P != E && i < NumArgs); ++P) {
128      if (nullPos)
129        --nullPos;
130      else
131        ++i;
132    }
133    warnNotEnoughArgs = (P != E || i >= NumArgs);
134  } else if (VarDecl *V = dyn_cast<VarDecl>(D)) {
135    // block or function pointer call.
136    QualType Ty = V->getType();
137    if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) {
138      const FunctionType *FT = Ty->isFunctionPointerType()
139      ? Ty->getAs<PointerType>()->getPointeeType()->getAs<FunctionType>()
140      : Ty->getAs<BlockPointerType>()->getPointeeType()->getAs<FunctionType>();
141      if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT)) {
142        unsigned NumArgsInProto = Proto->getNumArgs();
143        unsigned k;
144        for (k = 0; (k != NumArgsInProto && i < NumArgs); k++) {
145          if (nullPos)
146            --nullPos;
147          else
148            ++i;
149        }
150        warnNotEnoughArgs = (k != NumArgsInProto || i >= NumArgs);
151      }
152      if (Ty->isBlockPointerType())
153        isMethod = 2;
154    } else
155      return;
156  } else
157    return;
158
159  if (warnNotEnoughArgs) {
160    Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
161    Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
162    return;
163  }
164  int sentinel = i;
165  while (sentinelPos > 0 && i < NumArgs-1) {
166    --sentinelPos;
167    ++i;
168  }
169  if (sentinelPos > 0) {
170    Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
171    Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
172    return;
173  }
174  while (i < NumArgs-1) {
175    ++i;
176    ++sentinel;
177  }
178  Expr *sentinelExpr = Args[sentinel];
179  if (sentinelExpr && (!sentinelExpr->getType()->isPointerType() ||
180                       !sentinelExpr->isNullPointerConstant(Context,
181                                            Expr::NPC_ValueDependentIsNull))) {
182    Diag(Loc, diag::warn_missing_sentinel) << isMethod;
183    Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
184  }
185  return;
186}
187
188SourceRange Sema::getExprRange(ExprTy *E) const {
189  Expr *Ex = (Expr *)E;
190  return Ex? Ex->getSourceRange() : SourceRange();
191}
192
193//===----------------------------------------------------------------------===//
194//  Standard Promotions and Conversions
195//===----------------------------------------------------------------------===//
196
197/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
198void Sema::DefaultFunctionArrayConversion(Expr *&E) {
199  QualType Ty = E->getType();
200  assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
201
202  if (Ty->isFunctionType())
203    ImpCastExprToType(E, Context.getPointerType(Ty),
204                      CastExpr::CK_FunctionToPointerDecay);
205  else if (Ty->isArrayType()) {
206    // In C90 mode, arrays only promote to pointers if the array expression is
207    // an lvalue.  The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
208    // type 'array of type' is converted to an expression that has type 'pointer
209    // to type'...".  In C99 this was changed to: C99 6.3.2.1p3: "an expression
210    // that has type 'array of type' ...".  The relevant change is "an lvalue"
211    // (C90) to "an expression" (C99).
212    //
213    // C++ 4.2p1:
214    // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
215    // T" can be converted to an rvalue of type "pointer to T".
216    //
217    if (getLangOptions().C99 || getLangOptions().CPlusPlus ||
218        E->isLvalue(Context) == Expr::LV_Valid)
219      ImpCastExprToType(E, Context.getArrayDecayedType(Ty),
220                        CastExpr::CK_ArrayToPointerDecay);
221  }
222}
223
224/// UsualUnaryConversions - Performs various conversions that are common to most
225/// operators (C99 6.3). The conversions of array and function types are
226/// sometimes surpressed. For example, the array->pointer conversion doesn't
227/// apply if the array is an argument to the sizeof or address (&) operators.
228/// In these instances, this routine should *not* be called.
229Expr *Sema::UsualUnaryConversions(Expr *&Expr) {
230  QualType Ty = Expr->getType();
231  assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
232
233  // C99 6.3.1.1p2:
234  //
235  //   The following may be used in an expression wherever an int or
236  //   unsigned int may be used:
237  //     - an object or expression with an integer type whose integer
238  //       conversion rank is less than or equal to the rank of int
239  //       and unsigned int.
240  //     - A bit-field of type _Bool, int, signed int, or unsigned int.
241  //
242  //   If an int can represent all values of the original type, the
243  //   value is converted to an int; otherwise, it is converted to an
244  //   unsigned int. These are called the integer promotions. All
245  //   other types are unchanged by the integer promotions.
246  QualType PTy = Context.isPromotableBitField(Expr);
247  if (!PTy.isNull()) {
248    ImpCastExprToType(Expr, PTy, CastExpr::CK_IntegralCast);
249    return Expr;
250  }
251  if (Ty->isPromotableIntegerType()) {
252    QualType PT = Context.getPromotedIntegerType(Ty);
253    ImpCastExprToType(Expr, PT, CastExpr::CK_IntegralCast);
254    return Expr;
255  }
256
257  DefaultFunctionArrayConversion(Expr);
258  return Expr;
259}
260
261/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
262/// do not have a prototype. Arguments that have type float are promoted to
263/// double. All other argument types are converted by UsualUnaryConversions().
264void Sema::DefaultArgumentPromotion(Expr *&Expr) {
265  QualType Ty = Expr->getType();
266  assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
267
268  // If this is a 'float' (CVR qualified or typedef) promote to double.
269  if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
270    if (BT->getKind() == BuiltinType::Float)
271      return ImpCastExprToType(Expr, Context.DoubleTy,
272                               CastExpr::CK_FloatingCast);
273
274  UsualUnaryConversions(Expr);
275}
276
277/// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
278/// will warn if the resulting type is not a POD type, and rejects ObjC
279/// interfaces passed by value.  This returns true if the argument type is
280/// completely illegal.
281bool Sema::DefaultVariadicArgumentPromotion(Expr *&Expr, VariadicCallType CT) {
282  DefaultArgumentPromotion(Expr);
283
284  if (Expr->getType()->isObjCInterfaceType()) {
285    Diag(Expr->getLocStart(),
286         diag::err_cannot_pass_objc_interface_to_vararg)
287      << Expr->getType() << CT;
288    return true;
289  }
290
291  if (!Expr->getType()->isPODType())
292    Diag(Expr->getLocStart(), diag::warn_cannot_pass_non_pod_arg_to_vararg)
293      << Expr->getType() << CT;
294
295  return false;
296}
297
298
299/// UsualArithmeticConversions - Performs various conversions that are common to
300/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
301/// routine returns the first non-arithmetic type found. The client is
302/// responsible for emitting appropriate error diagnostics.
303/// FIXME: verify the conversion rules for "complex int" are consistent with
304/// GCC.
305QualType Sema::UsualArithmeticConversions(Expr *&lhsExpr, Expr *&rhsExpr,
306                                          bool isCompAssign) {
307  if (!isCompAssign)
308    UsualUnaryConversions(lhsExpr);
309
310  UsualUnaryConversions(rhsExpr);
311
312  // For conversion purposes, we ignore any qualifiers.
313  // For example, "const float" and "float" are equivalent.
314  QualType lhs =
315    Context.getCanonicalType(lhsExpr->getType()).getUnqualifiedType();
316  QualType rhs =
317    Context.getCanonicalType(rhsExpr->getType()).getUnqualifiedType();
318
319  // If both types are identical, no conversion is needed.
320  if (lhs == rhs)
321    return lhs;
322
323  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
324  // The caller can deal with this (e.g. pointer + int).
325  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
326    return lhs;
327
328  // Perform bitfield promotions.
329  QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(lhsExpr);
330  if (!LHSBitfieldPromoteTy.isNull())
331    lhs = LHSBitfieldPromoteTy;
332  QualType RHSBitfieldPromoteTy = Context.isPromotableBitField(rhsExpr);
333  if (!RHSBitfieldPromoteTy.isNull())
334    rhs = RHSBitfieldPromoteTy;
335
336  QualType destType = Context.UsualArithmeticConversionsType(lhs, rhs);
337  if (!isCompAssign)
338    ImpCastExprToType(lhsExpr, destType, CastExpr::CK_Unknown);
339  ImpCastExprToType(rhsExpr, destType, CastExpr::CK_Unknown);
340  return destType;
341}
342
343//===----------------------------------------------------------------------===//
344//  Semantic Analysis for various Expression Types
345//===----------------------------------------------------------------------===//
346
347
348/// ActOnStringLiteral - The specified tokens were lexed as pasted string
349/// fragments (e.g. "foo" "bar" L"baz").  The result string has to handle string
350/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
351/// multiple tokens.  However, the common case is that StringToks points to one
352/// string.
353///
354Action::OwningExprResult
355Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks) {
356  assert(NumStringToks && "Must have at least one string!");
357
358  StringLiteralParser Literal(StringToks, NumStringToks, PP);
359  if (Literal.hadError)
360    return ExprError();
361
362  llvm::SmallVector<SourceLocation, 4> StringTokLocs;
363  for (unsigned i = 0; i != NumStringToks; ++i)
364    StringTokLocs.push_back(StringToks[i].getLocation());
365
366  QualType StrTy = Context.CharTy;
367  if (Literal.AnyWide) StrTy = Context.getWCharType();
368  if (Literal.Pascal) StrTy = Context.UnsignedCharTy;
369
370  // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
371  if (getLangOptions().CPlusPlus)
372    StrTy.addConst();
373
374  // Get an array type for the string, according to C99 6.4.5.  This includes
375  // the nul terminator character as well as the string length for pascal
376  // strings.
377  StrTy = Context.getConstantArrayType(StrTy,
378                                 llvm::APInt(32, Literal.GetNumStringChars()+1),
379                                       ArrayType::Normal, 0);
380
381  // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
382  return Owned(StringLiteral::Create(Context, Literal.GetString(),
383                                     Literal.GetStringLength(),
384                                     Literal.AnyWide, StrTy,
385                                     &StringTokLocs[0],
386                                     StringTokLocs.size()));
387}
388
389/// ShouldSnapshotBlockValueReference - Return true if a reference inside of
390/// CurBlock to VD should cause it to be snapshotted (as we do for auto
391/// variables defined outside the block) or false if this is not needed (e.g.
392/// for values inside the block or for globals).
393///
394/// This also keeps the 'hasBlockDeclRefExprs' in the BlockSemaInfo records
395/// up-to-date.
396///
397static bool ShouldSnapshotBlockValueReference(BlockSemaInfo *CurBlock,
398                                              ValueDecl *VD) {
399  // If the value is defined inside the block, we couldn't snapshot it even if
400  // we wanted to.
401  if (CurBlock->TheDecl == VD->getDeclContext())
402    return false;
403
404  // If this is an enum constant or function, it is constant, don't snapshot.
405  if (isa<EnumConstantDecl>(VD) || isa<FunctionDecl>(VD))
406    return false;
407
408  // If this is a reference to an extern, static, or global variable, no need to
409  // snapshot it.
410  // FIXME: What about 'const' variables in C++?
411  if (const VarDecl *Var = dyn_cast<VarDecl>(VD))
412    if (!Var->hasLocalStorage())
413      return false;
414
415  // Blocks that have these can't be constant.
416  CurBlock->hasBlockDeclRefExprs = true;
417
418  // If we have nested blocks, the decl may be declared in an outer block (in
419  // which case that outer block doesn't get "hasBlockDeclRefExprs") or it may
420  // be defined outside all of the current blocks (in which case the blocks do
421  // all get the bit).  Walk the nesting chain.
422  for (BlockSemaInfo *NextBlock = CurBlock->PrevBlockInfo; NextBlock;
423       NextBlock = NextBlock->PrevBlockInfo) {
424    // If we found the defining block for the variable, don't mark the block as
425    // having a reference outside it.
426    if (NextBlock->TheDecl == VD->getDeclContext())
427      break;
428
429    // Otherwise, the DeclRef from the inner block causes the outer one to need
430    // a snapshot as well.
431    NextBlock->hasBlockDeclRefExprs = true;
432  }
433
434  return true;
435}
436
437
438
439/// BuildDeclRefExpr - Build a DeclRefExpr.
440Sema::OwningExprResult
441Sema::BuildDeclRefExpr(NamedDecl *D, QualType Ty, SourceLocation Loc,
442                       bool TypeDependent, bool ValueDependent,
443                       const CXXScopeSpec *SS) {
444  if (Context.getCanonicalType(Ty) == Context.UndeducedAutoTy) {
445    Diag(Loc,
446         diag::err_auto_variable_cannot_appear_in_own_initializer)
447      << D->getDeclName();
448    return ExprError();
449  }
450
451  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
452    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
453      if (const FunctionDecl *FD = MD->getParent()->isLocalClass()) {
454        if (VD->hasLocalStorage() && VD->getDeclContext() != CurContext) {
455          Diag(Loc, diag::err_reference_to_local_var_in_enclosing_function)
456            << D->getIdentifier() << FD->getDeclName();
457          Diag(D->getLocation(), diag::note_local_variable_declared_here)
458            << D->getIdentifier();
459          return ExprError();
460        }
461      }
462    }
463  }
464
465  MarkDeclarationReferenced(Loc, D);
466
467  return Owned(DeclRefExpr::Create(Context,
468                              SS? (NestedNameSpecifier *)SS->getScopeRep() : 0,
469                                   SS? SS->getRange() : SourceRange(),
470                                   D, Loc,
471                                   Ty, TypeDependent, ValueDependent));
472}
473
474/// getObjectForAnonymousRecordDecl - Retrieve the (unnamed) field or
475/// variable corresponding to the anonymous union or struct whose type
476/// is Record.
477static Decl *getObjectForAnonymousRecordDecl(ASTContext &Context,
478                                             RecordDecl *Record) {
479  assert(Record->isAnonymousStructOrUnion() &&
480         "Record must be an anonymous struct or union!");
481
482  // FIXME: Once Decls are directly linked together, this will be an O(1)
483  // operation rather than a slow walk through DeclContext's vector (which
484  // itself will be eliminated). DeclGroups might make this even better.
485  DeclContext *Ctx = Record->getDeclContext();
486  for (DeclContext::decl_iterator D = Ctx->decls_begin(),
487                               DEnd = Ctx->decls_end();
488       D != DEnd; ++D) {
489    if (*D == Record) {
490      // The object for the anonymous struct/union directly
491      // follows its type in the list of declarations.
492      ++D;
493      assert(D != DEnd && "Missing object for anonymous record");
494      assert(!cast<NamedDecl>(*D)->getDeclName() && "Decl should be unnamed");
495      return *D;
496    }
497  }
498
499  assert(false && "Missing object for anonymous record");
500  return 0;
501}
502
503/// \brief Given a field that represents a member of an anonymous
504/// struct/union, build the path from that field's context to the
505/// actual member.
506///
507/// Construct the sequence of field member references we'll have to
508/// perform to get to the field in the anonymous union/struct. The
509/// list of members is built from the field outward, so traverse it
510/// backwards to go from an object in the current context to the field
511/// we found.
512///
513/// \returns The variable from which the field access should begin,
514/// for an anonymous struct/union that is not a member of another
515/// class. Otherwise, returns NULL.
516VarDecl *Sema::BuildAnonymousStructUnionMemberPath(FieldDecl *Field,
517                                   llvm::SmallVectorImpl<FieldDecl *> &Path) {
518  assert(Field->getDeclContext()->isRecord() &&
519         cast<RecordDecl>(Field->getDeclContext())->isAnonymousStructOrUnion()
520         && "Field must be stored inside an anonymous struct or union");
521
522  Path.push_back(Field);
523  VarDecl *BaseObject = 0;
524  DeclContext *Ctx = Field->getDeclContext();
525  do {
526    RecordDecl *Record = cast<RecordDecl>(Ctx);
527    Decl *AnonObject = getObjectForAnonymousRecordDecl(Context, Record);
528    if (FieldDecl *AnonField = dyn_cast<FieldDecl>(AnonObject))
529      Path.push_back(AnonField);
530    else {
531      BaseObject = cast<VarDecl>(AnonObject);
532      break;
533    }
534    Ctx = Ctx->getParent();
535  } while (Ctx->isRecord() &&
536           cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion());
537
538  return BaseObject;
539}
540
541Sema::OwningExprResult
542Sema::BuildAnonymousStructUnionMemberReference(SourceLocation Loc,
543                                               FieldDecl *Field,
544                                               Expr *BaseObjectExpr,
545                                               SourceLocation OpLoc) {
546  llvm::SmallVector<FieldDecl *, 4> AnonFields;
547  VarDecl *BaseObject = BuildAnonymousStructUnionMemberPath(Field,
548                                                            AnonFields);
549
550  // Build the expression that refers to the base object, from
551  // which we will build a sequence of member references to each
552  // of the anonymous union objects and, eventually, the field we
553  // found via name lookup.
554  bool BaseObjectIsPointer = false;
555  Qualifiers BaseQuals;
556  if (BaseObject) {
557    // BaseObject is an anonymous struct/union variable (and is,
558    // therefore, not part of another non-anonymous record).
559    if (BaseObjectExpr) BaseObjectExpr->Destroy(Context);
560    MarkDeclarationReferenced(Loc, BaseObject);
561    BaseObjectExpr = new (Context) DeclRefExpr(BaseObject,BaseObject->getType(),
562                                               SourceLocation());
563    BaseQuals
564      = Context.getCanonicalType(BaseObject->getType()).getQualifiers();
565  } else if (BaseObjectExpr) {
566    // The caller provided the base object expression. Determine
567    // whether its a pointer and whether it adds any qualifiers to the
568    // anonymous struct/union fields we're looking into.
569    QualType ObjectType = BaseObjectExpr->getType();
570    if (const PointerType *ObjectPtr = ObjectType->getAs<PointerType>()) {
571      BaseObjectIsPointer = true;
572      ObjectType = ObjectPtr->getPointeeType();
573    }
574    BaseQuals
575      = Context.getCanonicalType(ObjectType).getQualifiers();
576  } else {
577    // We've found a member of an anonymous struct/union that is
578    // inside a non-anonymous struct/union, so in a well-formed
579    // program our base object expression is "this".
580    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
581      if (!MD->isStatic()) {
582        QualType AnonFieldType
583          = Context.getTagDeclType(
584                     cast<RecordDecl>(AnonFields.back()->getDeclContext()));
585        QualType ThisType = Context.getTagDeclType(MD->getParent());
586        if ((Context.getCanonicalType(AnonFieldType)
587               == Context.getCanonicalType(ThisType)) ||
588            IsDerivedFrom(ThisType, AnonFieldType)) {
589          // Our base object expression is "this".
590          BaseObjectExpr = new (Context) CXXThisExpr(SourceLocation(),
591                                                     MD->getThisType(Context));
592          BaseObjectIsPointer = true;
593        }
594      } else {
595        return ExprError(Diag(Loc,diag::err_invalid_member_use_in_static_method)
596          << Field->getDeclName());
597      }
598      BaseQuals = Qualifiers::fromCVRMask(MD->getTypeQualifiers());
599    }
600
601    if (!BaseObjectExpr)
602      return ExprError(Diag(Loc, diag::err_invalid_non_static_member_use)
603        << Field->getDeclName());
604  }
605
606  // Build the implicit member references to the field of the
607  // anonymous struct/union.
608  Expr *Result = BaseObjectExpr;
609  Qualifiers ResultQuals = BaseQuals;
610  for (llvm::SmallVector<FieldDecl *, 4>::reverse_iterator
611         FI = AnonFields.rbegin(), FIEnd = AnonFields.rend();
612       FI != FIEnd; ++FI) {
613    QualType MemberType = (*FI)->getType();
614    Qualifiers MemberTypeQuals =
615      Context.getCanonicalType(MemberType).getQualifiers();
616
617    // CVR attributes from the base are picked up by members,
618    // except that 'mutable' members don't pick up 'const'.
619    if ((*FI)->isMutable())
620      ResultQuals.removeConst();
621
622    // GC attributes are never picked up by members.
623    ResultQuals.removeObjCGCAttr();
624
625    // TR 18037 does not allow fields to be declared with address spaces.
626    assert(!MemberTypeQuals.hasAddressSpace());
627
628    Qualifiers NewQuals = ResultQuals + MemberTypeQuals;
629    if (NewQuals != MemberTypeQuals)
630      MemberType = Context.getQualifiedType(MemberType, NewQuals);
631
632    MarkDeclarationReferenced(Loc, *FI);
633    // FIXME: Might this end up being a qualified name?
634    Result = new (Context) MemberExpr(Result, BaseObjectIsPointer, *FI,
635                                      OpLoc, MemberType);
636    BaseObjectIsPointer = false;
637    ResultQuals = NewQuals;
638  }
639
640  return Owned(Result);
641}
642
643Sema::OwningExprResult Sema::ActOnIdExpression(Scope *S,
644                                               const CXXScopeSpec &SS,
645                                               UnqualifiedId &Name,
646                                               bool HasTrailingLParen,
647                                               bool IsAddressOfOperand) {
648  if (Name.getKind() == UnqualifiedId::IK_TemplateId) {
649    ASTTemplateArgsPtr TemplateArgsPtr(*this,
650                                       Name.TemplateId->getTemplateArgs(),
651                                       Name.TemplateId->getTemplateArgIsType(),
652                                       Name.TemplateId->NumArgs);
653    return ActOnTemplateIdExpr(SS,
654                               TemplateTy::make(Name.TemplateId->Template),
655                               Name.TemplateId->TemplateNameLoc,
656                               Name.TemplateId->LAngleLoc,
657                               TemplateArgsPtr,
658                               Name.TemplateId->getTemplateArgLocations(),
659                               Name.TemplateId->RAngleLoc);
660  }
661
662  // FIXME: We lose a bunch of source information by doing this. Later,
663  // we'll want to merge ActOnDeclarationNameExpr's logic into
664  // ActOnIdExpression.
665  return ActOnDeclarationNameExpr(S,
666                                  Name.StartLocation,
667                                  GetNameFromUnqualifiedId(Name),
668                                  HasTrailingLParen,
669                                  &SS,
670                                  IsAddressOfOperand);
671}
672
673/// ActOnDeclarationNameExpr - The parser has read some kind of name
674/// (e.g., a C++ id-expression (C++ [expr.prim]p1)). This routine
675/// performs lookup on that name and returns an expression that refers
676/// to that name. This routine isn't directly called from the parser,
677/// because the parser doesn't know about DeclarationName. Rather,
678/// this routine is called by ActOnIdExpression, which contains a
679/// parsed UnqualifiedId.
680///
681/// HasTrailingLParen indicates whether this identifier is used in a
682/// function call context.  LookupCtx is only used for a C++
683/// qualified-id (foo::bar) to indicate the class or namespace that
684/// the identifier must be a member of.
685///
686/// isAddressOfOperand means that this expression is the direct operand
687/// of an address-of operator. This matters because this is the only
688/// situation where a qualified name referencing a non-static member may
689/// appear outside a member function of this class.
690Sema::OwningExprResult
691Sema::ActOnDeclarationNameExpr(Scope *S, SourceLocation Loc,
692                               DeclarationName Name, bool HasTrailingLParen,
693                               const CXXScopeSpec *SS,
694                               bool isAddressOfOperand) {
695  // Could be enum-constant, value decl, instance variable, etc.
696  if (SS && SS->isInvalid())
697    return ExprError();
698
699  // C++ [temp.dep.expr]p3:
700  //   An id-expression is type-dependent if it contains:
701  //     -- a nested-name-specifier that contains a class-name that
702  //        names a dependent type.
703  // FIXME: Member of the current instantiation.
704  if (SS && isDependentScopeSpecifier(*SS)) {
705    return Owned(new (Context) UnresolvedDeclRefExpr(Name, Context.DependentTy,
706                                                     Loc, SS->getRange(),
707                static_cast<NestedNameSpecifier *>(SS->getScopeRep()),
708                                                     isAddressOfOperand));
709  }
710
711  LookupResult Lookup;
712  LookupParsedName(Lookup, S, SS, Name, LookupOrdinaryName, false, true, Loc);
713
714  if (Lookup.isAmbiguous()) {
715    DiagnoseAmbiguousLookup(Lookup, Name, Loc,
716                            SS && SS->isSet() ? SS->getRange()
717                                              : SourceRange());
718    return ExprError();
719  }
720
721  NamedDecl *D = Lookup.getAsSingleDecl(Context);
722
723  // If this reference is in an Objective-C method, then ivar lookup happens as
724  // well.
725  IdentifierInfo *II = Name.getAsIdentifierInfo();
726  if (II && getCurMethodDecl()) {
727    // There are two cases to handle here.  1) scoped lookup could have failed,
728    // in which case we should look for an ivar.  2) scoped lookup could have
729    // found a decl, but that decl is outside the current instance method (i.e.
730    // a global variable).  In these two cases, we do a lookup for an ivar with
731    // this name, if the lookup sucedes, we replace it our current decl.
732    if (D == 0 || D->isDefinedOutsideFunctionOrMethod()) {
733      ObjCInterfaceDecl *IFace = getCurMethodDecl()->getClassInterface();
734      ObjCInterfaceDecl *ClassDeclared;
735      if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
736        // Check if referencing a field with __attribute__((deprecated)).
737        if (DiagnoseUseOfDecl(IV, Loc))
738          return ExprError();
739
740        // If we're referencing an invalid decl, just return this as a silent
741        // error node.  The error diagnostic was already emitted on the decl.
742        if (IV->isInvalidDecl())
743          return ExprError();
744
745        bool IsClsMethod = getCurMethodDecl()->isClassMethod();
746        // If a class method attemps to use a free standing ivar, this is
747        // an error.
748        if (IsClsMethod && D && !D->isDefinedOutsideFunctionOrMethod())
749           return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
750                           << IV->getDeclName());
751        // If a class method uses a global variable, even if an ivar with
752        // same name exists, use the global.
753        if (!IsClsMethod) {
754          if (IV->getAccessControl() == ObjCIvarDecl::Private &&
755              ClassDeclared != IFace)
756           Diag(Loc, diag::error_private_ivar_access) << IV->getDeclName();
757          // FIXME: This should use a new expr for a direct reference, don't
758          // turn this into Self->ivar, just return a BareIVarExpr or something.
759          IdentifierInfo &II = Context.Idents.get("self");
760          UnqualifiedId SelfName;
761          SelfName.setIdentifier(&II, SourceLocation());
762          CXXScopeSpec SelfScopeSpec;
763          OwningExprResult SelfExpr = ActOnIdExpression(S, SelfScopeSpec,
764                                                        SelfName, false, false);
765          MarkDeclarationReferenced(Loc, IV);
766          return Owned(new (Context)
767                       ObjCIvarRefExpr(IV, IV->getType(), Loc,
768                                       SelfExpr.takeAs<Expr>(), true, true));
769        }
770      }
771    } else if (getCurMethodDecl()->isInstanceMethod()) {
772      // We should warn if a local variable hides an ivar.
773      ObjCInterfaceDecl *IFace = getCurMethodDecl()->getClassInterface();
774      ObjCInterfaceDecl *ClassDeclared;
775      if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
776        if (IV->getAccessControl() != ObjCIvarDecl::Private ||
777            IFace == ClassDeclared)
778          Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
779      }
780    }
781    // Needed to implement property "super.method" notation.
782    if (D == 0 && II->isStr("super")) {
783      QualType T;
784
785      if (getCurMethodDecl()->isInstanceMethod())
786        T = Context.getObjCObjectPointerType(Context.getObjCInterfaceType(
787                                      getCurMethodDecl()->getClassInterface()));
788      else
789        T = Context.getObjCClassType();
790      return Owned(new (Context) ObjCSuperExpr(Loc, T));
791    }
792  }
793
794  // Determine whether this name might be a candidate for
795  // argument-dependent lookup.
796  bool ADL = getLangOptions().CPlusPlus && (!SS || !SS->isSet()) &&
797             HasTrailingLParen;
798
799  if (ADL && D == 0) {
800    // We've seen something of the form
801    //
802    //   identifier(
803    //
804    // and we did not find any entity by the name
805    // "identifier". However, this identifier is still subject to
806    // argument-dependent lookup, so keep track of the name.
807    return Owned(new (Context) UnresolvedFunctionNameExpr(Name,
808                                                          Context.OverloadTy,
809                                                          Loc));
810  }
811
812  if (D == 0) {
813    // Otherwise, this could be an implicitly declared function reference (legal
814    // in C90, extension in C99).
815    if (HasTrailingLParen && II &&
816        !getLangOptions().CPlusPlus) // Not in C++.
817      D = ImplicitlyDefineFunction(Loc, *II, S);
818    else {
819      // If this name wasn't predeclared and if this is not a function call,
820      // diagnose the problem.
821      if (SS && !SS->isEmpty())
822        return ExprError(Diag(Loc, diag::err_no_member)
823                           << Name << computeDeclContext(*SS, false)
824                           << SS->getRange());
825      else if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
826               Name.getNameKind() == DeclarationName::CXXConversionFunctionName)
827        return ExprError(Diag(Loc, diag::err_undeclared_use)
828          << Name.getAsString());
829      else
830        return ExprError(Diag(Loc, diag::err_undeclared_var_use) << Name);
831    }
832  }
833
834  if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
835    // Warn about constructs like:
836    //   if (void *X = foo()) { ... } else { X }.
837    // In the else block, the pointer is always false.
838
839    // FIXME: In a template instantiation, we don't have scope
840    // information to check this property.
841    if (Var->isDeclaredInCondition() && Var->getType()->isScalarType()) {
842      Scope *CheckS = S;
843      while (CheckS) {
844        if (CheckS->isWithinElse() &&
845            CheckS->getControlParent()->isDeclScope(DeclPtrTy::make(Var))) {
846          if (Var->getType()->isBooleanType())
847            ExprError(Diag(Loc, diag::warn_value_always_false)
848                      << Var->getDeclName());
849          else
850            ExprError(Diag(Loc, diag::warn_value_always_zero)
851                      << Var->getDeclName());
852          break;
853        }
854
855        // Move up one more control parent to check again.
856        CheckS = CheckS->getControlParent();
857        if (CheckS)
858          CheckS = CheckS->getParent();
859      }
860    }
861  } else if (FunctionDecl *Func = dyn_cast<FunctionDecl>(D)) {
862    if (!getLangOptions().CPlusPlus && !Func->hasPrototype()) {
863      // C99 DR 316 says that, if a function type comes from a
864      // function definition (without a prototype), that type is only
865      // used for checking compatibility. Therefore, when referencing
866      // the function, we pretend that we don't have the full function
867      // type.
868      if (DiagnoseUseOfDecl(Func, Loc))
869        return ExprError();
870
871      QualType T = Func->getType();
872      QualType NoProtoType = T;
873      if (const FunctionProtoType *Proto = T->getAs<FunctionProtoType>())
874        NoProtoType = Context.getFunctionNoProtoType(Proto->getResultType());
875      return BuildDeclRefExpr(Func, NoProtoType, Loc, false, false, SS);
876    }
877  }
878
879  return BuildDeclarationNameExpr(Loc, D, HasTrailingLParen, SS, isAddressOfOperand);
880}
881/// \brief Cast member's object to its own class if necessary.
882bool
883Sema::PerformObjectMemberConversion(Expr *&From, NamedDecl *Member) {
884  if (FieldDecl *FD = dyn_cast<FieldDecl>(Member))
885    if (CXXRecordDecl *RD =
886        dyn_cast<CXXRecordDecl>(FD->getDeclContext())) {
887      QualType DestType =
888        Context.getCanonicalType(Context.getTypeDeclType(RD));
889      if (DestType->isDependentType() || From->getType()->isDependentType())
890        return false;
891      QualType FromRecordType = From->getType();
892      QualType DestRecordType = DestType;
893      if (FromRecordType->getAs<PointerType>()) {
894        DestType = Context.getPointerType(DestType);
895        FromRecordType = FromRecordType->getPointeeType();
896      }
897      if (!Context.hasSameUnqualifiedType(FromRecordType, DestRecordType) &&
898          CheckDerivedToBaseConversion(FromRecordType,
899                                       DestRecordType,
900                                       From->getSourceRange().getBegin(),
901                                       From->getSourceRange()))
902        return true;
903      ImpCastExprToType(From, DestType, CastExpr::CK_DerivedToBase,
904                        /*isLvalue=*/true);
905    }
906  return false;
907}
908
909/// \brief Build a MemberExpr AST node.
910static MemberExpr *BuildMemberExpr(ASTContext &C, Expr *Base, bool isArrow,
911                                   const CXXScopeSpec *SS, NamedDecl *Member,
912                                   SourceLocation Loc, QualType Ty) {
913  if (SS && SS->isSet())
914    return MemberExpr::Create(C, Base, isArrow,
915                              (NestedNameSpecifier *)SS->getScopeRep(),
916                              SS->getRange(), Member, Loc,
917                              // FIXME: Explicit template argument lists
918                              false, SourceLocation(), 0, 0, SourceLocation(),
919                              Ty);
920
921  return new (C) MemberExpr(Base, isArrow, Member, Loc, Ty);
922}
923
924/// \brief Complete semantic analysis for a reference to the given declaration.
925Sema::OwningExprResult
926Sema::BuildDeclarationNameExpr(SourceLocation Loc, NamedDecl *D,
927                               bool HasTrailingLParen,
928                               const CXXScopeSpec *SS,
929                               bool isAddressOfOperand) {
930  assert(D && "Cannot refer to a NULL declaration");
931  DeclarationName Name = D->getDeclName();
932
933  // If this is an expression of the form &Class::member, don't build an
934  // implicit member ref, because we want a pointer to the member in general,
935  // not any specific instance's member.
936  if (isAddressOfOperand && SS && !SS->isEmpty() && !HasTrailingLParen) {
937    DeclContext *DC = computeDeclContext(*SS);
938    if (D && isa<CXXRecordDecl>(DC)) {
939      QualType DType;
940      if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
941        DType = FD->getType().getNonReferenceType();
942      } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
943        DType = Method->getType();
944      } else if (isa<OverloadedFunctionDecl>(D)) {
945        DType = Context.OverloadTy;
946      }
947      // Could be an inner type. That's diagnosed below, so ignore it here.
948      if (!DType.isNull()) {
949        // The pointer is type- and value-dependent if it points into something
950        // dependent.
951        bool Dependent = DC->isDependentContext();
952        return BuildDeclRefExpr(D, DType, Loc, Dependent, Dependent, SS);
953      }
954    }
955  }
956
957  // We may have found a field within an anonymous union or struct
958  // (C++ [class.union]).
959  // FIXME: This needs to happen post-isImplicitMemberReference?
960  if (FieldDecl *FD = dyn_cast<FieldDecl>(D))
961    if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion())
962      return BuildAnonymousStructUnionMemberReference(Loc, FD);
963
964  // Cope with an implicit member access in a C++ non-static member function.
965  QualType ThisType, MemberType;
966  if (isImplicitMemberReference(SS, D, Loc, ThisType, MemberType)) {
967    Expr *This = new (Context) CXXThisExpr(SourceLocation(), ThisType);
968    MarkDeclarationReferenced(Loc, D);
969    if (PerformObjectMemberConversion(This, D))
970      return ExprError();
971
972    bool ShouldCheckUse = true;
973    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
974      // Don't diagnose the use of a virtual member function unless it's
975      // explicitly qualified.
976      if (MD->isVirtual() && (!SS || !SS->isSet()))
977        ShouldCheckUse = false;
978    }
979
980    if (ShouldCheckUse && DiagnoseUseOfDecl(D, Loc))
981      return ExprError();
982    return Owned(BuildMemberExpr(Context, This, true, SS, D,
983                                 Loc, MemberType));
984  }
985
986  if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
987    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
988      if (MD->isStatic())
989        // "invalid use of member 'x' in static member function"
990        return ExprError(Diag(Loc,diag::err_invalid_member_use_in_static_method)
991          << FD->getDeclName());
992    }
993
994    // Any other ways we could have found the field in a well-formed
995    // program would have been turned into implicit member expressions
996    // above.
997    return ExprError(Diag(Loc, diag::err_invalid_non_static_member_use)
998      << FD->getDeclName());
999  }
1000
1001  if (isa<TypedefDecl>(D))
1002    return ExprError(Diag(Loc, diag::err_unexpected_typedef) << Name);
1003  if (isa<ObjCInterfaceDecl>(D))
1004    return ExprError(Diag(Loc, diag::err_unexpected_interface) << Name);
1005  if (isa<NamespaceDecl>(D))
1006    return ExprError(Diag(Loc, diag::err_unexpected_namespace) << Name);
1007
1008  // Make the DeclRefExpr or BlockDeclRefExpr for the decl.
1009  if (OverloadedFunctionDecl *Ovl = dyn_cast<OverloadedFunctionDecl>(D))
1010    return BuildDeclRefExpr(Ovl, Context.OverloadTy, Loc,
1011                           false, false, SS);
1012  else if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
1013    return BuildDeclRefExpr(Template, Context.OverloadTy, Loc,
1014                            false, false, SS);
1015  else if (UnresolvedUsingDecl *UD = dyn_cast<UnresolvedUsingDecl>(D))
1016    return BuildDeclRefExpr(UD, Context.DependentTy, Loc,
1017                            /*TypeDependent=*/true,
1018                            /*ValueDependent=*/true, SS);
1019
1020  ValueDecl *VD = cast<ValueDecl>(D);
1021
1022  // Check whether this declaration can be used. Note that we suppress
1023  // this check when we're going to perform argument-dependent lookup
1024  // on this function name, because this might not be the function
1025  // that overload resolution actually selects.
1026  bool ADL = getLangOptions().CPlusPlus && (!SS || !SS->isSet()) &&
1027             HasTrailingLParen;
1028  if (!(ADL && isa<FunctionDecl>(VD)) && DiagnoseUseOfDecl(VD, Loc))
1029    return ExprError();
1030
1031  // Only create DeclRefExpr's for valid Decl's.
1032  if (VD->isInvalidDecl())
1033    return ExprError();
1034
1035  // If the identifier reference is inside a block, and it refers to a value
1036  // that is outside the block, create a BlockDeclRefExpr instead of a
1037  // DeclRefExpr.  This ensures the value is treated as a copy-in snapshot when
1038  // the block is formed.
1039  //
1040  // We do not do this for things like enum constants, global variables, etc,
1041  // as they do not get snapshotted.
1042  //
1043  if (CurBlock && ShouldSnapshotBlockValueReference(CurBlock, VD)) {
1044    MarkDeclarationReferenced(Loc, VD);
1045    QualType ExprTy = VD->getType().getNonReferenceType();
1046    // The BlocksAttr indicates the variable is bound by-reference.
1047    if (VD->getAttr<BlocksAttr>())
1048      return Owned(new (Context) BlockDeclRefExpr(VD, ExprTy, Loc, true));
1049    // This is to record that a 'const' was actually synthesize and added.
1050    bool constAdded = !ExprTy.isConstQualified();
1051    // Variable will be bound by-copy, make it const within the closure.
1052
1053    ExprTy.addConst();
1054    return Owned(new (Context) BlockDeclRefExpr(VD, ExprTy, Loc, false,
1055                                                constAdded));
1056  }
1057  // If this reference is not in a block or if the referenced variable is
1058  // within the block, create a normal DeclRefExpr.
1059
1060  bool TypeDependent = false;
1061  bool ValueDependent = false;
1062  if (getLangOptions().CPlusPlus) {
1063    // C++ [temp.dep.expr]p3:
1064    //   An id-expression is type-dependent if it contains:
1065    //     - an identifier that was declared with a dependent type,
1066    if (VD->getType()->isDependentType())
1067      TypeDependent = true;
1068    //     - FIXME: a template-id that is dependent,
1069    //     - a conversion-function-id that specifies a dependent type,
1070    else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
1071             Name.getCXXNameType()->isDependentType())
1072      TypeDependent = true;
1073    //     - a nested-name-specifier that contains a class-name that
1074    //       names a dependent type.
1075    else if (SS && !SS->isEmpty()) {
1076      for (DeclContext *DC = computeDeclContext(*SS);
1077           DC; DC = DC->getParent()) {
1078        // FIXME: could stop early at namespace scope.
1079        if (DC->isRecord()) {
1080          CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
1081          if (Context.getTypeDeclType(Record)->isDependentType()) {
1082            TypeDependent = true;
1083            break;
1084          }
1085        }
1086      }
1087    }
1088
1089    // C++ [temp.dep.constexpr]p2:
1090    //
1091    //   An identifier is value-dependent if it is:
1092    //     - a name declared with a dependent type,
1093    if (TypeDependent)
1094      ValueDependent = true;
1095    //     - the name of a non-type template parameter,
1096    else if (isa<NonTypeTemplateParmDecl>(VD))
1097      ValueDependent = true;
1098    //    - a constant with integral or enumeration type and is
1099    //      initialized with an expression that is value-dependent
1100    else if (const VarDecl *Dcl = dyn_cast<VarDecl>(VD)) {
1101      if (Context.getCanonicalType(Dcl->getType()).getCVRQualifiers()
1102          == Qualifiers::Const &&
1103          Dcl->getInit()) {
1104        ValueDependent = Dcl->getInit()->isValueDependent();
1105      }
1106    }
1107  }
1108
1109  return BuildDeclRefExpr(VD, VD->getType().getNonReferenceType(), Loc,
1110                          TypeDependent, ValueDependent, SS);
1111}
1112
1113Sema::OwningExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc,
1114                                                 tok::TokenKind Kind) {
1115  PredefinedExpr::IdentType IT;
1116
1117  switch (Kind) {
1118  default: assert(0 && "Unknown simple primary expr!");
1119  case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
1120  case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
1121  case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
1122  }
1123
1124  // Pre-defined identifiers are of type char[x], where x is the length of the
1125  // string.
1126
1127  Decl *currentDecl = getCurFunctionOrMethodDecl();
1128  if (!currentDecl) {
1129    Diag(Loc, diag::ext_predef_outside_function);
1130    currentDecl = Context.getTranslationUnitDecl();
1131  }
1132
1133  QualType ResTy;
1134  if (cast<DeclContext>(currentDecl)->isDependentContext()) {
1135    ResTy = Context.DependentTy;
1136  } else {
1137    unsigned Length =
1138      PredefinedExpr::ComputeName(Context, IT, currentDecl).length();
1139
1140    llvm::APInt LengthI(32, Length + 1);
1141    ResTy = Context.CharTy.withConst();
1142    ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
1143  }
1144  return Owned(new (Context) PredefinedExpr(Loc, ResTy, IT));
1145}
1146
1147Sema::OwningExprResult Sema::ActOnCharacterConstant(const Token &Tok) {
1148  llvm::SmallString<16> CharBuffer;
1149  CharBuffer.resize(Tok.getLength());
1150  const char *ThisTokBegin = &CharBuffer[0];
1151  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
1152
1153  CharLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
1154                            Tok.getLocation(), PP);
1155  if (Literal.hadError())
1156    return ExprError();
1157
1158  QualType type = getLangOptions().CPlusPlus ? Context.CharTy : Context.IntTy;
1159
1160  return Owned(new (Context) CharacterLiteral(Literal.getValue(),
1161                                              Literal.isWide(),
1162                                              type, Tok.getLocation()));
1163}
1164
1165Action::OwningExprResult Sema::ActOnNumericConstant(const Token &Tok) {
1166  // Fast path for a single digit (which is quite common).  A single digit
1167  // cannot have a trigraph, escaped newline, radix prefix, or type suffix.
1168  if (Tok.getLength() == 1) {
1169    const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
1170    unsigned IntSize = Context.Target.getIntWidth();
1171    return Owned(new (Context) IntegerLiteral(llvm::APInt(IntSize, Val-'0'),
1172                    Context.IntTy, Tok.getLocation()));
1173  }
1174
1175  llvm::SmallString<512> IntegerBuffer;
1176  // Add padding so that NumericLiteralParser can overread by one character.
1177  IntegerBuffer.resize(Tok.getLength()+1);
1178  const char *ThisTokBegin = &IntegerBuffer[0];
1179
1180  // Get the spelling of the token, which eliminates trigraphs, etc.
1181  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
1182
1183  NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
1184                               Tok.getLocation(), PP);
1185  if (Literal.hadError)
1186    return ExprError();
1187
1188  Expr *Res;
1189
1190  if (Literal.isFloatingLiteral()) {
1191    QualType Ty;
1192    if (Literal.isFloat)
1193      Ty = Context.FloatTy;
1194    else if (!Literal.isLong)
1195      Ty = Context.DoubleTy;
1196    else
1197      Ty = Context.LongDoubleTy;
1198
1199    const llvm::fltSemantics &Format = Context.getFloatTypeSemantics(Ty);
1200
1201    // isExact will be set by GetFloatValue().
1202    bool isExact = false;
1203    llvm::APFloat Val = Literal.GetFloatValue(Format, &isExact);
1204    Res = new (Context) FloatingLiteral(Val, isExact, Ty, Tok.getLocation());
1205
1206  } else if (!Literal.isIntegerLiteral()) {
1207    return ExprError();
1208  } else {
1209    QualType Ty;
1210
1211    // long long is a C99 feature.
1212    if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
1213        Literal.isLongLong)
1214      Diag(Tok.getLocation(), diag::ext_longlong);
1215
1216    // Get the value in the widest-possible width.
1217    llvm::APInt ResultVal(Context.Target.getIntMaxTWidth(), 0);
1218
1219    if (Literal.GetIntegerValue(ResultVal)) {
1220      // If this value didn't fit into uintmax_t, warn and force to ull.
1221      Diag(Tok.getLocation(), diag::warn_integer_too_large);
1222      Ty = Context.UnsignedLongLongTy;
1223      assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
1224             "long long is not intmax_t?");
1225    } else {
1226      // If this value fits into a ULL, try to figure out what else it fits into
1227      // according to the rules of C99 6.4.4.1p5.
1228
1229      // Octal, Hexadecimal, and integers with a U suffix are allowed to
1230      // be an unsigned int.
1231      bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
1232
1233      // Check from smallest to largest, picking the smallest type we can.
1234      unsigned Width = 0;
1235      if (!Literal.isLong && !Literal.isLongLong) {
1236        // Are int/unsigned possibilities?
1237        unsigned IntSize = Context.Target.getIntWidth();
1238
1239        // Does it fit in a unsigned int?
1240        if (ResultVal.isIntN(IntSize)) {
1241          // Does it fit in a signed int?
1242          if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
1243            Ty = Context.IntTy;
1244          else if (AllowUnsigned)
1245            Ty = Context.UnsignedIntTy;
1246          Width = IntSize;
1247        }
1248      }
1249
1250      // Are long/unsigned long possibilities?
1251      if (Ty.isNull() && !Literal.isLongLong) {
1252        unsigned LongSize = Context.Target.getLongWidth();
1253
1254        // Does it fit in a unsigned long?
1255        if (ResultVal.isIntN(LongSize)) {
1256          // Does it fit in a signed long?
1257          if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
1258            Ty = Context.LongTy;
1259          else if (AllowUnsigned)
1260            Ty = Context.UnsignedLongTy;
1261          Width = LongSize;
1262        }
1263      }
1264
1265      // Finally, check long long if needed.
1266      if (Ty.isNull()) {
1267        unsigned LongLongSize = Context.Target.getLongLongWidth();
1268
1269        // Does it fit in a unsigned long long?
1270        if (ResultVal.isIntN(LongLongSize)) {
1271          // Does it fit in a signed long long?
1272          if (!Literal.isUnsigned && ResultVal[LongLongSize-1] == 0)
1273            Ty = Context.LongLongTy;
1274          else if (AllowUnsigned)
1275            Ty = Context.UnsignedLongLongTy;
1276          Width = LongLongSize;
1277        }
1278      }
1279
1280      // If we still couldn't decide a type, we probably have something that
1281      // does not fit in a signed long long, but has no U suffix.
1282      if (Ty.isNull()) {
1283        Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
1284        Ty = Context.UnsignedLongLongTy;
1285        Width = Context.Target.getLongLongWidth();
1286      }
1287
1288      if (ResultVal.getBitWidth() != Width)
1289        ResultVal.trunc(Width);
1290    }
1291    Res = new (Context) IntegerLiteral(ResultVal, Ty, Tok.getLocation());
1292  }
1293
1294  // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
1295  if (Literal.isImaginary)
1296    Res = new (Context) ImaginaryLiteral(Res,
1297                                        Context.getComplexType(Res->getType()));
1298
1299  return Owned(Res);
1300}
1301
1302Action::OwningExprResult Sema::ActOnParenExpr(SourceLocation L,
1303                                              SourceLocation R, ExprArg Val) {
1304  Expr *E = Val.takeAs<Expr>();
1305  assert((E != 0) && "ActOnParenExpr() missing expr");
1306  return Owned(new (Context) ParenExpr(L, R, E));
1307}
1308
1309/// The UsualUnaryConversions() function is *not* called by this routine.
1310/// See C99 6.3.2.1p[2-4] for more details.
1311bool Sema::CheckSizeOfAlignOfOperand(QualType exprType,
1312                                     SourceLocation OpLoc,
1313                                     const SourceRange &ExprRange,
1314                                     bool isSizeof) {
1315  if (exprType->isDependentType())
1316    return false;
1317
1318  // C99 6.5.3.4p1:
1319  if (isa<FunctionType>(exprType)) {
1320    // alignof(function) is allowed as an extension.
1321    if (isSizeof)
1322      Diag(OpLoc, diag::ext_sizeof_function_type) << ExprRange;
1323    return false;
1324  }
1325
1326  // Allow sizeof(void)/alignof(void) as an extension.
1327  if (exprType->isVoidType()) {
1328    Diag(OpLoc, diag::ext_sizeof_void_type)
1329      << (isSizeof ? "sizeof" : "__alignof") << ExprRange;
1330    return false;
1331  }
1332
1333  if (RequireCompleteType(OpLoc, exprType,
1334                          isSizeof ? diag::err_sizeof_incomplete_type :
1335                          PDiag(diag::err_alignof_incomplete_type)
1336                            << ExprRange))
1337    return true;
1338
1339  // Reject sizeof(interface) and sizeof(interface<proto>) in 64-bit mode.
1340  if (LangOpts.ObjCNonFragileABI && exprType->isObjCInterfaceType()) {
1341    Diag(OpLoc, diag::err_sizeof_nonfragile_interface)
1342      << exprType << isSizeof << ExprRange;
1343    return true;
1344  }
1345
1346  return false;
1347}
1348
1349bool Sema::CheckAlignOfExpr(Expr *E, SourceLocation OpLoc,
1350                            const SourceRange &ExprRange) {
1351  E = E->IgnoreParens();
1352
1353  // alignof decl is always ok.
1354  if (isa<DeclRefExpr>(E))
1355    return false;
1356
1357  // Cannot know anything else if the expression is dependent.
1358  if (E->isTypeDependent())
1359    return false;
1360
1361  if (E->getBitField()) {
1362    Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 1 << ExprRange;
1363    return true;
1364  }
1365
1366  // Alignment of a field access is always okay, so long as it isn't a
1367  // bit-field.
1368  if (MemberExpr *ME = dyn_cast<MemberExpr>(E))
1369    if (isa<FieldDecl>(ME->getMemberDecl()))
1370      return false;
1371
1372  return CheckSizeOfAlignOfOperand(E->getType(), OpLoc, ExprRange, false);
1373}
1374
1375/// \brief Build a sizeof or alignof expression given a type operand.
1376Action::OwningExprResult
1377Sema::CreateSizeOfAlignOfExpr(QualType T, SourceLocation OpLoc,
1378                              bool isSizeOf, SourceRange R) {
1379  if (T.isNull())
1380    return ExprError();
1381
1382  if (!T->isDependentType() &&
1383      CheckSizeOfAlignOfOperand(T, OpLoc, R, isSizeOf))
1384    return ExprError();
1385
1386  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
1387  return Owned(new (Context) SizeOfAlignOfExpr(isSizeOf, T,
1388                                               Context.getSizeType(), OpLoc,
1389                                               R.getEnd()));
1390}
1391
1392/// \brief Build a sizeof or alignof expression given an expression
1393/// operand.
1394Action::OwningExprResult
1395Sema::CreateSizeOfAlignOfExpr(Expr *E, SourceLocation OpLoc,
1396                              bool isSizeOf, SourceRange R) {
1397  // Verify that the operand is valid.
1398  bool isInvalid = false;
1399  if (E->isTypeDependent()) {
1400    // Delay type-checking for type-dependent expressions.
1401  } else if (!isSizeOf) {
1402    isInvalid = CheckAlignOfExpr(E, OpLoc, R);
1403  } else if (E->getBitField()) {  // C99 6.5.3.4p1.
1404    Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 0;
1405    isInvalid = true;
1406  } else {
1407    isInvalid = CheckSizeOfAlignOfOperand(E->getType(), OpLoc, R, true);
1408  }
1409
1410  if (isInvalid)
1411    return ExprError();
1412
1413  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
1414  return Owned(new (Context) SizeOfAlignOfExpr(isSizeOf, E,
1415                                               Context.getSizeType(), OpLoc,
1416                                               R.getEnd()));
1417}
1418
1419/// ActOnSizeOfAlignOfExpr - Handle @c sizeof(type) and @c sizeof @c expr and
1420/// the same for @c alignof and @c __alignof
1421/// Note that the ArgRange is invalid if isType is false.
1422Action::OwningExprResult
1423Sema::ActOnSizeOfAlignOfExpr(SourceLocation OpLoc, bool isSizeof, bool isType,
1424                             void *TyOrEx, const SourceRange &ArgRange) {
1425  // If error parsing type, ignore.
1426  if (TyOrEx == 0) return ExprError();
1427
1428  if (isType) {
1429    // FIXME: Preserve type source info.
1430    QualType ArgTy = GetTypeFromParser(TyOrEx);
1431    return CreateSizeOfAlignOfExpr(ArgTy, OpLoc, isSizeof, ArgRange);
1432  }
1433
1434  // Get the end location.
1435  Expr *ArgEx = (Expr *)TyOrEx;
1436  Action::OwningExprResult Result
1437    = CreateSizeOfAlignOfExpr(ArgEx, OpLoc, isSizeof, ArgEx->getSourceRange());
1438
1439  if (Result.isInvalid())
1440    DeleteExpr(ArgEx);
1441
1442  return move(Result);
1443}
1444
1445QualType Sema::CheckRealImagOperand(Expr *&V, SourceLocation Loc, bool isReal) {
1446  if (V->isTypeDependent())
1447    return Context.DependentTy;
1448
1449  // These operators return the element type of a complex type.
1450  if (const ComplexType *CT = V->getType()->getAs<ComplexType>())
1451    return CT->getElementType();
1452
1453  // Otherwise they pass through real integer and floating point types here.
1454  if (V->getType()->isArithmeticType())
1455    return V->getType();
1456
1457  // Reject anything else.
1458  Diag(Loc, diag::err_realimag_invalid_type) << V->getType()
1459    << (isReal ? "__real" : "__imag");
1460  return QualType();
1461}
1462
1463
1464
1465Action::OwningExprResult
1466Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
1467                          tok::TokenKind Kind, ExprArg Input) {
1468  // Since this might be a postfix expression, get rid of ParenListExprs.
1469  Input = MaybeConvertParenListExprToParenExpr(S, move(Input));
1470  Expr *Arg = (Expr *)Input.get();
1471
1472  UnaryOperator::Opcode Opc;
1473  switch (Kind) {
1474  default: assert(0 && "Unknown unary op!");
1475  case tok::plusplus:   Opc = UnaryOperator::PostInc; break;
1476  case tok::minusminus: Opc = UnaryOperator::PostDec; break;
1477  }
1478
1479  if (getLangOptions().CPlusPlus &&
1480      (Arg->getType()->isRecordType() || Arg->getType()->isEnumeralType())) {
1481    // Which overloaded operator?
1482    OverloadedOperatorKind OverOp =
1483      (Opc == UnaryOperator::PostInc)? OO_PlusPlus : OO_MinusMinus;
1484
1485    // C++ [over.inc]p1:
1486    //
1487    //     [...] If the function is a member function with one
1488    //     parameter (which shall be of type int) or a non-member
1489    //     function with two parameters (the second of which shall be
1490    //     of type int), it defines the postfix increment operator ++
1491    //     for objects of that type. When the postfix increment is
1492    //     called as a result of using the ++ operator, the int
1493    //     argument will have value zero.
1494    Expr *Args[2] = {
1495      Arg,
1496      new (Context) IntegerLiteral(llvm::APInt(Context.Target.getIntWidth(), 0,
1497                          /*isSigned=*/true), Context.IntTy, SourceLocation())
1498    };
1499
1500    // Build the candidate set for overloading
1501    OverloadCandidateSet CandidateSet;
1502    AddOperatorCandidates(OverOp, S, OpLoc, Args, 2, CandidateSet);
1503
1504    // Perform overload resolution.
1505    OverloadCandidateSet::iterator Best;
1506    switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
1507    case OR_Success: {
1508      // We found a built-in operator or an overloaded operator.
1509      FunctionDecl *FnDecl = Best->Function;
1510
1511      if (FnDecl) {
1512        // We matched an overloaded operator. Build a call to that
1513        // operator.
1514
1515        // Convert the arguments.
1516        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
1517          if (PerformObjectArgumentInitialization(Arg, Method))
1518            return ExprError();
1519        } else {
1520          // Convert the arguments.
1521          if (PerformCopyInitialization(Arg,
1522                                        FnDecl->getParamDecl(0)->getType(),
1523                                        "passing"))
1524            return ExprError();
1525        }
1526
1527        // Determine the result type
1528        QualType ResultTy = FnDecl->getResultType().getNonReferenceType();
1529
1530        // Build the actual expression node.
1531        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
1532                                                 SourceLocation());
1533        UsualUnaryConversions(FnExpr);
1534
1535        Input.release();
1536        Args[0] = Arg;
1537
1538        ExprOwningPtr<CXXOperatorCallExpr>
1539          TheCall(this, new (Context) CXXOperatorCallExpr(Context, OverOp,
1540                                                          FnExpr, Args, 2,
1541                                                          ResultTy, OpLoc));
1542
1543        if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall.get(),
1544                                FnDecl))
1545          return ExprError();
1546        return Owned(TheCall.release());
1547
1548      } else {
1549        // We matched a built-in operator. Convert the arguments, then
1550        // break out so that we will build the appropriate built-in
1551        // operator node.
1552        if (PerformCopyInitialization(Arg, Best->BuiltinTypes.ParamTypes[0],
1553                                      "passing"))
1554          return ExprError();
1555
1556        break;
1557      }
1558    }
1559
1560    case OR_No_Viable_Function: {
1561      // No viable function; try checking this as a built-in operator, which
1562      // will fail and provide a diagnostic. Then, print the overload
1563      // candidates.
1564      OwningExprResult Result = CreateBuiltinUnaryOp(OpLoc, Opc, move(Input));
1565      assert(Result.isInvalid() &&
1566             "C++ postfix-unary operator overloading is missing candidates!");
1567      if (Result.isInvalid())
1568        PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
1569
1570      return move(Result);
1571    }
1572
1573    case OR_Ambiguous:
1574      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
1575          << UnaryOperator::getOpcodeStr(Opc)
1576          << Arg->getSourceRange();
1577      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1578      return ExprError();
1579
1580    case OR_Deleted:
1581      Diag(OpLoc, diag::err_ovl_deleted_oper)
1582        << Best->Function->isDeleted()
1583        << UnaryOperator::getOpcodeStr(Opc)
1584        << Arg->getSourceRange();
1585      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1586      return ExprError();
1587    }
1588
1589    // Either we found no viable overloaded operator or we matched a
1590    // built-in operator. In either case, fall through to trying to
1591    // build a built-in operation.
1592  }
1593
1594  Input.release();
1595  Input = Arg;
1596  return CreateBuiltinUnaryOp(OpLoc, Opc, move(Input));
1597}
1598
1599Action::OwningExprResult
1600Sema::ActOnArraySubscriptExpr(Scope *S, ExprArg Base, SourceLocation LLoc,
1601                              ExprArg Idx, SourceLocation RLoc) {
1602  // Since this might be a postfix expression, get rid of ParenListExprs.
1603  Base = MaybeConvertParenListExprToParenExpr(S, move(Base));
1604
1605  Expr *LHSExp = static_cast<Expr*>(Base.get()),
1606       *RHSExp = static_cast<Expr*>(Idx.get());
1607
1608  if (getLangOptions().CPlusPlus &&
1609      (LHSExp->isTypeDependent() || RHSExp->isTypeDependent())) {
1610    Base.release();
1611    Idx.release();
1612    return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
1613                                                  Context.DependentTy, RLoc));
1614  }
1615
1616  if (getLangOptions().CPlusPlus &&
1617      (LHSExp->getType()->isRecordType() ||
1618       LHSExp->getType()->isEnumeralType() ||
1619       RHSExp->getType()->isRecordType() ||
1620       RHSExp->getType()->isEnumeralType())) {
1621    return CreateOverloadedArraySubscriptExpr(LLoc, RLoc, move(Base),move(Idx));
1622  }
1623
1624  return CreateBuiltinArraySubscriptExpr(move(Base), LLoc, move(Idx), RLoc);
1625}
1626
1627
1628Action::OwningExprResult
1629Sema::CreateBuiltinArraySubscriptExpr(ExprArg Base, SourceLocation LLoc,
1630                                     ExprArg Idx, SourceLocation RLoc) {
1631  Expr *LHSExp = static_cast<Expr*>(Base.get());
1632  Expr *RHSExp = static_cast<Expr*>(Idx.get());
1633
1634  // Perform default conversions.
1635  DefaultFunctionArrayConversion(LHSExp);
1636  DefaultFunctionArrayConversion(RHSExp);
1637
1638  QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
1639
1640  // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
1641  // to the expression *((e1)+(e2)). This means the array "Base" may actually be
1642  // in the subscript position. As a result, we need to derive the array base
1643  // and index from the expression types.
1644  Expr *BaseExpr, *IndexExpr;
1645  QualType ResultType;
1646  if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
1647    BaseExpr = LHSExp;
1648    IndexExpr = RHSExp;
1649    ResultType = Context.DependentTy;
1650  } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) {
1651    BaseExpr = LHSExp;
1652    IndexExpr = RHSExp;
1653    ResultType = PTy->getPointeeType();
1654  } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) {
1655     // Handle the uncommon case of "123[Ptr]".
1656    BaseExpr = RHSExp;
1657    IndexExpr = LHSExp;
1658    ResultType = PTy->getPointeeType();
1659  } else if (const ObjCObjectPointerType *PTy =
1660               LHSTy->getAs<ObjCObjectPointerType>()) {
1661    BaseExpr = LHSExp;
1662    IndexExpr = RHSExp;
1663    ResultType = PTy->getPointeeType();
1664  } else if (const ObjCObjectPointerType *PTy =
1665               RHSTy->getAs<ObjCObjectPointerType>()) {
1666     // Handle the uncommon case of "123[Ptr]".
1667    BaseExpr = RHSExp;
1668    IndexExpr = LHSExp;
1669    ResultType = PTy->getPointeeType();
1670  } else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) {
1671    BaseExpr = LHSExp;    // vectors: V[123]
1672    IndexExpr = RHSExp;
1673
1674    // FIXME: need to deal with const...
1675    ResultType = VTy->getElementType();
1676  } else if (LHSTy->isArrayType()) {
1677    // If we see an array that wasn't promoted by
1678    // DefaultFunctionArrayConversion, it must be an array that
1679    // wasn't promoted because of the C90 rule that doesn't
1680    // allow promoting non-lvalue arrays.  Warn, then
1681    // force the promotion here.
1682    Diag(LHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
1683        LHSExp->getSourceRange();
1684    ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy),
1685                      CastExpr::CK_ArrayToPointerDecay);
1686    LHSTy = LHSExp->getType();
1687
1688    BaseExpr = LHSExp;
1689    IndexExpr = RHSExp;
1690    ResultType = LHSTy->getAs<PointerType>()->getPointeeType();
1691  } else if (RHSTy->isArrayType()) {
1692    // Same as previous, except for 123[f().a] case
1693    Diag(RHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
1694        RHSExp->getSourceRange();
1695    ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy),
1696                      CastExpr::CK_ArrayToPointerDecay);
1697    RHSTy = RHSExp->getType();
1698
1699    BaseExpr = RHSExp;
1700    IndexExpr = LHSExp;
1701    ResultType = RHSTy->getAs<PointerType>()->getPointeeType();
1702  } else {
1703    return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
1704       << LHSExp->getSourceRange() << RHSExp->getSourceRange());
1705  }
1706  // C99 6.5.2.1p1
1707  if (!(IndexExpr->getType()->isIntegerType() &&
1708        IndexExpr->getType()->isScalarType()) && !IndexExpr->isTypeDependent())
1709    return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
1710                     << IndexExpr->getSourceRange());
1711
1712  if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
1713       IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
1714         && !IndexExpr->isTypeDependent())
1715    Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange();
1716
1717  // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
1718  // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
1719  // type. Note that Functions are not objects, and that (in C99 parlance)
1720  // incomplete types are not object types.
1721  if (ResultType->isFunctionType()) {
1722    Diag(BaseExpr->getLocStart(), diag::err_subscript_function_type)
1723      << ResultType << BaseExpr->getSourceRange();
1724    return ExprError();
1725  }
1726
1727  if (!ResultType->isDependentType() &&
1728      RequireCompleteType(LLoc, ResultType,
1729                          PDiag(diag::err_subscript_incomplete_type)
1730                            << BaseExpr->getSourceRange()))
1731    return ExprError();
1732
1733  // Diagnose bad cases where we step over interface counts.
1734  if (ResultType->isObjCInterfaceType() && LangOpts.ObjCNonFragileABI) {
1735    Diag(LLoc, diag::err_subscript_nonfragile_interface)
1736      << ResultType << BaseExpr->getSourceRange();
1737    return ExprError();
1738  }
1739
1740  Base.release();
1741  Idx.release();
1742  return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
1743                                                ResultType, RLoc));
1744}
1745
1746QualType Sema::
1747CheckExtVectorComponent(QualType baseType, SourceLocation OpLoc,
1748                        const IdentifierInfo *CompName,
1749                        SourceLocation CompLoc) {
1750  // FIXME: Share logic with ExtVectorElementExpr::containsDuplicateElements,
1751  // see FIXME there.
1752  //
1753  // FIXME: This logic can be greatly simplified by splitting it along
1754  // halving/not halving and reworking the component checking.
1755  const ExtVectorType *vecType = baseType->getAs<ExtVectorType>();
1756
1757  // The vector accessor can't exceed the number of elements.
1758  const char *compStr = CompName->getNameStart();
1759
1760  // This flag determines whether or not the component is one of the four
1761  // special names that indicate a subset of exactly half the elements are
1762  // to be selected.
1763  bool HalvingSwizzle = false;
1764
1765  // This flag determines whether or not CompName has an 's' char prefix,
1766  // indicating that it is a string of hex values to be used as vector indices.
1767  bool HexSwizzle = *compStr == 's' || *compStr == 'S';
1768
1769  // Check that we've found one of the special components, or that the component
1770  // names must come from the same set.
1771  if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
1772      !strcmp(compStr, "even") || !strcmp(compStr, "odd")) {
1773    HalvingSwizzle = true;
1774  } else if (vecType->getPointAccessorIdx(*compStr) != -1) {
1775    do
1776      compStr++;
1777    while (*compStr && vecType->getPointAccessorIdx(*compStr) != -1);
1778  } else if (HexSwizzle || vecType->getNumericAccessorIdx(*compStr) != -1) {
1779    do
1780      compStr++;
1781    while (*compStr && vecType->getNumericAccessorIdx(*compStr) != -1);
1782  }
1783
1784  if (!HalvingSwizzle && *compStr) {
1785    // We didn't get to the end of the string. This means the component names
1786    // didn't come from the same set *or* we encountered an illegal name.
1787    Diag(OpLoc, diag::err_ext_vector_component_name_illegal)
1788      << std::string(compStr,compStr+1) << SourceRange(CompLoc);
1789    return QualType();
1790  }
1791
1792  // Ensure no component accessor exceeds the width of the vector type it
1793  // operates on.
1794  if (!HalvingSwizzle) {
1795    compStr = CompName->getNameStart();
1796
1797    if (HexSwizzle)
1798      compStr++;
1799
1800    while (*compStr) {
1801      if (!vecType->isAccessorWithinNumElements(*compStr++)) {
1802        Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
1803          << baseType << SourceRange(CompLoc);
1804        return QualType();
1805      }
1806    }
1807  }
1808
1809  // If this is a halving swizzle, verify that the base type has an even
1810  // number of elements.
1811  if (HalvingSwizzle && (vecType->getNumElements() & 1U)) {
1812    Diag(OpLoc, diag::err_ext_vector_component_requires_even)
1813      << baseType << SourceRange(CompLoc);
1814    return QualType();
1815  }
1816
1817  // The component accessor looks fine - now we need to compute the actual type.
1818  // The vector type is implied by the component accessor. For example,
1819  // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
1820  // vec4.s0 is a float, vec4.s23 is a vec3, etc.
1821  // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
1822  unsigned CompSize = HalvingSwizzle ? vecType->getNumElements() / 2
1823                                     : CompName->getLength();
1824  if (HexSwizzle)
1825    CompSize--;
1826
1827  if (CompSize == 1)
1828    return vecType->getElementType();
1829
1830  QualType VT = Context.getExtVectorType(vecType->getElementType(), CompSize);
1831  // Now look up the TypeDefDecl from the vector type. Without this,
1832  // diagostics look bad. We want extended vector types to appear built-in.
1833  for (unsigned i = 0, E = ExtVectorDecls.size(); i != E; ++i) {
1834    if (ExtVectorDecls[i]->getUnderlyingType() == VT)
1835      return Context.getTypedefType(ExtVectorDecls[i]);
1836  }
1837  return VT; // should never get here (a typedef type should always be found).
1838}
1839
1840static Decl *FindGetterNameDeclFromProtocolList(const ObjCProtocolDecl*PDecl,
1841                                                IdentifierInfo *Member,
1842                                                const Selector &Sel,
1843                                                ASTContext &Context) {
1844
1845  if (ObjCPropertyDecl *PD = PDecl->FindPropertyDeclaration(Member))
1846    return PD;
1847  if (ObjCMethodDecl *OMD = PDecl->getInstanceMethod(Sel))
1848    return OMD;
1849
1850  for (ObjCProtocolDecl::protocol_iterator I = PDecl->protocol_begin(),
1851       E = PDecl->protocol_end(); I != E; ++I) {
1852    if (Decl *D = FindGetterNameDeclFromProtocolList(*I, Member, Sel,
1853                                                     Context))
1854      return D;
1855  }
1856  return 0;
1857}
1858
1859static Decl *FindGetterNameDecl(const ObjCObjectPointerType *QIdTy,
1860                                IdentifierInfo *Member,
1861                                const Selector &Sel,
1862                                ASTContext &Context) {
1863  // Check protocols on qualified interfaces.
1864  Decl *GDecl = 0;
1865  for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
1866       E = QIdTy->qual_end(); I != E; ++I) {
1867    if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(Member)) {
1868      GDecl = PD;
1869      break;
1870    }
1871    // Also must look for a getter name which uses property syntax.
1872    if (ObjCMethodDecl *OMD = (*I)->getInstanceMethod(Sel)) {
1873      GDecl = OMD;
1874      break;
1875    }
1876  }
1877  if (!GDecl) {
1878    for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
1879         E = QIdTy->qual_end(); I != E; ++I) {
1880      // Search in the protocol-qualifier list of current protocol.
1881      GDecl = FindGetterNameDeclFromProtocolList(*I, Member, Sel, Context);
1882      if (GDecl)
1883        return GDecl;
1884    }
1885  }
1886  return GDecl;
1887}
1888
1889Action::OwningExprResult
1890Sema::BuildMemberReferenceExpr(Scope *S, ExprArg Base, SourceLocation OpLoc,
1891                               tok::TokenKind OpKind, SourceLocation MemberLoc,
1892                               DeclarationName MemberName,
1893                               bool HasExplicitTemplateArgs,
1894                               SourceLocation LAngleLoc,
1895                               const TemplateArgumentLoc *ExplicitTemplateArgs,
1896                               unsigned NumExplicitTemplateArgs,
1897                               SourceLocation RAngleLoc,
1898                               DeclPtrTy ObjCImpDecl, const CXXScopeSpec *SS,
1899                               NamedDecl *FirstQualifierInScope) {
1900  if (SS && SS->isInvalid())
1901    return ExprError();
1902
1903  // Since this might be a postfix expression, get rid of ParenListExprs.
1904  Base = MaybeConvertParenListExprToParenExpr(S, move(Base));
1905
1906  Expr *BaseExpr = Base.takeAs<Expr>();
1907  assert(BaseExpr && "no base expression");
1908
1909  // Perform default conversions.
1910  DefaultFunctionArrayConversion(BaseExpr);
1911
1912  QualType BaseType = BaseExpr->getType();
1913  // If this is an Objective-C pseudo-builtin and a definition is provided then
1914  // use that.
1915  if (BaseType->isObjCIdType()) {
1916    // We have an 'id' type. Rather than fall through, we check if this
1917    // is a reference to 'isa'.
1918    if (BaseType != Context.ObjCIdRedefinitionType) {
1919      BaseType = Context.ObjCIdRedefinitionType;
1920      ImpCastExprToType(BaseExpr, BaseType, CastExpr::CK_BitCast);
1921    }
1922  }
1923  assert(!BaseType.isNull() && "no type for member expression");
1924
1925  // Handle properties on ObjC 'Class' types.
1926  if (OpKind == tok::period && BaseType->isObjCClassType()) {
1927    // Also must look for a getter name which uses property syntax.
1928    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
1929    Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
1930    if (ObjCMethodDecl *MD = getCurMethodDecl()) {
1931      ObjCInterfaceDecl *IFace = MD->getClassInterface();
1932      ObjCMethodDecl *Getter;
1933      // FIXME: need to also look locally in the implementation.
1934      if ((Getter = IFace->lookupClassMethod(Sel))) {
1935        // Check the use of this method.
1936        if (DiagnoseUseOfDecl(Getter, MemberLoc))
1937          return ExprError();
1938      }
1939      // If we found a getter then this may be a valid dot-reference, we
1940      // will look for the matching setter, in case it is needed.
1941      Selector SetterSel =
1942      SelectorTable::constructSetterName(PP.getIdentifierTable(),
1943                                         PP.getSelectorTable(), Member);
1944      ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel);
1945      if (!Setter) {
1946        // If this reference is in an @implementation, also check for 'private'
1947        // methods.
1948        Setter = IFace->lookupPrivateInstanceMethod(SetterSel);
1949      }
1950      // Look through local category implementations associated with the class.
1951      if (!Setter)
1952        Setter = IFace->getCategoryClassMethod(SetterSel);
1953
1954      if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
1955        return ExprError();
1956
1957      if (Getter || Setter) {
1958        QualType PType;
1959
1960        if (Getter)
1961          PType = Getter->getResultType();
1962        else
1963          // Get the expression type from Setter's incoming parameter.
1964          PType = (*(Setter->param_end() -1))->getType();
1965        // FIXME: we must check that the setter has property type.
1966        return Owned(new (Context) ObjCImplicitSetterGetterRefExpr(Getter,
1967                                                  PType,
1968                                                  Setter, MemberLoc, BaseExpr));
1969      }
1970      return ExprError(Diag(MemberLoc, diag::err_property_not_found)
1971                       << MemberName << BaseType);
1972    }
1973  }
1974
1975  if (BaseType->isObjCClassType() &&
1976      BaseType != Context.ObjCClassRedefinitionType) {
1977    BaseType = Context.ObjCClassRedefinitionType;
1978    ImpCastExprToType(BaseExpr, BaseType, CastExpr::CK_BitCast);
1979  }
1980
1981  // Get the type being accessed in BaseType.  If this is an arrow, the BaseExpr
1982  // must have pointer type, and the accessed type is the pointee.
1983  if (OpKind == tok::arrow) {
1984    if (BaseType->isDependentType()) {
1985      NestedNameSpecifier *Qualifier = 0;
1986      if (SS) {
1987        Qualifier = static_cast<NestedNameSpecifier *>(SS->getScopeRep());
1988        if (!FirstQualifierInScope)
1989          FirstQualifierInScope = FindFirstQualifierInScope(S, Qualifier);
1990      }
1991
1992      return Owned(CXXUnresolvedMemberExpr::Create(Context, BaseExpr, true,
1993                                                   OpLoc, Qualifier,
1994                                            SS? SS->getRange() : SourceRange(),
1995                                                   FirstQualifierInScope,
1996                                                   MemberName,
1997                                                   MemberLoc,
1998                                                   HasExplicitTemplateArgs,
1999                                                   LAngleLoc,
2000                                                   ExplicitTemplateArgs,
2001                                                   NumExplicitTemplateArgs,
2002                                                   RAngleLoc));
2003    }
2004    else if (const PointerType *PT = BaseType->getAs<PointerType>())
2005      BaseType = PT->getPointeeType();
2006    else if (BaseType->isObjCObjectPointerType())
2007      ;
2008    else
2009      return ExprError(Diag(MemberLoc,
2010                            diag::err_typecheck_member_reference_arrow)
2011        << BaseType << BaseExpr->getSourceRange());
2012  } else if (BaseType->isDependentType()) {
2013      // Require that the base type isn't a pointer type
2014      // (so we'll report an error for)
2015      // T* t;
2016      // t.f;
2017      //
2018      // In Obj-C++, however, the above expression is valid, since it could be
2019      // accessing the 'f' property if T is an Obj-C interface. The extra check
2020      // allows this, while still reporting an error if T is a struct pointer.
2021      const PointerType *PT = BaseType->getAs<PointerType>();
2022
2023      if (!PT || (getLangOptions().ObjC1 &&
2024                  !PT->getPointeeType()->isRecordType())) {
2025        NestedNameSpecifier *Qualifier = 0;
2026        if (SS) {
2027          Qualifier = static_cast<NestedNameSpecifier *>(SS->getScopeRep());
2028          if (!FirstQualifierInScope)
2029            FirstQualifierInScope = FindFirstQualifierInScope(S, Qualifier);
2030        }
2031
2032        return Owned(CXXUnresolvedMemberExpr::Create(Context,
2033                                                     BaseExpr, false,
2034                                                     OpLoc,
2035                                                     Qualifier,
2036                                            SS? SS->getRange() : SourceRange(),
2037                                                     FirstQualifierInScope,
2038                                                     MemberName,
2039                                                     MemberLoc,
2040                                                     HasExplicitTemplateArgs,
2041                                                     LAngleLoc,
2042                                                     ExplicitTemplateArgs,
2043                                                     NumExplicitTemplateArgs,
2044                                                     RAngleLoc));
2045      }
2046    }
2047
2048  // Handle field access to simple records.  This also handles access to fields
2049  // of the ObjC 'id' struct.
2050  if (const RecordType *RTy = BaseType->getAs<RecordType>()) {
2051    RecordDecl *RDecl = RTy->getDecl();
2052    if (RequireCompleteType(OpLoc, BaseType,
2053                            PDiag(diag::err_typecheck_incomplete_tag)
2054                              << BaseExpr->getSourceRange()))
2055      return ExprError();
2056
2057    DeclContext *DC = RDecl;
2058    if (SS && SS->isSet()) {
2059      // If the member name was a qualified-id, look into the
2060      // nested-name-specifier.
2061      DC = computeDeclContext(*SS, false);
2062
2063      if (!isa<TypeDecl>(DC)) {
2064        Diag(MemberLoc, diag::err_qualified_member_nonclass)
2065          << DC << SS->getRange();
2066        return ExprError();
2067      }
2068
2069      // FIXME: If DC is not computable, we should build a
2070      // CXXUnresolvedMemberExpr.
2071      assert(DC && "Cannot handle non-computable dependent contexts in lookup");
2072    }
2073
2074    // The record definition is complete, now make sure the member is valid.
2075    LookupResult Result;
2076    LookupQualifiedName(Result, DC, MemberName, LookupMemberName, false);
2077
2078    if (Result.empty())
2079      return ExprError(Diag(MemberLoc, diag::err_no_member)
2080               << MemberName << DC << BaseExpr->getSourceRange());
2081    if (Result.isAmbiguous()) {
2082      DiagnoseAmbiguousLookup(Result, MemberName, MemberLoc,
2083                              BaseExpr->getSourceRange());
2084      return ExprError();
2085    }
2086
2087    NamedDecl *MemberDecl = Result.getAsSingleDecl(Context);
2088
2089    if (SS && SS->isSet()) {
2090      TypeDecl* TyD = cast<TypeDecl>(MemberDecl->getDeclContext());
2091      QualType BaseTypeCanon
2092        = Context.getCanonicalType(BaseType).getUnqualifiedType();
2093      QualType MemberTypeCanon
2094        = Context.getCanonicalType(Context.getTypeDeclType(TyD));
2095
2096      if (BaseTypeCanon != MemberTypeCanon &&
2097          !IsDerivedFrom(BaseTypeCanon, MemberTypeCanon))
2098        return ExprError(Diag(SS->getBeginLoc(),
2099                              diag::err_not_direct_base_or_virtual)
2100                         << MemberTypeCanon << BaseTypeCanon);
2101    }
2102
2103    // If the decl being referenced had an error, return an error for this
2104    // sub-expr without emitting another error, in order to avoid cascading
2105    // error cases.
2106    if (MemberDecl->isInvalidDecl())
2107      return ExprError();
2108
2109    bool ShouldCheckUse = true;
2110    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MemberDecl)) {
2111      // Don't diagnose the use of a virtual member function unless it's
2112      // explicitly qualified.
2113      if (MD->isVirtual() && (!SS || !SS->isSet()))
2114        ShouldCheckUse = false;
2115    }
2116
2117    // Check the use of this field
2118    if (ShouldCheckUse && DiagnoseUseOfDecl(MemberDecl, MemberLoc))
2119      return ExprError();
2120
2121    if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl)) {
2122      // We may have found a field within an anonymous union or struct
2123      // (C++ [class.union]).
2124      if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion())
2125        return BuildAnonymousStructUnionMemberReference(MemberLoc, FD,
2126                                                        BaseExpr, OpLoc);
2127
2128      // Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref]
2129      QualType MemberType = FD->getType();
2130      if (const ReferenceType *Ref = MemberType->getAs<ReferenceType>())
2131        MemberType = Ref->getPointeeType();
2132      else {
2133        Qualifiers BaseQuals = BaseType.getQualifiers();
2134        BaseQuals.removeObjCGCAttr();
2135        if (FD->isMutable()) BaseQuals.removeConst();
2136
2137        Qualifiers MemberQuals
2138          = Context.getCanonicalType(MemberType).getQualifiers();
2139
2140        Qualifiers Combined = BaseQuals + MemberQuals;
2141        if (Combined != MemberQuals)
2142          MemberType = Context.getQualifiedType(MemberType, Combined);
2143      }
2144
2145      MarkDeclarationReferenced(MemberLoc, FD);
2146      if (PerformObjectMemberConversion(BaseExpr, FD))
2147        return ExprError();
2148      return Owned(BuildMemberExpr(Context, BaseExpr, OpKind == tok::arrow, SS,
2149                                   FD, MemberLoc, MemberType));
2150    }
2151
2152    if (VarDecl *Var = dyn_cast<VarDecl>(MemberDecl)) {
2153      MarkDeclarationReferenced(MemberLoc, MemberDecl);
2154      return Owned(BuildMemberExpr(Context, BaseExpr, OpKind == tok::arrow, SS,
2155                                   Var, MemberLoc,
2156                                   Var->getType().getNonReferenceType()));
2157    }
2158    if (FunctionDecl *MemberFn = dyn_cast<FunctionDecl>(MemberDecl)) {
2159      MarkDeclarationReferenced(MemberLoc, MemberDecl);
2160      return Owned(BuildMemberExpr(Context, BaseExpr, OpKind == tok::arrow, SS,
2161                                   MemberFn, MemberLoc,
2162                                   MemberFn->getType()));
2163    }
2164    if (FunctionTemplateDecl *FunTmpl
2165          = dyn_cast<FunctionTemplateDecl>(MemberDecl)) {
2166      MarkDeclarationReferenced(MemberLoc, MemberDecl);
2167
2168      if (HasExplicitTemplateArgs)
2169        return Owned(MemberExpr::Create(Context, BaseExpr, OpKind == tok::arrow,
2170                             (NestedNameSpecifier *)(SS? SS->getScopeRep() : 0),
2171                                       SS? SS->getRange() : SourceRange(),
2172                                        FunTmpl, MemberLoc, true,
2173                                        LAngleLoc, ExplicitTemplateArgs,
2174                                        NumExplicitTemplateArgs, RAngleLoc,
2175                                        Context.OverloadTy));
2176
2177      return Owned(BuildMemberExpr(Context, BaseExpr, OpKind == tok::arrow, SS,
2178                                   FunTmpl, MemberLoc,
2179                                   Context.OverloadTy));
2180    }
2181    if (OverloadedFunctionDecl *Ovl
2182          = dyn_cast<OverloadedFunctionDecl>(MemberDecl)) {
2183      if (HasExplicitTemplateArgs)
2184        return Owned(MemberExpr::Create(Context, BaseExpr, OpKind == tok::arrow,
2185                             (NestedNameSpecifier *)(SS? SS->getScopeRep() : 0),
2186                                        SS? SS->getRange() : SourceRange(),
2187                                        Ovl, MemberLoc, true,
2188                                        LAngleLoc, ExplicitTemplateArgs,
2189                                        NumExplicitTemplateArgs, RAngleLoc,
2190                                        Context.OverloadTy));
2191
2192      return Owned(BuildMemberExpr(Context, BaseExpr, OpKind == tok::arrow, SS,
2193                                   Ovl, MemberLoc, Context.OverloadTy));
2194    }
2195    if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(MemberDecl)) {
2196      MarkDeclarationReferenced(MemberLoc, MemberDecl);
2197      return Owned(BuildMemberExpr(Context, BaseExpr, OpKind == tok::arrow, SS,
2198                                   Enum, MemberLoc, Enum->getType()));
2199    }
2200    if (isa<TypeDecl>(MemberDecl))
2201      return ExprError(Diag(MemberLoc,diag::err_typecheck_member_reference_type)
2202        << MemberName << int(OpKind == tok::arrow));
2203
2204    // We found a declaration kind that we didn't expect. This is a
2205    // generic error message that tells the user that she can't refer
2206    // to this member with '.' or '->'.
2207    return ExprError(Diag(MemberLoc,
2208                          diag::err_typecheck_member_reference_unknown)
2209      << MemberName << int(OpKind == tok::arrow));
2210  }
2211
2212  // Handle pseudo-destructors (C++ [expr.pseudo]). Since anything referring
2213  // into a record type was handled above, any destructor we see here is a
2214  // pseudo-destructor.
2215  if (MemberName.getNameKind() == DeclarationName::CXXDestructorName) {
2216    // C++ [expr.pseudo]p2:
2217    //   The left hand side of the dot operator shall be of scalar type. The
2218    //   left hand side of the arrow operator shall be of pointer to scalar
2219    //   type.
2220    if (!BaseType->isScalarType())
2221      return Owned(Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar)
2222                     << BaseType << BaseExpr->getSourceRange());
2223
2224    //   [...] The type designated by the pseudo-destructor-name shall be the
2225    //   same as the object type.
2226    if (!MemberName.getCXXNameType()->isDependentType() &&
2227        !Context.hasSameUnqualifiedType(BaseType, MemberName.getCXXNameType()))
2228      return Owned(Diag(OpLoc, diag::err_pseudo_dtor_type_mismatch)
2229                     << BaseType << MemberName.getCXXNameType()
2230                     << BaseExpr->getSourceRange() << SourceRange(MemberLoc));
2231
2232    //   [...] Furthermore, the two type-names in a pseudo-destructor-name of
2233    //   the form
2234    //
2235    //       ::[opt] nested-name-specifier[opt] type-name ::  ̃ type-name
2236    //
2237    //   shall designate the same scalar type.
2238    //
2239    // FIXME: DPG can't see any way to trigger this particular clause, so it
2240    // isn't checked here.
2241
2242    // FIXME: We've lost the precise spelling of the type by going through
2243    // DeclarationName. Can we do better?
2244    return Owned(new (Context) CXXPseudoDestructorExpr(Context, BaseExpr,
2245                                                       OpKind == tok::arrow,
2246                                                       OpLoc,
2247                            (NestedNameSpecifier *)(SS? SS->getScopeRep() : 0),
2248                                            SS? SS->getRange() : SourceRange(),
2249                                                   MemberName.getCXXNameType(),
2250                                                       MemberLoc));
2251  }
2252
2253  // Handle access to Objective-C instance variables, such as "Obj->ivar" and
2254  // (*Obj).ivar.
2255  if ((OpKind == tok::arrow && BaseType->isObjCObjectPointerType()) ||
2256      (OpKind == tok::period && BaseType->isObjCInterfaceType())) {
2257    const ObjCObjectPointerType *OPT = BaseType->getAs<ObjCObjectPointerType>();
2258    const ObjCInterfaceType *IFaceT =
2259      OPT ? OPT->getInterfaceType() : BaseType->getAs<ObjCInterfaceType>();
2260    if (IFaceT) {
2261      IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
2262
2263      ObjCInterfaceDecl *IDecl = IFaceT->getDecl();
2264      ObjCInterfaceDecl *ClassDeclared;
2265      ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
2266
2267      if (IV) {
2268        // If the decl being referenced had an error, return an error for this
2269        // sub-expr without emitting another error, in order to avoid cascading
2270        // error cases.
2271        if (IV->isInvalidDecl())
2272          return ExprError();
2273
2274        // Check whether we can reference this field.
2275        if (DiagnoseUseOfDecl(IV, MemberLoc))
2276          return ExprError();
2277        if (IV->getAccessControl() != ObjCIvarDecl::Public &&
2278            IV->getAccessControl() != ObjCIvarDecl::Package) {
2279          ObjCInterfaceDecl *ClassOfMethodDecl = 0;
2280          if (ObjCMethodDecl *MD = getCurMethodDecl())
2281            ClassOfMethodDecl =  MD->getClassInterface();
2282          else if (ObjCImpDecl && getCurFunctionDecl()) {
2283            // Case of a c-function declared inside an objc implementation.
2284            // FIXME: For a c-style function nested inside an objc implementation
2285            // class, there is no implementation context available, so we pass
2286            // down the context as argument to this routine. Ideally, this context
2287            // need be passed down in the AST node and somehow calculated from the
2288            // AST for a function decl.
2289            Decl *ImplDecl = ObjCImpDecl.getAs<Decl>();
2290            if (ObjCImplementationDecl *IMPD =
2291                dyn_cast<ObjCImplementationDecl>(ImplDecl))
2292              ClassOfMethodDecl = IMPD->getClassInterface();
2293            else if (ObjCCategoryImplDecl* CatImplClass =
2294                        dyn_cast<ObjCCategoryImplDecl>(ImplDecl))
2295              ClassOfMethodDecl = CatImplClass->getClassInterface();
2296          }
2297
2298          if (IV->getAccessControl() == ObjCIvarDecl::Private) {
2299            if (ClassDeclared != IDecl ||
2300                ClassOfMethodDecl != ClassDeclared)
2301              Diag(MemberLoc, diag::error_private_ivar_access)
2302                << IV->getDeclName();
2303          } else if (!IDecl->isSuperClassOf(ClassOfMethodDecl))
2304            // @protected
2305            Diag(MemberLoc, diag::error_protected_ivar_access)
2306              << IV->getDeclName();
2307        }
2308
2309        return Owned(new (Context) ObjCIvarRefExpr(IV, IV->getType(),
2310                                                   MemberLoc, BaseExpr,
2311                                                   OpKind == tok::arrow));
2312      }
2313      return ExprError(Diag(MemberLoc, diag::err_typecheck_member_reference_ivar)
2314                         << IDecl->getDeclName() << MemberName
2315                         << BaseExpr->getSourceRange());
2316    }
2317  }
2318  // Handle properties on 'id' and qualified "id".
2319  if (OpKind == tok::period && (BaseType->isObjCIdType() ||
2320                                BaseType->isObjCQualifiedIdType())) {
2321    const ObjCObjectPointerType *QIdTy = BaseType->getAs<ObjCObjectPointerType>();
2322    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
2323
2324    // Check protocols on qualified interfaces.
2325    Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
2326    if (Decl *PMDecl = FindGetterNameDecl(QIdTy, Member, Sel, Context)) {
2327      if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(PMDecl)) {
2328        // Check the use of this declaration
2329        if (DiagnoseUseOfDecl(PD, MemberLoc))
2330          return ExprError();
2331
2332        return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
2333                                                       MemberLoc, BaseExpr));
2334      }
2335      if (ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(PMDecl)) {
2336        // Check the use of this method.
2337        if (DiagnoseUseOfDecl(OMD, MemberLoc))
2338          return ExprError();
2339
2340        return Owned(new (Context) ObjCMessageExpr(BaseExpr, Sel,
2341                                                   OMD->getResultType(),
2342                                                   OMD, OpLoc, MemberLoc,
2343                                                   NULL, 0));
2344      }
2345    }
2346
2347    return ExprError(Diag(MemberLoc, diag::err_property_not_found)
2348                       << MemberName << BaseType);
2349  }
2350  // Handle Objective-C property access, which is "Obj.property" where Obj is a
2351  // pointer to a (potentially qualified) interface type.
2352  const ObjCObjectPointerType *OPT;
2353  if (OpKind == tok::period &&
2354      (OPT = BaseType->getAsObjCInterfacePointerType())) {
2355    const ObjCInterfaceType *IFaceT = OPT->getInterfaceType();
2356    ObjCInterfaceDecl *IFace = IFaceT->getDecl();
2357    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
2358
2359    // Search for a declared property first.
2360    if (ObjCPropertyDecl *PD = IFace->FindPropertyDeclaration(Member)) {
2361      // Check whether we can reference this property.
2362      if (DiagnoseUseOfDecl(PD, MemberLoc))
2363        return ExprError();
2364      QualType ResTy = PD->getType();
2365      Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
2366      ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Sel);
2367      if (DiagnosePropertyAccessorMismatch(PD, Getter, MemberLoc))
2368        ResTy = Getter->getResultType();
2369      return Owned(new (Context) ObjCPropertyRefExpr(PD, ResTy,
2370                                                     MemberLoc, BaseExpr));
2371    }
2372    // Check protocols on qualified interfaces.
2373    for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
2374         E = OPT->qual_end(); I != E; ++I)
2375      if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(Member)) {
2376        // Check whether we can reference this property.
2377        if (DiagnoseUseOfDecl(PD, MemberLoc))
2378          return ExprError();
2379
2380        return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
2381                                                       MemberLoc, BaseExpr));
2382      }
2383    for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
2384         E = OPT->qual_end(); I != E; ++I)
2385      if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(Member)) {
2386        // Check whether we can reference this property.
2387        if (DiagnoseUseOfDecl(PD, MemberLoc))
2388          return ExprError();
2389
2390        return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
2391                                                       MemberLoc, BaseExpr));
2392      }
2393    // If that failed, look for an "implicit" property by seeing if the nullary
2394    // selector is implemented.
2395
2396    // FIXME: The logic for looking up nullary and unary selectors should be
2397    // shared with the code in ActOnInstanceMessage.
2398
2399    Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
2400    ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Sel);
2401
2402    // If this reference is in an @implementation, check for 'private' methods.
2403    if (!Getter)
2404      Getter = IFace->lookupPrivateInstanceMethod(Sel);
2405
2406    // Look through local category implementations associated with the class.
2407    if (!Getter)
2408      Getter = IFace->getCategoryInstanceMethod(Sel);
2409    if (Getter) {
2410      // Check if we can reference this property.
2411      if (DiagnoseUseOfDecl(Getter, MemberLoc))
2412        return ExprError();
2413    }
2414    // If we found a getter then this may be a valid dot-reference, we
2415    // will look for the matching setter, in case it is needed.
2416    Selector SetterSel =
2417      SelectorTable::constructSetterName(PP.getIdentifierTable(),
2418                                         PP.getSelectorTable(), Member);
2419    ObjCMethodDecl *Setter = IFace->lookupInstanceMethod(SetterSel);
2420    if (!Setter) {
2421      // If this reference is in an @implementation, also check for 'private'
2422      // methods.
2423      Setter = IFace->lookupPrivateInstanceMethod(SetterSel);
2424    }
2425    // Look through local category implementations associated with the class.
2426    if (!Setter)
2427      Setter = IFace->getCategoryInstanceMethod(SetterSel);
2428
2429    if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
2430      return ExprError();
2431
2432    if (Getter || Setter) {
2433      QualType PType;
2434
2435      if (Getter)
2436        PType = Getter->getResultType();
2437      else
2438        // Get the expression type from Setter's incoming parameter.
2439        PType = (*(Setter->param_end() -1))->getType();
2440      // FIXME: we must check that the setter has property type.
2441      return Owned(new (Context) ObjCImplicitSetterGetterRefExpr(Getter, PType,
2442                                      Setter, MemberLoc, BaseExpr));
2443    }
2444    return ExprError(Diag(MemberLoc, diag::err_property_not_found)
2445      << MemberName << BaseType);
2446  }
2447
2448  // Handle the following exceptional case (*Obj).isa.
2449  if (OpKind == tok::period &&
2450      BaseType->isSpecificBuiltinType(BuiltinType::ObjCId) &&
2451      MemberName.getAsIdentifierInfo()->isStr("isa"))
2452    return Owned(new (Context) ObjCIsaExpr(BaseExpr, false, MemberLoc,
2453                                           Context.getObjCIdType()));
2454
2455  // Handle 'field access' to vectors, such as 'V.xx'.
2456  if (BaseType->isExtVectorType()) {
2457    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
2458    QualType ret = CheckExtVectorComponent(BaseType, OpLoc, Member, MemberLoc);
2459    if (ret.isNull())
2460      return ExprError();
2461    return Owned(new (Context) ExtVectorElementExpr(ret, BaseExpr, *Member,
2462                                                    MemberLoc));
2463  }
2464
2465  Diag(MemberLoc, diag::err_typecheck_member_reference_struct_union)
2466    << BaseType << BaseExpr->getSourceRange();
2467
2468  // If the user is trying to apply -> or . to a function or function
2469  // pointer, it's probably because they forgot parentheses to call
2470  // the function. Suggest the addition of those parentheses.
2471  if (BaseType == Context.OverloadTy ||
2472      BaseType->isFunctionType() ||
2473      (BaseType->isPointerType() &&
2474       BaseType->getAs<PointerType>()->isFunctionType())) {
2475    SourceLocation Loc = PP.getLocForEndOfToken(BaseExpr->getLocEnd());
2476    Diag(Loc, diag::note_member_reference_needs_call)
2477      << CodeModificationHint::CreateInsertion(Loc, "()");
2478  }
2479
2480  return ExprError();
2481}
2482
2483Sema::OwningExprResult Sema::ActOnMemberAccessExpr(Scope *S, ExprArg Base,
2484                                                   SourceLocation OpLoc,
2485                                                   tok::TokenKind OpKind,
2486                                                   const CXXScopeSpec &SS,
2487                                                   UnqualifiedId &Member,
2488                                                   DeclPtrTy ObjCImpDecl,
2489                                                   bool HasTrailingLParen) {
2490  if (Member.getKind() == UnqualifiedId::IK_TemplateId) {
2491    TemplateName Template
2492      = TemplateName::getFromVoidPointer(Member.TemplateId->Template);
2493
2494    // FIXME: We're going to end up looking up the template based on its name,
2495    // twice!
2496    DeclarationName Name;
2497    if (TemplateDecl *ActualTemplate = Template.getAsTemplateDecl())
2498      Name = ActualTemplate->getDeclName();
2499    else if (OverloadedFunctionDecl *Ovl = Template.getAsOverloadedFunctionDecl())
2500      Name = Ovl->getDeclName();
2501    else
2502      Name = Template.getAsDependentTemplateName()->getName();
2503
2504    // Translate the parser's template argument list in our AST format.
2505    ASTTemplateArgsPtr TemplateArgsPtr(*this,
2506                                       Member.TemplateId->getTemplateArgs(),
2507                                       Member.TemplateId->getTemplateArgIsType(),
2508                                       Member.TemplateId->NumArgs);
2509
2510    llvm::SmallVector<TemplateArgumentLoc, 16> TemplateArgs;
2511    translateTemplateArguments(TemplateArgsPtr,
2512                               Member.TemplateId->getTemplateArgLocations(),
2513                               TemplateArgs);
2514    TemplateArgsPtr.release();
2515
2516    // Do we have the save the actual template name? We might need it...
2517    return BuildMemberReferenceExpr(S, move(Base), OpLoc, OpKind,
2518                                    Member.TemplateId->TemplateNameLoc,
2519                                    Name, true, Member.TemplateId->LAngleLoc,
2520                                    TemplateArgs.data(), TemplateArgs.size(),
2521                                    Member.TemplateId->RAngleLoc, DeclPtrTy(),
2522                                    &SS);
2523  }
2524
2525  // FIXME: We lose a lot of source information by mapping directly to the
2526  // DeclarationName.
2527  OwningExprResult Result
2528    = BuildMemberReferenceExpr(S, move(Base), OpLoc, OpKind,
2529                               Member.getSourceRange().getBegin(),
2530                               GetNameFromUnqualifiedId(Member),
2531                               ObjCImpDecl, &SS);
2532
2533  if (Result.isInvalid() || HasTrailingLParen ||
2534      Member.getKind() != UnqualifiedId::IK_DestructorName)
2535    return move(Result);
2536
2537  // The only way a reference to a destructor can be used is to
2538  // immediately call them. Since the next token is not a '(', produce a
2539  // diagnostic and build the call now.
2540  Expr *E = (Expr *)Result.get();
2541  SourceLocation ExpectedLParenLoc
2542    = PP.getLocForEndOfToken(Member.getSourceRange().getEnd());
2543  Diag(E->getLocStart(), diag::err_dtor_expr_without_call)
2544    << isa<CXXPseudoDestructorExpr>(E)
2545    << CodeModificationHint::CreateInsertion(ExpectedLParenLoc, "()");
2546
2547  return ActOnCallExpr(0, move(Result), ExpectedLParenLoc,
2548                       MultiExprArg(*this, 0, 0), 0, ExpectedLParenLoc);
2549}
2550
2551Sema::OwningExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc,
2552                                                    FunctionDecl *FD,
2553                                                    ParmVarDecl *Param) {
2554  if (Param->hasUnparsedDefaultArg()) {
2555    Diag (CallLoc,
2556          diag::err_use_of_default_argument_to_function_declared_later) <<
2557      FD << cast<CXXRecordDecl>(FD->getDeclContext())->getDeclName();
2558    Diag(UnparsedDefaultArgLocs[Param],
2559          diag::note_default_argument_declared_here);
2560  } else {
2561    if (Param->hasUninstantiatedDefaultArg()) {
2562      Expr *UninstExpr = Param->getUninstantiatedDefaultArg();
2563
2564      // Instantiate the expression.
2565      MultiLevelTemplateArgumentList ArgList = getTemplateInstantiationArgs(FD);
2566
2567      InstantiatingTemplate Inst(*this, CallLoc, Param,
2568                                 ArgList.getInnermost().getFlatArgumentList(),
2569                                 ArgList.getInnermost().flat_size());
2570
2571      OwningExprResult Result = SubstExpr(UninstExpr, ArgList);
2572      if (Result.isInvalid())
2573        return ExprError();
2574
2575      if (SetParamDefaultArgument(Param, move(Result),
2576                                  /*FIXME:EqualLoc*/
2577                                  UninstExpr->getSourceRange().getBegin()))
2578        return ExprError();
2579    }
2580
2581    Expr *DefaultExpr = Param->getDefaultArg();
2582
2583    // If the default expression creates temporaries, we need to
2584    // push them to the current stack of expression temporaries so they'll
2585    // be properly destroyed.
2586    if (CXXExprWithTemporaries *E
2587          = dyn_cast_or_null<CXXExprWithTemporaries>(DefaultExpr)) {
2588      assert(!E->shouldDestroyTemporaries() &&
2589             "Can't destroy temporaries in a default argument expr!");
2590      for (unsigned I = 0, N = E->getNumTemporaries(); I != N; ++I)
2591        ExprTemporaries.push_back(E->getTemporary(I));
2592    }
2593  }
2594
2595  // We already type-checked the argument, so we know it works.
2596  return Owned(CXXDefaultArgExpr::Create(Context, Param));
2597}
2598
2599/// ConvertArgumentsForCall - Converts the arguments specified in
2600/// Args/NumArgs to the parameter types of the function FDecl with
2601/// function prototype Proto. Call is the call expression itself, and
2602/// Fn is the function expression. For a C++ member function, this
2603/// routine does not attempt to convert the object argument. Returns
2604/// true if the call is ill-formed.
2605bool
2606Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
2607                              FunctionDecl *FDecl,
2608                              const FunctionProtoType *Proto,
2609                              Expr **Args, unsigned NumArgs,
2610                              SourceLocation RParenLoc) {
2611  // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
2612  // assignment, to the types of the corresponding parameter, ...
2613  unsigned NumArgsInProto = Proto->getNumArgs();
2614  unsigned NumArgsToCheck = NumArgs;
2615  bool Invalid = false;
2616
2617  // If too few arguments are available (and we don't have default
2618  // arguments for the remaining parameters), don't make the call.
2619  if (NumArgs < NumArgsInProto) {
2620    if (!FDecl || NumArgs < FDecl->getMinRequiredArguments())
2621      return Diag(RParenLoc, diag::err_typecheck_call_too_few_args)
2622        << Fn->getType()->isBlockPointerType() << Fn->getSourceRange();
2623    // Use default arguments for missing arguments
2624    NumArgsToCheck = NumArgsInProto;
2625    Call->setNumArgs(Context, NumArgsInProto);
2626  }
2627
2628  // If too many are passed and not variadic, error on the extras and drop
2629  // them.
2630  if (NumArgs > NumArgsInProto) {
2631    if (!Proto->isVariadic()) {
2632      Diag(Args[NumArgsInProto]->getLocStart(),
2633           diag::err_typecheck_call_too_many_args)
2634        << Fn->getType()->isBlockPointerType() << Fn->getSourceRange()
2635        << SourceRange(Args[NumArgsInProto]->getLocStart(),
2636                       Args[NumArgs-1]->getLocEnd());
2637      // This deletes the extra arguments.
2638      Call->setNumArgs(Context, NumArgsInProto);
2639      Invalid = true;
2640    }
2641    NumArgsToCheck = NumArgsInProto;
2642  }
2643
2644  // Continue to check argument types (even if we have too few/many args).
2645  for (unsigned i = 0; i != NumArgsToCheck; i++) {
2646    QualType ProtoArgType = Proto->getArgType(i);
2647
2648    Expr *Arg;
2649    if (i < NumArgs) {
2650      Arg = Args[i];
2651
2652      if (RequireCompleteType(Arg->getSourceRange().getBegin(),
2653                              ProtoArgType,
2654                              PDiag(diag::err_call_incomplete_argument)
2655                                << Arg->getSourceRange()))
2656        return true;
2657
2658      // Pass the argument.
2659      if (PerformCopyInitialization(Arg, ProtoArgType, "passing"))
2660        return true;
2661    } else {
2662      ParmVarDecl *Param = FDecl->getParamDecl(i);
2663
2664      OwningExprResult ArgExpr =
2665        BuildCXXDefaultArgExpr(Call->getSourceRange().getBegin(),
2666                               FDecl, Param);
2667      if (ArgExpr.isInvalid())
2668        return true;
2669
2670      Arg = ArgExpr.takeAs<Expr>();
2671    }
2672
2673    Call->setArg(i, Arg);
2674  }
2675
2676  // If this is a variadic call, handle args passed through "...".
2677  if (Proto->isVariadic()) {
2678    VariadicCallType CallType = VariadicFunction;
2679    if (Fn->getType()->isBlockPointerType())
2680      CallType = VariadicBlock; // Block
2681    else if (isa<MemberExpr>(Fn))
2682      CallType = VariadicMethod;
2683
2684    // Promote the arguments (C99 6.5.2.2p7).
2685    for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
2686      Expr *Arg = Args[i];
2687      Invalid |= DefaultVariadicArgumentPromotion(Arg, CallType);
2688      Call->setArg(i, Arg);
2689    }
2690  }
2691
2692  return Invalid;
2693}
2694
2695/// \brief "Deconstruct" the function argument of a call expression to find
2696/// the underlying declaration (if any), the name of the called function,
2697/// whether argument-dependent lookup is available, whether it has explicit
2698/// template arguments, etc.
2699void Sema::DeconstructCallFunction(Expr *FnExpr,
2700                                   NamedDecl *&Function,
2701                                   DeclarationName &Name,
2702                                   NestedNameSpecifier *&Qualifier,
2703                                   SourceRange &QualifierRange,
2704                                   bool &ArgumentDependentLookup,
2705                                   bool &HasExplicitTemplateArguments,
2706                           const TemplateArgumentLoc *&ExplicitTemplateArgs,
2707                                   unsigned &NumExplicitTemplateArgs) {
2708  // Set defaults for all of the output parameters.
2709  Function = 0;
2710  Name = DeclarationName();
2711  Qualifier = 0;
2712  QualifierRange = SourceRange();
2713  ArgumentDependentLookup = getLangOptions().CPlusPlus;
2714  HasExplicitTemplateArguments = false;
2715
2716  // If we're directly calling a function, get the appropriate declaration.
2717  // Also, in C++, keep track of whether we should perform argument-dependent
2718  // lookup and whether there were any explicitly-specified template arguments.
2719  while (true) {
2720    if (ImplicitCastExpr *IcExpr = dyn_cast<ImplicitCastExpr>(FnExpr))
2721      FnExpr = IcExpr->getSubExpr();
2722    else if (ParenExpr *PExpr = dyn_cast<ParenExpr>(FnExpr)) {
2723      // Parentheses around a function disable ADL
2724      // (C++0x [basic.lookup.argdep]p1).
2725      ArgumentDependentLookup = false;
2726      FnExpr = PExpr->getSubExpr();
2727    } else if (isa<UnaryOperator>(FnExpr) &&
2728               cast<UnaryOperator>(FnExpr)->getOpcode()
2729               == UnaryOperator::AddrOf) {
2730      FnExpr = cast<UnaryOperator>(FnExpr)->getSubExpr();
2731    } else if (DeclRefExpr *DRExpr = dyn_cast<DeclRefExpr>(FnExpr)) {
2732      Function = dyn_cast<NamedDecl>(DRExpr->getDecl());
2733      if ((Qualifier = DRExpr->getQualifier())) {
2734        ArgumentDependentLookup = false;
2735        QualifierRange = DRExpr->getQualifierRange();
2736      }
2737      break;
2738    } else if (UnresolvedFunctionNameExpr *DepName
2739               = dyn_cast<UnresolvedFunctionNameExpr>(FnExpr)) {
2740      Name = DepName->getName();
2741      break;
2742    } else if (TemplateIdRefExpr *TemplateIdRef
2743               = dyn_cast<TemplateIdRefExpr>(FnExpr)) {
2744      Function = TemplateIdRef->getTemplateName().getAsTemplateDecl();
2745      if (!Function)
2746        Function = TemplateIdRef->getTemplateName().getAsOverloadedFunctionDecl();
2747      HasExplicitTemplateArguments = true;
2748      ExplicitTemplateArgs = TemplateIdRef->getTemplateArgs();
2749      NumExplicitTemplateArgs = TemplateIdRef->getNumTemplateArgs();
2750
2751      // C++ [temp.arg.explicit]p6:
2752      //   [Note: For simple function names, argument dependent lookup (3.4.2)
2753      //   applies even when the function name is not visible within the
2754      //   scope of the call. This is because the call still has the syntactic
2755      //   form of a function call (3.4.1). But when a function template with
2756      //   explicit template arguments is used, the call does not have the
2757      //   correct syntactic form unless there is a function template with
2758      //   that name visible at the point of the call. If no such name is
2759      //   visible, the call is not syntactically well-formed and
2760      //   argument-dependent lookup does not apply. If some such name is
2761      //   visible, argument dependent lookup applies and additional function
2762      //   templates may be found in other namespaces.
2763      //
2764      // The summary of this paragraph is that, if we get to this point and the
2765      // template-id was not a qualified name, then argument-dependent lookup
2766      // is still possible.
2767      if ((Qualifier = TemplateIdRef->getQualifier())) {
2768        ArgumentDependentLookup = false;
2769        QualifierRange = TemplateIdRef->getQualifierRange();
2770      }
2771      break;
2772    } else {
2773      // Any kind of name that does not refer to a declaration (or
2774      // set of declarations) disables ADL (C++0x [basic.lookup.argdep]p3).
2775      ArgumentDependentLookup = false;
2776      break;
2777    }
2778  }
2779}
2780
2781/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
2782/// This provides the location of the left/right parens and a list of comma
2783/// locations.
2784Action::OwningExprResult
2785Sema::ActOnCallExpr(Scope *S, ExprArg fn, SourceLocation LParenLoc,
2786                    MultiExprArg args,
2787                    SourceLocation *CommaLocs, SourceLocation RParenLoc) {
2788  unsigned NumArgs = args.size();
2789
2790  // Since this might be a postfix expression, get rid of ParenListExprs.
2791  fn = MaybeConvertParenListExprToParenExpr(S, move(fn));
2792
2793  Expr *Fn = fn.takeAs<Expr>();
2794  Expr **Args = reinterpret_cast<Expr**>(args.release());
2795  assert(Fn && "no function call expression");
2796  FunctionDecl *FDecl = NULL;
2797  NamedDecl *NDecl = NULL;
2798  DeclarationName UnqualifiedName;
2799
2800  if (getLangOptions().CPlusPlus) {
2801    // If this is a pseudo-destructor expression, build the call immediately.
2802    if (isa<CXXPseudoDestructorExpr>(Fn)) {
2803      if (NumArgs > 0) {
2804        // Pseudo-destructor calls should not have any arguments.
2805        Diag(Fn->getLocStart(), diag::err_pseudo_dtor_call_with_args)
2806          << CodeModificationHint::CreateRemoval(
2807                                    SourceRange(Args[0]->getLocStart(),
2808                                                Args[NumArgs-1]->getLocEnd()));
2809
2810        for (unsigned I = 0; I != NumArgs; ++I)
2811          Args[I]->Destroy(Context);
2812
2813        NumArgs = 0;
2814      }
2815
2816      return Owned(new (Context) CallExpr(Context, Fn, 0, 0, Context.VoidTy,
2817                                          RParenLoc));
2818    }
2819
2820    // Determine whether this is a dependent call inside a C++ template,
2821    // in which case we won't do any semantic analysis now.
2822    // FIXME: Will need to cache the results of name lookup (including ADL) in
2823    // Fn.
2824    bool Dependent = false;
2825    if (Fn->isTypeDependent())
2826      Dependent = true;
2827    else if (Expr::hasAnyTypeDependentArguments(Args, NumArgs))
2828      Dependent = true;
2829
2830    if (Dependent)
2831      return Owned(new (Context) CallExpr(Context, Fn, Args, NumArgs,
2832                                          Context.DependentTy, RParenLoc));
2833
2834    // Determine whether this is a call to an object (C++ [over.call.object]).
2835    if (Fn->getType()->isRecordType())
2836      return Owned(BuildCallToObjectOfClassType(S, Fn, LParenLoc, Args, NumArgs,
2837                                                CommaLocs, RParenLoc));
2838
2839    // Determine whether this is a call to a member function.
2840    if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(Fn->IgnoreParens())) {
2841      NamedDecl *MemDecl = MemExpr->getMemberDecl();
2842      if (isa<OverloadedFunctionDecl>(MemDecl) ||
2843          isa<CXXMethodDecl>(MemDecl) ||
2844          (isa<FunctionTemplateDecl>(MemDecl) &&
2845           isa<CXXMethodDecl>(
2846                cast<FunctionTemplateDecl>(MemDecl)->getTemplatedDecl())))
2847        return Owned(BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
2848                                               CommaLocs, RParenLoc));
2849    }
2850
2851    // Determine whether this is a call to a pointer-to-member function.
2852    if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Fn->IgnoreParens())) {
2853      if (BO->getOpcode() == BinaryOperator::PtrMemD ||
2854          BO->getOpcode() == BinaryOperator::PtrMemI) {
2855        if (const FunctionProtoType *FPT =
2856              dyn_cast<FunctionProtoType>(BO->getType())) {
2857          QualType ResultTy = FPT->getResultType().getNonReferenceType();
2858
2859          ExprOwningPtr<CXXMemberCallExpr>
2860            TheCall(this, new (Context) CXXMemberCallExpr(Context, BO, Args,
2861                                                          NumArgs, ResultTy,
2862                                                          RParenLoc));
2863
2864          if (CheckCallReturnType(FPT->getResultType(),
2865                                  BO->getRHS()->getSourceRange().getBegin(),
2866                                  TheCall.get(), 0))
2867            return ExprError();
2868
2869          if (ConvertArgumentsForCall(&*TheCall, BO, 0, FPT, Args, NumArgs,
2870                                      RParenLoc))
2871            return ExprError();
2872
2873          return Owned(MaybeBindToTemporary(TheCall.release()).release());
2874        }
2875        return ExprError(Diag(Fn->getLocStart(),
2876                              diag::err_typecheck_call_not_function)
2877                              << Fn->getType() << Fn->getSourceRange());
2878      }
2879    }
2880  }
2881
2882  // If we're directly calling a function, get the appropriate declaration.
2883  // Also, in C++, keep track of whether we should perform argument-dependent
2884  // lookup and whether there were any explicitly-specified template arguments.
2885  bool ADL = true;
2886  bool HasExplicitTemplateArgs = 0;
2887  const TemplateArgumentLoc *ExplicitTemplateArgs = 0;
2888  unsigned NumExplicitTemplateArgs = 0;
2889  NestedNameSpecifier *Qualifier = 0;
2890  SourceRange QualifierRange;
2891  DeconstructCallFunction(Fn, NDecl, UnqualifiedName, Qualifier, QualifierRange,
2892                          ADL,HasExplicitTemplateArgs, ExplicitTemplateArgs,
2893                          NumExplicitTemplateArgs);
2894
2895  OverloadedFunctionDecl *Ovl = 0;
2896  FunctionTemplateDecl *FunctionTemplate = 0;
2897  if (NDecl) {
2898    FDecl = dyn_cast<FunctionDecl>(NDecl);
2899    if ((FunctionTemplate = dyn_cast<FunctionTemplateDecl>(NDecl)))
2900      FDecl = FunctionTemplate->getTemplatedDecl();
2901    else
2902      FDecl = dyn_cast<FunctionDecl>(NDecl);
2903    Ovl = dyn_cast<OverloadedFunctionDecl>(NDecl);
2904  }
2905
2906  if (Ovl || FunctionTemplate ||
2907      (getLangOptions().CPlusPlus && (FDecl || UnqualifiedName))) {
2908    // We don't perform ADL for implicit declarations of builtins.
2909    if (FDecl && FDecl->getBuiltinID() && FDecl->isImplicit())
2910      ADL = false;
2911
2912    // We don't perform ADL in C.
2913    if (!getLangOptions().CPlusPlus)
2914      ADL = false;
2915
2916    if (Ovl || FunctionTemplate || ADL) {
2917      FDecl = ResolveOverloadedCallFn(Fn, NDecl, UnqualifiedName,
2918                                      HasExplicitTemplateArgs,
2919                                      ExplicitTemplateArgs,
2920                                      NumExplicitTemplateArgs,
2921                                      LParenLoc, Args, NumArgs, CommaLocs,
2922                                      RParenLoc, ADL);
2923      if (!FDecl)
2924        return ExprError();
2925
2926      Fn = FixOverloadedFunctionReference(Fn, FDecl);
2927    }
2928  }
2929
2930  // Promote the function operand.
2931  UsualUnaryConversions(Fn);
2932
2933  // Make the call expr early, before semantic checks.  This guarantees cleanup
2934  // of arguments and function on error.
2935  ExprOwningPtr<CallExpr> TheCall(this, new (Context) CallExpr(Context, Fn,
2936                                                               Args, NumArgs,
2937                                                               Context.BoolTy,
2938                                                               RParenLoc));
2939
2940  const FunctionType *FuncT;
2941  if (!Fn->getType()->isBlockPointerType()) {
2942    // C99 6.5.2.2p1 - "The expression that denotes the called function shall
2943    // have type pointer to function".
2944    const PointerType *PT = Fn->getType()->getAs<PointerType>();
2945    if (PT == 0)
2946      return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
2947        << Fn->getType() << Fn->getSourceRange());
2948    FuncT = PT->getPointeeType()->getAs<FunctionType>();
2949  } else { // This is a block call.
2950    FuncT = Fn->getType()->getAs<BlockPointerType>()->getPointeeType()->
2951                getAs<FunctionType>();
2952  }
2953  if (FuncT == 0)
2954    return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
2955      << Fn->getType() << Fn->getSourceRange());
2956
2957  // Check for a valid return type
2958  if (CheckCallReturnType(FuncT->getResultType(),
2959                          Fn->getSourceRange().getBegin(), TheCall.get(),
2960                          FDecl))
2961    return ExprError();
2962
2963  // We know the result type of the call, set it.
2964  TheCall->setType(FuncT->getResultType().getNonReferenceType());
2965
2966  if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FuncT)) {
2967    if (ConvertArgumentsForCall(&*TheCall, Fn, FDecl, Proto, Args, NumArgs,
2968                                RParenLoc))
2969      return ExprError();
2970  } else {
2971    assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
2972
2973    if (FDecl) {
2974      // Check if we have too few/too many template arguments, based
2975      // on our knowledge of the function definition.
2976      const FunctionDecl *Def = 0;
2977      if (FDecl->getBody(Def) && NumArgs != Def->param_size()) {
2978        const FunctionProtoType *Proto =
2979            Def->getType()->getAs<FunctionProtoType>();
2980        if (!Proto || !(Proto->isVariadic() && NumArgs >= Def->param_size())) {
2981          Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
2982            << (NumArgs > Def->param_size()) << FDecl << Fn->getSourceRange();
2983        }
2984      }
2985    }
2986
2987    // Promote the arguments (C99 6.5.2.2p6).
2988    for (unsigned i = 0; i != NumArgs; i++) {
2989      Expr *Arg = Args[i];
2990      DefaultArgumentPromotion(Arg);
2991      if (RequireCompleteType(Arg->getSourceRange().getBegin(),
2992                              Arg->getType(),
2993                              PDiag(diag::err_call_incomplete_argument)
2994                                << Arg->getSourceRange()))
2995        return ExprError();
2996      TheCall->setArg(i, Arg);
2997    }
2998  }
2999
3000  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
3001    if (!Method->isStatic())
3002      return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
3003        << Fn->getSourceRange());
3004
3005  // Check for sentinels
3006  if (NDecl)
3007    DiagnoseSentinelCalls(NDecl, LParenLoc, Args, NumArgs);
3008
3009  // Do special checking on direct calls to functions.
3010  if (FDecl) {
3011    if (CheckFunctionCall(FDecl, TheCall.get()))
3012      return ExprError();
3013
3014    if (unsigned BuiltinID = FDecl->getBuiltinID())
3015      return CheckBuiltinFunctionCall(BuiltinID, TheCall.take());
3016  } else if (NDecl) {
3017    if (CheckBlockCall(NDecl, TheCall.get()))
3018      return ExprError();
3019  }
3020
3021  return MaybeBindToTemporary(TheCall.take());
3022}
3023
3024Action::OwningExprResult
3025Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, TypeTy *Ty,
3026                           SourceLocation RParenLoc, ExprArg InitExpr) {
3027  assert((Ty != 0) && "ActOnCompoundLiteral(): missing type");
3028  //FIXME: Preserve type source info.
3029  QualType literalType = GetTypeFromParser(Ty);
3030  // FIXME: put back this assert when initializers are worked out.
3031  //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
3032  Expr *literalExpr = static_cast<Expr*>(InitExpr.get());
3033
3034  if (literalType->isArrayType()) {
3035    if (literalType->isVariableArrayType())
3036      return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init)
3037        << SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd()));
3038  } else if (!literalType->isDependentType() &&
3039             RequireCompleteType(LParenLoc, literalType,
3040                      PDiag(diag::err_typecheck_decl_incomplete_type)
3041                        << SourceRange(LParenLoc,
3042                                       literalExpr->getSourceRange().getEnd())))
3043    return ExprError();
3044
3045  if (CheckInitializerTypes(literalExpr, literalType, LParenLoc,
3046                            DeclarationName(), /*FIXME:DirectInit=*/false))
3047    return ExprError();
3048
3049  bool isFileScope = getCurFunctionOrMethodDecl() == 0;
3050  if (isFileScope) { // 6.5.2.5p3
3051    if (CheckForConstantInitializer(literalExpr, literalType))
3052      return ExprError();
3053  }
3054  InitExpr.release();
3055  return Owned(new (Context) CompoundLiteralExpr(LParenLoc, literalType,
3056                                                 literalExpr, isFileScope));
3057}
3058
3059Action::OwningExprResult
3060Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg initlist,
3061                    SourceLocation RBraceLoc) {
3062  unsigned NumInit = initlist.size();
3063  Expr **InitList = reinterpret_cast<Expr**>(initlist.release());
3064
3065  // Semantic analysis for initializers is done by ActOnDeclarator() and
3066  // CheckInitializer() - it requires knowledge of the object being intialized.
3067
3068  InitListExpr *E = new (Context) InitListExpr(LBraceLoc, InitList, NumInit,
3069                                               RBraceLoc);
3070  E->setType(Context.VoidTy); // FIXME: just a place holder for now.
3071  return Owned(E);
3072}
3073
3074static CastExpr::CastKind getScalarCastKind(ASTContext &Context,
3075                                            QualType SrcTy, QualType DestTy) {
3076  if (Context.getCanonicalType(SrcTy).getUnqualifiedType() ==
3077      Context.getCanonicalType(DestTy).getUnqualifiedType())
3078    return CastExpr::CK_NoOp;
3079
3080  if (SrcTy->hasPointerRepresentation()) {
3081    if (DestTy->hasPointerRepresentation())
3082      return CastExpr::CK_BitCast;
3083    if (DestTy->isIntegerType())
3084      return CastExpr::CK_PointerToIntegral;
3085  }
3086
3087  if (SrcTy->isIntegerType()) {
3088    if (DestTy->isIntegerType())
3089      return CastExpr::CK_IntegralCast;
3090    if (DestTy->hasPointerRepresentation())
3091      return CastExpr::CK_IntegralToPointer;
3092    if (DestTy->isRealFloatingType())
3093      return CastExpr::CK_IntegralToFloating;
3094  }
3095
3096  if (SrcTy->isRealFloatingType()) {
3097    if (DestTy->isRealFloatingType())
3098      return CastExpr::CK_FloatingCast;
3099    if (DestTy->isIntegerType())
3100      return CastExpr::CK_FloatingToIntegral;
3101  }
3102
3103  // FIXME: Assert here.
3104  // assert(false && "Unhandled cast combination!");
3105  return CastExpr::CK_Unknown;
3106}
3107
3108/// CheckCastTypes - Check type constraints for casting between types.
3109bool Sema::CheckCastTypes(SourceRange TyR, QualType castType, Expr *&castExpr,
3110                          CastExpr::CastKind& Kind,
3111                          CXXMethodDecl *& ConversionDecl,
3112                          bool FunctionalStyle) {
3113  if (getLangOptions().CPlusPlus)
3114    return CXXCheckCStyleCast(TyR, castType, castExpr, Kind, FunctionalStyle,
3115                              ConversionDecl);
3116
3117  DefaultFunctionArrayConversion(castExpr);
3118
3119  // C99 6.5.4p2: the cast type needs to be void or scalar and the expression
3120  // type needs to be scalar.
3121  if (castType->isVoidType()) {
3122    // Cast to void allows any expr type.
3123    Kind = CastExpr::CK_ToVoid;
3124    return false;
3125  }
3126
3127  if (!castType->isScalarType() && !castType->isVectorType()) {
3128    if (Context.getCanonicalType(castType).getUnqualifiedType() ==
3129        Context.getCanonicalType(castExpr->getType().getUnqualifiedType()) &&
3130        (castType->isStructureType() || castType->isUnionType())) {
3131      // GCC struct/union extension: allow cast to self.
3132      // FIXME: Check that the cast destination type is complete.
3133      Diag(TyR.getBegin(), diag::ext_typecheck_cast_nonscalar)
3134        << castType << castExpr->getSourceRange();
3135      Kind = CastExpr::CK_NoOp;
3136      return false;
3137    }
3138
3139    if (castType->isUnionType()) {
3140      // GCC cast to union extension
3141      RecordDecl *RD = castType->getAs<RecordType>()->getDecl();
3142      RecordDecl::field_iterator Field, FieldEnd;
3143      for (Field = RD->field_begin(), FieldEnd = RD->field_end();
3144           Field != FieldEnd; ++Field) {
3145        if (Context.getCanonicalType(Field->getType()).getUnqualifiedType() ==
3146            Context.getCanonicalType(castExpr->getType()).getUnqualifiedType()) {
3147          Diag(TyR.getBegin(), diag::ext_typecheck_cast_to_union)
3148            << castExpr->getSourceRange();
3149          break;
3150        }
3151      }
3152      if (Field == FieldEnd)
3153        return Diag(TyR.getBegin(), diag::err_typecheck_cast_to_union_no_type)
3154          << castExpr->getType() << castExpr->getSourceRange();
3155      Kind = CastExpr::CK_ToUnion;
3156      return false;
3157    }
3158
3159    // Reject any other conversions to non-scalar types.
3160    return Diag(TyR.getBegin(), diag::err_typecheck_cond_expect_scalar)
3161      << castType << castExpr->getSourceRange();
3162  }
3163
3164  if (!castExpr->getType()->isScalarType() &&
3165      !castExpr->getType()->isVectorType()) {
3166    return Diag(castExpr->getLocStart(),
3167                diag::err_typecheck_expect_scalar_operand)
3168      << castExpr->getType() << castExpr->getSourceRange();
3169  }
3170
3171  if (castType->isExtVectorType())
3172    return CheckExtVectorCast(TyR, castType, castExpr, Kind);
3173
3174  if (castType->isVectorType())
3175    return CheckVectorCast(TyR, castType, castExpr->getType(), Kind);
3176  if (castExpr->getType()->isVectorType())
3177    return CheckVectorCast(TyR, castExpr->getType(), castType, Kind);
3178
3179  if (getLangOptions().ObjC1 && isa<ObjCSuperExpr>(castExpr))
3180    return Diag(castExpr->getLocStart(), diag::err_illegal_super_cast) << TyR;
3181
3182  if (isa<ObjCSelectorExpr>(castExpr))
3183    return Diag(castExpr->getLocStart(), diag::err_cast_selector_expr);
3184
3185  if (!castType->isArithmeticType()) {
3186    QualType castExprType = castExpr->getType();
3187    if (!castExprType->isIntegralType() && castExprType->isArithmeticType())
3188      return Diag(castExpr->getLocStart(),
3189                  diag::err_cast_pointer_from_non_pointer_int)
3190        << castExprType << castExpr->getSourceRange();
3191  } else if (!castExpr->getType()->isArithmeticType()) {
3192    if (!castType->isIntegralType() && castType->isArithmeticType())
3193      return Diag(castExpr->getLocStart(),
3194                  diag::err_cast_pointer_to_non_pointer_int)
3195        << castType << castExpr->getSourceRange();
3196  }
3197
3198  Kind = getScalarCastKind(Context, castExpr->getType(), castType);
3199  return false;
3200}
3201
3202bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
3203                           CastExpr::CastKind &Kind) {
3204  assert(VectorTy->isVectorType() && "Not a vector type!");
3205
3206  if (Ty->isVectorType() || Ty->isIntegerType()) {
3207    if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty))
3208      return Diag(R.getBegin(),
3209                  Ty->isVectorType() ?
3210                  diag::err_invalid_conversion_between_vectors :
3211                  diag::err_invalid_conversion_between_vector_and_integer)
3212        << VectorTy << Ty << R;
3213  } else
3214    return Diag(R.getBegin(),
3215                diag::err_invalid_conversion_between_vector_and_scalar)
3216      << VectorTy << Ty << R;
3217
3218  Kind = CastExpr::CK_BitCast;
3219  return false;
3220}
3221
3222bool Sema::CheckExtVectorCast(SourceRange R, QualType DestTy, Expr *&CastExpr,
3223                              CastExpr::CastKind &Kind) {
3224  assert(DestTy->isExtVectorType() && "Not an extended vector type!");
3225
3226  QualType SrcTy = CastExpr->getType();
3227
3228  // If SrcTy is a VectorType, the total size must match to explicitly cast to
3229  // an ExtVectorType.
3230  if (SrcTy->isVectorType()) {
3231    if (Context.getTypeSize(DestTy) != Context.getTypeSize(SrcTy))
3232      return Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
3233        << DestTy << SrcTy << R;
3234    Kind = CastExpr::CK_BitCast;
3235    return false;
3236  }
3237
3238  // All non-pointer scalars can be cast to ExtVector type.  The appropriate
3239  // conversion will take place first from scalar to elt type, and then
3240  // splat from elt type to vector.
3241  if (SrcTy->isPointerType())
3242    return Diag(R.getBegin(),
3243                diag::err_invalid_conversion_between_vector_and_scalar)
3244      << DestTy << SrcTy << R;
3245
3246  QualType DestElemTy = DestTy->getAs<ExtVectorType>()->getElementType();
3247  ImpCastExprToType(CastExpr, DestElemTy,
3248                    getScalarCastKind(Context, SrcTy, DestElemTy));
3249
3250  Kind = CastExpr::CK_VectorSplat;
3251  return false;
3252}
3253
3254Action::OwningExprResult
3255Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc, TypeTy *Ty,
3256                    SourceLocation RParenLoc, ExprArg Op) {
3257  CastExpr::CastKind Kind = CastExpr::CK_Unknown;
3258
3259  assert((Ty != 0) && (Op.get() != 0) &&
3260         "ActOnCastExpr(): missing type or expr");
3261
3262  Expr *castExpr = (Expr *)Op.get();
3263  //FIXME: Preserve type source info.
3264  QualType castType = GetTypeFromParser(Ty);
3265
3266  // If the Expr being casted is a ParenListExpr, handle it specially.
3267  if (isa<ParenListExpr>(castExpr))
3268    return ActOnCastOfParenListExpr(S, LParenLoc, RParenLoc, move(Op),castType);
3269  CXXMethodDecl *Method = 0;
3270  if (CheckCastTypes(SourceRange(LParenLoc, RParenLoc), castType, castExpr,
3271                     Kind, Method))
3272    return ExprError();
3273
3274  if (Method) {
3275    OwningExprResult CastArg = BuildCXXCastArgument(LParenLoc, castType, Kind,
3276                                                    Method, move(Op));
3277
3278    if (CastArg.isInvalid())
3279      return ExprError();
3280
3281    castExpr = CastArg.takeAs<Expr>();
3282  } else {
3283    Op.release();
3284  }
3285
3286  return Owned(new (Context) CStyleCastExpr(castType.getNonReferenceType(),
3287                                            Kind, castExpr, castType,
3288                                            LParenLoc, RParenLoc));
3289}
3290
3291/// This is not an AltiVec-style cast, so turn the ParenListExpr into a sequence
3292/// of comma binary operators.
3293Action::OwningExprResult
3294Sema::MaybeConvertParenListExprToParenExpr(Scope *S, ExprArg EA) {
3295  Expr *expr = EA.takeAs<Expr>();
3296  ParenListExpr *E = dyn_cast<ParenListExpr>(expr);
3297  if (!E)
3298    return Owned(expr);
3299
3300  OwningExprResult Result(*this, E->getExpr(0));
3301
3302  for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i)
3303    Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, move(Result),
3304                        Owned(E->getExpr(i)));
3305
3306  return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), move(Result));
3307}
3308
3309Action::OwningExprResult
3310Sema::ActOnCastOfParenListExpr(Scope *S, SourceLocation LParenLoc,
3311                               SourceLocation RParenLoc, ExprArg Op,
3312                               QualType Ty) {
3313  ParenListExpr *PE = (ParenListExpr *)Op.get();
3314
3315  // If this is an altivec initializer, '(' type ')' '(' init, ..., init ')'
3316  // then handle it as such.
3317  if (getLangOptions().AltiVec && Ty->isVectorType()) {
3318    if (PE->getNumExprs() == 0) {
3319      Diag(PE->getExprLoc(), diag::err_altivec_empty_initializer);
3320      return ExprError();
3321    }
3322
3323    llvm::SmallVector<Expr *, 8> initExprs;
3324    for (unsigned i = 0, e = PE->getNumExprs(); i != e; ++i)
3325      initExprs.push_back(PE->getExpr(i));
3326
3327    // FIXME: This means that pretty-printing the final AST will produce curly
3328    // braces instead of the original commas.
3329    Op.release();
3330    InitListExpr *E = new (Context) InitListExpr(LParenLoc, &initExprs[0],
3331                                                 initExprs.size(), RParenLoc);
3332    E->setType(Ty);
3333    return ActOnCompoundLiteral(LParenLoc, Ty.getAsOpaquePtr(), RParenLoc,
3334                                Owned(E));
3335  } else {
3336    // This is not an AltiVec-style cast, so turn the ParenListExpr into a
3337    // sequence of BinOp comma operators.
3338    Op = MaybeConvertParenListExprToParenExpr(S, move(Op));
3339    return ActOnCastExpr(S, LParenLoc, Ty.getAsOpaquePtr(), RParenLoc,move(Op));
3340  }
3341}
3342
3343Action::OwningExprResult Sema::ActOnParenListExpr(SourceLocation L,
3344                                                  SourceLocation R,
3345                                                  MultiExprArg Val) {
3346  unsigned nexprs = Val.size();
3347  Expr **exprs = reinterpret_cast<Expr**>(Val.release());
3348  assert((exprs != 0) && "ActOnParenListExpr() missing expr list");
3349  Expr *expr = new (Context) ParenListExpr(Context, L, exprs, nexprs, R);
3350  return Owned(expr);
3351}
3352
3353/// Note that lhs is not null here, even if this is the gnu "x ?: y" extension.
3354/// In that case, lhs = cond.
3355/// C99 6.5.15
3356QualType Sema::CheckConditionalOperands(Expr *&Cond, Expr *&LHS, Expr *&RHS,
3357                                        SourceLocation QuestionLoc) {
3358  // C++ is sufficiently different to merit its own checker.
3359  if (getLangOptions().CPlusPlus)
3360    return CXXCheckConditionalOperands(Cond, LHS, RHS, QuestionLoc);
3361
3362  UsualUnaryConversions(Cond);
3363  UsualUnaryConversions(LHS);
3364  UsualUnaryConversions(RHS);
3365  QualType CondTy = Cond->getType();
3366  QualType LHSTy = LHS->getType();
3367  QualType RHSTy = RHS->getType();
3368
3369  // first, check the condition.
3370  if (!CondTy->isScalarType()) { // C99 6.5.15p2
3371    Diag(Cond->getLocStart(), diag::err_typecheck_cond_expect_scalar)
3372      << CondTy;
3373    return QualType();
3374  }
3375
3376  // Now check the two expressions.
3377  if (LHSTy->isVectorType() || RHSTy->isVectorType())
3378    return CheckVectorOperands(QuestionLoc, LHS, RHS);
3379
3380  // If both operands have arithmetic type, do the usual arithmetic conversions
3381  // to find a common type: C99 6.5.15p3,5.
3382  if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
3383    UsualArithmeticConversions(LHS, RHS);
3384    return LHS->getType();
3385  }
3386
3387  // If both operands are the same structure or union type, the result is that
3388  // type.
3389  if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) {    // C99 6.5.15p3
3390    if (const RecordType *RHSRT = RHSTy->getAs<RecordType>())
3391      if (LHSRT->getDecl() == RHSRT->getDecl())
3392        // "If both the operands have structure or union type, the result has
3393        // that type."  This implies that CV qualifiers are dropped.
3394        return LHSTy.getUnqualifiedType();
3395    // FIXME: Type of conditional expression must be complete in C mode.
3396  }
3397
3398  // C99 6.5.15p5: "If both operands have void type, the result has void type."
3399  // The following || allows only one side to be void (a GCC-ism).
3400  if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
3401    if (!LHSTy->isVoidType())
3402      Diag(RHS->getLocStart(), diag::ext_typecheck_cond_one_void)
3403        << RHS->getSourceRange();
3404    if (!RHSTy->isVoidType())
3405      Diag(LHS->getLocStart(), diag::ext_typecheck_cond_one_void)
3406        << LHS->getSourceRange();
3407    ImpCastExprToType(LHS, Context.VoidTy, CastExpr::CK_ToVoid);
3408    ImpCastExprToType(RHS, Context.VoidTy, CastExpr::CK_ToVoid);
3409    return Context.VoidTy;
3410  }
3411  // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
3412  // the type of the other operand."
3413  if ((LHSTy->isAnyPointerType() || LHSTy->isBlockPointerType()) &&
3414      RHS->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
3415    // promote the null to a pointer.
3416    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_Unknown);
3417    return LHSTy;
3418  }
3419  if ((RHSTy->isAnyPointerType() || RHSTy->isBlockPointerType()) &&
3420      LHS->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
3421    ImpCastExprToType(LHS, RHSTy, CastExpr::CK_Unknown);
3422    return RHSTy;
3423  }
3424  // Handle things like Class and struct objc_class*.  Here we case the result
3425  // to the pseudo-builtin, because that will be implicitly cast back to the
3426  // redefinition type if an attempt is made to access its fields.
3427  if (LHSTy->isObjCClassType() &&
3428      (RHSTy.getDesugaredType() == Context.ObjCClassRedefinitionType)) {
3429    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast);
3430    return LHSTy;
3431  }
3432  if (RHSTy->isObjCClassType() &&
3433      (LHSTy.getDesugaredType() == Context.ObjCClassRedefinitionType)) {
3434    ImpCastExprToType(LHS, RHSTy, CastExpr::CK_BitCast);
3435    return RHSTy;
3436  }
3437  // And the same for struct objc_object* / id
3438  if (LHSTy->isObjCIdType() &&
3439      (RHSTy.getDesugaredType() == Context.ObjCIdRedefinitionType)) {
3440    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast);
3441    return LHSTy;
3442  }
3443  if (RHSTy->isObjCIdType() &&
3444      (LHSTy.getDesugaredType() == Context.ObjCIdRedefinitionType)) {
3445    ImpCastExprToType(LHS, RHSTy, CastExpr::CK_BitCast);
3446    return RHSTy;
3447  }
3448  // Handle block pointer types.
3449  if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType()) {
3450    if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
3451      if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
3452        QualType destType = Context.getPointerType(Context.VoidTy);
3453        ImpCastExprToType(LHS, destType, CastExpr::CK_BitCast);
3454        ImpCastExprToType(RHS, destType, CastExpr::CK_BitCast);
3455        return destType;
3456      }
3457      Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
3458            << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
3459      return QualType();
3460    }
3461    // We have 2 block pointer types.
3462    if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
3463      // Two identical block pointer types are always compatible.
3464      return LHSTy;
3465    }
3466    // The block pointer types aren't identical, continue checking.
3467    QualType lhptee = LHSTy->getAs<BlockPointerType>()->getPointeeType();
3468    QualType rhptee = RHSTy->getAs<BlockPointerType>()->getPointeeType();
3469
3470    if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
3471                                    rhptee.getUnqualifiedType())) {
3472      Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers)
3473        << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
3474      // In this situation, we assume void* type. No especially good
3475      // reason, but this is what gcc does, and we do have to pick
3476      // to get a consistent AST.
3477      QualType incompatTy = Context.getPointerType(Context.VoidTy);
3478      ImpCastExprToType(LHS, incompatTy, CastExpr::CK_BitCast);
3479      ImpCastExprToType(RHS, incompatTy, CastExpr::CK_BitCast);
3480      return incompatTy;
3481    }
3482    // The block pointer types are compatible.
3483    ImpCastExprToType(LHS, LHSTy, CastExpr::CK_BitCast);
3484    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast);
3485    return LHSTy;
3486  }
3487  // Check constraints for Objective-C object pointers types.
3488  if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) {
3489
3490    if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
3491      // Two identical object pointer types are always compatible.
3492      return LHSTy;
3493    }
3494    const ObjCObjectPointerType *LHSOPT = LHSTy->getAs<ObjCObjectPointerType>();
3495    const ObjCObjectPointerType *RHSOPT = RHSTy->getAs<ObjCObjectPointerType>();
3496    QualType compositeType = LHSTy;
3497
3498    // If both operands are interfaces and either operand can be
3499    // assigned to the other, use that type as the composite
3500    // type. This allows
3501    //   xxx ? (A*) a : (B*) b
3502    // where B is a subclass of A.
3503    //
3504    // Additionally, as for assignment, if either type is 'id'
3505    // allow silent coercion. Finally, if the types are
3506    // incompatible then make sure to use 'id' as the composite
3507    // type so the result is acceptable for sending messages to.
3508
3509    // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
3510    // It could return the composite type.
3511    if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) {
3512      compositeType = RHSOPT->isObjCBuiltinType() ? RHSTy : LHSTy;
3513    } else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) {
3514      compositeType = LHSOPT->isObjCBuiltinType() ? LHSTy : RHSTy;
3515    } else if ((LHSTy->isObjCQualifiedIdType() ||
3516                RHSTy->isObjCQualifiedIdType()) &&
3517                Context.ObjCQualifiedIdTypesAreCompatible(LHSTy, RHSTy, true)) {
3518      // Need to handle "id<xx>" explicitly.
3519      // GCC allows qualified id and any Objective-C type to devolve to
3520      // id. Currently localizing to here until clear this should be
3521      // part of ObjCQualifiedIdTypesAreCompatible.
3522      compositeType = Context.getObjCIdType();
3523    } else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) {
3524      compositeType = Context.getObjCIdType();
3525    } else if (!(compositeType =
3526                 Context.areCommonBaseCompatible(LHSOPT, RHSOPT)).isNull())
3527      ;
3528    else {
3529      Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands)
3530        << LHSTy << RHSTy
3531        << LHS->getSourceRange() << RHS->getSourceRange();
3532      QualType incompatTy = Context.getObjCIdType();
3533      ImpCastExprToType(LHS, incompatTy, CastExpr::CK_BitCast);
3534      ImpCastExprToType(RHS, incompatTy, CastExpr::CK_BitCast);
3535      return incompatTy;
3536    }
3537    // The object pointer types are compatible.
3538    ImpCastExprToType(LHS, compositeType, CastExpr::CK_BitCast);
3539    ImpCastExprToType(RHS, compositeType, CastExpr::CK_BitCast);
3540    return compositeType;
3541  }
3542  // Check Objective-C object pointer types and 'void *'
3543  if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) {
3544    QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
3545    QualType rhptee = RHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
3546    QualType destPointee
3547      = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
3548    QualType destType = Context.getPointerType(destPointee);
3549    // Add qualifiers if necessary.
3550    ImpCastExprToType(LHS, destType, CastExpr::CK_NoOp);
3551    // Promote to void*.
3552    ImpCastExprToType(RHS, destType, CastExpr::CK_BitCast);
3553    return destType;
3554  }
3555  if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) {
3556    QualType lhptee = LHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
3557    QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
3558    QualType destPointee
3559      = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
3560    QualType destType = Context.getPointerType(destPointee);
3561    // Add qualifiers if necessary.
3562    ImpCastExprToType(RHS, destType, CastExpr::CK_NoOp);
3563    // Promote to void*.
3564    ImpCastExprToType(LHS, destType, CastExpr::CK_BitCast);
3565    return destType;
3566  }
3567  // Check constraints for C object pointers types (C99 6.5.15p3,6).
3568  if (LHSTy->isPointerType() && RHSTy->isPointerType()) {
3569    // get the "pointed to" types
3570    QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
3571    QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
3572
3573    // ignore qualifiers on void (C99 6.5.15p3, clause 6)
3574    if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
3575      // Figure out necessary qualifiers (C99 6.5.15p6)
3576      QualType destPointee
3577        = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
3578      QualType destType = Context.getPointerType(destPointee);
3579      // Add qualifiers if necessary.
3580      ImpCastExprToType(LHS, destType, CastExpr::CK_NoOp);
3581      // Promote to void*.
3582      ImpCastExprToType(RHS, destType, CastExpr::CK_BitCast);
3583      return destType;
3584    }
3585    if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
3586      QualType destPointee
3587        = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
3588      QualType destType = Context.getPointerType(destPointee);
3589      // Add qualifiers if necessary.
3590      ImpCastExprToType(LHS, destType, CastExpr::CK_NoOp);
3591      // Promote to void*.
3592      ImpCastExprToType(RHS, destType, CastExpr::CK_BitCast);
3593      return destType;
3594    }
3595
3596    if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
3597      // Two identical pointer types are always compatible.
3598      return LHSTy;
3599    }
3600    if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
3601                                    rhptee.getUnqualifiedType())) {
3602      Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers)
3603        << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
3604      // In this situation, we assume void* type. No especially good
3605      // reason, but this is what gcc does, and we do have to pick
3606      // to get a consistent AST.
3607      QualType incompatTy = Context.getPointerType(Context.VoidTy);
3608      ImpCastExprToType(LHS, incompatTy, CastExpr::CK_BitCast);
3609      ImpCastExprToType(RHS, incompatTy, CastExpr::CK_BitCast);
3610      return incompatTy;
3611    }
3612    // The pointer types are compatible.
3613    // C99 6.5.15p6: If both operands are pointers to compatible types *or* to
3614    // differently qualified versions of compatible types, the result type is
3615    // a pointer to an appropriately qualified version of the *composite*
3616    // type.
3617    // FIXME: Need to calculate the composite type.
3618    // FIXME: Need to add qualifiers
3619    ImpCastExprToType(LHS, LHSTy, CastExpr::CK_BitCast);
3620    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast);
3621    return LHSTy;
3622  }
3623
3624  // GCC compatibility: soften pointer/integer mismatch.
3625  if (RHSTy->isPointerType() && LHSTy->isIntegerType()) {
3626    Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch)
3627      << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
3628    ImpCastExprToType(LHS, RHSTy, CastExpr::CK_IntegralToPointer);
3629    return RHSTy;
3630  }
3631  if (LHSTy->isPointerType() && RHSTy->isIntegerType()) {
3632    Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch)
3633      << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
3634    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_IntegralToPointer);
3635    return LHSTy;
3636  }
3637
3638  // Otherwise, the operands are not compatible.
3639  Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
3640    << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
3641  return QualType();
3642}
3643
3644/// ActOnConditionalOp - Parse a ?: operation.  Note that 'LHS' may be null
3645/// in the case of a the GNU conditional expr extension.
3646Action::OwningExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
3647                                                  SourceLocation ColonLoc,
3648                                                  ExprArg Cond, ExprArg LHS,
3649                                                  ExprArg RHS) {
3650  Expr *CondExpr = (Expr *) Cond.get();
3651  Expr *LHSExpr = (Expr *) LHS.get(), *RHSExpr = (Expr *) RHS.get();
3652
3653  // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
3654  // was the condition.
3655  bool isLHSNull = LHSExpr == 0;
3656  if (isLHSNull)
3657    LHSExpr = CondExpr;
3658
3659  QualType result = CheckConditionalOperands(CondExpr, LHSExpr,
3660                                             RHSExpr, QuestionLoc);
3661  if (result.isNull())
3662    return ExprError();
3663
3664  Cond.release();
3665  LHS.release();
3666  RHS.release();
3667  return Owned(new (Context) ConditionalOperator(CondExpr, QuestionLoc,
3668                                                 isLHSNull ? 0 : LHSExpr,
3669                                                 ColonLoc, RHSExpr, result));
3670}
3671
3672// CheckPointerTypesForAssignment - This is a very tricky routine (despite
3673// being closely modeled after the C99 spec:-). The odd characteristic of this
3674// routine is it effectively iqnores the qualifiers on the top level pointee.
3675// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
3676// FIXME: add a couple examples in this comment.
3677Sema::AssignConvertType
3678Sema::CheckPointerTypesForAssignment(QualType lhsType, QualType rhsType) {
3679  QualType lhptee, rhptee;
3680
3681  if ((lhsType->isObjCClassType() &&
3682       (rhsType.getDesugaredType() == Context.ObjCClassRedefinitionType)) ||
3683     (rhsType->isObjCClassType() &&
3684       (lhsType.getDesugaredType() == Context.ObjCClassRedefinitionType))) {
3685      return Compatible;
3686  }
3687
3688  // get the "pointed to" type (ignoring qualifiers at the top level)
3689  lhptee = lhsType->getAs<PointerType>()->getPointeeType();
3690  rhptee = rhsType->getAs<PointerType>()->getPointeeType();
3691
3692  // make sure we operate on the canonical type
3693  lhptee = Context.getCanonicalType(lhptee);
3694  rhptee = Context.getCanonicalType(rhptee);
3695
3696  AssignConvertType ConvTy = Compatible;
3697
3698  // C99 6.5.16.1p1: This following citation is common to constraints
3699  // 3 & 4 (below). ...and the type *pointed to* by the left has all the
3700  // qualifiers of the type *pointed to* by the right;
3701  // FIXME: Handle ExtQualType
3702  if (!lhptee.isAtLeastAsQualifiedAs(rhptee))
3703    ConvTy = CompatiblePointerDiscardsQualifiers;
3704
3705  // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
3706  // incomplete type and the other is a pointer to a qualified or unqualified
3707  // version of void...
3708  if (lhptee->isVoidType()) {
3709    if (rhptee->isIncompleteOrObjectType())
3710      return ConvTy;
3711
3712    // As an extension, we allow cast to/from void* to function pointer.
3713    assert(rhptee->isFunctionType());
3714    return FunctionVoidPointer;
3715  }
3716
3717  if (rhptee->isVoidType()) {
3718    if (lhptee->isIncompleteOrObjectType())
3719      return ConvTy;
3720
3721    // As an extension, we allow cast to/from void* to function pointer.
3722    assert(lhptee->isFunctionType());
3723    return FunctionVoidPointer;
3724  }
3725  // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
3726  // unqualified versions of compatible types, ...
3727  lhptee = lhptee.getUnqualifiedType();
3728  rhptee = rhptee.getUnqualifiedType();
3729  if (!Context.typesAreCompatible(lhptee, rhptee)) {
3730    // Check if the pointee types are compatible ignoring the sign.
3731    // We explicitly check for char so that we catch "char" vs
3732    // "unsigned char" on systems where "char" is unsigned.
3733    if (lhptee->isCharType())
3734      lhptee = Context.UnsignedCharTy;
3735    else if (lhptee->isSignedIntegerType())
3736      lhptee = Context.getCorrespondingUnsignedType(lhptee);
3737
3738    if (rhptee->isCharType())
3739      rhptee = Context.UnsignedCharTy;
3740    else if (rhptee->isSignedIntegerType())
3741      rhptee = Context.getCorrespondingUnsignedType(rhptee);
3742
3743    if (lhptee == rhptee) {
3744      // Types are compatible ignoring the sign. Qualifier incompatibility
3745      // takes priority over sign incompatibility because the sign
3746      // warning can be disabled.
3747      if (ConvTy != Compatible)
3748        return ConvTy;
3749      return IncompatiblePointerSign;
3750    }
3751    // General pointer incompatibility takes priority over qualifiers.
3752    return IncompatiblePointer;
3753  }
3754  return ConvTy;
3755}
3756
3757/// CheckBlockPointerTypesForAssignment - This routine determines whether two
3758/// block pointer types are compatible or whether a block and normal pointer
3759/// are compatible. It is more restrict than comparing two function pointer
3760// types.
3761Sema::AssignConvertType
3762Sema::CheckBlockPointerTypesForAssignment(QualType lhsType,
3763                                          QualType rhsType) {
3764  QualType lhptee, rhptee;
3765
3766  // get the "pointed to" type (ignoring qualifiers at the top level)
3767  lhptee = lhsType->getAs<BlockPointerType>()->getPointeeType();
3768  rhptee = rhsType->getAs<BlockPointerType>()->getPointeeType();
3769
3770  // make sure we operate on the canonical type
3771  lhptee = Context.getCanonicalType(lhptee);
3772  rhptee = Context.getCanonicalType(rhptee);
3773
3774  AssignConvertType ConvTy = Compatible;
3775
3776  // For blocks we enforce that qualifiers are identical.
3777  if (lhptee.getCVRQualifiers() != rhptee.getCVRQualifiers())
3778    ConvTy = CompatiblePointerDiscardsQualifiers;
3779
3780  if (!Context.typesAreCompatible(lhptee, rhptee))
3781    return IncompatibleBlockPointer;
3782  return ConvTy;
3783}
3784
3785/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
3786/// has code to accommodate several GCC extensions when type checking
3787/// pointers. Here are some objectionable examples that GCC considers warnings:
3788///
3789///  int a, *pint;
3790///  short *pshort;
3791///  struct foo *pfoo;
3792///
3793///  pint = pshort; // warning: assignment from incompatible pointer type
3794///  a = pint; // warning: assignment makes integer from pointer without a cast
3795///  pint = a; // warning: assignment makes pointer from integer without a cast
3796///  pint = pfoo; // warning: assignment from incompatible pointer type
3797///
3798/// As a result, the code for dealing with pointers is more complex than the
3799/// C99 spec dictates.
3800///
3801Sema::AssignConvertType
3802Sema::CheckAssignmentConstraints(QualType lhsType, QualType rhsType) {
3803  // Get canonical types.  We're not formatting these types, just comparing
3804  // them.
3805  lhsType = Context.getCanonicalType(lhsType).getUnqualifiedType();
3806  rhsType = Context.getCanonicalType(rhsType).getUnqualifiedType();
3807
3808  if (lhsType == rhsType)
3809    return Compatible; // Common case: fast path an exact match.
3810
3811  if ((lhsType->isObjCClassType() &&
3812       (rhsType.getDesugaredType() == Context.ObjCClassRedefinitionType)) ||
3813     (rhsType->isObjCClassType() &&
3814       (lhsType.getDesugaredType() == Context.ObjCClassRedefinitionType))) {
3815      return Compatible;
3816  }
3817
3818  // If the left-hand side is a reference type, then we are in a
3819  // (rare!) case where we've allowed the use of references in C,
3820  // e.g., as a parameter type in a built-in function. In this case,
3821  // just make sure that the type referenced is compatible with the
3822  // right-hand side type. The caller is responsible for adjusting
3823  // lhsType so that the resulting expression does not have reference
3824  // type.
3825  if (const ReferenceType *lhsTypeRef = lhsType->getAs<ReferenceType>()) {
3826    if (Context.typesAreCompatible(lhsTypeRef->getPointeeType(), rhsType))
3827      return Compatible;
3828    return Incompatible;
3829  }
3830  // Allow scalar to ExtVector assignments, and assignments of an ExtVector type
3831  // to the same ExtVector type.
3832  if (lhsType->isExtVectorType()) {
3833    if (rhsType->isExtVectorType())
3834      return lhsType == rhsType ? Compatible : Incompatible;
3835    if (!rhsType->isVectorType() && rhsType->isArithmeticType())
3836      return Compatible;
3837  }
3838
3839  if (lhsType->isVectorType() || rhsType->isVectorType()) {
3840    // If we are allowing lax vector conversions, and LHS and RHS are both
3841    // vectors, the total size only needs to be the same. This is a bitcast;
3842    // no bits are changed but the result type is different.
3843    if (getLangOptions().LaxVectorConversions &&
3844        lhsType->isVectorType() && rhsType->isVectorType()) {
3845      if (Context.getTypeSize(lhsType) == Context.getTypeSize(rhsType))
3846        return IncompatibleVectors;
3847    }
3848    return Incompatible;
3849  }
3850
3851  if (lhsType->isArithmeticType() && rhsType->isArithmeticType())
3852    return Compatible;
3853
3854  if (isa<PointerType>(lhsType)) {
3855    if (rhsType->isIntegerType())
3856      return IntToPointer;
3857
3858    if (isa<PointerType>(rhsType))
3859      return CheckPointerTypesForAssignment(lhsType, rhsType);
3860
3861    // In general, C pointers are not compatible with ObjC object pointers.
3862    if (isa<ObjCObjectPointerType>(rhsType)) {
3863      if (lhsType->isVoidPointerType()) // an exception to the rule.
3864        return Compatible;
3865      return IncompatiblePointer;
3866    }
3867    if (rhsType->getAs<BlockPointerType>()) {
3868      if (lhsType->getAs<PointerType>()->getPointeeType()->isVoidType())
3869        return Compatible;
3870
3871      // Treat block pointers as objects.
3872      if (getLangOptions().ObjC1 && lhsType->isObjCIdType())
3873        return Compatible;
3874    }
3875    return Incompatible;
3876  }
3877
3878  if (isa<BlockPointerType>(lhsType)) {
3879    if (rhsType->isIntegerType())
3880      return IntToBlockPointer;
3881
3882    // Treat block pointers as objects.
3883    if (getLangOptions().ObjC1 && rhsType->isObjCIdType())
3884      return Compatible;
3885
3886    if (rhsType->isBlockPointerType())
3887      return CheckBlockPointerTypesForAssignment(lhsType, rhsType);
3888
3889    if (const PointerType *RHSPT = rhsType->getAs<PointerType>()) {
3890      if (RHSPT->getPointeeType()->isVoidType())
3891        return Compatible;
3892    }
3893    return Incompatible;
3894  }
3895
3896  if (isa<ObjCObjectPointerType>(lhsType)) {
3897    if (rhsType->isIntegerType())
3898      return IntToPointer;
3899
3900    // In general, C pointers are not compatible with ObjC object pointers.
3901    if (isa<PointerType>(rhsType)) {
3902      if (rhsType->isVoidPointerType()) // an exception to the rule.
3903        return Compatible;
3904      return IncompatiblePointer;
3905    }
3906    if (rhsType->isObjCObjectPointerType()) {
3907      if (lhsType->isObjCBuiltinType() || rhsType->isObjCBuiltinType())
3908        return Compatible;
3909      if (Context.typesAreCompatible(lhsType, rhsType))
3910        return Compatible;
3911      if (lhsType->isObjCQualifiedIdType() || rhsType->isObjCQualifiedIdType())
3912        return IncompatibleObjCQualifiedId;
3913      return IncompatiblePointer;
3914    }
3915    if (const PointerType *RHSPT = rhsType->getAs<PointerType>()) {
3916      if (RHSPT->getPointeeType()->isVoidType())
3917        return Compatible;
3918    }
3919    // Treat block pointers as objects.
3920    if (rhsType->isBlockPointerType())
3921      return Compatible;
3922    return Incompatible;
3923  }
3924  if (isa<PointerType>(rhsType)) {
3925    // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
3926    if (lhsType == Context.BoolTy)
3927      return Compatible;
3928
3929    if (lhsType->isIntegerType())
3930      return PointerToInt;
3931
3932    if (isa<PointerType>(lhsType))
3933      return CheckPointerTypesForAssignment(lhsType, rhsType);
3934
3935    if (isa<BlockPointerType>(lhsType) &&
3936        rhsType->getAs<PointerType>()->getPointeeType()->isVoidType())
3937      return Compatible;
3938    return Incompatible;
3939  }
3940  if (isa<ObjCObjectPointerType>(rhsType)) {
3941    // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
3942    if (lhsType == Context.BoolTy)
3943      return Compatible;
3944
3945    if (lhsType->isIntegerType())
3946      return PointerToInt;
3947
3948    // In general, C pointers are not compatible with ObjC object pointers.
3949    if (isa<PointerType>(lhsType)) {
3950      if (lhsType->isVoidPointerType()) // an exception to the rule.
3951        return Compatible;
3952      return IncompatiblePointer;
3953    }
3954    if (isa<BlockPointerType>(lhsType) &&
3955        rhsType->getAs<PointerType>()->getPointeeType()->isVoidType())
3956      return Compatible;
3957    return Incompatible;
3958  }
3959
3960  if (isa<TagType>(lhsType) && isa<TagType>(rhsType)) {
3961    if (Context.typesAreCompatible(lhsType, rhsType))
3962      return Compatible;
3963  }
3964  return Incompatible;
3965}
3966
3967/// \brief Constructs a transparent union from an expression that is
3968/// used to initialize the transparent union.
3969static void ConstructTransparentUnion(ASTContext &C, Expr *&E,
3970                                      QualType UnionType, FieldDecl *Field) {
3971  // Build an initializer list that designates the appropriate member
3972  // of the transparent union.
3973  InitListExpr *Initializer = new (C) InitListExpr(SourceLocation(),
3974                                                   &E, 1,
3975                                                   SourceLocation());
3976  Initializer->setType(UnionType);
3977  Initializer->setInitializedFieldInUnion(Field);
3978
3979  // Build a compound literal constructing a value of the transparent
3980  // union type from this initializer list.
3981  E = new (C) CompoundLiteralExpr(SourceLocation(), UnionType, Initializer,
3982                                  false);
3983}
3984
3985Sema::AssignConvertType
3986Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType, Expr *&rExpr) {
3987  QualType FromType = rExpr->getType();
3988
3989  // If the ArgType is a Union type, we want to handle a potential
3990  // transparent_union GCC extension.
3991  const RecordType *UT = ArgType->getAsUnionType();
3992  if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
3993    return Incompatible;
3994
3995  // The field to initialize within the transparent union.
3996  RecordDecl *UD = UT->getDecl();
3997  FieldDecl *InitField = 0;
3998  // It's compatible if the expression matches any of the fields.
3999  for (RecordDecl::field_iterator it = UD->field_begin(),
4000         itend = UD->field_end();
4001       it != itend; ++it) {
4002    if (it->getType()->isPointerType()) {
4003      // If the transparent union contains a pointer type, we allow:
4004      // 1) void pointer
4005      // 2) null pointer constant
4006      if (FromType->isPointerType())
4007        if (FromType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
4008          ImpCastExprToType(rExpr, it->getType(), CastExpr::CK_BitCast);
4009          InitField = *it;
4010          break;
4011        }
4012
4013      if (rExpr->isNullPointerConstant(Context,
4014                                       Expr::NPC_ValueDependentIsNull)) {
4015        ImpCastExprToType(rExpr, it->getType(), CastExpr::CK_IntegralToPointer);
4016        InitField = *it;
4017        break;
4018      }
4019    }
4020
4021    if (CheckAssignmentConstraints(it->getType(), rExpr->getType())
4022          == Compatible) {
4023      InitField = *it;
4024      break;
4025    }
4026  }
4027
4028  if (!InitField)
4029    return Incompatible;
4030
4031  ConstructTransparentUnion(Context, rExpr, ArgType, InitField);
4032  return Compatible;
4033}
4034
4035Sema::AssignConvertType
4036Sema::CheckSingleAssignmentConstraints(QualType lhsType, Expr *&rExpr) {
4037  if (getLangOptions().CPlusPlus) {
4038    if (!lhsType->isRecordType()) {
4039      // C++ 5.17p3: If the left operand is not of class type, the
4040      // expression is implicitly converted (C++ 4) to the
4041      // cv-unqualified type of the left operand.
4042      if (PerformImplicitConversion(rExpr, lhsType.getUnqualifiedType(),
4043                                    "assigning"))
4044        return Incompatible;
4045      return Compatible;
4046    }
4047
4048    // FIXME: Currently, we fall through and treat C++ classes like C
4049    // structures.
4050  }
4051
4052  // C99 6.5.16.1p1: the left operand is a pointer and the right is
4053  // a null pointer constant.
4054  if ((lhsType->isPointerType() ||
4055       lhsType->isObjCObjectPointerType() ||
4056       lhsType->isBlockPointerType())
4057      && rExpr->isNullPointerConstant(Context,
4058                                      Expr::NPC_ValueDependentIsNull)) {
4059    ImpCastExprToType(rExpr, lhsType, CastExpr::CK_Unknown);
4060    return Compatible;
4061  }
4062
4063  // This check seems unnatural, however it is necessary to ensure the proper
4064  // conversion of functions/arrays. If the conversion were done for all
4065  // DeclExpr's (created by ActOnIdExpression), it would mess up the unary
4066  // expressions that surpress this implicit conversion (&, sizeof).
4067  //
4068  // Suppress this for references: C++ 8.5.3p5.
4069  if (!lhsType->isReferenceType())
4070    DefaultFunctionArrayConversion(rExpr);
4071
4072  Sema::AssignConvertType result =
4073    CheckAssignmentConstraints(lhsType, rExpr->getType());
4074
4075  // C99 6.5.16.1p2: The value of the right operand is converted to the
4076  // type of the assignment expression.
4077  // CheckAssignmentConstraints allows the left-hand side to be a reference,
4078  // so that we can use references in built-in functions even in C.
4079  // The getNonReferenceType() call makes sure that the resulting expression
4080  // does not have reference type.
4081  if (result != Incompatible && rExpr->getType() != lhsType)
4082    ImpCastExprToType(rExpr, lhsType.getNonReferenceType(),
4083                      CastExpr::CK_Unknown);
4084  return result;
4085}
4086
4087QualType Sema::InvalidOperands(SourceLocation Loc, Expr *&lex, Expr *&rex) {
4088  Diag(Loc, diag::err_typecheck_invalid_operands)
4089    << lex->getType() << rex->getType()
4090    << lex->getSourceRange() << rex->getSourceRange();
4091  return QualType();
4092}
4093
4094inline QualType Sema::CheckVectorOperands(SourceLocation Loc, Expr *&lex,
4095                                                              Expr *&rex) {
4096  // For conversion purposes, we ignore any qualifiers.
4097  // For example, "const float" and "float" are equivalent.
4098  QualType lhsType =
4099    Context.getCanonicalType(lex->getType()).getUnqualifiedType();
4100  QualType rhsType =
4101    Context.getCanonicalType(rex->getType()).getUnqualifiedType();
4102
4103  // If the vector types are identical, return.
4104  if (lhsType == rhsType)
4105    return lhsType;
4106
4107  // Handle the case of a vector & extvector type of the same size and element
4108  // type.  It would be nice if we only had one vector type someday.
4109  if (getLangOptions().LaxVectorConversions) {
4110    // FIXME: Should we warn here?
4111    if (const VectorType *LV = lhsType->getAs<VectorType>()) {
4112      if (const VectorType *RV = rhsType->getAs<VectorType>())
4113        if (LV->getElementType() == RV->getElementType() &&
4114            LV->getNumElements() == RV->getNumElements()) {
4115          return lhsType->isExtVectorType() ? lhsType : rhsType;
4116        }
4117    }
4118  }
4119
4120  // Canonicalize the ExtVector to the LHS, remember if we swapped so we can
4121  // swap back (so that we don't reverse the inputs to a subtract, for instance.
4122  bool swapped = false;
4123  if (rhsType->isExtVectorType()) {
4124    swapped = true;
4125    std::swap(rex, lex);
4126    std::swap(rhsType, lhsType);
4127  }
4128
4129  // Handle the case of an ext vector and scalar.
4130  if (const ExtVectorType *LV = lhsType->getAs<ExtVectorType>()) {
4131    QualType EltTy = LV->getElementType();
4132    if (EltTy->isIntegralType() && rhsType->isIntegralType()) {
4133      if (Context.getIntegerTypeOrder(EltTy, rhsType) >= 0) {
4134        ImpCastExprToType(rex, lhsType, CastExpr::CK_IntegralCast);
4135        if (swapped) std::swap(rex, lex);
4136        return lhsType;
4137      }
4138    }
4139    if (EltTy->isRealFloatingType() && rhsType->isScalarType() &&
4140        rhsType->isRealFloatingType()) {
4141      if (Context.getFloatingTypeOrder(EltTy, rhsType) >= 0) {
4142        ImpCastExprToType(rex, lhsType, CastExpr::CK_FloatingCast);
4143        if (swapped) std::swap(rex, lex);
4144        return lhsType;
4145      }
4146    }
4147  }
4148
4149  // Vectors of different size or scalar and non-ext-vector are errors.
4150  Diag(Loc, diag::err_typecheck_vector_not_convertable)
4151    << lex->getType() << rex->getType()
4152    << lex->getSourceRange() << rex->getSourceRange();
4153  return QualType();
4154}
4155
4156inline QualType Sema::CheckMultiplyDivideOperands(
4157  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign) {
4158  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
4159    return CheckVectorOperands(Loc, lex, rex);
4160
4161  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
4162
4163  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
4164    return compType;
4165  return InvalidOperands(Loc, lex, rex);
4166}
4167
4168inline QualType Sema::CheckRemainderOperands(
4169  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign) {
4170  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
4171    if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
4172      return CheckVectorOperands(Loc, lex, rex);
4173    return InvalidOperands(Loc, lex, rex);
4174  }
4175
4176  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
4177
4178  if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
4179    return compType;
4180  return InvalidOperands(Loc, lex, rex);
4181}
4182
4183inline QualType Sema::CheckAdditionOperands( // C99 6.5.6
4184  Expr *&lex, Expr *&rex, SourceLocation Loc, QualType* CompLHSTy) {
4185  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
4186    QualType compType = CheckVectorOperands(Loc, lex, rex);
4187    if (CompLHSTy) *CompLHSTy = compType;
4188    return compType;
4189  }
4190
4191  QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy);
4192
4193  // handle the common case first (both operands are arithmetic).
4194  if (lex->getType()->isArithmeticType() &&
4195      rex->getType()->isArithmeticType()) {
4196    if (CompLHSTy) *CompLHSTy = compType;
4197    return compType;
4198  }
4199
4200  // Put any potential pointer into PExp
4201  Expr* PExp = lex, *IExp = rex;
4202  if (IExp->getType()->isAnyPointerType())
4203    std::swap(PExp, IExp);
4204
4205  if (PExp->getType()->isAnyPointerType()) {
4206
4207    if (IExp->getType()->isIntegerType()) {
4208      QualType PointeeTy = PExp->getType()->getPointeeType();
4209
4210      // Check for arithmetic on pointers to incomplete types.
4211      if (PointeeTy->isVoidType()) {
4212        if (getLangOptions().CPlusPlus) {
4213          Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
4214            << lex->getSourceRange() << rex->getSourceRange();
4215          return QualType();
4216        }
4217
4218        // GNU extension: arithmetic on pointer to void
4219        Diag(Loc, diag::ext_gnu_void_ptr)
4220          << lex->getSourceRange() << rex->getSourceRange();
4221      } else if (PointeeTy->isFunctionType()) {
4222        if (getLangOptions().CPlusPlus) {
4223          Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
4224            << lex->getType() << lex->getSourceRange();
4225          return QualType();
4226        }
4227
4228        // GNU extension: arithmetic on pointer to function
4229        Diag(Loc, diag::ext_gnu_ptr_func_arith)
4230          << lex->getType() << lex->getSourceRange();
4231      } else {
4232        // Check if we require a complete type.
4233        if (((PExp->getType()->isPointerType() &&
4234              !PExp->getType()->isDependentType()) ||
4235              PExp->getType()->isObjCObjectPointerType()) &&
4236             RequireCompleteType(Loc, PointeeTy,
4237                           PDiag(diag::err_typecheck_arithmetic_incomplete_type)
4238                             << PExp->getSourceRange()
4239                             << PExp->getType()))
4240          return QualType();
4241      }
4242      // Diagnose bad cases where we step over interface counts.
4243      if (PointeeTy->isObjCInterfaceType() && LangOpts.ObjCNonFragileABI) {
4244        Diag(Loc, diag::err_arithmetic_nonfragile_interface)
4245          << PointeeTy << PExp->getSourceRange();
4246        return QualType();
4247      }
4248
4249      if (CompLHSTy) {
4250        QualType LHSTy = Context.isPromotableBitField(lex);
4251        if (LHSTy.isNull()) {
4252          LHSTy = lex->getType();
4253          if (LHSTy->isPromotableIntegerType())
4254            LHSTy = Context.getPromotedIntegerType(LHSTy);
4255        }
4256        *CompLHSTy = LHSTy;
4257      }
4258      return PExp->getType();
4259    }
4260  }
4261
4262  return InvalidOperands(Loc, lex, rex);
4263}
4264
4265// C99 6.5.6
4266QualType Sema::CheckSubtractionOperands(Expr *&lex, Expr *&rex,
4267                                        SourceLocation Loc, QualType* CompLHSTy) {
4268  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
4269    QualType compType = CheckVectorOperands(Loc, lex, rex);
4270    if (CompLHSTy) *CompLHSTy = compType;
4271    return compType;
4272  }
4273
4274  QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy);
4275
4276  // Enforce type constraints: C99 6.5.6p3.
4277
4278  // Handle the common case first (both operands are arithmetic).
4279  if (lex->getType()->isArithmeticType()
4280      && rex->getType()->isArithmeticType()) {
4281    if (CompLHSTy) *CompLHSTy = compType;
4282    return compType;
4283  }
4284
4285  // Either ptr - int   or   ptr - ptr.
4286  if (lex->getType()->isAnyPointerType()) {
4287    QualType lpointee = lex->getType()->getPointeeType();
4288
4289    // The LHS must be an completely-defined object type.
4290
4291    bool ComplainAboutVoid = false;
4292    Expr *ComplainAboutFunc = 0;
4293    if (lpointee->isVoidType()) {
4294      if (getLangOptions().CPlusPlus) {
4295        Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
4296          << lex->getSourceRange() << rex->getSourceRange();
4297        return QualType();
4298      }
4299
4300      // GNU C extension: arithmetic on pointer to void
4301      ComplainAboutVoid = true;
4302    } else if (lpointee->isFunctionType()) {
4303      if (getLangOptions().CPlusPlus) {
4304        Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
4305          << lex->getType() << lex->getSourceRange();
4306        return QualType();
4307      }
4308
4309      // GNU C extension: arithmetic on pointer to function
4310      ComplainAboutFunc = lex;
4311    } else if (!lpointee->isDependentType() &&
4312               RequireCompleteType(Loc, lpointee,
4313                                   PDiag(diag::err_typecheck_sub_ptr_object)
4314                                     << lex->getSourceRange()
4315                                     << lex->getType()))
4316      return QualType();
4317
4318    // Diagnose bad cases where we step over interface counts.
4319    if (lpointee->isObjCInterfaceType() && LangOpts.ObjCNonFragileABI) {
4320      Diag(Loc, diag::err_arithmetic_nonfragile_interface)
4321        << lpointee << lex->getSourceRange();
4322      return QualType();
4323    }
4324
4325    // The result type of a pointer-int computation is the pointer type.
4326    if (rex->getType()->isIntegerType()) {
4327      if (ComplainAboutVoid)
4328        Diag(Loc, diag::ext_gnu_void_ptr)
4329          << lex->getSourceRange() << rex->getSourceRange();
4330      if (ComplainAboutFunc)
4331        Diag(Loc, diag::ext_gnu_ptr_func_arith)
4332          << ComplainAboutFunc->getType()
4333          << ComplainAboutFunc->getSourceRange();
4334
4335      if (CompLHSTy) *CompLHSTy = lex->getType();
4336      return lex->getType();
4337    }
4338
4339    // Handle pointer-pointer subtractions.
4340    if (const PointerType *RHSPTy = rex->getType()->getAs<PointerType>()) {
4341      QualType rpointee = RHSPTy->getPointeeType();
4342
4343      // RHS must be a completely-type object type.
4344      // Handle the GNU void* extension.
4345      if (rpointee->isVoidType()) {
4346        if (getLangOptions().CPlusPlus) {
4347          Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
4348            << lex->getSourceRange() << rex->getSourceRange();
4349          return QualType();
4350        }
4351
4352        ComplainAboutVoid = true;
4353      } else if (rpointee->isFunctionType()) {
4354        if (getLangOptions().CPlusPlus) {
4355          Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
4356            << rex->getType() << rex->getSourceRange();
4357          return QualType();
4358        }
4359
4360        // GNU extension: arithmetic on pointer to function
4361        if (!ComplainAboutFunc)
4362          ComplainAboutFunc = rex;
4363      } else if (!rpointee->isDependentType() &&
4364                 RequireCompleteType(Loc, rpointee,
4365                                     PDiag(diag::err_typecheck_sub_ptr_object)
4366                                       << rex->getSourceRange()
4367                                       << rex->getType()))
4368        return QualType();
4369
4370      if (getLangOptions().CPlusPlus) {
4371        // Pointee types must be the same: C++ [expr.add]
4372        if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
4373          Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
4374            << lex->getType() << rex->getType()
4375            << lex->getSourceRange() << rex->getSourceRange();
4376          return QualType();
4377        }
4378      } else {
4379        // Pointee types must be compatible C99 6.5.6p3
4380        if (!Context.typesAreCompatible(
4381                Context.getCanonicalType(lpointee).getUnqualifiedType(),
4382                Context.getCanonicalType(rpointee).getUnqualifiedType())) {
4383          Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
4384            << lex->getType() << rex->getType()
4385            << lex->getSourceRange() << rex->getSourceRange();
4386          return QualType();
4387        }
4388      }
4389
4390      if (ComplainAboutVoid)
4391        Diag(Loc, diag::ext_gnu_void_ptr)
4392          << lex->getSourceRange() << rex->getSourceRange();
4393      if (ComplainAboutFunc)
4394        Diag(Loc, diag::ext_gnu_ptr_func_arith)
4395          << ComplainAboutFunc->getType()
4396          << ComplainAboutFunc->getSourceRange();
4397
4398      if (CompLHSTy) *CompLHSTy = lex->getType();
4399      return Context.getPointerDiffType();
4400    }
4401  }
4402
4403  return InvalidOperands(Loc, lex, rex);
4404}
4405
4406// C99 6.5.7
4407QualType Sema::CheckShiftOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
4408                                  bool isCompAssign) {
4409  // C99 6.5.7p2: Each of the operands shall have integer type.
4410  if (!lex->getType()->isIntegerType() || !rex->getType()->isIntegerType())
4411    return InvalidOperands(Loc, lex, rex);
4412
4413  // Vector shifts promote their scalar inputs to vector type.
4414  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
4415    return CheckVectorOperands(Loc, lex, rex);
4416
4417  // Shifts don't perform usual arithmetic conversions, they just do integer
4418  // promotions on each operand. C99 6.5.7p3
4419  QualType LHSTy = Context.isPromotableBitField(lex);
4420  if (LHSTy.isNull()) {
4421    LHSTy = lex->getType();
4422    if (LHSTy->isPromotableIntegerType())
4423      LHSTy = Context.getPromotedIntegerType(LHSTy);
4424  }
4425  if (!isCompAssign)
4426    ImpCastExprToType(lex, LHSTy, CastExpr::CK_IntegralCast);
4427
4428  UsualUnaryConversions(rex);
4429
4430  // Sanity-check shift operands
4431  llvm::APSInt Right;
4432  // Check right/shifter operand
4433  if (!rex->isValueDependent() &&
4434      rex->isIntegerConstantExpr(Right, Context)) {
4435    if (Right.isNegative())
4436      Diag(Loc, diag::warn_shift_negative) << rex->getSourceRange();
4437    else {
4438      llvm::APInt LeftBits(Right.getBitWidth(),
4439                          Context.getTypeSize(lex->getType()));
4440      if (Right.uge(LeftBits))
4441        Diag(Loc, diag::warn_shift_gt_typewidth) << rex->getSourceRange();
4442    }
4443  }
4444
4445  // "The type of the result is that of the promoted left operand."
4446  return LHSTy;
4447}
4448
4449// C99 6.5.8, C++ [expr.rel]
4450QualType Sema::CheckCompareOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
4451                                    unsigned OpaqueOpc, bool isRelational) {
4452  BinaryOperator::Opcode Opc = (BinaryOperator::Opcode)OpaqueOpc;
4453
4454  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
4455    return CheckVectorCompareOperands(lex, rex, Loc, isRelational);
4456
4457  // C99 6.5.8p3 / C99 6.5.9p4
4458  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
4459    UsualArithmeticConversions(lex, rex);
4460  else {
4461    UsualUnaryConversions(lex);
4462    UsualUnaryConversions(rex);
4463  }
4464  QualType lType = lex->getType();
4465  QualType rType = rex->getType();
4466
4467  if (!lType->isFloatingType()
4468      && !(lType->isBlockPointerType() && isRelational)) {
4469    // For non-floating point types, check for self-comparisons of the form
4470    // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
4471    // often indicate logic errors in the program.
4472    // NOTE: Don't warn about comparisons of enum constants. These can arise
4473    //  from macro expansions, and are usually quite deliberate.
4474    Expr *LHSStripped = lex->IgnoreParens();
4475    Expr *RHSStripped = rex->IgnoreParens();
4476    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LHSStripped))
4477      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RHSStripped))
4478        if (DRL->getDecl() == DRR->getDecl() &&
4479            !isa<EnumConstantDecl>(DRL->getDecl()))
4480          Diag(Loc, diag::warn_selfcomparison);
4481
4482    if (isa<CastExpr>(LHSStripped))
4483      LHSStripped = LHSStripped->IgnoreParenCasts();
4484    if (isa<CastExpr>(RHSStripped))
4485      RHSStripped = RHSStripped->IgnoreParenCasts();
4486
4487    // Warn about comparisons against a string constant (unless the other
4488    // operand is null), the user probably wants strcmp.
4489    Expr *literalString = 0;
4490    Expr *literalStringStripped = 0;
4491    if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
4492        !RHSStripped->isNullPointerConstant(Context,
4493                                            Expr::NPC_ValueDependentIsNull)) {
4494      literalString = lex;
4495      literalStringStripped = LHSStripped;
4496    } else if ((isa<StringLiteral>(RHSStripped) ||
4497                isa<ObjCEncodeExpr>(RHSStripped)) &&
4498               !LHSStripped->isNullPointerConstant(Context,
4499                                            Expr::NPC_ValueDependentIsNull)) {
4500      literalString = rex;
4501      literalStringStripped = RHSStripped;
4502    }
4503
4504    if (literalString) {
4505      std::string resultComparison;
4506      switch (Opc) {
4507      case BinaryOperator::LT: resultComparison = ") < 0"; break;
4508      case BinaryOperator::GT: resultComparison = ") > 0"; break;
4509      case BinaryOperator::LE: resultComparison = ") <= 0"; break;
4510      case BinaryOperator::GE: resultComparison = ") >= 0"; break;
4511      case BinaryOperator::EQ: resultComparison = ") == 0"; break;
4512      case BinaryOperator::NE: resultComparison = ") != 0"; break;
4513      default: assert(false && "Invalid comparison operator");
4514      }
4515      Diag(Loc, diag::warn_stringcompare)
4516        << isa<ObjCEncodeExpr>(literalStringStripped)
4517        << literalString->getSourceRange()
4518        << CodeModificationHint::CreateReplacement(SourceRange(Loc), ", ")
4519        << CodeModificationHint::CreateInsertion(lex->getLocStart(),
4520                                                 "strcmp(")
4521        << CodeModificationHint::CreateInsertion(
4522                                       PP.getLocForEndOfToken(rex->getLocEnd()),
4523                                       resultComparison);
4524    }
4525  }
4526
4527  // The result of comparisons is 'bool' in C++, 'int' in C.
4528  QualType ResultTy = getLangOptions().CPlusPlus? Context.BoolTy :Context.IntTy;
4529
4530  if (isRelational) {
4531    if (lType->isRealType() && rType->isRealType())
4532      return ResultTy;
4533  } else {
4534    // Check for comparisons of floating point operands using != and ==.
4535    if (lType->isFloatingType()) {
4536      assert(rType->isFloatingType());
4537      CheckFloatComparison(Loc,lex,rex);
4538    }
4539
4540    if (lType->isArithmeticType() && rType->isArithmeticType())
4541      return ResultTy;
4542  }
4543
4544  bool LHSIsNull = lex->isNullPointerConstant(Context,
4545                                              Expr::NPC_ValueDependentIsNull);
4546  bool RHSIsNull = rex->isNullPointerConstant(Context,
4547                                              Expr::NPC_ValueDependentIsNull);
4548
4549  // All of the following pointer related warnings are GCC extensions, except
4550  // when handling null pointer constants. One day, we can consider making them
4551  // errors (when -pedantic-errors is enabled).
4552  if (lType->isPointerType() && rType->isPointerType()) { // C99 6.5.8p2
4553    QualType LCanPointeeTy =
4554      Context.getCanonicalType(lType->getAs<PointerType>()->getPointeeType());
4555    QualType RCanPointeeTy =
4556      Context.getCanonicalType(rType->getAs<PointerType>()->getPointeeType());
4557
4558    if (getLangOptions().CPlusPlus) {
4559      if (LCanPointeeTy == RCanPointeeTy)
4560        return ResultTy;
4561
4562      // C++ [expr.rel]p2:
4563      //   [...] Pointer conversions (4.10) and qualification
4564      //   conversions (4.4) are performed on pointer operands (or on
4565      //   a pointer operand and a null pointer constant) to bring
4566      //   them to their composite pointer type. [...]
4567      //
4568      // C++ [expr.eq]p1 uses the same notion for (in)equality
4569      // comparisons of pointers.
4570      QualType T = FindCompositePointerType(lex, rex);
4571      if (T.isNull()) {
4572        Diag(Loc, diag::err_typecheck_comparison_of_distinct_pointers)
4573          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4574        return QualType();
4575      }
4576
4577      ImpCastExprToType(lex, T, CastExpr::CK_BitCast);
4578      ImpCastExprToType(rex, T, CastExpr::CK_BitCast);
4579      return ResultTy;
4580    }
4581    // C99 6.5.9p2 and C99 6.5.8p2
4582    if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
4583                                   RCanPointeeTy.getUnqualifiedType())) {
4584      // Valid unless a relational comparison of function pointers
4585      if (isRelational && LCanPointeeTy->isFunctionType()) {
4586        Diag(Loc, diag::ext_typecheck_ordered_comparison_of_function_pointers)
4587          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4588      }
4589    } else if (!isRelational &&
4590               (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
4591      // Valid unless comparison between non-null pointer and function pointer
4592      if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
4593          && !LHSIsNull && !RHSIsNull) {
4594        Diag(Loc, diag::ext_typecheck_comparison_of_fptr_to_void)
4595          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4596      }
4597    } else {
4598      // Invalid
4599      Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
4600        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4601    }
4602    if (LCanPointeeTy != RCanPointeeTy)
4603      ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
4604    return ResultTy;
4605  }
4606
4607  if (getLangOptions().CPlusPlus) {
4608    // Comparison of pointers with null pointer constants and equality
4609    // comparisons of member pointers to null pointer constants.
4610    if (RHSIsNull &&
4611        (lType->isPointerType() ||
4612         (!isRelational && lType->isMemberPointerType()))) {
4613      ImpCastExprToType(rex, lType, CastExpr::CK_NullToMemberPointer);
4614      return ResultTy;
4615    }
4616    if (LHSIsNull &&
4617        (rType->isPointerType() ||
4618         (!isRelational && rType->isMemberPointerType()))) {
4619      ImpCastExprToType(lex, rType, CastExpr::CK_NullToMemberPointer);
4620      return ResultTy;
4621    }
4622
4623    // Comparison of member pointers.
4624    if (!isRelational &&
4625        lType->isMemberPointerType() && rType->isMemberPointerType()) {
4626      // C++ [expr.eq]p2:
4627      //   In addition, pointers to members can be compared, or a pointer to
4628      //   member and a null pointer constant. Pointer to member conversions
4629      //   (4.11) and qualification conversions (4.4) are performed to bring
4630      //   them to a common type. If one operand is a null pointer constant,
4631      //   the common type is the type of the other operand. Otherwise, the
4632      //   common type is a pointer to member type similar (4.4) to the type
4633      //   of one of the operands, with a cv-qualification signature (4.4)
4634      //   that is the union of the cv-qualification signatures of the operand
4635      //   types.
4636      QualType T = FindCompositePointerType(lex, rex);
4637      if (T.isNull()) {
4638        Diag(Loc, diag::err_typecheck_comparison_of_distinct_pointers)
4639        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4640        return QualType();
4641      }
4642
4643      ImpCastExprToType(lex, T, CastExpr::CK_BitCast);
4644      ImpCastExprToType(rex, T, CastExpr::CK_BitCast);
4645      return ResultTy;
4646    }
4647
4648    // Comparison of nullptr_t with itself.
4649    if (lType->isNullPtrType() && rType->isNullPtrType())
4650      return ResultTy;
4651  }
4652
4653  // Handle block pointer types.
4654  if (!isRelational && lType->isBlockPointerType() && rType->isBlockPointerType()) {
4655    QualType lpointee = lType->getAs<BlockPointerType>()->getPointeeType();
4656    QualType rpointee = rType->getAs<BlockPointerType>()->getPointeeType();
4657
4658    if (!LHSIsNull && !RHSIsNull &&
4659        !Context.typesAreCompatible(lpointee, rpointee)) {
4660      Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
4661        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4662    }
4663    ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
4664    return ResultTy;
4665  }
4666  // Allow block pointers to be compared with null pointer constants.
4667  if (!isRelational
4668      && ((lType->isBlockPointerType() && rType->isPointerType())
4669          || (lType->isPointerType() && rType->isBlockPointerType()))) {
4670    if (!LHSIsNull && !RHSIsNull) {
4671      if (!((rType->isPointerType() && rType->getAs<PointerType>()
4672             ->getPointeeType()->isVoidType())
4673            || (lType->isPointerType() && lType->getAs<PointerType>()
4674                ->getPointeeType()->isVoidType())))
4675        Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
4676          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4677    }
4678    ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
4679    return ResultTy;
4680  }
4681
4682  if ((lType->isObjCObjectPointerType() || rType->isObjCObjectPointerType())) {
4683    if (lType->isPointerType() || rType->isPointerType()) {
4684      const PointerType *LPT = lType->getAs<PointerType>();
4685      const PointerType *RPT = rType->getAs<PointerType>();
4686      bool LPtrToVoid = LPT ?
4687        Context.getCanonicalType(LPT->getPointeeType())->isVoidType() : false;
4688      bool RPtrToVoid = RPT ?
4689        Context.getCanonicalType(RPT->getPointeeType())->isVoidType() : false;
4690
4691      if (!LPtrToVoid && !RPtrToVoid &&
4692          !Context.typesAreCompatible(lType, rType)) {
4693        Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
4694          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4695      }
4696      ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
4697      return ResultTy;
4698    }
4699    if (lType->isObjCObjectPointerType() && rType->isObjCObjectPointerType()) {
4700      if (!Context.areComparableObjCPointerTypes(lType, rType))
4701        Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
4702          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4703      ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
4704      return ResultTy;
4705    }
4706  }
4707  if (lType->isAnyPointerType() && rType->isIntegerType()) {
4708    unsigned DiagID = 0;
4709    if (RHSIsNull) {
4710      if (isRelational)
4711        DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
4712    } else if (isRelational)
4713      DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
4714    else
4715      DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
4716
4717    if (DiagID) {
4718      Diag(Loc, DiagID)
4719        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4720    }
4721    ImpCastExprToType(rex, lType, CastExpr::CK_IntegralToPointer);
4722    return ResultTy;
4723  }
4724  if (lType->isIntegerType() && rType->isAnyPointerType()) {
4725    unsigned DiagID = 0;
4726    if (LHSIsNull) {
4727      if (isRelational)
4728        DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
4729    } else if (isRelational)
4730      DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
4731    else
4732      DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
4733
4734    if (DiagID) {
4735      Diag(Loc, DiagID)
4736        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4737    }
4738    ImpCastExprToType(lex, rType, CastExpr::CK_IntegralToPointer);
4739    return ResultTy;
4740  }
4741  // Handle block pointers.
4742  if (!isRelational && RHSIsNull
4743      && lType->isBlockPointerType() && rType->isIntegerType()) {
4744    ImpCastExprToType(rex, lType, CastExpr::CK_IntegralToPointer);
4745    return ResultTy;
4746  }
4747  if (!isRelational && LHSIsNull
4748      && lType->isIntegerType() && rType->isBlockPointerType()) {
4749    ImpCastExprToType(lex, rType, CastExpr::CK_IntegralToPointer);
4750    return ResultTy;
4751  }
4752  return InvalidOperands(Loc, lex, rex);
4753}
4754
4755/// CheckVectorCompareOperands - vector comparisons are a clang extension that
4756/// operates on extended vector types.  Instead of producing an IntTy result,
4757/// like a scalar comparison, a vector comparison produces a vector of integer
4758/// types.
4759QualType Sema::CheckVectorCompareOperands(Expr *&lex, Expr *&rex,
4760                                          SourceLocation Loc,
4761                                          bool isRelational) {
4762  // Check to make sure we're operating on vectors of the same type and width,
4763  // Allowing one side to be a scalar of element type.
4764  QualType vType = CheckVectorOperands(Loc, lex, rex);
4765  if (vType.isNull())
4766    return vType;
4767
4768  QualType lType = lex->getType();
4769  QualType rType = rex->getType();
4770
4771  // For non-floating point types, check for self-comparisons of the form
4772  // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
4773  // often indicate logic errors in the program.
4774  if (!lType->isFloatingType()) {
4775    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens()))
4776      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens()))
4777        if (DRL->getDecl() == DRR->getDecl())
4778          Diag(Loc, diag::warn_selfcomparison);
4779  }
4780
4781  // Check for comparisons of floating point operands using != and ==.
4782  if (!isRelational && lType->isFloatingType()) {
4783    assert (rType->isFloatingType());
4784    CheckFloatComparison(Loc,lex,rex);
4785  }
4786
4787  // Return the type for the comparison, which is the same as vector type for
4788  // integer vectors, or an integer type of identical size and number of
4789  // elements for floating point vectors.
4790  if (lType->isIntegerType())
4791    return lType;
4792
4793  const VectorType *VTy = lType->getAs<VectorType>();
4794  unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
4795  if (TypeSize == Context.getTypeSize(Context.IntTy))
4796    return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
4797  if (TypeSize == Context.getTypeSize(Context.LongTy))
4798    return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
4799
4800  assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
4801         "Unhandled vector element size in vector compare");
4802  return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
4803}
4804
4805inline QualType Sema::CheckBitwiseOperands(
4806  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign) {
4807  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
4808    return CheckVectorOperands(Loc, lex, rex);
4809
4810  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
4811
4812  if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
4813    return compType;
4814  return InvalidOperands(Loc, lex, rex);
4815}
4816
4817inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
4818  Expr *&lex, Expr *&rex, SourceLocation Loc) {
4819  UsualUnaryConversions(lex);
4820  UsualUnaryConversions(rex);
4821
4822  if (!lex->getType()->isScalarType() || !rex->getType()->isScalarType())
4823    return InvalidOperands(Loc, lex, rex);
4824
4825  if (Context.getLangOptions().CPlusPlus) {
4826    // C++ [expr.log.and]p2
4827    // C++ [expr.log.or]p2
4828    return Context.BoolTy;
4829  }
4830
4831  return Context.IntTy;
4832}
4833
4834/// IsReadonlyProperty - Verify that otherwise a valid l-value expression
4835/// is a read-only property; return true if so. A readonly property expression
4836/// depends on various declarations and thus must be treated specially.
4837///
4838static bool IsReadonlyProperty(Expr *E, Sema &S) {
4839  if (E->getStmtClass() == Expr::ObjCPropertyRefExprClass) {
4840    const ObjCPropertyRefExpr* PropExpr = cast<ObjCPropertyRefExpr>(E);
4841    if (ObjCPropertyDecl *PDecl = PropExpr->getProperty()) {
4842      QualType BaseType = PropExpr->getBase()->getType();
4843      if (const ObjCObjectPointerType *OPT =
4844            BaseType->getAsObjCInterfacePointerType())
4845        if (ObjCInterfaceDecl *IFace = OPT->getInterfaceDecl())
4846          if (S.isPropertyReadonly(PDecl, IFace))
4847            return true;
4848    }
4849  }
4850  return false;
4851}
4852
4853/// CheckForModifiableLvalue - Verify that E is a modifiable lvalue.  If not,
4854/// emit an error and return true.  If so, return false.
4855static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
4856  SourceLocation OrigLoc = Loc;
4857  Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
4858                                                              &Loc);
4859  if (IsLV == Expr::MLV_Valid && IsReadonlyProperty(E, S))
4860    IsLV = Expr::MLV_ReadonlyProperty;
4861  if (IsLV == Expr::MLV_Valid)
4862    return false;
4863
4864  unsigned Diag = 0;
4865  bool NeedType = false;
4866  switch (IsLV) { // C99 6.5.16p2
4867  default: assert(0 && "Unknown result from isModifiableLvalue!");
4868  case Expr::MLV_ConstQualified: Diag = diag::err_typecheck_assign_const; break;
4869  case Expr::MLV_ArrayType:
4870    Diag = diag::err_typecheck_array_not_modifiable_lvalue;
4871    NeedType = true;
4872    break;
4873  case Expr::MLV_NotObjectType:
4874    Diag = diag::err_typecheck_non_object_not_modifiable_lvalue;
4875    NeedType = true;
4876    break;
4877  case Expr::MLV_LValueCast:
4878    Diag = diag::err_typecheck_lvalue_casts_not_supported;
4879    break;
4880  case Expr::MLV_InvalidExpression:
4881    Diag = diag::err_typecheck_expression_not_modifiable_lvalue;
4882    break;
4883  case Expr::MLV_IncompleteType:
4884  case Expr::MLV_IncompleteVoidType:
4885    return S.RequireCompleteType(Loc, E->getType(),
4886                PDiag(diag::err_typecheck_incomplete_type_not_modifiable_lvalue)
4887                  << E->getSourceRange());
4888  case Expr::MLV_DuplicateVectorComponents:
4889    Diag = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
4890    break;
4891  case Expr::MLV_NotBlockQualified:
4892    Diag = diag::err_block_decl_ref_not_modifiable_lvalue;
4893    break;
4894  case Expr::MLV_ReadonlyProperty:
4895    Diag = diag::error_readonly_property_assignment;
4896    break;
4897  case Expr::MLV_NoSetterProperty:
4898    Diag = diag::error_nosetter_property_assignment;
4899    break;
4900  }
4901
4902  SourceRange Assign;
4903  if (Loc != OrigLoc)
4904    Assign = SourceRange(OrigLoc, OrigLoc);
4905  if (NeedType)
4906    S.Diag(Loc, Diag) << E->getType() << E->getSourceRange() << Assign;
4907  else
4908    S.Diag(Loc, Diag) << E->getSourceRange() << Assign;
4909  return true;
4910}
4911
4912
4913
4914// C99 6.5.16.1
4915QualType Sema::CheckAssignmentOperands(Expr *LHS, Expr *&RHS,
4916                                       SourceLocation Loc,
4917                                       QualType CompoundType) {
4918  // Verify that LHS is a modifiable lvalue, and emit error if not.
4919  if (CheckForModifiableLvalue(LHS, Loc, *this))
4920    return QualType();
4921
4922  QualType LHSType = LHS->getType();
4923  QualType RHSType = CompoundType.isNull() ? RHS->getType() : CompoundType;
4924
4925  AssignConvertType ConvTy;
4926  if (CompoundType.isNull()) {
4927    // Simple assignment "x = y".
4928    ConvTy = CheckSingleAssignmentConstraints(LHSType, RHS);
4929    // Special case of NSObject attributes on c-style pointer types.
4930    if (ConvTy == IncompatiblePointer &&
4931        ((Context.isObjCNSObjectType(LHSType) &&
4932          RHSType->isObjCObjectPointerType()) ||
4933         (Context.isObjCNSObjectType(RHSType) &&
4934          LHSType->isObjCObjectPointerType())))
4935      ConvTy = Compatible;
4936
4937    // If the RHS is a unary plus or minus, check to see if they = and + are
4938    // right next to each other.  If so, the user may have typo'd "x =+ 4"
4939    // instead of "x += 4".
4940    Expr *RHSCheck = RHS;
4941    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
4942      RHSCheck = ICE->getSubExpr();
4943    if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
4944      if ((UO->getOpcode() == UnaryOperator::Plus ||
4945           UO->getOpcode() == UnaryOperator::Minus) &&
4946          Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
4947          // Only if the two operators are exactly adjacent.
4948          Loc.getFileLocWithOffset(1) == UO->getOperatorLoc() &&
4949          // And there is a space or other character before the subexpr of the
4950          // unary +/-.  We don't want to warn on "x=-1".
4951          Loc.getFileLocWithOffset(2) != UO->getSubExpr()->getLocStart() &&
4952          UO->getSubExpr()->getLocStart().isFileID()) {
4953        Diag(Loc, diag::warn_not_compound_assign)
4954          << (UO->getOpcode() == UnaryOperator::Plus ? "+" : "-")
4955          << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
4956      }
4957    }
4958  } else {
4959    // Compound assignment "x += y"
4960    ConvTy = CheckAssignmentConstraints(LHSType, RHSType);
4961  }
4962
4963  if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
4964                               RHS, "assigning"))
4965    return QualType();
4966
4967  // C99 6.5.16p3: The type of an assignment expression is the type of the
4968  // left operand unless the left operand has qualified type, in which case
4969  // it is the unqualified version of the type of the left operand.
4970  // C99 6.5.16.1p2: In simple assignment, the value of the right operand
4971  // is converted to the type of the assignment expression (above).
4972  // C++ 5.17p1: the type of the assignment expression is that of its left
4973  // operand.
4974  return LHSType.getUnqualifiedType();
4975}
4976
4977// C99 6.5.17
4978QualType Sema::CheckCommaOperands(Expr *LHS, Expr *&RHS, SourceLocation Loc) {
4979  // Comma performs lvalue conversion (C99 6.3.2.1), but not unary conversions.
4980  DefaultFunctionArrayConversion(RHS);
4981
4982  // FIXME: Check that RHS type is complete in C mode (it's legal for it to be
4983  // incomplete in C++).
4984
4985  return RHS->getType();
4986}
4987
4988/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
4989/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
4990QualType Sema::CheckIncrementDecrementOperand(Expr *Op, SourceLocation OpLoc,
4991                                              bool isInc) {
4992  if (Op->isTypeDependent())
4993    return Context.DependentTy;
4994
4995  QualType ResType = Op->getType();
4996  assert(!ResType.isNull() && "no type for increment/decrement expression");
4997
4998  if (getLangOptions().CPlusPlus && ResType->isBooleanType()) {
4999    // Decrement of bool is not allowed.
5000    if (!isInc) {
5001      Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
5002      return QualType();
5003    }
5004    // Increment of bool sets it to true, but is deprecated.
5005    Diag(OpLoc, diag::warn_increment_bool) << Op->getSourceRange();
5006  } else if (ResType->isRealType()) {
5007    // OK!
5008  } else if (ResType->isAnyPointerType()) {
5009    QualType PointeeTy = ResType->getPointeeType();
5010
5011    // C99 6.5.2.4p2, 6.5.6p2
5012    if (PointeeTy->isVoidType()) {
5013      if (getLangOptions().CPlusPlus) {
5014        Diag(OpLoc, diag::err_typecheck_pointer_arith_void_type)
5015          << Op->getSourceRange();
5016        return QualType();
5017      }
5018
5019      // Pointer to void is a GNU extension in C.
5020      Diag(OpLoc, diag::ext_gnu_void_ptr) << Op->getSourceRange();
5021    } else if (PointeeTy->isFunctionType()) {
5022      if (getLangOptions().CPlusPlus) {
5023        Diag(OpLoc, diag::err_typecheck_pointer_arith_function_type)
5024          << Op->getType() << Op->getSourceRange();
5025        return QualType();
5026      }
5027
5028      Diag(OpLoc, diag::ext_gnu_ptr_func_arith)
5029        << ResType << Op->getSourceRange();
5030    } else if (RequireCompleteType(OpLoc, PointeeTy,
5031                           PDiag(diag::err_typecheck_arithmetic_incomplete_type)
5032                             << Op->getSourceRange()
5033                             << ResType))
5034      return QualType();
5035    // Diagnose bad cases where we step over interface counts.
5036    else if (PointeeTy->isObjCInterfaceType() && LangOpts.ObjCNonFragileABI) {
5037      Diag(OpLoc, diag::err_arithmetic_nonfragile_interface)
5038        << PointeeTy << Op->getSourceRange();
5039      return QualType();
5040    }
5041  } else if (ResType->isComplexType()) {
5042    // C99 does not support ++/-- on complex types, we allow as an extension.
5043    Diag(OpLoc, diag::ext_integer_increment_complex)
5044      << ResType << Op->getSourceRange();
5045  } else {
5046    Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
5047      << ResType << Op->getSourceRange();
5048    return QualType();
5049  }
5050  // At this point, we know we have a real, complex or pointer type.
5051  // Now make sure the operand is a modifiable lvalue.
5052  if (CheckForModifiableLvalue(Op, OpLoc, *this))
5053    return QualType();
5054  return ResType;
5055}
5056
5057/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
5058/// This routine allows us to typecheck complex/recursive expressions
5059/// where the declaration is needed for type checking. We only need to
5060/// handle cases when the expression references a function designator
5061/// or is an lvalue. Here are some examples:
5062///  - &(x) => x
5063///  - &*****f => f for f a function designator.
5064///  - &s.xx => s
5065///  - &s.zz[1].yy -> s, if zz is an array
5066///  - *(x + 1) -> x, if x is an array
5067///  - &"123"[2] -> 0
5068///  - & __real__ x -> x
5069static NamedDecl *getPrimaryDecl(Expr *E) {
5070  switch (E->getStmtClass()) {
5071  case Stmt::DeclRefExprClass:
5072    return cast<DeclRefExpr>(E)->getDecl();
5073  case Stmt::MemberExprClass:
5074    // If this is an arrow operator, the address is an offset from
5075    // the base's value, so the object the base refers to is
5076    // irrelevant.
5077    if (cast<MemberExpr>(E)->isArrow())
5078      return 0;
5079    // Otherwise, the expression refers to a part of the base
5080    return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
5081  case Stmt::ArraySubscriptExprClass: {
5082    // FIXME: This code shouldn't be necessary!  We should catch the implicit
5083    // promotion of register arrays earlier.
5084    Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
5085    if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
5086      if (ICE->getSubExpr()->getType()->isArrayType())
5087        return getPrimaryDecl(ICE->getSubExpr());
5088    }
5089    return 0;
5090  }
5091  case Stmt::UnaryOperatorClass: {
5092    UnaryOperator *UO = cast<UnaryOperator>(E);
5093
5094    switch(UO->getOpcode()) {
5095    case UnaryOperator::Real:
5096    case UnaryOperator::Imag:
5097    case UnaryOperator::Extension:
5098      return getPrimaryDecl(UO->getSubExpr());
5099    default:
5100      return 0;
5101    }
5102  }
5103  case Stmt::ParenExprClass:
5104    return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
5105  case Stmt::ImplicitCastExprClass:
5106    // If the result of an implicit cast is an l-value, we care about
5107    // the sub-expression; otherwise, the result here doesn't matter.
5108    return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
5109  default:
5110    return 0;
5111  }
5112}
5113
5114/// CheckAddressOfOperand - The operand of & must be either a function
5115/// designator or an lvalue designating an object. If it is an lvalue, the
5116/// object cannot be declared with storage class register or be a bit field.
5117/// Note: The usual conversions are *not* applied to the operand of the &
5118/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
5119/// In C++, the operand might be an overloaded function name, in which case
5120/// we allow the '&' but retain the overloaded-function type.
5121QualType Sema::CheckAddressOfOperand(Expr *op, SourceLocation OpLoc) {
5122  // Make sure to ignore parentheses in subsequent checks
5123  op = op->IgnoreParens();
5124
5125  if (op->isTypeDependent())
5126    return Context.DependentTy;
5127
5128  if (getLangOptions().C99) {
5129    // Implement C99-only parts of addressof rules.
5130    if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
5131      if (uOp->getOpcode() == UnaryOperator::Deref)
5132        // Per C99 6.5.3.2, the address of a deref always returns a valid result
5133        // (assuming the deref expression is valid).
5134        return uOp->getSubExpr()->getType();
5135    }
5136    // Technically, there should be a check for array subscript
5137    // expressions here, but the result of one is always an lvalue anyway.
5138  }
5139  NamedDecl *dcl = getPrimaryDecl(op);
5140  Expr::isLvalueResult lval = op->isLvalue(Context);
5141
5142  if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
5143    // C99 6.5.3.2p1
5144    // The operand must be either an l-value or a function designator
5145    if (!op->getType()->isFunctionType()) {
5146      // FIXME: emit more specific diag...
5147      Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
5148        << op->getSourceRange();
5149      return QualType();
5150    }
5151  } else if (op->getBitField()) { // C99 6.5.3.2p1
5152    // The operand cannot be a bit-field
5153    Diag(OpLoc, diag::err_typecheck_address_of)
5154      << "bit-field" << op->getSourceRange();
5155        return QualType();
5156  } else if (isa<ExtVectorElementExpr>(op) || (isa<ArraySubscriptExpr>(op) &&
5157           cast<ArraySubscriptExpr>(op)->getBase()->getType()->isVectorType())){
5158    // The operand cannot be an element of a vector
5159    Diag(OpLoc, diag::err_typecheck_address_of)
5160      << "vector element" << op->getSourceRange();
5161    return QualType();
5162  } else if (isa<ObjCPropertyRefExpr>(op)) {
5163    // cannot take address of a property expression.
5164    Diag(OpLoc, diag::err_typecheck_address_of)
5165      << "property expression" << op->getSourceRange();
5166    return QualType();
5167  } else if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(op)) {
5168    // FIXME: Can LHS ever be null here?
5169    if (!CheckAddressOfOperand(CO->getTrueExpr(), OpLoc).isNull())
5170      return CheckAddressOfOperand(CO->getFalseExpr(), OpLoc);
5171  } else if (dcl) { // C99 6.5.3.2p1
5172    // We have an lvalue with a decl. Make sure the decl is not declared
5173    // with the register storage-class specifier.
5174    if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
5175      if (vd->getStorageClass() == VarDecl::Register) {
5176        Diag(OpLoc, diag::err_typecheck_address_of)
5177          << "register variable" << op->getSourceRange();
5178        return QualType();
5179      }
5180    } else if (isa<OverloadedFunctionDecl>(dcl) ||
5181               isa<FunctionTemplateDecl>(dcl)) {
5182      return Context.OverloadTy;
5183    } else if (FieldDecl *FD = dyn_cast<FieldDecl>(dcl)) {
5184      // Okay: we can take the address of a field.
5185      // Could be a pointer to member, though, if there is an explicit
5186      // scope qualifier for the class.
5187      if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier()) {
5188        DeclContext *Ctx = dcl->getDeclContext();
5189        if (Ctx && Ctx->isRecord()) {
5190          if (FD->getType()->isReferenceType()) {
5191            Diag(OpLoc,
5192                 diag::err_cannot_form_pointer_to_member_of_reference_type)
5193              << FD->getDeclName() << FD->getType();
5194            return QualType();
5195          }
5196
5197          return Context.getMemberPointerType(op->getType(),
5198                Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
5199        }
5200      }
5201    } else if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(dcl)) {
5202      // Okay: we can take the address of a function.
5203      // As above.
5204      if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier() &&
5205          MD->isInstance())
5206        return Context.getMemberPointerType(op->getType(),
5207              Context.getTypeDeclType(MD->getParent()).getTypePtr());
5208    } else if (!isa<FunctionDecl>(dcl))
5209      assert(0 && "Unknown/unexpected decl type");
5210  }
5211
5212  if (lval == Expr::LV_IncompleteVoidType) {
5213    // Taking the address of a void variable is technically illegal, but we
5214    // allow it in cases which are otherwise valid.
5215    // Example: "extern void x; void* y = &x;".
5216    Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
5217  }
5218
5219  // If the operand has type "type", the result has type "pointer to type".
5220  return Context.getPointerType(op->getType());
5221}
5222
5223QualType Sema::CheckIndirectionOperand(Expr *Op, SourceLocation OpLoc) {
5224  if (Op->isTypeDependent())
5225    return Context.DependentTy;
5226
5227  UsualUnaryConversions(Op);
5228  QualType Ty = Op->getType();
5229
5230  // Note that per both C89 and C99, this is always legal, even if ptype is an
5231  // incomplete type or void.  It would be possible to warn about dereferencing
5232  // a void pointer, but it's completely well-defined, and such a warning is
5233  // unlikely to catch any mistakes.
5234  if (const PointerType *PT = Ty->getAs<PointerType>())
5235    return PT->getPointeeType();
5236
5237  if (const ObjCObjectPointerType *OPT = Ty->getAs<ObjCObjectPointerType>())
5238    return OPT->getPointeeType();
5239
5240  Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
5241    << Ty << Op->getSourceRange();
5242  return QualType();
5243}
5244
5245static inline BinaryOperator::Opcode ConvertTokenKindToBinaryOpcode(
5246  tok::TokenKind Kind) {
5247  BinaryOperator::Opcode Opc;
5248  switch (Kind) {
5249  default: assert(0 && "Unknown binop!");
5250  case tok::periodstar:           Opc = BinaryOperator::PtrMemD; break;
5251  case tok::arrowstar:            Opc = BinaryOperator::PtrMemI; break;
5252  case tok::star:                 Opc = BinaryOperator::Mul; break;
5253  case tok::slash:                Opc = BinaryOperator::Div; break;
5254  case tok::percent:              Opc = BinaryOperator::Rem; break;
5255  case tok::plus:                 Opc = BinaryOperator::Add; break;
5256  case tok::minus:                Opc = BinaryOperator::Sub; break;
5257  case tok::lessless:             Opc = BinaryOperator::Shl; break;
5258  case tok::greatergreater:       Opc = BinaryOperator::Shr; break;
5259  case tok::lessequal:            Opc = BinaryOperator::LE; break;
5260  case tok::less:                 Opc = BinaryOperator::LT; break;
5261  case tok::greaterequal:         Opc = BinaryOperator::GE; break;
5262  case tok::greater:              Opc = BinaryOperator::GT; break;
5263  case tok::exclaimequal:         Opc = BinaryOperator::NE; break;
5264  case tok::equalequal:           Opc = BinaryOperator::EQ; break;
5265  case tok::amp:                  Opc = BinaryOperator::And; break;
5266  case tok::caret:                Opc = BinaryOperator::Xor; break;
5267  case tok::pipe:                 Opc = BinaryOperator::Or; break;
5268  case tok::ampamp:               Opc = BinaryOperator::LAnd; break;
5269  case tok::pipepipe:             Opc = BinaryOperator::LOr; break;
5270  case tok::equal:                Opc = BinaryOperator::Assign; break;
5271  case tok::starequal:            Opc = BinaryOperator::MulAssign; break;
5272  case tok::slashequal:           Opc = BinaryOperator::DivAssign; break;
5273  case tok::percentequal:         Opc = BinaryOperator::RemAssign; break;
5274  case tok::plusequal:            Opc = BinaryOperator::AddAssign; break;
5275  case tok::minusequal:           Opc = BinaryOperator::SubAssign; break;
5276  case tok::lesslessequal:        Opc = BinaryOperator::ShlAssign; break;
5277  case tok::greatergreaterequal:  Opc = BinaryOperator::ShrAssign; break;
5278  case tok::ampequal:             Opc = BinaryOperator::AndAssign; break;
5279  case tok::caretequal:           Opc = BinaryOperator::XorAssign; break;
5280  case tok::pipeequal:            Opc = BinaryOperator::OrAssign; break;
5281  case tok::comma:                Opc = BinaryOperator::Comma; break;
5282  }
5283  return Opc;
5284}
5285
5286static inline UnaryOperator::Opcode ConvertTokenKindToUnaryOpcode(
5287  tok::TokenKind Kind) {
5288  UnaryOperator::Opcode Opc;
5289  switch (Kind) {
5290  default: assert(0 && "Unknown unary op!");
5291  case tok::plusplus:     Opc = UnaryOperator::PreInc; break;
5292  case tok::minusminus:   Opc = UnaryOperator::PreDec; break;
5293  case tok::amp:          Opc = UnaryOperator::AddrOf; break;
5294  case tok::star:         Opc = UnaryOperator::Deref; break;
5295  case tok::plus:         Opc = UnaryOperator::Plus; break;
5296  case tok::minus:        Opc = UnaryOperator::Minus; break;
5297  case tok::tilde:        Opc = UnaryOperator::Not; break;
5298  case tok::exclaim:      Opc = UnaryOperator::LNot; break;
5299  case tok::kw___real:    Opc = UnaryOperator::Real; break;
5300  case tok::kw___imag:    Opc = UnaryOperator::Imag; break;
5301  case tok::kw___extension__: Opc = UnaryOperator::Extension; break;
5302  }
5303  return Opc;
5304}
5305
5306/// CreateBuiltinBinOp - Creates a new built-in binary operation with
5307/// operator @p Opc at location @c TokLoc. This routine only supports
5308/// built-in operations; ActOnBinOp handles overloaded operators.
5309Action::OwningExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
5310                                                  unsigned Op,
5311                                                  Expr *lhs, Expr *rhs) {
5312  QualType ResultTy;     // Result type of the binary operator.
5313  BinaryOperator::Opcode Opc = (BinaryOperator::Opcode)Op;
5314  // The following two variables are used for compound assignment operators
5315  QualType CompLHSTy;    // Type of LHS after promotions for computation
5316  QualType CompResultTy; // Type of computation result
5317
5318  switch (Opc) {
5319  case BinaryOperator::Assign:
5320    ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, QualType());
5321    break;
5322  case BinaryOperator::PtrMemD:
5323  case BinaryOperator::PtrMemI:
5324    ResultTy = CheckPointerToMemberOperands(lhs, rhs, OpLoc,
5325                                            Opc == BinaryOperator::PtrMemI);
5326    break;
5327  case BinaryOperator::Mul:
5328  case BinaryOperator::Div:
5329    ResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc);
5330    break;
5331  case BinaryOperator::Rem:
5332    ResultTy = CheckRemainderOperands(lhs, rhs, OpLoc);
5333    break;
5334  case BinaryOperator::Add:
5335    ResultTy = CheckAdditionOperands(lhs, rhs, OpLoc);
5336    break;
5337  case BinaryOperator::Sub:
5338    ResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc);
5339    break;
5340  case BinaryOperator::Shl:
5341  case BinaryOperator::Shr:
5342    ResultTy = CheckShiftOperands(lhs, rhs, OpLoc);
5343    break;
5344  case BinaryOperator::LE:
5345  case BinaryOperator::LT:
5346  case BinaryOperator::GE:
5347  case BinaryOperator::GT:
5348    ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, true);
5349    break;
5350  case BinaryOperator::EQ:
5351  case BinaryOperator::NE:
5352    ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, false);
5353    break;
5354  case BinaryOperator::And:
5355  case BinaryOperator::Xor:
5356  case BinaryOperator::Or:
5357    ResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc);
5358    break;
5359  case BinaryOperator::LAnd:
5360  case BinaryOperator::LOr:
5361    ResultTy = CheckLogicalOperands(lhs, rhs, OpLoc);
5362    break;
5363  case BinaryOperator::MulAssign:
5364  case BinaryOperator::DivAssign:
5365    CompResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, true);
5366    CompLHSTy = CompResultTy;
5367    if (!CompResultTy.isNull())
5368      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
5369    break;
5370  case BinaryOperator::RemAssign:
5371    CompResultTy = CheckRemainderOperands(lhs, rhs, OpLoc, true);
5372    CompLHSTy = CompResultTy;
5373    if (!CompResultTy.isNull())
5374      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
5375    break;
5376  case BinaryOperator::AddAssign:
5377    CompResultTy = CheckAdditionOperands(lhs, rhs, OpLoc, &CompLHSTy);
5378    if (!CompResultTy.isNull())
5379      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
5380    break;
5381  case BinaryOperator::SubAssign:
5382    CompResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc, &CompLHSTy);
5383    if (!CompResultTy.isNull())
5384      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
5385    break;
5386  case BinaryOperator::ShlAssign:
5387  case BinaryOperator::ShrAssign:
5388    CompResultTy = CheckShiftOperands(lhs, rhs, OpLoc, true);
5389    CompLHSTy = CompResultTy;
5390    if (!CompResultTy.isNull())
5391      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
5392    break;
5393  case BinaryOperator::AndAssign:
5394  case BinaryOperator::XorAssign:
5395  case BinaryOperator::OrAssign:
5396    CompResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc, true);
5397    CompLHSTy = CompResultTy;
5398    if (!CompResultTy.isNull())
5399      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
5400    break;
5401  case BinaryOperator::Comma:
5402    ResultTy = CheckCommaOperands(lhs, rhs, OpLoc);
5403    break;
5404  }
5405  if (ResultTy.isNull())
5406    return ExprError();
5407  if (CompResultTy.isNull())
5408    return Owned(new (Context) BinaryOperator(lhs, rhs, Opc, ResultTy, OpLoc));
5409  else
5410    return Owned(new (Context) CompoundAssignOperator(lhs, rhs, Opc, ResultTy,
5411                                                      CompLHSTy, CompResultTy,
5412                                                      OpLoc));
5413}
5414
5415/// SuggestParentheses - Emit a diagnostic together with a fixit hint that wraps
5416/// ParenRange in parentheses.
5417static void SuggestParentheses(Sema &Self, SourceLocation Loc,
5418                               const PartialDiagnostic &PD,
5419                               SourceRange ParenRange)
5420{
5421  SourceLocation EndLoc = Self.PP.getLocForEndOfToken(ParenRange.getEnd());
5422  if (!ParenRange.getEnd().isFileID() || EndLoc.isInvalid()) {
5423    // We can't display the parentheses, so just dig the
5424    // warning/error and return.
5425    Self.Diag(Loc, PD);
5426    return;
5427  }
5428
5429  Self.Diag(Loc, PD)
5430    << CodeModificationHint::CreateInsertion(ParenRange.getBegin(), "(")
5431    << CodeModificationHint::CreateInsertion(EndLoc, ")");
5432}
5433
5434/// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison
5435/// operators are mixed in a way that suggests that the programmer forgot that
5436/// comparison operators have higher precedence. The most typical example of
5437/// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1".
5438static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperator::Opcode Opc,
5439                                      SourceLocation OpLoc,Expr *lhs,Expr *rhs){
5440  typedef BinaryOperator BinOp;
5441  BinOp::Opcode lhsopc = static_cast<BinOp::Opcode>(-1),
5442                rhsopc = static_cast<BinOp::Opcode>(-1);
5443  if (BinOp *BO = dyn_cast<BinOp>(lhs))
5444    lhsopc = BO->getOpcode();
5445  if (BinOp *BO = dyn_cast<BinOp>(rhs))
5446    rhsopc = BO->getOpcode();
5447
5448  // Subs are not binary operators.
5449  if (lhsopc == -1 && rhsopc == -1)
5450    return;
5451
5452  // Bitwise operations are sometimes used as eager logical ops.
5453  // Don't diagnose this.
5454  if ((BinOp::isComparisonOp(lhsopc) || BinOp::isBitwiseOp(lhsopc)) &&
5455      (BinOp::isComparisonOp(rhsopc) || BinOp::isBitwiseOp(rhsopc)))
5456    return;
5457
5458  if (BinOp::isComparisonOp(lhsopc))
5459    SuggestParentheses(Self, OpLoc,
5460      PDiag(diag::warn_precedence_bitwise_rel)
5461          << SourceRange(lhs->getLocStart(), OpLoc)
5462          << BinOp::getOpcodeStr(Opc) << BinOp::getOpcodeStr(lhsopc),
5463      SourceRange(cast<BinOp>(lhs)->getRHS()->getLocStart(), rhs->getLocEnd()));
5464  else if (BinOp::isComparisonOp(rhsopc))
5465    SuggestParentheses(Self, OpLoc,
5466      PDiag(diag::warn_precedence_bitwise_rel)
5467          << SourceRange(OpLoc, rhs->getLocEnd())
5468          << BinOp::getOpcodeStr(Opc) << BinOp::getOpcodeStr(rhsopc),
5469      SourceRange(lhs->getLocEnd(), cast<BinOp>(rhs)->getLHS()->getLocStart()));
5470}
5471
5472/// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky
5473/// precedence. This currently diagnoses only "arg1 'bitwise' arg2 'eq' arg3".
5474/// But it could also warn about arg1 && arg2 || arg3, as GCC 4.3+ does.
5475static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperator::Opcode Opc,
5476                                    SourceLocation OpLoc, Expr *lhs, Expr *rhs){
5477  if (BinaryOperator::isBitwiseOp(Opc))
5478    DiagnoseBitwisePrecedence(Self, Opc, OpLoc, lhs, rhs);
5479}
5480
5481// Binary Operators.  'Tok' is the token for the operator.
5482Action::OwningExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
5483                                          tok::TokenKind Kind,
5484                                          ExprArg LHS, ExprArg RHS) {
5485  BinaryOperator::Opcode Opc = ConvertTokenKindToBinaryOpcode(Kind);
5486  Expr *lhs = LHS.takeAs<Expr>(), *rhs = RHS.takeAs<Expr>();
5487
5488  assert((lhs != 0) && "ActOnBinOp(): missing left expression");
5489  assert((rhs != 0) && "ActOnBinOp(): missing right expression");
5490
5491  // Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0"
5492  DiagnoseBinOpPrecedence(*this, Opc, TokLoc, lhs, rhs);
5493
5494  if (getLangOptions().CPlusPlus &&
5495      (lhs->getType()->isOverloadableType() ||
5496       rhs->getType()->isOverloadableType())) {
5497    // Find all of the overloaded operators visible from this
5498    // point. We perform both an operator-name lookup from the local
5499    // scope and an argument-dependent lookup based on the types of
5500    // the arguments.
5501    FunctionSet Functions;
5502    OverloadedOperatorKind OverOp = BinaryOperator::getOverloadedOperator(Opc);
5503    if (OverOp != OO_None) {
5504      LookupOverloadedOperatorName(OverOp, S, lhs->getType(), rhs->getType(),
5505                                   Functions);
5506      Expr *Args[2] = { lhs, rhs };
5507      DeclarationName OpName
5508        = Context.DeclarationNames.getCXXOperatorName(OverOp);
5509      ArgumentDependentLookup(OpName, /*Operator*/true, Args, 2, Functions);
5510    }
5511
5512    // Build the (potentially-overloaded, potentially-dependent)
5513    // binary operation.
5514    return CreateOverloadedBinOp(TokLoc, Opc, Functions, lhs, rhs);
5515  }
5516
5517  // Build a built-in binary operation.
5518  return CreateBuiltinBinOp(TokLoc, Opc, lhs, rhs);
5519}
5520
5521Action::OwningExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
5522                                                    unsigned OpcIn,
5523                                                    ExprArg InputArg) {
5524  UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
5525
5526  // FIXME: Input is modified below, but InputArg is not updated appropriately.
5527  Expr *Input = (Expr *)InputArg.get();
5528  QualType resultType;
5529  switch (Opc) {
5530  case UnaryOperator::OffsetOf:
5531    assert(false && "Invalid unary operator");
5532    break;
5533
5534  case UnaryOperator::PreInc:
5535  case UnaryOperator::PreDec:
5536  case UnaryOperator::PostInc:
5537  case UnaryOperator::PostDec:
5538    resultType = CheckIncrementDecrementOperand(Input, OpLoc,
5539                                                Opc == UnaryOperator::PreInc ||
5540                                                Opc == UnaryOperator::PostInc);
5541    break;
5542  case UnaryOperator::AddrOf:
5543    resultType = CheckAddressOfOperand(Input, OpLoc);
5544    break;
5545  case UnaryOperator::Deref:
5546    DefaultFunctionArrayConversion(Input);
5547    resultType = CheckIndirectionOperand(Input, OpLoc);
5548    break;
5549  case UnaryOperator::Plus:
5550  case UnaryOperator::Minus:
5551    UsualUnaryConversions(Input);
5552    resultType = Input->getType();
5553    if (resultType->isDependentType())
5554      break;
5555    if (resultType->isArithmeticType()) // C99 6.5.3.3p1
5556      break;
5557    else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6-7
5558             resultType->isEnumeralType())
5559      break;
5560    else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6
5561             Opc == UnaryOperator::Plus &&
5562             resultType->isPointerType())
5563      break;
5564
5565    return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
5566      << resultType << Input->getSourceRange());
5567  case UnaryOperator::Not: // bitwise complement
5568    UsualUnaryConversions(Input);
5569    resultType = Input->getType();
5570    if (resultType->isDependentType())
5571      break;
5572    // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
5573    if (resultType->isComplexType() || resultType->isComplexIntegerType())
5574      // C99 does not support '~' for complex conjugation.
5575      Diag(OpLoc, diag::ext_integer_complement_complex)
5576        << resultType << Input->getSourceRange();
5577    else if (!resultType->isIntegerType())
5578      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
5579        << resultType << Input->getSourceRange());
5580    break;
5581  case UnaryOperator::LNot: // logical negation
5582    // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
5583    DefaultFunctionArrayConversion(Input);
5584    resultType = Input->getType();
5585    if (resultType->isDependentType())
5586      break;
5587    if (!resultType->isScalarType()) // C99 6.5.3.3p1
5588      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
5589        << resultType << Input->getSourceRange());
5590    // LNot always has type int. C99 6.5.3.3p5.
5591    // In C++, it's bool. C++ 5.3.1p8
5592    resultType = getLangOptions().CPlusPlus ? Context.BoolTy : Context.IntTy;
5593    break;
5594  case UnaryOperator::Real:
5595  case UnaryOperator::Imag:
5596    resultType = CheckRealImagOperand(Input, OpLoc, Opc == UnaryOperator::Real);
5597    break;
5598  case UnaryOperator::Extension:
5599    resultType = Input->getType();
5600    break;
5601  }
5602  if (resultType.isNull())
5603    return ExprError();
5604
5605  InputArg.release();
5606  return Owned(new (Context) UnaryOperator(Input, Opc, resultType, OpLoc));
5607}
5608
5609// Unary Operators.  'Tok' is the token for the operator.
5610Action::OwningExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
5611                                            tok::TokenKind Op, ExprArg input) {
5612  Expr *Input = (Expr*)input.get();
5613  UnaryOperator::Opcode Opc = ConvertTokenKindToUnaryOpcode(Op);
5614
5615  if (getLangOptions().CPlusPlus && Input->getType()->isOverloadableType()) {
5616    // Find all of the overloaded operators visible from this
5617    // point. We perform both an operator-name lookup from the local
5618    // scope and an argument-dependent lookup based on the types of
5619    // the arguments.
5620    FunctionSet Functions;
5621    OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
5622    if (OverOp != OO_None) {
5623      LookupOverloadedOperatorName(OverOp, S, Input->getType(), QualType(),
5624                                   Functions);
5625      DeclarationName OpName
5626        = Context.DeclarationNames.getCXXOperatorName(OverOp);
5627      ArgumentDependentLookup(OpName, /*Operator*/true, &Input, 1, Functions);
5628    }
5629
5630    return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, move(input));
5631  }
5632
5633  return CreateBuiltinUnaryOp(OpLoc, Opc, move(input));
5634}
5635
5636/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
5637Sema::OwningExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc,
5638                                            SourceLocation LabLoc,
5639                                            IdentifierInfo *LabelII) {
5640  // Look up the record for this label identifier.
5641  LabelStmt *&LabelDecl = getLabelMap()[LabelII];
5642
5643  // If we haven't seen this label yet, create a forward reference. It
5644  // will be validated and/or cleaned up in ActOnFinishFunctionBody.
5645  if (LabelDecl == 0)
5646    LabelDecl = new (Context) LabelStmt(LabLoc, LabelII, 0);
5647
5648  // Create the AST node.  The address of a label always has type 'void*'.
5649  return Owned(new (Context) AddrLabelExpr(OpLoc, LabLoc, LabelDecl,
5650                                       Context.getPointerType(Context.VoidTy)));
5651}
5652
5653Sema::OwningExprResult
5654Sema::ActOnStmtExpr(SourceLocation LPLoc, StmtArg substmt,
5655                    SourceLocation RPLoc) { // "({..})"
5656  Stmt *SubStmt = static_cast<Stmt*>(substmt.get());
5657  assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
5658  CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
5659
5660  bool isFileScope = getCurFunctionOrMethodDecl() == 0;
5661  if (isFileScope)
5662    return ExprError(Diag(LPLoc, diag::err_stmtexpr_file_scope));
5663
5664  // FIXME: there are a variety of strange constraints to enforce here, for
5665  // example, it is not possible to goto into a stmt expression apparently.
5666  // More semantic analysis is needed.
5667
5668  // If there are sub stmts in the compound stmt, take the type of the last one
5669  // as the type of the stmtexpr.
5670  QualType Ty = Context.VoidTy;
5671
5672  if (!Compound->body_empty()) {
5673    Stmt *LastStmt = Compound->body_back();
5674    // If LastStmt is a label, skip down through into the body.
5675    while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt))
5676      LastStmt = Label->getSubStmt();
5677
5678    if (Expr *LastExpr = dyn_cast<Expr>(LastStmt))
5679      Ty = LastExpr->getType();
5680  }
5681
5682  // FIXME: Check that expression type is complete/non-abstract; statement
5683  // expressions are not lvalues.
5684
5685  substmt.release();
5686  return Owned(new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc));
5687}
5688
5689Sema::OwningExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
5690                                                  SourceLocation BuiltinLoc,
5691                                                  SourceLocation TypeLoc,
5692                                                  TypeTy *argty,
5693                                                  OffsetOfComponent *CompPtr,
5694                                                  unsigned NumComponents,
5695                                                  SourceLocation RPLoc) {
5696  // FIXME: This function leaks all expressions in the offset components on
5697  // error.
5698  // FIXME: Preserve type source info.
5699  QualType ArgTy = GetTypeFromParser(argty);
5700  assert(!ArgTy.isNull() && "Missing type argument!");
5701
5702  bool Dependent = ArgTy->isDependentType();
5703
5704  // We must have at least one component that refers to the type, and the first
5705  // one is known to be a field designator.  Verify that the ArgTy represents
5706  // a struct/union/class.
5707  if (!Dependent && !ArgTy->isRecordType())
5708    return ExprError(Diag(TypeLoc, diag::err_offsetof_record_type) << ArgTy);
5709
5710  // FIXME: Type must be complete per C99 7.17p3 because a declaring a variable
5711  // with an incomplete type would be illegal.
5712
5713  // Otherwise, create a null pointer as the base, and iteratively process
5714  // the offsetof designators.
5715  QualType ArgTyPtr = Context.getPointerType(ArgTy);
5716  Expr* Res = new (Context) ImplicitValueInitExpr(ArgTyPtr);
5717  Res = new (Context) UnaryOperator(Res, UnaryOperator::Deref,
5718                                    ArgTy, SourceLocation());
5719
5720  // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
5721  // GCC extension, diagnose them.
5722  // FIXME: This diagnostic isn't actually visible because the location is in
5723  // a system header!
5724  if (NumComponents != 1)
5725    Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator)
5726      << SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd);
5727
5728  if (!Dependent) {
5729    bool DidWarnAboutNonPOD = false;
5730
5731    // FIXME: Dependent case loses a lot of information here. And probably
5732    // leaks like a sieve.
5733    for (unsigned i = 0; i != NumComponents; ++i) {
5734      const OffsetOfComponent &OC = CompPtr[i];
5735      if (OC.isBrackets) {
5736        // Offset of an array sub-field.  TODO: Should we allow vector elements?
5737        const ArrayType *AT = Context.getAsArrayType(Res->getType());
5738        if (!AT) {
5739          Res->Destroy(Context);
5740          return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
5741            << Res->getType());
5742        }
5743
5744        // FIXME: C++: Verify that operator[] isn't overloaded.
5745
5746        // Promote the array so it looks more like a normal array subscript
5747        // expression.
5748        DefaultFunctionArrayConversion(Res);
5749
5750        // C99 6.5.2.1p1
5751        Expr *Idx = static_cast<Expr*>(OC.U.E);
5752        // FIXME: Leaks Res
5753        if (!Idx->isTypeDependent() && !Idx->getType()->isIntegerType())
5754          return ExprError(Diag(Idx->getLocStart(),
5755                                diag::err_typecheck_subscript_not_integer)
5756            << Idx->getSourceRange());
5757
5758        Res = new (Context) ArraySubscriptExpr(Res, Idx, AT->getElementType(),
5759                                               OC.LocEnd);
5760        continue;
5761      }
5762
5763      const RecordType *RC = Res->getType()->getAs<RecordType>();
5764      if (!RC) {
5765        Res->Destroy(Context);
5766        return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
5767          << Res->getType());
5768      }
5769
5770      // Get the decl corresponding to this.
5771      RecordDecl *RD = RC->getDecl();
5772      if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
5773        if (!CRD->isPOD() && !DidWarnAboutNonPOD) {
5774          ExprError(Diag(BuiltinLoc, diag::warn_offsetof_non_pod_type)
5775            << SourceRange(CompPtr[0].LocStart, OC.LocEnd)
5776            << Res->getType());
5777          DidWarnAboutNonPOD = true;
5778        }
5779      }
5780
5781      LookupResult R;
5782      LookupQualifiedName(R, RD, OC.U.IdentInfo, LookupMemberName);
5783
5784      FieldDecl *MemberDecl
5785        = dyn_cast_or_null<FieldDecl>(R.getAsSingleDecl(Context));
5786      // FIXME: Leaks Res
5787      if (!MemberDecl)
5788        return ExprError(Diag(BuiltinLoc, diag::err_no_member)
5789         << OC.U.IdentInfo << RD << SourceRange(OC.LocStart, OC.LocEnd));
5790
5791      // FIXME: C++: Verify that MemberDecl isn't a static field.
5792      // FIXME: Verify that MemberDecl isn't a bitfield.
5793      if (cast<RecordDecl>(MemberDecl->getDeclContext())->isAnonymousStructOrUnion()) {
5794        Res = BuildAnonymousStructUnionMemberReference(
5795            SourceLocation(), MemberDecl, Res, SourceLocation()).takeAs<Expr>();
5796      } else {
5797        // MemberDecl->getType() doesn't get the right qualifiers, but it
5798        // doesn't matter here.
5799        Res = new (Context) MemberExpr(Res, false, MemberDecl, OC.LocEnd,
5800                MemberDecl->getType().getNonReferenceType());
5801      }
5802    }
5803  }
5804
5805  return Owned(new (Context) UnaryOperator(Res, UnaryOperator::OffsetOf,
5806                                           Context.getSizeType(), BuiltinLoc));
5807}
5808
5809
5810Sema::OwningExprResult Sema::ActOnTypesCompatibleExpr(SourceLocation BuiltinLoc,
5811                                                      TypeTy *arg1,TypeTy *arg2,
5812                                                      SourceLocation RPLoc) {
5813  // FIXME: Preserve type source info.
5814  QualType argT1 = GetTypeFromParser(arg1);
5815  QualType argT2 = GetTypeFromParser(arg2);
5816
5817  assert((!argT1.isNull() && !argT2.isNull()) && "Missing type argument(s)");
5818
5819  if (getLangOptions().CPlusPlus) {
5820    Diag(BuiltinLoc, diag::err_types_compatible_p_in_cplusplus)
5821      << SourceRange(BuiltinLoc, RPLoc);
5822    return ExprError();
5823  }
5824
5825  return Owned(new (Context) TypesCompatibleExpr(Context.IntTy, BuiltinLoc,
5826                                                 argT1, argT2, RPLoc));
5827}
5828
5829Sema::OwningExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
5830                                             ExprArg cond,
5831                                             ExprArg expr1, ExprArg expr2,
5832                                             SourceLocation RPLoc) {
5833  Expr *CondExpr = static_cast<Expr*>(cond.get());
5834  Expr *LHSExpr = static_cast<Expr*>(expr1.get());
5835  Expr *RHSExpr = static_cast<Expr*>(expr2.get());
5836
5837  assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
5838
5839  QualType resType;
5840  bool ValueDependent = false;
5841  if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
5842    resType = Context.DependentTy;
5843    ValueDependent = true;
5844  } else {
5845    // The conditional expression is required to be a constant expression.
5846    llvm::APSInt condEval(32);
5847    SourceLocation ExpLoc;
5848    if (!CondExpr->isIntegerConstantExpr(condEval, Context, &ExpLoc))
5849      return ExprError(Diag(ExpLoc,
5850                       diag::err_typecheck_choose_expr_requires_constant)
5851        << CondExpr->getSourceRange());
5852
5853    // If the condition is > zero, then the AST type is the same as the LSHExpr.
5854    resType = condEval.getZExtValue() ? LHSExpr->getType() : RHSExpr->getType();
5855    ValueDependent = condEval.getZExtValue() ? LHSExpr->isValueDependent()
5856                                             : RHSExpr->isValueDependent();
5857  }
5858
5859  cond.release(); expr1.release(); expr2.release();
5860  return Owned(new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
5861                                        resType, RPLoc,
5862                                        resType->isDependentType(),
5863                                        ValueDependent));
5864}
5865
5866//===----------------------------------------------------------------------===//
5867// Clang Extensions.
5868//===----------------------------------------------------------------------===//
5869
5870/// ActOnBlockStart - This callback is invoked when a block literal is started.
5871void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *BlockScope) {
5872  // Analyze block parameters.
5873  BlockSemaInfo *BSI = new BlockSemaInfo();
5874
5875  // Add BSI to CurBlock.
5876  BSI->PrevBlockInfo = CurBlock;
5877  CurBlock = BSI;
5878
5879  BSI->ReturnType = QualType();
5880  BSI->TheScope = BlockScope;
5881  BSI->hasBlockDeclRefExprs = false;
5882  BSI->hasPrototype = false;
5883  BSI->SavedFunctionNeedsScopeChecking = CurFunctionNeedsScopeChecking;
5884  CurFunctionNeedsScopeChecking = false;
5885
5886  BSI->TheDecl = BlockDecl::Create(Context, CurContext, CaretLoc);
5887  PushDeclContext(BlockScope, BSI->TheDecl);
5888}
5889
5890void Sema::ActOnBlockArguments(Declarator &ParamInfo, Scope *CurScope) {
5891  assert(ParamInfo.getIdentifier()==0 && "block-id should have no identifier!");
5892
5893  if (ParamInfo.getNumTypeObjects() == 0
5894      || ParamInfo.getTypeObject(0).Kind != DeclaratorChunk::Function) {
5895    ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
5896    QualType T = GetTypeForDeclarator(ParamInfo, CurScope);
5897
5898    if (T->isArrayType()) {
5899      Diag(ParamInfo.getSourceRange().getBegin(),
5900           diag::err_block_returns_array);
5901      return;
5902    }
5903
5904    // The parameter list is optional, if there was none, assume ().
5905    if (!T->isFunctionType())
5906      T = Context.getFunctionType(T, NULL, 0, 0, 0);
5907
5908    CurBlock->hasPrototype = true;
5909    CurBlock->isVariadic = false;
5910    // Check for a valid sentinel attribute on this block.
5911    if (CurBlock->TheDecl->getAttr<SentinelAttr>()) {
5912      Diag(ParamInfo.getAttributes()->getLoc(),
5913           diag::warn_attribute_sentinel_not_variadic) << 1;
5914      // FIXME: remove the attribute.
5915    }
5916    QualType RetTy = T.getTypePtr()->getAs<FunctionType>()->getResultType();
5917
5918    // Do not allow returning a objc interface by-value.
5919    if (RetTy->isObjCInterfaceType()) {
5920      Diag(ParamInfo.getSourceRange().getBegin(),
5921           diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy;
5922      return;
5923    }
5924    return;
5925  }
5926
5927  // Analyze arguments to block.
5928  assert(ParamInfo.getTypeObject(0).Kind == DeclaratorChunk::Function &&
5929         "Not a function declarator!");
5930  DeclaratorChunk::FunctionTypeInfo &FTI = ParamInfo.getTypeObject(0).Fun;
5931
5932  CurBlock->hasPrototype = FTI.hasPrototype;
5933  CurBlock->isVariadic = true;
5934
5935  // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs function that takes
5936  // no arguments, not a function that takes a single void argument.
5937  if (FTI.hasPrototype &&
5938      FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5939     (!FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType().getCVRQualifiers()&&
5940        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType())) {
5941    // empty arg list, don't push any params.
5942    CurBlock->isVariadic = false;
5943  } else if (FTI.hasPrototype) {
5944    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
5945      CurBlock->Params.push_back(FTI.ArgInfo[i].Param.getAs<ParmVarDecl>());
5946    CurBlock->isVariadic = FTI.isVariadic;
5947  }
5948  CurBlock->TheDecl->setParams(Context, CurBlock->Params.data(),
5949                               CurBlock->Params.size());
5950  CurBlock->TheDecl->setIsVariadic(CurBlock->isVariadic);
5951  ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
5952  for (BlockDecl::param_iterator AI = CurBlock->TheDecl->param_begin(),
5953       E = CurBlock->TheDecl->param_end(); AI != E; ++AI)
5954    // If this has an identifier, add it to the scope stack.
5955    if ((*AI)->getIdentifier())
5956      PushOnScopeChains(*AI, CurBlock->TheScope);
5957
5958  // Check for a valid sentinel attribute on this block.
5959  if (!CurBlock->isVariadic &&
5960      CurBlock->TheDecl->getAttr<SentinelAttr>()) {
5961    Diag(ParamInfo.getAttributes()->getLoc(),
5962         diag::warn_attribute_sentinel_not_variadic) << 1;
5963    // FIXME: remove the attribute.
5964  }
5965
5966  // Analyze the return type.
5967  QualType T = GetTypeForDeclarator(ParamInfo, CurScope);
5968  QualType RetTy = T->getAs<FunctionType>()->getResultType();
5969
5970  // Do not allow returning a objc interface by-value.
5971  if (RetTy->isObjCInterfaceType()) {
5972    Diag(ParamInfo.getSourceRange().getBegin(),
5973         diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy;
5974  } else if (!RetTy->isDependentType())
5975    CurBlock->ReturnType = RetTy;
5976}
5977
5978/// ActOnBlockError - If there is an error parsing a block, this callback
5979/// is invoked to pop the information about the block from the action impl.
5980void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
5981  // Ensure that CurBlock is deleted.
5982  llvm::OwningPtr<BlockSemaInfo> CC(CurBlock);
5983
5984  CurFunctionNeedsScopeChecking = CurBlock->SavedFunctionNeedsScopeChecking;
5985
5986  // Pop off CurBlock, handle nested blocks.
5987  PopDeclContext();
5988  CurBlock = CurBlock->PrevBlockInfo;
5989  // FIXME: Delete the ParmVarDecl objects as well???
5990}
5991
5992/// ActOnBlockStmtExpr - This is called when the body of a block statement
5993/// literal was successfully completed.  ^(int x){...}
5994Sema::OwningExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
5995                                                StmtArg body, Scope *CurScope) {
5996  // If blocks are disabled, emit an error.
5997  if (!LangOpts.Blocks)
5998    Diag(CaretLoc, diag::err_blocks_disable);
5999
6000  // Ensure that CurBlock is deleted.
6001  llvm::OwningPtr<BlockSemaInfo> BSI(CurBlock);
6002
6003  PopDeclContext();
6004
6005  // Pop off CurBlock, handle nested blocks.
6006  CurBlock = CurBlock->PrevBlockInfo;
6007
6008  QualType RetTy = Context.VoidTy;
6009  if (!BSI->ReturnType.isNull())
6010    RetTy = BSI->ReturnType;
6011
6012  llvm::SmallVector<QualType, 8> ArgTypes;
6013  for (unsigned i = 0, e = BSI->Params.size(); i != e; ++i)
6014    ArgTypes.push_back(BSI->Params[i]->getType());
6015
6016  bool NoReturn = BSI->TheDecl->getAttr<NoReturnAttr>();
6017  QualType BlockTy;
6018  if (!BSI->hasPrototype)
6019    BlockTy = Context.getFunctionType(RetTy, 0, 0, false, 0, false, false, 0, 0,
6020                                      NoReturn);
6021  else
6022    BlockTy = Context.getFunctionType(RetTy, ArgTypes.data(), ArgTypes.size(),
6023                                      BSI->isVariadic, 0, false, false, 0, 0,
6024                                      NoReturn);
6025
6026  // FIXME: Check that return/parameter types are complete/non-abstract
6027  DiagnoseUnusedParameters(BSI->Params.begin(), BSI->Params.end());
6028  BlockTy = Context.getBlockPointerType(BlockTy);
6029
6030  // If needed, diagnose invalid gotos and switches in the block.
6031  if (CurFunctionNeedsScopeChecking)
6032    DiagnoseInvalidJumps(static_cast<CompoundStmt*>(body.get()));
6033  CurFunctionNeedsScopeChecking = BSI->SavedFunctionNeedsScopeChecking;
6034
6035  BSI->TheDecl->setBody(body.takeAs<CompoundStmt>());
6036  CheckFallThroughForBlock(BlockTy, BSI->TheDecl->getBody());
6037  return Owned(new (Context) BlockExpr(BSI->TheDecl, BlockTy,
6038                                       BSI->hasBlockDeclRefExprs));
6039}
6040
6041Sema::OwningExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
6042                                        ExprArg expr, TypeTy *type,
6043                                        SourceLocation RPLoc) {
6044  QualType T = GetTypeFromParser(type);
6045  Expr *E = static_cast<Expr*>(expr.get());
6046  Expr *OrigExpr = E;
6047
6048  InitBuiltinVaListType();
6049
6050  // Get the va_list type
6051  QualType VaListType = Context.getBuiltinVaListType();
6052  if (VaListType->isArrayType()) {
6053    // Deal with implicit array decay; for example, on x86-64,
6054    // va_list is an array, but it's supposed to decay to
6055    // a pointer for va_arg.
6056    VaListType = Context.getArrayDecayedType(VaListType);
6057    // Make sure the input expression also decays appropriately.
6058    UsualUnaryConversions(E);
6059  } else {
6060    // Otherwise, the va_list argument must be an l-value because
6061    // it is modified by va_arg.
6062    if (!E->isTypeDependent() &&
6063        CheckForModifiableLvalue(E, BuiltinLoc, *this))
6064      return ExprError();
6065  }
6066
6067  if (!E->isTypeDependent() &&
6068      !Context.hasSameType(VaListType, E->getType())) {
6069    return ExprError(Diag(E->getLocStart(),
6070                         diag::err_first_argument_to_va_arg_not_of_type_va_list)
6071      << OrigExpr->getType() << E->getSourceRange());
6072  }
6073
6074  // FIXME: Check that type is complete/non-abstract
6075  // FIXME: Warn if a non-POD type is passed in.
6076
6077  expr.release();
6078  return Owned(new (Context) VAArgExpr(BuiltinLoc, E, T.getNonReferenceType(),
6079                                       RPLoc));
6080}
6081
6082Sema::OwningExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
6083  // The type of __null will be int or long, depending on the size of
6084  // pointers on the target.
6085  QualType Ty;
6086  if (Context.Target.getPointerWidth(0) == Context.Target.getIntWidth())
6087    Ty = Context.IntTy;
6088  else
6089    Ty = Context.LongTy;
6090
6091  return Owned(new (Context) GNUNullExpr(Ty, TokenLoc));
6092}
6093
6094bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
6095                                    SourceLocation Loc,
6096                                    QualType DstType, QualType SrcType,
6097                                    Expr *SrcExpr, const char *Flavor) {
6098  // Decode the result (notice that AST's are still created for extensions).
6099  bool isInvalid = false;
6100  unsigned DiagKind;
6101  switch (ConvTy) {
6102  default: assert(0 && "Unknown conversion type");
6103  case Compatible: return false;
6104  case PointerToInt:
6105    DiagKind = diag::ext_typecheck_convert_pointer_int;
6106    break;
6107  case IntToPointer:
6108    DiagKind = diag::ext_typecheck_convert_int_pointer;
6109    break;
6110  case IncompatiblePointer:
6111    DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
6112    break;
6113  case IncompatiblePointerSign:
6114    DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
6115    break;
6116  case FunctionVoidPointer:
6117    DiagKind = diag::ext_typecheck_convert_pointer_void_func;
6118    break;
6119  case CompatiblePointerDiscardsQualifiers:
6120    // If the qualifiers lost were because we were applying the
6121    // (deprecated) C++ conversion from a string literal to a char*
6122    // (or wchar_t*), then there was no error (C++ 4.2p2).  FIXME:
6123    // Ideally, this check would be performed in
6124    // CheckPointerTypesForAssignment. However, that would require a
6125    // bit of refactoring (so that the second argument is an
6126    // expression, rather than a type), which should be done as part
6127    // of a larger effort to fix CheckPointerTypesForAssignment for
6128    // C++ semantics.
6129    if (getLangOptions().CPlusPlus &&
6130        IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
6131      return false;
6132    DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
6133    break;
6134  case IntToBlockPointer:
6135    DiagKind = diag::err_int_to_block_pointer;
6136    break;
6137  case IncompatibleBlockPointer:
6138    DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
6139    break;
6140  case IncompatibleObjCQualifiedId:
6141    // FIXME: Diagnose the problem in ObjCQualifiedIdTypesAreCompatible, since
6142    // it can give a more specific diagnostic.
6143    DiagKind = diag::warn_incompatible_qualified_id;
6144    break;
6145  case IncompatibleVectors:
6146    DiagKind = diag::warn_incompatible_vectors;
6147    break;
6148  case Incompatible:
6149    DiagKind = diag::err_typecheck_convert_incompatible;
6150    isInvalid = true;
6151    break;
6152  }
6153
6154  Diag(Loc, DiagKind) << DstType << SrcType << Flavor
6155    << SrcExpr->getSourceRange();
6156  return isInvalid;
6157}
6158
6159bool Sema::VerifyIntegerConstantExpression(const Expr *E, llvm::APSInt *Result){
6160  llvm::APSInt ICEResult;
6161  if (E->isIntegerConstantExpr(ICEResult, Context)) {
6162    if (Result)
6163      *Result = ICEResult;
6164    return false;
6165  }
6166
6167  Expr::EvalResult EvalResult;
6168
6169  if (!E->Evaluate(EvalResult, Context) || !EvalResult.Val.isInt() ||
6170      EvalResult.HasSideEffects) {
6171    Diag(E->getExprLoc(), diag::err_expr_not_ice) << E->getSourceRange();
6172
6173    if (EvalResult.Diag) {
6174      // We only show the note if it's not the usual "invalid subexpression"
6175      // or if it's actually in a subexpression.
6176      if (EvalResult.Diag != diag::note_invalid_subexpr_in_ice ||
6177          E->IgnoreParens() != EvalResult.DiagExpr->IgnoreParens())
6178        Diag(EvalResult.DiagLoc, EvalResult.Diag);
6179    }
6180
6181    return true;
6182  }
6183
6184  Diag(E->getExprLoc(), diag::ext_expr_not_ice) <<
6185    E->getSourceRange();
6186
6187  if (EvalResult.Diag &&
6188      Diags.getDiagnosticLevel(diag::ext_expr_not_ice) != Diagnostic::Ignored)
6189    Diag(EvalResult.DiagLoc, EvalResult.Diag);
6190
6191  if (Result)
6192    *Result = EvalResult.Val.getInt();
6193  return false;
6194}
6195
6196Sema::ExpressionEvaluationContext
6197Sema::PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext) {
6198  // Introduce a new set of potentially referenced declarations to the stack.
6199  if (NewContext == PotentiallyPotentiallyEvaluated)
6200    PotentiallyReferencedDeclStack.push_back(PotentiallyReferencedDecls());
6201
6202  std::swap(ExprEvalContext, NewContext);
6203  return NewContext;
6204}
6205
6206void
6207Sema::PopExpressionEvaluationContext(ExpressionEvaluationContext OldContext,
6208                                     ExpressionEvaluationContext NewContext) {
6209  ExprEvalContext = NewContext;
6210
6211  if (OldContext == PotentiallyPotentiallyEvaluated) {
6212    // Mark any remaining declarations in the current position of the stack
6213    // as "referenced". If they were not meant to be referenced, semantic
6214    // analysis would have eliminated them (e.g., in ActOnCXXTypeId).
6215    PotentiallyReferencedDecls RemainingDecls;
6216    RemainingDecls.swap(PotentiallyReferencedDeclStack.back());
6217    PotentiallyReferencedDeclStack.pop_back();
6218
6219    for (PotentiallyReferencedDecls::iterator I = RemainingDecls.begin(),
6220                                           IEnd = RemainingDecls.end();
6221         I != IEnd; ++I)
6222      MarkDeclarationReferenced(I->first, I->second);
6223  }
6224}
6225
6226/// \brief Note that the given declaration was referenced in the source code.
6227///
6228/// This routine should be invoke whenever a given declaration is referenced
6229/// in the source code, and where that reference occurred. If this declaration
6230/// reference means that the the declaration is used (C++ [basic.def.odr]p2,
6231/// C99 6.9p3), then the declaration will be marked as used.
6232///
6233/// \param Loc the location where the declaration was referenced.
6234///
6235/// \param D the declaration that has been referenced by the source code.
6236void Sema::MarkDeclarationReferenced(SourceLocation Loc, Decl *D) {
6237  assert(D && "No declaration?");
6238
6239  if (D->isUsed())
6240    return;
6241
6242  // Mark a parameter or variable declaration "used", regardless of whether we're in a
6243  // template or not. The reason for this is that unevaluated expressions
6244  // (e.g. (void)sizeof()) constitute a use for warning purposes (-Wunused-variables and
6245  // -Wunused-parameters)
6246  if (isa<ParmVarDecl>(D) ||
6247      (isa<VarDecl>(D) && D->getDeclContext()->isFunctionOrMethod()))
6248    D->setUsed(true);
6249
6250  // Do not mark anything as "used" within a dependent context; wait for
6251  // an instantiation.
6252  if (CurContext->isDependentContext())
6253    return;
6254
6255  switch (ExprEvalContext) {
6256    case Unevaluated:
6257      // We are in an expression that is not potentially evaluated; do nothing.
6258      return;
6259
6260    case PotentiallyEvaluated:
6261      // We are in a potentially-evaluated expression, so this declaration is
6262      // "used"; handle this below.
6263      break;
6264
6265    case PotentiallyPotentiallyEvaluated:
6266      // We are in an expression that may be potentially evaluated; queue this
6267      // declaration reference until we know whether the expression is
6268      // potentially evaluated.
6269      PotentiallyReferencedDeclStack.back().push_back(std::make_pair(Loc, D));
6270      return;
6271  }
6272
6273  // Note that this declaration has been used.
6274  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
6275    unsigned TypeQuals;
6276    if (Constructor->isImplicit() && Constructor->isDefaultConstructor()) {
6277        if (!Constructor->isUsed())
6278          DefineImplicitDefaultConstructor(Loc, Constructor);
6279    } else if (Constructor->isImplicit() &&
6280               Constructor->isCopyConstructor(Context, TypeQuals)) {
6281      if (!Constructor->isUsed())
6282        DefineImplicitCopyConstructor(Loc, Constructor, TypeQuals);
6283    }
6284  } else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(D)) {
6285    if (Destructor->isImplicit() && !Destructor->isUsed())
6286      DefineImplicitDestructor(Loc, Destructor);
6287
6288  } else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(D)) {
6289    if (MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() &&
6290        MethodDecl->getOverloadedOperator() == OO_Equal) {
6291      if (!MethodDecl->isUsed())
6292        DefineImplicitOverloadedAssign(Loc, MethodDecl);
6293    }
6294  }
6295  if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
6296    // Implicit instantiation of function templates and member functions of
6297    // class templates.
6298    if (!Function->getBody() && Function->isImplicitlyInstantiable()) {
6299      bool AlreadyInstantiated = false;
6300      if (FunctionTemplateSpecializationInfo *SpecInfo
6301                                = Function->getTemplateSpecializationInfo()) {
6302        if (SpecInfo->getPointOfInstantiation().isInvalid())
6303          SpecInfo->setPointOfInstantiation(Loc);
6304        else if (SpecInfo->getTemplateSpecializationKind()
6305                   == TSK_ImplicitInstantiation)
6306          AlreadyInstantiated = true;
6307      } else if (MemberSpecializationInfo *MSInfo
6308                                  = Function->getMemberSpecializationInfo()) {
6309        if (MSInfo->getPointOfInstantiation().isInvalid())
6310          MSInfo->setPointOfInstantiation(Loc);
6311        else if (MSInfo->getTemplateSpecializationKind()
6312                   == TSK_ImplicitInstantiation)
6313          AlreadyInstantiated = true;
6314      }
6315
6316      if (!AlreadyInstantiated)
6317        PendingImplicitInstantiations.push_back(std::make_pair(Function, Loc));
6318    }
6319
6320    // FIXME: keep track of references to static functions
6321    Function->setUsed(true);
6322    return;
6323  }
6324
6325  if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
6326    // Implicit instantiation of static data members of class templates.
6327    if (Var->isStaticDataMember() &&
6328        Var->getInstantiatedFromStaticDataMember()) {
6329      MemberSpecializationInfo *MSInfo = Var->getMemberSpecializationInfo();
6330      assert(MSInfo && "Missing member specialization information?");
6331      if (MSInfo->getPointOfInstantiation().isInvalid() &&
6332          MSInfo->getTemplateSpecializationKind()== TSK_ImplicitInstantiation) {
6333        MSInfo->setPointOfInstantiation(Loc);
6334        PendingImplicitInstantiations.push_back(std::make_pair(Var, Loc));
6335      }
6336    }
6337
6338    // FIXME: keep track of references to static data?
6339
6340    D->setUsed(true);
6341    return;
6342  }
6343}
6344
6345bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
6346                               CallExpr *CE, FunctionDecl *FD) {
6347  if (ReturnType->isVoidType() || !ReturnType->isIncompleteType())
6348    return false;
6349
6350  PartialDiagnostic Note =
6351    FD ? PDiag(diag::note_function_with_incomplete_return_type_declared_here)
6352    << FD->getDeclName() : PDiag();
6353  SourceLocation NoteLoc = FD ? FD->getLocation() : SourceLocation();
6354
6355  if (RequireCompleteType(Loc, ReturnType,
6356                          FD ?
6357                          PDiag(diag::err_call_function_incomplete_return)
6358                            << CE->getSourceRange() << FD->getDeclName() :
6359                          PDiag(diag::err_call_incomplete_return)
6360                            << CE->getSourceRange(),
6361                          std::make_pair(NoteLoc, Note)))
6362    return true;
6363
6364  return false;
6365}
6366
6367// Diagnose the common s/=/==/ typo.  Note that adding parentheses
6368// will prevent this condition from triggering, which is what we want.
6369void Sema::DiagnoseAssignmentAsCondition(Expr *E) {
6370  SourceLocation Loc;
6371
6372  if (isa<BinaryOperator>(E)) {
6373    BinaryOperator *Op = cast<BinaryOperator>(E);
6374    if (Op->getOpcode() != BinaryOperator::Assign)
6375      return;
6376
6377    Loc = Op->getOperatorLoc();
6378  } else if (isa<CXXOperatorCallExpr>(E)) {
6379    CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(E);
6380    if (Op->getOperator() != OO_Equal)
6381      return;
6382
6383    Loc = Op->getOperatorLoc();
6384  } else {
6385    // Not an assignment.
6386    return;
6387  }
6388
6389  SourceLocation Open = E->getSourceRange().getBegin();
6390  SourceLocation Close = PP.getLocForEndOfToken(E->getSourceRange().getEnd());
6391
6392  Diag(Loc, diag::warn_condition_is_assignment)
6393    << E->getSourceRange()
6394    << CodeModificationHint::CreateInsertion(Open, "(")
6395    << CodeModificationHint::CreateInsertion(Close, ")");
6396}
6397
6398bool Sema::CheckBooleanCondition(Expr *&E, SourceLocation Loc) {
6399  DiagnoseAssignmentAsCondition(E);
6400
6401  if (!E->isTypeDependent()) {
6402    DefaultFunctionArrayConversion(E);
6403
6404    QualType T = E->getType();
6405
6406    if (getLangOptions().CPlusPlus) {
6407      if (CheckCXXBooleanCondition(E)) // C++ 6.4p4
6408        return true;
6409    } else if (!T->isScalarType()) { // C99 6.8.4.1p1
6410      Diag(Loc, diag::err_typecheck_statement_requires_scalar)
6411        << T << E->getSourceRange();
6412      return true;
6413    }
6414  }
6415
6416  return false;
6417}
6418